MyArxiv
Robotics
TraceGen: World Modeling in 3D Trace Space Enables Learning from Cross-Embodiment Videos
Learning new robot tasks on new platforms and in new scenes from only a handful of demonstrations remains challenging. While videos of other embodiments - humans and different robots - are abundant, differences in embodiment, camera, and environment hinder their direct use. We address the small-data problem by introducing a unifying, symbolic representation - a compact 3D "trace-space" of scene-level trajectories - that enables learning from cross-embodiment, cross-environment, and cross-task videos. We present TraceGen, a world model that predicts future motion in trace-space rather than pixel space, abstracting away appearance while retaining the geometric structure needed for manipulation. To train TraceGen at scale, we develop TraceForge, a data pipeline that transforms heterogeneous human and robot videos into consistent 3D traces, yielding a corpus of 123K videos and 1.8M observation-trace-language triplets. Pretraining on this corpus produces a transferable 3D motion prior that adapts efficiently: with just five target robot videos, TraceGen attains 80% success across four tasks while offering 50-600x faster inference than state-of-the-art video-based world models. In the more challenging case where only five uncalibrated human demonstration videos captured on a handheld phone are available, it still reaches 67.5% success on a real robot, highlighting TraceGen's ability to adapt across embodiments without relying on object detectors or heavy pixel-space generation.
Uncertainty Quantification for Visual Object Pose Estimation SP
Quantifying the uncertainty of an object's pose estimate is essential for robust control and planning. Although pose estimation is a well-studied robotics problem, attaching statistically rigorous uncertainty is not well understood without strict distributional assumptions. We develop distribution-free pose uncertainty bounds about a given pose estimate in the monocular setting. Our pose uncertainty only requires high probability noise bounds on pixel detections of 2D semantic keypoints on a known object. This noise model induces an implicit, non-convex set of pose uncertainty constraints. Our key contribution is SLUE (S-Lemma Uncertainty Estimation), a convex program to reduce this set to a single ellipsoidal uncertainty bound that is guaranteed to contain the true object pose with high probability. SLUE solves a relaxation of the minimum volume bounding ellipsoid problem inspired by the celebrated S-lemma. It requires no initial guess of the bound's shape or size and is guaranteed to contain the true object pose with high probability. For tighter uncertainty bounds at the same confidence, we extend SLUE to a sum-of-squares relaxation hierarchy which is guaranteed to converge to the minimum volume ellipsoidal uncertainty bound for a given set of keypoint constraints. We show this pose uncertainty bound can easily be projected to independent translation and axis-angle orientation bounds. We evaluate SLUE on two pose estimation datasets and a real-world drone tracking scenario. Compared to prior work, SLUE generates substantially smaller translation bounds and competitive orientation bounds. We release code at https://github.com/MIT-SPARK/PoseUncertaintySets.
comment: 18 pages, 9 figures. Code available: https://github.com/MIT-SPARK/PoseUncertaintySets
Model-Based Policy Adaptation for Closed-Loop End-to-End Autonomous Driving NeurIPS 2025
End-to-end (E2E) autonomous driving models have demonstrated strong performance in open-loop evaluations but often suffer from cascading errors and poor generalization in closed-loop settings. To address this gap, we propose Model-based Policy Adaptation (MPA), a general framework that enhances the robustness and safety of pretrained E2E driving agents during deployment. MPA first generates diverse counterfactual trajectories using a geometry-consistent simulation engine, exposing the agent to scenarios beyond the original dataset. Based on this generated data, MPA trains a diffusion-based policy adapter to refine the base policy's predictions and a multi-step Q value model to evaluate long-term outcomes. At inference time, the adapter proposes multiple trajectory candidates, and the Q value model selects the one with the highest expected utility. Experiments on the nuScenes benchmark using a photorealistic closed-loop simulator demonstrate that MPA significantly improves performance across in-domain, out-of-domain, and safety-critical scenarios. We further investigate how the scale of counterfactual data and inference-time guidance strategies affect overall effectiveness.
comment: Published at NeurIPS 2025: https://openreview.net/forum?id=4OLbpaTKJe
VacuumVLA: Boosting VLA Capabilities via a Unified Suction and Gripping Tool for Complex Robotic Manipulation
Vision Language Action models have significantly advanced general purpose robotic manipulation by harnessing large scale pretrained vision and language representations. Among existing approaches, a majority of current VLA systems employ parallel two finger grippers as their default end effectors. However, such grippers face inherent limitations in handling certain real world tasks such as wiping glass surfaces or opening drawers without handles due to insufficient contact area or lack of adhesion. To overcome these challenges, we present a low cost, integrated hardware design that combines a mechanical two finger gripper with a vacuum suction unit, enabling dual mode manipulation within a single end effector. Our system supports flexible switching or synergistic use of both modalities, expanding the range of feasible tasks. We validate the efficiency and practicality of our design within two state of the art VLA frameworks: DexVLA and Pi0. Experimental results demonstrate that with the proposed hybrid end effector, robots can successfully perform multiple complex tasks that are infeasible for conventional two finger grippers alone. All hardware designs and controlling systems will be released.
comment: 8 pages
$\mathcal{E}_0$: Enhancing Generalization and Fine-Grained Control in VLA Models via Continuized Discrete Diffusion
Vision-Language-Action (VLA) models offer a unified framework for robotic manipulation by integrating visual perception, language understanding, and control generation. Yet existing VLA models still struggle to generalize across diverse tasks, scenes, and camera viewpoints, and often produce coarse or unstable actions. We introduce E0, a continuized discrete diffusion framework that formulates action generation as iterative denoising over quantized action tokens. Compared with continuous diffusion policies, E0 offers two key advantages: (1) discrete action tokens align naturally with the symbolic structure of pretrained VLM/VLA backbones, enabling stronger semantic conditioning; and 2. discrete diffusion matches the true quantized nature of real-world robot control-whose hardware constraints (e.g., encoder resolution, control frequency, actuation latency) inherently discretize continuous signals-and therefore benefits from a Bayes-optimal denoiser that models the correct discrete action distribution, leading to stronger generalization. Compared with discrete autoregressive and mask-based discrete diffusion models, E0 supports a significantly larger and finer-grained action vocabulary and avoids the distributional mismatch introduced by masking-based corruptions-yielding more accurate fine-grained action control. We further introduce a spherical viewpoint perturbation augmentation method to improve robustness to camera shifts without additional data. Experiments on LIBERO, VLABench, and ManiSkill show that E0 achieves state-of-the-art performance across 14 diverse environments, outperforming strong baselines by 10.7% on average. Real-world evaluation on a Franka arm confirms that E0 delivers precise, robust, and transferable manipulation, establishing discrete diffusion as a promising direction for generalizable VLA policy learning.
Predictive Safety Shield for Dyna-Q Reinforcement Learning
Obtaining safety guarantees for reinforcement learning is a major challenge to achieve applicability for real-world tasks. Safety shields extend standard reinforcement learning and achieve hard safety guarantees. However, existing safety shields commonly use random sampling of safe actions or a fixed fallback controller, therefore disregarding future performance implications of different safe actions. In this work, we propose a predictive safety shield for model-based reinforcement learning agents in discrete space. Our safety shield updates the Q-function locally based on safe predictions, which originate from a safe simulation of the environment model. This shielding approach improves performance while maintaining hard safety guarantees. Our experiments on gridworld environments demonstrate that even short prediction horizons can be sufficient to identify the optimal path. We observe that our approach is robust to distribution shifts, e.g., between simulation and reality, without requiring additional training.
Hybrid Control for Robotic Nut Tightening Task
An autonomous robotic nut tightening system for a serial manipulator equipped with a parallel gripper is proposed. The system features a hierarchical motion-primitive-based planner and a control-switching scheme that alternates between force and position control. Extensive simulations demonstrate the system's robustness to variance in initial conditions. Additionally, the proposed controller tightens threaded screws 14% faster than the baseline while applying 40 times less contact force on manipulands. For the benefit of the research community, the system's implementation is open-sourced.
Scalable Multisubject Vital Sign Monitoring With mmWave FMCW Radar and FPGA Prototyping
In this work, we introduce an innovative approach to estimate the vital signs of multiple human subjects simultaneously in a non-contact way using a Frequency Modulated Continuous Wave (FMCW) radar-based system. Traditional vital sign monitoring methods often face significant limitations, including subject discomfort with wearable devices, challenges in calibration, and the risk of infection transmission through contact measurement devices. To address these issues, this research is motivated by the need for versatile, non-contact vital monitoring solutions applicable in various critical scenarios. This work also explores the challenges of extending this capability to an arbitrary number of subjects, including hardware and theoretical limitations. Supported by rigorous experimental results and discussions, the paper illustrates the system's potential to redefine vital sign monitoring. An FPGA-based implementation is also presented as proof of concept for a hardware-based and portable solution, improving upon previous works by offering 2.7x faster execution and 18.4% less Look-Up Table (LUT) utilization, as well as providing over 7400x acceleration compared to its software counterpart.
comment: Published in IEEE Sensors Journal
Neural NMPC through Signed Distance Field Encoding for Collision Avoidance
This paper introduces a neural Nonlinear Model Predictive Control (NMPC) framework for mapless, collision-free navigation in unknown environments with Aerial Robots, using onboard range sensing. We leverage deep neural networks to encode a single range image, capturing all the available information about the environment, into a Signed Distance Function (SDF). The proposed neural architecture consists of two cascaded networks: a convolutional encoder that compresses the input image into a low-dimensional latent vector, and a Multi-Layer Perceptron that approximates the corresponding spatial SDF. This latter network parametrizes an explicit position constraint used for collision avoidance, which is embedded in a velocity-tracking NMPC that outputs thrust and attitude commands to the robot. First, a theoretical analysis of the contributed NMPC is conducted, verifying recursive feasibility and stability properties under fixed observations. Subsequently, we evaluate the open-loop performance of the learning-based components as well as the closed-loop performance of the controller in simulations and experiments. The simulation study includes an ablation study, comparisons with two state-of-the-art local navigation methods, and an assessment of the resilience to drifting odometry. The real-world experiments are conducted in forest environments, demonstrating that the neural NMPC effectively performs collision avoidance in cluttered settings against an adversarial reference velocity input and drifting position estimates.
comment: accepted for publication in IJRR
Improvement of Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics
This paper proposes a new strategy for collision avoidance system leveraging Time-to-Collision (TTC) metrics for handling cut-in scenarios, which are particularly challenging for autonomous vehicles (AVs). By integrating a deep learning with TTC calculations, the system predicts potential collisions and determines appropriate evasive actions compared to traditional TTC -based approaches.
Sampling-Based Optimization with Parallelized Physics Simulator for Bimanual Manipulation
In recent years, dual-arm manipulation has become an area of strong interest in robotics, with end-to-end learning emerging as the predominant strategy for solving bimanual tasks. A critical limitation of such learning-based approaches, however, is their difficulty in generalizing to novel scenarios, especially within cluttered environments. This paper presents an alternative paradigm: a sampling-based optimization framework that utilizes a GPU-accelerated physics simulator as its world model. We demonstrate that this approach can solve complex bimanual manipulation tasks in the presence of static obstacles. Our contribution is a customized Model Predictive Path Integral Control (MPPI) algorithm, \textbf{guided by carefully designed task-specific cost functions,} that uses GPU-accelerated MuJoCo for efficiently evaluating robot-object interaction. We apply this method to solve significantly more challenging versions of tasks from the PerAct$^{2}$ benchmark, such as requiring the point-to-point transfer of a ball through an obstacle course. Furthermore, we establish that our method achieves real-time performance on commodity GPUs and facilitates successful sim-to-real transfer by leveraging unique features within MuJoCo. The paper concludes with a statistical analysis of the sample complexity and robustness, quantifying the performance of our approach. The project website is available at: https://sites.google.com/view/bimanualakslabunitartu .
comment: 9 pages, 5 figures
Design and Measurements of mmWave FMCW Radar Based Non-Contact Multi-Patient Heart Rate and Breath Rate Monitoring System
Recent developments in mmWave radar technologies have enabled the truly non-contact heart-rate (HR) and breath-rate (BR) measurement approaches, which provides a great ease in patient monitoring. Additionally, these technologies also provide opportunities to simultaneously detect HR and BR of multiple patients, which has become increasingly important for efficient mass monitoring scenarios. In this work, a frequency modulated continuous wave (FMCW) mmWave radar based truly non-contact multiple patient HR and BR monitoring system has been presented. Furthermore, a novel approach is also proposed, which combines multiple processing methods using a least squares solution to improve measurement accuracy, generalization, and handle measurement error. The proposed system has been developed using Texas Instruments' FMCW radar and experimental results with multiple subjects are also presented, which show >97% and >93% accuracy in the measured BR and HR values, respectively.
comment: Presented at BioCAS 2023
Transformer Driven Visual Servoing and Dual Arm Impedance Control for Fabric Texture Matching
In this paper, we propose a method to align and place a fabric piece on top of another using a dual-arm manipulator and a grayscale camera, so that their surface textures are accurately matched. We propose a novel control scheme that combines Transformer-driven visual servoing with dualarm impedance control. This approach enables the system to simultaneously control the pose of the fabric piece and place it onto the underlying one while applying tension to keep the fabric piece flat. Our transformer-based network incorporates pretrained backbones and a newly introduced Difference Extraction Attention Module (DEAM), which significantly enhances pose difference prediction accuracy. Trained entirely on synthetic images generated using rendering software, the network enables zero-shot deployment in real-world scenarios without requiring prior training on specific fabric textures. Real-world experiments demonstrate that the proposed system accurately aligns fabric pieces with different textures.
comment: 8 pages, 11 figures. Accepted to IEEE Robotics and Automation Letters (RA-L)
Dual Preintegration for Relative State Estimation
Relative State Estimation perform mutually localization between two mobile agents undergoing six-degree-of-freedom motion. Based on the principle of circular motion, the estimation accuracy is sensitive to nonlinear rotations of the reference platform, particularly under large inter-platform distances. This phenomenon is even obvious for linearized kinematics, because cumulative linearization errors significantly degrade precision. In virtual reality (VR) applications, this manifests as substantial positional errors in 6-DoF controller tracking during rapid rotations of the head-mounted display. The linearization errors introduce drift in the estimate and render the estimator inconsistent. In the field of odometry, IMU preintegration is proposed as a kinematic observation to enable efficient relinearization, thus mitigate linearized error. Building on this theory, we propose dual preintegration, a novel observation integrating IMU preintegration from both platforms. This method serves as kinematic constraints for consecutive relative state and supports efficient relinearization. We also perform observability analysis of the state and analytically formulate the accordingly null space. Algorithm evaluation encompasses both simulations and real-world experiments. Multiple nonlinear rotations on the reference platform are simulated to compare the precision of the proposed method with that of other state-of-the-art (SOTA) algorithms. The field test compares the proposed method and SOTA algorithms in the application of VR controller tracking from the perspectives of bias observability, nonlinear rotation, and background texture. The results demonstrate that the proposed method is more precise and robust than the SOTA algorithms.
Kinematics-Aware Multi-Policy Reinforcement Learning for Force-Capable Humanoid Loco-Manipulation
Humanoid robots, with their human-like morphology, hold great potential for industrial applications. However, existing loco-manipulation methods primarily focus on dexterous manipulation, falling short of the combined requirements for dexterity and proactive force interaction in high-load industrial scenarios. To bridge this gap, we propose a reinforcement learning-based framework with a decoupled three-stage training pipeline, consisting of an upper-body policy, a lower-body policy, and a delta-command policy. To accelerate upper-body training, a heuristic reward function is designed. By implicitly embedding forward kinematics priors, it enables the policy to converge faster and achieve superior performance. For the lower body, a force-based curriculum learning strategy is developed, enabling the robot to actively exert and regulate interaction forces with the environment.
MarketGen: A Scalable Simulation Platform with Auto-Generated Embodied Supermarket Environments
The development of embodied agents for complex commercial environments is hindered by a critical gap in existing robotics datasets and benchmarks, which primarily focus on household or tabletop settings with short-horizon tasks. To address this limitation, we introduce MarketGen, a scalable simulation platform with automatic scene generation for complex supermarket environments. MarketGen features a novel agent-based Procedural Content Generation (PCG) framework. It uniquely supports multi-modal inputs (text and reference images) and integrates real-world design principles to automatically generate complete, structured, and realistic supermarkets. We also provide an extensive and diverse 3D asset library with a total of 1100+ supermarket goods and parameterized facilities assets. Building on this generative foundation, we propose a novel benchmark for assessing supermarket agents, featuring two daily tasks in a supermarket: (1) Checkout Unloading: long-horizon tabletop tasks for cashier agents, and (2) In-Aisle Item Collection: complex mobile manipulation tasks for salesperson agents. We validate our platform and benchmark through extensive experiments, including the deployment of a modular agent system and successful sim-to-real transfer. MarketGen provides a comprehensive framework to accelerate research in embodied AI for complex commercial applications.
comment: Project Page: https://xuhu0529.github.io/MarketGen
Maglev-Pentabot: Magnetic Levitation System for Non-Contact Manipulation using Deep Reinforcement Learning
Non-contact manipulation has emerged as a transformative approach across various industrial fields. However, current flexible 2D and 3D non-contact manipulation techniques are often limited to microscopic scales, typically controlling objects in the milligram range. In this paper, we present a magnetic levitation system, termed Maglev-Pentabot, designed to address this limitation. The Maglev-Pentabot leverages deep reinforcement learning (DRL) to develop complex control strategies for manipulating objects in the gram range. Specifically, we propose an electromagnet arrangement optimized through numerical analysis to maximize controllable space. Additionally, an action remapping method is introduced to address sample sparsity issues caused by the strong nonlinearity in magnetic field intensity, hence allowing the DRL controller to converge. Experimental results demonstrate flexible manipulation capabilities, and notably, our system can generalize to transport tasks it has not been explicitly trained for. Furthermore, our approach can be scaled to manipulate heavier objects using larger electromagnets, offering a reference framework for industrial-scale robotic applications.
SocialNav: Training Human-Inspired Foundation Model for Socially-Aware Embodied Navigation
Embodied navigation that adheres to social norms remains an open research challenge. Our \textbf{SocialNav} is a foundational model for socially-aware navigation with a hierarchical "brain-action" architecture, capable of understanding high-level social norms and generating low-level, socially compliant trajectories. To enable such dual capabilities, we construct the SocNav Dataset, a large-scale collection of 7 million samples, comprising (1) a Cognitive Activation Dataset providing social reasoning signals such as chain-of-thought explanations and social traversability prediction, and (2) an Expert Trajectories Pyramid aggregating diverse navigation demonstrations from internet videos, simulated environments, and real-world robots. A multi-stage training pipeline is proposed to gradually inject and refine navigation intelligence: we first inject general navigation skills and social norms understanding into the model via imitation learning, and then refine such skills through a deliberately designed Socially-Aware Flow Exploration GRPO (SAFE-GRPO), the first flow-based reinforcement learning framework for embodied navigation that explicitly rewards socially compliant behaviors. SocialNav achieves +38% success rate and +46% social compliance rate compared to the state-of-the-art method, demonstrating strong gains in both navigation performance and social compliance. Our project page: https://amap-eai.github.io/SocialNav/
Dual-Agent Reinforcement Learning for Adaptive and Cost-Aware Visual-Inertial Odometry
Visual-Inertial Odometry (VIO) is a critical component for robust ego-motion estimation, enabling foundational capabilities such as autonomous navigation in robotics and real-time 6-DoF tracking for augmented reality. Existing methods face a well-known trade-off: filter-based approaches are efficient but prone to drift, while optimization-based methods, though accurate, rely on computationally prohibitive Visual-Inertial Bundle Adjustment (VIBA) that is difficult to run on resource-constrained platforms. Rather than removing VIBA altogether, we aim to reduce how often and how heavily it must be invoked. To this end, we cast two key design choices in modern VIO, when to run the visual frontend and how strongly to trust its output, as sequential decision problems, and solve them with lightweight reinforcement learning (RL) agents. Our framework introduces a lightweight, dual-pronged RL policy that serves as our core contribution: (1) a Select Agent intelligently gates the entire VO pipeline based only on high-frequency IMU data; and (2) a composite Fusion Agent that first estimates a robust velocity state via a supervised network, before an RL policy adaptively fuses the full (p, v, q) state. Experiments on the EuRoC MAV and TUM-VI datasets show that, in our unified evaluation, the proposed method achieves a more favorable accuracy-efficiency-memory trade-off than prior GPU-based VO/VIO systems: it attains the best average ATE while running up to 1.77 times faster and using less GPU memory. Compared to classical optimization-based VIO systems, our approach maintains competitive trajectory accuracy while substantially reducing computational load.
AerialMind: Towards Referring Multi-Object Tracking in UAV Scenarios AAAI 2026
Referring Multi-Object Tracking (RMOT) aims to achieve precise object detection and tracking through natural language instructions, representing a fundamental capability for intelligent robotic systems. However, current RMOT research remains mostly confined to ground-level scenarios, which constrains their ability to capture broad-scale scene contexts and perform comprehensive tracking and path planning. In contrast, Unmanned Aerial Vehicles (UAVs) leverage their expansive aerial perspectives and superior maneuverability to enable wide-area surveillance. Moreover, UAVs have emerged as critical platforms for Embodied Intelligence, which has given rise to an unprecedented demand for intelligent aerial systems capable of natural language interaction. To this end, we introduce AerialMind, the first large-scale RMOT benchmark in UAV scenarios, which aims to bridge this research gap. To facilitate its construction, we develop an innovative semi-automated collaborative agent-based labeling assistant (COALA) framework that significantly reduces labor costs while maintaining annotation quality. Furthermore, we propose HawkEyeTrack (HETrack), a novel method that collaboratively enhances vision-language representation learning and improves the perception of UAV scenarios. Comprehensive experiments validated the challenging nature of our dataset and the effectiveness of our method.
comment: AAAI 2026
Dataset Poisoning Attacks on Behavioral Cloning Policies SP 2025
Behavior Cloning (BC) is a popular framework for training sequential decision policies from expert demonstrations via supervised learning. As these policies are increasingly being deployed in the real world, their robustness and potential vulnerabilities are an important concern. In this work, we perform the first analysis of the efficacy of clean-label backdoor attacks on BC policies. Our backdoor attacks poison a dataset of demonstrations by injecting a visual trigger to create a spurious correlation that can be exploited at test time. We evaluate how policy vulnerability scales with the fraction of poisoned data, the strength of the trigger, and the trigger type. We also introduce a novel entropy-based test-time trigger attack that substantially degrades policy performance by identifying critical states where test-time triggering of the backdoor is expected to be most effective at degrading performance. We empirically demonstrate that BC policies trained on even minimally poisoned datasets exhibit deceptively high, near-baseline task performance despite being highly vulnerable to backdoor trigger attacks during deployment. Our results underscore the urgent need for more research into the robustness of BC policies, particularly as large-scale datasets are increasingly used to train policies for real-world cyber-physical systems. Videos and code are available at https://sites.google.com/view/dataset-poisoning-in-bc.
comment: Accepted at EAI SmartSP 2025
ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.
comment: Preprint version
X-Nav: Learning End-to-End Cross-Embodiment Navigation for Mobile Robots
Existing navigation methods are primarily designed for specific robot embodiments, limiting their generalizability across diverse robot platforms. In this paper, we introduce X-Nav, a novel framework for end-to-end cross-embodiment navigation where a single unified policy can be deployed across various embodiments for both wheeled and quadrupedal robots. X-Nav consists of two learning stages: 1) multiple expert policies are trained using deep reinforcement learning with privileged observations on a wide range of randomly generated robot embodiments; and 2) a single general policy is distilled from the expert policies via navigation action chunking with transformer (Nav-ACT). The general policy directly maps visual and proprioceptive observations to low-level control commands, enabling generalization to novel robot embodiments. Simulated experiments demonstrated that X-Nav achieved zero-shot transfer to both unseen embodiments and photorealistic environments. A scalability study showed that the performance of X-Nav improves when trained with an increasing number of randomly generated embodiments. An ablation study confirmed the design choices of X-Nav. Furthermore, real-world experiments were conducted to validate the generalizability of X-Nav in real-world environments.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
MonoMPC: Monocular Vision Based Navigation with Learned Collision Model and Risk-Aware Model Predictive Control
Navigating unknown environments with a single RGB camera is challenging, as the lack of depth information prevents reliable collision-checking. While some methods use estimated depth to build collision maps, we found that depth estimates from vision foundation models are too noisy for zero-shot navigation in cluttered environments. We propose an alternative approach: instead of using noisy estimated depth for direct collision-checking, we use it as a rich context input to a learned collision model. This model predicts the distribution of minimum obstacle clearance that the robot can expect for a given control sequence. At inference, these predictions inform a risk-aware MPC planner that minimizes estimated collision risk. We proposed a joint learning pipeline that co-trains the collision model and risk metric using both safe and unsafe trajectories. Crucially, our joint-training ensures well calibrated uncertainty in our collision model that improves navigation in highly cluttered environments. Consequently, real-world experiments show reductions in collision-rate and improvements in goal reaching and speed over several strong baselines.
Floor Plan-Guided Visual Navigation Incorporating Depth and Directional Cues
Guiding an agent to a specific target in indoor environments based solely on RGB inputs and a floor plan is a promising yet challenging problem. Although existing methods have made significant progress, two challenges remain unresolved. First, the modality gap between egocentric RGB observations and the floor plan hinders the integration of visual and spatial information for both local obstacle avoidance and global planning. Second, accurate localization is critical for navigation performance, but remains challenging at deployment in unseen environments due to the lack of explicit geometric alignment between RGB inputs and floor plans. We propose a novel diffusion-based policy, denoted as GlocDiff, which integrates global path planning from the floor plan with local depth-aware features derived from RGB observations. The floor plan offers explicit global guidance, while the depth features provide implicit geometric cues, collectively enabling precise prediction of optimal navigation directions and robust obstacle avoidance. Moreover, GlocDiff introduces noise perturbation during training to enhance robustness against pose estimation errors, and we find that combining this with a relatively stable VO module during inference results in significantly improved navigation performance. Extensive experiments on the FloNa benchmark demonstrate GlocDiff's efficiency and effectiveness in achieving superior navigation performance, and the success of real-world deployments also highlights its potential for widespread practical applications.
scipy.spatial.transform: Differentiable Framework-Agnostic 3D Transformations in Python
Three-dimensional rigid-body transforms, i.e. rotations and translations, are central to modern differentiable machine learning pipelines in robotics, vision, and simulation. However, numerically robust and mathematically correct implementations, particularly on SO(3), are error-prone due to issues such as axis conventions, normalizations, composition consistency and subtle errors that only appear in edge cases. SciPy's spatial$.$transform module is a rigorously tested Python implementation. However, it historically only supported NumPy, limiting adoption in GPU-accelerated and autodiff-based workflows. We present a complete overhaul of SciPy's spatial$.$transform functionality that makes it compatible with any array library implementing the Python array API, including JAX, PyTorch, and CuPy. The revised implementation preserves the established SciPy interface while enabling GPU/TPU execution, JIT compilation, vectorized batching, and differentiation via native autodiff of the chosen backend. We demonstrate how this foundation supports differentiable scientific computing through two case studies: (i) scalability of 3D transforms and rotations and (ii) a JAX drone simulation that leverages SciPy's Rotation for accurate integration of rotational dynamics. Our contributions have been merged into SciPy main and will ship in the next release, providing a framework-agnostic, production-grade basis for 3D spatial math in differentiable systems and ML.
comment: Accepted as oral at the 1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025
Heterogeneous Multi-robot Task Allocation for Long-Endurance Missions in Dynamic Scenarios
We present a framework for Multi-Robot Task Allocation (MRTA) in heterogeneous teams performing long-endurance missions in dynamic scenarios. Given the limited battery of robots, especially for aerial vehicles, we allow for robot recharges and the possibility of fragmenting and/or relaying certain tasks. We also address tasks that must be performed by a coalition of robots in a coordinated manner. Given these features, we introduce a new class of heterogeneous MRTA problems which we analyze theoretically and optimally formulate as a Mixed-Integer Linear Program. We then contribute a heuristic algorithm to compute approximate solutions and integrate it into a mission planning and execution architecture capable of reacting to unexpected events by repairing or recomputing plans online. Our experimental results show the relevance of our newly formulated problem in a realistic use case for inspection with aerial robots. We assess the performance of our heuristic solver in comparison with other variants and with exact optimal solutions in small-scale scenarios. In addition, we evaluate the ability of our replanning framework to repair plans online.
comment: 20 pages, 10 figures
Multi-Agent Monocular Dense SLAM With 3D Reconstruction Priors
Monocular Simultaneous Localization and Mapping (SLAM) aims to estimate a robot's pose while simultaneously reconstructing an unknown 3D scene using a single camera. While existing monocular SLAM systems generate detailed 3D geometry through dense scene representations, they are computationally expensive due to the need for iterative optimization. To address this challenge, MASt3R-SLAM utilizes learned 3D reconstruction priors, enabling more efficient and accurate estimation of both 3D structures and camera poses. However, MASt3R-SLAM is limited to single-agent operation. In this paper, we extend MASt3R-SLAM to introduce the first multi-agent monocular dense SLAM system. Each agent performs local SLAM using a 3D reconstruction prior, and their individual maps are fused into a globally consistent map through a loop-closure-based map fusion mechanism. Our approach improves computational efficiency compared to state-of-the-art methods, while maintaining similar mapping accuracy when evaluated on real-world datasets.
Rapid and Safe Trajectory Planning over Diverse Scenes through Diffusion Composition
Safe trajectory planning in complex environments must balance stringent collision avoidance with real-time efficiency, which is a long-standing challenge in robotics. In this work, we present a diffusion-based trajectory planning framework that is both rapid and safe. First, we introduce a scene-agnostic, MPC-based data generation pipeline that efficiently produces large volumes of kinematically feasible trajectories. Building on this dataset, our integrated diffusion planner maps raw onboard sensor inputs directly to kinematically feasible trajectories, enabling efficient inference while maintaining strong collision avoidance. To generalize to diverse, previously unseen scenarios, we compose diffusion models at test time, enabling safe behavior without additional training. We further propose a lightweight, rule-based safety filter that, from the candidate set, selects the trajectory meeting safety and kinematic-feasibility requirements. Across seen and unseen settings, the proposed method delivers real-time-capable inference with high safety and stability. Experiments on an F1TENTH vehicle demonstrate practicality on real hardware. Project page: https://rstp-comp-diffuser.github.io/.
Steering Flexible Linear Objects in Planar Environments by Two Robot Hands Using Euler's Elastica Solutions
The manipulation of flexible objects such as cables, wires and fresh food items by robot hands forms a special challenge in robot grasp mechanics. This paper considers the steering of flexible linear objects in planar environments by two robot hands. The flexible linear object, modeled as an elastic non-stretchable rod, is manipulated by varying the gripping endpoint positions while keeping equal endpoint tangents. The flexible linear object shape has a closed form solution in terms of the grasp endpoint positions and tangents, called Euler's elastica. This paper obtains the elastica solutions under the optimal control framework, then uses the elastica solutions to obtain closed-form criteria for non self-intersection, stability and obstacle avoidance of the flexible linear object. The new tools are incorporated into a planning scheme for steering flexible linear objects in planar environments populated by sparsely spaced obstacles. The scheme is fully implemented and demonstrated with detailed examples.
A New Framework for Nonlinear Kalman Filters
The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems over the last sixty years. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF. Yet, according to our theoretical and empirical analysis, the framework tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework that can be combined with any existing type of nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce estimation errors by several orders of magnitude in low-measurement-noise conditions. The codes are available at https://github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters
comment: Massive revisions throughout the entire paper. More simulation results are added, and the mathematical expressions have become more rigorous and precise
Connectivity-Preserving Multi-Agent Area Coverage via Optimal-Transport-Based Density-Driven Optimal Control (D2OC)
Multi-agent systems play a central role in area coverage tasks across search-and-rescue, environmental monitoring, and precision agriculture. Achieving non-uniform coverage, where spatial priorities vary across the domain, requires coordinating agents while respecting dynamic and communication constraints. Density-driven approaches can distribute agents according to a prescribed reference density, but existing methods do not ensure connectivity. This limitation often leads to communication loss, reduced coordination, and degraded coverage performance. This letter introduces a connectivity-preserving extension of the Density-Driven Optimal Control (D2OC) framework. The coverage objective, defined using the Wasserstein distance between the agent distribution and the reference density, admits a convex quadratic program formulation. Communication constraints are incorporated through a smooth connectivity penalty, which maintains strict convexity, supports distributed implementation, and preserves inter-agent communication without imposing rigid formations. Simulation studies show that the proposed method consistently maintains connectivity, improves convergence speed, and enhances non-uniform coverage quality compared with density-driven schemes that do not incorporate explicit connectivity considerations.
comment: Under review in IEEE Control Systems Letters (LCSS). 6 pages
BRIC: Bridging Kinematic Plans and Physical Control at Test Time AAAI'26
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
comment: Accepted to AAAI'26
Development of a Testbed for Autonomous Vehicles: Integrating MPC Control with Monocular Camera Lane Detection
Autonomous vehicles are becoming popular day by day not only for autonomous road traversal but also for industrial automation, farming and military. Most of the standard vehicles follow the Ackermann style steering mechanism. This has become to de facto standard for large and long faring vehicles. The local planner of an autonomous vehicle controls the low-level vehicle movement upon which the vehicle will perform its motor actuation. In our work, we focus on autonomous vehicles in road and perform experiments to analyze the effect of low-level controllers in the simulation and a real environment. To increase the precision and stability of trajectory tracking in autonomous cars, a novel method that combines lane identification with Model Predictive Control (MPC) is presented. The research focuses on camera-equipped autonomous vehicles and uses methods like edge recognition, sliding window-based straight-line identification for lane line extraction, and dynamic region of interest (ROI) extraction. Next, to follow the identified lane line, an MPC built on a bicycle vehicle dynamics model is created. A single-lane road simulation model is built using ROS Gazebo and tested in order to verify the controller's performance. The root mean square error between the optimal tracking trajectory and the target trajectory was reduced by 27.65% in the simulation results, demonstrating the high robustness and flexibility of the developed controller.
comment: 49 pages, 23 figures
Analytical Solvers for Common Algebraic Equations Arising in Kinematics Problems
This paper presents analytical solvers for four common types of algebraic equations encountered in robot kinematics: single trigonometric equations, single-angle trigonometric systems, two-angle trigonometric systems, and bilinear two-angle systems. These equations arise frequently in the kinematics problems, particularly in robot kinematics. We provide detailed solution methods, including closed-form expressions, numerical algorithms, and robustness considerations. The solvers are designed to handle general coefficients, manage singularities, and enumerate all real solutions efficiently. These solvers are implemented in Python packages and can be reproduced by prompting Language Lanuage Models. Sampe prompts are also provided in the public code space Github repo. These prompts can generate a working solver code with one single prompt in coding agent such as OpenAI's Codex 5.1. This work serves as a foundation for developing complete inverse kinematics solvers for various robot architectures. Extensive validation and benchmarking demonstrate the effectiveness and reliability of the proposed methods.
MAPF-HD: Multi-Agent Path Finding in High-Density Environments
Multi-agent path finding (MAPF) involves planning efficient paths for multiple agents to move simultaneously while avoiding collisions. In typical warehouse environments, agents are often sparsely distributed along aisles; however, increasing the agent density can improve space efficiency. When the agent density is high, it becomes necessary to optimize the paths not only for goal-assigned agents but also for those obstructing them. This study proposes a novel MAPF framework for high-density environments (MAPF-HD). Several studies have explored MAPF in similar settings using integer linear programming (ILP). However, ILP-based methods require substantial computation time to optimize all agent paths simultaneously. Even in small grid-based environments with fewer than $100$ cells, these computations can take tens to hundreds of seconds. Such high computational costs render these methods impractical for large-scale applications such as automated warehouses and valet parking. To address these limitations, we introduce the phased null-agent swapping (PHANS) method. PHANS employs a heuristic approach to incrementally swap positions between agents and empty vertices. This method solves the MAPF-HD problem within a few seconds, even in large environments containing more than $700$ cells. The proposed method has the potential to improve efficiency in various real-world applications such as warehouse logistics, traffic management, and crowd control. The implementation is available at https://github.com/ToyotaCRDL/MAPF-in-High-Density-Envs.
comment: 9 pages, 12 figures
Simultaneous Calibration of Noise Covariance and Kinematics for State Estimation of Legged Robots via Bi-level Optimization
Accurate state estimation is critical for legged and aerial robots operating in dynamic, uncertain environments. A key challenge lies in specifying process and measurement noise covariances, which are typically unknown or manually tuned. In this work, we introduce a bi-level optimization framework that jointly calibrates covariance matrices and kinematic parameters in an estimator-in-the-loop manner. The upper level treats noise covariances and model parameters as optimization variables, while the lower level executes a full-information estimator. Differentiating through the estimator allows direct optimization of trajectory-level objectives, resulting in accurate and consistent state estimates. We validate our approach on quadrupedal and humanoid robots, demonstrating significantly improved estimation accuracy and uncertainty calibration compared to hand-tuned baselines. Our method unifies state estimation, sensor, and kinematics calibration into a principled, data-driven framework applicable across diverse robotic platforms.
Multiagent Systems
ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration
Large language models are powerful generalists, yet solving deep and complex problems such as those of the Humanity's Last Exam (HLE) remains both conceptually challenging and computationally expensive. We show that small orchestrators managing other models and a variety of tools can both push the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than previous tool-use agents while aligning with user preferences on which tools are to be used for a given query. On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient. On tau2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing diverse tools with a lightweight orchestration model is both more efficient and more effective than existing methods, paving the way for practical and scalable tool-augmented reasoning systems.
comment: 21 pages, 6 figures
BAMAS: Structuring Budget-Aware Multi-Agent Systems AAAI 2026
Large language model (LLM)-based multi-agent systems have emerged as a powerful paradigm for enabling autonomous agents to solve complex tasks. As these systems scale in complexity, cost becomes an important consideration for practical deployment. However, existing work rarely addresses how to structure multi-agent systems under explicit budget constraints. In this paper, we propose BAMAS, a novel approach for building multi-agent systems with budget awareness. BAMAS first selects an optimal set of LLMs by formulating and solving an Integer Linear Programming problem that balances performance and cost. It then determines how these LLMs should collaborate by leveraging a reinforcement learning-based method to select the interaction topology. Finally, the system is instantiated and executed based on the selected agents and their collaboration topology. We evaluate BAMAS on three representative tasks and compare it with state-of-the-art agent construction methods. Results show that BAMAS achieves comparable performance while reducing cost by up to 86%.
comment: Accepted by AAAI 2026 (oral paper)
Tool-RoCo: An Agent-as-Tool Self-organization Large Language Model Benchmark in Multi-robot Cooperation
This study proposes Tool-RoCo, a novel benchmark for evaluating large language models (LLMs) in long-term multi-agent cooperation based on RoCo, a multi-robot cooperative benchmark. Recent research on LLM-based multi-agent systems has relied on predefined orchestration, while ignoring agent autonomy. Tool-RoCo treats other agents as tools and introduces cooperative tools, leveraging tool usage to evaluate multi-agent cooperation and self-organization. Tool usage means that each agent (LLM) selects a tool from a candidate set based on the current state, receives feedback, and adjusts its selection in subsequent rounds. To evaluate different autonomy levels, we propose four LLM paradigms: (1) centralized cooperation, where a single LLM allocates tools to all agents; (2) centralized self-organization, where a central LLM autonomously activates agents while keeping others inactive; (3) decentralized cooperation, where each agent has its own LLM and calls tools based on local information; and (4) self-organization, where a randomly chosen initial agent can request collaboration, activating additional agents via tool calls. Tool-RoCo includes three multi-robot tasks, SORT, PACK, and CABINET, to measure format and parameter accuracy and agent coordination through tool usage. The results using several LLMs showed that cooperative tools accounted for only 7.09% of all tools, indicating that LLM-based agents rarely invoked others as assistants. Moreover, activation tools accounted for 96.42%, suggesting that current LLMs tend to maintain active agents while seldom deactivating them for adaptive coordination. Tool-RoCo provides a systematic benchmark to evaluate LLM autonomy and cooperation in multi-agent tasks. Code and Demo: https://github.com/ColaZhang22/Tool-Roco
comment: 9 pages, 3 figures
Conversational no-code and multi-agentic disease module identification and drug repurposing prediction with ChatDRex
Repurposing approved drugs offers a time-efficient and cost-effective alternative to traditional drug development. However, in silico prediction of repurposing candidates is challenging and requires the effective collaboration of specialists in various fields, including pharmacology, medicine, biology, and bioinformatics. Fragmented, specialized algorithms and tools often address only narrow aspects of the overall problem, and heterogeneous, unstructured data landscapes require specialized users to be involved. Hence, these data services do not integrate smoothly across workflows. With ChatDRex, we present a conversation-based, multi-agent system that facilitates the execution of complex bioinformatic analyses aiming for network-based drug repurposing prediction. It builds on the integrated systems medicine knowledge graph NeDRex. ChatDRex provides natural language access to its extensive biomedical KG and integrates bioinformatics agents for network analysis and drug repurposing, complemented by agents for functional coherence evaluation for in silico validation, as well as agents for literature mining and for discussing the obtained results in a scientific context. Its flexible multi-agent design assigns specific tasks to specialized agents, including query routing, data retrieval, algorithm execution, and result visualization. A dedicated reasoning module keeps the user in the loop and allows for hallucination detection. By enabling physicians and researchers without computer science expertise to control complex analyses in natural language, ChatDRex democratizes access to bioinformatics as an important resource for drug repurposing. It enables clinical experts to generate hypotheses and explore drug repurposing opportunities, ultimately accelerating the discovery of novel therapies and advancing personalized medicine and translational research.
Prune4Web: DOM Tree Pruning Programming for Web Agent AAAI 2026
Web automation employs intelligent agents to execute high-level tasks by mimicking human interactions with web interfaces. Despite the capabilities of recent Large Language Model (LLM)-based web agents, navigating complex, real-world webpages efficiently remains a significant hurdle due to the prohibitively large size of Document Object Model (DOM) structures, often ranging from 10,000 to 100,000 tokens. Existing strategies typically rely on crude DOM truncation -- risking the loss of critical information -- or employ inefficient heuristics and separate ranking models, failing to achieve an optimal balance between precision and scalability. To address these challenges, we introduce Prune4Web, a novel paradigm that shifts DOM processing from resource-intensive LLM reading to efficient programmatic pruning. Central to our approach is DOM Tree Pruning Programming, where an LLM generates executable Python scoring scripts to dynamically filter DOM elements based on semantic cues from decomposed sub-tasks. This mechanism eliminates the need for LLMs to ingest raw, massive DOMs, instead delegating traversal and scoring to lightweight, interpretable programs. This methodology achieves a 25x to 50x reduction in candidate elements for grounding, thereby facilitating precise action localization while mitigating attention dilution. Furthermore, we propose a specialized data annotation pipeline and a two-turn dialogue training strategy that jointly optimizes the Planner, Programmatic Filter, and Grounder within a unified framework. Extensive experiments demonstrate state-of-the-art performance. Notably, on our low-level grounding task, Prune4Web dramatically improves accuracy from 46.8% to 88.28%, underscoring its efficacy in real-world web automation.
comment: Paper accepted to AAAI 2026
Choosing What Game to Play without Selecting Equilibria: Inferring Safe (Pareto) Improvements in Binary Constraint Structures
We consider a setting in which a principal gets to choose which game from some given set is played by a group of agents. The principal would like to choose a game that favors one of the players, the social preferences of the players, or the principal's own preferences. Unfortunately, given the potential multiplicity of equilibria, it is conceptually unclear how to tell which of even any two games is better. Oesterheld et al. (2022) propose that we use assumptions about outcome correspondence -- i.e., about how the outcomes of different games relate -- to allow comparisons in some cases. For example, it seems reasonable to assume that isomorphic games are played isomorphically. From such assumptions we can sometimes deduce that the outcome of one game G' is guaranteed to be better than the outcome of another game G, even if we do not have beliefs about how each of G and G' will be played individually. Following Oesterheld et al., we then call G' a safe improvement on G. In this paper, we study how to derive safe improvement relations. We first show that if we are given a set of games and arbitrary assumptions about outcome correspondence between these games, deriving safe improvement relations is co-NP-complete. We then study the (in)completeness of a natural set of inference rules for outcome correspondence. We show that in general the inference rules are incomplete. However, we also show that under natural, generally applicable assumptions about outcome correspondence the rules are complete.
comment: In Proceedings TARK 2025, arXiv:2511.20540
Resilient Charging Infrastructure via Decentralized Coordination of Electric Vehicles at Scale
The rapid adoption of electric vehicles (EVs) introduces major challenges for decentralized charging control. Existing decentralized approaches efficiently coordinate a large number of EVs to select charging stations while reducing energy costs, preventing power peak and preserving driver privacy. However, they often struggle under severe contingencies, such as station outages or unexpected surges in charging requests. These situations create competition for limited charging slots, resulting in long queues and reduced driver comfort. To address these limitations, we propose a novel collective learning-based coordination framework that allows EVs to balance individual comfort on their selections against system-wide efficiency, i.e., the overall queues across all stations. In the framework, EVs are recommended for adaptive charging behaviors that shift priority between comfort and efficiency, achieving Pareto-optimal trade-offs under varying station capacities and dynamic spatio-temporal EV distribution. Experiments using real-world data from EVs and charging stations show that the proposed approach outperforms baseline methods, significantly reducing travel and queuing time. The results reveal that, under uncertain charging conditions, EV drivers that behave selfishly or altruistically at the right moments achieve shorter waiting time than those maintaining moderate behavior throughout. Our findings under high fractions of station outages and adversarial EVs further demonstrate improved resilience and trustworthiness of decentralized EV charging infrastructure.
comment: 14 pages, 12 figures. This work has been submitted to the IEEE for possible publication
Multi-Agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition
Cooperative multi-agent reinforcement learning (MARL) commonly adopts centralized training with decentralized execution (CTDE), where centralized critics leverage global information to guide decentralized actors. However, centralized-decentralized mismatch (CDM) arises when the suboptimal behavior of one agent degrades others' learning. Prior approaches mitigate CDM through value decomposition, but linear decompositions allow per-agent gradients at the cost of limited expressiveness, while nonlinear decompositions improve representation but require centralized gradients, reintroducing CDM. To overcome this trade-off, we propose the multi-agent cross-entropy method (MCEM), combined with monotonic nonlinear critic decomposition (NCD). MCEM updates policies by increasing the probability of high-value joint actions, thereby excluding suboptimal behaviors. For sample efficiency, we extend off-policy learning with a modified k-step return and Retrace. Analysis and experiments demonstrate that MCEM outperforms state-of-the-art methods across both continuous and discrete action benchmarks.
Learning Individual Behavior in Agent-Based Models with Graph Diffusion Networks
Agent-Based Models (ABMs) are powerful tools for studying emergent properties in complex systems. In ABMs, agent behaviors are governed by local interactions and stochastic rules. However, these rules are, in general, non-differentiable, limiting the use of gradient-based methods for optimization, and thus integration with real-world data. We propose a novel framework to learn a differentiable surrogate of any ABM by observing its generated data. Our method combines diffusion models to capture behavioral stochasticity and graph neural networks to model agent interactions. Distinct from prior surrogate approaches, our method introduces a fundamental shift: rather than approximating system-level outputs, it models individual agent behavior directly, preserving the decentralized, bottom-up dynamics that define ABMs. We validate our approach on two ABMs (Schelling's segregation model and a Predator-Prey ecosystem) showing that it replicates individual-level patterns and accurately forecasts emergent dynamics beyond training. Our results demonstrate the potential of combining diffusion models and graph learning for data-driven ABM simulation.
LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
Consistent Opponent Modeling of Static Opponents in Imperfect-Information Games
The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy given observations from gameplay and possibly additional historical data if it is available.
Limit Order Book Dynamics in Matching Markets: Microstructure, Spread, and Execution Slippage
Conventional models of matching markets assume that monetary transfers can clear markets by compensating for utility differentials. However, empirical patterns show that such transfers often fail to close structural preference gaps. This paper introduces a market microstructure framework that models matching decisions as a limit order book system with rigid bid ask spreads. Individual preferences are represented by a latent preference state matrix, where the spread between an agent's internal ask price (the unconditional maximum) and the market's best bid (the reachable maximum) creates a structural liquidity constraint. We establish a Threshold Impossibility Theorem showing that linear compensation cannot close these spreads unless it induces a categorical identity shift. A dynamic discrete choice execution model further demonstrates that matches occur only when the market to book ratio crosses a time decaying liquidity threshold, analogous to order execution under inventory pressure. Numerical experiments validate persistent slippage, regional invariance of preference orderings, and high tier zero spread executions. The model provides a unified microstructure explanation for matching failures, compensation inefficiency, and post match regret in illiquid order driven environments.
comment: 33 pages, 7 figures, 5 experiments, 6 appendices. Primary category: q-fin.TR; Secondary: cs.SI. Code: https://github.com/Republic1024/Limit-Order-Matching-Microstructure
Seeding with Differentially Private Network Information AAMAS 2023
In public health interventions such as distributing preexposure prophylaxis (PrEP) for HIV prevention, decision makers often use seeding algorithms to identify key individuals who can amplify intervention impact. However, building a complete sexual activity network is typically infeasible due to privacy concerns. Instead, contact tracing can provide influence samples, observed sequences of sexual contacts, without full network reconstruction. This raises two challenges: protecting individual privacy in these samples and adapting seeding algorithms to incomplete data. We study differential privacy guarantees for influence maximization when the input consists of randomly collected cascades. Building on recent advances in costly seeding, we propose privacy-preserving algorithms that introduce randomization in data or outputs and bound the privacy loss of each node. Theoretical analysis and simulations on synthetic and real-world sexual contact data show that performance degrades gracefully as privacy budgets tighten, with central privacy regimes achieving better trade-offs than local ones.
comment: Preliminary version in AAMAS 2023: https://dl.acm.org/doi/10.5555/3545946.3599081 -- Code and data: https://github.com/aminrahimian/dp-inf-max
Policy Optimization and Multi-agent Reinforcement Learning for Mean-variance Team Stochastic Games
We study a long-run mean-variance team stochastic game (MV-TSG), where each agent shares a common mean-variance objective for the system and takes actions independently to maximize it. MV-TSG has two main challenges. First, the variance metric is neither additive nor Markovian in a dynamic setting. Second, simultaneous policy updates of all agents lead to a non-stationary environment for each individual agent. Both challenges make dynamic programming inapplicable. In this paper, we study MV-TSGs from the perspective of sensitivity-based optimization. The performance difference and performance derivative formulas for joint policies are derived, which provide optimization information for MV-TSGs. We prove the existence of a deterministic Nash policy for this problem. Subsequently, we propose a Mean-Variance Multi-Agent Policy Iteration (MV-MAPI) algorithm with a sequential update scheme, where individual agent policies are updated one by one in a given order. We prove that the MV-MAPI algorithm converges to a first-order stationary point of the objective function. By analyzing the local geometry of stationary points, we derive specific conditions for stationary points to be (local) Nash equilibria, and further, strict local optima. To solve large-scale MV-TSGs in scenarios with unknown environmental parameters, we extend the idea of trust region methods to MV-MAPI and develop a multi-agent reinforcement learning algorithm named Mean-Variance Multi-Agent Trust Region Policy Optimization (MV-MATRPO). We derive a performance lower bound for each update of joint policies. Finally, numerical experiments on energy management in multiple microgrid systems are conducted.
MAPF-HD: Multi-Agent Path Finding in High-Density Environments
Multi-agent path finding (MAPF) involves planning efficient paths for multiple agents to move simultaneously while avoiding collisions. In typical warehouse environments, agents are often sparsely distributed along aisles; however, increasing the agent density can improve space efficiency. When the agent density is high, it becomes necessary to optimize the paths not only for goal-assigned agents but also for those obstructing them. This study proposes a novel MAPF framework for high-density environments (MAPF-HD). Several studies have explored MAPF in similar settings using integer linear programming (ILP). However, ILP-based methods require substantial computation time to optimize all agent paths simultaneously. Even in small grid-based environments with fewer than $100$ cells, these computations can take tens to hundreds of seconds. Such high computational costs render these methods impractical for large-scale applications such as automated warehouses and valet parking. To address these limitations, we introduce the phased null-agent swapping (PHANS) method. PHANS employs a heuristic approach to incrementally swap positions between agents and empty vertices. This method solves the MAPF-HD problem within a few seconds, even in large environments containing more than $700$ cells. The proposed method has the potential to improve efficiency in various real-world applications such as warehouse logistics, traffic management, and crowd control. The implementation is available at https://github.com/ToyotaCRDL/MAPF-in-High-Density-Envs.
comment: 9 pages, 12 figures
Navigating Quantum Missteps in Agent-Based Modeling: A Schelling Model Case Study
Quantum computing promises transformative advances, but remains constrained by recurring misconceptions and methodological pitfalls. This paper demonstrates a fundamental incompatibility between traditional agent-based modeling (ABM) implementations and quantum optimization frameworks like Quadratic Unconstrained Binary Optimization (QUBO). Using Schelling's segregation model as a case study, we show that the standard practice of directly translating ABM state observations into QUBO formulations not only fails to deliver quantum advantage, but actively undermines computational efficiency. The fundamental issue is architectural. Traditional ABM implementations entail observing the state of the system at each iteration, systematically destroying the quantum superposition required for computational advantage. Through analysis of Schelling's segregation dynamics on lollipop networks, we demonstrate how abandoning the QUBO reduction paradigm and instead reconceptualizing the research question, from "simulate agent dynamics iteratively until convergence" to "compute minimum of agent moves required for global satisfaction", enables a faster classical solution. This structural reconceptualization yields an algorithm that exploits network symmetries obscured in traditional ABM simulations and QUBO formulations. It establishes a new lower bound which quantum approaches must outperform to achieve advantage. Our work emphasizes that progress in quantum agent-based modeling does not require forcing classical ABM implementations into quantum frameworks. Instead, it should focus on clarifying when quantum advantage is structurally possible, developing best-in-class classical baselines through problem analysis, and fundamentally reformulating research questions rather than preserving classical iterative state change observation paradigms.
Systems and Control (EESS)
Model-free practical PI-Lead control design by ultimate sensitivity principle
Practical design and tuning of feedback controllers has to do often without any model of the given dynamic process. Only some general assumptions about the process, in this work type-one stable behavior, can be available for engineers, in particular in motion control systems. This paper proposes a practical and simple in realization procedure for designing a robust PI-Lead control without modeling. The developed method derives from the ultimate sensitivity principles, known in the empirical Ziegler-Nichols tuning of PID control, and makes use of some general characteristics of loop shaping. A three-steps procedure is proposed to determine the integration time constant, control gain, and Lead-element in a way to guarantee a sufficient phase margin, while all steps are served by only experimental observations of the output value. The proposed method is also evaluated with experiments on a noise-perturbed electro-mechanical actuator system with translational motion.
comment: 6 pages, 10 figures
Bang-Bang Evasion: Its Stochastic Optimality and a Terminal-Set-Based Implementation
We address the problem of optimal evasion in a planar endgame engagement, where a target with bounded lateral acceleration seeks to avoid interception by a missile guided by a linear feedback law. Contrary to existing approaches, that assume perfect information or use heuristic maneuver models in stochastic settings, we formulate the problem in an inherently stochastic framework involving imperfect information and bounded controls. Complying with the generalized separation theorem, the control law factors in the posterior distribution of the state. Extending the well-known optimality of bang-bang evasion maneuvers in deterministic settings to the realm of realistic, stochastic evasion scenarios, we firstly prove that an optimal evasion strategy always exists, and that the set of optimal solutions includes at least one bang-bang policy, rendering the resulting optimal control problem finite-dimensional. Leveraging this structure, we secondly propose the closed-loop terminal-set-based evasion (TSE) strategy, and demonstrate its effectiveness in simulation against a proportional navigation pursuer. Monte Carlo simulations show that the TSE strategy outperforms traditional stochastic evasion strategies based on random telegraph, Singer, and weaving models.
comment: 29 pages, 4 figures
Robust Rule-Based Sizing and Control of Batteries for Peak Shaving Applications
As the cost of batteries lowers, sizing and control methods that are both fast and can achieve their promised performances when deployed are becoming more important. In this paper, we show how stochastically tuned rule based controllers (RBCs) can be effectively used to achieve both these goals, providing more realistic estimates in terms of achievable levelised cost of energy (LCOE), and better performances while in operation when compared to deterministic model predictive control (MPC). We test the proposed methodology on yearly profiles from real meters for peak shaving applications and provide strong evidence about these claims.
Closed Form HJB Solution for Continuous-Time Optimal Control of a Non-Linear Input-Affine System
Designing optimal controllers for nonlinear dynamical systems often relies on reinforcement learning and adaptive dynamic programming (ADP) to approximate solutions of the Hamilton Jacobi Bellman (HJB) equation. However, these methods require iterative training and depend on an initially admissible policy. This work introduces a new analytical framework that yields closed-form solutions to the HJB equation for a class of continuous-time nonlinear input-affine systems with known dynamics. Unlike ADP-based approaches, it avoids iterative learning and numerical approximation. Lyapunov theory is used to prove the asymptotic stability of the resulting closed-loop system, and theoretical guarantees are provided. The method offers a closed-form control policy derived from the HJB framework, demonstrating improved computational efficiency and optimal performance on state-of-the-art optimal control problems in the literature.
comment: 12 pages, 3 figures
Predictive Safety Shield for Dyna-Q Reinforcement Learning
Obtaining safety guarantees for reinforcement learning is a major challenge to achieve applicability for real-world tasks. Safety shields extend standard reinforcement learning and achieve hard safety guarantees. However, existing safety shields commonly use random sampling of safe actions or a fixed fallback controller, therefore disregarding future performance implications of different safe actions. In this work, we propose a predictive safety shield for model-based reinforcement learning agents in discrete space. Our safety shield updates the Q-function locally based on safe predictions, which originate from a safe simulation of the environment model. This shielding approach improves performance while maintaining hard safety guarantees. Our experiments on gridworld environments demonstrate that even short prediction horizons can be sufficient to identify the optimal path. We observe that our approach is robust to distribution shifts, e.g., between simulation and reality, without requiring additional training.
VibraWave: Sensing the Pulse of Polluted Waters
Conventional methods for water pollutant detection, such as chemical assays and optical spectroscopy, are often invasive, expensive, and unsuitable for real-time, portable monitoring. In this paper, we introduce VibraWave, a novel non-invasive sensing framework that combines mmWave radar with controlled acoustic excitation, tensor decomposition, and deep learning to detect and quantify a wide range of water pollutants. By capturing radar reflections as a three-dimensional tensor encoding phase dynamics, range bin power, and angle-of-arrival (AoA), we apply PARAFAC decomposition with non-negative constraints to extract compact, interpretable pollutant fingerprints. These are used to train a lightweight student neural network via knowledge distillation, enabling joint classification and quantification of heavy metals (Cu, Fe, Mg), oil emulsions, and sediments. Extensive experiments show that VibraWave achieves high accuracy and low RMSE across pure, binary, and tertiary mixtures, while remaining robust and computationally efficient, making it well-suited for scalable, real-time water quality monitoring.
Multi-Hypotheses Navigation in Collaborative Localization subject to Cyber Attacks
This paper addresses resilient collaborative localization in multi-agent systems exposed to spoofed radio frequency measurements. Each agent maintains multiple hypotheses of its own state and exchanges selected information with neighbors using covariance intersection. Geometric reductions based on distance tests and convex hull structure limit the number of hypotheses transmitted, controlling the spread of hypotheses through the network. The method enables agents to separate spoofed and truthful measurements and to recover consistent estimates once the correct hypothesis is identified. Numerical results demonstrate the ability of the approach to contain the effect of adversarial measurements, while also highlighting the impact of conservative fusion on detection speed. The framework provides a foundation for resilient multi-agent navigation and can be extended with coordinated hypothesis selection across the network.
Decentralized Shepherding of Non-Cohesive Swarms Through Cluttered Environments via Deep Reinforcement Learning
This paper investigates decentralized shepherding in cluttered environments, where a limited number of herders must guide a larger group of non-cohesive, diffusive targets toward a goal region in the presence of static obstacles. A hierarchical control architecture is proposed, integrating a high-level target assignment rule, where each herder is paired with a selected target, with a learning-based low-level driving module that enables effective steering of the assigned target. The low-level policy is trained in a one-herder-one-target scenario with a rectangular obstacle using Proximal Policy Optimization and then directly extended to multi-agent settings with multiple obstacles without requiring retraining. Numerical simulations demonstrate smooth, collision-free trajectories and consistent convergence to the goal region, highlighting the potential of reinforcement learning for scalable, model-free shepherding in complex environments.
Understanding Regional Inertia Dynamics in CAISO from Real Grid Disturbances
The shift from synchronous generators to inverter-based resources has caused power system inertia to be unevenly distributed across power grids. As a result, certain grid regions are more vulnerable to high rate-of-change of frequency (RoCoF) during disturbances. This paper presents a measurement-based framework for estimating grid inertia in CAISO (California Independent System Operator) region using real disturbance-driven frequency data from the Frequency Monitoring Network (FNET/GridEye). By analyzing confirmed disturbances from 2013 to 2024, we identify trends in regional inertia and frequency dynamics, highlighting their relationship with renewable generation and the evolving duck curve. Regional RoCoF values were up to six times higher than interconnection-wide values, coinciding with declining inertia. Recent recovery in inertia is attributed to the increased deployment of battery energy storage systems with synthetic inertia capabilities. These findings underscore the importance of regional inertia monitoring, strategic resource planning, and adaptive operational practices to ensure grid reliability amid growing renewable integration.
comment: This work has been accepted for publication in IEEE PES T&D 2026. The final published version will be available via IEEE Xplore
Influence of converter current limiting and prioritization on protection of highly IBR-penetrated networks SP
This paper investigates how grid-forming (GFM) and grid-following (GFL) control strategies in inverter-based resources (IBRs) influence line distance and differential protection in converter-dominated transmission systems. A modified IEEE 39-bus system is evaluated with GFM and GFL units equipped with low-voltage ride-through logic, current limiting, and positive- or negative-sequence prioritization. Distance protection is implemented with a mho characteristic, while line differential protection uses an alpha-plane approach. Results show that phase-to-ground loops in distance protection can substantially overestimate the fault location near the Zone-1 reach. For line differential protection, external faults may cause the operating point to briefly enter the trip region of the alpha-plane, even for the healthy-phase in ABG faults under GFL control and during the initial moments of the fault, demanding strong external security measures. These findings highlight that modern converter controls, together with current limitation and sequence-current prioritization, can compromise the reliability and security of traditional protection schemes.
comment: Submitted to DPSP Global 2026
Evaluation of Large Language Models for Numeric Anomaly Detection in Power Systems
Large language models (LLMs) have gained increasing attention in power grids for their general-purpose capabilities. Meanwhile, anomaly detection (AD) remains critical for grid resilience, requiring accurate and interpretable decisions based on multivariate telemetry. Yet the performance of LLMs on large-scale numeric data for AD remains largely unexplored. This paper presents a comprehensive evaluation of LLMs for numeric AD in power systems. We use GPT-OSS-20B as a representative model and evaluate it on the IEEE 14-bus system. A standardized prompt framework is applied across zero-shot, few-shot, in-context learning, low rank adaptation (LoRA), fine-tuning, and a hybrid LLM-traditional approach. We adopt a rule-aware design based on the three-sigma criterion, and report detection performance and rationale quality. This study lays the groundwork for further investigation into the limitations and capabilities of LLM-based AD and its integration with classical detectors in cyber-physical power grid applications.
Model Predictive Control and Moving Horizon Estimation using Statistically Weighted Data-Based Ensemble Models
This paper presents a model predictive control (MPC) framework leveraging an ensemble of data-based models to optimally control complex systems under multiple operating conditions. A novel combination rule for ensemble models is proposed, based on the statistical Mahalanobis distance, enabling the ensemble weights to suitably vary across the prediction window based on the system input. In addition, a novel state observer for ensemble models is developed using moving horizon estimation (MHE). The effectiveness of the proposed methodology is demonstrated on a benchmark energy system operating under multiple conditions.
comment: 7 pages, 4 figures, submitted to ECC 2026
The Theory of Storage in a Power System with Stochastic Demand
Electric power systems are increasingly turning to energy storage systems to balance supply and demand. But how much storage is required? What is the optimal volume of storage in a power system and on what does it depend? In addition, what form of hedge contracts do storage facilities require? We answer these questions in the special case in which the uncertainty in the power system involves successive draws of an independent, identically-distributed random variable. We characterize the conditions for the optimal operation of, and investment in, storage and show how these conditions can be understood graphically using price-duration curves. We also characterize the optimal hedge contracts for storage units.
Analytical Phasor-Based Fault Location Enhancement for Wind Farm Collector Networks
The increasing integration of Inverter-Based Resources (IBRs) is reshaping fault current characteristics, presenting significant challenges to traditional protection and fault location methods. This paper addresses a key limitation in fault location within wind farm collector networks, i.e., one-terminal phasor-based methods become inaccurate when IBRs are electrically located downstream from the fault. In such cases, the voltage drop caused by IBR fault current injections is not captured by the Intelligent Electronic Device, resulting in a systematic overestimation of fault distance. To mitigate this issue, a general compensation framework was proposed by augmenting classical loop formulations with a distance-dependent voltage correction term. The methodology was derived analytically using a sequence-domain representation and generalized to multiple fault types through a unified notation. It maintains the simplicity and interpretability of conventional approaches and can be implemented using only local measurements. The method was evaluated through EMT simulations in PSCAD using a realistic wind farm model. Results show significant improvements in location accuracy, with average and maximum errors notably reduced, especially for ground-involved faults where reductions exceed 90\%. Furthermore, the compensation eliminates sensitivity to wind penetration levels and ensures uniform performance across feeders, positioning the method as a practical solution for modern renewable-dominated grids.
Scalable Multisubject Vital Sign Monitoring With mmWave FMCW Radar and FPGA Prototyping
In this work, we introduce an innovative approach to estimate the vital signs of multiple human subjects simultaneously in a non-contact way using a Frequency Modulated Continuous Wave (FMCW) radar-based system. Traditional vital sign monitoring methods often face significant limitations, including subject discomfort with wearable devices, challenges in calibration, and the risk of infection transmission through contact measurement devices. To address these issues, this research is motivated by the need for versatile, non-contact vital monitoring solutions applicable in various critical scenarios. This work also explores the challenges of extending this capability to an arbitrary number of subjects, including hardware and theoretical limitations. Supported by rigorous experimental results and discussions, the paper illustrates the system's potential to redefine vital sign monitoring. An FPGA-based implementation is also presented as proof of concept for a hardware-based and portable solution, improving upon previous works by offering 2.7x faster execution and 18.4% less Look-Up Table (LUT) utilization, as well as providing over 7400x acceleration compared to its software counterpart.
comment: Published in IEEE Sensors Journal
Design and Performance Assessment of a Virtualized IED for Digital Substations
Digital substations have significantly enhanced power grid protection by replacing traditional copper wiring with fiber-optic communication and integrating IEC 61850-compliant Intelligent Electronic Devices (IEDs), resulting in greater efficiency, reliability, and interoperability. While these advancements provide improved interoperability, challenges such as high costs, complex networks, and limited upgradeability persist. To mitigate these issues, the virtualization of IEDs has emerged as a cost-effective solution, offering scalability, simplified maintenance, and reduced hardware costs by replacing traditional hardware-based IEDs with software-based counterparts. However, the performance and reliability of virtual IEDs (vIED) must be rigorously evaluated to ensure their robustness in real-time applications. This paper develops, implements, and evaluates a vIED designed to match the performance of its hardware-based counterparts. The vIED was deployed on a server using virtual machines, with its core logic implemented in low-level programming languages to ensure high-speed, deterministic behavior. The performance was evaluated using real-time simulations, focusing on the response times of the protection functions. The results demonstrated that vIEDs achieved acceptable response times, validating their suitability for deployment in critical time-sensitive environments within digital substations.
Sparse shepherding control of large-scale multi-agent systems via Reinforcement Learning
We propose a reinforcement learning framework for sparse indirect control of large-scale multi-agent systems, where few controlled agents shape the collective behavior of many uncontrolled agents. The approach addresses this multi-scale challenge by coupling ODEs (modeling controlled agents) with a PDE (describing the uncontrolled population density), capturing how microscopic control achieves macroscopic objectives. Our method combines model-free reinforcement learning with adaptive interaction strength compensation to overcome sparse actuation limitations. Numerical validation demonstrates effective density control, with the system achieving target distributions while maintaining robustness to disturbances and measurement noise, confirming that learning-based sparse control can replace computationally expensive online optimization.
Data-Driven Reduction of Fault Location Errors in Onshore Wind Farm Collectors
Accurate fault location is essential for operational reliability and fast restoration in wind farm collector networks. However, the growing integration of inverter-based resources changes the current and voltage behavior during faults, challenging the effectiveness of traditional phasor-based diagnostic methods. In this context, the present paper introduces an advanced machine-learning solution that enhances a deterministic fault distance estimator by incorporating a correction model driven by a Gated Residual Network, specifically designed to minimize residual fault location errors. Through comprehensive feature engineering and selection processes, an improved predictor was developed and trained on a diverse set of fault scenarios simulated in a PSCAD-based real-world wind farm model, including variations in fault type, resistance, location, inception angle, and generation penetration. Hyperparameter optimization was performed using the Optuna framework, and the robustness of the method was statistically validated. Results show a significant improvement in accuracy, with a 76% overall decrease in fault location error compared to state-of-the-art approaches. The proposed method demonstrates strong scalability and adaptability to topological and operational changes. This approach advances the deployment of data-driven fault location frameworks for modern power systems.
Multiport Analytical Pixel Electromagnetic Simulator (MAPES) for AI-assisted RFIC and Microwave Circuit Design
This paper proposes a novel analytical framework, termed the Multiport Analytical Pixel Electromagnetic Simulator (MAPES). MAPES enables efficient and accurate prediction of the electromagnetic (EM) performance of arbitrary pixel-based microwave (MW) and RFIC structures. Inspired by the Integrated Internal Multiport Method (IMPM), MAPES extends the concept to the pixel presence/absence domain used in AI-assisted EM design. By introducing virtual pixels and diagonal virtual pixels and inserting virtual ports at critical positions, MAPES captures all horizontal, vertical, and diagonal electromagnetic couplings within a single multiport impedance matrix. Only a small set of full-wave simulations (typically about 1% of the datasets required by AI-assisted EM simulators) is needed to construct this matrix. Subsequently, any arbitrary pixel configuration can be evaluated analytically using a closed-form multiport relation without additional full-wave calculations. The proposed approach eliminates data-driven overfitting and ensures accurate results across all design variations. Comprehensive examples for single- and double-layer CMOS processes (180 nm and 65 nm) and PCBs confirm that MAPES achieves high prediction accuracy with 600- 2000x speed improvement compared to CST simulations. Owing to its efficiency, scalability and reliability, MAPES provides a practical and versatile tool for AI-assisted MW circuit and RFIC design across diverse fabrication technologies.
Respiratory Motion Compensation and Haptic Feedback for X-ray-Guided Teleoperated Robotic Needle Insertion
Respiratory motion limits the accuracy and precision of abdominal percutaneous procedures. In this paper, respiratory motion is compensated robotically using motion estimation models. Additionally, a teleoperated insertion is performed using proximity-based haptic feedback to guide physicians during insertion, enabling a radiation-free remote insertion for the end-user. The study has been validated using a robotic liver phantom, and five insertions were performed. The resulting motion estimation errors were below 3 mm for all directions of motion, and the overall resulting 3D insertion errors were 2.60, 7.75, and 2.86 mm for the superior-inferior, lateral, and anterior-posterior directions of motion, respectively. The proposed approach is expected to minimize the chances of inaccurate treatment or diagnosis due to respiratory-induced motion and reduce radiation exposure.
Adaptive Lighting Control in Visible Light Systems: An Integrated Sensing, Communication, and Illumination Framework
Indoor visible light communication (VLC) is a promising sixth-generation (6G) technology, as its directional and sensitive optical signals are naturally suited for integrated sensing and communication (ISAC). However, current research mainly focuses on maximizing data rates and sensing accuracy, creating a conflict between high performance, high energy consumption, and user visual comfort. This paper proposes an adaptive integrated sensing, communication, and illumination (ISCI) framework that resolves this conflict by treating energy savings as a primary objective. The framework's mechanism first partitions the receiving plane using a geometric methodology, defining an activity area and a surrounding non-activity area to match distinct user requirements. User location, determined using non-line-of-sight (NLOS) sensing, then acts as a dynamic switch for the system's optimization objective. The system adaptively shifts between minimizing total transmit power while guaranteeing communication and illumination performance in the activity area and maximizing signal-to-noise ratio (SNR) uniformity in the non-activity area. Numerical results confirm that this adaptive ISCI approach achieves 53.59% energy savings over a non-adaptive system and improves SNR uniformity by 57.79%, while satisfying all illumination constraints and maintaining a mean localization error of 0.071 m.
Response-Based Frequency Stability Assessment under Multi-Scale Disturbances in High-Renewable Power Systems
In high-renewable power systems, active-power disturbances are becoming larger and exhibit increasingly diverse time scales, which complicates frequency stability assessment under unanticipated events. This paper presents a response-based frequency stability assessment method that uses disturbance power, inferred from generator electrical responses, to provide a unified treatment of multi-scale disturbances. Unanticipated disturbances are first classified into short-term and permanent events; permanent disturbances are further divided into step, second-level slope and minute-level slope disturbances. Based on the measured power responses of generator groups, a unified disturbance-power model is constructed to identify the disturbance type online and to quantify disturbance intensity through the disturbance power and its rate of change. Analytical frequency-response models are then derived for each disturbance class. For step disturbances, the maximum tolerable disturbance power is obtained under steady-state and transient frequency deviation constraints, and a safety-margin index is defined. For slope-type disturbances, an improved system frequency response (SFR) model and the rotor motion equation after exhaustion of primary frequency regulation are used to compute the over-limit time of frequency deviation. The proposed response-based assessment method is validated on the CSEE-FS frequency-stability benchmark system, demonstrating its effectiveness and accuracy for quantitative frequency stability assessment in high-renewable power systems.
comment: 10 pages, 13 figures
Design and Measurements of mmWave FMCW Radar Based Non-Contact Multi-Patient Heart Rate and Breath Rate Monitoring System
Recent developments in mmWave radar technologies have enabled the truly non-contact heart-rate (HR) and breath-rate (BR) measurement approaches, which provides a great ease in patient monitoring. Additionally, these technologies also provide opportunities to simultaneously detect HR and BR of multiple patients, which has become increasingly important for efficient mass monitoring scenarios. In this work, a frequency modulated continuous wave (FMCW) mmWave radar based truly non-contact multiple patient HR and BR monitoring system has been presented. Furthermore, a novel approach is also proposed, which combines multiple processing methods using a least squares solution to improve measurement accuracy, generalization, and handle measurement error. The proposed system has been developed using Texas Instruments' FMCW radar and experimental results with multiple subjects are also presented, which show >97% and >93% accuracy in the measured BR and HR values, respectively.
comment: Presented at BioCAS 2023
Stability of data-driven Koopman MPC with terminal conditions
This paper derives conditions under which Model Predictive Control (MPC) with terminal conditions, using a data-driven surrogate model as a prediction model, asymptotically stabilizes the plant despite approximation errors. In particular, we prove recursive feasibility and asymptotic stability if a proportional error bound holds, where proportional means that the bound is linear in the norm of the state and the input. For a broad class of nonlinear systems, this condition can be satisfied using data-driven surrogate models generated by kernel Extended Dynamic Mode Decomposition (kEDMD) using the Koopman operator. Last, the applicability of the proposed framework is demonstrated in a numerical case study.
comment: 8 pages, 1 figure
DynamicAdaptiveClimb: Adaptive Cache Replacement with Dynamic Resizing
Efficient cache management is critical for optimizing the system performance, and numerous caching mechanisms have been proposed, each exploring various insertion and eviction strategies. In this paper, we present AdaptiveClimb and its extension, DynamicAdaptiveClimb, two novel cache replacement policies that leverage lightweight, cache adaptation to outperform traditional approaches. Unlike classic Least Recently Used (LRU) and Incremental Rank Progress (CLIMB) policies, AdaptiveClimb dynamically adjusts the promotion distance (jump) of the cached objects based on recent hit and miss patterns, requiring only a single tunable parameter and no per-item statistics. This enables rapid adaptation to changing access distributions while maintaining low overhead. Building on this foundation, DynamicAdaptiveClimb further enhances adaptability by automatically tuning the cache size in response to workload demands. Our comprehensive evaluation across a diverse set of real-world traces, including 1067 traces from 6 different datasets, demonstrates that DynamicAdaptiveClimb consistently achieves substantial speedups and higher hit ratios compared to other state-of-the-art algorithms. In particular, our approach achieves up to a 29% improvement in hit ratio and a substantial reduction in miss penalties compared to the FIFO baseline. Furthermore, it outperforms the next-best contenders, AdaptiveClimb and SIEVE [43], by approximately 10% to 15%, especially in environments characterized by fluctuating working set sizes. These results highlight the effectiveness of our approach in delivering efficient performance, making it well-suited for modern, dynamic caching environments.
comment: 19 pages, 11 figures, 3 tables, Patented
From Consensus to Robust Clustering: Multi-Agent Systems with Nonlinear Interactions
This paper establishes a theoretical framework to describe the transition from consensus to stable clustering in multi-agent systems with nonlinear, cooperative interactions. We first establish a sharp threshold for consensus. For a broad class of non-decreasing, Lipschitz-continuous interactions, an explicit inequality linking the interaction's Lipschitz constant to the second-largest eigenvalue of the normalized adjacency matrix of the interaction graph confines all system equilibria to the synchronization manifold. This condition is shown to be a sharp threshold, as its violation permits the emergence of non-synchronized equilibria. We also demonstrate that such clustered states can only arise if the interaction law itself possesses specific structural properties, such as unstable fixed points. For the clustered states that emerge, we introduce a formal framework using Input-to-State Stability (ISS) theory to quantify their robustness. This approach allows us to prove that the internal cohesion of a cluster is robust to perturbations from the rest of the network. The analysis reveals a fundamental principle: cluster coherence is limited not by the magnitude of external influence, but by its heterogeneity across internal nodes. This unified framework, explaining both the sharp breakdown of consensus and the quantifiable robustness of the resulting modular structures, is validated on Zachary's Karate Club network, used as a classic benchmark for community structure.
Accelerated ADMM: Automated Parameter Tuning and Improved Linear Convergence
This work studies the linear convergence of an accelerated scheme of the Alternating Direction Method of Multipliers (ADMM) for strongly convex and Lipschitz-smooth problems. We use the methodology of expressing the accelerated ADMM as a Lur'e system, i.e., an interconnection of a linear dynamical system in feedback with a slope-restricted operator, and we use Integral Quadratic Constraints to establish linear convergence. In addition, we propose several parameter tuning heuristics and their impact on the convergence rate through numerical analyses. Our new bounds show significantly improved linear convergence rates compared to the vanilla algorithm and previous proposed accelerated variants, which is also empirically validated on a LASSO regression benchmark.
Data-driven control of continuous-time systems: A synthesis-operator approach
This paper addresses data-driven control of continuous-time systems. We develop a framework based on synthesis operators associated with input and state trajectories. A key advantage of the proposed method is that it does not require the state derivative and uses continuous-time data directly without sampling or filtering. First, systems compatible with given data are described by the synthesis operators into which data trajectories are embedded. Next, we characterize data informativity properties for system identification and for stabilization. Finally, we establish a necessary and sufficient condition for informativity for quadratic stabilization in the presence of process noise. This condition is formulated as linear matrix inequalities by exploiting the finite-rank structure of the synthesis operators.
comment: 14 pages
An Exact, Finite Dimensional Representation for Full-Block, Circle Criterion Multipliers
This paper provides the first finite-dimensional characterization for the complete set of full-block, circle criterion multipliers. We consider the interconnection of a discrete-time, linear time-invariant system in feedback with a non-repeated, sector-bounded nonlinearity. Sufficient conditions for stability and performance can be derived using: (i) dissipation inequalities, and (ii) Quadratic Constraints (QCs) that bound the input/output pairs of the nonlinearity. Larger classes of QCs (or multipliers) reduce the conservatism of the conditions. Full-block, circle criterion multipliers define the complete set of all possible QCs for non-repeated, sector-bounded nonlinearities. These provide the least conservative conditions. However, full-block multipliers are defined by an uncountably infinite number of constraints and hence do not lead to computationally tractable solutions if left in this raw form. This paper provides a new finite-dimensional characterization for the set of full-block, circle criterion multipliers. The key theoretical insight is: the set of all input/output pairs of non-repeated sector-bounded nonlinearities is equal to the set of all incremental pairs for an appropriately constructed piecewise linear function. Our new description for the complete set of multipliers only requires a finite number of matrix copositivity constraints. These conditions have an exact, computationally tractable implementation for problems where the nonlinearity has small input/output dimensions $(\le 4)$. We illustrate the use of our new characterization via a simple example.
Independent policy gradient-based reinforcement learning for economic and reliable energy management of multi-microgrid systems
Efficiency and reliability are both crucial for energy management, especially in multi-microgrid systems (MMSs) integrating intermittent and distributed renewable energy sources. This study investigates an economic and reliable energy management problem in MMSs under a distributed scheme, where each microgrid independently updates its energy management policy in a decentralized manner to optimize the long-term system performance collaboratively. We introduce the mean and variance of the exchange power between the MMS and the main grid as indicators for the economic performance and reliability of the system. Accordingly, we formulate the energy management problem as a mean-variance team stochastic game (MV-TSG), where conventional methods based on the maximization of expected cumulative rewards are unsuitable for variance metrics. To solve MV-TSGs, we propose a fully distributed independent policy gradient algorithm, with rigorous convergence analysis, for scenarios with known model parameters. For large-scale scenarios with unknown model parameters, we further develop a deep reinforcement learning algorithm based on independent policy gradients, enabling data-driven policy optimization. Numerical experiments in two scenarios validate the effectiveness of the proposed methods. Our approaches fully leverage the distributed computational capabilities of MMSs and achieve a well-balanced trade-off between economic performance and operational reliability.
Data-Driven Post-Event Analysis with Real-World Oscillation Data from Denmark
This paper demonstrates how Extended Dynamic Mode Decomposition (EDMD), grounded in Koopman operator theory, can effectively identify the main contributor(s) to oscillations in power grids. We use PMU data recorded from a real 0.15 Hz oscillation event in Denmark for post-event analysis. To this end, the EDMD algorithm processed only voltage and current phasors from nineteen PMUs at different voltage levels across the Danish grid. In such a blind-test setting with no supplementary system information, EDMD accurately pinpointed the location of the main contributor to the 0.2 Hz oscillation, consistent with the location of the problematic IBR plant later confirmed by Energinet, where the underlying cause was a control system issue. Conventional approaches, such as the dissipating energy flow (DEF) method used in the ISO-NE OSL tool did not clearly identify this plant. This joint validation with Energinet, reinforcing earlier studies using simulated IBR-dominated systems and real PMU data from ISO-NE, highlights the potential of EDMD-based post-event analysis for identifying major oscillation contributors and enabling targeted SSO mitigation.
comment: 5 pages, 6 figures, real power network event data, submitted to IEEE General Meeting 2026
Electricity Demand and Grid Impacts of AI Data Centers: Challenges and Prospects
The rapid growth of artificial intelligence (AI) is driving an unprecedented increase in the electricity demand of AI data centers, raising emerging challenges for electric power grids. Understanding the characteristics of AI data center loads and their interactions with the grid is therefore critical for ensuring both reliable power system operation and sustainable AI development. This paper provides a comprehensive review and vision of this evolving landscape. Specifically, this paper (i) presents an overview of AI data center infrastructure and its key components, (ii) examines the key characteristics and patterns of electricity demand across the stages of model preparation, training, fine-tuning, and inference, (iii) analyzes the critical challenges that AI data center loads pose to power systems across three interrelated timescales, including long-term planning and interconnection, short-term operation and electricity markets, and real-time dynamics and stability, and (iv) discusses potential solutions from the perspectives of the grid, AI data centers, and AI end-users to address these challenges. By synthesizing current knowledge and outlining future directions, this review aims to guide research and development in support of the joint advancement of AI data centers and power systems toward reliable, efficient, and sustainable operation.
Hopfield Neural Networks for Online Constrained Parameter Estimation with Time-Varying Dynamics and Disturbances
This paper proposes two projector-based Hopfield neural network (HNN) estimators for online, constrained parameter estimation under time-varying data, additive disturbances, and slowly drifting physical parameters. The first is a constraint-aware HNN that enforces linear equalities and inequalities (via slack neurons) and continuously tracks the constrained least-squares target. The second augments the state with compensation neurons and a concatenated regressor to absorb bias-like disturbance components within the same energy function. For both estimators we establish global uniform ultimate boundedness with explicit convergence rate and ultimate bound, and we derive practical tuning rules that link the three design gains to closed-loop bandwidth and steady-state accuracy. We also introduce an online identifiability monitor that adapts the constraint weight and time step, and, when needed, projects updates onto identifiable subspaces to prevent drift in poorly excited directions...
comment: Accepted for publication in International Journal od Adaptive Control and Signal Processing
Alignment of large language models with constrained learning NeurIPS 2025
We study the problem of computing an optimal large language model (LLM) policy for the constrained alignment problem, where the goal is to maximize a primary reward objective while satisfying constraints on secondary utilities. Despite the popularity of Lagrangian-based LLM policy search in constrained alignment, iterative primal-dual methods often fail to converge, and non-iterative dual-based methods do not achieve optimality in the LLM parameter space. To address these challenges, we employ Lagrangian duality to develop an iterative dual-based alignment method that alternates between updating the LLM policy via Lagrangian maximization and updating the dual variable via dual descent. In theory, we characterize the primal-dual gap between the primal value in the distribution space and the dual value in the LLM parameter space. We further quantify the optimality gap of the learned LLM policies at near-optimal dual variables with respect to both the objective and the constraint functions. These results prove that dual-based alignment methods can find an optimal constrained LLM policy, up to an LLM parametrization gap. We demonstrate the effectiveness and merits of our approach through extensive experiments conducted on the PKU-SafeRLHF and Anthropic HH-RLHF datasets.
comment: 51 pages, 5 figures, 11 tables; Accepted to NeurIPS 2025
Describing Functions and Phase Response Curves of Excitable Systems
The describing function (DF) and phase response curve (PRC) are classical tools for the analysis of feedback oscillations and rhythmic behaviors, widely used across control engineering, biology, and neuroscience. These tools are known to have limitations in networks of relaxation oscillators and excitable systems. For this reason, the paper proposes a novel approach tailored to excitable systems. Our analysis focuses on the discrete-event operator mapping input trains of events to output trains of events. The methodology is illustrated on the excitability model of Hodgkin-Huxley. The proposed framework provides a basis for designing and analyzing central pattern generators in networks of excitable neurons, with direct relevance to neuromorphic control and neurophysiology.
comment: 7 pages, 6 figures, submitted to European Control Conference 2026
SAFE-IMM: Robust and Lightweight Radar-Based Object Tracking on Mobile Platforms
Tracking maneuvering targets requires estimators that are both responsive and robust. Interacting Multiple Model (IMM) filters are a standard tracking approach, but fusing models via Gaussian mixtures can lag during maneuvers. Recent winnertakes-all (WTA) approaches react quickly but may produce discontinuities. We propose SAFE-IMM, a lightweight IMM variant for tracking on mobile and resource-limited platforms with a safe covariance-aware gate that permits WTA only when the implied jump from the mixture to the winner is provably bounded. In simulations and on nuScenes front-radar data, SAFE-IMM achieves high accuracy at real-time rates, reducing ID switches while maintaining competitive performance. The method is simple to integrate, numerically stable, and clutter-robust, offering a practical balance between responsiveness and smoothness.
comment: This work has been submitted for possible publication
A 0.62 μW/sensor 82 fps Time-to-Digital Impedance Measurement IC with Unified Excitation/Readout Front-end for Large-Scale Piezo-Resistive Sensor Array
This paper presents a fast impedance measurement IC for large-scale piezo-resistive sensor array. It features a unified differential time-to-digital demodulation architecture that readout impedance directly through the excitation circuit. The proposed pre-saturation adaptive bias technique further improves power efficiency. The chip scans 253 sensors in 12.2 ms (82 fps) at 125 kHz, consuming 158 μW (7.5 nJ/sensor). With loads from 20 Ω to 500 kΩ, it achieves 0.5% error and up to 71.1 dB SNR.
Discontinuous integro-differential equations and sliding mode control
The paper deals with analysis and design sliding mode control systems modeled by integro-differential equations. Filippov method and equivalent control approach are extended to a class of nonlinear discontinuous integro-differential equations. Sliding mode control algorithm is designed for a control system with distributed input delay. The obtained results are illustrated by numerical example.
Boosting the transient performance of reference tracking controllers with neural networks
Reference tracking is a key objective in many control systems, including those characterized by complex nonlinear dynamics. In these settings, traditional control approaches can effectively ensure steady-state accuracy but often struggle to explicitly optimize transient performance. Neural network controllers have gained popularity due to their adaptability to nonlinearities and disturbances; however, they often lack formal closed-loop stability and performance guarantees. To address these challenges, a recently proposed neural-network control framework known as Performance Boosting (PB) has demonstrated the ability to maintain $\mathcal{L}_p$ stability properties of nonlinear systems while optimizing generic transient costs. This paper extends the PB approach to reference tracking problems. First, we characterize the complete set of nonlinear controllers that preserve desired tracking properties for nonlinear systems equipped with base reference-tracking controllers. Then, we show how to optimize transient costs while searching within subsets of tracking controllers that incorporate expressive neural network models. Furthermore, we analyze the robustness of our method to uncertainties in the underlying system dynamics. Numerical simulations on a robotic system demonstrate the advantages of our approach over the standard PB framework.
L4acados: Learning-based models for acados, applied to Gaussian process-based predictive control
Incorporating learning-based models, such as artificial neural networks or Gaussian processes, into model predictive control (MPC) strategies can significantly improve control performance and online adaptation capabilities for real-world applications. Still, enabling state-of-the-art implementations of learning-based models for MPC is complicated by the challenge of interfacing machine learning frameworks with real-time optimal control software. This work aims at filling this gap by incorporating external sensitivities in sequential quadratic programming solvers for nonlinear optimal control. To this end, we provide L4acados, a general framework for incorporating Python-based dynamics models in the real-time optimal control software acados. By computing external sensitivities via a user-defined Python module, L4acados enables the implementation of MPC controllers with learning-based residual models in acados, while supporting parallelization of sensitivity computations when preparing the quadratic subproblems. We demonstrate significant speed-ups and superior scaling properties of L4acados compared to available software using a neural-network-based control example. Last, we provide an efficient and modular real-time implementation of Gaussian process-based MPC using L4acados, which is applied to two hardware examples: autonomous miniature racing, as well as motion control of a full-scale autonomous vehicle for an ISO lane change maneuver.
Observer Design for Singularly Perturbed Linear Networked Control Systems Subject to Measurement Noise
This paper addresses the emulation-based observer design for linear networked control systems (NCS) operating at two time scales in the presence of measurement noise. The system is formulated as a hybrid singularly perturbed dynamical system, enabling the systematic use of singular perturbation techniques to derive explicit bounds on the maximum allowable transmission intervals (MATI) for both fast and slow communication channels. Under the resulting conditions, the proposed observer guarantees that the estimation error satisfies a global exponential derivative-input-to-state stability (DISS)-like property, where the ultimate bound scales proportionally with the magnitudes of the measurement noise and the time derivative of the control input. The effectiveness of the approach is illustrated through a numerical example.
comment: 9 pages, 2 figures, full version of the paper submitted to the IFAC World Congress
Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. New visualization figures and control-theory primer
Earth Observation Satellite Scheduling with Graph Neural Networks and Monte Carlo Tree Search
Earth Observation Satellite Planning (EOSP) is a difficult optimization problem with considerable practical interest. A set of requested observations must be scheduled on an agile Earth observation satellite while respecting constraints on their visibility window, as well as maneuver constraints that impose varying delays between successive observations. In addition, the problem is largely oversubscribed: there are much more candidate observations than can possibly be achieved. Therefore, one must select the set of observations that will be performed while maximizing their cumulative benefit and propose a feasible schedule for these observations. As previous work mostly focused on heuristic and iterative search algorithms, this paper presents a new technique for selecting and scheduling observations based on Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL). GNNs are used to extract relevant information from the graphs representing instances of the EOSP, and DRL drives the search for optimal schedules. A post-learning search step based on Monte Carlo Tree Search (MCTS) is added that is able to find even better solutions. Experiments show that it is able to learn on small problem instances and generalize to larger real-world instances, with very competitive performance compared to traditional approaches.
comment: Accepted at International Workshop on Planning & Scheduling for Space (IWPSS 2025)
Geometric Decentralized Stability Certificate for Power Systems Based on Projecting DW Shells
The development of decentralized stability conditions has gained considerable attention due to the need to analyze multi-agent network systems, such as heterogeneous multi-converter power systems. A recent advance is the application of the small-phase theorem, which extends the passivity theory. However, it requires the transfer function matrix to be sectorial, which may not hold in some frequency range and will result in conservativeness. To address this issue, this paper proposes a geometric decentralized stability condition based on Davis-Wielandt (DW) shell and its projections. Our approach provides a geometric interpretation of the small-gain and small-phase theorems and enables decentralized stability analysis of power systems. It serves as a visualization method to understand the closed-loop interactions and assess the stability of large-scale network systems in a scalable and modular manner.
Rapid and Safe Trajectory Planning over Diverse Scenes through Diffusion Composition
Safe trajectory planning in complex environments must balance stringent collision avoidance with real-time efficiency, which is a long-standing challenge in robotics. In this work, we present a diffusion-based trajectory planning framework that is both rapid and safe. First, we introduce a scene-agnostic, MPC-based data generation pipeline that efficiently produces large volumes of kinematically feasible trajectories. Building on this dataset, our integrated diffusion planner maps raw onboard sensor inputs directly to kinematically feasible trajectories, enabling efficient inference while maintaining strong collision avoidance. To generalize to diverse, previously unseen scenarios, we compose diffusion models at test time, enabling safe behavior without additional training. We further propose a lightweight, rule-based safety filter that, from the candidate set, selects the trajectory meeting safety and kinematic-feasibility requirements. Across seen and unseen settings, the proposed method delivers real-time-capable inference with high safety and stability. Experiments on an F1TENTH vehicle demonstrate practicality on real hardware. Project page: https://rstp-comp-diffuser.github.io/.
A New Framework for Nonlinear Kalman Filters
The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems over the last sixty years. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF. Yet, according to our theoretical and empirical analysis, the framework tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework that can be combined with any existing type of nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce estimation errors by several orders of magnitude in low-measurement-noise conditions. The codes are available at https://github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters
comment: Massive revisions throughout the entire paper. More simulation results are added, and the mathematical expressions have become more rigorous and precise
Modeling, Analysis, and Control of Continuous-Time Weighted-Median Opinion Dynamics
Simple yet predictive mathematical models are essential for mechanistic understanding of opinion evolution in social groups. The weighted-median mechanism has recently been proposed as a well-founded alternative to conventional DeGroot-type opinion dynamics. However, the original weighted-median model excludes compromise behavior, as individuals directly adopt their neighbors' opinions without forming intermediate values. In this paper, we introduce a parsimonious continuous-time extension of the weighted-median model by incorporating individual inertia, allowing opinions to move gradually toward the neighbors' weighted median. Empirical evidence shows that this model outperforms both the original weighted-median and DeGroot models with inertia in predicting opinion shifts. We provide a complete theoretical analysis of the proposed dynamics: the equilibria are characterized and shown to be Lyapunov stable; global convergence is established via the Bony-Brezis method, yielding necessary and sufficient conditions for consensus from arbitrary initial states. In addition, we derive a graph-theoretic condition for persistent disagreement and a necessary and sufficient condition for steering the system to any prescribed consensus value through constant external inputs to a subset of individuals. These results reveal how a social group's resilience to external manipulation fundamentally depends on its internal network structure.
comment: 15 pages, 3 figure
Multi-Hypotheses Ego-Tracking for Resilient Navigation
Autonomous robots relying on radio frequency (RF)-based localization such as global navigation satellite system (GNSS), ultra-wide band (UWB), and 5G integrated sensing and communication (ISAC) are vulnerable to spoofing and sensor manipulation. This paper presents a resilient navigation architecture that combines multi-hypothesis estimation with a Poisson binomial windowed-count detector for anomaly identification and isolation. A state machine coordinates transitions between operation, diagnosis, and mitigation, enabling adaptive response to adversarial conditions. When attacks are detected, trajectory re-planning based on differential flatness allows information-gathering maneuvers minimizing performance loss. Case studies demonstrate effective detection of biased sensors, maintenance of state estimation, and recovery of nominal operation under persistent spoofing attacks
Connectivity-Preserving Multi-Agent Area Coverage via Optimal-Transport-Based Density-Driven Optimal Control (D2OC)
Multi-agent systems play a central role in area coverage tasks across search-and-rescue, environmental monitoring, and precision agriculture. Achieving non-uniform coverage, where spatial priorities vary across the domain, requires coordinating agents while respecting dynamic and communication constraints. Density-driven approaches can distribute agents according to a prescribed reference density, but existing methods do not ensure connectivity. This limitation often leads to communication loss, reduced coordination, and degraded coverage performance. This letter introduces a connectivity-preserving extension of the Density-Driven Optimal Control (D2OC) framework. The coverage objective, defined using the Wasserstein distance between the agent distribution and the reference density, admits a convex quadratic program formulation. Communication constraints are incorporated through a smooth connectivity penalty, which maintains strict convexity, supports distributed implementation, and preserves inter-agent communication without imposing rigid formations. Simulation studies show that the proposed method consistently maintains connectivity, improves convergence speed, and enhances non-uniform coverage quality compared with density-driven schemes that do not incorporate explicit connectivity considerations.
comment: Under review in IEEE Control Systems Letters (LCSS). 6 pages
Nonuniform-Grid Markov Chain Approximation of Continuous Processes with Time-Linear Moments
We propose a method to approximate continuous-time, continuous-state stochastic processes by a discrete-time Markov chain defined on a nonuniform grid. Our method provides exact moment matching for processes whose first and second moments are linear functions of time. In particular, we show that, under certain conditions, the transition probabilities of a Markov chain can be chosen so that its first two moments match prescribed linear functions of time. These conditions depend on the grid points of the Markov chain and the coefficients of the linear mean and variance functions. Our proof relies on two recurrence relations for the expectation and variance across time. This approach enables simulation-based numerical analysis of continuous processes while preserving their key characteristics. We illustrate its efficacy by approximating continuous processes describing heat diffusion and geometric Brownian motion (GBM). For heat diffusion, we show that the heat profile at a set of points can be investigated by embedding those points inside the nonuniform grid of our Markov chain. For GBM, numerical simulations demonstrate that our approach, combined with suitable nonuniform grids, yields accurate approximations, with consistently small empirical Wasserstein-1 distances at long time horizons.
HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
Diffusion and flow-matching have emerged as powerful methodologies for generative modeling, with remarkable success in capturing complex data distributions and enabling flexible guidance at inference time. Many downstream applications, however, demand enforcing hard constraints on generated samples (for example, robot trajectories must avoid obstacles), a requirement that goes beyond simple guidance. Prevailing projection-based approaches constrain the entire sampling path to the constraint manifold, which is overly restrictive and degrades sample quality. In this paper, we introduce a novel framework that reformulates hard-constrained sampling as a trajectory optimization problem. Our key insight is to leverage numerical optimal control to steer the sampling trajectory so that constraints are satisfied precisely at the terminal time. By exploiting the underlying structure of flow-matching models and adopting techniques from model predictive control, we transform this otherwise complex constrained optimization problem into a tractable surrogate that can be solved efficiently and effectively. Furthermore, this trajectory optimization perspective offers significant flexibility beyond mere constraint satisfaction, allowing for the inclusion of integral costs to minimize distribution shift and terminal objectives to further enhance sample quality, all within a unified framework. We provide a control-theoretic analysis of our method, establishing bounds on the approximation error between our tractable surrogate and the ideal formulation. Extensive experiments across diverse domains, including robotics (planning), partial differential equations (boundary control), and vision (text-guided image editing), demonstrate that our algorithm, which we name $\textit{HardFlow}$, substantially outperforms existing methods in both constraint satisfaction and sample quality.
Bounds of Validity for Bifurcations of Equilibria in a Class of Networked Dynamical Systems
Local bifurcation analysis plays a central role in understanding qualitative transitions in networked nonlinear dynamical systems, including dynamic neural network and opinion dynamics models. In this article we establish explicit bounds of validity for the classification of bifurcation diagrams in two classes of continuous-time networked dynamical systems, analogous in structure to the Hopfield and the Firing Rate dynamic neural network models. Our approach leverages recent advances in computing the bounds for the validity of Lyapunov-Schmidt reduction, a reduction method widely employed in nonlinear systems analysis. Using these bounds we rigorously characterize neighborhoods around bifurcation points where predictions from reduced-order models remain reliable. We further demonstrate how these bounds can be applied to an illustrative family of nonlinear opinion dynamics on k-regular graphs, which emerges as a special case of the general framework. These results provide new analytical tools for quantifying the robustness of bifurcation phenomena in dynamics over networked systems and highlight the interplay between network structure and nonlinear dynamical behavior.
comment: This manuscript has been submitted to the 2026 American Control Conference taking place in New Orleans, Louisiana, in May 2026
Robotics
Reinforcing Action Policies by Prophesying
Vision-Language-Action (VLA) policies excel in aligning language, perception, and robot control. However, most VLAs are trained purely by imitation, which overfits to demonstrations, and is brittle under distribution shift. Reinforcement learning (RL) directly optimizes task reward and thus addresses this misalignment, but real-robot interaction is expensive and conventional simulators are hard to engineer and transfer. We address both data efficiency and optimization stability in VLA post-training via a learned world model and an RL procedure tailored to flow-based action heads. Specifically, we introduce Prophet, a unified action-to-video robot actuation pretrained across large-scale, heterogeneous robot data to learn reusable action-outcome dynamics. It is able to few-shot adapt to new robots, objects, and environments, yielding a rollout-ready simulator. Upon Prophet, we reinforce action policies with Flow-action-GRPO (FA-GRPO), which adapts Flow-GRPO to operate on VLA actions, and with FlowScale, a stepwise reweighting that rescales per-step gradients in the flow head. Together, Prophet, FA-GRPO, and FlowScale constitute ProphRL, a practical, data- and compute-efficient path to VLA post-training. Experiments show 5-17% success gains on public benchmarks and 24-30% gains on real robots across different VLA variants.
comment: https://LogosRoboticsGroup.github.io/ProphRL
Wanderland: Geometrically Grounded Simulation for Open-World Embodied AI
Reproducible closed-loop evaluation remains a major bottleneck in Embodied AI such as visual navigation. A promising path forward is high-fidelity simulation that combines photorealistic sensor rendering with geometrically grounded interaction in complex, open-world urban environments. Although recent video-3DGS methods ease open-world scene capturing, they are still unsuitable for benchmarking due to large visual and geometric sim-to-real gaps. To address these challenges, we introduce Wanderland, a real-to-sim framework that features multi-sensor capture, reliable reconstruction, accurate geometry, and robust view synthesis. Using this pipeline, we curate a diverse dataset of indoor-outdoor urban scenes and systematically demonstrate how image-only pipelines scale poorly, how geometry quality impacts novel view synthesis, and how all of these adversely affect navigation policy learning and evaluation reliability. Beyond serving as a trusted testbed for embodied navigation, Wanderland's rich raw sensor data further allows benchmarking of 3D reconstruction and novel view synthesis models. Our work establishes a new foundation for reproducible research in open-world embodied AI. Project website is at https://ai4ce.github.io/wanderland/.
Safe and Stable Neural Network Dynamical Systems for Robot Motion Planning
Learning safe and stable robot motions from demonstrations remains a challenge, especially in complex, nonlinear tasks involving dynamic, obstacle-rich environments. In this paper, we propose Safe and Stable Neural Network Dynamical Systems S$^2$-NNDS, a learning-from-demonstration framework that simultaneously learns expressive neural dynamical systems alongside neural Lyapunov stability and barrier safety certificates. Unlike traditional approaches with restrictive polynomial parameterizations, S$^2$-NNDS leverages neural networks to capture complex robot motions providing probabilistic guarantees through split conformal prediction in learned certificates. Experimental results on various 2D and 3D datasets -- including LASA handwriting and demonstrations recorded kinesthetically from the Franka Emika Panda robot -- validate S$^2$-NNDS effectiveness in learning robust, safe, and stable motions from potentially unsafe demonstrations.
Gated Uncertainty-Aware Runtime Dual Invariants for Neural Signal-Controlled Robotics NeurIPS 2025
Safety-critical assistive systems that directly decode user intent from neural signals require rigorous guarantees of reliability and trust. We present GUARDIAN (Gated Uncertainty-Aware Runtime Dual Invariants), a framework for real-time neuro-symbolic verification for neural signal-controlled robotics. GUARDIAN enforces both logical safety and physiological trust by coupling confidence-calibrated brain signal decoding with symbolic goal grounding and dual-layer runtime monitoring. On the BNCI2014 motor imagery electroencephalogram (EEG) dataset with 9 subjects and 5,184 trials, the system performs at a high safety rate of 94-97% even with lightweight decoder architectures with low test accuracies (27-46%) and high ECE confidence miscalibration (0.22-0.41). We demonstrate 1.7x correct interventions in simulated noise testing versus at baseline. The monitor operates at 100Hz and sub-millisecond decision latency, making it practically viable for closed-loop neural signal-based systems. Across 21 ablation results, GUARDIAN exhibits a graduated response to signal degradation, and produces auditable traces from intent, plan to action, helping to link neural evidence to verifiable robot action.
comment: Embodied and Safe-Assured Robotic Systems workshop at NeurIPS 2025
MIMIC-MJX: Neuromechanical Emulation of Animal Behavior
The primary output of the nervous system is movement and behavior. While recent advances have democratized pose tracking during complex behavior, kinematic trajectories alone provide only indirect access to the underlying control processes. Here we present MIMIC-MJX, a framework for learning biologically-plausible neural control policies from kinematics. MIMIC-MJX models the generative process of motor control by training neural controllers that learn to actuate biomechanically-realistic body models in physics simulation to reproduce real kinematic trajectories. We demonstrate that our implementation is accurate, fast, data-efficient, and generalizable to diverse animal body models. Policies trained with MIMIC-MJX can be utilized to both analyze neural control strategies and simulate behavioral experiments, illustrating its potential as an integrative modeling framework for neuroscience.
Metric, inertially aligned monocular state estimation via kinetodynamic priors
Accurate state estimation for flexible robotic systems poses significant challenges, particular for platforms with dynamically deforming structures that invalidate rigid-body assumptions. This paper tackles this problem and allows to extend existing rigid-body pose estimation methods to non-rigid systems. Our approach hinges on two core assumptions: first, the elastic properties are captured by an injective deformation-force model, efficiently learned via a Multi-Layer Perceptron; second, we solve the platform's inherently smooth motion using continuous-time B-spline kinematic models. By continuously applying Newton's Second Law, our method establishes a physical link between visually-derived trajectory acceleration and predicted deformation-induced acceleration. We demonstrate that our approach not only enables robust and accurate pose estimation on non-rigid platforms, but that the properly modeled platform physics instigate inertial sensing properties. We demonstrate this feasibility on a simple spring-camera system, and show how it robustly resolves the typically ill-posed problem of metric scale and gravity recovery in monocular visual odometry.
Kleinkram: Open Robotic Data Management
We introduce Kleinkram, a free and open-source system designed to solve the challenge of managing massive, unstructured robotic datasets. Designed as a modular, on-premises cloud solution, Kleinkram enables scalable storage, indexing, and sharing of datasets, ranging from individual experiments to large-scale research collections. Kleinkram natively integrates with standard formats such as ROS bags and MCAP and utilises S3-compatible storage for flexibility. Beyond storage, Kleinkram features an integrated "Action Runner" that executes customizable Docker-based workflows for data validation, curation, and benchmarking. Kleinkram has successfully managed over 30 TB of data from diverse robotic systems, streamlining the research lifecycle through a modern web interface and a robust Command Line Interface (CLI).
comment: for associated source code, see https://github.com/leggedrobotics/kleinkram
Power-Efficient Autonomous Mobile Robots
This paper presents pNav, a novel power-management system that significantly enhances the power/energy-efficiency of Autonomous Mobile Robots (AMRs) by jointly optimizing their physical/mechanical and cyber subsystems. By profiling AMRs' power consumption, we identify three challenges in achieving CPS (cyber-physical system) power-efficiency that involve both cyber (C) and physical (P) subsystems: (1) variabilities of system power consumption breakdown, (2) environment-aware navigation locality, and (3) coordination of C and P subsystems. pNav takes a multi-faceted approach to achieve power-efficiency of AMRs. First, it integrates millisecond-level power consumption prediction for both C and P subsystems. Second, it includes novel real-time modeling and monitoring of spatial and temporal navigation localities for AMRs. Third, it supports dynamic coordination of AMR software (navigation, detection) and hardware (motors, DVFS driver) configurations. pNav is prototyped using the Robot Operating System (ROS) Navigation Stack, 2D LiDAR, and camera. Our in-depth evaluation with a real robot and Gazebo environments demonstrates a >96% accuracy in predicting power consumption and a 38.1% reduction in power consumption without compromising navigation accuracy and safety.
comment: 13 pages, 16 figures
BRIC: Bridging Kinematic Plans and Physical Control at Test Time
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
VibraVerse: A Large-Scale Geometry-Acoustics Alignment Dataset for Physically-Consistent Multimodal Learning
Understanding the physical world requires perceptual models grounded in physical laws rather than mere statistical correlations. However, existing multimodal learning frameworks, focused on vision and language, lack physical consistency and overlook the intrinsic causal relationships among an object's geometry, material, vibration modes, and the sounds it produces. We introduce VibraVerse, a large-scale geometry-acoustics alignment dataset that explicitly bridges the causal chain from 3D geometry -> physical attributes -> modal parameters -> acoustic signals. Each 3D model has explicit physical properties (density, Young's modulus, Poisson's ratio) and volumetric geometry, from which modal eigenfrequencies and eigenvectors are computed for impact sound synthesis under controlled excitations. To establish this coherence, we introduce CLASP, a contrastive learning framework for cross-modal alignment that preserves the causal correspondence between an object's physical structure and its acoustic response. This framework enforces physically consistent alignment across modalities, ensuring that every sample is coherent, traceable to the governing equations, and embedded within a unified representation space spanning shape, image, and sound. Built upon VibraVerse, we define a suite of benchmark tasks for geometry-to-sound prediction, sound-guided shape reconstruction, and cross-modal representation learning. Extensive validations on these tasks demonstrate that models trained on VibraVerse exhibit superior accuracy, interpretability, and generalization across modalities. These results establish VibraVerse as a benchmark for physically consistent and causally interpretable multimodal learning, providing a foundation for sound-guided embodied perception and a deeper understanding of the physical world. The dataset will be open-sourced.
Improved adaptive wind driven optimization algorithm for real-time path planning
Recently, path planning has achieved remarkable progress in enhancing global search capability and convergence accuracy through heuristic and learning-inspired optimization frameworks. However, real-time adaptability in dynamic environments remains a critical challenge for autonomous navigation, particularly when robots must generate collision-free, smooth, and efficient trajectories under complex constraints. By analyzing the difficulties in dynamic path planning, the Wind Driven Optimization (WDO) algorithm emerges as a promising framework owing to its physically interpretable search dynamics. Motivated by these observations, this work revisits the WDO principle and proposes a variant formulation, Multi-hierarchical adaptive wind driven optimization(MAWDO), that improves adaptability and robustness in time-varying environments. To mitigate instability and premature convergence, a hierarchical-guidance mechanism divides the population into multiple groups guided by individual, regional, and global leaders to balance exploration and exploitation. Extensive evaluations on sixteen benchmark functions show that MAWDO achieves superior optimization accuracy, convergence stability, and adaptability over state-of-the art metaheuristics. In dynamic path planning, MAWDO shortens the path length to 469.28 pixels, improving over Multi-strategy ensemble wind driven optimization(MEWDO), Adaptive wind driven optimization(AWDO) and WDO by 3.51\%, 11.63\% and 14.93\%, and achieves the smallest optimality gap (1.01) with smoothness 0.71 versus 13.50 and 15.67 for AWDO and WDO, leading to smoother, shorter, and collision-free trajectories that confirm its effectiveness for real-time path planning in complex environments.
comment: 23 pages, 4 figures
Quality-guided UAV Surface Exploration for 3D Reconstruction
Reasons for mapping an unknown environment with autonomous robots are wide-ranging, but in practice, they are often overlooked when developing planning strategies. Rapid information gathering and comprehensive structural assessment of buildings have different requirements and therefore necessitate distinct methodologies. In this paper, we propose a novel modular Next-Best-View (NBV) planning framework for aerial robots that explicitly uses a reconstruction quality objective to guide the exploration planning. In particular, our approach introduces new and efficient methods for view generation and selection of viewpoint candidates that are adaptive to the user-defined quality requirements, fully exploiting the uncertainty encoded in a Truncated Signed Distance field (TSDF) representation of the environment. This results in informed and efficient exploration decisions tailored towards the predetermined objective. Finally, we validate our method via extensive simulations in realistic environments. We demonstrate that it successfully adjusts its behavior to the user goal while consistently outperforming conventional NBV strategies in terms of coverage, quality of the final 3D map and path efficiency.
Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Submitted to IEEE Intelligent Vehicles Symposium (IV) 2026 for possible publication
ArtiBench and ArtiBrain: Benchmarking Generalizable Vision-Language Articulated Object Manipulation
Interactive articulated manipulation requires long-horizon, multi-step interactions with appliances while maintaining physical consistency. Existing vision-language and diffusion-based policies struggle to generalize across parts, instances, and categories. We first introduce ArtiBench, a five-level benchmark covering kitchen, storage, office, and tool environments. ArtiBench enables structured evaluation from cross-part and cross-instance variation to long-horizon multi-object tasks, revealing the core generalization challenges of articulated object manipulation. Building on this benchmark, we propose ArtiBrain, a modular framework that unifies high-level reasoning with adaptive low-level control. ArtiBrain uses a VLM-based Task Reasoner (GPT-4.1) to decompose and validate subgoals, and employs a Hybrid Controller that combines geometry-aware keyframe execution with affordance-guided diffusion for precise and interpretable manipulation. An Affordance Memory Bank continually accumulates successful execution episodes and propagates part-level actionable affordances to unseen articulated parts and configurations. Extensive experiments on ArtiBench show that our ArtiBrain significantly outperforms state-of-the-art multimodal and diffusion-based methods in robustness and generalization. Code and dataset will be released upon acceptance.
How Robot Kinematics Influence Human Performance in Virtual Robot-to-Human Handover Tasks
Recent advancements in robotics have increased the possibilities for integrating robotic systems into human-involved workplaces, highlighting the need to examine and optimize human-robot coordination in collaborative settings. This study explores human-robot interactions during handover tasks using Virtual Reality (VR) to investigate differences in human motor performance across various task dynamics and robot kinematics. A VR-based robot handover simulation afforded safe and controlled assessments of human-robot interactions. In separate experiments, four potential influences on human performance were examined (1) control over task initiation and robot movement synchrony (temporal and spatiotemporal); (2) partner appearance (human versus robotic); (3) robot velocity profiles (minimum jerk, constant velocity, constant acceleration, and biphasic); and (4) the timing of rotational object motion. Findings across experiments emphasize humans benefit from robots providing early and salient visual information about task-relevant object motion, and advantages of human-like smooth robot trajectories. To varying degrees, these manipulations improved predictive accuracy and synchronization during interaction. This suggests that human-robot interactions should be designed to allow humans to leverage their natural capabilities for detecting biological motion, which conversely may reduce the need for costly robotic computations or added cognitive adaptation on the human side.
Dynamic-ICP: Doppler-Aware Iterative Closest Point Registration for Dynamic Scenes
Reliable odometry in highly dynamic environments remains challenging when it relies on ICP-based registration: ICP assumes near-static scenes and degrades in repetitive or low-texture geometry. We introduce Dynamic-ICP, a Doppler-aware registration framework. The method (i) estimates ego motion from per-point Doppler velocity via robust regression and builds a velocity filter, (ii) clusters dynamic objects and reconstructs object-wise translational velocities from ego-compensated radial measurements, (iii) predicts dynamic points with a constant-velocity model, and (iv) aligns scans using a compact objective that combines point-to-plane geometry residual with a translation-invariant, rotation-only Doppler residual. The approach requires no external sensors or sensor-vehicle calibration and operates directly on FMCW LiDAR range and Doppler velocities. We evaluate Dynamic-ICP on three datasets-HeRCULES, HeLiPR, AevaScenes-focusing on highly dynamic scenes. Dynamic-ICP consistently improves rotational stability and translation accuracy over the state-of-the-art methods. Our approach is also simple to integrate into existing pipelines, runs in real time, and provides a lightweight solution for robust registration in dynamic environments. To encourage further research, the code is available at: https://github.com/JMUWRobotics/Dynamic-ICP.
comment: 8 pages, 5 figures
HAFO: Humanoid Force-Adaptive Control for Intense External Force Interaction Environments
Reinforcement learning controllers have made impressive progress in humanoid locomotion and light load manipulation. However, achieving robust and precise motion with strong force interaction remains a significant challenge. Based on the above limitations, this paper proposes HAFO, a dual-agent reinforcement learning control framework that simultaneously optimizes both a robust locomotion strategy and a precise upper-body manipulation strategy through coupled training under external force interaction environments. Simultaneously, we explicitly model the external pulling disturbances through a spring-damper system and achieve fine-grained force control by manipulating the virtual spring. During this process, the reinforcement-learning policy spontaneously generates disturbance-rejection response by exploiting environmental feedback. Moreover, HAFO employs an asymmetric Actor-Critic framework in which the Critic-network access to privileged spring-damping forces guides the actor-network to learn a generalizable, robust policy for resisting external disturbances. The experimental results demonstrate that HAFO achieves stable control of humanoid robot under various strong force interactions, showing remarkable performance in load tasks and ensuring stable robot operation under rope tension disturbances. Project website: hafo-robot.github.io.
Toward generic control for soft robotic systems
Soft robotics has advanced rapidly, yet its control methods remain fragmented: different morphologies and actuation schemes still require task-specific controllers, hindering theoretical integration and large-scale deployment. A generic control framework is therefore essential, and a key obstacle lies in the persistent use of rigid-body control logic, which relies on precise models and strict low-level execution. Such a paradigm is effective for rigid robots but fails for soft robots, where the ability to tolerate and exploit approximate action representations, i.e., control compliance, is the basis of robustness and adaptability rather than a disturbance to be eliminated. Control should thus shift from suppressing compliance to explicitly exploiting it. Human motor control exemplifies this principle: instead of computing exact dynamics or issuing detailed muscle-level commands, it expresses intention through high-level movement tendencies, while reflexes and biomechanical mechanisms autonomously resolve local details. This architecture enables robustness, flexibility, and cross-task generalization. Motivated by this insight, we propose a generic soft-robot control framework grounded in control compliance and validate it across robots with diverse morphologies and actuation mechanisms. The results demonstrate stable, safe, and cross-platform transferable behavior, indicating that embracing control compliance, rather than resisting it, may provide a widely applicable foundation for unified soft-robot control.
CostNav: A Navigation Benchmark for Cost-Aware Evaluation of Embodied Agents
Existing navigation benchmarks focus on task success metrics while overlooking economic viability -- critical for commercial deployment of autonomous delivery robots. We introduce \emph{CostNav}, a \textbf{Micro-Navigation Economic Testbed} that evaluates embodied agents through comprehensive cost-revenue analysis aligned with real-world business operations. CostNav models the complete economic lifecycle including hardware, training, energy, maintenance costs, and delivery revenue with service-level agreements, using industry-derived parameters. \textbf{To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability}, revealing that optimizing for task success fundamentally differs from optimizing for economic deployment. Our cost model uses parameters derived from industry data sources (energy rates, delivery service pricing), and we project from a reduced-scale simulation to realistic deliveries. Under this projection, the baseline achieves 43.0\% SLA compliance but is \emph{not} commercially viable: yielding a loss of \$30.009 per run with no finite break-even point, because operating costs are dominated by collision-induced maintenance, which accounts for 99.7\% of per-run costs and highlights collision avoidance as a key optimization target. We demonstrate a learning-based on-device navigation baseline and establish a foundation for evaluating rule-based navigation, imitation learning, and cost-aware RL training. CostNav bridges the gap between navigation research and commercial deployment, enabling data-driven decisions about economic trade-offs across navigation paradigms.
Hibikino-Musashi@Home 2025 Team Description Paper
This paper provides an overview of the techniques employed by Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team developed a dataset generator for training a robot vision system and an open-source development environment running on a Human Support Robot simulator. The large-language-model-powered task planner selects appropriate primitive skills to perform the task requested by the user. Moreover, the team has focused on research involving brain-inspired memory models for adaptation to individual home environments. This approach aims to provide intuitive and personalized assistance. Additionally, the team contributed to the reusability of the navigation system developed by Pumas in RoboCup2024. The team aimed to design a home service robot to assist humans in their homes and continuously attend competitions to evaluate and improve the developed system.
Map-World: Masked Action planning and Path-Integral World Model for Autonomous Driving
Motion planning for autonomous driving must handle multiple plausible futures while remaining computationally efficient. Recent end-to-end systems and world-model-based planners predict rich multi-modal trajectories, but typically rely on handcrafted anchors or reinforcement learning to select a single best mode for training and control. This selection discards information about alternative futures and complicates optimization. We propose MAP-World, a prior-free multi-modal planning framework that couples masked action planning with a path-weighted world model. The Masked Action Planning (MAP) module treats future ego motion as masked sequence completion: past waypoints are encoded as visible tokens, future waypoints are represented as mask tokens, and a driving-intent path provides a coarse scaffold. A compact latent planning state is expanded into multiple trajectory queries with injected noise, yielding diverse, temporally consistent modes without anchor libraries or teacher policies. A lightweight world model then rolls out future BEV semantics conditioned on each candidate trajectory. During training, semantic losses are computed as an expectation over modes, using trajectory probabilities as discrete path weights, so the planner learns from the full distribution of plausible futures instead of a single selected path. On NAVSIM, our method matches anchor-based approaches and achieves state-of-the-art performance among world-model-based methods, while avoiding reinforcement learning and maintaining real-time inference latency.
Active3D: Active High-Fidelity 3D Reconstruction via Hierarchical Uncertainty Quantification
In this paper, we present an active exploration framework for high-fidelity 3D reconstruction that incrementally builds a multi-level uncertainty space and selects next-best-views through an uncertainty-driven motion planner. We introduce a hybrid implicit-explicit representation that fuses neural fields with Gaussian primitives to jointly capture global structural priors and locally observed details. Based on this hybrid state, we derive a hierarchical uncertainty volume that quantifies both implicit global structure quality and explicit local surface confidence. To focus optimization on the most informative regions, we propose an uncertainty-driven keyframe selection strategy that anchors high-entropy viewpoints as sparse attention nodes, coupled with a viewpoint-space sliding window for uncertainty-aware local refinement. The planning module formulates next-best-view selection as an Expected Hybrid Information Gain problem and incorporates a risk-sensitive path planner to ensure efficient and safe exploration. Extensive experiments on challenging benchmarks demonstrate that our approach consistently achieves state-of-the-art accuracy, completeness, and rendering quality, highlighting its effectiveness for real-world active reconstruction and robotic perception tasks.
ShapeForce: Low-Cost Soft Robotic Wrist for Contact-Rich Manipulation
Contact feedback is essential for contact-rich robotic manipulation, as it allows the robot to detect subtle interaction changes and adjust its actions accordingly. Six-axis force-torque sensors are commonly used to obtain contact feedback, but their high cost and fragility have discouraged many researchers from adopting them in contact-rich tasks. To offer a more cost-efficient and easy-accessible source of contact feedback, we present ShapeForce, a low-cost, plug-and-play soft wrist that provides force-like signals for contact-rich robotic manipulation. Inspired by how humans rely on relative force changes in contact rather than precise force magnitudes, ShapeForce converts external force and torque into measurable deformations of its compliant core, which are then estimated via marker-based pose tracking and converted into force-like signals. Our design eliminates the need for calibration or specialized electronics to obtain exact values, and instead focuses on capturing force and torque changes sufficient for enabling contact-rich manipulation. Extensive experiments across diverse contact-rich tasks and manipulation policies demonstrate that ShapeForce delivers performance comparable to six-axis force-torque sensors at an extremely low cost.
Collaborate sim and real: Robot Bin Packing Learning in Real-world and Physical Engine
The 3D bin packing problem, with its diverse industrial applications, has garnered significant research attention in recent years. Existing approaches typically model it as a discrete and static process, while real-world applications involve continuous gravity-driven interactions. This idealized simplification leads to infeasible deployments (e.g., unstable packing) in practice. Simulations with physical engine offer an opportunity to emulate continuous gravity effects, enabling the training of reinforcement learning (RL) agents to address such limitations and improve packing stability. However, a simulation-to-reality gap persists due to dynamic variations in physical properties of real-world objects, such as various friction coefficients, elasticity, and non-uniform weight distributions. To bridge this gap, we propose a hybrid RL framework that collaborates with physical simulation with real-world data feedback. Firstly, domain randomization is applied during simulation to expose agents to a spectrum of physical parameters, enhancing their generalization capability. Secondly, the RL agent is fine-tuned with real-world deployment feedback, further reducing collapse rates. Extensive experiments demonstrate that our method achieves lower collapse rates in both simulated and real-world scenarios. Large-scale deployments in logistics systems validate the practical effectiveness, with a 35\% reduction in packing collapse compared to baseline methods.
CoC-VLA: Delving into Adversarial Domain Transfer for Explainable Autonomous Driving via Chain-of-Causality Visual-Language-Action Model
Autonomous driving represents a prominent application of artificial intelligence. Recent approaches have shifted from focusing solely on common scenarios to addressing complex, long-tail situations such as subtle human behaviors, traffic accidents, and non-compliant driving patterns. Given the demonstrated capabilities of large language models (LLMs) in understanding visual and natural language inputs and following instructions, recent methods have integrated LLMs into autonomous driving systems to enhance reasoning, interpretability, and performance across diverse scenarios. However, existing methods typically rely either on real-world data, which is suitable for industrial deployment, or on simulation data tailored to rare or hard case scenarios. Few approaches effectively integrate the complementary advantages of both data sources. To address this limitation, we propose a novel VLM-guided, end-to-end adversarial transfer framework for autonomous driving that transfers long-tail handling capabilities from simulation to real-world deployment, named CoC-VLA. The framework comprises a teacher VLM model, a student VLM model, and a discriminator. Both the teacher and student VLM models utilize a shared base architecture, termed the Chain-of-Causality Visual-Language Model (CoC VLM), which integrates temporal information via an end-to-end text adapter. This architecture supports chain-of-thought reasoning to infer complex driving logic. The teacher and student VLM models are pre-trained separately on simulated and real-world datasets. The discriminator is trained adversarially to facilitate the transfer of long-tail handling capabilities from simulated to real-world environments by the student VLM model, using a novel backpropagation strategy.
Reasoning-VLA: A Fast and General Vision-Language-Action Reasoning Model for Autonomous Driving
Vision-Language-Action (VLA) models have recently shown strong decision-making capabilities in autonomous driving. However, existing VLAs often struggle with achieving efficient inference and generalizing to novel autonomous vehicle configurations and driving scenarios. In this paper, we propose Reasoning-VLA, a general and fast action-generation VLA framework. The proposed model employs a set of learnable action queries, initialized via Gaussian sampling from ground-truth trajectories within the training corpus. These learnable queries interact with reasoning-enhanced vision-language features to generate continuous action trajectories in parallel. To promote robust generalization, we consolidate eight publicly available autonomous driving datasets into a standardized, Chain-of-Thought reasoning-based, and easy-to-use data format for model training. Leveraging both supervised learning and reinforcement learning fine-tuning, extensive empirical evaluations across multiple benchmarks demonstrate that Reasoning-VLA achieves state-of-the-art performance, superior generalization capability, and the excellent inference speed reported to date.
Improved Linear-Time Construction of Minimal Dominating Set via Mobile Agents
Mobile agents have emerged as a powerful framework for solving fundamental graph problems in distributed settings in recent times. These agents, modelled as autonomous physical or software entities, possess local computation power, finite memory and have the ability to traverse a graph, offering efficient solutions to a range of classical problems. In this work, we focus on the problem of computing a \emph{minimal dominating set} (mDS) in anonymous graphs using mobile agents. Building on the recently proposed optimal dispersion algorithm on the synchronous mobile agent model, we design two new algorithms that achieve a \emph{linear-time} solution for this problem in the synchronous setting. Specifically, given a connected $n$-node graph with $n$ agents initially placed in either rooted or arbitrary configurations, we show that an mDS can be computed in $O(n)$ rounds using only $O(\log n)$ bits of memory per agent, without using any prior knowledge of any global parameters. This improves upon the best-known complexity results in the literature over the same model. In addition, as natural by-products of our methodology, our algorithms also construct a spanning tree and elect a unique leader in $O(n)$ rounds, which are also important results of independent interest in the mobile-agent framework.
MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
Human-Centered Cooperative Control Coupling Autonomous and Haptic Shared Control via Control Barrier Function
Haptic shared control (HSC) is effective in teleoperation when full autonomy is limited by uncertainty or sensing constraints. However, autonomous control performance achieved by maximizing HSC strength is limited because the dynamics of the joystick and human arm affect the robot's behavior. We propose a cooperative framework coupling a joystick-independent autonomous controller with HSC. A control barrier function ignores joystick inputs within a safe region determined by the human operator in real-time, while HSC is engaged otherwise. A pilot experiment on simulated tasks with tele-operated underwater robot in virtual environment demonstrated improved accuracy and reduced required time over conventional HSC.
GigaWorld-0: World Models as Data Engine to Empower Embodied AI
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
comment: Project Page: https://gigaworld0.github.io/
Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation
Vision-Language-Action (VLA) models built upon Chain-of-Thought (CoT) have achieved remarkable success in advancing general-purpose robotic agents, owing to its significant perceptual comprehension. Recently, since text-only CoT struggles to adequately capture scene details in complex spatial environments, a highly promising strategy involves leveraging visual priors to guide robotic action generation. Nevertheless, these strategies face two inherent challenges: (i) a modality gap between visual observations and low-level actions, and (ii) unstable training due to competing objectives between visual prediction and action generation. To address these challenges, we propose a Vision-Integrated Trajectory Alignment (VITA) framework that learns a shared discrete latent space for vision and action, enabling joint modeling of perception and motor control. VITA introduces a implicit visual CoT: autoregressively generated tokens is simultaneously decoded into future frames predictions and robot actions, thereby internalizing visual dynamics as an inductive bias for motion planning. Extensive experiments on simulated and real-world environments demonstrate state-of-the-art performance. VITA improves 14.5\%, 9.6\% and 12.1\% over existing baselines on CALVIN, LIBERO and SimplerEnv. Furthermore, VITA attains an average success rate of 80.5\% across six real-world tasks, demonstrating its potential as a generalist robotic manipulation model.
Dynamic Test-Time Compute Scaling in Control Policy: Difficulty-Aware Stochastic Interpolant Policy
Diffusion- and flow-based policies deliver state-of-the-art performance on long-horizon robotic manipulation and imitation learning tasks. However, these controllers employ a fixed inference budget at every control step, regardless of task complexity, leading to computational inefficiency for simple subtasks while potentially underperforming on challenging ones. To address these issues, we introduce Difficulty-Aware Stochastic Interpolant Policy (DA-SIP), a framework that enables robotic controllers to adaptively adjust their integration horizon in real time based on task difficulty. Our approach employs a difficulty classifier that analyzes observations to dynamically select the step budget, the optimal solver variant, and ODE/SDE integration at each control cycle. DA-SIP builds upon the stochastic interpolant formulation to provide a unified framework that unlocks diverse training and inference configurations for diffusion- and flow-based policies. Through comprehensive benchmarks across diverse manipulation tasks, DA-SIP achieves 2.6-4.4x reduction in total computation time while maintaining task success rates comparable to fixed maximum-computation baselines. By implementing adaptive computation within this framework, DA-SIP transforms generative robot controllers into efficient, task-aware systems that intelligently allocate inference resources where they provide the greatest benefit.
Efficient Greedy Algorithms for Feature Selection in Robot Visual Localization
Robot localization is a fundamental component of autonomous navigation in unknown environments. Among various sensing modalities, visual input from cameras plays a central role, enabling robots to estimate their position by tracking point features across image frames. However, image frames often contain a large number of features, many of which are redundant or uninformative for localization. Processing all features can introduce significant computational latency and inefficiency. This motivates the need for intelligent feature selection, identifying a subset of features that are most informative for localization over a prediction horizon. In this work, we propose two fast and memory-efficient feature selection algorithms that enable robots to actively evaluate the utility of visual features in real time. Unlike existing approaches with high computational and memory demands, the proposed methods are explicitly designed to reduce both time and memory complexity while achieving a favorable trade-off between computational efficiency and localization accuracy.
ACE-F: A Cross Embodiment Foldable System with Force Feedback for Dexterous Teleoperation
Teleoperation systems are essential for efficiently collecting diverse and high-quality robot demonstration data, especially for complex, contact-rich tasks. However, current teleoperation platforms typically lack integrated force feedback, cross-embodiment generalization, and portable, user-friendly designs, limiting their practical deployment. To address these limitations, we introduce ACE-F, a cross embodiment foldable teleoperation system with integrated force feedback. Our approach leverages inverse kinematics (IK) combined with a carefully designed human-robot interface (HRI), enabling users to capture precise and high-quality demonstrations effortlessly. We further propose a generalized soft-controller pipeline integrating PD control and inverse dynamics to ensure robot safety and precise motion control across diverse robotic embodiments. Critically, to achieve cross-embodiment generalization of force feedback without additional sensors, we innovatively interpret end-effector positional deviations as virtual force signals, which enhance data collection and enable applications in imitation learning. Extensive teleoperation experiments confirm that ACE-F significantly simplifies the control of various robot embodiments, making dexterous manipulation tasks as intuitive as operating a computer mouse. The system is open-sourced at: https://acefoldable.github.io/
NOIR 2.0: Neural Signal Operated Intelligent Robots for Everyday Activities
Neural Signal Operated Intelligent Robots (NOIR) system is a versatile brain-robot interface that allows humans to control robots for daily tasks using their brain signals. This interface utilizes electroencephalography (EEG) to translate human intentions regarding specific objects and desired actions directly into commands that robots can execute. We present NOIR 2.0, an enhanced version of NOIR. NOIR 2.0 includes faster and more accurate brain decoding algorithms, which reduce task completion time by 46%. NOIR 2.0 uses few-shot robot learning algorithms to adapt to individual users and predict their intentions. The new learning algorithms leverage foundation models for more sample-efficient learning and adaptation (15 demos vs. a single demo), significantly reducing overall human time by 65%.
comment: Conference on Robot Learning (CoRL 2024), CoRoboLearn
OVAL-Grasp: Open-Vocabulary Affordance Localization for Task Oriented Grasping
To manipulate objects in novel, unstructured environments, robots need task-oriented grasps that target object parts based on the given task. Geometry-based methods often struggle with visually defined parts, occlusions, and unseen objects. We introduce OVAL-Grasp, a zero-shot open-vocabulary approach to task-oriented, affordance based grasping that uses large-language models and vision-language models to allow a robot to grasp objects at the correct part according to a given task. Given an RGB image and a task, OVAL-Grasp identifies parts to grasp or avoid with an LLM, segments them with a VLM, and generates a 2D heatmap of actionable regions on the object. During our evaluations, we found that our method outperformed two task oriented grasping baselines on experiments with 20 household objects with 3 unique tasks for each. OVAL-Grasp successfully identifies and segments the correct object part 95% of the time and grasps the correct actionable area 78.3% of the time in real-world experiments with the Fetch mobile manipulator. Additionally, OVAL-Grasp finds correct object parts under partial occlusions, demonstrating a part selection success rate of 80% in cluttered scenes. We also demonstrate OVAL-Grasp's efficacy in scenarios that rely on visual features for part selection, and show the benefit of a modular design through our ablation experiments. Our project webpage is available at https://ekjt.github.io/OVAL-Grasp/
comment: 10 pages, 7 figures, 3 tables. Presented at the 2025 International Symposium on Experimental Robotics (ISER)
DeeAD: Dynamic Early Exit of Vision-Language Action for Efficient Autonomous Driving
Vision-Language Action (VLA) models unify perception, reasoning, and trajectory generation for autonomous driving, but suffer from significant inference latency due to deep transformer stacks. We present DeeAD, a training-free, action-guided early-exit framework that accelerates VLA planning by evaluating the physical feasibility of intermediate trajectories. Instead of relying on confidence scores, DeeAD terminates inference when predicted trajectories align with lightweight planning priors (e.g., Navigation or Low-precision Planning) within a tolerable deviation (<2m). To improve efficiency, we introduce a multi-hop controller that adaptively skips redundant layers based on the change rate of scores. DeeAD integrates into existing VLA models, such as ORION, without requiring retraining. Experiments on the Bench2Drive benchmark demonstrate up to 28% transformer-layer sparsity and 29% latency reduction, while preserving planning quality and safety.
AutoFocus-IL: VLM-based Saliency Maps for Data-Efficient Visual Imitation Learning without Extra Human Annotations
AutoFocus-IL is a simple yet effective method to improve data efficiency and generalization in visual imitation learning by guiding policies to attend to task-relevant features rather than distractors and spurious correlations. Although saliency regularization has emerged as a promising way to achieve this, existing approaches typically require costly supervision such as human gaze data or manual saliency annotations. In contrast, AutoFocus-IL leverages vision-language models (VLMs) to automatically identify and track key objects in demonstrations, generating temporal saliency maps that highlight causal visual signals while suppressing distractors. These maps are then used to regularize behavior cloning policies, yielding stronger alignment between visual attention and task-relevant cues. Experiments in both the CARLA simulator and real-robot manipulation tasks demonstrate that AutoFocus-IL not only outperforms standard behavior cloning but also surpasses state-of-the-art baselines that assume privileged access to human supervision, such as gaze data. Code, datasets, and trained policy videos are available at https://AutoFocus-IL.github.io/.
comment: 8 pages, 6 figures. Code and datasets available at http://autofocus-il.github.io/
OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
A Physics-informed Demonstration-guided Learning Framework for Granular Material Manipulation
Due to the complex physical properties of granular materials, research on robot learning for manipulating such materials predominantly either disregards the consideration of their physical characteristics or uses surrogate models to approximate their physical properties. Learning to manipulate granular materials based on physical information obtained through precise modelling remains an unsolved problem. In this paper, we propose to address this challenge by constructing a differentiable physics-based simulator for granular materials using the Taichi programming language and developing a learning framework accelerated by demonstrations generated through gradient-based optimisation on non-granular materials within our simulator, eliminating the costly data collection and model training of prior methods. Experimental results show that our method, with its flexible design, trains robust policies that are capable of executing the task of transporting granular materials in both simulated and real-world environments, beyond the capabilities of standard reinforcement learning, imitation learning, and prior task-specific granular manipulation methods.
comment: Accepted as a regular paper by IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
SafePR: Unified Approach for Safe Parallel Robots by Contact Detection and Reaction with Redundancy Resolution
Fast and safe motion is crucial for the successful deployment of physically interactive robots. Parallel robots (PRs) offer the potential for higher speeds while maintaining the same energy limits due to their low moving masses. However, they require methods for contact detection and reaction while avoiding singularities and self-collisions. We address this issue and present SafePR - a unified approach for the detection and localization, including the distinction between collision and clamping to perform a reaction that is safe for humans and feasible for PRs. Our approach uses information from the encoders and motor currents to estimate forces via a generalized-momentum observer. Neural networks and particle filters classify and localize the contacts. We introduce reactions with redundancy resolution to avoid self-collisions and type-II singularities. Our approach detected and terminated 72 real-world collision and clamping contacts with end-effector speeds of up to 1.5 m/s, each within 25-275 ms. The forces were below the thresholds from ISO/TS 15066. By using built-in sensors, SafePR enables safe interaction with already assembled PRs without the need for new hardware components.
FSR-VLN: Fast and Slow Reasoning for Vision-Language Navigation with Hierarchical Multi-modal Scene Graph
Visual-Language Navigation (VLN) is a fundamental challenge in robotic systems, with broad applications for the deployment of embodied agents in real-world environments. Despite recent advances, existing approaches are limited in long-range spatial reasoning, often exhibiting low success rates and high inference latency, particularly in long-range navigation tasks. To address these limitations, we propose FSR-VLN, a vision-language navigation system that combines a Hierarchical Multi-modal Scene Graph (HMSG) with Fast-to-Slow Navigation Reasoning (FSR). The HMSG provides a multi-modal map representation supporting progressive retrieval, from coarse room-level localization to fine-grained goal view and object identification. Building on HMSG, FSR first performs fast matching to efficiently select candidate rooms, views, and objects, then applies VLM-driven refinement for final goal selection. We evaluated FSR-VLN across four comprehensive indoor datasets collected by humanoid robots, utilizing 87 instructions that encompass a diverse range of object categories. FSR-VLN achieves state-of-the-art (SOTA) performance in all datasets, measured by the retrieval success rate (RSR), while reducing the response time by 82% compared to VLM-based methods on tour videos by activating slow reasoning only when fast intuition fails. Furthermore, we integrate FSR-VLN with speech interaction, planning, and control modules on a Unitree-G1 humanoid robot, enabling natural language interaction and real-time navigation.
comment: Demo video are available at https://horizonrobotics.github.io/robot_lab/fsr-vln/
An Efficient Closed-Form Solution to Full Visual-Inertial State Initialization
In this letter, we present a closed-form initialization method that recovers the full visual-inertial state without nonlinear optimization. Unlike previous approaches that rely on iterative solvers, our formulation yields analytical, easy-to-implement, and numerically stable solutions for reliable start-up. Our method builds on small-rotation and constant-velocity approximations, which keep the formulation compact while preserving the essential coupling between motion and inertial measurements. We further propose an observability-driven, two-stage initialization scheme that balances accuracy with initialization latency. Extensive experiments on the EuRoC dataset validate our assumptions: our method achieves 10-20% lower initialization error than optimization-based approaches, while using 4x shorter initialization windows and reducing computational cost by 5x.
comment: 8 pages, 2 figures, 10 tables. Submitted to RA-L
RLZero: Direct Policy Inference from Language Without In-Domain Supervision NeurIPS 2025
The reward hypothesis states that all goals and purposes can be understood as the maximization of a received scalar reward signal. However, in practice, defining such a reward signal is notoriously difficult, as humans are often unable to predict the optimal behavior corresponding to a reward function. Natural language offers an intuitive alternative for instructing reinforcement learning (RL) agents, yet previous language-conditioned approaches either require costly supervision or test-time training given a language instruction. In this work, we present a new approach that uses a pretrained RL agent trained using only unlabeled, offline interactions--without task-specific supervision or labeled trajectories--to get zero-shot test-time policy inference from arbitrary natural language instructions. We introduce a framework comprising three steps: imagine, project, and imitate. First, the agent imagines a sequence of observations corresponding to the provided language description using video generative models. Next, these imagined observations are projected into the target environment domain. Finally, an agent pretrained in the target environment with unsupervised RL instantly imitates the projected observation sequence through a closed-form solution. To the best of our knowledge, our method, RLZero, is the first approach to show direct language-to-behavior generation abilities on a variety of tasks and environments without any in-domain supervision. We further show that components of RLZero can be used to generate policies zero-shot from cross-embodied videos, such as those available on YouTube, even for complex embodiments like humanoids.
comment: NeurIPS 2025, 26 pages
LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction
Photorealistic 3D scene reconstruction plays an important role in autonomous driving, enabling the generation of novel data from existing datasets to simulate safety-critical scenarios and expand training data without additional acquisition costs. Gaussian Splatting (GS) facilitates real-time, photorealistic rendering with an explicit 3D Gaussian representation of the scene, providing faster processing and more intuitive scene editing than the implicit Neural Radiance Fields (NeRFs). While extensive GS research has yielded promising advancements in autonomous driving applications, they overlook two critical aspects: First, existing methods mainly focus on low-speed and feature-rich urban scenes and ignore the fact that highway scenarios play a significant role in autonomous driving. Second, while LiDARs are commonplace in autonomous driving platforms, existing methods learn primarily from images and use LiDAR only for initial estimates or without precise sensor modeling, thus missing out on leveraging the rich depth information LiDAR offers and limiting the ability to synthesize LiDAR data. In this paper, we propose a novel GS method for dynamic scene synthesis and editing with improved scene reconstruction through LiDAR supervision and support for LiDAR rendering. Unlike prior works that are tested mostly on urban datasets, to the best of our knowledge, we are the first to focus on the more challenging and highly relevant highway scenes for autonomous driving, with sparse sensor views and monotone backgrounds. Visit our project page at: https://umautobots.github.io/lihi_gs
comment: RA-L 2025
Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
Hestia: Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction WACV
Advances in 3D reconstruction and novel view synthesis have enabled efficient and photorealistic rendering. However, images for reconstruction are still either largely manual or constrained by simple preplanned trajectories. To address this issue, recent works propose generalizable next-best-view planners that do not require online learning. Nevertheless, robustness and performance remain limited across various shapes. Hence, this study introduces Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction (Hestia), which addresses the shortcomings of the reinforcement learning-based generalizable approaches for five-degree-of-freedom viewpoint prediction. Hestia systematically improves the planners through four components: a more diverse dataset to promote robustness, a hierarchical structure to manage the high-dimensional continuous action search space, a close-greedy strategy to mitigate spurious correlations, and a face-aware design to avoid overlooking geometry. Experimental results show that Hestia achieves non-marginal improvements, with at least a 4% gain in coverage ratio, while reducing Chamfer Distance by 50% and maintaining real-time inference. In addition, Hestia outperforms prior methods by at least 12% in coverage ratio with a 5-image budget and remains robust to object placement variations. Finally, we demonstrate that Hestia, as a next-best-view planner, is feasible for the real-world application. Our project page is https://johnnylu305.github.io/hestia web.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
GigaBrain-0: A World Model-Powered Vision-Language-Action Model
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
comment: https://gigabrain0.github.io/
From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.
comment: Accepted by NuerIPS 2025 (Poster)
ARBoids: Adaptive Residual Reinforcement Learning With Boids Model for Cooperative Multi-USV Target Defense
The target defense problem (TDP) for unmanned surface vehicles (USVs) concerns intercepting an adversarial USV before it breaches a designated target region, using one or more defending USVs. A particularly challenging scenario arises when the attacker exhibits superior maneuverability compared to the defenders, significantly complicating effective interception. To tackle this challenge, this letter introduces ARBoids, a novel adaptive residual reinforcement learning framework that integrates deep reinforcement learning (DRL) with the biologically inspired, force-based Boids model. Within this framework, the Boids model serves as a computationally efficient baseline policy for multi-agent coordination, while DRL learns a residual policy to adaptively refine and optimize the defenders' actions. The proposed approach is validated in a high-fidelity Gazebo simulation environment, demonstrating superior performance over traditional interception strategies, including pure force-based approaches and vanilla DRL policies. Furthermore, the learned policy exhibits strong adaptability to attackers with diverse maneuverability profiles, highlighting its robustness and generalization capability. The code of ARBoids will be released upon acceptance of this letter.
SVBRD-LLM: Self-Verifying Behavioral Rule Discovery for Autonomous Vehicle Identification
As more autonomous vehicles operate on public roads, understanding real-world behavior of autonomous vehicles is critical to analyzing traffic safety, making policies, and public acceptance. This paper proposes SVBRD-LLM, a framework that automatically discovers, verifies, and applies interpretable behavioral rules from real traffic videos through zero-shot prompt engineering. The framework extracts vehicle trajectories using YOLOv8 and ByteTrack, computes kinematic features, and employs GPT-5 zero-shot prompting to compare autonomous and human-driven vehicles, generating 35 structured behavioral rule hypotheses. These rules are tested on a validation set, iteratively refined based on failure cases to filter spurious correlations, and compiled into a high-confidence rule library. The framework is evaluated on an independent test set for speed change prediction, lane change prediction, and autonomous vehicle identification tasks. Experiments on over 1500 hours of real traffic videos show that the framework achieves 90.0% accuracy and 93.3% F1-score in autonomous vehicle identification. The discovered rules clearly reveal distinctive characteristics of autonomous vehicles in speed control smoothness, lane change conservativeness, and acceleration stability, with each rule accompanied by semantic description, applicable context, and validation confidence.
GRAM: Generalization in Deep RL with a Robust Adaptation Module
The reliable deployment of deep reinforcement learning in real-world settings requires the ability to generalize across a variety of conditions, including both in-distribution scenarios seen during training as well as novel out-of-distribution scenarios. In this work, we present a framework for dynamics generalization in deep reinforcement learning that unifies these two distinct types of generalization within a single architecture. We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics, along with a joint training pipeline that combines the goals of in-distribution adaptation and out-of-distribution robustness. Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment, which we demonstrate through extensive simulation and hardware locomotion experiments on a quadruped robot.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
Continually Evolving Skill Knowledge in Vision Language Action Model
Developing general robot intelligence in open environments requires continual skill learning. Recent Vision-Language-Action (VLA) models leverage massive pretraining data to support diverse manipulation tasks, but they still depend heavily on task-specific fine-tuning, revealing a lack of continual learning capability. Existing continual learning methods are also resource-intensive to scale to VLA models. We propose Stellar VLA, a knowledge-driven continual learning framework with two variants: T-Stellar, modeling task-centric knowledge space, and TS-Stellar, capturing hierarchical task-skill structure. Stellar VLA enables self-supervised knowledge evolution through joint learning of task latent representation and the knowledge space, reducing annotation needs. Knowledge-guided expert routing provide task specialization without extra network parameters, lowering training overhead. Experiments on the LIBERO benchmark and real-world tasks show over 50 percentage average improvement in final success rates relative to baselines. TS-Stellar further excels in complex action inference, and in-depth analyses verify effective knowledge retention and discovery. Our code will be released soon.
Count Every Rotation and Every Rotation Counts: Exploring Drone Dynamics via Propeller Sensing
As drone-based applications proliferate, paramount contactless sensing of airborne drones from the ground becomes indispensable. This work demonstrates concentrating on propeller rotational speed will substantially improve drone sensing performance and proposes an event-camera-based solution, \sysname. \sysname features two components: \textit{Count Every Rotation} achieves accurate, real-time propeller speed estimation by mitigating ultra-high sensitivity of event cameras to environmental noise. \textit{Every Rotation Counts} leverages these speeds to infer both internal and external drone dynamics. Extensive evaluations in real-world drone delivery scenarios show that \sysname achieves a sensing latency of 3$ms$ and a rotational speed estimation error of merely 0.23\%. Additionally, \sysname infers drone flight commands with 96.5\% precision and improves drone tracking accuracy by over 22\% when combined with other sensing modalities. \textit{ Demo: {\color{blue}https://eventpro25.github.io/EventPro/.} }
Multiagent Systems
Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning
The rapid proliferation of Large Language Models (LLMs) has revolutionized AI-assisted code generation. This rapid development of LLMs has outpaced our ability to properly benchmark them. Prevailing benchmarks emphasize unit-test pass rates and syntactic correctness. Such metrics understate the difficulty of many real-world problems that require planning, optimization, and strategic interaction. We introduce a multi-agent reasoning-driven benchmark based on a real-world logistics optimization problem (Auction, Pickup, and Delivery Problem) that couples competitive auctions with capacity-constrained routing. The benchmark requires building agents that can (i) bid strategically under uncertainty and (ii) optimize planners that deliver tasks while maximizing profit. We evaluate 40 LLM-coded agents (by a wide range of state-of-the-art LLMs under multiple prompting methodologies, including vibe coding) against 17 human-coded agents developed before the advent of LLMs. Our results over 12 double all-play-all tournaments and $\sim 40$k matches demonstrate (i) a clear superiority of human(graduate students)-coded agents: the top 5 spots are consistently won by human-coded agents, (ii) the majority of LLM-coded agents (33 out of 40) are beaten by very simple baselines, and (iii) given the best human solution as an input and prompted to improve upon, the best performing LLM makes the solution significantly worse instead of improving it. Our results highlight a gap in LLMs' ability to produce code that works competitively in the real-world, and motivate new evaluations that emphasize reasoning-driven code synthesis in real-world scenarios.
Limit Order Book Dynamics in Matching Markets:Microstructure, Spread, and Execution Slippage
Conventional models of matching markets assume that monetary transfers can clear markets by compensating for utility differentials. However, empirical patterns show that such transfers often fail to close structural preference gaps. This paper introduces a market microstructure framework that models matching decisions as a limit order book system with rigid bid ask spreads. Individual preferences are represented by a latent preference state matrix, where the spread between an agent's internal ask price (the unconditional maximum) and the market's best bid (the reachable maximum) creates a structural liquidity constraint. We establish a Threshold Impossibility Theorem showing that linear compensation cannot close these spreads unless it induces a categorical identity shift. A dynamic discrete choice execution model further demonstrates that matches occur only when the market to book ratio crosses a time decaying liquidity threshold, analogous to order execution under inventory pressure. Numerical experiments validate persistent slippage, regional invariance of preference orderings, and high tier zero spread executions. The model provides a unified microstructure explanation for matching failures, compensation inefficiency, and post match regret in illiquid order driven environments.
comment: 33 pages, 7 figures, 5 experiments, 6 appendices. Primary: q-fin.TR. Secondary: cs.SI
EnergyTwin: A Multi-Agent System for Simulating and Coordinating Energy Microgrids
Microgrids are deployed to reduce purchased grid energy, limit exposure to volatile tariffs, and ensure service continuity during disturbances. This requires coordinating heterogeneous distributed energy resources across multiple time scales and under variable conditions. Among existing tools, typically, power-system simulators capture physical behaviour but assume centralized control, while multi-agent frameworks model decentralized decision-making but represent energy with no physical grounding. In this context, the EnergyTwin is introduced, an agent-based microgrid simulation environment that couples physically grounded models with forecast-informed, rolling-horizon planning, and negotiations. Each asset is modeled as an agent, interacting with a central agent that obtains forecasts, formulates predictions, and allocates energy through contract-based interactions. EnergyTwin targets tertiary-layer decision making and is extensible for digital-twin use. Its feasibility was evaluated in a university campus microgrid scenario where multiple planning strategies were compared. Achieved results show that forecast-driven rolling-horizon planning increases local energy self-sufficiency, maintains higher battery reserves, and reduces exposure to low-resilience operating states. They demonstrate also potential of EnergyTwin as platform supporting research on resilient, negotiation-driven microgrids.
Proceedings Twentieth Conference on Theoretical Aspects of Rationality and Knowledge
The TARK conference (Theoretical Aspects of Rationality and Knowledge) is a conference that aims to bring together researchers from a wide variety of fields, including computer science, artificial intelligence, game theory, decision theory, philosophy, logic, linguistics, and cognitive science. Its goal is to further our understanding of interdisciplinary issues involving reasoning about rationality and knowledge. Previous conferences have been held biennially around the world since 1986, on the initiative of Joe Halpern (Cornell University). Topics of interest include, but are not limited to, semantic models for knowledge, belief, uncertainty, awareness, bounded rationality, common sense epistemic reasoning, epistemic logic, epistemic game theory, knowledge and action, applications of reasoning about knowledge and other mental states, belief revision, computational social choice, algorithmic game theory, and foundations of multi-agent systems. Information about TARK is available at http://www.tark.org/. These proceedings contain the papers that have been accepted for presentation at the Twentieth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2025), held July 14--16, 2025, at Heinrich-Heine-Universität, Düsseldorf, Germany. The conference website can be found at https://ccc.cs.uni-duesseldorf.de/tark-2025/.
Realistic gossip in Trust Game on networks: the GODS model
Gossip has been shown to be a relatively efficient solution to problems of cooperation in reputation-based systems of exchange, but many studies don't conceptualize gossiping in a realistic way, often assuming near-perfect information or broadcast-like dynamics of its spread. To solve this problem, we developed an agent-based model that pairs realistic gossip processes with different variants of Trust Game. The results show that cooperators suffer when local interactions govern spread of gossip, because they cannot discriminate against defectors. Realistic gossiping increases the overall amount of resources, but is more likely to promote defection. Moreover, even partner selection through dynamic networks can lead to high payoff inequalities among agent types. Cooperators face a choice between outcompeting defectors and overall growth. By blending direct and indirect reciprocity with reputations we show that gossiping increases the efficiency of cooperation by an order of magnitude.
VICoT-Agent: A Vision-Interleaved Chain-of-Thought Framework for Interpretable Multimodal Reasoning and Scalable Remote Sensing Analysis
The current remote sensing image analysis task is increasingly evolving from traditional object recognition to complex intelligence reasoning, which places higher requirements on the model's reasoning ability and the flexibility of tool invocation. To this end, we propose a new multimodal agent framework, Vision-Interleaved Chain-of-Thought Framework (VICoT), which implements explicit multi-round reasoning by dynamically incorporating visual tools into the chain of thought. Through a stack-based reasoning structure and a modular MCP-compatible tool suite, VICoT enables LLMs to efficiently perform multi-round, interleaved vision-language reasoning tasks with strong generalization and flexibility.We also propose the Reasoning Stack distillation method to migrate complex Agent behaviors to small, lightweight models, which ensures the reasoning capability while significantly reducing complexity. Experiments on multiple remote sensing benchmarks demonstrate that VICoT significantly outperforms existing SOTA frameworks in reasoning transparency, execution efficiency, and generation quality.
Complex Instruction Following with Diverse Style Policies in Football Games AAAI2026
Despite advancements in language-controlled reinforcement learning (LC-RL) for basic domains and straightforward commands (e.g., object manipulation and navigation), effectively extending LC-RL to comprehend and execute high-level or abstract instructions in complex, multi-agent environments, such as football games, remains a significant challenge. To address this gap, we introduce Language-Controlled Diverse Style Policies (LCDSP), a novel LC-RL paradigm specifically designed for complex scenarios. LCDSP comprises two key components: a Diverse Style Training (DST) method and a Style Interpreter (SI). The DST method efficiently trains a single policy capable of exhibiting a wide range of diverse behaviors by modulating agent actions through style parameters (SP). The SI is designed to accurately and rapidly translate high-level language instructions into these corresponding SP. Through extensive experiments in a complex 5v5 football environment, we demonstrate that LCDSP effectively comprehends abstract tactical instructions and accurately executes the desired diverse behavioral styles, showcasing its potential for complex, real-world applications.
comment: 21 pages, 13 figures, accepted by AAAI2026
Improved Linear-Time Construction of Minimal Dominating Set via Mobile Agents
Mobile agents have emerged as a powerful framework for solving fundamental graph problems in distributed settings in recent times. These agents, modelled as autonomous physical or software entities, possess local computation power, finite memory and have the ability to traverse a graph, offering efficient solutions to a range of classical problems. In this work, we focus on the problem of computing a \emph{minimal dominating set} (mDS) in anonymous graphs using mobile agents. Building on the recently proposed optimal dispersion algorithm on the synchronous mobile agent model, we design two new algorithms that achieve a \emph{linear-time} solution for this problem in the synchronous setting. Specifically, given a connected $n$-node graph with $n$ agents initially placed in either rooted or arbitrary configurations, we show that an mDS can be computed in $O(n)$ rounds using only $O(\log n)$ bits of memory per agent, without using any prior knowledge of any global parameters. This improves upon the best-known complexity results in the literature over the same model. In addition, as natural by-products of our methodology, our algorithms also construct a spanning tree and elect a unique leader in $O(n)$ rounds, which are also important results of independent interest in the mobile-agent framework.
Computing Evolutionarily Stable Strategies in Multiplayer Games
We present an algorithm for computing all evolutionarily stable strategies in nondegenerate normal-form games with three or more players.
LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. On LongMemEval and LoCoMo, using GPT and Qwen backbones, LightMem consistently surpasses strong baselines, improving QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38x / 20.9x and API calls by up to 30x / 55.5x, while purely online test-time costs are even lower, achieving up to 106x / 117x token reduction and 159x / 310x fewer API calls. The code is available at https://github.com/zjunlp/LightMem.
comment: Work in progress
Computational Turing Test Reveals Systematic Differences Between Human and AI Language
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
Aspiration-based Perturbed Learning Automata in Games with Noisy Utility Measurements. Part A: Stochastic Stability in Non-zero-Sum Games
Reinforcement-based learning has attracted considerable attention both in modeling human behavior as well as in engineering, for designing measurement- or payoff-based optimization schemes. Such learning schemes exhibit several advantages, especially in relation to filtering out noisy observations. However, they may exhibit several limitations when applied in a distributed setup. In multi-player weakly-acyclic games, and when each player applies an independent copy of the learning dynamics, convergence to (usually desirable) pure Nash equilibria cannot be guaranteed. Prior work has only focused on a small class of games, namely potential and coordination games. To address this main limitation, this paper introduces a novel payoff-based learning scheme for distributed optimization, namely aspiration-based perturbed learning automata (APLA). In this class of dynamics, and contrary to standard reinforcement-based learning schemes, each player's probability distribution for selecting actions is reinforced both by repeated selection and an aspiration factor that captures the player's satisfaction level. We provide a stochastic stability analysis of APLA in multi-player positive-utility games under the presence of noisy observations. This is the first part of the paper that characterizes stochastic stability in generic non-zero-sum games by establishing equivalence of the induced infinite-dimensional Markov chain with a finite dimensional one. In the second part, stochastic stability is further specialized to weakly acyclic games.
VIL2C: Value-of-Information Aware Low-Latency Communication for Multi-Agent Reinforcement Learning
Inter-agent communication serves as an effective mechanism for enhancing performance in collaborative multi-agent reinforcement learning(MARL) systems. However, the inherent communication latency in practical systems induces both action decision delays and outdated information sharing, impeding MARL performance gains, particularly in time-critical applications like autonomous driving. In this work, we propose a Value-of-Information aware Low-latency Communication(VIL2C) scheme that proactively adjusts the latency distribution to mitigate its effects in MARL systems. Specifically, we define a Value of Information (VOI) metric to quantify the importance of delayed message transmission based on each delayed message's importance. Moreover, we propose a progressive message reception mechanism to adaptively adjust the reception duration based on received messages. We derive the optimized VoI aware resource allocation and theoretically prove the performance advantage of the proposed VIL2C scheme. Extensive experiments demonstrate that VIL2C outperforms existing approaches under various communication conditions. These gains are attributed to the low-latency transmission of high-VoI messages via resource allocation and the elimination of unnecessary waiting periods via adaptive reception duration.
RadAgents: Multimodal Agentic Reasoning for Chest X-ray Interpretation with Radiologist-like Workflows ML4H'25
Agentic systems offer a potential path to solve complex clinical tasks through collaboration among specialized agents, augmented by tool use and external knowledge bases. Nevertheless, for chest X-ray (CXR) interpretation, prevailing methods remain limited: (i) reasoning is frequently neither clinically interpretable nor aligned with guidelines, reflecting mere aggregation of tool outputs; (ii) multimodal evidence is insufficiently fused, yielding text-only rationales that are not visually grounded; and (iii) systems rarely detect or resolve cross-tool inconsistencies and provide no principled verification mechanisms. To bridge the above gaps, we present RadAgents, a multi-agent framework that couples clinical priors with task-aware multimodal reasoning and encodes a radiologist-style workflow into a modular, auditable pipeline. In addition, we integrate grounding and multimodal retrieval-augmentation to verify and resolve context conflicts, resulting in outputs that are more reliable, transparent, and consistent with clinical practice.
comment: ML4H'25; Work in progress
ShortageSim: Simulating Drug Shortages under Information Asymmetry AAAI 2026
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to information asymmetries in pharmaceutical supply chains. We propose \textbf{ShortageSim}, addresses this challenge by providing the first simulation framework that evaluates the impact of regulatory interventions on competition dynamics under information asymmetry. Using Large Language Model (LLM)-based agents, the framework models the strategic decisions of drug manufacturers and institutional buyers, in response to shortage alerts given by the regulatory agency. Unlike traditional game theory models that assume perfect rationality and complete information, ShortageSim simulates heterogeneous interpretations on regulatory announcements and the resulting decisions. Experiments on self-processed dataset of historical shortage events show that ShortageSim reduces the resolution lag for production disruption cases by up to 84\%, achieving closer alignment to real-world trajectories than the zero-shot baseline. Our framework confirms the effect of regulatory alert in addressing shortages and introduces a new method for understanding competition in multi-stage environments under uncertainty. We open-source ShortageSim and a dataset of 2,925 FDA shortage events, providing a novel framework for future research on policy design and testing in supply chains under information asymmetry.
comment: Accepted by AAAI 2026. Oral presentation. 25 pages
Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent's own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL, where a replay buffer stores good experience for off-policy update, by gradually steering the policy entropy across stages. Specifically, the proposed curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to 1) expedite exploration via frequent tool interactions at the beginning, and 2) strengthen exploitation of successful tactics upon convergence towards familiarity with the environment. We also combine bag-of-tricks of industrial RL optimizations for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such gains incur only 10%-25% extra theoretical complexity and negligible runtime overhead in practice, demonstrating the plug-and-play scalability of SPEAR.
comment: 45 pages, 14 figures
Systems and Control (EESS)
Sparse-to-Field Reconstruction via Stochastic Neural Dynamic Mode Decomposition
Many consequential real-world systems, like wind fields and ocean currents, are dynamic and hard to model. Learning their governing dynamics remains a central challenge in scientific machine learning. Dynamic Mode Decomposition (DMD) provides a simple, data-driven approximation, but practical use is limited by sparse/noisy observations from continuous fields, reliance on linear approximations, and the lack of principled uncertainty quantification. To address these issues, we introduce Stochastic NODE-DMD, a probabilistic extension of DMD that models continuous-time, nonlinear dynamics while remaining interpretable. Our approach enables continuous spatiotemporal reconstruction at arbitrary coordinates and quantifies predictive uncertainty. Across four benchmarks, a synthetic setting and three physics-based flows, it surpasses a baseline in reconstruction accuracy when trained from only 10% observation density. It further recovers the dynamical structure by aligning learned modes and continuous-time eigenvalues with ground truth. Finally, on datasets with multiple realizations, our method learns a calibrated distribution over latent dynamics that preserves ensemble variability rather than averaging across regimes. Our code is available at: https://github.com/sedan-group/Stochastic-NODE-DMD
Exploring Urban Air Mobility Adoption Potential in San Francisco Bay Area Region: A Systems of Systems Level Case Study on Passenger Waiting Times and Travel Efficiency
Urban Air mobility has gained momentum with recent advancements in the electric vertical take-off and landing (eVTOL) vehicles, offering faster point-to-point air taxi services that could help relieve traffic congestion in chronically overburdened cities. The research assesses the feasibility and systems-of-systems level adoption potential of UAM operations in the San Francisco Bay Area by comparing passenger departure, waiting, travel, and arrival times across key regional nodes, including San Francisco, Oakland, San Jose, and Palo Alto airports, with conventional ground transportation. A multi-agent simulation was developed in MATLAB to evaluate the fleet operations and to model demand arrival using a Poisson process under stochastic passenger flows and turnaround constraints. Results indicate that utilizing UAM during peak demand could reduce total travel times up to eighty percent across the region. The findings of this paper highlight the critical operational factors for fleet schedule optimization. Especially how the fleet size, passengers' request volumes, and turnaround time directly influence waiting time, operating cost, and overall user acceptance.
Safe and Stable Neural Network Dynamical Systems for Robot Motion Planning
Learning safe and stable robot motions from demonstrations remains a challenge, especially in complex, nonlinear tasks involving dynamic, obstacle-rich environments. In this paper, we propose Safe and Stable Neural Network Dynamical Systems S$^2$-NNDS, a learning-from-demonstration framework that simultaneously learns expressive neural dynamical systems alongside neural Lyapunov stability and barrier safety certificates. Unlike traditional approaches with restrictive polynomial parameterizations, S$^2$-NNDS leverages neural networks to capture complex robot motions providing probabilistic guarantees through split conformal prediction in learned certificates. Experimental results on various 2D and 3D datasets -- including LASA handwriting and demonstrations recorded kinesthetically from the Franka Emika Panda robot -- validate S$^2$-NNDS effectiveness in learning robust, safe, and stable motions from potentially unsafe demonstrations.
From Features to States: Data-Driven Selection of Measured State Variables via RFE-DMDc
The behavior of a dynamical system under a given set of inputs can be captured by tracking the response of an optimal subset of process variables (\textit{state variables}). For many engineering systems, however, first-principles, model-based identification is impractical, motivating data-driven approaches for Digital Twins used in control and diagnostics. In this paper, we present RFE-DMDc, a supervised, data-driven workflow that uses Recursive Feature Elimination (RFE) to select a minimal, physically meaningful set of variables to monitor and then derives a linear state-space model via Dynamic Mode Decomposition with Control (DMDc). The workflow includes a cross-subsystem selection step that mitigates feature \textit{overshadowing} in multi-component systems. To corroborate the results, we implement a GA-DMDc baseline that jointly optimizes the state set and model fit under a common accuracy cost on states and outputs. Across a truth-known RLC benchmark and a realistic Integrated Energy System (IES) with multiple thermally coupled components and thousands of candidate variables, RFE-DMDc consistently recovers compact state sets (\(\approx 10\) variables) that achieve test errors comparable to GA-DMDc while requiring an order of magnitude less computational time. The selected variables retain clear physical interpretation across subsystems, and the resulting models demonstrate competitive predictive accuracy, computational efficiency, and robustness to overfitting.
Causal Feature Selection for Weather-Driven Residential Load Forecasting
Weather is a dominant external driver of residential electricity demand, but adding many meteorological covariates can inflate model complexity and may even impair accuracy. Selecting appropriate exogenous features is non-trivial and calls for a principled selection framework, given the direct operational implications for day-to-day planning and reliability. This work investigates whether causal feature selection can retain the most informative weather drivers while improving parsimony and robustness for short-term load forecasting. We present a case study on Southern Ontario with two open-source datasets: (i) IESO hourly electricity consumption by Forward Sortation Areas; (ii) ERA5 weather reanalysis data. We compare different feature selection regimes (no feature selection, non-causal selection, PCMCI-causal selection) on city-level forecasting with three different time series forecasting models: GRU, TCN, PatchTST. In the feature analysis, non-causal selection prioritizes radiation and moisture variables that show correlational dependence, whereas PCMCI-causal selection emphasizes more direct thermal drivers and prunes the indirect covariates. We detail the evaluation pipeline and report diagnostics on prediction accuracy and extreme-weather robustness, positioning causal feature selection as a practical complement to modern forecasters when integrating weather into residential load forecasting.
comment: 5 pages, 3 figures, 3 tables
Power-Efficient Autonomous Mobile Robots
This paper presents pNav, a novel power-management system that significantly enhances the power/energy-efficiency of Autonomous Mobile Robots (AMRs) by jointly optimizing their physical/mechanical and cyber subsystems. By profiling AMRs' power consumption, we identify three challenges in achieving CPS (cyber-physical system) power-efficiency that involve both cyber (C) and physical (P) subsystems: (1) variabilities of system power consumption breakdown, (2) environment-aware navigation locality, and (3) coordination of C and P subsystems. pNav takes a multi-faceted approach to achieve power-efficiency of AMRs. First, it integrates millisecond-level power consumption prediction for both C and P subsystems. Second, it includes novel real-time modeling and monitoring of spatial and temporal navigation localities for AMRs. Third, it supports dynamic coordination of AMR software (navigation, detection) and hardware (motors, DVFS driver) configurations. pNav is prototyped using the Robot Operating System (ROS) Navigation Stack, 2D LiDAR, and camera. Our in-depth evaluation with a real robot and Gazebo environments demonstrates a >96% accuracy in predicting power consumption and a 38.1% reduction in power consumption without compromising navigation accuracy and safety.
comment: 13 pages, 16 figures
Learning Control Barrier Functions with Deterministic Safety Guarantees
Barrier functions (BFs) characterize safe sets of dynamical systems, where hard constraints are never violated as the system evolves over time. Computing a valid safe set and BF for a nonlinear (and potentially unmodeled), non-autonomous dynamical system is a difficult task. This work explores the design of BFs using data to obtain safe sets with deterministic assurances of control invariance. We leverage ReLU neural networks (NNs) to create continuous piecewise affine (CPA) BFs with deterministic safety guarantees for Lipschitz continuous, discrete-time dynamical system using sampled one-step trajectories. The CPA structure admits a novel classifier term to create a relaxed \ac{bf} condition and construction via a data driven constrained optimization. We use iterative convex overbounding (ICO) to solve this nonconvex optimization problem through a series of convex optimization steps. We then demonstrate our method's efficacy on two-dimensional autonomous and non-autonomous dynamical systems.
Digital Twin-Assisted High-Precision Massive MIMO Localization in Urban Canyons
High-precision wireless localization in urban canyons is challenged by noisy measurements and severe non-line-of-sight (NLOS) propagation. This paper proposes a robust three-stage algorithm synergizing a digital twin (DT) model with the random sample consensus (RANSAC) algorithm to overcome these limitations. The method leverages the DT for geometric path association and employs RANSAC to identify reliable line-of-sight (LOS) and single-bounce NLOS paths while rejecting multi-bounce outliers. A final optimization on the resulting inlier set estimates the user's position and clock bias. Simulations validate that by effectively turning NLOS paths into valuable geometric information via the DT, the approach enables accurate localization, reduces reliance on direct LOS, and significantly lowers system deployment costs, making it suitable for practical deployment.
comment: 6 pages, 5 figures. accepted to 2026 IEEE JC&S
Adaptive Meshing for CPA Lyapunov Function Synthesis
Continuous piecewise affine (CPA) Lyapunov function synthesis is one method to perform Lyapunov stability analysis for nonlinear systems. This method first generates a mesh over the region of interest in the system's state space and then solves a linear program (LP), which enforces constraints on each vertex of the mesh, to synthesize a Lyapunov function. Finer meshes broaden the class of Lyapunov function candidates, but CPA function synthesis is more computationally expensive for finer meshes -- particularly so in higher dimensional systems. This paper explores methods to mesh the region of interest more efficiently so that a Lyapunov function can be synthesized using less computational effort. Three methods are explored -- adaptive meshing, meshing using knowledge of the system model, and a combination of the two. Numerical examples for two and three dimensional nonlinear dynamical systems are used to compare the efficacy of the three methods.
Nonuniform-Grid Markov Chain Approximation of Continuous Processes with Time-Linear Moments
We propose a method to approximate continuous-time, continuous-state stochastic processes by a discrete-time Markov chain defined on a nonuniform grid. Our method provides exact moment matching for processes whose first and second moments are linear functions of time. In particular, we show that, under certain conditions, the transition probabilities of a Markov chain can be chosen so that its first two moments match prescribed linear functions of time. These conditions depend on the grid points of the Markov chain and the coefficients of the linear mean and variance functions. Our proof relies on two recurrence relations for the expectation and variance across time. This approach enables simulation-based numerical analysis of continuous processes while preserving their key characteristics. We illustrate its efficacy by approximating continuous processes describing heat diffusion and geometric Brownian motion (GBM). For heat diffusion, we show that the heat profile at a set of points can be investigated by embedding those points inside the nonuniform grid of our Markov chain. For GBM, numerical simulations demonstrate that our approach, combined with suitable nonuniform grids, yields accurate approximations, with consistently small empirical Wasserstein-1 distances at long time horizons.
Self-Identifying Internal Model-Based Online Optimization
In this paper, we propose a novel online optimization algorithm built by combining ideas from control theory and system identification. The foundation of our algorithm is a control-based design that makes use of the internal model of the online problem. Since such prior knowledge of this internal model might not be available in practice, we incorporate an identification routine that learns this model on the fly. The algorithm is designed starting from quadratic online problems but can be applied to general problems. For quadratic cases, we characterize the asymptotic convergence to the optimal solution trajectory. We compare the proposed algorithm with existing approaches, and demonstrate how the identification routine ensures its adaptability to changes in the underlying internal model. Numerical results also indicate strong performance beyond the quadratic setting.
Accelerating Time-Optimal Trajectory Planning for Connected and Automated Vehicles with Graph Neural Networks
In this paper, we present a learning-based framework that accelerates time- and energy-optimal trajectory planning for connected and automated vehicles (CAVs) using graph neural networks (GNNs). We formulate the multi-agent coordination problem encountered in traffic scenarios as a cooperative trajectory planning problem that minimizes travel time, subject to motion primitives derived from energy-optimal solutions. The effectiveness of this framework can be further improved through replanning at each time step, enabling the system to incorporate newly observed information. To achieve real-time execution of such a multi-agent replanning scheme, we employ a GNN architecture to learn the solutions of the time-optimal trajectory planning problem from offline-generated data. The trained model produces online predictions that serve as warm-start solutions for numerical optimization, thereby enabling rapid computation of minimal exit times and the associated feasible trajectories. This learning-augmented approach substantially reduces computation time while ensuring that all state, input, and safety constraints are satisfied.
comment: submitted to IFAC WC 2026
SAFE-IMM: Robust and Lightweight Radar-Based Object Tracking on Mobile Platforms
Tracking maneuvering targets requires estimators that are both responsive and robust. Interacting Multiple Model (IMM) filters are a standard tracking approach, but fusing models via Gaussian mixtures can lag during maneuvers. Recent winnertakes-all (WTA) approaches react quickly but may produce discontinuities. We propose SAFE-IMM, a lightweight IMM variant for tracking on mobile and resource-limited platforms with a safe covariance-aware gate that permits WTA only when the implied jump from the mixture to the winner is provably bounded. In simulations and on nuScenes front-radar data, SAFE-IMM achieves high accuracy at real-time rates, reducing ID switches while maintaining competitive performance. The method is simple to integrate, numerically stable, and clutter-robust, offering a practical balance between responsiveness and smoothness.
LLM-Driven Transient Stability Assessment: From Automated Simulation to Neural Architecture Design
This paper presents an LLM-driven, end-to-end workflow that addresses the lack of automation and intelligence in power system transient stability assessment (TSA). The proposed agentic framework integrates large language models (LLMs) with a professional simulator (ANDES) to automatically generate and filter disturbance scenarios from natural language, and employs an LLM-driven Neural Network Design (LLM-NND) pipeline to autonomously design and optimize TSA models through performance-guided, closed-loop feedback. On the IEEE 39-bus system, the LLM-NND models achieve 93.71% test accuracy on four-class TSA with only 4.78M parameters, while maintaining real-time inference latency (less than 0.95 ms per sample). Compared with a manually designed DenseNet (25.9M parameters, 80.05% accuracy), the proposed approach jointly improves accuracy and efficiency. Ablation studies confirm that the synergy among domain-grounded retrieval, reasoning augmentation, and feedback mechanisms is essential for robust automation. The results demonstrate that LLM agents can reliably accelerate TSA research from scenario generation and data acquisition to model design and interpretation, offering a scalable paradigm that is readily extensible to other power system tasks such as optimal power flow, fault analysis, and market operations.
Occlusion-Aware Multi-Object Tracking via Expected Probability of Detection
This paper addresses multi-object systems, where objects may occlude one another relative to the sensor. The standard point-object model for detection-based sensors is enhanced so that the probability of detection considers the presence of all objects. A principled tracking method is derived, assigning each object an expected probability of detection, where the expectation is taken over the reduced Palm density, which means conditionally on the object's existence. The assigned probability thus considers the object's visibility relative to the sensor, under the presence of other objects. Unlike existing methods, the proposed method systematically accounts for uncertainties related to all objects in a clear and manageable way. The method is demonstrated through a visual tracking application using the multi-Bernoulli mixture (MBM) filter with marks.
comment: Submitted to IEEE Transactions on Aerospace and Electronic Systems (TAES)
Quantum-Enhanced Reinforcement Learning for Accelerating Newton-Raphson Convergence with Ising Machines: A Case Study for Power Flow Analysis
The Newton-Raphson (NR) method is widely used for solving power flow (PF) equations due to its quadratic convergence. However, its performance deteriorates under poor initialization or extreme operating scenarios, e.g., high levels of renewable energy penetration. Traditional NR initialization strategies often fail to address these challenges, resulting in slow convergence or even divergence. We propose the use of reinforcement learning (RL) to optimize the initialization of NR, and introduce a novel quantum-enhanced RL environment update mechanism to mitigate the significant computational cost of evaluating power system states over a combinatorially large action space at each RL timestep by formulating the voltage adjustment task as a quadratic unconstrained binary optimization problem. Specifically, quantum/digital annealers are integrated into the RL environment update to evaluate state transitions using a problem Hamiltonian designed for PF. Results demonstrate significant improvements in convergence speed, a reduction in NR iteration counts, and enhanced robustness under different operating conditions.
comment: 10 pages, 9 figures, 4 tables
Communication-Efficient Learning for Satellite Constellations
Satellite constellations in low-Earth orbit are now widespread, enabling positioning, Earth imaging, and communications. In this paper we address the solution of learning problems using these satellite constellations. In particular, we focus on a federated approach, where satellites collect and locally process data, with the ground station aggregating local models. We focus on designing a novel, communication-efficient algorithm that still yields accurate trained models. To this end, we employ several mechanisms to reduce the number of communications with the ground station (local training) and their size (compression). We then propose an error feedback mechanism that enhances accuracy, which yields, as a byproduct, an algorithm-agnostic error feedback scheme that can be more broadly applied. We analyze the convergence of the resulting algorithm, and compare it with the state of the art through simulations in a realistic space scenario, showcasing superior performance.
Assessing the Technical and Environmental Impacts of Energy Management Systems in Smart Ports
A vital strategy for ports to mitigate the environmental impact of the maritime industry, while complying with frameworks such as the European Green Deal and the Sustainable Development Goals (SDGs), entails the systematic implementation of comprehensive energy management solutions. This paper provides a baseline evaluation of the energy management systems (EMSs) implementation and their impact on energy consumption, carbon emissions, and operational costs in smart ports. Initially, we provide a systematic review of the literature focusing on case studies from prominent ports, including Hamburg, Genoa, Jurong, and Shanghai Yangshan Phase IV. The analysis emphasises key aspects such as energy efficiency, reductions in emissions, and the minimization of operational costs. Subsequently, we formulate an optimisation model to simulate load dispatch, carbon emission reduction, and transport scheduling. Results indicate that EMS deployment reduces annual energy consumption and carbon emissions significantly by approximately 7%-8% and 11%-12% respectively, while achieving substantial cost savings of 30%. The study also identifies critical challenges, including system integration, data quality issues, cybersecurity risks, and the need for standardization. These findings provide valuable insights for port authorities and policymakers, supporting the transition toward more sustainable and efficient port operations.
iRadioDiff: Physics-Informed Diffusion Model for Indoor Radio Map Construction and Localization
Radio maps (RMs) serve as environment-aware electromagnetic (EM) representations that connect scenario geometry and material properties to the spatial distribution of signal strength, enabling localization without costly in-situ measurements. However, constructing high-fidelity indoor RMs remains challenging due to the prohibitive latency of EM solvers and the limitations of learning-based methods, which often rely on sparse measurements or assumptions of homogeneous material, which are misaligned with the heterogeneous and multipath-rich nature of indoor environments. To overcome these challenges, we propose iRadioDiff, a sampling-free diffusion-based framework for indoor RM construction. iRadioDiff is conditioned on access point (AP) positions, and physics-informed prompt encoded by material reflection and transmission coefficients. It further incorporates multipath-critical priors, including diffraction points, strong transmission boundaries, and line-of-sight (LoS) contours, to guide the generative process via conditional channels and boundary-weighted objectives. This design enables accurate modeling of nonstationary field discontinuities and efficient construction of physically consistent RMs. Experiments demonstrate that iRadioDiff achieves state-of-the-art performance in indoor RM construction and received signal strength based indoor localization, which offers effective generalization across layouts and material configurations. Code is available at https://github.com/UNIC-Lab/iRadioDiff.
Toward Trustworthy Digital Twins in Agentic AI-based Wireless Network Optimization: Challenges, Solutions, and Opportunities
Optimizing modern wireless networks is exceptionally challenging due to their high dynamism and complexity. While the agentic artificial intelligence (AI) powered by reinforcement learning (RL) offers a promising solution, its practical application is limited by prohibitive exploration costs and potential risks in the real world. The emerging digital twin (DT) technology provides a safe and controlled virtual environment for agentic AI training, but its effectiveness critically depends on the DT's fidelity. Policies trained in a low-fidelity DT that does not accurately represent the physical network may experience severe performance degradation upon real-world deployment. In this article, we introduce a unified DT evaluation framework to ensure trustworthy DTs in agentic AI-based network optimization. This evaluation framework shifts from conventional isolated physical accuracy metrics, such as wireless channel and user trajectory similarities, to a more holistic, task-centric DT assessment. We demonstrate it as an effective guideline for design, selection, and lifecycle management of wireless network DTs. A comprehensive case study on a real-world wireless network testbed shows how this evaluation framework is used to pre-filter candidate DTs, leading to a significant reduction in training and testing costs without sacrificing deployment performance. Finally, potential research opportunities are discussed.
An Exact Solution Algorithm for the Bi-Level Optimization Problem of Electric Vehicles Charging Station Placement
This work addresses electric vehicle (EV) charging station placement through a bi-level optimization model, where the upper-level planner maximizes net revenue by selecting station locations under budget constraints, while EV users at the lower level choose routes and charging stations to minimize travel and charging costs. To account for range anxiety, we construct a battery-expanded network and apply a shortest path algorithm with Frank-Wolfe traffic assignment. Our primary contribution is developing the first exact solution algorithm for large scale EV charging station placement problems. We propose a Branch-and-Price-and-Cut algorithm enhanced with value function cuts and column generation. While existing research relies on heuristic methods that provide no optimality guarantees or exact algorithms that require prohibitively long runtimes, our exact algorithm delivers globally optimal solutions with mathematical certainty under a reasonable runtime. Computational experiments on the Eastern Massachusetts network (74 nodes, 248 links), the Anaheim network (416 nodes, 914 links), and the Barcelona network (110 zones, 1,020 nodes, and 2,512 links) demonstrate exceptional performance. Our algorithm terminates within minutes rather than hours, while achieving optimality gaps below 1% across all instances. This result represents a computational speedup of over two orders of magnitude compared to existing methods. The algorithm successfully handles problems with over 300,000 feasible combinations, which transform EV charging infrastructure planning from a computationally prohibitive problem into a tractable optimization task suitable for practical decision making problem for real world networks.
Distributionally Robust Cascading Risk in Multi-Agent Rendezvous: Extended Analysis of Parameter-Induced Ambiguity
Ensuring safety in autonomous multi-agent systems during time-critical tasks such as rendezvous is a fundamental challenge, particularly under communication delays and uncertainty in system parameters. In this paper, we develop a theoretical framework to analyze the \emph{distributionally robust risk of cascading failures} in multi-agent rendezvous, where system parameters lie within bounded uncertainty sets around nominal values. Using a time-delayed dynamical network as a benchmark model, we quantify how small deviations in these parameters impact collective safety. We introduce a \emph{conditional distributionally robust functional}, grounded in a bivariate Gaussian model, to characterize risk propagation between agents. This yields a \emph{closed-form risk expression} that captures the complex interaction between time delays, network structure, noise statistics, and failure modes. These expressions expose key sensitivity patterns and provide actionable insight for the design of robust and resilient multi-agent networks. Extensive simulations validate the theoretical results and demonstrate the effectiveness of our framework.
Adaptive Gradient Descent MPPT Algorithm With Complexity-Aware Benchmarking for Low-Power PV Systems
This paper proposes a computationally efficient, real-time maximum power point tracking (MPPT) algorithm tailored for low-power photovoltaic (PV) systems operating under fast-changing irradiance and partial shading conditions (PSC). The proposed method augments the classical perturb and observe (P&O) algorithm with an adaptive gradient descent mechanism that dynamically scales the perturbation step size based on the instantaneous power-voltage slope, thereby minimizing tracking time and steady-state oscillations. An optional initialization routine enhances global MPP (GMPP) tracking under PSC. Extensive simulations, including irradiance recordings from freely moving rodent subjects relevant to the targeted application, and tests across varying converter topologies and temperatures, demonstrate its robust, topology-independent performance. The proposed algorithm achieves 99.94 percent MPPT efficiency under standard test conditions (STC), 99.21 percent when applied to experimental data, and more than 99.6 percent for the tested temperature profiles. Under PSC, the initialization routine improves tracking efficiency by up to 7.8 percent. A normalized gate-level complexity analysis and a unified figure-of-merit (FoM) incorporating efficiency, tracking time, and computational cost demonstrate that the proposed algorithm outperforms 35 state-of-the-art P&O-based MPPT algorithms. These results underscore its suitability for integration in low-power power management integrated circuits (PMICs) operating under dynamic and resource-constrained conditions.
comment: 12 pages, 13 figures
Dynamic Modeling of Load Demand in Electrified Highways Based on the EV Composition
Electrified roadways (ERs) equipped with the dynamic wireless power transfer (DWPT) technology can achieve longer driving range and reduce on-board battery requirements for electric vehicles (EVs). Due to the spatial arrangement of transmitter (Tx) coils embedded into the ER pavement, the power drawn by the EV's receiver (Rx) coil is oscillatory in nature. Therefore, understanding the dynamic behavior of the total DWPT load is important for power system dynamic studies. To this end, we model the load of individual EVs in the time and frequency domains for constant EV speed. We establish that a nonlinear control scheme implemented in existing DWPT-enabled EVs exhibits milder frequency harmonics compared to its linear alternative. According to this model, the harmonics of an EV load decrease in amplitude with the Rx coil length. We further propose and analyze stochastic models for the total DWPT load served by an ER segment. Our models explain how the EV composition on the ER affects its frequency spectrum. Interestingly, we show that serving more EVs with longer Rx coils (trucks) does not necessarily entail milder harmonics. Our analytical findings are corroborated using realistic flows from a traffic simulator and offer valuable insights to grid operators and ER designers.
comment: 5 pages, 3 figures, 1 table
NOIR 2.0: Neural Signal Operated Intelligent Robots for Everyday Activities
Neural Signal Operated Intelligent Robots (NOIR) system is a versatile brain-robot interface that allows humans to control robots for daily tasks using their brain signals. This interface utilizes electroencephalography (EEG) to translate human intentions regarding specific objects and desired actions directly into commands that robots can execute. We present NOIR 2.0, an enhanced version of NOIR. NOIR 2.0 includes faster and more accurate brain decoding algorithms, which reduce task completion time by 46%. NOIR 2.0 uses few-shot robot learning algorithms to adapt to individual users and predict their intentions. The new learning algorithms leverage foundation models for more sample-efficient learning and adaptation (15 demos vs. a single demo), significantly reducing overall human time by 65%.
comment: Conference on Robot Learning (CoRL 2024), CoRoboLearn
A Review of Pseudospectral Optimal Control: From Theory to Flight
The home space for optimal control is a Sobolev space. The home space for pseudospectral theory is also a Sobolev space. It thus seems natural to combine pseudospectral theory with optimal control theory and construct ``pseudospectral optimal control theory,'' a term coined by Ross. In this paper, we review key theoretical results in pseudospectral optimal control that have proven to be critical for a successful flight. Implementation details of flight demonstrations onboard NASA spacecraft are discussed along with emerging trends and techniques in both theory and practice. The 2011 launch of pseudospectral optimal control in embedded platforms is changing the way in which we see solutions to challenging control problems in aerospace and autonomous systems.
comment: https://www.sciencedirect.com/science/article/abs/pii/S1367578812000375
Local Dissipativity Analysis of Nonlinear Systems
Dissipativity is an input-output (IO) characterization of nonlinear systems that enables compositional robust control through Vidyasagar's Network Dissipativity Theorem. However, determining the dissipativity of a system is an involved and, often, model-specific process. We present a general method to determine the local dissipativity properties of nonlinear, control affine systems. We simultaneously search for the optimal IO characterization of a system and synthesize a continuous piecewise affine (CPA) storage function via a convex optimization problem. To do so, we reformulate the relationship between the Hamilton-Jacobi inequality and the dissipation inequality as an linear matrix inequality (LMI) and develop novel LMI bounds for a triangulation. Further, we develop a method to synthesize a combined quadratic and CPA storage function to expand the systems the optimization problem is applicable to. Finally, we demonstrate that our method will always find a feasible IO characterization and a CPA or quadratic storage function given that the system is strictly locally dissipative.
SafePR: Unified Approach for Safe Parallel Robots by Contact Detection and Reaction with Redundancy Resolution
Fast and safe motion is crucial for the successful deployment of physically interactive robots. Parallel robots (PRs) offer the potential for higher speeds while maintaining the same energy limits due to their low moving masses. However, they require methods for contact detection and reaction while avoiding singularities and self-collisions. We address this issue and present SafePR - a unified approach for the detection and localization, including the distinction between collision and clamping to perform a reaction that is safe for humans and feasible for PRs. Our approach uses information from the encoders and motor currents to estimate forces via a generalized-momentum observer. Neural networks and particle filters classify and localize the contacts. We introduce reactions with redundancy resolution to avoid self-collisions and type-II singularities. Our approach detected and terminated 72 real-world collision and clamping contacts with end-effector speeds of up to 1.5 m/s, each within 25-275 ms. The forces were below the thresholds from ISO/TS 15066. By using built-in sensors, SafePR enables safe interaction with already assembled PRs without the need for new hardware components.
Shaping Frequency Dynamics in Modern Power Systems with Grid-forming Converters
In this paper, frequency dynamics in modern power systems with a high penetration of converter-based generation is analysed. A fundamental analysis of the frequency dynamics is performed to identify the limitations and challenges when the converter penetration is increased. The voltage-source behaviour is found as an essential characteristic of converters to improve the initial frequency derivative of Synchronous Generators (SGs). A detailed small-signal analysis, based on the system's eigenvalues, participation factors and mode shapes, is then performed in a reduced system for different converter penetrations, showing that the flexibility of grid-forming (GFOR) converters as well as the system's inertia reduction may lead to have a more controllable system frequency. First-order frequency responses can be programmed for high converter penetrations, when GFOR operation can impose their dominance over SGs. These results have been validated in the IEEE 118-bus system simulated in PSCAD.
comment: 11 pages, 17 figures
Computable Characterisations of Scaled Relative Graphs of Closed Operators
Scaled Relative Graphs (SRGs) provide a promising tool for stability and robustness analysis of multi-input-multi-output systems. In this paper, we provide tools for exact and computable constructions of the SRG for closed linear operators, based on maximum and minimum gain computations. The results are suitable for bounded and unbounded operators, and we specify how they can be used to draw SRGs for the typical operators that are used to model linear-time-invariant dynamical systems. Furthermore, for the special case of state-space models, we show how the Bounded Real Lemma can be used to construct the SRG.
comment: 12 pages, 5 figures, submitted to the 2026 European Control Conference (ECC)
Iterated Invariant Extended Kalman Filter (IterIEKF)
We study the mathematical properties of the Invariant Extended Kalman Filter (IEKF) when iterating on the measurement update step, following the principles of the well-known Iterated Extended Kalman Filter. This iterative variant of the IEKF (IterIEKF) systematically improves its accuracy through Gauss-Newton-based relinearization, and exhibits additional theoretical properties, particularly in the low-noise regime, that resemble those of the linear Kalman filter. We apply the proposed approach to the problem of estimating the extended pose of a crane payload using an inertial measurement unit. Our results suggest that the IterIEKF significantly outperforms the IEKF when measurements are highly accurate.
comment: 8 pages, 2 figures, IEEE Transactions on Automatic Control
KKL Observer Synthesis for Nonlinear Systems via Physics-Informed Learning
This paper proposes a novel learning approach for designing Kazantzis-Kravaris/Luenberger (KKL) observers for autonomous nonlinear systems. The design of a KKL observer involves finding an injective map that transforms the system state into a higher-dimensional observer state, whose dynamics is linear and stable. The observer's state is then mapped back to the original system coordinates via the inverse map to obtain the state estimate. However, finding this transformation and its inverse is quite challenging. We propose learning the forward mapping using a physics-informed neural network, and then learning its inverse mapping with a conventional feedforward neural network. Theoretical guarantees for the robustness of state estimation against approximation error and system uncertainties are provided, including non-asymptotic learning guarantees that link approximation quality to finite sample sizes. The effectiveness of the proposed approach is demonstrated through numerical simulations on benchmark examples, showing superior generalization capability outside the training domain compared to state-of-the-art methods.
comment: 27 pages, 7 figures, submitted to Automatica
Time-causal and time-recursive wavelets
When to apply wavelet analysis to real-time temporal signals, where the future cannot be accessed, it is essential to base all the steps in the signal processing pipeline on computational mechanisms that are truly time-causal. This paper describes how a time-causal wavelet analysis can be performed based on concepts developed in the area of temporal scale-space theory, originating from a complete classification of temporal smoothing kernels that guarantee non-creation of new structures from finer to coarser temporal scale levels. By necessity, convolution with truncated exponential kernels in cascade constitutes the only permissable class of kernels, as well as their temporal derivatives as a natural complement to fulfil the admissibility conditions of wavelet representations. For a particular way of choosing the time constants in the resulting infinite convolution of truncated exponential kernels, to ensure temporal scale covariance and thus self-similarity over temporal scales, we describe how mother wavelets can be chosen as temporal derivatives of the resulting time-causal limit kernel. By developing connections between wavelet theory and scale-space theory, we characterize and quantify how the continuous scaling properties transfer to the discrete implementation, demonstrating how the proposed time-causal wavelet representation can reflect the duration of locally dominant temporal structures in the input signals. We propose that this notion of time-causal wavelet analysis could be a valuable tool for signal processing tasks, where streams of signals are to be processed in real time, specifically for signals that may contain local variations over a rich span of temporal scales, or more generally for analysing physical or biophysical temporal phenomena, where a fully time-causal analysis is called for to be physically realistic.
comment: 28 pages, 11 figures
Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
An Adaptive Method for Contextual Stochastic Multi-armed Bandits with Rewards Generated by a Linear Dynamical System
Online decision-making can be formulated as the popular stochastic multi-armed bandit problem where a learner makes decisions (or takes actions) to maximize cumulative rewards collected from an unknown environment. This paper proposes to model a stochastic multi-armed bandit as an unknown linear Gaussian dynamical system, as many applications, such as bandits for dynamic pricing problems or hyperparameter selection for machine learning models, can benefit from this perspective. Following this approach, we can build a matrix representation of the system's steady-state Kalman filter that takes a set of previously collected observations from a time interval of length $s$ to predict the next reward that will be returned for each action. This paper proposes a solution in which the parameter $s$ is determined via an adaptive algorithm by analyzing the model uncertainty of the matrix representation. This algorithm helps the learner adaptively adjust its model size and its length of exploration based on the uncertainty of its environmental model. The effectiveness of the proposed scheme is demonstrated through extensive numerical studies, revealing that the proposed scheme is capable of increasing the rate of collected cumulative rewards.
Optimization of High-Order Quarter-Wave Plate for Residual Birefringence Suppression in FOCS
Fiber optic current sensors (FOCS) are widely adopted in modern power grids due to high sensitivity, excellent insulation, and strong immunity to electromagnetic interference. This prominence necessitates precise investigation into their error sources and corresponding optimization. This study examines reflective FOCS based on the Faraday effect. A theoretical model is established to simulate phase error caused by linear birefringence from the quarter-wave plate. Conventional methods using circular birefringence are analyzed, revealing inherent limitations. Innovatively, a compensation strategy employing high-order quarter-wave plates is proposed to effectively eliminate linear birefringence effects. This approach significantly enhances the accuracy and practicality of FOCS in precision metrology.
Analysis and Control of Acoustic Emissions from Marine Energy Converters
Environmental licensing related to underwater acoustic emissions represents a critical bottleneck for the commercial deployment of marine renewable energy. This study presents a control engineering framework to mitigate acoustic risks from tidal current converters without compromising project viability. A MATLAB/Simulink model of a tidal current converter was utilised to evaluate two distinct mitigation tiers: (1) architectural modification, comparing a geared induction generator against a direct-drive permanent magnet synchronous generator, and (2) operational control, analysing the impact of switching frequencies and maximum power point tracking coefficient tuning. Results indicate that lowering switching frequencies is ineffective, increasing power electronic losses by over 2000% with negligible acoustic benefit. Conversely, the direct-drive permanent magnet synchronous generator architecture reduced sound pressure levels, effectively eliminating mechanical tonal noise. For existing geared systems, de-tuning the maximum power point tracking coefficient by a factor of 1.2 reduced the probability of exceeding temporary threshold shift limits for marine mammals, with a quantified energy yield reduction of 3.58%. These findings propose a hierarchical mitigation strategy: selecting direct-drive topologies for acoustically sensitive sites, and utilising maximum power point tracking coefficient based power curtailment as a transient operational mode during critical biological migration periods.
comment: A major revision, reframed as an engineering study of acoustic emissions with environmental compliance as a constraint. Methods, results, and discussion substantially expanded, figures updated. Supersedes the review oriented presentation in the previous version
Unlocking Transmission Flexibility under Uncertainty: Getting Dynamic Line Ratings into Electricity Markets
Static transmission line ratings may lead to underutilization of line capacity due to overly conservative assumptions. Grid-enhancing technologies (GETs) such as dynamic line ratings (DLRs), which adjust line capacity based on real-time conditions, are a techno-economically viable alternative to increase the utilization of existing power lines. Nonetheless, their adoption has been slow, partly due to the absence of operational tools that effectively account for simultaneous impacts on dispatch and pricing. In this paper, we represent transmission capacity with DLRs as a stock-like resource with time-variant interdependency, which is modeled via an approximation of line temperature evolution process, decoupling the impacts of ambient weather conditions and power flow on transmission line temperature and thus capacity. We integrate DLRs into a multi-period DC optimal power flow problem, with chance constrains addressing correlated uncertainty in DLRs and renewable generation. This yields non-convex problems that we transform into a tractable convex form by linearization. We derive locational marginal energy and ancillary services prices consistent with a competitive equilibrium. Numerical experiments on the 11-zone and 1814-node NYISO systems demonstrate its performance, including impacts on dispatch, pricing, and marginal carbon emissions.
Robotics
Mixture of Horizons in Action Chunking
Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the $\textbf{action chunk length}$ used during training, termed $\textbf{horizon}$. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a $\textbf{mixture of horizons (MoH)}$ strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5$\times$ higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies $π_0$, $π_{0.5}$, and one-step regression policy $π_{\text{reg}}$ demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, $π_{0.5}$ with MoH reaches a new state-of-the-art with 99$\%$ average success rate on LIBERO after only $30k$ training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons
comment: 15 pages, 14 figures
Deployment Dynamics and Optimization of Novel Space Antenna Deployable Mechanism
Given the increasing need for large aperture antennas in space missions, the difficulty of fitting such structures into small launch vehicles has prompted the design of deployable antenna systems. The thesis introduces a new Triple Scissors Deployable Truss Mechanism (TSDTM) for space antenna missions. The new mechanism is to be stowed during launch and efficiently deploy in orbit, offering maximum aperture size while taking up minimal launch volume. The thesis covers the entire design process from geometric modeling, kinematic analysis with screw theory and Newtonian approaches, dynamic analysis by eigenvalue and simulation methods, and verification with SolidWorks. In addition, optimization routines were coded based on Support Vector Machines for material choice in LEO environments and machine learning method for geometric setup. The TSDTM presented has enhanced structural dynamics with good comparison between simulation and analytical predictions. The structure optimized proved highly accurate, with a deviation of just 1.94% between machine learning-predicted and simulated natural frequencies, demonstrating the potential of incorporating AI-based methods in space structural design.
Leveraging LLMs for reward function design in reinforcement learning control tasks
The challenge of designing effective reward functions in reinforcement learning (RL) represents a significant bottleneck, often requiring extensive human expertise and being time-consuming. Previous work and recent advancements in large language models (LLMs) have demonstrated their potential for automating the generation of reward functions. However, existing methodologies often require preliminary evaluation metrics, human-engineered feedback for the refinement process, or the use of environmental source code as context. To address these limitations, this paper introduces LEARN-Opt (LLM-based Evaluator and Analyzer for Reward functioN Optimization). This LLM-based, fully autonomous, and model-agnostic framework eliminates the need for preliminary metrics and environmental source code as context to generate, execute, and evaluate reward function candidates from textual descriptions of systems and task objectives. LEARN-Opt's main contribution lies in its ability to autonomously derive performance metrics directly from the system description and the task objective, enabling unsupervised evaluation and selection of reward functions. Our experiments indicate that LEARN-Opt achieves performance comparable to or better to that of state-of-the-art methods, such as EUREKA, while requiring less prior knowledge. We find that automated reward design is a high-variance problem, where the average-case candidate fails, requiring a multi-run approach to find the best candidates. Finally, we show that LEARN-Opt can unlock the potential of low-cost LLMs to find high-performing candidates that are comparable to, or even better than, those of larger models. This demonstrated performance affirms its potential to generate high-quality reward functions without requiring any preliminary human-defined metrics, thereby reducing engineering overhead and enhancing generalizability.
Rethinking Intermediate Representation for VLM-based Robot Manipulation
Vision-Language Model (VLM) is an important component to enable robust robot manipulation. Yet, using it to translate human instructions into an action-resolvable intermediate representation often needs a tradeoff between VLM-comprehensibility and generalizability. Inspired by context-free grammar, we design the Semantic Assembly representation named SEAM, by decomposing the intermediate representation into vocabulary and grammar. Doing so leads us to a concise vocabulary of semantically-rich operations and a VLM-friendly grammar for handling diverse unseen tasks. In addition, we design a new open-vocabulary segmentation paradigm with a retrieval-augmented few-shot learning strategy to localize fine-grained object parts for manipulation, effectively with the shortest inference time over all state-of-the-art parallel works. Also, we formulate new metrics for action-generalizability and VLM-comprehensibility, demonstrating the compelling performance of SEAM over mainstream representations on both aspects. Extensive real-world experiments further manifest its SOTA performance under varying settings and tasks.
SENTINEL: A Fully End-to-End Language-Action Model for Humanoid Whole Body Control
Existing humanoid control systems often rely on teleoperation or modular generation pipelines that separate language understanding from physical execution. However, the former is entirely human-driven, and the latter lacks tight alignment between language commands and physical behaviors. In this paper, we present SENTINEL, a fully end-to-end language-action model for humanoid whole-body control. We construct a large-scale dataset by tracking human motions in simulation using a pretrained whole body controller, combined with their text annotations. The model directly maps language commands and proprioceptive inputs to low-level actions without any intermediate representation. The model generates action chunks using flow matching, which can be subsequently refined by a residual action head for real-world deployment. Our method exhibits strong semantic understanding and stable execution on humanoid robots in both simulation and real-world deployment, and also supports multi-modal extensions by converting inputs into texts.
comment: 23 pages, 8 figures, 11 tables
Soft pneumatic grippers: Topology optimization, 3D-printing and experimental validation
This paper presents a systematic topology optimization framework for designing a soft pneumatic gripper (SPG), explicitly considering the design-dependent nature of the actuating load. The load is modeled using Darcy's law with an added drainage term. A 2D soft arm unit is optimized by formulating it as a compliant mechanism design problem using the robust formulation. The problem is posed as a min-max optimization, where the output deformations of blueprint and eroded designs are considered. A volume constraint is imposed on the blueprint part, while a strain-energy constraint is enforced on the eroded part. The MMA is employed to solve the optimization problem and obtain the optimized soft unit. Finite element analysis with the Ogden material model confirms that the optimized 2D unit outperforms a conventional rectangular design under pneumatic loading. The optimized 2D unit is extruded to obtain a 3D module, and ten such units are assembled to create a soft arm. Deformation profiles of the optimized arm are analysed under different pressure loads. Four arms are 3D-printed and integrated with a supporting structure to realize the proposed SPG. The gripping performance of the SPG is demonstrated on objects with different weights, sizes, stiffness, and shapes.
comment: 9 Figures
Reference-Free Sampling-Based Model Predictive Control
We present a sampling-based model predictive control (MPC) framework that enables emergent locomotion without relying on handcrafted gait patterns or predefined contact sequences. Our method discovers diverse motion patterns, ranging from trotting to galloping, robust standing policies, jumping, and handstand balancing, purely through the optimization of high-level objectives. Building on model predictive path integral (MPPI), we propose a dual-space spline parameterization that operates on position and velocity control points. Our approach enables contact-making and contact-breaking strategies that adapt automatically to task requirements, requiring only a limited number of sampled trajectories. This sample efficiency allows us to achieve real-time control on standard CPU hardware, eliminating the need for GPU acceleration typically required by other state-of-the-art MPPI methods. We validate our approach on the Go2 quadrupedal robot, demonstrating various emergent gaits and basic jumping capabilities. In simulation, we further showcase more complex behaviors, such as backflips, dynamic handstand balancing and locomotion on a Humanoid, all without requiring reference tracking or offline pre-training.
Efficient Optimization of a Permanent Magnet Array for a Stable 2D Trap ICRA
Untethered magnetic manipulation of biomedical millirobots has a high potential for minimally invasive surgical applications. However, it is still challenging to exert high actuation forces on the small robots over a large distance. Permanent magnets offer stronger magnetic torques and forces than electromagnetic coils, however, feedback control is more difficult. As proven by Earnshaw's theorem, it is not possible to achieve a stable magnetic trap in 3D by static permanent magnets. Here, we report a stable 2D magnetic force trap by an array of permanent magnets to control a millirobot. The trap is located in an open space with a tunable distance to the magnet array in the range of 20 - 120mm, which is relevant to human anatomical scales. The design is achieved by a novel GPU-accelerated optimization algorithm that uses mean squared error (MSE) and Adam optimizer to efficiently compute the optimal angles for any number of magnets in the array. The algorithm is verified using numerical simulation and physical experiments with an array of two magnets. A millirobot is successfully trapped and controlled to follow a complex trajectory. The algorithm demonstrates high scalability by optimizing the angles for 100 magnets in under three seconds. Moreover, the optimization workflow can be adapted to optimize a permanent magnet array to achieve the desired force vector fields.
comment: 6 pages, 6 figures, IEEE International Conference on Robotics and Automation (ICRA)
Three-Dimensional Anatomical Data Generation Based on Artificial Neural Networks IROS
Surgical planning and training based on machine learning requires a large amount of 3D anatomical models reconstructed from medical imaging, which is currently one of the major bottlenecks. Obtaining these data from real patients and during surgery is very demanding, if even possible, due to legal, ethical, and technical challenges. It is especially difficult for soft tissue organs with poor imaging contrast, such as the prostate. To overcome these challenges, we present a novel workflow for automated 3D anatomical data generation using data obtained from physical organ models. We additionally use a 3D Generative Adversarial Network (GAN) to obtain a manifold of 3D models useful for other downstream machine learning tasks that rely on 3D data. We demonstrate our workflow using an artificial prostate model made of biomimetic hydrogels with imaging contrast in multiple zones. This is used to physically simulate endoscopic surgery. For evaluation and 3D data generation, we place it into a customized ultrasound scanner that records the prostate before and after the procedure. A neural network is trained to segment the recorded ultrasound images, which outperforms conventional, non-learning-based computer vision techniques in terms of intersection over union (IoU). Based on the segmentations, a 3D mesh model is reconstructed, and performance feedback is provided.
comment: 6 pages, 4 figures, 1 table, IEEE International Conference on Intelligent Robots and Systems (IROS)
First-order Sobolev Reinforcement Learning
We propose a refinement of temporal-difference learning that enforces first-order Bellman consistency: the learned value function is trained to match not only the Bellman targets in value but also their derivatives with respect to states and actions. By differentiating the Bellman backup through differentiable dynamics, we obtain analytically consistent gradient targets. Incorporating these into the critic objective using a Sobolev-type loss encourages the critic to align with both the value and local geometry of the target function. This first-order TD matching principle can be seamlessly integrated into existing algorithms, such as Q-learning or actor-critic methods (e.g., DDPG, SAC), potentially leading to faster critic convergence and more stable policy gradients without altering their overall structure.
comment: Workshop paper at Differentiable Systems and Scientific Machine Learning, EurIPS 2025
Autonomous Docking of Multi-Rotor UAVs on Blimps under the Influence of Wind Gusts
Multi-rotor UAVs face limited flight time due to battery constraints. Autonomous docking on blimps with onboard battery recharging and data offloading offers a promising solution for extended UAV missions. However, the vulnerability of blimps to wind gusts causes trajectory deviations, requiring precise, obstacle-aware docking strategies. To this end, this work introduces two key novelties: (i) a temporal convolutional network that predicts blimp responses to wind gusts, enabling rapid gust detection and estimation of points where the wind gust effect has subsided; (ii) a model predictive controller (MPC) that leverages these predictions to compute collision-free trajectories for docking, enabled by a novel obstacle avoidance method for close-range manoeuvres near the blimp. Simulation results show our method outperforms a baseline constant-velocity model of the blimp significantly across different scenarios. We further validate the approach in real-world experiments, demonstrating the first autonomous multi-rotor docking control strategy on blimps shown outside simulation. Source code is available here https://github.com/robot-perception-group/multi_rotor_airship_docking.
comment: 13 pages, 8 figures, 8 tables
Analysis of Deep-Learning Methods in an ISO/TS 15066-Compliant Human-Robot Safety Framework
Over the last years collaborative robots have gained great success in manufacturing applications where human and robot work together in close proximity. However, current ISO/TS-15066-compliant implementations often limit the efficiency of collaborative tasks due to conservative speed restrictions. For this reason, this paper introduces a deep-learning-based human-robot-safety framework (HRSF) that aims at a dynamical adaptation of robot velocities depending on the separation distance between human and robot while respecting maximum biomechanical force and pressure limits. The applicability of the framework was investigated for four different deep learning approaches that can be used for human body extraction: human body recognition, human body segmentation, human pose estimation, and human body part segmentation. Unlike conventional industrial safety systems, the proposed HRSF differentiates individual human body parts from other objects, enabling optimized robot process execution. Experiments demonstrated a quantitative reduction in cycle time of up to 15% compared to conventional safety technology.
comment: MDPI Sensors, published 22 November 2025
Multi-Agent Monocular Dense SLAM With 3D Reconstruction Priors
Monocular Simultaneous Localization and Mapping (SLAM) aims to estimate a robot's pose while simultaneously reconstructing an unknown 3D scene using a single camera. While existing monocular SLAM systems generate detailed 3D geometry through dense scene representations, they are computationally expensive due to the need for iterative optimization. To address this challenge, MASt3R-SLAM utilizes learned 3D reconstruction priors, enabling more efficient and accurate estimation of both 3D structures and camera poses. However, MASt3R-SLAM is limited to single-agent operation. In this paper, we extend MASt3R-SLAM to introduce the first multi-agent monocular dense SLAM system. Each agent performs local SLAM using a 3D reconstruction prior, and their individual maps are fused into a globally consistent map through a loop-closure-based map fusion mechanism. Our approach improves computational efficiency compared to state-of-the-art methods, while maintaining similar mapping accuracy when evaluated on real-world datasets.
End-to-end Autonomous Vehicle Following System using Monocular Fisheye Camera
The increase in vehicle ownership has led to increased traffic congestion, more accidents, and higher carbon emissions. Vehicle platooning is a promising solution to address these issues by improving road capacity and reducing fuel consumption. However, existing platooning systems face challenges such as reliance on lane markings and expensive high-precision sensors, which limits their general applicability. To address these issues, we propose a vehicle following framework that expands its capability from restricted scenarios to general scenario applications using only a camera. This is achieved through our newly proposed end-to-end method, which improves overall driving performance. The method incorporates a semantic mask to address causal confusion in multi-frame data fusion. Additionally, we introduce a dynamic sampling mechanism to precisely track the trajectories of preceding vehicles. Extensive closed-loop validation in real-world vehicle experiments demonstrates the system's ability to follow vehicles in various scenarios, outperforming traditional multi-stage algorithms. This makes it a promising solution for cost-effective autonomous vehicle platooning. A complete real-world vehicle experiment is available at https://youtu.be/zL1bcVb9kqQ.
AVA-VLA: Improving Vision-Language-Action models with Active Visual Attention
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in embodied AI tasks. However, existing VLA models, often built upon Vision-Language Models (VLMs), typically process dense visual inputs independently at each timestep. This approach implicitly models the task as a Markov Decision Process (MDP). However, this history-agnostic design is suboptimal for effective visual token processing in dynamic sequential decision-making, as it fails to leverage the context of history. To address this limitation, we reformulate the problem from a Partially Observable Markov Decision Process (POMDP) perspective and propose a novel framework named AVA-VLA. Inspired by the POMDP that the action generation should be conditioned on the belief state. AVA-VLA introduces Active Visual Attention (AVA) to dynamically modulate visual processing. It achieves this by leveraging the recurrent state, which is a neural approximation of the agent's belief state derived from the previous decision step. Specifically, the AVA module uses the recurrent state to compute the soft weights to actively process task-relevant visual tokens based on its historical context. Comprehensive evaluations demonstrate that AVA-VLA achieves state-of-the-art performance across popular robotic benchmarks, including LIBERO and CALVIN. Furthermore, real-world deployments on a dual-arm robot platform validate the framework's practical applicability and robust sim-to-real transferability.
comment: 18 pages, 10 figures
Compressor-VLA: Instruction-Guided Visual Token Compression for Efficient Robotic Manipulation
Vision-Language-Action (VLA) models have emerged as a powerful paradigm in Embodied AI. However, the significant computational overhead of processing redundant visual tokens remains a critical bottleneck for real-time robotic deployment. While standard token pruning techniques can alleviate this, these task-agnostic methods struggle to preserve task-critical visual information. To address this challenge, simultaneously preserving both the holistic context and fine-grained details for precise action, we propose Compressor-VLA, a novel hybrid instruction-conditioned token compression framework designed for efficient, task-oriented compression of visual information in VLA models. The proposed Compressor-VLA framework consists of two token compression modules: a Semantic Task Compressor (STC) that distills holistic, task-relevant context, and a Spatial Refinement Compressor (SRC) that preserves fine-grained spatial details. This compression is dynamically modulated by the natural language instruction, allowing for the adaptive condensation of task-relevant visual information. Experimentally, extensive evaluations demonstrate that Compressor-VLA achieves a competitive success rate on the LIBERO benchmark while reducing FLOPs by 59% and the visual token count by over 3x compared to its baseline. The real-robot deployments on a dual-arm robot platform validate the model's sim-to-real transferability and practical applicability. Moreover, qualitative analyses reveal that our instruction guidance dynamically steers the model's perceptual focus toward task-relevant objects, thereby validating the effectiveness of our approach.
comment: 11 pages, 5 figures
An Efficient Closed-Form Solution to Full Visual-Inertial State Initialization
In this letter, we present a closed-form initialization method that recovers the full visual-inertial state without nonlinear optimization. Unlike previous approaches that rely on iterative solvers, our formulation yields analytical, easy-to-implement, and numerically stable solutions for reliable start-up. Our method builds on small-rotation and constant-velocity approximations, which keep the formulation compact while preserving the essential coupling between motion and inertial measurements. We further propose an observability-driven, two-stage initialization scheme that balances accuracy with initialization latency. Extensive experiments on the EuRoC dataset validate our assumptions: our method achieves 10-20% lower initialization error than optimization-based approaches, while using 4x shorter initialization windows and reducing computational cost by 5x.
comment: 8 pages, 2 figures, 10 tables. Submitted to RA-L
Accelerating Reinforcement Learning via Error-Related Human Brain Signals
In this work, we investigate how implicit neural feed back can accelerate reinforcement learning in complex robotic manipulation settings. While prior electroencephalogram (EEG) guided reinforcement learning studies have primarily focused on navigation or low-dimensional locomotion tasks, we aim to understand whether such neural evaluative signals can improve policy learning in high-dimensional manipulation tasks involving obstacles and precise end-effector control. We integrate error related potentials decoded from offline-trained EEG classifiers into reward shaping and systematically evaluate the impact of human-feedback weighting. Experiments on a 7-DoF manipulator in an obstacle-rich reaching environment show that neural feedback accelerates reinforcement learning and, depending on the human-feedback weighting, can yield task success rates that at times exceed those of sparse-reward baselines. Moreover, when applying the best-performing feedback weighting across all sub jects, we observe consistent acceleration of reinforcement learning relative to the sparse-reward setting. Furthermore, leave-one subject-out evaluations confirm that the proposed framework remains robust despite the intrinsic inter-individual variability in EEG decodability. Our findings demonstrate that EEG-based reinforcement learning can scale beyond locomotion tasks and provide a viable pathway for human-aligned manipulation skill acquisition.
GContextFormer: A global context-aware hybrid multi-head attention approach with scaled additive aggregation for multimodal trajectory prediction
Multimodal trajectory prediction generates multiple plausible future trajectories to address vehicle motion uncertainty from intention ambiguity and execution variability. However, HD map-dependent models suffer from costly data acquisition, delayed updates, and vulnerability to corrupted inputs, causing prediction failures. Map-free approaches lack global context, with pairwise attention over-amplifying straight patterns while suppressing transitional patterns, resulting in motion-intention misalignment. This paper proposes GContextFormer, a plug-and-play encoder-decoder architecture with global context-aware hybrid attention and scaled additive aggregation achieving intention-aligned multimodal prediction without map reliance. The Motion-Aware Encoder builds scene-level intention prior via bounded scaled additive aggregation over mode-embedded trajectory tokens and refines per-mode representations under shared global context, mitigating inter-mode suppression and promoting intention alignment. The Hierarchical Interaction Decoder decomposes social reasoning into dual-pathway cross-attention: a standard pathway ensures uniform geometric coverage over agent-mode pairs while a neighbor-context-enhanced pathway emphasizes salient interactions, with gating module mediating their contributions to maintain coverage-focus balance. Experiments on eight highway-ramp scenarios from TOD-VT dataset show GContextFormer outperforms state-of-the-art baselines. Compared to existing transformer models, GContextFormer achieves greater robustness and concentrated improvements in high-curvature and transition zones via spatial distributions. Interpretability is achieved through motion mode distinctions and neighbor context modulation exposing reasoning attribution. The modular architecture supports extensibility toward cross-domain multimodal reasoning tasks. Source: https://fenghy-chen.github.io/sources/.
AutoOdom: Learning Auto-regressive Proprioceptive Odometry for Legged Locomotion
Accurate proprioceptive odometry is fundamental for legged robot navigation in GPS-denied and visually degraded environments where conventional visual odometry systems fail. Current approaches face critical limitations: analytical filtering methods suffer from modeling uncertainties and cumulative drift, hybrid learning-filtering approaches remain constrained by their analytical components, while pure learning-based methods struggle with simulation-to-reality transfer and demand extensive real-world data collection. This paper introduces AutoOdom, a novel autoregressive proprioceptive odometry system that overcomes these challenges through an innovative two-stage training paradigm. Stage 1 employs large-scale simulation data to learn complex nonlinear dynamics and rapidly changing contact states inherent in legged locomotion, while Stage 2 introduces an autoregressive enhancement mechanism using limited real-world data to effectively bridge the sim-to-real gap. The key innovation lies in our autoregressive training approach, where the model learns from its own predictions to develop resilience against sensor noise and improve robustness in highly dynamic environments. Comprehensive experimental validation on the Booster T1 humanoid robot demonstrates that AutoOdom significantly outperforms state-of-the-art methods across all evaluation metrics, achieving 57.2% improvement in absolute trajectory error, 59.2% improvement in Umeyama-aligned error, and 36.2% improvement in relative pose error compared to the Legolas baseline. Extensive ablation studies provide critical insights into sensor modality selection and temporal modeling, revealing counterintuitive findings about IMU acceleration data and validating our systematic design choices for robust proprioceptive odometry in challenging locomotion scenarios.
MergeVLA: Cross-Skill Model Merging Toward a Generalist Vision-Language-Action Agent
Recent Vision-Language-Action (VLA) models reformulate vision-language models by tuning them with millions of robotic demonstrations. While they perform well when fine-tuned for a single embodiment or task family, extending them to multi-skill settings remains challenging: directly merging VLA experts trained on different tasks results in near-zero success rates. This raises a fundamental question: what prevents VLAs from mastering multiple skills within one model? With an empirical decomposition of learnable parameters during VLA fine-tuning, we identify two key sources of non-mergeability: (1) Finetuning drives LoRA adapters in the VLM backbone toward divergent, task-specific directions beyond the capacity of existing merging methods to unify. (2) Action experts develop inter-block dependencies through self-attention feedback, causing task information to spread across layers and preventing modular recombination. To address these challenges, we present MergeVLA, a merging-oriented VLA architecture that preserves mergeability by design. MergeVLA introduces sparsely activated LoRA adapters via task masks to retain consistent parameters and reduce irreconcilable conflicts in the VLM. Its action expert replaces self-attention with cross-attention-only blocks to keep specialization localized and composable. When the task is unknown, it uses a test-time task router to adaptively select the appropriate task mask and expert head from the initial observation, enabling unsupervised task inference. Across LIBERO, LIBERO-Plus, RoboTwin, and multi-task experiments on the real SO101 robotic arm, MergeVLA achieves performance comparable to or even exceeding individually finetuned experts, demonstrating robust generalization across tasks, embodiments, and environments.
SP-VINS: A Hybrid Stereo Visual Inertial Navigation System based on Implicit Environmental Map
Filter-based visual inertial navigation system (VINS) has attracted mobile-robot researchers for the good balance between accuracy and efficiency, but its limited mapping quality hampers long-term high-accuracy state estimation. To this end, we first propose a novel filter-based stereo VINS, differing from traditional simultaneous localization and mapping (SLAM) systems based on 3D map, which performs efficient loop closure constraints with implicit environmental map composed of keyframes and 2D keypoints. Secondly, we proposed a hybrid residual filter framework that combines landmark reprojection and ray constraints to construct a unified Jacobian matrix for measurement updates. Finally, considering the degraded environment, we incorporated the camera-IMU extrinsic parameters into visual description to achieve online calibration. Benchmark experiments demonstrate that the proposed SP-VINS achieves high computational efficiency while maintaining long-term high-accuracy localization performance, and is superior to existing state-of-the-art (SOTA) methods.
AIRHILT: A Human-in-the-Loop Testbed for Multimodal Conflict Detection in Aviation
We introduce AIRHILT (Aviation Integrated Reasoning, Human-in-the-Loop Testbed), a modular and lightweight simulation environment designed to evaluate multimodal pilot and air traffic control (ATC) assistance systems for aviation conflict detection. Built on the open-source Godot engine, AIRHILT synchronizes pilot and ATC radio communications, visual scene understanding from camera streams, and ADS-B surveillance data within a unified, scalable platform. The environment supports pilot- and controller-in-the-loop interactions, providing a comprehensive scenario suite covering both terminal area and en route operational conflicts, including communication errors and procedural mistakes. AIRHILT offers standardized JSON-based interfaces that enable researchers to easily integrate, swap, and evaluate automatic speech recognition (ASR), visual detection, decision-making, and text-to-speech (TTS) models. We demonstrate AIRHILT through a reference pipeline incorporating fine-tuned Whisper ASR, YOLO-based visual detection, ADS-B-based conflict logic, and GPT-OSS-20B structured reasoning, and present preliminary results from representative runway-overlap scenarios, where the assistant achieves an average time-to-first-warning of approximately 7.7 s, with average ASR and vision latencies of approximately 5.9 s and 0.4 s, respectively. The AIRHILT environment and scenario suite are openly available, supporting reproducible research on multimodal situational awareness and conflict detection in aviation; code and scenarios are available at https://github.com/ogarib3/airhilt.
comment: 9 pages, 4 figures, 1 table, 1 algorithm
Head Stabilization for Wheeled Bipedal Robots via Force-Estimation-Based Admittance Control
Wheeled bipedal robots are emerging as flexible platforms for field exploration. However, head instability induced by uneven terrain can degrade the accuracy of onboard sensors or damage fragile payloads. Existing research primarily focuses on stabilizing the mobile platform but overlooks active stabilization of the head in the world frame, resulting in vertical oscillations that undermine overall stability. To address this challenge, we developed a model-based ground force estimation method for our 6-degree-of-freedom wheeled bipedal robot. Leveraging these force estimates, we implemented an admittance control algorithm to enhance terrain adaptability. Simulation experiments validated the real-time performance of the force estimator and the robot's robustness when traversing uneven terrain.
Autonomous Surface Selection For Manipulator-Based UV Disinfection In Hospitals Using Foundation Models IROS
Ultraviolet (UV) germicidal radiation is an established non-contact method for surface disinfection in medical environments. Traditional approaches require substantial human intervention to define disinfection areas, complicating automation, while deep learning-based methods often need extensive fine-tuning and large datasets, which can be impractical for large-scale deployment. Additionally, these methods often do not address scene understanding for partial surface disinfection, which is crucial for avoiding unintended UV exposure. We propose a solution that leverages foundation models to simplify surface selection for manipulator-based UV disinfection, reducing human involvement and removing the need for model training. Additionally, we propose a VLM-assisted segmentation refinement to detect and exclude thin and small non-target objects, showing that this reduces mis-segmentation errors. Our approach achieves over 92\% success rate in correctly segmenting target and non-target surfaces, and real-world experiments with a manipulator and simulated UV light demonstrate its practical potential for real-world applications.
comment: 7 pages, 7 figures; This paper has been accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
GVD-TG: Topological Graph based on Fast Hierarchical GVD Sampling for Robot Exploration
Topological maps are more suitable than metric maps for robotic exploration tasks. However, real-time updating of accurate and detail-rich environmental topological maps remains a challenge. This paper presents a topological map updating method based on the Generalized Voronoi Diagram (GVD). First, the newly observed areas are denoised to avoid low-efficiency GVD nodes misleading the topological structure. Subsequently, a multi-granularity hierarchical GVD generation method is designed to control the sampling granularity at both global and local levels. This not only ensures the accuracy of the topological structure but also enhances the ability to capture detail features, reduces the probability of path backtracking, and ensures no overlap between GVDs through the maintenance of a coverage map, thereby improving GVD utilization efficiency. Second, a node clustering method with connectivity constraints and a connectivity method based on a switching mechanism are designed to avoid the generation of unreachable nodes and erroneous nodes caused by obstacle attraction. A special cache structure is used to store all connectivity information, thereby improving exploration efficiency. Finally, to address the issue of frontiers misjudgment caused by obstacles within the scope of GVD units, a frontiers extraction method based on morphological dilation is designed to effectively ensure the reachability of frontiers. On this basis, a lightweight cost function is used to assess and switch to the next viewpoint in real time. This allows the robot to quickly adjust its strategy when signs of path backtracking appear, thereby escaping the predicament and increasing exploration flexibility. And the performance of system for exploration task is verified through comparative tests with SOTA methods.
comment: 12 pages, 10 figures
Asynchronous Distributed Multi-Robot Motion Planning Under Imperfect Communication
This paper addresses the challenge of coordinating multi-robot systems under realistic communication delays using distributed optimization. We focus on consensus ADMM as a scalable framework for generating collision-free, dynamically feasible motion plans in both trajectory optimization and receding-horizon control settings. In practice, however, these algorithms are sensitive to penalty tuning or adaptation schemes (e.g. residual balancing and adaptive parameter heuristics) that do not explicitly consider delays. To address this, we introduce a Delay-Aware ADMM (DA-ADMM) variant that adapts penalty parameters based on real-time delay statistics, allowing agents to down-weight stale information and prioritize recent updates during consensus and dual updates. Through extensive simulations in 2D and 3D environments with double-integrator, Dubins-car, and drone dynamics, we show that DA-ADMM significantly improves robustness, success rate, and solution quality compared to fixed-parameter, residual-balancing, and fixed-constraint baselines. Our results highlight that performance degradation is not solely determined by delay length or frequency, but by the optimizer's ability to contextually reason over delayed information. The proposed DA-ADMM achieves consistently better coordination performance across a wide range of delay conditions, offering a principled and efficient mechanism for resilient multi-robot motion planning under imperfect communication.
comment: 9 pages, 5 figures
CNN-Based Camera Pose Estimation and Localisation of Scan Images for Aircraft Visual Inspection
General Visual Inspection is a manual inspection process regularly used to detect and localise obvious damage on the exterior of commercial aircraft. There has been increasing demand to perform this process at the boarding gate to minimise the downtime of the aircraft and automating this process is desired to reduce the reliance on human labour. Automating this typically requires estimating a camera's pose with respect to the aircraft for initialisation but most existing localisation methods require infrastructure, which is very challenging in uncontrolled outdoor environments and within the limited turnover time (approximately 2 hours) on an airport tarmac. Additionally, many airlines and airports do not allow contact with the aircraft's surface or using UAVs for inspection between flights, and restrict access to commercial aircraft. Hence, this paper proposes an on-site method that is infrastructure-free and easy to deploy for estimating a pan-tilt-zoom camera's pose and localising scan images. This method initialises using the same pan-tilt-zoom camera used for the inspection task by utilising a Deep Convolutional Neural Network fine-tuned on only synthetic images to predict its own pose. We apply domain randomisation to generate the dataset for fine-tuning the network and modify its loss function by leveraging aircraft geometry to improve accuracy. We also propose a workflow for initialisation, scan path planning, and precise localisation of images captured from a pan-tilt-zoom camera. We evaluate and demonstrate our approach through experiments with real aircraft, achieving root-mean-square camera pose estimation errors of less than 0.24 m and 2 degrees for all real scenes.
comment: 12 pages, 12 figures
Stable Multi-Drone GNSS Tracking System for Marine Robots
Accurate localization is essential for marine robotics, yet Global Navigation Satellite System (GNSS) signals are unreliable or unavailable even at a very short distance below the water surface. Traditional alternatives, such as inertial navigation, Doppler Velocity Loggers (DVL), SLAM, and acoustic methods, suffer from error accumulation, high computational demands, or infrastructure dependence. In this work, we present a scalable multi-drone GNSS-based tracking system for surface and near-surface marine robots. Our approach combines efficient visual detection, lightweight multi-object tracking, GNSS-based triangulation, and a confidence-weighted Extended Kalman Filter (EKF) to provide stable GNSS estimation in real time. We further introduce a cross-drone tracking ID alignment algorithm that enforces global consistency across views, enabling robust multi-robot tracking with redundant aerial coverage. We validate our system in diversified complex settings to show the scalability and robustness of the proposed algorithm.
Beyond Description: Cognitively Benchmarking Fine-Grained Action for Embodied Agents
Multimodal Large Language Models (MLLMs) show promising results as decision-making engines for embodied agents operating in complex, physical environments. However, existing benchmarks often prioritize high-level planning or spatial reasoning, leaving the fine-grained action intelligence required for embodied physical interaction underexplored. To address this gap, we introduce CFG-Bench, a new benchmark designed to systematically evaluate this crucial capability. CFG-Bench consists of 1,368 curated videos paired with 19,562 three-modalities question-answer pairs targeting four cognitive abilities: 1) Physical Interaction, 2) Temporal-Causal Relation, 3) Intentional Understanding, and 4) Evaluative Judgment. Together, these dimensions provide a systematic framework for assessing a model's ability to translate visual observations into actionable knowledge, moving beyond mere surface-level recognition. Our comprehensive evaluation on CFG-Bench reveals that leading MLLMs struggle to produce detailed instructions for physical interactions and exhibit profound limitations in the higher-order reasoning of intention and evaluation. Moreover, supervised fine-tuning (SFT) on our data demonstrates that teaching an MLLMs to articulate fine-grained actions directly translates to significant performance gains on established embodied benchmarks. Our analysis highlights these limitations and offers insights for developing more capable and grounded embodied agents.
Online Learning-Enhanced Lie Algebraic MPC for Robust Trajectory Tracking of Autonomous Surface Vehicles
Autonomous surface vehicles (ASVs) are easily influenced by environmental disturbances such as wind and waves, making accurate trajectory tracking a persistent challenge in dynamic marine conditions. In this paper, we propose an efficient controller for trajectory tracking of marine vehicles under unknown disturbances by combining a convex error-state MPC on the Lie group with an online learning module to compensate for these disturbances in real time. This design enables adaptive and robust control while maintaining computational efficiency. Extensive evaluations in numerical simulations, the Virtual RobotX (VRX) simulator, and real-world field experiments demonstrate that our method achieves superior tracking accuracy under various disturbance scenarios compared with existing approaches.
Prune-Then-Plan: Step-Level Calibration for Stable Frontier Exploration in Embodied Question Answering
Large vision-language models (VLMs) have improved embodied question answering (EQA) agents by providing strong semantic priors for open-vocabulary reasoning. However, when used directly for step-level exploration, VLMs often exhibit frontier oscillations, unstable back-and-forth movements caused by overconfidence and miscalibration, leading to inefficient navigation and degraded answer quality. We propose Prune-Then-Plan, a simple and effective framework that stabilizes exploration through step-level calibration. Instead of trusting raw VLM scores, our method prunes implausible frontier choices using a Holm-Bonferroni inspired pruning procedure and then delegates final decisions to a coverage-based planner. This separation converts overconfident predictions into conservative, interpretable actions by relying on human-level judgments to calibrate the step-level behavior of VLMs. Integrated into the 3D-Mem EQA framework, our approach achieves relative improvements of up to 49% and 33% in visually grounded SPL and LLM-Match metrics respectively over baselines. Overall, our method achieves better scene coverage under equal exploration budgets on both OpenEQA and EXPRESS-Bench datasets.
comment: webpage: https://noahfrahm.github.io/Prune-Then-Plan-project-page/
Maritime Small Object Detection from UAVs using Deep Learning with Altitude-Aware Dynamic Tiling
Unmanned Aerial Vehicles (UAVs) are crucial in Search and Rescue (SAR) missions due to their ability to monitor vast maritime areas. However, small objects often remain difficult to detect from high altitudes due to low object-to-background pixel ratios. We propose an altitude-aware dynamic tiling method that scales and adaptively subdivides the image into tiles for enhanced small object detection. By integrating altitude-dependent scaling with an adaptive tiling factor, we reduce unnecessary computation while maintaining detection performance. Tested on the SeaDronesSee dataset [1] with YOLOv5 [2] and Slicing Aided Hyper Inference (SAHI) framework [3], our approach improves Mean Average Precision (mAP) for small objects by 38% compared to a baseline and achieves more than double the inference speed compared to static tiling. This approach enables more efficient and accurate UAV-based SAR operations under diverse conditions.
comment: This is the author's accepted version of an article that has been published by IEEE. The final published version is available at IEEE Xplore
Whole-Body Inverse Dynamics MPC for Legged Loco-Manipulation
Loco-manipulation demands coordinated whole-body motion to manipulate objects effectively while maintaining locomotion stability, presenting significant challenges for both planning and control. In this work, we propose a whole-body model predictive control (MPC) framework that directly optimizes joint torques through full-order inverse dynamics, enabling unified motion and force planning and execution within a single predictive layer. This approach allows emergent, physically consistent whole-body behaviors that account for the system's dynamics and physical constraints. We implement our MPC formulation using open software frameworks (Pinocchio and CasADi), along with the state-of-the-art interior-point solver Fatrop. In real-world experiments on a Unitree B2 quadruped equipped with a Unitree Z1 manipulator arm, our MPC formulation achieves real-time performance at 80 Hz. We demonstrate loco-manipulation tasks that demand fine control over the end-effector's position and force to perform real-world interactions like pulling heavy loads, pushing boxes, and wiping whiteboards.
comment: 9 pages, 6 figures, to be published in IEEE Robotics and Automation Letters (Special Issue: Advancements in MPC and Learning Algorithms for Legged Robots)
Multi-Agent gatekeeper: Safe Flight Planning and Formation Control for Urban Air Mobility
We present Multi-Agent gatekeeper, a framework that provides provable safety guarantees for leader-follower formation control in cluttered 3D environments. Existing methods face a trad-off: online planners and controllers lack formal safety guarantees, while offline planners lack adaptability to changes in the number of agents or desired formation. To address this gap, we propose a hybrid architecture where a single leader tracks a pre-computed, safe trajectory, which serves as a shared trajectory backup set for all follower agents. Followers execute a nominal formation-keeping tracking controller, and are guaranteed to remain safe by always possessing a known-safe backup maneuver along the leader's path. We formally prove this method ensures collision avoidance with both static obstacles and other agents. The primary contributions are: (1) the multi-agent gatekeeper algorithm, which extends our single-agent gatekeeper framework to multi-agent systems; (2) the trajectory backup set for provably safe inter-agent coordination for leader-follower formation control; and (3) the first application of the gatekeeper framework in a 3D environment. We demonstrate our approach in a simulated 3D urban environment, where it achieved a 100% collision-avoidance success rate across 100 randomized trials, significantly outperforming baseline CBF and NMPC methods. Finally, we demonstrate the physical feasibility of the resulting trajectories on a team of quadcopters.
comment: 13 pages, 4 figures, to appear AIAA SciTech 2026
IndEgo: A Dataset of Industrial Scenarios and Collaborative Work for Egocentric Assistants NeurIPS 2025
We introduce IndEgo, a multimodal egocentric and exocentric dataset addressing common industrial tasks, including assembly/disassembly, logistics and organisation, inspection and repair, woodworking, and others. The dataset contains 3,460 egocentric recordings (approximately 197 hours), along with 1,092 exocentric recordings (approximately 97 hours). A key focus of the dataset is collaborative work, where two workers jointly perform cognitively and physically intensive tasks. The egocentric recordings include rich multimodal data and added context via eye gaze, narration, sound, motion, and others. We provide detailed annotations (actions, summaries, mistake annotations, narrations), metadata, processed outputs (eye gaze, hand pose, semi-dense point cloud), and benchmarks on procedural and non-procedural task understanding, Mistake Detection, and reasoning-based Question Answering. Baseline evaluations for Mistake Detection, Question Answering and collaborative task understanding show that the dataset presents a challenge for the state-of-the-art multimodal models. Our dataset is available at: https://huggingface.co/datasets/FraunhoferIPK/IndEgo
comment: Accepted to NeurIPS 2025 D&B Track. Project Page: https://indego-dataset.github.io/
Anytime-Feasible First-Order Optimization via Safe Sequential QCQP
This paper presents the Safe Sequential Quadratically Constrained Quadratic Programming (SS-QCQP) algorithm, a first-order method for smooth inequality-constrained nonconvex optimization that guarantees feasibility at every iteration. The method is derived from a continuous-time dynamical system whose vector field is obtained by solving a convex QCQP that enforces monotonic descent of the objective and forward invariance of the feasible set. The resulting continuous-time dynamics achieve an $O(1/t)$ convergence rate to first-order stationary points under standard constraint qualification conditions. We then propose a safeguarded Euler discretization with adaptive step-size selection that preserves this convergence rate while maintaining both descent and feasibility in discrete time. To enhance scalability, we develop an active-set variant (SS-QCQP-AS) that selectively enforces constraints near the boundary, substantially reducing computational cost without compromising theoretical guarantees. Numerical experiments on a multi-agent nonlinear optimal control problem demonstrate that SS-QCQP and SS-QCQP-AS maintain feasibility, exhibit the predicted convergence behavior, and deliver solution quality comparable to second-order solvers such as SQP and IPOPT.
Development of a Testbed for Autonomous Vehicles: Integrating MPC Control with Monocular Camera Lane Detection
Autonomous vehicles are becoming popular day by day not only for autonomous road traversal but also for industrial automation, farming and military. Most of the standard vehicles follow the Ackermann style steering mechanism. This has become to de facto standard for large and long faring vehicles. The local planner of an autonomous vehicle controls the low-level vehicle movement upon which the vehicle will perform its motor actuation. In our work, we focus on autonomous vehicles in road and perform experiments to analyze the effect of low-level controllers in the simulation and a real environment. To increase the precision and stability of trajectory tracking in autonomous cars, a novel method that combines lane identification with Model Predictive Control (MPC) is presented. The research focuses on camera-equipped autonomous vehicles and uses methods like edge recognition, sliding window-based straight-line identification for lane line extraction, and dynamic region of interest (ROI) extraction. Next, to follow the identified lane line, an MPC built on a bicycle vehicle dynamics model is created. A single-lane road simulation model is built using ROS Gazebo and tested in order to verify the controller's performance. The root mean square error between the optimal tracking trajectory and the target trajectory was reduced by 27.65% in the simulation results, demonstrating the high robustness and flexibility of the developed controller.
comment: 49 pages, 23 figures
Flow-Based Path Planning for Multiple Homogenous UAVs for Outdoor Formation-Flying
Collision-free path planning is the most crucial component in multi-UAV formation-flying (MFF). We use unlabeled homogenous quadcopters (UAVs) to demonstrate the use of a flow network to create complete (inter-UAV) collision-free paths. This procedure has three main parts: 1) Creating a flow network graph from physical GPS coordinates, 2) Finding a path of minimum cost (least distance) using any graph-based path-finding algorithm, and 3) Implementing the Ford-Fulkerson Method to find the paths with the maximum flow (no collision). Simulations of up to 64 UAVs were conducted for various formations, followed by a practical experiment with 3 quadcopters for testing physical plausibility and feasibility. The results of these tests show the efficacy of this method's ability to produce safe, collision-free paths.
comment: 9 pages, 15 figures, conference
Online Learning-Enhanced High Order Adaptive Safety Control
Control barrier functions (CBFs) are an effective model-based tool to formally certify the safety of a system. With the growing complexity of modern control problems, CBFs have received increasing attention in both optimization-based and learning-based control communities as a safety filter, owing to their provable guarantees. However, success in transferring these guarantees to real-world systems is critically tied to model accuracy. For example, payloads or wind disturbances can significantly influence the dynamics of an aerial vehicle and invalidate the safety guarantee. In this work, we propose an efficient yet flexible online learning-enhanced high-order adaptive control barrier function using Neural ODEs. Our approach improves the safety of a CBF-certified system on the fly, even under complex time-varying model perturbations. In particular, we deploy our hybrid adaptive CBF controller on a 38g nano quadrotor, keeping a safe distance from the obstacle, against 18km/h wind.
comment: 8 pages, 7 figures, submitted to RA-L
Robot-Powered Data Flywheels: Deploying Robots in the Wild for Continual Data Collection and Foundation Model Adaptation
Foundation models (FM) have unlocked powerful zero-shot capabilities in vision and language, yet their reliance on internet pretraining data leaves them brittle in unstructured, real-world settings. The messy, real-world data encountered during deployment (e.g. occluded or multilingual text) remains massively underrepresented in existing corpora. Robots, as embodied agents, are uniquely positioned to close this gap: they can act in physical environments to collect large-scale, real-world data that enriches FM training with precisely the examples current models lack. We introduce the Robot-Powered Data Flywheel, a framework that transforms robots from FM consumers into data generators. By deploying robots equipped with FMs in the wild, we enable a virtuous cycle: robots perform useful tasks while collecting real-world data that improves both domain-specific adaptation and domain-adjacent generalization. We instantiate this framework with Scanford, a mobile manipulator deployed in the East Asia Library for 2 weeks. Scanford autonomously scans shelves, identifies books using a vision-language model (VLM), and leverages the library catalog to label images without human annotation. This deployment both aids librarians and produces a dataset to finetune the underlying VLM, improving performance on the domain-specific in-the-wild library setting and on domain-adjacent multilingual OCR benchmarks. Using data collected from 2103 shelves, Scanford improves VLM performance on book identification from 32.0% to 71.8% and boosts domain-adjacent multilingual OCR from 24.8% to 46.6% (English) and 30.8% to 38.0% (Chinese), while saving an ~18.7 hrs of human time. These results highlight how robot-powered data flywheels can both reduce human effort in real deployments and unlock new pathways for continually adapting FMs to the messiness of reality. More details are at: https://scanford-robot.github.io
Learning Massively Multitask World Models for Continuous Control
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
comment: Webpage: https://www.nicklashansen.com/NewtWM
A Virtual Mechanical Interaction Layer Enables Resilient Human-to-Robot Object Handovers
Object handover is a common form of interaction that is widely present in collaborative tasks. However, achieving it efficiently remains a challenge. We address the problem of ensuring resilient robotic actions that can adapt to complex changes in object pose during human-to-robot object handovers. We propose the use of Virtual Model Control to create an interaction layer that controls the robot and adapts to the dynamic changes in the handover process. Additionally, we propose the use of augmented reality to facilitate bidirectional communication between humans and robots during handovers. We assess the performance of our controller in a set of experiments that demonstrate its resilience to various sources of uncertainties, including complex changes to the object's pose during the handover. Finally, we performed a user study with 16 participants to understand human preferences for different robot control profiles and augmented reality visuals in object handovers. Our results showed a general preference for the proposed approach and revealed insights that can guide further development in adapting the interaction with the user.
Discover, Learn, and Reinforce: Scaling Vision-Language-Action Pretraining with Diverse RL-Generated Trajectories
Scaling vision-language-action (VLA) model pre-training requires large volumes of diverse, high-quality manipulation trajectories. Most current data is obtained via human teleoperation, which is expensive and difficult to scale. Reinforcement learning (RL) methods learn useful skills through autonomous exploration, making them a viable approach for generating data. However, standard RL training collapses to a narrow execution pattern, limiting its utility for large-scale pre-training. We propose Discover, Lea rn and Reinforce (DLR), an information-theoretic pattern discovery framework that generates multiple distinct, high-success behavioral patterns for VLA pretraining. Empirically, DLR generates a markedly more diverse trajectory corpus on LIBERO. Specifically, it learns multiple distinct, high-success strategies for the same task where standard RL discovers only one, and hence it covers substantially broader regions of the state-action space. When adapted to unseen downstream task suites, VLA models pretrained on our diverse RL data surpass counterparts trained on equal-sized standard RL datasets. Moreover, DLR exhibits positive data-scaling behavior that single-pattern RL lacks. These results position multi-pattern RL as a practical, scalable data engine for embodied foundation models.
Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
Extremum Seeking Controlled Wiggling for Tactile Insertion
When humans perform complex insertion tasks such as pushing a cup into a cupboard, routing a cable, or putting a key in a lock, they wiggle the object and adapt the process through tactile feedback. A similar robotic approach has not been developed. We study an extremum seeking control law that wiggles end effector pose to maximize insertion depth while minimizing strain measured by a GelSight Mini sensor. Evaluation is conducted on four keys featuring complex geometry and five assembly tasks featuring basic geometry. On keys, the algorithm achieves 71% success rate over 120 trials with 6-DOF perturbations, 84% over 240 trials with 1-DOF perturbations, and 75% over 40 trials initialized with vision. It significantly outperforms a baseline optimizer, CMA-ES, that replaces wiggling with random sampling. When tested on a state-of-the-art assembly benchmark featuring basic geometry, it achieves 98% over 50 vision-initialized trials. The benchmark's most similar baseline, which was trained on the objects, achieved 86%. These results, realized without contact modeling or learning, show that closed loop wiggling based on tactile feedback is a robust paradigm for robotic insertion.
comment: 8 pages, 6 figures, 4 tables
A Target-based Multi-LiDAR Multi-Camera Extrinsic Calibration System
Extrinsic Calibration represents the cornerstone of autonomous driving. Its accuracy plays a crucial role in the perception pipeline, as any errors can have implications for the safety of the vehicle. Modern sensor systems collect different types of data from the environment, making it harder to align the data. To this end, we propose a target-based extrinsic calibration system tailored for a multi-LiDAR and multi-camera sensor suite. This system enables cross-calibration between LiDARs and cameras with limited prior knowledge using a custom ChArUco board and a tailored nonlinear optimization method. We test the system with real-world data gathered in a warehouse. Results demonstrated the effectiveness of the proposed method, highlighting the feasibility of a unique pipeline tailored for various types of sensors.
comment: RiTA 2025 Accepted, 13 Pages, 6 Figures and 2 Tables
Evo-0: Vision-Language-Action Model with Implicit Spatial Understanding
Vision-Language-Action (VLA) models have emerged as a promising framework for enabling generalist robots capable of perceiving, reasoning, and acting in the real world. These models usually build upon pretrained Vision-Language Models (VLMs), which excel at semantic understanding due to large-scale image and text pretraining. However, existing VLMs typically lack precise spatial understanding capabilities, as they are primarily tuned on 2D image-text pairs without 3D supervision. To address this limitation, recent approaches have incorporated explicit 3D inputs such as point clouds or depth maps, but this necessitates additional depth sensors or pre-trained depth estimation models, which may yield defective results. In contrast, our work introduces a plug-and-play module that implicitly incorporates 3D geometry features into VLA models by leveraging an off-the-shelf visual geometry foundation model. This integration provides the model with depth-aware visual representations, improving its ability to understand the geometric structure of the scene and the spatial relationships among objects from RGB images alone. We evaluate our method on a set of spatially challenging tasks in both simulation and the real world. Extensive evaluations show that our method significantly improves the performance of state-of-the-art VLA models across diverse scenarios.
M2R2: MultiModal Robotic Representation for Temporal Action Segmentation
Temporal action segmentation (TAS) has long been a key area of research in both robotics and computer vision. In robotics, algorithms have primarily focused on leveraging proprioceptive information to determine skill boundaries, with recent approaches in surgical robotics incorporating vision. In contrast, computer vision typically relies on exteroceptive sensors, such as cameras. Existing multimodal TAS models in robotics integrate feature fusion within the model, making it difficult to reuse learned features across different models. Meanwhile, pretrained vision-only feature extractors commonly used in computer vision struggle in scenarios with limited object visibility. In this work, we address these challenges by proposing M2R2, a multimodal feature extractor tailored for TAS, which combines information from both proprioceptive and exteroceptive sensors. We introduce a novel pretraining strategy that enables the reuse of learned features across multiple TAS models. Our method achieves state-of-the-art performance on the REASSEMBLE dataset, a challenging multimodal robotic assembly dataset, outperforming existing robotic action segmentation models by 46.6%. Additionally, we conduct an extensive ablation study to evaluate the contribution of different modalities in robotic TAS tasks.
comment: 8 pages, 6 figures, 2 tables
Autonomous Vehicle Path Planning by Searching With Differentiable Simulation
Planning allows an agent to safely refine its actions before executing them in the real world. In autonomous driving, this is crucial to avoid collisions and navigate in complex, dense traffic scenarios. One way to plan is to search for the best action sequence. However, this is challenging when all necessary components - policy, next-state predictor, and critic - have to be learned. Here we propose Differentiable Simulation for Search (DSS), a framework that leverages the differentiable simulator Waymax as both a next state predictor and a critic. It relies on the simulator's hardcoded dynamics, making state predictions highly accurate, while utilizing the simulator's differentiability to effectively search across action sequences. Our DSS agent optimizes its actions using gradient descent over imagined future trajectories. We show experimentally that DSS - the combination of planning gradients and stochastic search - significantly improves tracking and path planning accuracy compared to sequence prediction, imitation learning, model-free RL, and other planning methods.
Agility Meets Stability: Versatile Humanoid Control with Heterogeneous Data
Humanoid robots are envisioned to perform a wide range of tasks in human-centered environments, requiring controllers that combine agility with robust balance. Recent advances in locomotion and whole-body tracking have enabled impressive progress in either agile dynamic skills or stability-critical behaviors, but existing methods remain specialized, focusing on one capability while compromising the other. In this work, we introduce AMS (Agility Meets Stability), the first framework that unifies both dynamic motion tracking and extreme balance maintenance in a single policy. Our key insight is to leverage heterogeneous data sources: human motion capture datasets that provide rich, agile behaviors, and physically constrained synthetic balance motions that capture stability configurations. To reconcile the divergent optimization goals of agility and stability, we design a hybrid reward scheme that applies general tracking objectives across all data while injecting balance-specific priors only into synthetic motions. Further, an adaptive learning strategy with performance-driven sampling and motion-specific reward shaping enables efficient training across diverse motion distributions. We validate AMS extensively in simulation and on a real Unitree G1 humanoid. Experiments demonstrate that a single policy can execute agile skills such as dancing and running, while also performing zero-shot extreme balance motions like Ip Man's Squat, highlighting AMS as a versatile control paradigm for future humanoid applications.
Monocular Person Localization under Camera Ego-motion IROS2025
Localizing a person from a moving monocular camera is critical for Human-Robot Interaction (HRI). To estimate the 3D human position from a 2D image, existing methods either depend on the geometric assumption of a fixed camera or use a position regression model trained on datasets containing little camera ego-motion. These methods are vulnerable to severe camera ego-motion, resulting in inaccurate person localization. We consider person localization as a part of a pose estimation problem. By representing a human with a four-point model, our method jointly estimates the 2D camera attitude and the person's 3D location through optimization. Evaluations on both public datasets and real robot experiments demonstrate our method outperforms baselines in person localization accuracy. Our method is further implemented into a person-following system and deployed on an agile quadruped robot.
comment: Accepted by IROS2025. Project page: https://medlartea.github.io/rpf-quadruped/
Towards Sensor Data Abstraction of Autonomous Vehicle Perception Systems SC2
Full-stack autonomous driving perception modules usually consist of data-driven models based on multiple sensor modalities. However, these models might be biased to the sensor setup used for data acquisition. This bias can seriously impair the perception models' transferability to new sensor setups, which continuously occur due to the market's competitive nature. We envision sensor data abstraction as an interface between sensor data and machine learning applications for highly automated vehicles (HAD). For this purpose, we review the primary sensor modalities, camera, lidar, and radar, published in autonomous-driving related datasets, examine single sensor abstraction and abstraction of sensor setups, and identify critical paths towards an abstraction of sensor data from multiple perception configurations.
comment: Hannes Reichert, Lukas Lang, Kevin Rösch and Daniel Bogdoll contributed equally. Accepted for publication at ISC2 2021
Description of Corner Cases in Automated Driving: Goals and Challenges ICCV 2021
Scaling the distribution of automated vehicles requires handling various unexpected and possibly dangerous situations, termed corner cases (CC). Since many modules of automated driving systems are based on machine learning (ML), CC are an essential part of the data for their development. However, there is only a limited amount of CC data in large-scale data collections, which makes them challenging in the context of ML. With a better understanding of CC, offline applications, e.g., dataset analysis, and online methods, e.g., improved performance of automated driving systems, can be improved. While there are knowledge-based descriptions and taxonomies for CC, there is little research on machine-interpretable descriptions. In this extended abstract, we will give a brief overview of the challenges and goals of such a description.
comment: Daniel Bogdoll, Jasmin Breitenstein and Florian Heidecker contributed equally. Accepted for publication at ICCV 2021 ERCVAD Workshop
Anomaly Detection in Autonomous Driving: A Survey CVPR 2022
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.
comment: Daniel Bogdoll and Maximilian Nitsche contributed equally. Accepted for publication at CVPR 2022 WAD workshop
Greedy Heuristics for Sampling-Based Motion Planning in High-Dimensional State Spaces
Informed sampling techniques accelerate the convergence of sampling-based motion planners by biasing sampling toward regions of the state space that are most likely to yield better solutions. However, when the current solution path contains redundant or tortuous segments, the resulting informed subset may remain unnecessarily large, slowing convergence. Our prior work addressed this issue by introducing the greedy informed set, which reduces the sampling region based on the maximum heuristic cost along the current solution path. In this article, we formally characterize the behavior of the greedy informed set within Rapidly-exploring Random Tree (RRT*)-like planners and analyze how greedy sampling affects exploration and asymptotic optimality. We then present Greedy RRT* (G-RRT*), a bi-directional anytime variant of RRT* that leverages the greedy informed set to focus sampling in the most promising regions of the search space. Experiments on abstract planning benchmarks, manipulation tasks from the MotionBenchMaker dataset, and a dual-arm Barrett WAM problem demonstrate that G-RRT* rapidly finds initial solutions and converges asymptotically to optimal paths, outperforming state-of-the-art sampling-based planners.
comment: Submitted to the Autonomous Robots journal
Yummy Operations Robot Initiative: Autonomous Cooking System Utilizing a Modular Robotic Kitchen and a Dual-Arm Proprioceptive Manipulator
This paper presents Yummy Operations Robot Initiative (YORI), a proprioceptive dual-arm robotic system that demonstrates autonomous multi-dish cooking for scalable food service applications. YORI integrates a dual-arm manipulator equipped with proprioceptive actuators, custom-designed tools, appliances, and a structured kitchen environment to address the complexities of cooking tasks. The proprioceptive actuators enable fast, precise, force-controlled movements while mitigating the risks associated with cooking-related impacts. The system's modular kitchen design and flexible tool-changing mechanism support simultaneous multi-dish preparation through torque control and optimization-based motion planning and scheduling. A comprehensive scheduling framework with dynamic rescheduling ensures reliable adaptation to new orders and delays. The system was publicly validated through live demonstrations, reliably preparing steak-frites across multiple convention sessions. This paper details YORI's design and explores future directions in kitchen optimization, task planning, and food quality control, demonstrating its potential as a scalable robotic cooking solution. A system introduction and cooking videos are available online.
RynnVLA-002: A Unified Vision-Language-Action and World Model
We introduce RynnVLA-002, a unified Vision-Language-Action (VLA) and world model. The world model leverages action and visual inputs to predict future image states, learning the underlying physics of the environment to refine action generation. Conversely, the VLA model produces subsequent actions from image observations, enhancing visual understanding and supporting the world model's image generation. The unified framework of RynnVLA-002 enables joint learning of environmental dynamics and action planning. Our experiments show that RynnVLA-002 surpasses individual VLA and world models, demonstrating their mutual enhancement. We evaluate RynnVLA-002 in both simulation and real-world robot tasks. RynnVLA-002 achieves 97.4% success rate on the LIBERO simulation benchmark without pretraining, while in real-world LeRobot experiments, its integrated world model boosts the overall success rate by 50%.
Doppler Correspondence: Non-Iterative Scan Matching With Doppler Velocity-Based Correspondence
Achieving successful scan matching is essential for LiDAR odometry. However, in challenging environments with adverse weather conditions or repetitive geometric patterns, LiDAR odometry performance is degraded due to incorrect scan matching. Recently, the emergence of frequency-modulated continuous wave 4D LiDAR and 4D radar technologies has provided the potential to address these unfavorable conditions. The term 4D refers to point cloud data characterized by range, azimuth, and elevation along with Doppler velocity. Although 4D data is available, most scan matching methods for 4D LiDAR and 4D radar still establish correspondence by repeatedly identifying the closest points between consecutive scans, overlooking the Doppler information. This paper introduces, for the first time, a simple Doppler velocity-based correspondence -- Doppler Correspondence -- that is invariant to translation and small rotation of the sensor, with its geometric and kinematic foundations. Extensive experiments demonstrate that the proposed method enables the direct matching of consecutive point clouds without an iterative process, making it computationally efficient. Additionally, it provides a more robust correspondence estimation in environments with repetitive geometric patterns.The implementation of our proposed method is publicly available at https://github.com/Tars0523/Doppler Correspondence.
Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a "GPT moment" in the embodied domain. There is a naive observation: the diversity of embodied data far exceeds the relatively small space of possible primitive motions. Based on this insight, we propose a novel paradigm for world modeling--Primitive Embodied World Models (PEWM). By restricting video generation to fixed short horizons, our approach 1) enables fine-grained alignment between linguistic concepts and visual representations of robotic actions, 2) reduces learning complexity, 3) improves data efficiency in embodied data collection, and 4) decreases inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.
DriveSuprim: Towards Precise Trajectory Selection for End-to-End Planning AAAI 2026
Autonomous vehicles must navigate safely in complex driving environments. Imitating a single expert trajectory, as in regression-based approaches, usually does not explicitly assess the safety of the predicted trajectory. Selection-based methods address this by generating and scoring multiple trajectory candidates and predicting the safety score for each. However, they face optimization challenges in precisely selecting the best option from thousands of candidates and distinguishing subtle but safety-critical differences, especially in rare and challenging scenarios. We propose DriveSuprim to overcome these challenges and advance the selection-based paradigm through a coarse-to-fine paradigm for progressive candidate filtering, a rotation-based augmentation method to improve robustness in out-of-distribution scenarios, and a self-distillation framework to stabilize training. DriveSuprim achieves state-of-the-art performance, reaching 93.5% PDMS in NAVSIM v1 and 87.1% EPDMS in NAVSIM v2 without extra data, with 83.02 Driving Score and 60.00 Success Rate on the Bench2Drive benchmark, demonstrating superior planning capabilities in various driving scenarios.
comment: Accepted to AAAI 2026
Learning to See and Act: Task-Aware Virtual View Exploration for Robotic Manipulation
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-aware Virtual View Exploration (TVVE), a framework designed to overcome these challenges by integrating virtual view exploration with task-specific representation learning. TVVE employs an efficient exploration policy, accelerated by a novel pseudo-environment, to acquire informative views. Furthermore, we introduce a Task-aware Mixture-of-Experts (TaskMoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TVVE generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. To further validate the robustness and generalization capability of TVVE under out-of-distribution (OOD) settings, we construct a challenging benchmark, RLBench-OG, covering various visual perturbations and camera pose variations. Extensive experiments on RLBench and RLBench-OG show that our TVVE achieves superior performance over state-of-the-art approaches. In real-robot experiments, TVVE demonstrates exceptional performance and generalizes robustly in multiple OOD settings, including visual disturbances and unseen instructions. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.
comment: 24 pages, 15 figures, project page: https://hcplab-sysu.github.io/TAVP
Nauplius Optimisation for Autonomous Hydrodynamics
Autonomous Underwater vehicles must operate in strong currents, limited acoustic bandwidth, and persistent sensing requirements where conventional swarm optimisation methods are unreliable. This paper formulates an irreversible hydrodynamic deployment problem for Autonomous Underwater Vehicle (AUV) swarms and presents Nauplius Optimisation for Autonomous Hydrodynamics (NOAH), a novel nature-inspired swarm optimisation algorithm that combines current-aware drift, irreversible settlement in persistent sensing nodes, and colony-based communication. Drawing inspiration from the behaviour of barnacle nauplii, NOAH addresses the critical limitations of existing swarm algorithms by providing hydrodynamic awareness, irreversible anchoring mechanisms, and colony-based communication capabilities essential for underwater exploration missions. The algorithm establishes a comprehensive foundation for scalable and energy-efficient underwater swarm robotics with validated performance analysis. Validation studies demonstrate an 86% success rate for permanent anchoring scenarios, providing a unified formulation for hydrodynamic constraints and irreversible settlement behaviours with an empirical study under flow.
Vision Language Models Can Parse Floor Plan Maps
Vision language models (VLMs) can simultaneously reason about images and texts to tackle many tasks, from visual question answering to image captioning. This paper focuses on map parsing, a novel task that is unexplored within the VLM context and particularly useful to mobile robots. Map parsing requires understanding not only the labels but also the geometric configurations of a map, i.e., what areas are like and how they are connected. To evaluate the performance of VLMs on map parsing, we prompt VLMs with floor plan maps to generate task plans for complex indoor navigation. Our results demonstrate the remarkable capability of VLMs in map parsing, with a success rate of 0.96 in tasks requiring a sequence of nine navigation actions, e.g., approaching and going through doors. Other than intuitive observations, e.g., VLMs do better in smaller maps and simpler navigation tasks, there was a very interesting observation that its performance drops in large open areas. We provide practical suggestions to address such challenges as validated by our experimental results. Webpage: https://sites.google.com/view/vlm-floorplan/
Multiagent Systems
Dynamic Leader-Follower Consensus with Adversaries: A Multi-Hop Relay Approach
This paper examines resilient dynamic leader-follower consensus within multi-agent systems, where agents share first-order or second-order dynamics. The aim is to develop distributed protocols enabling nonfaulty/normal followers to accurately track a dynamic/time-varying reference value of the leader while they may receive misinformation from adversarial neighbors. Our methodologies employ the mean subsequence reduced algorithm with agents engaging with neighbors using multi-hop communication. We accordingly derive a necessary and sufficient graph condition for our algorithms to succeed; also, our tracking error bounds are smaller than that of the existing method. Furthermore, it is emphasized that even when agents do not use relays, our condition is tighter than the sufficient conditions in the literature. With multi-hop relays, we can further obtain more relaxed graph requirements. Finally, we present numerical examples to verify the effectiveness of our algorithms.
comment: 15 pages
LLM-Based Agentic Negotiation for 6G: Addressing Uncertainty Neglect and Tail-Event Risk
A critical barrier to the trustworthiness of sixth-generation (6G) agentic autonomous networks is the uncertainty neglect bias; a cognitive tendency for large language model (LLM)-powered agents to make high-stakes decisions based on simple averages while ignoring the tail risk of extreme events. This paper proposes an unbiased, risk-aware framework for agentic negotiation, designed to ensure robust resource allocation in 6G network slicing. Specifically, agents leverage Digital Twins (DTs) to predict full latency distributions, which are then evaluated using a formal framework from extreme value theory, namely, Conditional Value-at-Risk (CVaR). This approach fundamentally shifts the agent's objective from reasoning over the mean to reasoning over the tail, thereby building a statistically-grounded buffer against worst-case outcomes. Furthermore, our framework ensures full uncertainty awareness by requiring agents to quantify epistemic uncertainty -- confidence in their own DTs predictions -- and propagate this meta-verification to make robust decisions, preventing them from acting on unreliable data. We validate this framework in a 6G inter-slice negotiation use-case between an eMBB and a URLLC agent. The results demonstrate the profound failure of the biased, mean-based baseline, which consistently fails its SLAs with a 25\% rate. Our unbiased, CVaR-aware agent successfully mitigates this bias, eliminating SLA violations and reducing the URLLC and eMBB p99.999 latencies by around 11\%. We show this reliability comes at the rational and quantifiable cost of slightly reduced energy savings to 17\%, exposing the false economy of the biased approach. This work provides a concrete methodology for building the trustworthy autonomous systems required for 6G.
comment: Link to open-source non-commercial code available
VIL2C: Value-of-Information Aware Low-Latency Communication for Multi-Agent Reinforcement Learning
Inter-agent communication serves as an effective mechanism for enhancing performance in collaborative multi-agent reinforcement learning(MARL) systems. However, the inherent communication latency in practical systems induces both action decision delays and outdated information sharing, impeding MARL performance gains, particularly in time-critical applications like autonomous driving. In this work, we propose a Value-of-Information aware Low-latency Communication(VIL2C) scheme that proactively adjusts the latency distribution to mitigate its effects in MARL systems. Specifically, we define a Value of Information (VOI) metric to quantify the importance of delayed message transmission based on each delayed message's importance. Moreover, we propose a progressive message reception mechanism to adaptively adjust the reception duration based on received messages. We derive the optimized VoI aware resource allocation and theoretically prove the performance advantage of the proposed VIL2C scheme. Extensive experiments demonstrate that VIL2C outperforms existing approaches under various communication conditions. These gains are attributed to the low-latency transmission of high-VoI messages via resource allocation and the elimination of unnecessary waiting periods via adaptive reception duration.
Many-Eyes and Sentinels in Selfish and Cooperative Groups
Collective vigilance describes how animals in groups benefit from the predator detection efforts of others. Empirical observations typically find either a many-eyes strategy with all (or many) group members maintaining a low level of individual vigilance, or a sentinel strategy with one (or a few) individuals maintaining a high level of individual vigilance while others do not. With a general analytical treatment that makes minimal assumptions, we show that these two strategies are alternate solutions to the same adaptive problem of balancing the costs of predation and vigilance. Which strategy is preferred depends on how costs scale with the level of individual vigilance: many-eyes strategies are preferred where costs of vigilance rise gently at low levels but become steeper at higher levels (convex; e.g. an open field); sentinel strategies are preferred where costs of vigilance rise steeply at low levels and then flatten out (concave; e.g. environments with vantage points). This same dichotomy emerges whether individuals act selfishly to optimise their own fitness or cooperatively to optimise group fitness. The model is extended to explain discrete behavioural switching between strategies and differential levels of vigilance such as edge effects.
GContextFormer: A global context-aware hybrid multi-head attention approach with scaled additive aggregation for multimodal trajectory prediction
Multimodal trajectory prediction generates multiple plausible future trajectories to address vehicle motion uncertainty from intention ambiguity and execution variability. However, HD map-dependent models suffer from costly data acquisition, delayed updates, and vulnerability to corrupted inputs, causing prediction failures. Map-free approaches lack global context, with pairwise attention over-amplifying straight patterns while suppressing transitional patterns, resulting in motion-intention misalignment. This paper proposes GContextFormer, a plug-and-play encoder-decoder architecture with global context-aware hybrid attention and scaled additive aggregation achieving intention-aligned multimodal prediction without map reliance. The Motion-Aware Encoder builds scene-level intention prior via bounded scaled additive aggregation over mode-embedded trajectory tokens and refines per-mode representations under shared global context, mitigating inter-mode suppression and promoting intention alignment. The Hierarchical Interaction Decoder decomposes social reasoning into dual-pathway cross-attention: a standard pathway ensures uniform geometric coverage over agent-mode pairs while a neighbor-context-enhanced pathway emphasizes salient interactions, with gating module mediating their contributions to maintain coverage-focus balance. Experiments on eight highway-ramp scenarios from TOD-VT dataset show GContextFormer outperforms state-of-the-art baselines. Compared to existing transformer models, GContextFormer achieves greater robustness and concentrated improvements in high-curvature and transition zones via spatial distributions. Interpretability is achieved through motion mode distinctions and neighbor context modulation exposing reasoning attribution. The modular architecture supports extensibility toward cross-domain multimodal reasoning tasks. Source: https://fenghy-chen.github.io/sources/.
Addressing Situated Teaching Needs: A Multi-Agent Framework for Automated Slide Adaptation
The adaptation of teaching slides to instructors' situated teaching needs, including pedagogical styles and their students' context, is a critical yet time-consuming task for educators. Through a series of educator interviews, we first identify and systematically categorize the key friction points that impede this adaptation process. Grounded in these findings, we introduce a novel multi-agent framework designed to automate slide adaptation based on high-level instructor specifications. An evaluation involving 16 modification requests across 8 real-world courses validates our approach. The framework's output consistently achieved high scores in intent alignment, content coherence and factual accuracy, and performed on par with baseline methods regarding visual clarity, while also demonstrating appropriate timeliness and a high operational agreement with human experts, achieving an F1 score of 0.89. This work heralds a new paradigm where AI agents handle the logistical burdens of instructional design, liberating educators to focus on the creative and strategic aspects of teaching.
Think How Your Teammates Think: Active Inference Can Benefit Decentralized Execution AAAI 2026
In multi-agent systems, explicit cognition of teammates' decision logic serves as a critical factor in facilitating coordination. Communication (i.e., ``\textit{Tell}'') can assist in the cognitive development process by information dissemination, yet it is inevitably subject to real-world constraints such as noise, latency, and attacks. Therefore, building the understanding of teammates' decisions without communication remains challenging. To address this, we propose a novel non-communication MARL framework that realizes the construction of cognition through local observation-based modeling (i.e., \textit{``Think''}). Our framework enables agents to model teammates' \textbf{active inference} process. At first, the proposed method produces three teammate portraits: perception-belief-action. Specifically, we model the teammate's decision process as follows: 1) Perception: observing environments; 2) Belief: forming beliefs; 3) Action: making decisions. Then, we selectively integrate the belief portrait into the decision process based on the accuracy and relevance of the perception portrait. This enables the selection of cooperative teammates and facilitates effective collaboration. Extensive experiments on the SMAC, SMACv2, MPE, and GRF benchmarks demonstrate the superior performance of our method.
comment: Accepted by AAAI 2026
Multi-Agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition
Cooperative multi-agent reinforcement learning (MARL) commonly adopts centralized training with decentralized execution (CTDE), where centralized critics leverage global information to guide decentralized actors. However, centralized-decentralized mismatch (CDM) arises when the suboptimal behavior of one agent degrades others' learning. Prior approaches mitigate CDM through value decomposition, but linear decompositions allow per-agent gradients at the cost of limited expressiveness, while nonlinear decompositions improve representation but require centralized gradients, reintroducing CDM. To overcome this trade-off, we propose the multi-agent cross-entropy method (MCEM), combined with monotonic nonlinear critic decomposition (NCD). MCEM updates policies by increasing the probability of high-value joint actions, thereby excluding suboptimal behaviors. For sample efficiency, we extend off-policy learning with a modified k-step return and Retrace. Analysis and experiments demonstrate that MCEM outperforms state-of-the-art methods across both continuous and discrete action benchmarks.
KOM: A Multi-Agent Artificial Intelligence System for Precision Management of Knee Osteoarthritis (KOA)
Knee osteoarthritis (KOA) affects more than 600 million individuals globally and is associated with significant pain, functional impairment, and disability. While personalized multidisciplinary interventions have the potential to slow disease progression and enhance quality of life, they typically require substantial medical resources and expertise, making them difficult to implement in resource-limited settings. To address this challenge, we developed KOM, a multi-agent system designed to automate KOA evaluation, risk prediction, and treatment prescription. This system assists clinicians in performing essential tasks across the KOA care pathway and supports the generation of tailored management plans based on individual patient profiles, disease status, risk factors, and contraindications. In benchmark experiments, KOM demonstrated superior performance compared to several general-purpose large language models in imaging analysis and prescription generation. A randomized three-arm simulation study further revealed that collaboration between KOM and clinicians reduced total diagnostic and planning time by 38.5% and resulted in improved treatment quality compared to each approach used independently. These findings indicate that KOM could help facilitate automated KOA management and, when integrated into clinical workflows, has the potential to enhance care efficiency. The modular architecture of KOM may also offer valuable insights for developing AI-assisted management systems for other chronic conditions.
An Adaptive, Data-Integrated Agent-Based Modeling Framework for Explainable and Contestable Policy Design
Multi-agent systems often operate under feedback, adaptation, and non-stationarity, yet many simulation studies retain static decision rules and fixed control parameters. This paper introduces a general adaptive multi-agent learning framework that integrates: (i) four dynamic regimes distinguishing static versus adaptive agents and fixed versus adaptive system parameters; (ii) information-theoretic diagnostics (entropy rate, statistical complexity, and predictive information) to assess predictability and structure; (iii) structural causal models for explicit intervention semantics; (iv) procedures for generating agent-level priors from aggregate or sample data; and (v) unsupervised methods for identifying emergent behavioral regimes. The framework offers a domain-neutral architecture for analyzing how learning agents and adaptive controls jointly shape system trajectories, enabling systematic comparison of stability, performance, and interpretability across non-equilibrium, oscillatory, or drifting dynamics. Mathematical definitions, computational operators, and an experimental design template are provided, yielding a structured methodology for developing explainable and contestable multi-agent decision processes.
comment: 27 pages, 2 case studies (emissions and smart grids). Preprint prepared during the author's PhD research at the Open University of Cyprus and the University of Milano-Bicocca. Introduces a unified framework for adaptive multi-agent learning with information-theoretic, causal, and clustering diagnostics
Non-Ergodic Convergence Algorithms for Distributed Consensus and Coupling-Constrained Optimization
We study distributed convex optimization with two ubiquitous forms of coupling: consensus constraints and global affine equalities. We first design a linearized method of multipliers for the consensus optimization problem. Without smoothness or strong convexity, we establish non-ergodic sublinear rates of order O(1/\sqrt{k}) for both the objective optimality and the consensus violation. Leveraging duality, we then show that the economic dispatch problem admits a dual consensus formulation, and that applying the same algorithm to the dual economic dispatch yields non-ergodic O(1/\sqrt{k}) decay for the error of the summation of the cost over the network and the equality-constraint residual under convexity and Slater's condition. Numerical results on the IEEE 118-bus system demonstrate faster reduction of both objective error and feasibility error relative to the state-of-the-art baselines, while the dual variables reach network-wide consensus.
A Layered Protocol Architecture for the Internet of Agents
Large Language Models (LLMs) have demonstrated remarkable performance improvements and the ability to learn domain-specific languages (DSLs), including APIs and tool interfaces. This capability has enabled the creation of AI agents that can perform preliminary computations and act through tool calling, now being standardized via protocols like MCP. However, LLMs face fundamental limitations: their context windows cannot grow indefinitely, constraining their memory and computational capacity. Agent collaboration emerges as essential for solving increasingly complex problems, mirroring how computational systems rely on different types of memory to scale. The "Internet of Agents" (IoA) represents the communication stack that enables agents to scale by distributing computation across collaborating entities. Current network architectural stacks (OSI and TCP/IP) were designed for data delivery between hosts and processes, not for agent collaboration with semantic understanding. To address this gap, we propose two new layers: an \textbf{Agent Communication Layer (L8)} and an \textbf{Agent Semantic Negotiation Layer (L9)}. L8 formalizes the \textit{structure} of communication, standardizing message envelopes, speech-act performatives (e.g., REQUEST, INFORM), and interaction patterns (e.g., request-reply, publish-subscribe), building on protocols like MCP. L9, which does not exist today, formalizes the \textit{meaning} of communication, enabling agents to discover, negotiate, and lock a "Shared Context" -- a formal schema defining the concepts, tasks, and parameters relevant to their interaction. Together, these layers provide the foundation for scalable, distributed agent collaboration, enabling the next generation of multi-agentic systems.
Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning
Emergent communication in multi-agent systems typically occurs through independent learning, resulting in slow convergence and potentially suboptimal protocols. We introduce TSLEC (Trust-Based Social Learning with Emergent Communication), a framework where agents explicitly teach successful strategies to peers, with knowledge transfer modulated by learned trust relationships. Through experiments with 100 episodes across 30 random seeds, we demonstrate that trust-based social learning reduces episodes-to-convergence by 23.9% (p < 0.001, Cohen's d = 1.98) compared to independent emergence, while producing compositional protocols (C = 0.38) that remain robust under dynamic objectives (Phi > 0.867 decoding accuracy). Trust scores strongly correlate with teaching quality (r = 0.743, p < 0.001), enabling effective knowledge filtering. Our results establish that explicit social learning fundamentally accelerates emergent communication in multi-agent coordination.
VideoChat-M1: Collaborative Policy Planning for Video Understanding via Multi-Agent Reinforcement Learning
By leveraging tool-augmented Multimodal Large Language Models (MLLMs), multi-agent frameworks are driving progress in video understanding. However, most of them adopt static and non-learnable tool invocation mechanisms, which limit the discovery of diverse clues essential for robust perception and reasoning regarding temporally or spatially complex videos. To address this challenge, we propose a novel Multi-agent system for video understanding, namely VideoChat-M1. Instead of using a single or fixed policy, VideoChat-M1 adopts a distinct Collaborative Policy Planning (CPP) paradigm with multiple policy agents, which comprises three key processes. (1) Policy Generation: Each agent generates its unique tool invocation policy tailored to the user's query; (2) Policy Execution: Each agent sequentially invokes relevant tools to execute its policy and explore the video content; (3) Policy Communication: During the intermediate stages of policy execution, agents interact with one another to update their respective policies. Through this collaborative framework, all agents work in tandem, dynamically refining their preferred policies based on contextual insights from peers to effectively respond to the user's query. Moreover, we equip our CPP paradigm with a concise Multi-Agent Reinforcement Learning (MARL) method. Consequently, the team of policy agents can be jointly optimized to enhance VideoChat-M1's performance, guided by both the final answer reward and intermediate collaborative process feedback. Extensive experiments demonstrate that VideoChat-M1 achieves SOTA performance across eight benchmarks spanning four tasks. Notably, on LongVideoBench, our method outperforms the SOTA model Gemini 2.5 pro by 3.6% and GPT-4o by 15.6%.
comment: 21 pages, 9 figures
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Beyond Predictions: A Participatory Framework for Multi-Stakeholder Decision-Making
Conventional automated decision-support systems often prioritize predictive accuracy, overlooking the complexities of real-world settings where stakeholders' preferences may diverge or conflict. This can lead to outcomes that disadvantage vulnerable groups and erode trust in algorithmic processes. Participatory AI approaches aim to address these issues but remain largely context-specific, limiting their broader applicability and scalability. To address these gaps, we propose a participatory framework that reframes decision-making as a multi-stakeholder learning and optimization problem. Our modular, model-agnostic approach builds on the standard machine learning training pipeline to fine-tune user-provided prediction models and evaluate decision strategies, including compromise functions that mediate stakeholder trade-offs. A synthetic scoring mechanism aggregates user-defined preferences across multiple metrics, ranking strategies and selecting an optimal decision-maker to generate actionable recommendations that jointly optimize performance, fairness, and domain-specific goals. Empirical validation on two high-stakes case studies demonstrates the versatility of the framework and its promise as a more accountable, context-aware alternative to prediction-centric pipelines for socially impactful deployments.
DataSage: Multi-agent Collaboration for Insight Discovery with External Knowledge Retrieval, Multi-role Debating, and Multi-path Reasoning
In today's data-driven era, fully automated end-to-end data analytics, particularly insight discovery, is critical for discovering actionable insights that assist organizations in making effective decisions. With the rapid advancement of large language models (LLMs), LLM-driven agents have emerged as a promising paradigm for automating data analysis and insight discovery. However, existing data insight agents remain limited in several key aspects, often failing to deliver satisfactory results due to: (1) insufficient utilization of domain knowledge, (2) shallow analytical depth, and (3) error-prone code generation during insight generation. To address these issues, we propose DataSage, a novel multi-agent framework that incorporates three innovative features including external knowledge retrieval to enrich the analytical context, a multi-role debating mechanism to simulate diverse analytical perspectives and deepen analytical depth, and multi-path reasoning to improve the accuracy of the generated code and insights. Extensive experiments on InsightBench demonstrate that DataSage consistently outperforms existing data insight agents across all difficulty levels, offering an effective solution for automated data insight discovery.
G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation AAAI 2026
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
comment: Accepted in AAAI 2026
Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
Systems and Control (EESS)
Data driven synthesis of provable invariant sets via stochastically sampled data
Positive invariant (PI) sets are essential for ensuring safety, i.e. constraint adherence, of dynamical systems. With the increasing availability of sampled data from complex (and often unmodeled) systems, it is advantageous to leverage these data sets for PI set synthesis. This paper uses data driven geometric conditions of invariance to synthesize PI sets from data. Where previous data driven, set-based approaches to PI set synthesis used deterministic sampling schemes, this work instead synthesizes PI sets from any pre-collected data sets. Beyond a data set and Lipschitz continuity, no additional information about the system is needed. A tree data structure is used to partition the space and select samples used to construct the PI set, while Lipschitz continuity is used to provide deterministic guarantees of invariance. Finally, probabilistic bounds are given on the number of samples needed for the algorithm to determine of a certain volume.
A Hybrid Learning-to-Optimize Framework for Mixed-Integer Quadratic Programming
In this paper, we propose a learning-to-optimize (L2O) framework to accelerate solving parametric mixed-integer quadratic programming (MIQP) problems, with a particular focus on mixed-integer model predictive control (MI-MPC) applications. The framework learns to predict integer solutions with enhanced optimality and feasibility by integrating supervised learning (for optimality), self-supervised learning (for feasibility), and a differentiable quadratic programming (QP) layer, resulting in a hybrid L2O framework. Specifically, a neural network (NN) is used to learn the mapping from problem parameters to optimal integer solutions, while a differentiable QP layer is integrated to compute the corresponding continuous variables given the predicted integers and problem parameters. Moreover, a hybrid loss function is proposed, which combines a supervised loss with respect to the global optimal solution, and a self-supervised loss derived from the problem's objective and constraints. The effectiveness of the proposed framework is demonstrated on two benchmark MI-MPC problems, with comparative results against purely supervised and self-supervised learning models.
comment: submitted to L4DC 2026
Nonlinear MPC for Feedback-Interconnected Systems: a Suboptimal and Reduced-Order Model Approach
In this paper, we propose a suboptimal and reduced-order Model Predictive Control (MPC) architecture for discrete-time feedback-interconnected systems. The numerical MPC solver: (i) acts suboptimally, performing only a finite number of optimization iterations at each sampling instant, and (ii) relies only on a reduced-order model that neglects part of the system dynamics, either due to unmodeled effects or the presence of a low-level compensator. We prove that the closed-loop system resulting from the interconnection of the suboptimal and reduced-order MPC optimizer with the full-order plant has a globally exponentially stable equilibrium point. Specifically, we employ timescale separation arguments to characterize the interaction between the components of the feedback-interconnected system. The analysis relies on an appropriately tuned timescale parameter accounting for how fast the system dynamics are sampled. The theoretical results are validated through numerical simulations on a mechatronic system consisting of a pendulum actuated by a DC motor.
Dynamic Leader-Follower Consensus with Adversaries: A Multi-Hop Relay Approach
This paper examines resilient dynamic leader-follower consensus within multi-agent systems, where agents share first-order or second-order dynamics. The aim is to develop distributed protocols enabling nonfaulty/normal followers to accurately track a dynamic/time-varying reference value of the leader while they may receive misinformation from adversarial neighbors. Our methodologies employ the mean subsequence reduced algorithm with agents engaging with neighbors using multi-hop communication. We accordingly derive a necessary and sufficient graph condition for our algorithms to succeed; also, our tracking error bounds are smaller than that of the existing method. Furthermore, it is emphasized that even when agents do not use relays, our condition is tighter than the sufficient conditions in the literature. With multi-hop relays, we can further obtain more relaxed graph requirements. Finally, we present numerical examples to verify the effectiveness of our algorithms.
comment: 15 pages
Innovative Modular Design and Kinematic Approach based on Screw Theory for Triple Scissors Links Deployable Space Antenna Mechanism
This paper presents the geometry design and analysis of a novel triple scissors links deployable antenna mechanism (TSDAM) to deal with the problems of large aperture and high precision space antennas for deep space communication and Earth observation. This mechanism has only one degree of freedom (DoF) and thus makes for efficient and reliable deployment without loss of structural integrity. It employed a systematic design approach starting from a triple scissors links modular unit to a 25m aperture assembly. Different configurations constituting variable numbers of modular units were analyzed in SolidWorks to identify the deployable mechanism with lowest deformation. While the 24 units configuration offered superior stowage compactness, it exhibited higher deformation (0.01437mm), confirming the 12 units configuration as the optimal balance between structural stability and deployment efficiency. Screw theory was employed to analyze the kinematic properties, and numerical simulations were performed in MATLAB and SolidWorks. The deployable space antenna showed transition from stowed to fully deployed state in just 53 seconds with high stability throughout the deployment process. The TSDAM attained a storage ratio of up to 15.3 for height and volume with 0.01048mm of deformation for a 12 units configuration. Mesh convergence analysis proved the consistency of the simulation results for 415314 tetrahedral shaped elements. The virtual experiments in SolidWorks verified the analytical Screw theory based model and ensured that the design was smooth and flexible for deployment in operational conditions. The research establishes a robust design framework for future deployable antennas, offering enhanced performance, simplified structure, and improved reliability
Data-driven certificates of constraint enforcement and stability for unmodeled, discrete dynamical systems using tree data structures
This paper addresses the critical challenge of developing data-driven certificates for the stability and safety of unmodeled dynamical systems by leveraging a tree data structure and an upper bound of the system's Lipschitz constant. Previously, an invariant set was synthesized by iteratively expanding an initial invariant set. In contrast, this work iteratively prunes the constraint set to synthesize an invariant set -- eliminating the need for a known, initial invariant set. Furthermore, we provide stability assurances by characterizing the asymptotic stability of the system relative to an invariant approximation of the minimal positive invariant set through synthesis of a discontinuous piecewise affine Lyapunov function over the computed invariant set. The proposed method takes inspiration from subdivision techniques and requires no prior system knowledge beyond Lipschitz continuity.
Reference-Free Sampling-Based Model Predictive Control
We present a sampling-based model predictive control (MPC) framework that enables emergent locomotion without relying on handcrafted gait patterns or predefined contact sequences. Our method discovers diverse motion patterns, ranging from trotting to galloping, robust standing policies, jumping, and handstand balancing, purely through the optimization of high-level objectives. Building on model predictive path integral (MPPI), we propose a dual-space spline parameterization that operates on position and velocity control points. Our approach enables contact-making and contact-breaking strategies that adapt automatically to task requirements, requiring only a limited number of sampled trajectories. This sample efficiency allows us to achieve real-time control on standard CPU hardware, eliminating the need for GPU acceleration typically required by other state-of-the-art MPPI methods. We validate our approach on the Go2 quadrupedal robot, demonstrating various emergent gaits and basic jumping capabilities. In simulation, we further showcase more complex behaviors, such as backflips, dynamic handstand balancing and locomotion on a Humanoid, all without requiring reference tracking or offline pre-training.
Decarbonization pathways for liquid fuels: A multi-sector energy system perspective
Low-carbon liquid fuels play a key role in energy system decarbonization scenarios. This study uses a multi-sector capacity expansion model of the contiguous United States to examine fuels production in deeply decarbonized energy systems. Our analysis evaluates how the shares of biofuels, synthetic fuels, and fossil liquid fuels change under varying assumptions about resource constraints (biomass and CO2 sequestration availability), fuel demand distributions, and supply flexibility to produce different fuel products. Across all scenarios examined, biofuels provide a substantial share of liquid fuel supply, while synthetic fuels deploy only when biomass or CO2 sequestration is assumed to be more limited. Fossil liquid fuels remain in all scenarios examined, primarily driven by the extent to which their emissions can be offset with removals. Limiting biomass increases biogenic CO2 capture within biofuel pathways, while limiting sequestration availability increases the share of captured atmospheric (including biogenic) carbon directed toward utilization for synthetic fuel production. While varying assumptions about liquid fuel demand distributions and fuel product supply flexibility alter competition among individual fuel production technologies, broader energy system outcomes are robust to these assumptions. Biomass and CO2 sequestration availability are key drivers of energy system outcomes in deeply decarbonized energy systems.
comment: Main text: 24 pages, 9 figures, 1 table. Supporting information (SI): 68 pages, 30 figures, 48 tables
Optimal policy design for innovation diffusion: shaping today's incentives for transforming the future
In this paper, we propose a new framework for the design of incentives aimed at promoting innovation diffusion in social influence networks. In particular, our framework relies on an extension of the Friedkin and Johnsen opinion dynamics model characterizing the effects of (i) short-memory incentives, which have an immediate yet transient impact, and (ii) long-term structural incentives, whose impact persists via an exponentially decaying memory. We propose to design these incentives via a model-predictive control (MPC) scheme over an augmented state that captures the memory in our opinion dynamics model, yielding a convex quadratic program with linear constraints. Our numerical simulations based on data on sustainable mobility habits show the effectiveness of the proposed approach, which balances large-scale adoption and resource allocation
comment: Submitted to IFAC World Congress 2026 and Control Engineering Practice
Directional Pinching-Antenna Systems
We propose a directional pinching-antenna system (DiPASS), a comprehensive framework that transitions PASS modeling from idealized abstraction to physical consistency. DiPASS introduces the first channel model that accurately captures the directional, pencil-like radiation of pinching antennas, incorporates a practical waveguide attenuation of 1.3 dB/m, and accounts for stochastic line-of-sight blockage. A key enabler of DiPASS is our new "equal quota division" power allocation strategy, which guarantees predetermined coupling lengths independent of antenna positions, thereby overcoming a critical barrier to practical deployment. Our analysis yields foundational insights: we derive closed-form solutions for optimal antenna placement and orientation in single-PA scenarios, quantifying the core trade-off between waveguide and free-space losses. For multi-PA systems, we develop a scalable optimization framework that leverages directional sparsity, revealing that waveguide diversity surpasses antenna density in enhancing system capacity. Extensive simulations validate our analysis and demonstrate that DiPASS provides a realistic performance benchmark, fundamentally reshaping the understanding and design principles for future PASS-enabled 6G networks.
PolyOCP.jl -- A Julia Package for Stochastic OCPs and MPC
The consideration of stochastic uncertainty in optimal and predictive control is a well-explored topic. Recently Polynomial Chaos Expansions (PCE) have seen a lot of considerations for problems involving stochastically uncertain system parameters and also for problems with additive stochastic i.i.d. disturbances. While there exist a number of open-source PCE toolboxes, tailored open-source codes for the solution of OCPs involving additive stochastic i.i.d. disturbances in julia are not available. Hence, this paper introduces the toolbox PolyOCP.jl which enables to efficiently solve stochastic OCPs for a large class of disturbance distributions. We explain the main mathematical concepts between the PCE transcription of stochastic OCPs and how they are provided in the toolbox. We draw upon two examples to illustrate the functionalities of PolyOCP.jl.
Impact Analysis of COVID-19 in Bangladesh Power Sector and Recommendations based on Practical Data and Machine Learning Approach
This paper investigates the impact of COVID-19 on the power sector in Bangladesh, how the country has dealt with it, and explores the path to stability. The study employs data visualisation and complex statistics to examine critical data about power systems in Bangladesh. This includes load patterns on a daily, monthly, annual, weekend, and weekday basis. Significant alterations in these patterns have been observed during our study e.g., in April and May of 2020, the power demand decreased by approximately 15.4% and 17.2%, respectively, compared to the corresponding period in 2019. We have used a Long-Short-Term Memory (LSTM) framework to predict the load profile of 2020 excluding COVID-19 effects. This model is compared with the actual load profile to determine the degree to which COVID-19 has impacted. The comparison indicates that the average power demand decreased by approximately 19.5% in April 2020 and 18.3% in May 2020, relative to its projected value. The study also investigates system stability by analyzing transmission loss and load factor, and the environmental effect by analyzing the Carbon Dioxide emission rate. Finally, the study provides recommendations for overcoming future disasters, such as developing more resilient power systems, investing in renewable energy, and improving energy efficiency.
Large Language Model-Assisted Planning of Electric Vehicle Charging Infrastructure with Real-World Case Study
The growing demand for electric vehicle (EV) charging infrastructure presents significant planning challenges, requiring efficient strategies for investment and operation to deliver cost-effective charging services. However, the potential benefits of EV charging assignment, particularly in response to varying spatial-temporal patterns of charging demand, remain under-explored in infrastructure planning. This paper proposes an integrated approach that jointly optimizes investment decisions and charging assignments while accounting for spatial-temporal demand dynamics and their interdependencies. To support efficient model development, we leverage a large language model (LLM) to assist in generating and refining the mathematical formulation from structured natural-language descriptions, significantly reducing the modeling burden. The resulting optimization model enables optimal joint decision-making for investment and operation. Additionally, we propose a distributed optimization algorithm based on the Alternating Direction Method of Multipliers (ADMM) to address computational complexity in high-dimensional scenarios, which can be executed on standard computing platforms. We validate our approach through a case study using 1.5 million real-world travel records from Chengdu, China, demonstrating a 30% reduction in total cost compared to a baseline without EV assignment.
Semi-Passive IRS Enabled Sensing with Group Movable Sensors
The performance of the sensing system is limited by the signal attenuation and the number of receiving components. In this letter, we investigate the sensor position selection in a semi-passive intelligent reflecting surface (IRS) enabled non-line-of-sight (NLoS) sensing system. The IRS consists of passive elements and active sensors, where the sensors can receive and process the echo signal for direction-of-arrival (DoA) estimation. Motivated by the movable antenna array and fluid antenna system, we consider the case where the sensors are integrated into a group for movement and derive the corresponding Cramer-Rao bound (CRB). Then, the optimal solution for the positions of the movable sensors (MSs) to the CRB minimization problem is derived in closed form. Moreover, we characterize the relationship between the CRB and system parameters. Theoretical analysis and numerical results are provided to demonstrate the superiority of the proposed MS scheme over the fixed-position (FP) scheme.
Equivariant Tracking Control for Fully Actuated Mechanical Systems on Matrix Lie Groups
Mechanical control systems such as aerial, marine, space, and terrestrial robots often naturally admit a state-space that has the structure of a Lie group. The kinetic energy of such systems is commonly invariant to the induced action by the Lie group, and the system dynamics can be written as a coupled ordinary differential equation on the group and the dual space of its Lie algebra, termed a Lie-Poisson system. In this paper, we show that Lie-Poisson systems can also be written as a left-invariant system on a semi-direct Lie group structure placed on the trivialised cotangent bundle of the symmetry group. The authors do not know of a prior reference for this observation and we are confident the insight has never been exploited in the context of tracking control. We use this representation to build a right-invariant tracking error for the full state of a Lie-Poisson mechanical system and show that the error dynamics for this error are themselves of Lie-Poisson structure, albeit with time-varying inertia. This allows us to tackle the general trajectory tracking problem using an energy shaping design metholodology. To demonstrate the approach, we apply the proposed design methodology to a simple attitude tracking control.
Accelerated Transformer Energization Sequence for Inverter Based Resources in Black-Start Procedures with Active Flux Trajectory Manipulation in the Stationary Reference Frame
This paper proposes advanced soft-magnetization techniques to enable ultra-fast and reliable black-start of grid-forming (GFM) converters. Conventional hard-magnetization with well-established three-phase voltages during transformer energization induces severe inrush currents due to flux offset, which can damage power semiconductor devices. To overcome this drawback, an ultra-fast soft-magnetization method is firstly introduced, leveraging the voltage programmability of the inverter to actively reshape the initial voltage profile and thereby eliminate flux offset of the transformer core. By suppressing the formation of flux offset itself, the proposed approach prevents magnetic saturation and achieves nominal terminal voltage within a few milliseconds while effectively suppressing inrush current. However, this method can still trigger surge currents to power semiconductor devices in the presence of an LC filter due to abrupt voltage magnitude and phase transitions. To address this issue, an enhanced Archimedean spiral soft-magnetization method is developed, where both voltage magnitude and phase evolve smoothly to simultaneously suppress inrush and surge currents. Furthermore, residual flux in the transformer core is considered, and a demagnetization sequence using the inverter is validated to ensure reliable start-up. Experimental results confirm that the proposed methods achieve rapid black-start performance within one fundamental cycle while ensuring safe and stable operation of GFM converters.
Evaluation of Real-Time Mitigation Techniques for Cyber Security in IEC 61850 / IEC 62351 Substations
The digitalization of substations enlarges the cyber-attack surface, necessitating effective detection and mitigation of cyber attacks in digital substations. While machine learning-based intrusion detection has been widely explored, such methods have not demonstrated detection and mitigation within the required real-time budget. In contrast, cryptographic authentication has emerged as a practical candidate for real-time cyber defense, as specified in IEC 62351. In addition, lightweight rule-based intrusion detection that validates IEC 61850 semantics can provide specification-based detection of anomalous or malicious traffic with minimal processing delay. This paper presents the design logic and implementation aspects of three potential real-time mitigation techniques capable of countering GOOSE-based attacks: (i) IEC 62351-compliant message authentication code (MAC) scheme, (ii) a semantics-enforced rule-based intrusion detection system (IDS), and (iii) a hybrid approach integrating both MAC verification and Intrusion Detection System (IDS). A comparative evaluation of these real-time mitigation approaches is conducted using a cyber-physical system (CPS) security testbed. The results show that the hybrid integration significantly enhances mitigation capability. Furthermore, the processing delays of all three methods remain within the strict delivery requirements of GOOSE communication. The study also identifies limitations that none of the techniques can fully address, highlighting areas for future work.
comment: CIGRE USNC Grid of the Future Symposium 2025
Multi-Hypotheses Ego-Tracking for Resilient Navigation
Autonomous robots relying on radio frequency (RF)-based localization such as global navigation satellite system (GNSS), ultra-wide band (UWB), and 5G integrated sensing and communication (ISAC) are vulnerable to spoofing and sensor manipulation. This paper presents a resilient navigation architecture that combines multi-hypothesis estimation with a Poisson binomial windowed-count detector for anomaly identification and isolation. A state machine coordinates transitions between operation, diagnosis, and mitigation, enabling adaptive response to adversarial conditions. When attacks are detected, trajectory re-planning based on differential flatness allows information-gathering maneuvers minimizing performance loss. Case studies demonstrate effective detection of biased sensors, maintenance of state estimation, and recovery of nominal operation under persistent spoofing attacks
Joint Satellite Power Consumption and Handover Optimization for LEO Constellations
In satellite constellation-based communication systems, continuous user coverage requires frequent handoffs due to the dynamic topology induced by the Low Earth Orbit (LEO) satellites. Each handoff between a satellite and ground users introduces additional signaling and power consumption, which can become a significant burden as the size of the constellation continues to increase. This work focuses on the optimization of the total transmission rate in a LEO-to-user system, by jointly considering the total transmitted power, user-satellite associations, and power consumption, the latter being handled through a penalty on handoff events. We consider a system where LEO satellites serve users located in remote areas with no terrestrial connectivity, and formulate the power allocation problem as a mixed-integer concave linear program (MICP) subject to power and association constraints. Our approach can be solved with off-the-shelf solvers and is benchmarked against a naive baseline where users associate to their closest visible satellite. Extensive Monte Carlo simulations demonstrate the effectiveness of the proposed method in controlling the handoff frequency while maintaining high user throughput. These performance gains highlight the effectiveness of our handover-aware optimization strategy, which ensures that user rates improve significantly, by about 40%, without incurring a disproportionate rise in the handoff frequency.
An Adaptive, Data-Integrated Agent-Based Modeling Framework for Explainable and Contestable Policy Design
Multi-agent systems often operate under feedback, adaptation, and non-stationarity, yet many simulation studies retain static decision rules and fixed control parameters. This paper introduces a general adaptive multi-agent learning framework that integrates: (i) four dynamic regimes distinguishing static versus adaptive agents and fixed versus adaptive system parameters; (ii) information-theoretic diagnostics (entropy rate, statistical complexity, and predictive information) to assess predictability and structure; (iii) structural causal models for explicit intervention semantics; (iv) procedures for generating agent-level priors from aggregate or sample data; and (v) unsupervised methods for identifying emergent behavioral regimes. The framework offers a domain-neutral architecture for analyzing how learning agents and adaptive controls jointly shape system trajectories, enabling systematic comparison of stability, performance, and interpretability across non-equilibrium, oscillatory, or drifting dynamics. Mathematical definitions, computational operators, and an experimental design template are provided, yielding a structured methodology for developing explainable and contestable multi-agent decision processes.
comment: 27 pages, 2 case studies (emissions and smart grids). Preprint prepared during the author's PhD research at the Open University of Cyprus and the University of Milano-Bicocca. Introduces a unified framework for adaptive multi-agent learning with information-theoretic, causal, and clustering diagnostics
A Distributed Gradient-based Algorithm for Optimization Problems with Coupled Equality Constraints
This paper studies a class of distributed optimization problems with coupled equality constraints in networked systems. Many existing distributed algorithms rely on solving local subproblems via the $\operatorname{argmin}$ operator in each iteration. Such approaches become computationally burdensome or intractable when local cost functions are complex. To address this challenge, we propose a novel distributed gradient-based algorithm that avoids solving a local optimization problem at each iteration by leveraging first-order approximations and projection onto local feasible sets. The algorithm operates in a fully distributed manner, requiring only local communication without exchanging gradients or primal variables. We rigorously establish sublinear convergence for general convex cost functions and linear convergence under strong convexity and smoothness conditions. Numerical simulation on the IEEE 118-bus system demonstrates the superior computational efficiency and scalability of the proposed method compared to several state-of-the-art distributed optimization algorithms.
comment: 11 pages, 3 figures, submitted to Automatica
Understanding Risk and Revenue in the Nordic 15-minute mFRR market: An EV Aggregation Study
Decarbonisation, decentralisation, and intermittency are driving the development of flexibility markets towards shorter market time units (MTU). Shorter MTUs and shorter gate closures lower the entrance barriers of demand side aggregators that face significant uncertainty on longer time scales. We study the business case for aggregated EV fleets participating in the Nordic 15-minute mFRR Energy Activation Market (EAM). Motivated by increasing system granularity and rapid EV uptake, we represent fleet flexibility as a virtual battery with time-varying power and energy envelopes and formulate a risk-aware stochastic optimisation that co-ordinates day-ahead scheduling with quarter-hour mFRR bidding. Using synthetic residential charging cohorts and observed day-ahead prices on two stylised days, we compare an independent day-ahead baseline to a co-optimised strategy under conservative availability and a CVaR-augmented objective. Across both price cases, co-optimisation increases expected profit and lowers downside risk: the model buys less energy day-ahead and shifts procurement toward mFRR down while flattening the charging plan to retain eligibility for mFRR up. Profit decomposition shows that the uplift is driven by higher mFRR down revenues and reduced reliance on unwinding day-ahead positions. We discuss operational implications for bidding and outline two extensions: rolling 45-minute re-optimisation and a V2G framework.
Non-Ergodic Convergence Algorithms for Distributed Consensus and Coupling-Constrained Optimization
We study distributed convex optimization with two ubiquitous forms of coupling: consensus constraints and global affine equalities. We first design a linearized method of multipliers for the consensus optimization problem. Without smoothness or strong convexity, we establish non-ergodic sublinear rates of order O(1/\sqrt{k}) for both the objective optimality and the consensus violation. Leveraging duality, we then show that the economic dispatch problem admits a dual consensus formulation, and that applying the same algorithm to the dual economic dispatch yields non-ergodic O(1/\sqrt{k}) decay for the error of the summation of the cost over the network and the equality-constraint residual under convexity and Slater's condition. Numerical results on the IEEE 118-bus system demonstrate faster reduction of both objective error and feasibility error relative to the state-of-the-art baselines, while the dual variables reach network-wide consensus.
An Accelerated Distributed Algorithm with Equality and Inequality Coupling Constraints
This paper studies distributed convex optimization with both affine equality and nonlinear inequality couplings through the duality analysis. We first formulate the dual of the coupling-constraint problem and reformulate it as a consensus optimization problem over a connected network. To efficiently solve this dual problem and hence the primal problem, we design an accelerated linearized algorithm that, at each round, a look-ahead linearization of the separable objective is combined with a quadratic penalty on the Laplacian constraint, a proximal step, and an aggregation of iterations. On the theory side, we prove non-ergodic rates for both the primal optimality error and the feasibility error. On the other hand, numerical experiments show a faster decrease of optimality error and feasibility residual than augmented-Lagrangian tracking and distributed subgradient baselines under the same communication budget.
State Feedback Controllers with Operational Constraints
In this paper, a state feedback control design with min/max operational limiting constraints is developed for multi-input-multi-output linear time invariant systems. Specifically, servo-tracking control problems with input and output constraints are considered. For static servo-controllers, the output design limits are imposed component-wise on the system selected output, which is of the same dimension as the control input. For dynamic servo-controllers, operational constraints are applied to the system inputs and outputs. The proposed control solution also includes an anti-windup protection logic for dynamic servo-controllers with integral action. The developed method is based on the Nagumo Theorem for forward invariance, the Comparison Lemma for inclusion of input/output inequality constraints, and on the min-norm optimal controllers for synthesis. The derived design is similar and directly related to the method of Control Barrier Functions. Simulation trade studies are presented to illustrate benefits of the proposed control methodology for aerial flight critical systems.
comment: 33 pages, 13 figures. These are the original detailed design notes where my recent CBF-related papers came from
Anytime-Feasible First-Order Optimization via Safe Sequential QCQP
This paper presents the Safe Sequential Quadratically Constrained Quadratic Programming (SS-QCQP) algorithm, a first-order method for smooth inequality-constrained nonconvex optimization that guarantees feasibility at every iteration. The method is derived from a continuous-time dynamical system whose vector field is obtained by solving a convex QCQP that enforces monotonic descent of the objective and forward invariance of the feasible set. The resulting continuous-time dynamics achieve an $O(1/t)$ convergence rate to first-order stationary points under standard constraint qualification conditions. We then propose a safeguarded Euler discretization with adaptive step-size selection that preserves this convergence rate while maintaining both descent and feasibility in discrete time. To enhance scalability, we develop an active-set variant (SS-QCQP-AS) that selectively enforces constraints near the boundary, substantially reducing computational cost without compromising theoretical guarantees. Numerical experiments on a multi-agent nonlinear optimal control problem demonstrate that SS-QCQP and SS-QCQP-AS maintain feasibility, exhibit the predicted convergence behavior, and deliver solution quality comparable to second-order solvers such as SQP and IPOPT.
Active Secure Neighbor Selection in Multi-Agent Systems with Byzantine Attacks
This paper investigates the problem of resilient control for multi-agent systems in the presence of Byzantine adversaries via an active secure neighbor selection framework. A pre-discriminative graph is first constructed to characterize the admissible set of candidate neighbors for each agent. Based on this graph, a dynamic in-neighbor selection strategy is proposed, wherein each agent actively selects a subset of its pre-discriminative neighbors. The number of selected neighbors is adjustable, allowing for a trade-off between communication overhead and robustness, with the minimal case requiring only a single in-neighbor. The proposed strategy facilitates the reconstruction of a directed spanning tree among normal agents following the detection and isolation of Byzantine agents. It achieves resilient consensus without imposing any assumptions on the initial connectivity among normal agents. Moreover, the approach significantly reduces communication burden while maintaining resilience to adversarial behavior. A numerical example is provided to illustrate the effectiveness of the proposed method.
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Neural Identification of Feedback-Stabilized Nonlinear Systems
Neural networks have demonstrated remarkable success in modeling nonlinear dynamical systems. However, identifying these systems from closed-loop experimental data remains a challenge due to the correlations induced by the feedback loop. Traditional nonlinear closed-loop system identification methods struggle with reliance on precise noise models, robustness to data variations, or computational feasibility. Additionally, it is essential to ensure that the identified model is stabilized by the same controller used during data collection, ensuring alignment with the true system's closed-loop behavior. The dual Youla parameterization provides a promising solution for linear systems, offering statistical guarantees and closed-loop stability. However, extending this approach to nonlinear systems presents additional complexities. In this work, we propose a computationally tractable framework for identifying complex, potentially unstable systems while ensuring closed-loop stability using a complete parameterization of systems stabilized by a given controller. We establish asymptotic consistency in the linear case and validate our method through numerical comparisons, demonstrating superior accuracy over direct identification baselines and compatibility with the true system in stability properties.
comment: 8 pages, 4 figures
Self-Refined Generative Foundation Models for Wireless Traffic Prediction
With a broad range of emerging applications in 6G networks, wireless traffic prediction has become a critical component of network management. However, the dynamically shifting distribution of wireless traffic in non-stationary 6G networks presents significant challenges to achieving accurate and stable predictions. Motivated by recent advancements in Generative AI (GenAI)-enabled 6G networks, this paper proposes a novel self-refined Large Language Model (LLM) for wireless traffic prediction, namely TrafficLLM, through in-context learning without parameter fine-tuning or model training. The proposed TrafficLLM harnesses the powerful few-shot learning abilities of LLMs to enhance the scalability of traffic prediction in dynamically changing wireless environments. Specifically, our proposed TrafficLLM embraces an LLM to iteratively refine its predictions through a three-step process: traffic prediction, feedback generation, and prediction refinement. Initially, the proposed TrafficLLM conducts traffic predictions using task-specific demonstration prompts. Recognizing that LLMs may generate incorrect predictions on the first attempt, this paper designs feedback demonstration prompts to provide multifaceted and valuable feedback related to these initial predictions. The validation scheme is further incorporated to systematically enhance the accuracy of mathematical calculations during the feedback generation process. Following this comprehensive feedback, our proposed TrafficLLM introduces refinement demonstration prompts, enabling the same LLM to further refine its predictions and thereby enhance prediction performance. Evaluations on two realistic datasets demonstrate that the proposed TrafficLLM outperforms LLM-based in-context learning methods, achieving performance improvements of 23.17% and 17.09%, respectively.
Distributionally Robust Free Energy Principle for Decision-Making
Despite their groundbreaking performance, autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training-environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge towards their real-world deployments. Here, we introduce a Distributionally Robust Free Energy model (DR-FREE) that instills this core property by design. Combining a robust extension of the free energy principle with a resolution engine, DR-FREE wires robustness into the agent decision-making mechanisms. Across benchmark experiments, DR-FREE enables the agents to complete the task even when, in contrast, state-of-the-art models fail. This milestone may inspire both deployments in multi-agent settings and, at a perhaps deeper level, the quest for an explanation of how natural agents -- with little or no training -- survive in capricious environments.
comment: Contains main text and supplementary information. Supplementary movie is at the paper repository
Lessons Learned from Developing a Privacy-Preserving Multimodal Wearable for Local Voice-and-Vision Inference
Many promising applications of multimodal wearables require continuous sensing and heavy computation, yet users reject such devices due to privacy concerns. This paper shares our experiences building an ear-mounted voice-and-vision wearable that performs local AI inference using a paired smartphone as a trusted personal edge. We describe the hardware-software co-design of this privacy-preserving system, including challenges in integrating a camera, microphone, and speaker within a 30-gram form factor, enabling wake word-triggered capture, and running quantized vision-language and large-language models entirely offline. Through iterative prototyping, we identify key design hurdles in power budgeting, connectivity, latency, and social acceptability. Our initial evaluation shows that fully local multimodal inference is feasible on commodity mobile hardware with interactive latency. We conclude with design lessons for researchers developing embedded AI systems that balance privacy, responsiveness, and usability in everyday settings.
Robotics
AutoFocus-IL: VLM-based Saliency Maps for Data-Efficient Visual Imitation Learning without Extra Human Annotations
AutoFocus-IL is a simple yet effective method to improve data efficiency and generalization in visual imitation learning by guiding policies to attend to task-relevant features rather than distractors and spurious correlations. Although saliency regularization has emerged as a promising way to achieve this, existing approaches typically require costly supervision such as human gaze data or manual saliency annotations. In contrast, AutoFocus-IL leverages vision-language models (VLMs) to automatically identify and track key objects in demonstrations, generating temporal saliency maps that highlight causal visual signals while suppressing distractors. These maps are then used to regularize behavior cloning policies, yielding stronger alignment between visual attention and task-relevant cues. Experiments in both the CARLA simulator and real-robot manipulation tasks demonstrate that AutoFocus-IL not only outperforms standard behavior cloning but also surpasses state-of-the-art baselines that assume privileged access to human supervision, such as gaze data. Code, datasets, and trained policy videos are available at https://AutoFocus-IL.github.io/.
comment: 8 pages, 6 figures. Code and datasets available at http://autofocus-il.github.io/
How to Train Your Latent Control Barrier Function: Smooth Safety Filtering Under Hard-to-Model Constraints
Latent safety filters extend Hamilton-Jacobi (HJ) reachability to operate on latent state representations and dynamics learned directly from high-dimensional observations, enabling safe visuomotor control under hard-to-model constraints. However, existing methods implement "least-restrictive" filtering that discretely switch between nominal and safety policies, potentially undermining the task performance that makes modern visuomotor policies valuable. While reachability value functions can, in principle, be adapted to be control barrier functions (CBFs) for smooth optimization-based filtering, we theoretically and empirically show that current latent-space learning methods produce fundamentally incompatible value functions. We identify two sources of incompatibility: First, in HJ reachability, failures are encoded via a "margin function" in latent space, whose sign indicates whether or not a latent is in the constraint set. However, representing the margin function as a classifier yields saturated value functions that exhibit discontinuous jumps. We prove that the value function's Lipschitz constant scales linearly with the margin function's Lipschitz constant, revealing that smooth CBFs require smooth margins. Second, reinforcement learning (RL) approximations trained solely on safety policy data yield inaccurate value estimates for nominal policy actions, precisely where CBF filtering needs them. We propose the LatentCBF, which addresses both challenges through gradient penalties that lead to smooth margin functions without additional labeling, and a value-training procedure that mixes data from both nominal and safety policy distributions. Experiments on simulated benchmarks and hardware with a vision-based manipulation policy demonstrate that LatentCBF enables smooth safety filtering while doubling the task-completion rate over prior switching methods.
comment: 3 figures, 10 tables, 22 pages
An Analysis of Constraint-Based Multi-Agent Pathfinding Algorithms
This study informs the design of future multi-agent pathfinding (MAPF) and multi-robot motion planning (MRMP) algorithms by guiding choices based on constraint classification for constraint-based search algorithms. We categorize constraints as conservative or aggressive and provide insights into their search behavior, focusing specifically on vanilla Conflict-Based Search (CBS) and Conflict-Based Search with Priorities (CBSw/P). Under a hybrid grid-roadmap representation with varying resolution, we observe that aggressive (priority constraint) formulations tend to solve more instances as agent count or resolution increases, whereas conservative (motion constraint) formulations yield stronger solution quality when both succeed. Findings are synthesized in a decision flowchart, aiding users in selecting suitable constraints. Recommendations extend to Multi-Robot Motion Planning (MRMP), emphasizing the importance of considering topological features alongside problem, solution, and representation features. A comprehensive exploration of the study, including raw data and map performance, is available in our public GitHub Repository: https://GitHub.com/hannahjmlee/constraint-mapf-analysis
Connectivity-Preserving Multi-Agent Area Coverage via Optimal-Transport-Based Density-Driven Optimal Control (D2OC)
Multi-agent systems play a central role in area coverage tasks across search-and-rescue, environmental monitoring, and precision agriculture. Achieving non-uniform coverage, where spatial priorities vary across the domain, requires coordinating agents while respecting dynamic and communication constraints. Density-driven approaches can distribute agents according to a prescribed reference density, but existing methods do not ensure connectivity. This limitation often leads to communication loss, reduced coordination, and degraded coverage performance. This letter introduces a connectivity-preserving extension of the Density-Driven Optimal Control (D2OC) framework. The coverage objective, defined using the Wasserstein distance between the agent distribution and the reference density, admits a convex quadratic program formulation. Communication constraints are incorporated through a smooth connectivity penalty, which maintains strict convexity, supports distributed implementation, and preserves inter-agent communication without imposing rigid formations. Simulation studies show that the proposed method consistently maintains connectivity, improves convergence speed, and enhances non-uniform coverage quality compared with density-driven schemes that do not incorporate explicit connectivity considerations.
comment: Under review in IEEE Control Systems Letters (LCSS). 6 pages
PhysGS: Bayesian-Inferred Gaussian Splatting for Physical Property Estimation CVPR 2026
Understanding physical properties such as friction, stiffness, hardness, and material composition is essential for enabling robots to interact safely and effectively with their surroundings. However, existing 3D reconstruction methods focus on geometry and appearance and cannot infer these underlying physical properties. We present PhysGS, a Bayesian-inferred extension of 3D Gaussian Splatting that estimates dense, per-point physical properties from visual cues and vision--language priors. We formulate property estimation as Bayesian inference over Gaussian splats, where material and property beliefs are iteratively refined as new observations arrive. PhysGS also models aleatoric and epistemic uncertainties, enabling uncertainty-aware object and scene interpretation. Across object-scale (ABO-500), indoor, and outdoor real-world datasets, PhysGS improves accuracy of the mass estimation by up to 22.8%, reduces Shore hardness error by up to 61.2%, and lowers kinetic friction error by up to 18.1% compared to deterministic baselines. Our results demonstrate that PhysGS unifies 3D reconstruction, uncertainty modeling, and physical reasoning in a single, spatially continuous framework for dense physical property estimation. Additional results are available at https://samchopra2003.github.io/physgs.
comment: Submitted to CVPR 2026
Object-centric Task Representation and Transfer using Diffused Orientation Fields
Curved objects pose a fundamental challenge for skill transfer in robotics: unlike planar surfaces, they do not admit a global reference frame. As a result, task-relevant directions such as "toward" or "along" the surface vary with position and geometry, making object-centric tasks difficult to transfer across shapes. To address this, we introduce an approach using Diffused Orientation Fields (DOF), a smooth representation of local reference frames, for transfer learning of tasks across curved objects. By expressing manipulation tasks in these smoothly varying local frames, we reduce the problem of transferring tasks across curved objects to establishing sparse keypoint correspondences. DOF is computed online from raw point cloud data using diffusion processes governed by partial differential equations, conditioned on keypoints. We evaluate DOF under geometric, topological, and localization perturbations, and demonstrate successful transfer of tasks requiring continuous physical interaction such as inspection, slicing, and peeling across varied objects. We provide our open-source codes at our website https://github.com/idiap/diffused_fields_robotics
Splatblox: Traversability-Aware Gaussian Splatting for Outdoor Robot Navigation ICRA 2026
We present Splatblox, a real-time system for autonomous navigation in outdoor environments with dense vegetation, irregular obstacles, and complex terrain. Our method fuses segmented RGB images and LiDAR point clouds using Gaussian Splatting to construct a traversability-aware Euclidean Signed Distance Field (ESDF) that jointly encodes geometry and semantics. Updated online, this field enables semantic reasoning to distinguish traversable vegetation (e.g., tall grass) from rigid obstacles (e.g., trees), while LiDAR ensures 360-degree geometric coverage for extended planning horizons. We validate Splatblox on a quadruped robot and demonstrate transfer to a wheeled platform. In field trials across vegetation-rich scenarios, it outperforms state-of-the-art methods with over 50% higher success rate, 40% fewer freezing incidents, 5% shorter paths, and up to 13% faster time to goal, while supporting long-range missions up to 100 meters. Experiment videos and more details can be found on our project page: https://splatblox.github.io
comment: Submitted to ICRA 2026
SafeFall: Learning Protective Control for Humanoid Robots
Bipedal locomotion makes humanoid robots inherently prone to falls, causing catastrophic damage to the expensive sensors, actuators, and structural components of full-scale robots. To address this critical barrier to real-world deployment, we present \method, a framework that learns to predict imminent, unavoidable falls and execute protective maneuvers to minimize hardware damage. SafeFall is designed to operate seamlessly alongside existing nominal controller, ensuring no interference during normal operation. It combines two synergistic components: a lightweight, GRU-based fall predictor that continuously monitors the robot's state, and a reinforcement learning policy for damage mitigation. The protective policy remains dormant until the predictor identifies a fall as unavoidable, at which point it activates to take control and execute a damage-minimizing response. This policy is trained with a novel, damage-aware reward function that incorporates the robot's specific structural vulnerabilities, learning to shield critical components like the head and hands while absorbing energy with more robust parts of its body. Validated on a full-scale Unitree G1 humanoid, SafeFall demonstrated significant performance improvements over unprotected falls. It reduced peak contact forces by 68.3\%, peak joint torques by 78.4\%, and eliminated 99.3\% of collisions with vulnerable components. By enabling humanoids to fail safely, SafeFall provides a crucial safety net that allows for more aggressive experiments and accelerates the deployment of these robots in complex, real-world environments.
Expanding the Workspace of Electromagnetic Navigation Systems Using Dynamic Feedback for Single- and Multi-agent Control
Electromagnetic navigation systems (eMNS) enable a number of magnetically guided surgical procedures. A challenge in magnetically manipulating surgical tools is that the effective workspace of an eMNS is often severely constrained by power and thermal limits. We show that system-level control design significantly expands this workspace by reducing the currents needed to achieve a desired motion. We identified five key system approaches that enable this expansion: (i) motion-centric torque/force objectives, (ii) energy-optimal current allocation, (iii) real-time pose estimation, (iv) dynamic feedback, and (v) high-bandwidth eMNS components. As a result, we stabilize a 3D inverted pendulum on an eight-coil OctoMag eMNS with significantly lower currents (0.1-0.2 A vs. 8-14 A), by replacing a field-centric field-alignment strategy with a motion-centric torque/force-based approach. We generalize to multi-agent control by simultaneously stabilizing two inverted pendulums within a shared workspace, exploiting magnetic-field nonlinearity and coil redundancy for independent actuation. A structured analysis compares the electromagnetic workspaces of both paradigms and examines current-allocation strategies that map motion objectives to coil currents. Cross-platform evaluation of the clinically oriented Navion eMNS further demonstrates substantial workspace expansion by maintaining stable balancing at distances up to 50 cm from the coils. The results demonstrate that feedback is a practical path to scalable, efficient, and clinically relevant magnetic manipulation.
Categorical Equivariant Deep Learning: Category-Equivariant Neural Networks and Universal Approximation Theorems
We develop a theory of category-equivariant neural networks (CENNs) that unifies group/groupoid-equivariant networks, poset/lattice-equivariant networks, graph and sheaf neural networks. Equivariance is formulated as naturality in a topological category with Radon measures, formulating linear and nonlinear layers in the categorical setup. We prove the equivariant universal approximation theorem in the general setting: the class of finite-depth CENNs is dense in the space of continuous equivariant transformations. We instantiate the framework for groups/groupoids, posets/lattices, graphs and cellular sheaves, deriving universal approximation theorems for them in a systematic manner. Categorical equivariant deep learning thus allows us to expand the horizons of equivariant deep learning beyond group actions, encompassing not only geometric symmetries but also contextual and compositional symmetries.
Explicit Bounds on the Hausdorff Distance for Truncated mRPI Sets via Norm-Dependent Contraction Rates
This paper establishes the first explicit and closed-form upper bound on the Hausdorff distance between the truncated minimal robust positively invariant (mRPI) set and its infinite-horizon limit. While existing mRPI approximations guarantee asymptotic convergence through geometric or norm-based arguments, none provides a computable expression that quantifies the truncation error for a given horizon. We show that the error satisfies \( d_H(\mathcal{E}_N,\mathcal{E}_\infty) \le r_W\,γ^{N+1}/(1-γ), \) where $γ<1$ is the induced-norm contraction factor and $r_W$ depends only on the disturbance set. The bound is fully analytic, requires no iterative set computations, and directly characterizes the decay rate of the truncated Minkowski series. We further demonstrate that the choice of vector norm serves as a design parameter that accelerates convergence, enabling substantially tighter horizon selection for robust invariant-set computations and tube-based MPC. Numerical experiments validate the sharpness, scalability, and practical relevance of the proposed bound.
Enhancing UAV Search under Occlusion using Next Best View Planning
Search and rescue missions are often critical following sudden natural disasters or in high-risk environmental situations. The most challenging search and rescue missions involve difficult-to-access terrains, such as dense forests with high occlusion. Deploying unmanned aerial vehicles for exploration can significantly enhance search effectiveness, facilitate access to challenging environments, and reduce search time. However, in dense forests, the effectiveness of unmanned aerial vehicles depends on their ability to capture clear views of the ground, necessitating a robust search strategy to optimize camera positioning and perspective. This work presents an optimized planning strategy and an efficient algorithm for the next best view problem in occluded environments. Two novel optimization heuristics, a geometry heuristic, and a visibility heuristic, are proposed to enhance search performance by selecting optimal camera viewpoints. Comparative evaluations in both simulated and real-world settings reveal that the visibility heuristic achieves greater performance, identifying over 90% of hidden objects in simulated forests and offering 10% better detection rates than the geometry heuristic. Additionally, real-world experiments demonstrate that the visibility heuristic provides better coverage under the canopy, highlighting its potential for improving search and rescue missions in occluded environments.
comment: Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Learning Visually Interpretable Oscillator Networks for Soft Continuum Robots from Video
Data-driven learning of soft continuum robot (SCR) dynamics from high-dimensional observations offers flexibility but often lacks physical interpretability, while model-based approaches require prior knowledge and can be computationally expensive. We bridge this gap by introducing (1) the Attention Broadcast Decoder (ABCD), a plug-and-play module for autoencoder-based latent dynamics learning that generates pixel-accurate attention maps localizing each latent dimension's contribution while filtering static backgrounds. (2) By coupling these attention maps to 2D oscillator networks, we enable direct on-image visualization of learned dynamics (masses, stiffness, and forces) without prior knowledge. We validate our approach on single- and double-segment SCRs, demonstrating that ABCD-based models significantly improve multi-step prediction accuracy: 5.7x error reduction for Koopman operators and 3.5x for oscillator networks on the two-segment robot. The learned oscillator network autonomously discovers a chain structure of oscillators. Unlike standard methods, ABCD models enable smooth latent space extrapolation beyond training data. This fully data-driven approach yields compact, physically interpretable models suitable for control applications.
MicCheck: Repurposing Off-the-Shelf Pin Microphones for Easy and Low-Cost Contact Sensing
Robotic manipulation tasks are contact-rich, yet most imitation learning (IL) approaches rely primarily on vision, which struggles to capture stiffness, roughness, slip, and other fine interaction cues. Tactile signals can address this gap, but existing sensors often require expensive, delicate, or integration-heavy hardware. In this work, we introduce MicCheck, a plug-and-play acoustic sensing approach that repurposes an off-the-shelf Bluetooth pin microphone as a low-cost contact sensor. The microphone clips into a 3D-printed gripper insert and streams audio via a standard USB receiver, requiring no custom electronics or drivers. Despite its simplicity, the microphone provides signals informative enough for both perception and control. In material classification, it achieves 92.9% accuracy on a 10-class benchmark across four interaction types (tap, knock, slow press, drag). For manipulation, integrating pin microphone into an IL pipeline with open source hardware improves the success rate on picking and pouring task from 0.40 to 0.80 and enables reliable execution of contact-rich skills such as unplugging and sound-based sorting. Compared with high-resolution tactile sensors, pin microphones trade spatial detail for cost and ease of integration, offering a practical pathway for deploying acoustic contact sensing in low-cost robot setups.
AIA-UltraNeRF:Acoustic-Impedance-Aware Neural Radiance Field with Hash Encodings for Robotic Ultrasound Reconstruction and Localization
Neural radiance field (NeRF) is a promising approach for reconstruction and new view synthesis. However, previous NeRF-based reconstruction methods overlook the critical role of acoustic impedance in ultrasound imaging. Localization methods face challenges related to local minima due to the selection of initial poses. In this study, we design a robotic ultrasound system (RUSS) with an acoustic-impedance-aware ultrasound NeRF (AIA-UltraNeRF) to decouple the scanning and diagnostic processes. Specifically, AIA-UltraNeRF models a continuous function of hash-encoded spatial coordinates for the 3D ultrasound map, allowing for the storage of acoustic impedance without dense sampling. This approach accelerates both reconstruction and inference speeds. We then propose a dual-supervised network that leverages teacher and student models to hash-encode the rendered ultrasound images from the reconstructed map. AIA-UltraNeRF retrieves the most similar hash values without the need to render images again, providing an offline initial image position for localization. Moreover, we develop a RUSS with a spherical remote center of motion mechanism to hold the probe, implementing operator-independent scanning modes that separate image acquisition from diagnostic workflows. Experimental results on a phantom and human subjects demonstrate the effectiveness of acoustic impedance in implicitly characterizing the color of ultrasound images. AIAUltraNeRF achieves both reconstruction and localization with inference speeds that are 9.9 faster than those of vanilla NeRF.
Skypilot: Fine-Tuning LLM with Physical Grounding for AAV Coverage Search
Autonomous aerial vehicles (AAVs) have played a pivotal role in coverage operations and search missions. Recent advances in large language models (LLMs) offer promising opportunities to augment AAV intelligence. These advances help address complex challenges like area coverage optimization, dynamic path planning, and adaptive decision-making. However, the absence of physical grounding in LLMs leads to hallucination and reproducibility problems in spatial reasoning and decision-making. To tackle these issues, we present Skypilot, an LLM-enhanced two-stage framework that grounds language models in physical reality by integrating monte carlo tree search (MCTS). In the first stage, we introduce a diversified action space that encompasses generate, regenerate, fine-tune, and evaluate operations, coupled with physics-informed reward functions to ensure trajectory feasibility. In the second stage, we fine-tune Qwen3-4B on 23,000 MCTS-generated samples, achieving substantial inference acceleration while maintaining solution quality. Extensive numerical simulations and real-world flight experiments validate the efficiency and superiority of our proposed approach. Detailed information and experimental results are accessible at https://sky-pilot.top.
Dreaming Falcon: Physics-Informed Model-Based Reinforcement Learning for Quadcopters
Current control algorithms for aerial robots struggle with robustness in dynamic environments and adverse conditions. Model-based reinforcement learning (RL) has shown strong potential in handling these challenges while remaining sample-efficient. Additionally, Dreamer has demonstrated that online model-based RL can be achieved using a recurrent world model trained on replay buffer data. However, applying Dreamer to aerial systems has been quite challenging due to its sample inefficiency and poor generalization of dynamics models. Our work explores a physics-informed approach to world model learning and improves policy performance. The world model treats the quadcopter as a free-body system and predicts the net forces and moments acting on it, which are then passed through a 6-DOF Runge-Kutta integrator (RK4) to predict future state rollouts. In this paper, we compare this physics-informed method to a standard RNN-based world model. Although both models perform well on the training data, we observed that they fail to generalize to new trajectories, leading to rapid divergence in state rollouts, preventing policy convergence.
APULSE: A Scalable Hybrid Algorithm for the RCSPP on Large-Scale Dense Graphs
The resource-constrained shortest path problem (RCSPP) is a fundamental NP-hard optimization challenge with broad applications, from network routing to autonomous navigation. This problem involves finding a path that minimizes a primary cost subject to a budget on a secondary resource. While various RCSPP solvers exist, they often face critical scalability limitations when applied to the large, dense graphs characteristic of complex, real-world scenarios, making them impractical for time-critical planning. This challenge is particularly acute in domains like mission planning for unmanned ground vehicles (UGVs), which demand solutions on large-scale terrain graphs. This paper introduces APULSE, a hybrid label-setting algorithm designed to efficiently solve the RCSPP on such challenging graphs. APULSE integrates a best-first search guided by an A* heuristic with aggressive, Pulse-style pruning mechanisms and a time-bucketing strategy for effective state-space reduction. A computational study, using a large-scale UGV planning scenario, benchmarks APULSE against state-of-the-art algorithms. The results demonstrate that APULSE consistently finds near-optimal solutions while being orders of magnitude faster and more robust, particularly on large problem instances where competing methods fail. This superior scalability establishes APULSE as an effective solution for RCSPP in complex, large-scale environments, enabling capabilities such as interactive decision support and dynamic replanning.
comment: 9 pages
ReactEMG: Stable, Low-Latency Intent Detection from sEMG via Masked Modeling
Surface electromyography (sEMG) signals show promise for effective human-machine interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly to user intent, produce stable flicker-free output suitable for device control, and work across different subjects without time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. We cast intent detection as per-timestep segmentation of continuous sEMG streams, assigning labels as gestures unfold in real time. We introduce a masked modeling training strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, using metrics that capture accuracy, latency and stability for device control, our approach achieves state-of-the-art performance in zero-shot conditions. These results demonstrate its potential for wearable robotics and next-generation prosthetic systems. Our project website, video, code, and dataset are available at: https://reactemg.github.io/
Simultaneous Localization and 3D-Semi Dense Mapping for Micro Drones Using Monocular Camera and Inertial Sensors
Monocular simultaneous localization and mapping (SLAM) algorithms estimate drone poses and build a 3D map using a single camera. Current algorithms include sparse methods that lack detailed geometry, while learning-driven approaches produce dense maps but are computationally intensive. Monocular SLAM also faces scale ambiguities, which affect its accuracy. To address these challenges, we propose an edge-aware lightweight monocular SLAM system combining sparse keypoint-based pose estimation with dense edge reconstruction. Our method employs deep learning-based depth prediction and edge detection, followed by optimization to refine keypoints and edges for geometric consistency, without relying on global loop closure or heavy neural computations. We fuse inertial data with vision by using an extended Kalman filter to resolve scale ambiguity and improve accuracy. The system operates in real time on low-power platforms, as demonstrated on a DJI Tello drone with a monocular camera and inertial sensors. In addition, we demonstrate robust autonomous navigation and obstacle avoidance in indoor corridors and on the TUM RGBD dataset. Our approach offers an effective, practical solution to real-time mapping and navigation in resource-constrained environments.
MonoMPC: Monocular Vision Based Navigation with Learned Collision Model and Risk-Aware Model Predictive Control
Navigating unknown environments with a single RGB camera is challenging, as the lack of depth information prevents reliable collision-checking. While some methods use estimated depth to build collision maps, we found that depth estimates from vision foundation models are too noisy for zero-shot navigation in cluttered environments. We propose an alternative approach: instead of using noisy estimated depth for direct collision-checking, we use it as a rich context input to a learned collision model. This model predicts the distribution of minimum obstacle clearance that the robot can expect for a given control sequence. At inference, these predictions inform a risk-aware MPC planner that minimizes estimated collision risk. We proposed a joint learning pipeline that co-trains the collision model and risk metric using both safe and unsafe trajectories. Crucially, our joint-training ensures well calibrated uncertainty in our collision model that improves navigation in highly cluttered environments. Consequently, real-world experiments show reductions in collision-rate and improvements in goal reaching and speed over several strong baselines.
Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering
High-fidelity simulation is essential for robotics research, enabling safe and efficient testing of perception, control, and navigation algorithms. However, achieving both photorealistic rendering and accurate physics modeling remains a challenge. This paper presents a novel simulation framework, the Unreal Robotics Lab (URL), that integrates the advanced rendering capabilities of the Unreal Engine with MuJoCo's high-precision physics simulation. Our approach enables realistic robotic perception while maintaining accurate physical interactions, facilitating benchmarking and dataset generation for vision-based robotics applications. The system supports complex environmental effects, such as smoke, fire, and water dynamics, which are critical to evaluating robotic performance under adverse conditions. We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios. By bridging the gap between physics accuracy and photorealistic rendering, our framework provides a powerful tool for advancing robotics research and sim-to-real transfer. Our open-source framework is available at https://unrealroboticslab.github.io/.
Advancing Autonomous Driving: DepthSense with Radar and Spatial Attention
Depth perception is crucial for spatial understanding and has traditionally been achieved through stereoscopic imaging. However, the precision of depth estimation using stereoscopic methods depends on the accurate calibration of binocular vision sensors. Monocular cameras, while more accessible, often suffer from reduced accuracy, especially under challenging imaging conditions. Optical sensors, too, face limitations in adverse environments, leading researchers to explore radar technology as a reliable alternative. Although radar provides coarse but accurate signals, its integration with fine-grained monocular camera data remains underexplored. In this research, we propose DepthSense, a novel radar-assisted monocular depth enhancement approach. DepthSense employs an encoder-decoder architecture, a Radar Residual Network, feature fusion with a spatial attention mechanism, and an ordinal regression layer to deliver precise depth estimations. We conducted extensive experiments on the nuScenes dataset to validate the effectiveness of DepthSense. Our methodology not only surpasses existing approaches in quantitative performance but also reduces parameter complexity and inference times. Our findings demonstrate that DepthSense represents a significant advancement over traditional stereo methods, offering a robust and efficient solution for depth estimation in autonomous driving. By leveraging the complementary strengths of radar and monocular camera data, DepthSense sets a new benchmark in the field, paving the way for more reliable and accurate spatial perception systems.
Continuous Gaussian Process Pre-Optimization for Asynchronous Event-Inertial Odometry
Event cameras, as bio-inspired sensors, are asynchronously triggered with high-temporal resolution compared to intensity cameras. Recent work has focused on fusing the event measurements with inertial measurements to enable ego-motion estimation in high-speed and HDR environments. However, existing methods predominantly rely on IMU preintegration designed mainly for synchronous sensors and discrete-time frameworks. In this paper, we propose a continuous-time preintegration method based on the Temporal Gaussian Process (TGP) called GPO. Concretely, we model the preintegration as a time-indexed motion trajectory and leverage an efficient two-step optimization to initialize the precision preintegration pseudo-measurements. Our method realizes a linear and constant time cost for initialization and query, respectively. To further validate the proposal, we leverage the GPO to design an asynchronous event-inertial odometry and compare with other asynchronous fusion schemes within the same odometry system. Experiments conducted on both public and own-collected datasets demonstrate that the proposed GPO offers significant advantages in terms of precision and efficiency, outperforming existing approaches in handling asynchronous sensor fusion.
comment: 8pages
AsynEIO: Asynchronous Monocular Event-Inertial Odometry Using Gaussian Process Regression
Event cameras, when combined with inertial sensors, show significant potential for motion estimation in challenging scenarios, such as high-speed maneuvers and low-light environments. There are many methods for producing such estimations, but most boil down to a synchronous discrete-time fusion problem. However, the asynchronous nature of event cameras and their unique fusion mechanism with inertial sensors remain underexplored. In this paper, we introduce a monocular event-inertial odometry method called AsynEIO, designed to fuse asynchronous event and inertial data within a unified Gaussian Process (GP) regression framework. Our approach incorporates an event-driven frontend that tracks feature trajectories directly from raw event streams at a high temporal resolution. These tracked feature trajectories, along with various inertial factors, are integrated into the same GP regression framework to enable asynchronous fusion. With deriving analytical residual Jacobians and noise models, our method constructs a factor graph that is iteratively optimized and pruned using a sliding-window optimizer. Comparative assessments highlight the performance of different inertial fusion strategies, suggesting optimal choices for varying conditions. Experimental results on both public datasets and our own event-inertial sequences indicate that AsynEIO outperforms existing methods, especially in high-speed and low-illumination scenarios.
comment: 20 pages, 20 figures
Leverage Cross-Attention for End-to-End Open-Vocabulary Panoptic Reconstruction
Open-vocabulary panoptic reconstruction offers comprehensive scene understanding, enabling advances in embodied robotics and photorealistic simulation. In this paper, we propose PanopticRecon++, an end-to-end method that formulates panoptic reconstruction through a novel cross-attention perspective. This perspective models the relationship between 3D instances (as queries) and the scene's 3D embedding field (as keys) through their attention map. Unlike existing methods that separate the optimization of queries and keys or overlook spatial proximity, PanopticRecon++ introduces learnable 3D Gaussians as instance queries. This formulation injects 3D spatial priors to preserve proximity while maintaining end-to-end optimizability. Moreover, this query formulation facilitates the alignment of 2D open-vocabulary instance IDs across frames by leveraging optimal linear assignment with instance masks rendered from the queries. Additionally, we ensure semantic-instance segmentation consistency by fusing query-based instance segmentation probabilities with semantic probabilities in a novel panoptic head supervised by a panoptic loss. During training, the number of instance query tokens dynamically adapts to match the number of objects. PanopticRecon++ shows competitive performance in terms of 3D and 2D segmentation and reconstruction performance on both simulation and real-world datasets, and demonstrates a user case as a robot simulator. Our project website is at: https://yuxuan1206.github.io/panopticrecon_pp/
comment: 18 pages, 10 figures
Situationally-Aware Dynamics Learning
Autonomous robots operating in complex, unstructured environments face significant challenges due to latent, unobserved factors that obscure their understanding of both their internal state and the external world. Addressing this challenge would enable robots to develop a more profound grasp of their operational context. To tackle this, we propose a novel framework for online learning of hidden state representations, with which the robots can adapt in real-time to uncertain and dynamic conditions that would otherwise be ambiguous and result in suboptimal or erroneous behaviors. Our approach is formalized as a Generalized Hidden Parameter Markov Decision Process, which explicitly models the influence of unobserved parameters on both transition dynamics and reward structures. Our core innovation lies in learning online the joint distribution of state transitions, which serves as an expressive representation of latent ego- and environmental-factors. This probabilistic approach supports the identification and adaptation to different operational situations, improving robustness and safety. Through a multivariate extension of Bayesian Online Changepoint Detection, our method segments changes in the underlying data generating process governing the robot's dynamics. The robot's transition model is then informed with a symbolic representation of the current situation derived from the joint distribution of latest state transitions, enabling adaptive and context-aware decision-making. To showcase the real-world effectiveness, we validate our approach in the challenging task of unstructured terrain navigation, where unmodeled and unmeasured terrain characteristics can significantly impact the robot's motion. Extensive experiments in both simulation and real world reveal significant improvements in data efficiency, policy performance, and the emergence of safer, adaptive navigation strategies.
Multiagent Systems
An Analysis of Constraint-Based Multi-Agent Pathfinding Algorithms
This study informs the design of future multi-agent pathfinding (MAPF) and multi-robot motion planning (MRMP) algorithms by guiding choices based on constraint classification for constraint-based search algorithms. We categorize constraints as conservative or aggressive and provide insights into their search behavior, focusing specifically on vanilla Conflict-Based Search (CBS) and Conflict-Based Search with Priorities (CBSw/P). Under a hybrid grid-roadmap representation with varying resolution, we observe that aggressive (priority constraint) formulations tend to solve more instances as agent count or resolution increases, whereas conservative (motion constraint) formulations yield stronger solution quality when both succeed. Findings are synthesized in a decision flowchart, aiding users in selecting suitable constraints. Recommendations extend to Multi-Robot Motion Planning (MRMP), emphasizing the importance of considering topological features alongside problem, solution, and representation features. A comprehensive exploration of the study, including raw data and map performance, is available in our public GitHub Repository: https://GitHub.com/hannahjmlee/constraint-mapf-analysis
From Archives to Decisions: Multi-Agent Pharmaceutical Co-Scientist for Traceable Drug Discovery and Reverse Translation
Pharmaceutical research and development has accumulated vast, heterogeneous archives of data. Much of this knowledge stems from discontinued programs, and reusing these archives is invaluable for reverse translation. However, in practice, such reuse is often infeasible. In this work, we introduce DiscoVerse, a multi-agent co-scientist designed to support pharmaceutical research and development. The system implements semantic retrieval, cross-document linking, and auditable synthesis on a large historical corpus from Roche. To validate our approach at real-world scale, we selected a subset of 180 molecules from the Roche research repositories, covering over 0.87 billion BPE tokens and more than four decades of research. Given that automated evaluation metrics are poorly aligned with scientific utility, we evaluate the performance of DiscoVerse using blinded expert evaluation of source-linked outputs. To our knowledge, this is the first agentic framework systematically assessed on real pharmaceutical data for reverse translation, enabled by authorized access to confidential, end-to-end drug-development archives. Our contributions include role-specialized agent designs aligned with scientist workflows; human-in-the-loop support for reverse translation; expert evaluation; and a large-scale demonstration showing promising answer accuracy and decision-making insights. In brief, across seven benchmark queries covering 180 molecules, DiscoVerse achieved near-perfect recall ($\geq 0.99$) with moderate precision ($0.71-0.91$), while qualitative assessments of discontinuation rationale and organ-specific toxicity showed faithful, source-linked synthesis across preclinical and clinical evidence.
comment: 22 pages, 4 figures, 3 tables
Hybrid Agentic AI and Multi-Agent Systems in Smart Manufacturing
The convergence of Agentic AI and MAS enables a new paradigm for intelligent decision making in SMS. Traditional MAS architectures emphasize distributed coordination and specialized autonomy, while recent advances in agentic AI driven by LLMs introduce higher order reasoning, planning, and tool orchestration capabilities. This paper presents a hybrid agentic AI and multi agent framework for a Prescriptive Maintenance use case, where LLM based agents provide strategic orchestration and adaptive reasoning, complemented by rule based and SLMs agents performing efficient, domain specific tasks on the edge. The proposed framework adopts a layered architecture that consists of perception, preprocessing, analytics, and optimization layers, coordinated through an LLM Planner Agent that manages workflow decisions and context retention. Specialized agents autonomously handle schema discovery, intelligent feature analysis, model selection, and prescriptive optimization, while a HITL interface ensures transparency and auditability of generated maintenance recommendations. This hybrid design supports dynamic model adaptation, cost efficient maintenance scheduling, and interpretable decision making. An initial proof of concept implementation is validated on two industrial manufacturing datasets. The developed framework is modular and extensible, supporting seamless integration of new agents or domain modules as capabilities evolve. The results demonstrate the system capability to automatically detect schema, adapt preprocessing pipelines, optimize model performance through adaptive intelligence, and generate actionable, prioritized maintenance recommendations. The framework shows promise in achieving improved robustness, scalability, and explainability for RxM in smart manufacturing, bridging the gap between high level agentic reasoning and low level autonomous execution.
$A^2Flow:$ Automating Agentic Workflow Generation via Self-Adaptive Abstraction Operators AAAI-2026
Large language models (LLMs) have shown strong potential in automating the design of agentic workflows. However, existing methods still rely heavily on manually predefined operators, limiting generalization and scalability. To address this issue, we propose $A^2Flow$, a fully automated framework for agentic workflow generation based on self-adaptive abstraction operators. $A^2Flow$ employs a three-stage operator extraction process: 1) Case-based Initial Operator Generation: leveraging expert demonstrations and LLM reasoning to generate case-specific operators; 2) Operator Clustering and Preliminary Abstraction: grouping similar operators across tasks to form preliminary abstractions; and 3) Deep Extraction for Abstract Execution Operators: applying long chain-of-thought prompting and multi-path reasoning to derive compact and generalizable execution operators. These operators serve as reusable building blocks for workflow construction without manual predefinition. Furthermore, we enhance node-level workflow search with an operator memory mechanism, which retains historical outputs to enrich context and improve decision-making. Experiments on general and embodied benchmarks show that $A^2Flow$ achieves a 2.4\% and 19.3\% average performance improvement and reduces resource usage by 37\% over state-of-the-art baselines. Homepage:https://github.com/pandawei-ele/A2FLOW
comment: Accepted by AAAI-2026
Learning Mean Field Control on Sparse Graphs ICML 2025
Large agent networks are abundant in applications and nature and pose difficult challenges in the field of multi-agent reinforcement learning (MARL) due to their computational and theoretical complexity. While graphon mean field games and their extensions provide efficient learning algorithms for dense and moderately sparse agent networks, the case of realistic sparser graphs remains largely unsolved. Thus, we propose a novel mean field control model inspired by local weak convergence to include sparse graphs such as power law networks with coefficients above two. Besides a theoretical analysis, we design scalable learning algorithms which apply to the challenging class of graph sequences with finite first moment. We compare our model and algorithms for various examples on synthetic and real world networks with mean field algorithms based on Lp graphons and graphexes. As it turns out, our approach outperforms existing methods in many examples and on various networks due to the special design aiming at an important, but so far hard to solve class of MARL problems.
comment: Accepted at ICML 2025
Systems and Control (EESS)
Bifurcation-Based Guidance Law for Powered Descent Landing
This paper develops a new guidance law for powered descent landing of a rocket-powered vehicle. The proposed law derives the acceleration command for a point mass model of the vehicle by expressing velocity as a dynamical system undergoing supercritical transcritical bifurcation with three bifurcation parameters. The parameters are designed such that the stable equilibrium points of the velocity dynamics correspond to the guided targeting state, that is, the landing point. Numerical simulations are performed to demonstrate the working of the proposed guidance law.
Generative Myopia: Why Diffusion Models Fail at Structure
Graph Diffusion Models (GDMs) optimize for statistical likelihood, implicitly acting as \textbf{frequency filters} that favor abundant substructures over spectrally critical ones. We term this phenomenon \textbf{Generative Myopia}. In combinatorial tasks like graph sparsification, this leads to the catastrophic removal of ``rare bridges,'' edges that are structurally mandatory ($R_{\text{eff}} \approx 1$) but statistically scarce. We prove theoretically and empirically that this failure is driven by \textbf{Gradient Starvation}: the optimization landscape itself suppresses rare structural signals, rendering them unlearnable regardless of model capacity. To resolve this, we introduce \textbf{Spectrally-Weighted Diffusion}, which re-aligns the variational objective using Effective Resistance. We demonstrate that spectral priors can be amortized into the training phase with zero inference overhead. Our method eliminates myopia, matching the performance of an optimal Spectral Oracle and achieving \textbf{100\% connectivity} on adversarial benchmarks where standard diffusion fails completely (0\%).
Connectivity-Preserving Multi-Agent Area Coverage via Optimal-Transport-Based Density-Driven Optimal Control (D2OC)
Multi-agent systems play a central role in area coverage tasks across search-and-rescue, environmental monitoring, and precision agriculture. Achieving non-uniform coverage, where spatial priorities vary across the domain, requires coordinating agents while respecting dynamic and communication constraints. Density-driven approaches can distribute agents according to a prescribed reference density, but existing methods do not ensure connectivity. This limitation often leads to communication loss, reduced coordination, and degraded coverage performance. This letter introduces a connectivity-preserving extension of the Density-Driven Optimal Control (D2OC) framework. The coverage objective, defined using the Wasserstein distance between the agent distribution and the reference density, admits a convex quadratic program formulation. Communication constraints are incorporated through a smooth connectivity penalty, which maintains strict convexity, supports distributed implementation, and preserves inter-agent communication without imposing rigid formations. Simulation studies show that the proposed method consistently maintains connectivity, improves convergence speed, and enhances non-uniform coverage quality compared with density-driven schemes that do not incorporate explicit connectivity considerations.
comment: Under review in IEEE Control Systems Letters (LCSS). 6 pages
Beyond the Expiry Date: Uncovering Hidden Value in Functional Drink Waste for a Circular Future
Expired functional drinks have great valorisation potential due to the high concentration of organic molecules present. However, detailed information of the resources in these expired functional drinks is limited, hindering the rational design of a recovery system. To address this gap, we present here a study that comprehensively characterises the chemical composition of functional drinks and discus their potential use as feedstocks for biomethane production. The example functional drinks were abundant in sugars, organic acids, and amino acids, and were especially rich in glucose, fructose, and alanine. Our studies revealed that functional drinks with high COD values that corresponded to high proportions of sugar and organic acid and low proportions of sorbitol and amino acids could realise profitable recovery through anaerobic digestion, with a minimum biomethane yield of 11.72 mL CH4 / mL drink. To assess utility further we also examined the dynamic composition of functional drinks up to 16 weeks (at 4 °C) after expiration to capture the shift in resources during deterioration. In doing so, we identified 4 distinct periods of carbon resource variation: 1) chemically stable period, 2) sorbitol degradation period, 3) sugar degradation period, and 4) acidification period. Based on the time-course biomethane production experiments for expired functional drinks, the optimal operating time window for biomethane production from drinks without ascorbic acid would be after sorbitol degradation period in terms of its economic performance through convenient natural deterioration. Therefore, this comprehensive study on dynamic chemical composition in expired functional drinks and their biomethane production potential could facilitate a rational design of resource recovery system for soft drink field.
Online Smoothed Demand Management
We introduce and study a class of online problems called online smoothed demand management $(\texttt{OSDM})$, motivated by paradigm shifts in grid integration and energy storage for large energy consumers such as data centers. In $\texttt{OSDM}$, an operator makes two decisions at each time step: an amount of energy to be purchased, and an amount of energy to be delivered (i.e., used for computation). The difference between these decisions charges (or discharges) the operator's energy storage (e.g., a battery). Two types of demand arrive online: base demand, which must be covered at the current time, and flexible demand, which can be satisfied at any time steps before a demand-specific deadline $Δ_t$. The operator's goal is to minimize a cost (subject to the constraints above) that combines a cost of purchasing energy, a cost for delivering energy (if applicable), and smoothness penalties on the purchasing and delivery rates to discourage fluctuations and encourage ``grid healthy'' decisions. $\texttt{OSDM}$ generalizes several problems in the online algorithms literature while being the first to fully model applications of interest. We propose a competitive algorithm called $\texttt{PAAD}$ (partitioned accounting \& aggregated decisions) and show it achieves the optimal competitive ratio. To overcome the pessimism typical of worst-case analysis, we also propose a novel learning framework that provides guarantees on the worst-case competitive ratio (i.e., to provide robustness against nonstationarity) while allowing end-to-end differentiable learning of the best algorithm on historical instances of the problem. We evaluate our algorithms in a case study of a grid-integrated data center with battery storage, showing that $\texttt{PAAD}$ effectively solves the problem and end-to-end learning achieves substantial performance improvements compared to $\texttt{PAAD}$.
comment: 69 pages, 12 figures
Dissipativity and L2 Stability of Large-Scale Networks with Changing Interconnections
In this paper, the L2 stability of switched networks is studied based on the QSR-dissipativity of each agent. While the integration of dissipativity with switched systems has received considerable attention, most previous studies have focused on passivity, internal stability, or feedback networks involving only two agents. This work makes two contributions: first, the relationship between switched QSR-dissipativity and L2 stability is established based on the properties of dissipativity parameters of switched systems; and second, conditions for L2 stability of networks consisting of QSR-dissipative agents with switching interconnection topologies are derived. Crucially, this shows that a common storage function will exist across all modes, avoiding the need to find one, which becomes computationally taxing for large networks with many possible configurations. Numerical examples demonstrate how this can facilitate stability analysis for networked systems under arbitrary switching of swarm drones.
comment: Under review for IFAC 2026. 6 pages, 2 figures, 1 table
Expanding the Workspace of Electromagnetic Navigation Systems Using Dynamic Feedback for Single- and Multi-agent Control
Electromagnetic navigation systems (eMNS) enable a number of magnetically guided surgical procedures. A challenge in magnetically manipulating surgical tools is that the effective workspace of an eMNS is often severely constrained by power and thermal limits. We show that system-level control design significantly expands this workspace by reducing the currents needed to achieve a desired motion. We identified five key system approaches that enable this expansion: (i) motion-centric torque/force objectives, (ii) energy-optimal current allocation, (iii) real-time pose estimation, (iv) dynamic feedback, and (v) high-bandwidth eMNS components. As a result, we stabilize a 3D inverted pendulum on an eight-coil OctoMag eMNS with significantly lower currents (0.1-0.2 A vs. 8-14 A), by replacing a field-centric field-alignment strategy with a motion-centric torque/force-based approach. We generalize to multi-agent control by simultaneously stabilizing two inverted pendulums within a shared workspace, exploiting magnetic-field nonlinearity and coil redundancy for independent actuation. A structured analysis compares the electromagnetic workspaces of both paradigms and examines current-allocation strategies that map motion objectives to coil currents. Cross-platform evaluation of the clinically oriented Navion eMNS further demonstrates substantial workspace expansion by maintaining stable balancing at distances up to 50 cm from the coils. The results demonstrate that feedback is a practical path to scalable, efficient, and clinically relevant magnetic manipulation.
Speed Control Security System For safety of Driver and Surroundings
The speed control security system is best suited for the task of slowing the speed of a vehicle during rash driving as the Driver is over speeding the circuit captures the images of the lanes witch decides the speed of the road the car is currently on this input is further provided to the ESP-32 micro Prosser module in the car switch compiles this data with the data received for the RPM sensor of the car and decides whether the car is over speeding or not in case of over speeding a signal is send by the ESP to the Arduino witch actuates the dc motor used in the car to reduce the speed of the car by the use of a hydraulic brake system actuated by a DC motor.
comment: 9 Pages , 7 figures
Joint Optimization for Security and Reliability in Round-Trip Transmissions for URLLC services
Physical layer security (PLS) is a potential solution for secure and reliable transmissions in future Ultra-Reliable and Low-Latency Communications (URLLC). This work jointly optimizes redundant bits and blocklength allocation in practical round-trip transmission scenarios. To minimize the leakage-failure probability, a metric that jointly characterizes security and reliability in PLS, we formulate an optimization problem for allocating both redundant bits and blocklength. By deriving the boundaries of the feasible set, we obtain the globally optimal solution for this integer optimization problem. To achieve more computationally efficient solutions, we propose a block coordinate descent (BCD) method that exploits the partial convexity of the objective function. Subsequently, we develop a majorization-minimization (MM) algorithm through convex approximation of the objective function, which further improves computational efficiency. Finally, we validate the performance of the three proposed approaches through simulations, demonstrating their practical applicability for future URLLC services.
comment: 6 pages,4 figures
Aspiration-based Perturbed Learning Automata in Games with Noisy Utility Measurements. Part B: Stochastic Stability in Weakly Acyclic Games
Reinforcement-based learning dynamics may exhibit several limitations when applied in a distributed setup. In (repeatedly-played) multi-player/action strategic-form games, and when each player applies an independent copy of the learning dynamics, convergence to (usually desirable) pure Nash equilibria cannot be guaranteed. Prior work has only focused on a small class of games, namely potential and coordination games. Furthermore, strong convergence guarantees (i.e., almost sure convergence or weak convergence) are mostly restricted to two-player games. To address this main limitation of reinforcement-based learning in repeatedly-played strategic-form games, this paper introduces a novel payoff-based learning scheme for distributed optimization in multi-player/action strategic-form games. We present an extension of perturbed learning automata (PLA), namely aspiration-based perturbed learning automata (APLA), in which each player's probability distribution for selecting actions is reinforced both by repeated selection and an aspiration factor that captures the player's satisfaction level. We provide a stochastic stability analysis of APLA in multi-player positive-utility games under the presence of noisy observations. This paper is the second part of this study that analyzes stochastic stability in multi-player/action weakly-acyclic games in the presence of noisy observations. We provide conditions under which convergence is attained (in weak sense) to the set of pure Nash equilibria and payoff-dominant equilibria. To the best of our knowledge, this is the first reinforcement-based learning scheme that addresses convergence in weakly-acyclic games. Lastly, we provide a specialization of the results to the classical Stag-Hunt game, supported by a simulation study.
On Linear Convergence of Distributed Stochastic Bilevel Optimization over Undirected Networks via Gradient Aggregation
Many large-scale constrained optimization problems can be formulated as bilevel distributed optimization tasks over undirected networks, where agents collaborate to minimize a global cost function while adhering to constraints, relying only on local communication and computation. In this work, we propose a distributed stochastic gradient aggregation scheme and establish its linear convergence under the weak assumption of global strong convexity, which relaxes the common requirement of local function convexity on the objective and constraint functions. Specifically, we prove that the algorithm converges at a linear rate when the global objective function (and not each local objective function) satisfies strong-convexity. Our results significantly extend existing theoretical guarantees for distributed bilevel optimization. Additionally, we demonstrate the effectiveness of our approach through numerical experiments on distributed sensor network problems and distributed linear regression with rank-deficient data.
comment: 8 pages, submitted to ACC
Explicit Bounds on the Hausdorff Distance for Truncated mRPI Sets via Norm-Dependent Contraction Rates
This paper establishes the first explicit and closed-form upper bound on the Hausdorff distance between the truncated minimal robust positively invariant (mRPI) set and its infinite-horizon limit. While existing mRPI approximations guarantee asymptotic convergence through geometric or norm-based arguments, none provides a computable expression that quantifies the truncation error for a given horizon. We show that the error satisfies \( d_H(\mathcal{E}_N,\mathcal{E}_\infty) \le r_W\,γ^{N+1}/(1-γ), \) where $γ<1$ is the induced-norm contraction factor and $r_W$ depends only on the disturbance set. The bound is fully analytic, requires no iterative set computations, and directly characterizes the decay rate of the truncated Minkowski series. We further demonstrate that the choice of vector norm serves as a design parameter that accelerates convergence, enabling substantially tighter horizon selection for robust invariant-set computations and tube-based MPC. Numerical experiments validate the sharpness, scalability, and practical relevance of the proposed bound.
Weakly-supervised Latent Models for Task-specific Visual-Language Control
Autonomous inspection in hazardous environments requires AI agents that can interpret high-level goals and execute precise control. A key capability for such agents is spatial grounding, for example when a drone must center a detected object in its camera view to enable reliable inspection. While large language models provide a natural interface for specifying goals, using them directly for visual control achieves only 58\% success in this task. We envision that equipping agents with a world model as a tool would allow them to roll out candidate actions and perform better in spatially grounded settings, but conventional world models are data and compute intensive. To address this, we propose a task-specific latent dynamics model that learns state-specific action-induced shifts in a shared latent space using only goal-state supervision. The model leverages global action embeddings and complementary training losses to stabilize learning. In experiments, our approach achieves 71\% success and generalizes to unseen images and instructions, highlighting the potential of compact, domain-specific latent dynamics models for spatial alignment in autonomous inspection.
Laboratory and field testing of a residential heat pump retrofit for a DC solar nanogrid
Residential buildings are increasingly integrating large devices that run natively on direct current (DC), such as solar photovoltaics, electric vehicles, stationary batteries, and DC motors that drive heat pumps and other major appliances. Today, these natively-DC devices typically connect within buildings through alternating current (AC) distribution systems, entailing significant energy losses due to conversions between AC and DC. This paper investigates the alternative of connecting DC devices through DC distribution. Specifically, this paper shows through laboratory and field experiments that an off-the-shelf residential heat pump designed for conventional AC systems can be powered directly on DC with few hardware modifications and little change in performance. Supporting simulations of a DC nanogrid including historical heat pump and rest-of-house load measurements, a solar photovoltaic array, and a stationary battery suggest that connecting these devices through DC distribution could decrease annual electricity bills by 12.5% with an after-market AC-to-DC heat pump retrofit and by 16.7% with a heat pump designed to run on DC.
APULSE: A Scalable Hybrid Algorithm for the RCSPP on Large-Scale Dense Graphs
The resource-constrained shortest path problem (RCSPP) is a fundamental NP-hard optimization challenge with broad applications, from network routing to autonomous navigation. This problem involves finding a path that minimizes a primary cost subject to a budget on a secondary resource. While various RCSPP solvers exist, they often face critical scalability limitations when applied to the large, dense graphs characteristic of complex, real-world scenarios, making them impractical for time-critical planning. This challenge is particularly acute in domains like mission planning for unmanned ground vehicles (UGVs), which demand solutions on large-scale terrain graphs. This paper introduces APULSE, a hybrid label-setting algorithm designed to efficiently solve the RCSPP on such challenging graphs. APULSE integrates a best-first search guided by an A* heuristic with aggressive, Pulse-style pruning mechanisms and a time-bucketing strategy for effective state-space reduction. A computational study, using a large-scale UGV planning scenario, benchmarks APULSE against state-of-the-art algorithms. The results demonstrate that APULSE consistently finds near-optimal solutions while being orders of magnitude faster and more robust, particularly on large problem instances where competing methods fail. This superior scalability establishes APULSE as an effective solution for RCSPP in complex, large-scale environments, enabling capabilities such as interactive decision support and dynamic replanning.
comment: 9 pages
Sequential Convex Programming for Multimode Spacecraft Trajectory Optimization
Spacecraft equipped with multiple propulsion modes or systems can offer enhanced performance and mission flexibility compared with traditional configurations. Despite these benefits, the trajectory optimization of spacecraft utilizing such configurations remains a complex challenge. This paper presents a sequential convex programming (SCP) approach for the optimal design of multi-mode and multi-propulsion spacecraft trajectories. The method extends the dynamical linearization within SCP using sparse automatic differentiation, enabling efficient inclusion of multiple propulsion modes or systems without complex manual reformulation while maintaining comparable computational efficiency. New constraint formulations are introduced to ensure selection of a single propulsion mode at each time step and limit the total number of modes used. The approach is demonstrated for (i) a low-thrust Earth-67P rendezvous using the SPT-140 thruster with 20 discrete modes, and (ii) an Earth-Mars transfer employing both a low-thrust engine and a solar sail. Results confirm that the proposed method can efficiently compute optimal trajectories for these scenarios.
comment: 12 pages, 5 figures, presented at the ORSNZ Annual Conference 2025
Computing Sound and Accurate Upper and Lower Bounds on Hamilton-Jacobi Reachability Value Functions
Hamilton-Jacobi (HJ) reachability analysis is a fundamental tool for safety verification and control synthesis for nonlinear-control systems. Classical HJ reachability analysis methods discretize the continuous state space and solve the HJ partial differential equation over a grid, but these approaches do not account for discretization errors and can under-approximate backward reachable sets, which represent unsafe sets of states. We present a framework for computing sound upper and lower bounds on the HJ value functions via value iteration over grids. Additionally, we develop a refinement algorithm that splits cells that were not possible to classify as safe or unsafe given the computed bounds. This algorithm enables computing accurate over-approximations of backward reachable sets even when starting from coarse grids. Finally, we validate the effectiveness of our method in two case studies.
Newton-Flow Particle Filters based on Generalized Cramér Distance
We propose a recursive particle filter for high-dimensional problems that inherently never degenerates. The state estimate is represented by deterministic low-discrepancy particle sets. We focus on the measurement update step, where a likelihood function is used for representing the measurement and its uncertainty. This likelihood is progressively introduced into the filtering procedure by homotopy continuation over an artificial time. A generalized Cramér distance between particle sets is derived in closed form that is differentiable and invariant to particle order. A Newton flow then continually minimizes this distance over artificial time and thus smoothly moves particles from prior to posterior density. The new filter is surprisingly simple to implement and very efficient. It just requires a prior particle set and a likelihood function, never estimates densities from samples, and can be used as a plugin replacement for classic approaches.
comment: 8 pages; typos corrected, small changes
Incremental Collision Laws Based on the Bouc-Wen Model: Improved Collision Models and Further Results
In the article titled "The Bouc-Wen Model for Binary Direct Collinear Collisions of Convex Viscoplastic Bodies" and published in the Journal of Computational and Nonlinear Dynamics (Volume 20, Issue 6, June 2025), the authors studied mathematical models of binary direct collinear collisions of convex viscoplastic bodies that employed two incremental collision laws based on the Bouc-Wen differential model of hysteresis. It was shown that the models possess favorable analytical properties, and several model parameter identification studies were conducted, demonstrating that the models can accurately capture the nature of a variety of collision phenomena. In this article, the aforementioned models are augmented by modeling the effects of external forces as time-dependent inputs. Furthermore, the range of the parameters under which the models possess favorable analytical properties is extended to several corner cases that were not considered in the prior publication. Finally, the previously conducted model parameter identification studies are extended, and an additional model parameter identification study is provided in an attempt to validate the ability of the augmented models to represent the effects of external forces.
comment: 14 pages, 9 figures, see https://gitlab.com/user9716869/EBWCM ; (v2-v7) various minor amendments; (v5) replaced the parameter identification study of Quinn (2004) with Villegas et al (2021) due to incompatibility of the proposed collision models with the experimental setup in Quinn (2004); (v7) added ODEs for COM and an application example; arXiv admin note: text overlap with arXiv:2410.08147
Revealing Chaotic Dependence and Degree-Structure Mechanisms in Optimal Pinning Control of Complex Networks
Identifying an optimal set of driver nodes to achieve synchronization via pinning control is a fundamental challenge in complex network science, limited by computational intractability and the lack of general theory. Here, leveraging a degree-based mean-field (annealed) approximation from statistical physics, we analytically reveal how the structural degree distribution systematically governs synchronization performance, and derive an analytic characterization of the globally optimal pinning set and constructive algorithms with linear complexity (dominated by degree sorting, O(N+M). The optimal configuration exhibits a chaotic dependence--a discontinuous sensitivity--on its cardinality, whereby adding a single node can trigger abrupt changes in node composition and control effectiveness. This structural transition fundamentally challenges traditional heuristics that assume monotonic performance gains with budget. Systematic experiments on synthetic and empirical networks confirm that the proposed approach consistently outperforms degree-, betweenness-, and other centrality-based baselines. Furthermore, we quantify how key degree-distribution features--low-degree saturation, high-degree cutoff, and the power-law exponent--govern achievable synchronizability and shape the form of optimal sets. These results offer a systematic understanding of how degree heterogeneity shapes the network controllability. Our work establishes a unified link between degree heterogeneity and spectral controllability, offering both mechanistic insights and practical design rules for optimal driver-node selection in diverse complex systems.
comment: This work has been submitted to the IEEE for possible publication
Soft Switching Expert Policies for Controlling Systems with Uncertain Parameters
This paper proposes a simulation-based reinforcement learning algorithm for controlling systems with uncertain and varying system parameters. While simulators are useful to safely synthesize control policies for physical systems using reinforcement learning, mitigating the reality gap remains a major challenge. To address the challenge, we propose a two-stage algorithm. In the first stage, multiple control policies are learned for systems with different parameters in a simulator. In the second stage, for a real system, the control policies learned in the first stage are smoothly switched using an online convex optimization algorithm based on observations. Our proposed algorithm is demonstrated through numerical experiments.
comment: 7 pages, 8 figures. Submitted to an International Conference
PhiBE: A PDE-based Bellman Equation for Continuous Time Policy Evaluation
In this paper, we study policy evaluation in continuous-time reinforcement learning, where the state follows an unknown stochastic differential equation (SDE) but only discrete-time data are available. We first highlight that the discrete-time Bellman equation (BE) is not always a reliable approximation to the true value function because it ignores the underlying continuous-time structure. We then introduce a new bellman equation, PhiBE, which integrates the discrete-time information into a continuous-time PDE formulation. By leveraging the smooth SDE structure of the underlying dynamics, PhiBE provides a provably more accurate approximation to the true value function, especially in scenarios where the underlying dynamics change slowly or the reward oscillates. Moreover, we extend PhiBE to higher orders, providing increasingly accurate approximations. We further develop a model-free algorithm for PhiBE under linear function approximation and establish its convergence under model misspecification. In contrast to existing RL analyses that diverges as the sampling interval shrinks, the approximation error of PhiBE remains remains well-conditioned and independent of the discretization step by exploiting the smoothness of the underlying dynamics. Numerical experiments are provided to validate the theoretical guarantees we propose.
Continuous Gaussian Process Pre-Optimization for Asynchronous Event-Inertial Odometry
Event cameras, as bio-inspired sensors, are asynchronously triggered with high-temporal resolution compared to intensity cameras. Recent work has focused on fusing the event measurements with inertial measurements to enable ego-motion estimation in high-speed and HDR environments. However, existing methods predominantly rely on IMU preintegration designed mainly for synchronous sensors and discrete-time frameworks. In this paper, we propose a continuous-time preintegration method based on the Temporal Gaussian Process (TGP) called GPO. Concretely, we model the preintegration as a time-indexed motion trajectory and leverage an efficient two-step optimization to initialize the precision preintegration pseudo-measurements. Our method realizes a linear and constant time cost for initialization and query, respectively. To further validate the proposal, we leverage the GPO to design an asynchronous event-inertial odometry and compare with other asynchronous fusion schemes within the same odometry system. Experiments conducted on both public and own-collected datasets demonstrate that the proposed GPO offers significant advantages in terms of precision and efficiency, outperforming existing approaches in handling asynchronous sensor fusion.
comment: 8pages
Learning to Admit Optimally in an $M/M/k/k+N$ Queueing System with Unknown Service Rate
Motivated by applications of the Erlang-B blocking model and the extended $M/M/k/k+N$ model that allows for some queueing, beyond communication networks to sizing and pricing in production, messaging, and app-based parking systems, we study admission control for such systems with unknown service rate. In our model, a dispatcher either admits every arrival into the system (when there is room) or blocks it. Every served job yields a fixed reward but incurs a per unit time holding cost which includes the waiting time in the queue to get service if there is any. We aim to design a dispatching policy that maximizes the long-term average reward by observing arrival times and system state at arrivals, a realistic decision-event driven sampling of such systems. The dispatcher observes neither service times nor departure epochs, which excludes the use of reward-based reinforcement learning approaches. We develop our learning-based dispatch scheme as a parametric learning problem a'la self-tuning adaptive control. In our problem, certainty equivalent control switches between always admit if room (explore infinitely often), and never admit (terminate learning), so at judiciously chosen times we avoid the never admit recommendation. We prove that our proposed policy asymptotically converges to the optimal policy and present finite-time regret guarantees. The extreme contrast in the control policies shows up in our regret bounds for different parameter regimes: constant in one versus logarithmic in another.
Robotics
AFT: Appearance-Based Feature Tracking for Markerless and Training-Free Shape Reconstruction of Soft Robots
Accurate shape reconstruction is essential for precise control and reliable operation of soft robots. Compared to sensor-based approaches, vision-based methods offer advantages in cost, simplicity, and ease of deployment. However, existing vision-based methods often rely on complex camera setups, specific backgrounds, or large-scale training datasets, limiting their practicality in real-world scenarios. In this work, we propose a vision-based, markerless, and training-free framework for soft robot shape reconstruction that directly leverages the robot's natural surface appearance. These surface features act as implicit visual markers, enabling a hierarchical matching strategy that decouples local partition alignment from global kinematic optimization. Requiring only an initial 3D reconstruction and kinematic alignment, our method achieves real-time shape tracking across diverse environments while maintaining robustness to occlusions and variations in camera viewpoints. Experimental validation on a continuum soft robot demonstrates an average tip error of 2.6% during real-time operation, as well as stable performance in practical closed-loop control tasks. These results highlight the potential of the proposed approach for reliable, low-cost deployment in dynamic real-world settings.
SkillWrapper: Generative Predicate Invention for Skill Abstraction
Generalizing from individual skill executions to solving long-horizon tasks remains a core challenge in building autonomous agents. A promising direction is learning high-level, symbolic abstractions of the low-level skills of the agents, enabling reasoning and planning independent of the low-level state space. Among possible high-level representations, object-centric skill abstraction with symbolic predicates has been proven to be efficient because of its compatibility with domain-independent planners. Recent advances in foundation models have made it possible to generate symbolic predicates that operate on raw sensory inputs, a process we call generative predicate invention, to facilitate downstream abstraction learning. However, it remains unclear which formal properties the learned representations must satisfy, and how they can be learned to guarantee these properties. In this paper, we address both questions by presenting a formal theory of generative predicate invention for skill abstraction, resulting in symbolic operators that can be used for provably sound and complete planning. Within this framework, we propose SkillWrapper, a method that leverages foundation models to actively collect robot data and learn human-interpretable, plannable representations of black-box skills, using only RGB image observations. Our extensive empirical evaluation in simulation and on real robots shows that SkillWrapper learns abstract representations that enable solving unseen, long-horizon tasks in the real world with black-box skills.
Off-Road Navigation via Implicit Neural Representation of Terrain Traversability
Autonomous off-road navigation requires robots to estimate terrain traversability from onboard sensors and plan accordingly. Conventional approaches typically rely on sampling-based planners such as MPPI to generate short-term control actions that aim to minimize traversal time and risk measures derived from the traversability estimates. These planners can react quickly but optimize only over a short look-ahead window, limiting their ability to reason about the full path geometry, which is important for navigating in challenging off-road environments. Moreover, they lack the ability to adjust speed based on the terrain bumpiness, which is important for smooth navigation on challenging terrains. In this paper, we introduce TRAIL (Traversability with an Implicit Learned Representation), an off-road navigation framework that leverages an implicit neural representation to continuously parameterize terrain properties. This representation yields spatial gradients that enable integration with a novel gradient-based trajectory optimization method that adapts the path geometry and speed profile based on terrain traversability.
comment: 9 pages
Time-aware Motion Planning in Dynamic Environments with Conformal Prediction
Safe navigation in dynamic environments remains challenging due to uncertain obstacle behaviors and the lack of formal prediction guarantees. We propose two motion planning frameworks that leverage conformal prediction (CP): a global planner that integrates Safe Interval Path Planning (SIPP) for uncertainty-aware trajectory generation, and a local planner that performs online reactive planning. The global planner offers distribution-free safety guarantees for long-horizon navigation, while the local planner mitigates inaccuracies in obstacle trajectory predictions through adaptive CP, enabling robust and responsive motion in dynamic environments. To further enhance trajectory feasibility, we introduce an adaptive quantile mechanism in the CP-based uncertainty quantification. Instead of using a fixed confidence level, the quantile is automatically tuned to the optimal value that preserves trajectory feasibility, allowing the planner to adaptively tighten safety margins in regions with higher uncertainty. We validate the proposed framework through numerical experiments conducted in dynamic and cluttered environments. The project page is available at https://time-aware-planning.github.io
scipy.spatial.transform: Differentiable Framework-Agnostic 3D Transformations in Python
Three-dimensional rigid-body transforms, i.e. rotations and translations, are central to modern differentiable machine learning pipelines in robotics, vision, and simulation. However, numerically robust and mathematically correct implementations, particularly on SO(3), are error-prone due to issues such as axis conventions, normalizations, composition consistency and subtle errors that only appear in edge cases. SciPy's spatial.transform module is a rigorously tested Python implementation. However, it historically only supported NumPy, limiting adoption in GPU-accelerated and autodiff-based workflows. We present a complete overhaul of SciPy's spatial.transform functionality that makes it compatible with any array library implementing the Python array API, including JAX, PyTorch, and CuPy. The revised implementation preserves the established SciPy interface while enabling GPU/TPU execution, JIT compilation, vectorized batching, and differentiation via native autodiff of the chosen backend. We demonstrate how this foundation supports differentiable scientific computing through two case studies: (i) scalability of 3D transforms and rotations and (ii) a JAX drone simulation that leverages SciPy's Rotation for accurate integration of rotational dynamics. Our contributions have been merged into SciPy main and will ship in the next release, providing a framework-agnostic, production-grade basis for 3D spatial math in differentiable systems and ML.
comment: Accepted as oral at the 1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025
A Coordinated Dual-Arm Framework for Delicate Snap-Fit Assemblies
Delicate snap-fit assemblies, such as inserting a lens into an eye-wear frame or during electronics assembly, demand timely engagement detection and rapid force attenuation to prevent overshoot-induced component damage or assembly failure. We address these challenges with two key contributions. First, we introduce SnapNet, a lightweight neural network that detects snap-fit engagement from joint-velocity transients in real-time, showing that reliable detection can be achieved using proprioceptive signals without external sensors. Second, we present a dynamical-systems-based dual-arm coordination framework that integrates SnapNet driven detection with an event-triggered impedance modulation, enabling accurate alignment and compliant insertion during delicate snap-fit assemblies. Experiments across diverse geometries on a heterogeneous bimanual platform demonstrate high detection accuracy (over 96% recall) and up to a 30% reduction in peak impact forces compared to standard impedance control.
comment: 10 pages, 9 figures
Observer Actor: Active Vision Imitation Learning with Sparse View Gaussian Splatting
We propose Observer Actor (ObAct), a novel framework for active vision imitation learning in which the observer moves to optimal visual observations for the actor. We study ObAct on a dual-arm robotic system equipped with wrist-mounted cameras. At test time, ObAct dynamically assigns observer and actor roles: the observer arm constructs a 3D Gaussian Splatting (3DGS) representation from three images, virtually explores this to find an optimal camera pose, then moves to this pose; the actor arm then executes a policy using the observer's observations. This formulation enhances the clarity and visibility of both the object and the gripper in the policy's observations. As a result, we enable the training of ambidextrous policies on observations that remain closer to the occlusion-free training distribution, leading to more robust policies. We study this formulation with two existing imitation learning methods -- trajectory transfer and behavior cloning -- and experiments show that ObAct significantly outperforms static-camera setups: trajectory transfer improves by 145% without occlusion and 233% with occlusion, while behavior cloning improves by 75% and 143%, respectively. Videos are available at https://obact.github.io.
comment: Videos are available on our project webpage at https://obact.github.io
EchoVLA: Robotic Vision-Language-Action Model with Synergistic Declarative Memory for Mobile Manipulation
Recent progress in Vision-Language-Action (VLA) models has enabled embodied agents to interpret multimodal instructions and perform complex tasks. However, existing VLAs are mostly confined to short-horizon, table-top manipulation, lacking the memory and reasoning capability required for long-horizon mobile manipulation, where agents must coordinate navigation and manipulation under changing spatial contexts. In this work, we present EchoVLA, a memory-aware VLA model for long-horizon mobile manipulation. EchoVLA incorporates a synergistic declarative memory inspired by the human brain, consisting of a scene memory that maintains a collection of spatial-semantic maps and an episodic memory that stores task-level experiences with multimodal contextual features. During both training and inference, the two memories are individually stored, updated, and retrieved based on current observations, task history, and instructions, and their retrieved representations are fused via coarse- and fine-grained attention to guide mobile-arm diffusion policies. To support large-scale training and evaluation, we further introduce MoMani, an automated benchmark that generates expert-level long-horizon trajectories through multimodal large language model (MLLM)-guided planning and feedback-driven refinement, supplemented with real-robot demonstrations. Experiments in simulated and real-world settings show that EchoVLA improves long-horizon performance, reaching 0.52 SR on manipulation/navigation and 0.31 on mobile manipulation, exceeding $π_{0.5}$ by +0.08 and +0.11.
A Unified Multi-Dynamics Framework for Perception-Oriented Modeling in Tendon-Driven Continuum Robots
Tendon-driven continuum robots offer intrinsically safe and contact-rich interactions owing to their kinematic redundancy and structural compliance. However, their perception often depends on external sensors, which increase hardware complexity and limit scalability. This work introduces a unified multi-dynamics modeling framework for tendon-driven continuum robotic systems, exemplified by a spiral-inspired robot named Spirob. The framework integrates motor electrical dynamics, motor-winch dynamics, and continuum robot dynamics into a coherent system model. Within this framework, motor signals such as current and angular displacement are modeled to expose the electromechanical signatures of external interactions, enabling perception grounded in intrinsic dynamics. The model captures and validates key physical behaviors of the real system, including actuation hysteresis and self-contact at motion limits. Building on this foundation, the framework is applied to environmental interaction: first for passive contact detection, verified experimentally against simulation data; then for active contact sensing, where control and perception strategies from simulation are successfully applied to the real robot; and finally for object size estimation, where a policy learned in simulation is directly deployed on hardware. The results demonstrate that the proposed framework provides a physically grounded way to interpret interaction signatures from intrinsic motor signals in tendon-driven continuum robots.
Anti-Jamming based on Null-Steering Antennas and Intelligent UAV Swarm Behavior
Unmanned Aerial Vehicle (UAV) swarms represent a key advancement in autonomous systems, enabling coordinated missions through inter-UAV communication. However, their reliance on wireless links makes them vulnerable to jamming, which can disrupt coordination and mission success. This work investigates whether a UAV swarm can effectively overcome jamming while maintaining communication and mission efficiency. To address this, a unified optimization framework combining Genetic Algorithms (GA), Supervised Learning (SL), and Reinforcement Learning (RL) is proposed. The mission model, structured into epochs and timeslots, allows dynamic path planning, antenna orientation, and swarm formation while progressively enforcing collision rules. Null-steering antennas enhance resilience by directing antenna nulls toward interference sources. Results show that the GA achieved stable, collision-free trajectories but with high computational cost. SL models replicated GA-based configurations but struggled to generalize under dynamic or constrained settings. RL, trained via Proximal Policy Optimization (PPO), demonstrated adaptability and real-time decision-making with consistent communication and lower computational demand. Additionally, the Adaptive Movement Model generalized UAV motion to arbitrary directions through a rotation-based mechanism, validating the scalability of the proposed system. Overall, UAV swarms equipped with null-steering antennas and guided by intelligent optimization algorithms effectively mitigate jamming while maintaining communication stability, formation cohesion, and collision safety. The proposed framework establishes a unified, flexible, and reproducible basis for future research on resilient swarm communication systems.
comment: 10 pages
Continually Evolving Skill Knowledge in Vision Language Action Model
Developing general robot intelligence in open environments requires continual skill learning. Recent Vision-Language-Action (VLA) models leverage massive pretraining data to support diverse manipulation tasks, but they still depend heavily on task-specific fine-tuning, revealing a lack of continual learning capability. Existing continual learning methods are also resource-intensive to scale to VLA models. We propose Stellar VLA, a knowledge-driven continual learning framework with two variants: T-Stellar, modeling task-centric knowledge space, and TS-Stellar, capturing hierarchical task-skill structure. Stellar VLA enables self-supervised knowledge evolution through joint learning of task latent representation and the knowledge space, reducing annotation needs. Knowledge-guided expert routing provide task specialization without extra network parameters, lowering training overhead.Experiments on the LIBERO benchmark and real-world tasks show over 50 percentage average improvement in final success rates relative to baselines. TS-Stellar further excels in complex action inference, and in-depth analyses verify effective knowledge retention and discovery. Our code will be released soon.
ActDistill: General Action-Guided Self-Derived Distillation for Efficient Vision-Language-Action Models
Recent Vision-Language-Action (VLA) models have shown impressive flexibility and generalization, yet their deployment in robotic manipulation remains limited by heavy computational overhead and inference latency. In this work, we present ActDistill, a general action-guided self-derived distillation framework that transfers the action prediction capability of any existing VLA model to a lightweight counterpart. Unlike previous efficiency strategies that primarily emphasize vision-language correlations, ActDistill leverages action priors to guide knowledge transfer and model compression, achieving action-oriented efficiency for VLA models. Specifically, we employ a well-trained VLA model as the teacher and introduce a graph-structured encapsulation strategy to explicitly model the hierarchical evolution of action prediction. The student model, derived from the graph-encapsulated teacher, is further equipped with a dynamic router that adaptively selects computation paths based on action prediction demands, guided by hierarchical graph-informed supervision to ensure smooth and efficient evolution. During inference, graph-related auxiliary components are removed, allowing the student to execute only dynamically routed layers and predict high-precision actions with minimal computation and latency. Experiments on embodied benchmarks demonstrate that ActDistill achieves comparable or superior performance to full-scale VLA models while reducing computation by over 50% with up to 1.67 times speedup, thereby establishing a general paradigm toward efficient embodied intelligence.
Unobservable Subspace Evolution and Alignment for Consistent Visual-Inertial Navigation
The inconsistency issue in the Visual-Inertial Navigation System (VINS) is a long-standing and fundamental challenge. While existing studies primarily attribute the inconsistency to observability mismatch, these analyses are often based on simplified theoretical formulations that consider only prediction and SLAM correction. Such formulations fail to cover the non-standard estimation steps, such as MSCKF correction and delayed initialization, which are critical for practical VINS estimators. Furthermore, the lack of a comprehensive understanding of how inconsistency dynamically emerges across estimation steps has hindered the development of precise and efficient solutions. As a result, current approaches often face a trade-off between estimator accuracy, consistency, and implementation complexity. To address these limitations, this paper proposes a novel analysis framework termed Unobservable Subspace Evolution (USE), which systematically characterizes how the unobservable subspace evolves throughout the entire estimation pipeline by explicitly tracking changes in its evaluation points. This perspective sheds new light on how individual estimation steps contribute to inconsistency. Our analysis reveals that observability misalignment induced by certain steps is the antecedent of observability mismatch. Guided by this insight, we propose a simple yet effective solution paradigm, Unobservable Subspace Alignment (USA), which eliminates inconsistency by selectively intervening only in those estimation steps that induce misalignment. We design two USA methods: transformation-based and re-evaluation-based, both offering accurate and computationally lightweight solutions. Extensive simulations and real-world experiments validate the effectiveness of the proposed methods.
comment: 20 pages, 16 figures
RoboArmGS: High-Quality Robotic Arm Splatting via Bézier Curve Refinement
Building high-quality digital assets of robotic arms is crucial yet challenging for the Real2Sim2Real pipeline. Current approaches naively bind static 3D Gaussians according to URDF links, forcing them to follow an URDF-rigged motion passively. However, real-world arm motion is noisy, and the idealized URDF-rigged motion cannot accurately model it, leading to severe rendering artifacts in 3D Gaussians. To address these challenges, we propose RoboArmGS, a novel hybrid representation that refines the URDF-rigged motion with learnable Bézier curves, enabling more accurate real-world motion modeling. To be more specific, we present a learnable Bézier Curve motion refiner that corrects per-joint residuals to address mismatches between real-world motion and URDF-rigged motion. RoboArmGS enables the learning of more accurate real-world motion while achieving a coherent binding of 3D Gaussians across arm parts. To support future research, we contribute a carefully collected dataset named RoboArm4D, which comprises several widely used robotic arms for evaluating the quality of building high-quality digital assets. We evaluate our approach on RoboArm4D, and RoboArmGS achieves state-of-the-art performance in real-world motion modeling and rendering quality. The code and dataset will be released.
Switch-JustDance: Benchmarking Whole Body Motion Tracking Policies Using a Commercial Console Game
Recent advances in whole-body robot control have enabled humanoid and legged robots to perform increasingly agile and coordinated motions. However, standardized benchmarks for evaluating these capabilities in real-world settings, and in direct comparison to humans, remain scarce. Existing evaluations often rely on pre-collected human motion datasets or simulation-based experiments, which limit reproducibility, overlook hardware factors, and hinder fair human-robot comparisons. We present Switch-JustDance, a low-cost and reproducible benchmarking pipeline that leverages motion-sensing console games, Just Dance on the Nintendo Switch, to evaluate robot whole-body control. Using Just Dance on the Nintendo Switch as a representative platform, Switch-JustDance converts in-game choreography into robot-executable motions through streaming, motion reconstruction, and motion retargeting modules and enables users to evaluate controller performance through the game's built-in scoring system. We first validate the evaluation properties of Just Dance, analyzing its reliability, validity, sensitivity, and potential sources of bias. Our results show that the platform provides consistent and interpretable performance measures, making it a suitable tool for benchmarking embodied AI. Building on this foundation, we benchmark three state-of-the-art humanoid whole-body controllers on hardware and provide insights into their relative strengths and limitations.
CUS-GS: A Compact Unified Structured Gaussian Splatting Framework for Multimodal Scene Representation
Recent advances in Gaussian Splatting based 3D scene representation have shown two major trends: semantics-oriented approaches that focus on high-level understanding but lack explicit 3D geometry modeling, and structure-oriented approaches that capture spatial structures yet provide limited semantic abstraction. To bridge this gap, we present CUS-GS, a compact unified structured Gaussian Splatting representation, which connects multimodal semantic features with structured 3D geometry. Specifically, we design a voxelized anchor structure that constructs a spatial scaffold, while extracting multimodal semantic features from a set of foundation models (e.g., CLIP, DINOv2, SEEM). Moreover, we introduce a multimodal latent feature allocation mechanism to unify appearance, geometry, and semantics across heterogeneous feature spaces, ensuring a consistent representation across multiple foundation models. Finally, we propose a feature-aware significance evaluation strategy to dynamically guide anchor growing and pruning, effectively removing redundant or invalid anchors while maintaining semantic integrity. Extensive experiments show that CUS-GS achieves competitive performance compared to state-of-the-art methods using as few as 6M parameters - an order of magnitude smaller than the closest rival at 35M - highlighting the excellent trade off between performance and model efficiency of the proposed framework.
comment: 15 pages, 8 figures, 4 tables
L1 Sample Flow for Efficient Visuomotor Learning
Denoising-based models, such as diffusion and flow matching, have been a critical component of robotic manipulation for their strong distribution-fitting and scaling capacity. Concurrently, several works have demonstrated that simple learning objectives, such as L1 regression, can achieve performance comparable to denoising-based methods on certain tasks, while offering faster convergence and inference. In this paper, we focus on how to combine the advantages of these two paradigms: retaining the ability of denoising models to capture multi-modal distributions and avoid mode collapse while achieving the efficiency of the L1 regression objective. To achieve this vision, we reformulate the original v-prediction flow matching and transform it into sample-prediction with the L1 training objective. We empirically show that the multi-modality can be expressed via a single ODE step. Thus, we propose \textbf{L1 Flow}, a two-step sampling schedule that generates a suboptimal action sequence via a single integration step and then reconstructs the precise action sequence through a single prediction. The proposed method largely retains the advantages of flow matching while reducing the iterative neural function evaluations to merely two and mitigating the potential performance degradation associated with direct sample regression. We evaluate our method with varying baselines and benchmarks, including 8 tasks in MimicGen, 5 tasks in RoboMimic \& PushT Bench, and one task in the real-world scenario. The results show the advantages of the proposed method with regard to training efficiency, inference speed, and overall performance. \href{https://song-wx.github.io/l1flow.github.io/}{Project Website.}
MobileVLA-R1: Reinforcing Vision-Language-Action for Mobile Robots
Grounding natural-language instructions into continuous control for quadruped robots remains a fundamental challenge in vision language action. Existing methods struggle to bridge high-level semantic reasoning and low-level actuation, leading to unstable grounding and weak generalization in the real world. To address these issues, we present MobileVLA-R1, a unified vision-language-action framework that enables explicit reasoning and continuous control for quadruped robots. We construct MobileVLA-CoT, a large-scale dataset of multi-granularity chain-of-thought (CoT) for embodied trajectories, providing structured reasoning supervision for alignment. Built upon this foundation, we introduce a two-stage training paradigm that combines supervised CoT alignment with GRPO reinforcement learning to enhance reasoning consistency, control stability, and long-horizon execution. Extensive evaluations on VLN and VLA tasks demonstrate superior performance over strong baselines, with approximately a 5% improvement. Real-world deployment on a quadruped robot validates robust performance in complex environments. Code: https://github.com/AIGeeksGroup/MobileVLA-R1. Website: https://aigeeksgroup.github.io/MobileVLA-R1.
ArticFlow: Generative Simulation of Articulated Mechanisms
Recent advances in generative models have produced strong results for static 3D shapes, whereas articulated 3D generation remains challenging due to action-dependent deformations and limited datasets. We introduce ArticFlow, a two-stage flow matching framework that learns a controllable velocity field from noise to target point sets under explicit action control. ArticFlow couples (i) a latent flow that transports noise to a shape-prior code and (ii) a point flow that transports points conditioned on the action and the shape prior, enabling a single model to represent diverse articulated categories and generalize across actions. On MuJoCo Menagerie, ArticFlow functions both as a generative model and as a neural simulator: it predicts action-conditioned kinematics from a compact prior and synthesizes novel morphologies via latent interpolation. Compared with object-specific simulators and an action-conditioned variant of static point-cloud generators, ArticFlow achieves higher kinematic accuracy and better shape quality. Results show that action-conditioned flow matching is a practical route to controllable and high-quality articulated mechanism generation.
comment: 8 pages, 8 figures
QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents
Robots must learn from both what people do and what they say, but either modality alone is often incomplete: physical corrections are grounded but ambiguous in intent, while language expresses high-level goals but lacks physical grounding. We introduce QuickLAP: Quick Language-Action Preference learning, a Bayesian framework that fuses physical and language feedback to infer reward functions in real time. Our key insight is to treat language as a probabilistic observation over the user's latent preferences, clarifying which reward features matter and how physical corrections should be interpreted. QuickLAP uses Large Language Models (LLMs) to extract reward feature attention masks and preference shifts from free-form utterances, which it integrates with physical feedback in a closed-form update rule. This enables fast, real-time, and robust reward learning that handles ambiguous feedback. In a semi-autonomous driving simulator, QuickLAP reduces reward learning error by over 70% compared to physical-only and heuristic multimodal baselines. A 15-participant user study further validates our approach: participants found QuickLAP significantly more understandable and collaborative, and preferred its learned behavior over baselines. Code is available at https://github.com/MIT-CLEAR-Lab/QuickLAP.
Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
Vision-Only Gaussian Splatting for Collaborative Semantic Occupancy Prediction AAAI 2026
Collaborative perception enables connected vehicles to share information, overcoming occlusions and extending the limited sensing range inherent in single-agent (non-collaborative) systems. Existing vision-only methods for 3D semantic occupancy prediction commonly rely on dense 3D voxels, which incur high communication costs, or 2D planar features, which require accurate depth estimation or additional supervision, limiting their applicability to collaborative scenarios. To address these challenges, we propose the first approach leveraging sparse 3D semantic Gaussian splatting for collaborative 3D semantic occupancy prediction. By sharing and fusing intermediate Gaussian primitives, our method provides three benefits: a neighborhood-based cross-agent fusion that removes duplicates and suppresses noisy or inconsistent Gaussians; a joint encoding of geometry and semantics in each primitive, which reduces reliance on depth supervision and allows simple rigid alignment; and sparse, object-centric messages that preserve structural information while reducing communication volume. Extensive experiments demonstrate that our approach outperforms single-agent perception and baseline collaborative methods by +8.42 and +3.28 points in mIoU, and +5.11 and +22.41 points in IoU, respectively. When further reducing the number of transmitted Gaussians, our method still achieves a +1.9 improvement in mIoU, using only 34.6% communication volume, highlighting robust performance under limited communication budgets.
comment: Accepted by AAAI 2026 (Oral)
Unified Generation-Refinement Planning: Bridging Guided Flow Matching and Sampling-Based MPC for Social Navigation
Planning safe and effective robot behavior in dynamic, human-centric environments remains a core challenge due to the need to handle multimodal uncertainty, adapt in real-time, and ensure safety. Optimization-based planners offer explicit constraint handling but performance relies on initialization quality. Learning-based planners better capture multimodal possible solutions but struggle to enforce constraints such as safety. In this paper, we introduce a unified generation-refinement framework bridging learning and optimization with a novel reward-guided conditional flow matching (CFM) model and model predictive path integral (MPPI) control. Our key innovation is in the incorporation of a bidirectional information exchange: samples from a reward-guided CFM model provide informed priors for MPPI refinement, while the optimal trajectory from MPPI warm-starts the next CFM generation. Using autonomous social navigation as a motivating application, we demonstrate that our approach can flexibly adapt to dynamic environments to satisfy safety requirements in real-time.
RGBSQGrasp: Inferring Local Superquadric Primitives from Single RGB Image for Graspability-Aware Bin Picking IROS2025
Bin picking is a challenging robotic task due to occlusions and physical constraints that limit visual information for object recognition and grasping. Existing approaches often rely on known CAD models or prior object geometries, restricting generalization to novel or unknown objects. Other methods directly regress grasp poses from RGB-D data without object priors, but the inherent noise in depth sensing and the lack of object understanding make grasp synthesis and evaluation more difficult. Superquadrics (SQ) offer a compact, interpretable shape representation that captures the physical and graspability understanding of objects. However, recovering them from limited viewpoints is challenging, as existing methods rely on multiple perspectives for near-complete point cloud reconstruction, limiting their effectiveness in bin-picking. To address these challenges, we propose \textbf{RGBSQGrasp}, a grasping framework that leverages superquadric shape primitives and foundation metric depth estimation models to infer grasp poses from a monocular RGB camera -- eliminating the need for depth sensors. Our framework integrates a universal, cross-platform dataset generation pipeline, a foundation model-based object point cloud estimation module, a global-local superquadric fitting network, and an SQ-guided grasp pose sampling module. By integrating these components, RGBSQGrasp reliably infers grasp poses through geometric reasoning, enhancing grasp stability and adaptability to unseen objects. Real-world robotic experiments demonstrate a 92% grasp success rate, highlighting the effectiveness of RGBSQGrasp in packed bin-picking environments.
comment: 8 pages, 6 figures, IROS2025 RGMCW Best Workshop Paper
ResAD: Normalized Residual Trajectory Modeling for End-to-End Autonomous Driving
End-to-end autonomous driving (E2EAD) systems, which learn to predict future trajectories directly from sensor data, are fundamentally challenged by the inherent spatio-temporal imbalance of trajectory data. This imbalance creates a significant optimization burden, causing models to learn spurious correlations instead of robust driving logic, while also prioritizing uncertain, distant predictions, thereby compromising immediate safety. To address these issues, we propose ResAD, a novel Normalized Residual Trajectory Modeling framework. Instead of predicting the future trajectory directly, our approach reframes and simplifies the learning task by predicting the residual deviation from a deterministic inertial reference. This inertial reference serves as a strong physical prior, compelling the model to move beyond simple pattern-matching and instead focus its capacity on learning the necessary, context-driven deviations (e.g., traffic rules, obstacles) from this default, inertially-guided path. To mitigate the optimization imbalance caused by uncertain, long-term horizons, ResAD further incorporates Point-wise Normalization of the predicted residual. This technique re-weights the optimization objective, preventing large-magnitude errors associated with distant, uncertain waypoints from dominating the learning signal. On the NAVSIM v1 and v2 benchmarks, ResAD achieves state-of-the-art results of 88.8 PDMS and 85.5 EPDMS with only two denoising steps, demonstrating that ResAD significantly simplifies the learning task and improves planning performance. The code will be released to facilitate further research.
Multi-Timescale Hierarchical Reinforcement Learning for Unified Behavior and Control of Autonomous Driving
Reinforcement Learning (RL) is increasingly used in autonomous driving (AD) and shows clear advantages. However, most RL-based AD methods overlook policy structure design. An RL policy that only outputs short-timescale vehicle control commands results in fluctuating driving behavior due to fluctuations in network outputs, while one that only outputs long-timescale driving goals cannot achieve unified optimality of driving behavior and control. Therefore, we propose a multi-timescale hierarchical reinforcement learning approach. Our approach adopts a hierarchical policy structure, where high- and low-level RL policies are unified-trained to produce long-timescale motion guidance and short-timescale control commands, respectively. Therein, motion guidance is explicitly represented by hybrid actions to capture multimodal driving behaviors on structured road and support incremental low-level extend-state updates. Additionally, a hierarchical safety mechanism is designed to ensure multi-timescale safety. Evaluation in simulator-based and HighD dataset-based highway multi-lane scenarios demonstrates that our approach significantly improves AD performance, effectively increasing driving efficiency, action consistency and safety.
comment: 8 pages, accepted for publication in IEEE Robotics and Automation Letters (RAL)
Occlusion-Aware Contingency Safety-Critical Planning for Autonomous Driving
Ensuring safe driving while maintaining travel efficiency for autonomous vehicles in dynamic and occluded environments is a critical challenge. This paper proposes an occlusion-aware contingency safety-critical planning approach for real-time autonomous driving. Leveraging reachability analysis for risk assessment, forward reachable sets of phantom vehicles are used to derive risk-aware dynamic velocity boundaries. These velocity boundaries are incorporated into a biconvex nonlinear programming (NLP) formulation that formally enforces safety using spatiotemporal barrier constraints, while simultaneously optimizing exploration and fallback trajectories within a receding horizon planning framework. To enable real-time computation and coordination between trajectories, we employ the consensus alternating direction method of multipliers (ADMM) to decompose the biconvex NLP problem into low-dimensional convex subproblems. The effectiveness of the proposed approach is validated through simulations and real-world experiments in occluded intersections. Experimental results demonstrate enhanced safety and improved travel efficiency, enabling real-time safe trajectory generation in dynamic occluded intersections under varying obstacle conditions. The project page is available at https://zack4417.github.io/oacp-website/.
comment: 14 pages, 9 figures
DragonFly: Single mmWave Radar 3D Localization of Highly Dynamic Tags in GPS-Denied Environments
The accurate localization and tracking of dynamic targets, such as equipment, people, vehicles, drones, robots, and the assets that they interact with in GPS-denied indoor environments is critical to enabling safe and efficient operations in the next generation of spatially aware industrial facilities. This paper presents DragonFly , a 3D localization system of highly dynamic backscatter tags using a single MIMO mmWave radar. The system delivers the first demonstration of a mmWave backscatter system capable of exploiting the capabilities of MIMO radars for the 3D localization of mmID tags moving at high speeds and accelerations at long ranges by introducing a critical Doppler disambiguation algorithm and a fully integrated cross-polarized dielectric lens-based mmID tag consuming a mere 68 uW. DragonFly was extensively evaluated in static and dynamic configurations, including on a flying quadcopter, and benchmarked against multiple baselines, demonstrating its ability to track the positions of multiple tags with a median 3D accuracy of 12 cm at speeds and acceleration on the order of 10 m/s and 4 m/s^2 and at ranges of up to 50m.
comment: Accepted in ACM Mobicom'25
Multiagent Systems
DISPATCH -- Decentralized Informed Spatial Planning and Assignment of Tasks for Cooperative Heterogeneous Agents
Spatial task allocation in systems such as multi-robot delivery or ride-sharing requires balancing efficiency with fair service across tasks. Greedy assignment policies that match each agent to its highest-preference or lowest-cost task can maximize efficiency but often create inequities: some tasks receive disproportionately favorable service (e.g., shorter delays or better matches), while others face long waits or poor allocations. We study fairness in heterogeneous multi-agent systems where tasks vary in preference alignment and urgency. Most existing approaches either assume centralized coordination or largely ignore fairness under partial observability. Distinct from this prior work, we establish a connection between the Eisenberg-Gale (EG) equilibrium convex program and decentralized, partially observable multi-agent learning. Building on this connection, we develop two equilibrium-informed algorithms that integrate fairness and efficiency: (i) a multi-agent reinforcement learning (MARL) framework, EG-MARL, whose training is guided by centralized fair assignment algorithms (EG and a preference-aware Hungarian method); and (ii) a stochastic online optimization mechanism that performs guided exploration and subset-based fair assignment as tasks are discovered. We evaluate our frameworks across a range of team sizes and assignment formulations against centralized EG, Hungarian, and Min-Max Distance baselines. Both algorithms preserve the fairness-efficiency balance of the Eisenberg-Gale equilibrium under partial observability. EG-MARL achieves near-centralized coordination and reduced travel distances, while the stochastic online mechanism enables real-time allocation with competitive fairness. Together, these results demonstrate that spatially aware EG formulations can effectively guide decentralized coordination in agents with heterogeneous capabilities.
A superpersuasive autonomous policy debating system AAAI 2026
The capacity for highly complex, evidence-based, and strategically adaptive persuasion remains a formidable great challenge for artificial intelligence. Previous work, like IBM Project Debater, focused on generating persuasive speeches in simplified and shortened debate formats intended for relatively lay audiences. We introduce DeepDebater, a novel autonomous system capable of participating in and winning a full, unmodified, two-team competitive policy debate. Our system employs a hierarchical architecture of specialized multi-agent workflows, where teams of LLM-powered agents collaborate and critique one another to perform discrete argumentative tasks. Each workflow utilizes iterative retrieval, synthesis, and self-correction using a massive corpus of policy debate evidence (OpenDebateEvidence) and produces complete speech transcripts, cross-examinations, and rebuttals. We introduce a live, interactive end-to-end presentation pipeline that renders debates with AI speech and animation: transcripts are surface-realized and synthesized to audio with OpenAI TTS, and then displayed as talking-head portrait videos with EchoMimic V1. Beyond fully autonomous matches (AI vs AI), DeepDebater supports hybrid human-AI operation: human debaters can intervene at any stage, and humans can optionally serve as opponents against AI in any speech, allowing AI-human and AI-AI rounds. In preliminary evaluations against human-authored cases, DeepDebater produces qualitatively superior argumentative components and consistently wins simulated rounds as adjudicated by an independent autonomous judge. Expert human debate coaches also prefer the arguments, evidence, and cases constructed by DeepDebater. We open source all code, generated speech transcripts, audio and talking head video here: https://github.com/Hellisotherpeople/DeepDebater/tree/main
comment: Accepted to CLIP workshop at AAAI 2026
Toward Adaptive Categories: Dimensional Governance for Agentic AI
As AI systems evolve from static tools to dynamic agents, traditional categorical governance frameworks -- based on fixed risk tiers, levels of autonomy, or human oversight models -- are increasingly insufficient on their own. Systems built on foundation models, self-supervised learning, and multi-agent architectures increasingly blur the boundaries that categories were designed to police. In this Perspective, we make the case for dimensional governance: a framework that tracks how decision authority, process autonomy, and accountability (the 3As) distribute dynamically across human-AI relationships. A critical advantage of this approach is its ability to explicitly monitor system movement toward and across key governance thresholds, enabling preemptive adjustments before risks materialize. This dimensional approach provides the necessary foundation for more adaptive categorization, enabling thresholds and classifications that can evolve with emerging capabilities. While categories remain essential for decision-making, building them upon dimensional foundations allows for context-specific adaptability and stakeholder-responsive governance that static approaches cannot achieve. We outline key dimensions, critical trust thresholds, and practical examples illustrating where rigid categorical frameworks fail -- and where a dimensional mindset could offer a more resilient and future-proof path forward for both governance and innovation at the frontier of artificial intelligence.
comment: 12 pages core text, 15 pages including references, 2 figures
Tapas Are Free! Training-Free Adaptation of Programmatic Agents via LLM-Guided Program Synthesis in Dynamic Environments AAAI-26
Autonomous agents in safety-critical applications must continuously adapt to dynamic conditions without compromising performance and reliability. This work introduces TAPA (Training-free Adaptation of Programmatic Agents), a novel framework that positions large language models (LLMs) as intelligent moderators of the symbolic action space. Unlike prior programmatic agents typically generate a monolithic policy program or rely on fixed symbolic action sets, TAPA synthesizes and adapts modular programs for individual high-level actions, referred to as logical primitives. By decoupling strategic intent from execution, TAPA enables meta-agents to operate over an abstract, interpretable action space while the LLM dynamically generates, composes, and refines symbolic programs tailored to each primitive. Extensive experiments across cybersecurity and swarm intelligence domains validate TAPA's effectiveness. In autonomous DDoS defense scenarios, TAPA achieves 77.7% network uptime while maintaining near-perfect detection accuracy in unknown dynamic environments. In swarm intelligence formation control under environmental and adversarial disturbances, TAPA consistently preserves consensus at runtime where baseline methods fail. This work promotes a paradigm shift for autonomous system design in evolving environments, from policy adaptation to dynamic action adaptation.
comment: Extended version of the paper accepted at AAAI-26 Oral to comply with the AAAI camera-ready requirements with minor revisions
Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values NeurIPS 2025
The growing interest in employing large language models (LLMs) for decision-making in social and economic contexts has raised questions about their potential to function as agents in these domains. A significant number of societal problems involve the distribution of resources, where fairness, along with economic efficiency, play a critical role in the desirability of outcomes. In this paper, we examine whether LLM responses adhere to fundamental fairness concepts such as equitability, envy-freeness, and Rawlsian maximin, and investigate their alignment with human preferences. We evaluate the performance of several LLMs, providing a comparative benchmark of their ability to reflect these measures. Our results demonstrate a lack of alignment between current LLM responses and human distributional preferences. Moreover, LLMs are unable to utilize money as a transferable resource to mitigate inequality. Nonetheless, we demonstrate a stark contrast when (some) LLMs are tasked with selecting from a predefined menu of options rather than generating one. In addition, we analyze the robustness of LLM responses to variations in semantic factors (e.g., intentions or personas) or non-semantic prompting changes (e.g., templates or orderings). Finally, we highlight potential strategies aimed at enhancing the alignment of LLM behavior with well-established fairness concepts.
comment: Accepted at NeurIPS 2025
ShortageSim: Simulating Drug Shortages under Information Asymmetry AAAI 2026
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to information asymmetries in pharmaceutical supply chains. We propose ShortageSim, which addresses this challenge by providing the first simulation framework that evaluates the impact of regulatory interventions on competition dynamics under information asymmetry. Using Large Language Model (LLM)-based agents, the framework models the strategic decisions of drug manufacturers and institutional buyers in response to shortage alerts given by the regulatory agency. Unlike traditional game theory models that assume perfect rationality and complete information, \name simulates heterogeneous interpretations on regulatory announcements and the resulting decisions. Experiments on a self-processed dataset of historical shortage events show that \name reduces the resolution lag for production disruption cases by up to 84\%, achieving closer alignment to real-world trajectories than the zero-shot baseline. Our framework confirms the effect of regulatory alert in addressing shortages and introduces a new method for understanding competition in multi-stage environments under uncertainty. We open-source \name and a dataset of 2,925 FDA shortage events in https://github.com/Lemutisme/ShortageSim, providing a novel framework for future research on policy design and testing in supply chains under information asymmetry.
comment: Accepted by AAAI 2026. Oral Presentation
Systems and Control (EESS)
Energy Control Strategy to Enhance AC Fault Ride-Through in Offshore Wind MMC-HVDC Systems
Modular Multilevel Converter-based High Voltage Direct Current (MMC-HVDC) system is a promising technology for integration of offshore wind farms (OWFs). However, onshore AC faults on MMC-HVDC reduce the power transfer capability of onshore converter station, leading to surplus power accumulation in HVDC link. This surplus power causes a rapid rise in DC-link voltage and may hinder safe operation of OWFs. To address such a situation, this paper presents an AC fault ride-through scheme that combines the storage of surplus power in MMC submodule (SM) capacitors and dissipation of residual power in an energy dissipation device (EDD). The proposed energy control facilitates use of half-bridge MMC SMs with low-capacitance, with their storage capacity leveraged to share the surplus power during faults, with a lower-rated EDD. The proposed scheme is tested on a 640kV/420MW MMC-HVDC system. The results show that proposed control scheme effectively maintains DC link voltages, ensuring connection of OWFs.
Optimizing the Driving Profile for Vehicle Mass Estimation
Accurate mass estimation is essential for the safe and efficient operation of autonomous heavy-duty vehicles, particularly during transportation missions in unstructured environments such as mining sites, where vehicle mass can vary significantly due to loading and unloading. While prior work has recognized the importance of acceleration profiles for estimation accuracy, the systematic design of driving profiles during transport has not been thoroughly investigated. This paper presents a framework for designing driving profiles to support accurate mass estimation. Based on application-oriented input design, it aims to meet a user-defined accuracy constraint under three optimization objectives: minimum-time, minimum-distance, and maximum accuracy (within a fixed time). It allows time- and distance-dependent bounds on acceleration and velocity, and is based on a Newtonian vehicle dynamics model with actuator dynamics. The optimal profiles are obtained by solving concave optimization problems using a branch-and-bound method, with alternative rank-constrained and semi-definite relaxations also discussed. Theoretical analysis provides insights into the optimal profiles, including feasibility conditions, key ratios between velocity and acceleration bounds, and trade-offs between time- and distance-optimal solutions. The framework is validated through simulations and real-world experiments on a Scania truck with different payloads. Results show that the designed profiles are feasible and effective, enabling accurate mass estimation as part of normal transportation operations without requiring dedicated calibration runs. An additional contribution is a non-causal Wiener filter, with parameters estimated via the Empirical Bayes method, used to filter the accelerometer signal with no phase-lag.
Real-Time Lane-Level Crash Detection on Freeways Using Sparse Telematics Data
Real-time traffic crash detection is critical in intelligent transportation systems because traditional crash notifications often suffer delays and lack specific, lane-level location information, which can lead to safety risks and economic losses. This paper proposes a real-time, lane-level crash detection approach for freeways that only leverages sparse telematics trajectory data. In the offline stage, the historical trajectories are discretized into spatial cells using vector cross-product techniques, and then used to estimate a vehicle intention distribution and select an alert threshold by maximizing the F1-score based on official crash reports. In the online stage, incoming telematics records are mapped to these cells and scored for three modules: transition anomalies, speed deviations, and lateral maneuver risks, with scores accumulated into a cell-specific risk map. When any cell's risk exceeds the alert threshold, the system issues a prompt warning. Relying solely on telematics data, this real-time and low-cost solution is evaluated on a Wisconsin dataset and validated against official crash reports, achieving a 75% crash identification rate with accurate lane-level localization, an overall accuracy of 96%, an F1-score of 0.84, and a non-crash-to-crash misclassification rate of only 0.6%, while also detecting 13% of crashes more than 3 minutes before the recorded crash time.
comment: 15 pages,6 figures
Anti-Jamming based on Null-Steering Antennas and Intelligent UAV Swarm Behavior
Unmanned Aerial Vehicle (UAV) swarms represent a key advancement in autonomous systems, enabling coordinated missions through inter-UAV communication. However, their reliance on wireless links makes them vulnerable to jamming, which can disrupt coordination and mission success. This work investigates whether a UAV swarm can effectively overcome jamming while maintaining communication and mission efficiency. To address this, a unified optimization framework combining Genetic Algorithms (GA), Supervised Learning (SL), and Reinforcement Learning (RL) is proposed. The mission model, structured into epochs and timeslots, allows dynamic path planning, antenna orientation, and swarm formation while progressively enforcing collision rules. Null-steering antennas enhance resilience by directing antenna nulls toward interference sources. Results show that the GA achieved stable, collision-free trajectories but with high computational cost. SL models replicated GA-based configurations but struggled to generalize under dynamic or constrained settings. RL, trained via Proximal Policy Optimization (PPO), demonstrated adaptability and real-time decision-making with consistent communication and lower computational demand. Additionally, the Adaptive Movement Model generalized UAV motion to arbitrary directions through a rotation-based mechanism, validating the scalability of the proposed system. Overall, UAV swarms equipped with null-steering antennas and guided by intelligent optimization algorithms effectively mitigate jamming while maintaining communication stability, formation cohesion, and collision safety. The proposed framework establishes a unified, flexible, and reproducible basis for future research on resilient swarm communication systems.
comment: 10 pages
Sparse Broad Learning System via Sequential Threshold Least-Squares for Nonlinear System Identification under Noise
The Broad Learning System (BLS) has gained significant attention for its computational efficiency and less network parameters compared to deep learning structures. However, the standard BLS relies on the pseudoinverse solution, which minimizes the mean square error with $L_2$-norm but lacks robustness against sensor noise and outliers common in industrial environments. To address this limitation, this paper proposes a novel Sparse Broad Learning System (S-BLS) framework. Instead of the traditional ridge regression, we incorporate the Sequential Threshold Least-Squares (STLS) algorithm -- originally utilized in the sparse identification of nonlinear dynamics (SINDy) -- into the output weight learning process of BLS. By iteratively thresholding small coefficients, the proposed method promotes sparsity in the output weights, effectively filtering out noise components while maintaining modeling accuracy. This approach falls under the category of sparse regression and is particularly suitable for noisy environments. Experimental results on a numerical nonlinear system and a noisy Continuous Stirred Tank Reactor (CSTR) benchmark demonstrate that the proposed method is effective and achieves superior robustness compared to standard BLS.
Sparse Kalman Identification for Partially Observable Systems via Adaptive Bayesian Learning
Sparse dynamics identification is an essential tool for discovering interpretable physical models and enabling efficient control in engineering systems. However, existing methods rely on batch learning with full historical data, limiting their applicability to real-time scenarios involving sequential and partially observable data. To overcome this limitation, this paper proposes an online Sparse Kalman Identification (SKI) method by integrating the Augmented Kalman Filter (AKF) and Automatic Relevance Determination (ARD). The main contributions are: (1) a theoretically grounded Bayesian sparsification scheme that is seamlessly integrated into the AKF framework and adapted to sequentially collected data in online scenarios; (2) an update mechanism that adapts the Kalman posterior to reflect the updated selection of the basis functions that define the model structure; (3) an explicit gradient-descent formulation that enhances computational efficiency. Consequently, the SKI method achieves accurate model structure selection with millisecond-level efficiency and higher identification accuracy, as demonstrated by extensive simulations and real-world experiments (showing an 84.21\% improvement in accuracy over the baseline AKF).
On the stability of event-based control with neuronal dynamics
Event-based control, unlike analogue control, poses significant analytical challenges due to its hybrid dynamics. This work investigates the stability and inter-event time properties of a control-affine system under event-based impulsive control. The controller consists of multiple neuronal units with leaky integrate-and-fire dynamics acting on a time-invariant, multiple-input multiple-output plant in closed loop. Both the plant state and the neuronal units exhibit discontinuities that cancel if combined linearly, enabling a direct correspondence between the event-based impulsive controller and a corresponding analogue controller. Leveraging this observation, we prove global practical stability of the event-based impulsive control system. In the general nonlinear case, we show that the event-based impulsive controller ensures global practical asymptotic stability if the analogue system is input-to-state stable (ISS) with respect to specific disturbances. In the linear case, we further show global practical exponential stability if the analogue system is stable. We illustrate our results with numerical simulations. The findings reveal a fundamental link between analogue and event-based impulsive control, providing new insights for the design of neuromorphic controllers.
comment: 11 pages, 4 figures
Machine Learning-based Online Stability Lobe Diagram Estimation and Chatter Suppression Control in Milling Process
Chatter is a self-excited vibration in milling that degrades surface quality and accelerates tool wear. This paper presents an adaptive process controller that suppresses chatter by leveraging machine learning-based online estimation of the Stability Lobe Diagram (SLD) and surface roughness in the process. Stability analysis is conducted using the semi-discretization method for milling dynamics modeled by delay differential equations. An integrated machine learning framework estimates the SLD from sensor data and predicts surface roughness for chatter detection in real time. These estimates are integrated into an optimal controller that adaptively adjusts spindle speed to maintain process stability and improve surface finish. Simulations and experiments are performed to demonstrate the superior performance compared to the existing approaches.
Generative Model Predictive Control in Manufacturing Processes: A Review
Manufacturing processes are inherently dynamic and uncertain, with varying parameters and nonlinear behaviors, making robust control essential for maintaining quality and reliability. Traditional control methods often fail under these conditions due to their reactive nature. Model Predictive Control (MPC) has emerged as a more advanced framework, leveraging process models to predict future states and optimize control actions. However, MPC relies on simplified models that often fail to capture complex dynamics, and it struggles with accurate state estimation and handling the propagation of uncertainty in manufacturing environments. Machine learning (ML) has been introduced to enhance MPC by modeling nonlinear dynamics and learning latent representations that support predictive modeling, state estimation, and optimization. Yet existing ML-driven MPC approaches remain deterministic and correlation-focused, motivating the exploration of generative. Generative ML offers new opportunities by learning data distributions, capturing hidden patterns, and inherently managing uncertainty, thereby complementing MPC. This review highlights five representative methods and examines how each has been integrated into MPC components, including predictive modeling, state estimation, and optimization. By synthesizing these cases, we outline the common ways generative ML can systematically enhance MPC and provide a framework for understanding its potential in diverse manufacturing processes. We identify key research gaps, propose future directions, and use a representative case to illustrate how generative ML-driven MPC can extend broadly across manufacturing. Taken together, this review positions generative ML not as an incremental add-on but as a transformative approach to reshape predictive control for next-generation manufacturing systems.
comment: 24 pages, 5 figures, Review article
RGBSQGrasp: Inferring Local Superquadric Primitives from Single RGB Image for Graspability-Aware Bin Picking IROS2025
Bin picking is a challenging robotic task due to occlusions and physical constraints that limit visual information for object recognition and grasping. Existing approaches often rely on known CAD models or prior object geometries, restricting generalization to novel or unknown objects. Other methods directly regress grasp poses from RGB-D data without object priors, but the inherent noise in depth sensing and the lack of object understanding make grasp synthesis and evaluation more difficult. Superquadrics (SQ) offer a compact, interpretable shape representation that captures the physical and graspability understanding of objects. However, recovering them from limited viewpoints is challenging, as existing methods rely on multiple perspectives for near-complete point cloud reconstruction, limiting their effectiveness in bin-picking. To address these challenges, we propose \textbf{RGBSQGrasp}, a grasping framework that leverages superquadric shape primitives and foundation metric depth estimation models to infer grasp poses from a monocular RGB camera -- eliminating the need for depth sensors. Our framework integrates a universal, cross-platform dataset generation pipeline, a foundation model-based object point cloud estimation module, a global-local superquadric fitting network, and an SQ-guided grasp pose sampling module. By integrating these components, RGBSQGrasp reliably infers grasp poses through geometric reasoning, enhancing grasp stability and adaptability to unseen objects. Real-world robotic experiments demonstrate a 92% grasp success rate, highlighting the effectiveness of RGBSQGrasp in packed bin-picking environments.
comment: 8 pages, 6 figures, IROS2025 RGMCW Best Workshop Paper
Barycentric rational approximation for learning the index of a dynamical system from limited data
We consider the task of data-driven identification of dynamical systems, specifically for systems whose behavior at large frequencies is non-standard, as encoded by a non-trivial relative degree of the transfer function or, alternatively, a non-trivial index of a corresponding realization as a descriptor system. We develop novel surrogate modeling strategies that allow state-of-the-art rational approximation algorithms (e.g., AAA and vector fitting) to better handle data coming from such systems with non-trivial relative degree. Our contribution is twofold. On one hand, we describe a strategy to build rational surrogate models with prescribed relative degree, with the objective of mirroring the high-frequency behavior of the high-fidelity problem, when known. The surrogate model's desired degree is achieved through constraints on its barycentric coefficients, rather than through ad-hoc modifications of the rational form. On the other hand, we present a degree-identification routine that allows one to estimate the unknown relative degree of a system from low-frequency data. By identifying the degree of the system that generated the data, we can build a surrogate model that, in addition to matching the data well (at low frequencies), has enhanced extrapolation capabilities (at high frequencies). We showcase the effectiveness and robustness of the newly proposed method through a suite of numerical tests.
comment: 22 pages, 5 figures
Accelerating Automatic Differentiation of Direct Form Digital Filters
We introduce a general formulation for automatic differentiation through direct form filters, yielding a closed-form backpropagation that includes initial condition gradients. The result is a single expression that can represent both the filter and its gradients computation while supporting parallelism. C++/CUDA implementations in PyTorch achieve at least 1000x speedup over naive Python implementations and consistently run fastest on the GPU. For the low-order filters commonly used in practice, exact time-domain filtering with analytical gradients outperforms the frequency-domain method in terms of speed. The source code is available at https://github.com/yoyolicoris/philtorch.
comment: Accepted at the 1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025
Koopman Eigenfunction-Based Identification and Optimal Nonlinear Control of Turbojet Engine
Gas turbine engines are complex and highly nonlinear dynamical systems. Deriving their physics-based models can be challenging because it requires performance characteristics that are not always available, often leading to many simplifying assumptions. This paper discusses the limitations of conventional experimental methods used to derive component-level and locally linear parameter-varying models, and addresses these issues by employing identification techniques based on data collected from standard engine operation under closed-loop control. The rotor dynamics are estimated using the sparse identification of nonlinear dynamics. Subsequently, the autonomous part of the dynamics is mapped into an optimally constructed Koopman eigenfunction space. This process involves eigenvalue optimization using metaheuristic algorithms and temporal projection, followed by gradient-based eigenfunction identification. The resulting Koopman model is validated against an in-house reference component-level model. A globally optimal nonlinear feedback controller and a Kalman estimator are then designed within the eigenfunction space and compared to traditional and gain-scheduled proportional-integral controllers, as well as a proposed internal model control approach. The eigenmode structure enables targeting individual modes during optimization, leading to improved performance tuning. Results demonstrate that the Koopman-based controller surpasses other benchmark controllers in both reference tracking and disturbance rejection under sea-level and varying flight conditions, due to its global nature.
comment: 35 pages, 29 figures Accepted for publication in Springer Nonlinear Dynamics
MHE under parametric uncertainty -- Robust state estimation without informative data
In this paper, we study joint state and parameter estimation for general nonlinear systems with uncertain parameters and persistent process and measurement noise. In particular, we are interested in stability properties of the resulting state estimate in the absence of persistency of excitation (PE). With a simple academic example, we show that existing moving horizon estimation (MHE) approaches for joint state and parameter estimation as well as classical adaptive observers can result in diverging state estimates in the absence of PE, even if the noise is small. We propose an MHE formulation involving a regularization based on a constant prior estimate of the unknown system parameters. Only assuming the existence of a stable state estimator, we prove that the proposed MHE approach results in practically robustly stable state estimates irrespective of PE. We discuss the relation of the proposed MHE formulation to state-of-the-art results from MHE and adaptive estimation. The properties of the proposed MHE approach are illustrated with a numerical example of a car with unknown tire friction parameters.
comment: Version accepted for publication in IEEE Transactions on Automatic Control
Differentiable Simulator for Electrically Reconfigurable Electromagnetic Structures
This paper introduces a novel CUDA-enabled PyTorch-based framework designed for the gradient-based optimization of such reconfigurable electromagnetic structures with electrically tunable parameters. Traditional optimization techniques for these structures often rely on non-gradient-based methods, limiting efficiency and flexibility. Our framework leverages automatic differentiation, facilitating the application of gradient-based optimization methods. This approach is particularly advantageous for embedding within deep learning frameworks, enabling sophisticated optimization strategies. We demonstrate the framework's effectiveness through comprehensive simulations involving resonant structures with tunable parameters. Key contributions include the efficient solution of the inverse problem. The framework's performance is validated using three different resonant structures: a single-loop copper wire (Unit-Cell) as well as an 8x1 and an 8x8 array of resonant unit cells with multiple inductively coupled unit cells (1d and 2d Metasurfaces). Results show precise in-silico control over the magnetic field's component normal to the surface of each resonant structure, achieving desired field strengths with minimal error. The proposed framework is compatible with existing simulation software. This PyTorch-based framework sets the stage for advanced electromagnetic control strategies for resonant structures with application in e.g. MRI, providing a robust platform for further exploration and innovation in the design and optimization of resonant electromagnetic structures.
The First Open-Source Framework for Learning Stability Certificates from Data
Before 2025, no open-source system existed that could learn Lyapunov stability certificates directly from noisy, real-world flight data. This work addresses that gap by proposing a data-driven approach that learns Lyapunov functions from trajectory data under realistic, noise-corrupted conditions. Unlike statistical anomaly detectors that only flag deviations, the proposed method assesses whether the system can still be certified as stable. Applied to public data from the 2024 SAS severe turbulence incident, this framework revealed that, within 60 seconds of the aircraft's descent becoming abnormal, no Lyapunov function could be constructed to certify system stability. To the best of our knowledge, this is also the first application of a data-driven Lyapunov-based stability verification method to real civil aviation data, achieved without any access to proprietary controller logic. The proposed framework is open-sourced and available at: https://github.com/HansOersted/stability
comment: Accepted by IEEE Aerospace Conference
Robotics
RynnVLA-002: A Unified Vision-Language-Action and World Model
We introduce RynnVLA-002, a unified Vision-Language-Action (VLA) and world model. The world model leverages action and visual inputs to predict future image states, learning the underlying physics of the environment to refine action generation. Conversely, the VLA model produces subsequent actions from image observations, enhancing visual understanding and supporting the world model's image generation. The unified framework of RynnVLA-002 enables joint learning of environmental dynamics and action planning. Our experiments show that RynnVLA-002 surpasses individual VLA and world models, demonstrating their mutual enhancement. We evaluate RynnVLA-002 in both simulation and real-world robot tasks. RynnVLA-002 achieves 97.4% success rate on the LIBERO simulation benchmark without pretraining, while in real-world LeRobot experiments, its integrated world model boosts the overall success rate by 50%.
HALO: High-Altitude Language-Conditioned Monocular Aerial Exploration and Navigation
We demonstrate real-time high-altitude aerial metric-semantic mapping and exploration using a monocular camera paired with a global positioning system (GPS) and an inertial measurement unit (IMU). Our system, named HALO, addresses two key challenges: (i) real-time dense 3D reconstruction using vision at large distances, and (ii) mapping and exploration of large-scale outdoor environments with accurate scene geometry and semantics. We demonstrate that HALO can plan informative paths that exploit this information to complete missions with multiple tasks specified in natural language. In simulation-based evaluation across large-scale environments of size up to 78,000 sq. m., HALO consistently completes tasks with less exploration time and achieves up to 68% higher competitive ratio in terms of the distance traveled compared to the state-of-the-art semantic exploration baseline. We use real-world experiments on a custom quadrotor platform to demonstrate that (i) all modules can run onboard the robot, and that (ii) in diverse environments HALO can support effective autonomous execution of missions covering up to 24,600 sq. m. area at an altitude of 40 m. Experiment videos and more details can be found on our project page: https://tyuezhan.github.io/halo/.
MDG: Masked Denoising Generation for Multi-Agent Behavior Modeling in Traffic Environments
Modeling realistic and interactive multi-agent behavior is critical to autonomous driving and traffic simulation. However, existing diffusion and autoregressive approaches are limited by iterative sampling, sequential decoding, or task-specific designs, which hinder efficiency and reuse. We propose Masked Denoising Generation (MDG), a unified generative framework that reformulates multi-agent behavior modeling as the reconstruction of independently noised spatiotemporal tensors. Instead of relying on diffusion time steps or discrete tokenization, MDG applies continuous, per-agent and per-timestep noise masks that enable localized denoising and controllable trajectory generation in a single or few forward passes. This mask-driven formulation generalizes across open-loop prediction, closed-loop simulation, motion planning, and conditional generation within one model. Trained on large-scale real-world driving datasets, MDG achieves competitive closed-loop performance on the Waymo Sim Agents and nuPlan Planning benchmarks, while providing efficient, consistent, and controllable open-loop multi-agent trajectory generation. These results position MDG as a simple yet versatile paradigm for multi-agent behavior modeling.
RoboCOIN: An Open-Sourced Bimanual Robotic Data COllection for INtegrated Manipulation
Bimanual manipulation is essential for achieving human-like dexterity in robots, but the large-scale and diverse bimanual robot datasets remain scarce due to hardware heterogeneity across robotic platforms. To address the challenge, we present RoboCOIN, a comprehensive multi-embodiment bimanual manipulation dataset with over 180,000 demonstrations collected from 15 distinct robotic platforms. The dataset covers 16 scenarios, including residential, commercial, and working environments, with 421 tasks systematically organized by bimanual coordination patterns and object properties. Our key innovation is a hierarchical capability pyramid that provides multi-level annotations, spanning trajectory-level concepts, segment-level subtasks, and frame-level kinematics. We further develop CoRobot, a comprehensive processing framework featuring Robot Trajectory Markup Language (RTML) for quality assessment, automated annotation generation, and unified multi-embodiment management. Extensive experiments demonstrate the reliability and effectiveness of RoboCOIN in multi-embodiment bimanual learning, with significant performance improvements across various model architectures and robotic platforms. The complete dataset and framework are open-sourced and publicly available for further research purposes. Project website: https://FlagOpen.github.io/RoboCOIN/.
SPEAR-1: Scaling Beyond Robot Demonstrations via 3D Understanding
Robotic Foundation Models (RFMs) hold great promise as generalist, end-to-end systems for robot control. Yet their ability to generalize across new environments, tasks, and embodiments remains limited. We argue that a major bottleneck lies in their foundations: most RFMs are built by fine-tuning internet-pretrained Vision-Language Models (VLMs). However, these VLMs are trained on 2D image-language tasks and lack the 3D spatial reasoning inherently required for embodied control in the 3D world. Bridging this gap directly with large-scale robotic data is costly and difficult to scale. Instead, we propose to enrich easy-to-collect non-robotic image data with 3D annotations and enhance a pretrained VLM with 3D understanding capabilities. Following this strategy, we train SPEAR-VLM, a 3D-aware VLM that infers object coordinates in 3D space from a single 2D image. Building on SPEAR-VLM, we introduce our main contribution, $~\textbf{SPEAR-1}$: a robotic foundation model that integrates grounded 3D perception with language-instructed embodied control. Trained on $\sim$45M frames from 24 Open X-Embodiment datasets, SPEAR-1 outperforms or matches state-of-the-art models such as $π_0$-FAST and $π_{0.5}$, while it uses 20$\times$ fewer robot demonstrations. This carefully-engineered training strategy unlocks new VLM capabilities and as a consequence boosts the reliability of embodied control beyond what is achievable with only robotic data. We make our model weights and 3D-annotated datasets publicly available.
Feasibility of Embodied Dynamics Based Bayesian Learning for Continuous Pursuit Motion Control of Assistive Mobile Robots in the Built Environment
Non-invasive electroencephalography (EEG)-based brain-computer interfaces (BCIs) offer an intuitive means for individuals with severe motor impairments to independently operate assistive robotic wheelchairs and navigate built environments. Despite considerable progress in BCI research, most current motion control systems are limited to discrete commands, rather than supporting continuous pursuit, where users can freely adjust speed and direction in real time. Such natural mobility control is, however, essential for wheelchair users to navigate complex public spaces, such as transit stations, airports, hospitals, and indoor corridors, to interact socially with the dynamic populations with agility, and to move flexibly and comfortably as autonomous driving is refined to allow movement at will. In this study, we address the gap of continuous pursuit motion control in BCIs by proposing and validating a brain-inspired Bayesian inference framework, where embodied dynamics in acceleration-based motor representations are decoded. This approach contrasts with conventional kinematics-level decoding and deep learning-based methods. Using a public dataset with sixteen hours of EEG from four subjects performing motor imagery-based target-following, we demonstrate that our method, utilizing Automatic Relevance Determination for feature selection and continual online learning, reduces the normalized mean squared error between predicted and true velocities by 72% compared to autoregressive and EEGNet-based methods in a session-accumulative transfer learning setting. Theoretically, these findings empirically support embodied cognition theory and reveal the brain's intrinsic motor control dynamics in an embodied and predictive nature. Practically, grounding EEG decoding in the same dynamical principles that govern biological motion offers a promising path toward more stable and intuitive BCI control.
comment: 37 pages, 9 figures, and 7 tables
Human Imitated Bipedal Locomotion with Frequency Based Gait Generator Network
Learning human-like, robust bipedal walking remains difficult due to hybrid dynamics and terrain variability. We propose a lightweight framework that combines a gait generator network learned from human motion with Proximal Policy Optimization (PPO) controller for torque control. Despite being trained only on flat or mildly sloped ground, the learned policies generalize to steeper ramps and rough surfaces. Results suggest that pairing spectral motion priors with Deep Reinforcement Learning (DRL) offers a practical path toward natural and robust bipedal locomotion with modest training cost.
IndustryNav: Exploring Spatial Reasoning of Embodied Agents in Dynamic Industrial Navigation
While Visual Large Language Models (VLLMs) show great promise as embodied agents, they continue to face substantial challenges in spatial reasoning. Existing embodied benchmarks largely focus on passive, static household environments and evaluate only isolated capabilities, failing to capture holistic performance in dynamic, real-world complexity. To fill this gap, we present IndustryNav, the first dynamic industrial navigation benchmark for active spatial reasoning. IndustryNav leverages 12 manually created, high-fidelity Unity warehouse scenarios featuring dynamic objects and human movement. Our evaluation employs a PointGoal navigation pipeline that effectively combines egocentric vision with global odometry to assess holistic local-global planning. Crucially, we introduce the "collision rate" and "warning rate" metrics to measure safety-oriented behaviors and distance estimation. A comprehensive study of nine state-of-the-art VLLMs (including models such as GPT-5-mini, Claude-4.5, and Gemini-2.5) reveals that closed-source models maintain a consistent advantage; however, all agents exhibit notable deficiencies in robust path planning, collision avoidance and active exploration. This highlights a critical need for embodied research to move beyond passive perception and toward tasks that demand stable planning, active exploration, and safe behavior in dynamic, real-world environment.
Vector Cost Behavioral Planning for Autonomous Robotic Systems with Contemporary Validation Strategies
The vector cost bimatrix game is a method for multi-objective decision making that enables autonomous robotic systems to optimize for multiple goals at once while avoiding worst-case scenarios in neglected objectives. We expand this approach to arbitrary numbers of objectives and compare its performance to scalar weighted sum methods during competitive motion planning. Explainable Artificial Intelligence (XAI) software is used to aid in the analysis of high dimensional decision-making data. State-space Exploration of Multidimensional Boundaries using Adherence Strategies (SEMBAS) is applied to explore performance modes in the parameter space as a sensitivity study for the baseline and proposed frameworks. While some works have explored aspects of game theoretic planning and intelligent systems validation separately, we combine each of these into a novel and comprehensive simulation pipeline. This integration demonstrates a dramatic improvement of the vector cost method over scalarization and offers an interpretable and generalizable framework for robotic behavioral planning. Code available at https://github.com/toazbenj/race_simulation. The video companion to this work is available at https://tinyurl.com/vectorcostvideo.
comment: Technical report associated with submission to Journal of Intelligent & Robotic Systems, currently under review
Agility Meets Stability: Versatile Humanoid Control with Heterogeneous Data
Humanoid robots are envisioned to perform a wide range of tasks in human-centered environments, requiring controllers that combine agility with robust balance. Recent advances in locomotion and whole-body tracking have enabled impressive progress in either agile dynamic skills or stability-critical behaviors, but existing methods remain specialized, focusing on one capability while compromising the other. In this work, we introduce AMS (Agility Meets Stability), the first framework that unifies both dynamic motion tracking and extreme balance maintenance in a single policy. Our key insight is to leverage heterogeneous data sources: human motion capture datasets that provide rich, agile behaviors, and physically constrained synthetic balance motions that capture stability configurations. To reconcile the divergent optimization goals of agility and stability, we design a hybrid reward scheme that applies general tracking objectives across all data while injecting balance-specific priors only into synthetic motions. Further, an adaptive learning strategy with performance-driven sampling and motion-specific reward shaping enables efficient training across diverse motion distributions. We validate AMS extensively in simulation and on a real Unitree G1 humanoid. Experiments demonstrate that a single policy can execute agile skills such as dancing and running, while also performing zero-shot extreme balance motions like Ip Man's Squat, highlighting AMS as a versatile control paradigm for future humanoid applications.
METIS: Multi-Source Egocentric Training for Integrated Dexterous Vision-Language-Action Model
Building a generalist robot that can perceive, reason, and act across diverse tasks remains an open challenge, especially for dexterous manipulation. A major bottleneck lies in the scarcity of large-scale, action-annotated data for dexterous skills, as teleoperation is difficult and costly. Human data, with its vast scale and diverse manipulation behaviors, provides rich priors for learning robotic actions. While prior works have explored leveraging human demonstrations, they are often constrained by limited scenarios and a large visual gap between human and robots. To eliminate these limitations, we propose METIS, a vision-language-action (VLA) model for dexterous manipulation pretrained on multi-source egocentric datasets. We first construct EgoAtlas, which integrates large-scale human and robotic data from multiple sources, all unified under a consistent action space. We further extract motion-aware dynamics, a compact and discretized motion representation, which provides efficient and expressive supervision for VLA training. Built upon them, METIS integrates reasoning and acting into a unified framework, enabling effective deployment to downstream dexterous manipulation tasks. Our method demonstrates exceptional dexterous manipulation capabilities, achieving highest average success rate in six real-world tasks. Experimental results also highlight the superior generalization and robustness to out-of-distribution scenarios. These findings emphasize METIS as a promising step toward a generalist model for dexterous manipulation.
Robot Confirmation Generation and Action Planning Using Long-context Q-Former Integrated with Multimodal LLM
Human-robot collaboration towards a shared goal requires robots to understand human action and interaction with the surrounding environment. This paper focuses on human-robot interaction (HRI) based on human-robot dialogue that relies on the robot action confirmation and action step generation using multimodal scene understanding. The state-of-the-art approach uses multimodal transformers to generate robot action steps aligned with robot action confirmation from a single clip showing a task composed of multiple micro steps. Although actions towards a long-horizon task depend on each other throughout an entire video, the current approaches mainly focus on clip-level processing and do not leverage long-context information. This paper proposes a long-context Q-former incorporating left and right context dependency in full videos. Furthermore, this paper proposes a text-conditioning approach to feed text embeddings directly into the LLM decoder to mitigate the high abstraction of the information in text by Q-former. Experiments with the YouCook2 corpus show that the accuracy of confirmation generation is a major factor in the performance of action planning. Furthermore, we demonstrate that the long-context Q-former improves the confirmation and action planning by integrating VideoLLaMA3.
comment: Accepted to ASRU 2025
FORWARD: Dataset of a forwarder operating in rough terrain
We present FORWARD, a high-resolution multimodal dataset of a cut-to-length forwarder operating in rough terrain on two harvest sites in the middle part of Sweden. The forwarder is a large Komatsu model equipped with a variety of sensors, including RTK-GNSS, 360-camera, operator vibration sensors, internal CAN-bus signal recording, and multiple IMUs. The data includes event time logs recorded in 5 Hz with e.g., driving speed, fuel consumption, vehicle position with centimeter accuracy, and crane use while the vehicle operates in forest areas laser-scanned with very high-resolution, $\sim$1500 points per square meter. Production log files (StanForD standard) with time-stamped machine events, extensive video material, and terrain data in various formats are included as well. About 18 hours of regular wood extraction work during three days is annotated from 360-video material into individual work elements and included in the dataset. We also include scenario specifications of conducted experiments on forest roads and in terrain. Scenarios include repeatedly driving the same routes with and without steel tracks, different load weight, and different target driving speeds. The dataset is intended for developing models and algorithms for trafficability, perception, and autonomous control of forest machines using artificial intelligence, simulation, and experiments on physical testbeds. In part, we focus on forwarders traversing terrain, avoiding obstacles, and loading or unloading logs, with consideration for efficiency, fuel consumption, safety, and environmental impact. Other benefits of the open dataset include the ability to explore auto-generation and calibration of forestry machine simulators and automation scenario descriptions using the data recorded in the field.
comment: 25 pages, 22 figures
MonoSpheres: Large-Scale Monocular SLAM-Based UAV Exploration through Perception-Coupled Mapping and Planning
Autonomous exploration of unknown environments is a key capability for mobile robots, but it is largely unsolved for robots equipped with only a single monocular camera and no dense range sensors. In this paper, we present a novel approach to monocular vision-based exploration that can safely cover large-scale unstructured indoor and outdoor 3D environments by explicitly accounting for the properties of a sparse monocular SLAM frontend in both mapping and planning. The mapping module solves the problems of sparse depth data, free-space gaps, and large depth uncertainty by oversampling free space in texture-sparse areas and keeping track of obstacle position uncertainty. The planning module handles the added free-space uncertainty through rapid replanning and perception-aware heading control. We further show that frontier-based exploration is possible with sparse monocular depth data when parallax requirements and the possibility of textureless surfaces are taken into account. We evaluate our approach extensively in diverse real-world and simulated environments, including ablation studies. To the best of the authors' knowledge, the proposed method is the first to achieve 3D monocular exploration in real-world unstructured outdoor environments. We open-source our implementation to support future research.
comment: 8 pages, 9 figures, submitted to RA-L
Leveraging CVAE for Joint Configuration Estimation of Multifingered Grippers from Point Cloud Data
This paper presents an efficient approach for determining the joint configuration of a multifingered gripper solely from the point cloud data of its poly-articulated chain, as generated by visual sensors, simulations or even generative neural networks. Well-known inverse kinematics (IK) techniques can provide mathematically exact solutions (when they exist) for joint configuration determination based solely on the fingertip pose, but often require post-hoc decision-making by considering the positions of all intermediate phalanges in the gripper's fingers, or rely on algorithms to numerically approximate solutions for more complex kinematics. In contrast, our method leverages machine learning to implicitly overcome these challenges. This is achieved through a Conditional Variational Auto-Encoder (CVAE), which takes point cloud data of key structural elements as input and reconstructs the corresponding joint configurations. We validate our approach on the MultiDex grasping dataset using the Allegro Hand, operating within 0.05 milliseconds and achieving accuracy comparable to state-of-the-art methods. This highlights the effectiveness of our pipeline for joint configuration estimation within the broader context of AI-driven techniques for grasp planning.
Simulation of Active Soft Nets for Capture of Space Debris
In this work, we propose a simulator, based on the open-source physics engine MuJoCo, for the design and control of soft robotic nets for the autonomous removal of space debris. The proposed simulator includes net dynamics, contact between the net and the debris, self-contact of the net, orbital mechanics, and a controller that can actuate thrusters on the four satellites at the corners of the net. It showcases the case of capturing Envisat, a large ESA satellite that remains in orbit as space debris following the end of its mission. This work investigates different mechanical models, which can be used to simulate the net dynamics, simulating various degrees of compliance, and different control strategies to achieve the capture of the debris, depending on the relative position of the net and the target. Unlike previous works on this topic, we do not assume that the net has been previously ballistically thrown toward the target, and we start from a relatively static configuration. The results show that a more compliant net achieves higher performance when attempting the capture of Envisat. Moreover, when paired with a sliding mode controller, soft nets are able to achieve successful capture in 100% of the tested cases, whilst also showcasing a higher effective area at contact and a higher number of contact points between net and Envisat.
A ROS2 Interface for Universal Robots Collaborative Manipulators Based on ur_rtde
In this paper a novel ROS2 driver for UR robot manipulators is presented, based on the ur_rtde C++ library. The proposed driver aims to be a flexible solution, adaptable to a wide range of applications. The driver exposes the high-level commands of Universal Robots URScripts, and custom commands can be added using a plugin system. Several commands have been implemented, including motion execution along a waypoint-based path. The driver is published as open source.
TP-MDDN: Task-Preferenced Multi-Demand-Driven Navigation with Autonomous Decision-Making NeurIPS 2025
In daily life, people often move through spaces to find objects that meet their needs, posing a key challenge in embodied AI. Traditional Demand-Driven Navigation (DDN) handles one need at a time but does not reflect the complexity of real-world tasks involving multiple needs and personal choices. To bridge this gap, we introduce Task-Preferenced Multi-Demand-Driven Navigation (TP-MDDN), a new benchmark for long-horizon navigation involving multiple sub-demands with explicit task preferences. To solve TP-MDDN, we propose AWMSystem, an autonomous decision-making system composed of three key modules: BreakLLM (instruction decomposition), LocateLLM (goal selection), and StatusMLLM (task monitoring). For spatial memory, we design MASMap, which combines 3D point cloud accumulation with 2D semantic mapping for accurate and efficient environmental understanding. Our Dual-Tempo action generation framework integrates zero-shot planning with policy-based fine control, and is further supported by an Adaptive Error Corrector that handles failure cases in real time. Experiments demonstrate that our approach outperforms state-of-the-art baselines in both perception accuracy and navigation robustness.
comment: Accepted at NeurIPS 2025
QueryOcc: Query-based Self-Supervision for 3D Semantic Occupancy
Learning 3D scene geometry and semantics from images is a core challenge in computer vision and a key capability for autonomous driving. Since large-scale 3D annotation is prohibitively expensive, recent work explores self-supervised learning directly from sensor data without manual labels. Existing approaches either rely on 2D rendering consistency, where 3D structure emerges only implicitly, or on discretized voxel grids from accumulated lidar point clouds, limiting spatial precision and scalability. We introduce QueryOcc, a query-based self-supervised framework that learns continuous 3D semantic occupancy directly through independent 4D spatio-temporal queries sampled across adjacent frames. The framework supports supervision from either pseudo-point clouds derived from vision foundation models or raw lidar data. To enable long-range supervision and reasoning under constant memory, we introduce a contractive scene representation that preserves near-field detail while smoothly compressing distant regions. QueryOcc surpasses previous camera-based methods by 26% in semantic RayIoU on the self-supervised Occ3D-nuScenes benchmark while running at 11.6 FPS, demonstrating that direct 4D query supervision enables strong self-supervised occupancy learning. https://research.zenseact.com/publications/queryocc/
SING3R-SLAM: Submap-based Indoor Monocular Gaussian SLAM with 3D Reconstruction Priors
Recent advances in dense 3D reconstruction enable the accurate capture of local geometry; however, integrating them into SLAM is challenging due to drift and redundant point maps, which limit efficiency and downstream tasks, such as novel view synthesis. To address these issues, we propose SING3R-SLAM, a globally consistent and compact Gaussian-based dense RGB SLAM framework. The key idea is to combine locally consistent 3D reconstructions with a unified global Gaussian representation that jointly refines scene geometry and camera poses, enabling efficient and versatile 3D mapping for multiple downstream applications. SING3R-SLAM first builds locally consistent submaps through our lightweight tracking and reconstruction module, and then progressively aligns and fuses them into a global Gaussian map that enforces cross-view geometric consistency. This global map, in turn, provides feedback to correct local drift and enhance the robustness of tracking. Extensive experiments demonstrate that SING3R-SLAM achieves state-of-the-art tracking, 3D reconstruction, and novel view rendering, resulting in over 12% improvement in tracking and producing finer, more detailed geometry, all while maintaining a compact and memory-efficient global representation on real-world datasets.
Efficient Robot Design with Multi-Objective Black-Box Optimization and Large Language Models
Various methods for robot design optimization have been developed so far. These methods are diverse, ranging from numerical optimization to black-box optimization. While numerical optimization is fast, it is not suitable for cases involving complex structures or discrete values, leading to frequent use of black-box optimization instead. However, black-box optimization suffers from low sampling efficiency and takes considerable sampling iterations to obtain good solutions. In this study, we propose a method to enhance the efficiency of robot body design based on black-box optimization by utilizing large language models (LLMs). In parallel with the sampling process based on black-box optimization, sampling is performed using LLMs, which are provided with problem settings and extensive feedback. We demonstrate that this method enables more efficient exploration of design solutions and discuss its characteristics and limitations.
Reflection-Based Relative Localization for Cooperative UAV Teams Using Active Markers
Reflections of active markers in the environment are a common source of ambiguity in onboard visual relative localization. This work presents a novel approach for onboard relative localization in multi-robot teams that exploits these typically unwanted reflections of active markers in the environment. It operates without prior knowledge of robot size or predefined marker configurations and remains independent of surface properties, an essential feature for heterogeneous micro-aerial swarms cooperating in unknown environments. It explicitly accounts for uncertainties caused by non-flat surfaces, with a particular focus on dynamic water surfaces, which are especially relevant for marine deployments. We validated the approach in both indoor and outdoor experiments, demonstrating that the proposed reflection-based localization system operates reliably without prior knowledge of team member size and achieves greater effective range (above 30 m) and accuracy than state-of-the-art methods. The video and source code of this work will be made publicly available after publication.
Progress-Think: Semantic Progress Reasoning for Vision-Language Navigation
Vision-Language Navigation requires agents to act coherently over long horizons by understanding not only local visual context but also how far they have advanced within a multi-step instruction. However, recent Vision-Language-Action models focus on direct action prediction and earlier progress methods predict numeric achievements; both overlook the monotonic co-progression property of the observation and instruction sequences. Building on this insight, Progress-Think introduces semantic progress reasoning, predicting instruction-style progress from visual observations to enable more accurate navigation. To achieve this without expensive annotations, we propose a three-stage framework. In the initial stage, Self-Aligned Progress Pretraining bootstraps a reasoning module via a novel differentiable alignment between visual history and instruction prefixes. Then, Progress-Guided Policy Pretraining injects learned progress states into the navigation context, guiding the policy toward consistent actions. Finally, Progress-Policy Co-Finetuning jointly optimizes both modules with tailored progress-aware reinforcement objectives. Experiments on R2R-CE and RxR-CE show state-of-the-art success and efficiency, demonstrating that semantic progress yields a more consistent representation of navigation advancement.
H-GAR: A Hierarchical Interaction Framework via Goal-Driven Observation-Action Refinement for Robotic Manipulation AAAI 2026
Unified video and action prediction models hold great potential for robotic manipulation, as future observations offer contextual cues for planning, while actions reveal how interactions shape the environment. However, most existing approaches treat observation and action generation in a monolithic and goal-agnostic manner, often leading to semantically misaligned predictions and incoherent behaviors. To this end, we propose H-GAR, a Hierarchical interaction framework via Goal-driven observation-Action Refinement.To anchor prediction to the task objective, H-GAR first produces a goal observation and a coarse action sketch that outline a high-level route toward the goal. To enable explicit interaction between observation and action under the guidance of the goal observation for more coherent decision-making, we devise two synergistic modules. (1) Goal-Conditioned Observation Synthesizer (GOS) synthesizes intermediate observations based on the coarse-grained actions and the predicted goal observation. (2) Interaction-Aware Action Refiner (IAAR) refines coarse actions into fine-grained, goal-consistent actions by leveraging feedback from the intermediate observations and a Historical Action Memory Bank that encodes prior actions to ensure temporal consistency. By integrating goal grounding with explicit action-observation interaction in a coarse-to-fine manner, H-GAR enables more accurate manipulation. Extensive experiments on both simulation and real-world robotic manipulation tasks demonstrate that H-GAR achieves state-of-the-art performance.
comment: Accepted to AAAI 2026 (Oral), Project Page: https://github.com/JiuTian-VL/H-GAR
A segment anchoring-based balancing algorithm for agricultural multi-robot task allocation with energy constraints
Multi-robot systems have emerged as a key technology for addressing the efficiency and cost challenges in labor-intensive industries. In the representative scenario of smart farming, planning efficient harvesting schedules for a fleet of electric robots presents a highly challenging frontier problem. The complexity arises not only from the need to find Pareto-optimal solutions for the conflicting objectives of makespan and transportation cost, but also from the necessity to simultaneously manage payload constraints and finite battery capacity. When robot loads are dynamically updated during planned multi-trip operations, a mandatory recharge triggered by energy constraints introduces an unscheduled load reset. This interaction creates a complex cascading effect that disrupts the entire schedule and renders traditional optimization methods ineffective. To address this challenge, this paper proposes the segment anchoring-based balancing algorithm (SABA). The core of SABA lies in the organic combination of two synergistic mechanisms: the sequential anchoring and balancing mechanism, which leverages charging decisions as `anchors' to systematically reconstruct disrupted routes, while the proportional splitting-based rebalancing mechanism is responsible for the fine-grained balancing and tuning of the final solutions' makespans. Extensive comparative experiments, conducted on a real-world case study and a suite of benchmark instances, demonstrate that SABA comprehensively outperforms 6 state-of-the-art algorithms in terms of both solution convergence and diversity. This research provides a novel theoretical perspective and an effective solution for the multi-robot task allocation problem under energy constraints.
MfNeuPAN: Proactive End-to-End Navigation in Dynamic Environments via Direct Multi-Frame Point Constraints
Obstacle avoidance in complex and dynamic environments is a critical challenge for real-time robot navigation. Model-based and learning-based methods often fail in highly dynamic scenarios because traditional methods assume a static environment and cannot adapt to real-time changes, while learning-based methods rely on single-frame observations for motion constraint estimation, limiting their adaptability. To overcome these limitations, this paper proposes a novel framework that leverages multi-frame point constraints, including current and future frames predicted by a dedicated module, to enable proactive end-to-end navigation. By incorporating a prediction module that forecasts the future path of moving obstacles based on multi-frame observations, our method allows the robot to proactively anticipate and avoid potential dangers. This proactive planning capability significantly enhances navigation robustness and efficiency in unknown dynamic environments. Simulations and real-world experiments validate the effectiveness of our approach.
comment: 6 pages, 9 figures, accepted at IEEE ROBIO 2025
Stable Offline Hand-Eye Calibration for any Robot with Just One Mark
Imitation learning has achieved remarkable success in a variety of robotic tasks by learning a mapping function from camera-space observations to robot-space actions. Recent work indicates that the use of robot-to-camera transformation information ({\ie}, camera extrinsics) benefits the learning process and produces better results. However, camera extrinsics are oftentimes unavailable and estimation methods usually suffer from local minima and poor generalizations. In this paper, we present CalibAll, a simple yet effective method that \textbf{requires only a single mark} and performs training-free, stable, and accurate camera extrinsic estimation across diverse robots and datasets through a coarse-to-fine calibration pipeline. In particular, we annotate a single mark on an end-effector (EEF), and leverage the correspondence ability emerged from vision foundation models (VFM) to automatically localize the corresponding mark across robots in diverse datasets. Using this mark, together with point tracking and the 3D EEF trajectory, we obtain a coarse camera extrinsic via temporal Perspective-n-Point (PnP). This estimate is further refined through a rendering-based optimization that aligns rendered and ground-true masks, yielding accurate and stable camera extrinsic. Experimental results demonstrate that our method outperforms state-of-the-art approaches, showing strong robustness and general effectiveness across three robot platforms. It also produces useful auxiliary annotations such as depth maps, link-wise masks, and end-effector 2D trajectories, which can further support downstream tasks.
MobileOcc: A Human-Aware Semantic Occupancy Dataset for Mobile Robots
Dense 3D semantic occupancy perception is critical for mobile robots operating in pedestrian-rich environments, yet it remains underexplored compared to its application in autonomous driving. To address this gap, we present MobileOcc, a semantic occupancy dataset for mobile robots operating in crowded human environments. Our dataset is built using an annotation pipeline that incorporates static object occupancy annotations and a novel mesh optimization framework explicitly designed for human occupancy modeling. It reconstructs deformable human geometry from 2D images and subsequently refines and optimizes it using associated LiDAR point data. Using MobileOcc, we establish benchmarks for two tasks, i) Occupancy prediction and ii) Pedestrian velocity prediction, using different methods including monocular, stereo, and panoptic occupancy, with metrics and baseline implementations for reproducible comparison. Beyond occupancy prediction, we further assess our annotation method on 3D human pose estimation datasets. Results demonstrate that our method exhibits robust performance across different datasets.
Multi-UAV Swarm Obstacle Avoidance Based on Potential Field Optimization
In multi UAV scenarios,the traditional Artificial Potential Field (APF) method often leads to redundant flight paths and frequent abrupt heading changes due to unreasonable obstacle avoidance path planning,and is highly prone to inter UAV collisions during the obstacle avoidance process.To address these issues,this study proposes a novel hybrid algorithm that combines the improved Multi-Robot Formation Obstacle Avoidance (MRF IAPF) algorithm with an enhanced APF optimized for single UAV path planning.Its core ideas are as follows:first,integrating three types of interaction forces from MRF IAPF obstacle repulsion force,inter UAV interaction force,and target attraction force;second,incorporating a refined single UAV path optimization mechanism,including collision risk assessment and an auxiliary sub goal strategy.When a UAV faces a high collision threat,temporary waypoints are generated to guide obstacle avoidance,ensuring eventual precise arrival at the actual target.Simulation results demonstrate that compared with traditional APF based formation algorithms,the proposed algorithm achieves significant improvements in path length optimization and heading stability,can effectively avoid obstacles and quickly restore the formation configuration,thus verifying its applicability and effectiveness in static environments with unknown obstacles.
comment: 12 pages, 13 figures, and 2 tables
Single-Pixel Tactile Skin via Compressive Sampling
Development of large-area, high-speed electronic skins is a grand challenge for robotics, prosthetics, and human-machine interfaces, but is fundamentally limited by wiring complexity and data bottlenecks. Here, we introduce Single-Pixel Tactile Skin (SPTS), a paradigm that uses compressive sampling to reconstruct rich tactile information from an entire sensor array via a single output channel. This is achieved through a direct circuit-level implementation where each sensing element, equipped with a miniature microcontroller, contributes a dynamically weighted analog signal to a global sum, performing distributed compressed sensing in hardware. Our flexible, daisy-chainable design simplifies wiring to a few input lines and one output, and significantly reduces measurement requirements compared to raster scanning methods. We demonstrate the system's performance by achieving object classification at an effective 3500 FPS and by capturing transient dynamics, resolving an 8 ms projectile impact into 23 frames. A key feature is the support for adaptive reconstruction, where sensing fidelity scales with measurement time. This allows for rapid contact localization using as little as 7% of total data, followed by progressive refinement to a high-fidelity image - a capability critical for responsive robotic systems. This work offers an efficient pathway towards large-scale tactile intelligence for robotics and human-machine interfaces.
comment: 24 pages, 6 main figures, 6 supplemental figures
QAL: A Loss for Recall Precision Balance in 3D Reconstruction WACV 2026
Volumetric learning underpins many 3D vision tasks such as completion, reconstruction, and mesh generation, yet training objectives still rely on Chamfer Distance (CD) or Earth Mover's Distance (EMD), which fail to balance recall and precision. We propose Quality-Aware Loss (QAL), a drop-in replacement for CD/EMD that combines a coverage-weighted nearest-neighbor term with an uncovered-ground-truth attraction term, explicitly decoupling recall and precision into tunable components. Across diverse pipelines, QAL achieves consistent coverage gains, improving by an average of +4.3 pts over CD and +2.8 pts over the best alternatives. Though modest in percentage, these improvements reliably recover thin structures and under-represented regions that CD/EMD overlook. Extensive ablations confirm stable performance across hyperparameters and across output resolutions, while full retraining on PCN and ShapeNet demonstrates generalization across datasets and backbones. Moreover, QAL-trained completions yield higher grasp scores under GraspNet evaluation, showing that improved coverage translates directly into more reliable robotic manipulation. QAL thus offers a principled, interpretable, and practical objective for robust 3D vision and safety-critical robotics pipelines
comment: Accepted to WACV 2026. Camera-ready version to appear
SM$^2$ITH: Safe Mobile Manipulation with Interactive Human Prediction via Task-Hierarchical Bilevel Model Predictive Control
Mobile manipulators are designed to perform complex sequences of navigation and manipulation tasks in human-centered environments. While recent optimization-based methods such as Hierarchical Task Model Predictive Control (HTMPC) enable efficient multitask execution with strict task priorities, they have so far been applied mainly to static or structured scenarios. Extending these approaches to dynamic human-centered environments requires predictive models that capture how humans react to the actions of the robot. This work introduces Safe Mobile Manipulation with Interactive Human Prediction via Task-Hierarchical Bilevel Model Predictive Control (SM$^2$ITH), a unified framework that combines HTMPC with interactive human motion prediction through bilevel optimization that jointly accounts for robot and human dynamics. The framework is validated on two different mobile manipulators, the Stretch 3 and the Ridgeback-UR10, across three experimental settings: (i) delivery tasks with different navigation and manipulation priorities, (ii) sequential pick-and-place tasks with different human motion prediction models, and (iii) interactions involving adversarial human behavior. Our results highlight how interactive prediction enables safe and efficient coordination, outperforming baselines that rely on weighted objectives or open-loop human models.
Target-Bench: Can World Models Achieve Mapless Path Planning with Semantic Targets?
While recent world models generate highly realistic videos, their ability to perform robot path planning remains unclear and unquantified. We introduce Target-Bench, the first benchmark specifically designed to evaluate world models on mapless path planning toward semantic targets in real-world environments. Target-Bench provides 450 robot-collected video sequences spanning 45 semantic categories with SLAM-based ground truth trajectories. Our evaluation pipeline recovers camera motion from generated videos and measures planning performance using five complementary metrics that quantify target-reaching capability, trajectory accuracy, and directional consistency. We evaluate state-of-the-art models including Sora 2, Veo 3.1, and the Wan series. The best off-the-shelf model (Wan2.2-Flash) achieves only 0.299 overall score, revealing significant limitations in current world models for robotic planning tasks. We show that fine-tuning an open-source 5B-parameter model on only 325 scenarios from our dataset achieves 0.345 overall score -- an improvement of more than 400% over its base version (0.066) and 15% higher than the best off-the-shelf model. We will open-source the code and dataset.
comment: 10 pages
SAFE-SMART: Safety Analysis and Formal Evaluation using STL Metrics for Autonomous RoboTs
We present a novel, regulator-driven approach for post hoc safety evaluation of learning-based, black-box autonomous mobile robots, ensuring ongoing compliance with evolving, human-defined safety rules. In our iterative workflow, human safety requirements are translated by regulators into Signal Temporal Logic (STL) specifications. Rollout traces from the black-box model are externally verified for compliance, yielding quantitative safety metrics, Total Robustness Value (TRV) and Largest Robustness Value (LRV), which measure average and worst-case specification adherence. These metrics inform targeted retraining and iterative improvement by model designers. We apply our method across two different applications: a virtual driving scenario and an autonomous mobile robot navigating a complex environment, and observe statistically significant improvements across both scenarios. In the virtual driving scenario, we see a 177% increase in traces adhering to the simulation speed limit, a 1138% increase in traces minimizing off-road driving, and a 16% increase in traces successfully reaching the goal within the time limit. In the autonomous navigation scenario, there is a 300% increase in traces avoiding sharp turns, a 200% increase in traces reaching the goal within the time limit, and a 49% increase in traces minimizing time spent near obstacles. Finally, we validate our approach on a TurtleBot3 robot in the real world, and demonstrate improved obstacle navigation with safety buffers.
See, Plan, Cut: MPC-Based Autonomous Volumetric Robotic Laser Surgery with OCT Guidance
Robotic laser systems offer the potential for sub-millimeter, non-contact, high-precision tissue resection, yet existing platforms lack volumetric planning and intraoperative feedback. We present RATS (Robot-Assisted Tissue Surgery), an intelligent opto-mechanical, optical coherence tomography (OCT)-guided robotic platform designed for autonomous volumetric soft tissue resection in surgical applications. RATS integrates macro-scale RGB-D imaging, micro-scale OCT, and a fiber-coupled surgical laser, calibrated through a novel multistage alignment pipeline that achieves OCT-to-laser calibration accuracy of 0.161+-0.031mm on tissue phantoms and ex vivo porcine tissue. A super-Gaussian laser-tissue interaction (LTI) model characterizes ablation crater morphology with an average RMSE of 0.231+-0.121mm, outperforming Gaussian baselines. A sampling-based model predictive control (MPC) framework operates directly on OCT voxel data to generate constraint-aware resection trajectories with closed-loop feedback, achieving 0.842mm RMSE and improving intersection-over-union agreement by 64.8% compared to feedforward execution. With OCT, RATS detects subsurface structures and modifies the planner's objective to preserve them, demonstrating clinical feasibility.
comment: 9 pages, 8 figures
Learning Diffusion Policies for Robotic Manipulation of Timber Joinery under Fabrication Uncertainty
Construction uncertainties such as fabrication inaccuracies and material imperfections pose a significant challenge to contact-rich robotic manipulation by hindering precise and robust assembly. In this paper, we explore the performance and robustness of diffusion policy learning as a promising solution for contact-sensitive robotic assembly at construction scale, using timber mortise and tenon joints as a case study. A two-phase study is conducted: first, to evaluate policy performance and applicability; second, to assess robustness in handling fabrication uncertainties simulated as randomized perturbations to the mortise position. The best-performing policy achieved a total average success rate of 75% with perturbations up to 10 mm, including 100% success in unperturbed cases. The results demonstrate the potential of sensory-motor diffusion policies to generalize to a wide range of complex, contact-rich assembly tasks across construction and manufacturing, advancing robotic construction under uncertainty and contributing to safer, more efficient building practices.
LEARN: Learning End-to-End Aerial Resource-Constrained Multi-Robot Navigation
Nano-UAV teams offer great agility yet face severe navigation challenges due to constrained onboard sensing, communication, and computation. Existing approaches rely on high-resolution vision or compute-intensive planners, rendering them infeasible for these platforms. We introduce LEARN, a lightweight, two-stage safety-guided reinforcement learning (RL) framework for multi-UAV navigation in cluttered spaces. Our system combines low-resolution Time-of-Flight (ToF) sensors and a simple motion planner with a compact, attention-based RL policy. In simulation, LEARN outperforms two state-of-the-art planners by $10\%$ while using substantially fewer resources. We demonstrate LEARN's viability on six Crazyflie quadrotors, achieving fully onboard flight in diverse indoor and outdoor environments at speeds up to $2.0 m/s$ and traversing $0.2 m$ gaps.
comment: 20 pages, 15 figures
Vision-Guided Optic Flow Navigation for Small Lunar Missions
Private lunar missions are faced with the challenge of robust autonomous navigation while operating under stringent constraints on mass, power, and computational resources. This work proposes a motion-field inversion framework that uses optical flow and rangefinder-based depth estimation as a lightweight CPU-based solution for egomotion estimation during lunar descent. We extend classical optical flow formulations by integrating them with depth modeling strategies tailored to the geometry for lunar/planetary approach, descent, and landing, specifically, planar and spherical terrain approximations parameterized by a laser rangefinder. Motion field inversion is performed through a least-squares framework, using sparse optical flow features extracted via the pyramidal Lucas-Kanade algorithm. We verify our approach using synthetically generated lunar images over the challenging terrain of the lunar south pole, using CPU budgets compatible with small lunar landers. The results demonstrate accurate velocity estimation from approach to landing, with sub-10% error for complex terrain and on the order of 1% for more typical terrain, as well as performances suitable for real-time applications. This framework shows promise for enabling robust, lightweight on-board navigation for small lunar missions.
SM2ITH: Safe Mobile Manipulation with Interactive Human Prediction via Task-Hierarchical Bilevel Model Predictive Control
Mobile manipulators are designed to perform complex sequences of navigation and manipulation tasks in human-centered environments. While recent optimization-based methods such as Hierarchical Task Model Predictive Control (HTMPC) enable efficient multitask execution with strict task priorities, they have so far been applied mainly to static or structured scenarios. Extending these approaches to dynamic human-centered environments requires predictive models that capture how humans react to the actions of the robot. This work introduces Safe Mobile Manipulation with Interactive Human Prediction via Task-Hierarchical Bilevel Model Predictive Control (SM$^2$ITH), a unified framework that combines HTMPC with interactive human motion prediction through bilevel optimization that jointly accounts for robot and human dynamics. The framework is validated on two different mobile manipulators, the Stretch 3 and the Ridgeback-UR10, across three experimental settings: (i) delivery tasks with different navigation and manipulation priorities, (ii) sequential pick-and-place tasks with different human motion prediction models, and (iii) interactions involving adversarial human behavior. Our results highlight how interactive prediction enables safe and efficient coordination, outperforming baselines that rely on weighted objectives or open-loop human models.
Perception, Control and Hardware for In-Hand Slip-Aware Object Manipulation with Parallel Grippers
Dexterous in-hand manipulation offers significant potential to enhance robotic manipulator capabilities. This paper presents a sensori-motor architecture for in-hand slip-aware control, being embodied in a sensorized gripper. The gripper in our architecture features rapid closed-loop, low-level force control, and is equipped with sensors capable of independently measuring contact forces and sliding velocities. Our system can quickly estimate essential object properties during pick-up using only in-hand sensing, without relying on prior object information. We introduce four distinct slippage controllers: gravity-assisted trajectory following for both rotational and linear slippage, a hinge controller that maintains the object's orientation while the gripper rotates, and a slip-avoidance controller. The gripper is mounted on a robot arm and validated through extensive experiments involving a diverse range of objects, demonstrating the architecture's novel capabilities for manipulating objects with flat surfaces.
CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation BMVC 2025
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
Mask2IV: Interaction-Centric Video Generation via Mask Trajectories AAAI 2026
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
comment: AAAI 2026. Project page: https://reagan1311.github.io/mask2iv
VLM-SFD: VLM-Assisted Siamese Flow Diffusion Framework for Dual-Arm Cooperative Manipulation
Dual-arm cooperative manipulation holds great promise for tackling complex real-world tasks that demand seamless coordination and adaptive dynamics. Despite substantial progress in learning-based motion planning, most approaches struggle to generalize across diverse manipulation tasks and adapt to dynamic, unstructured environments, particularly in scenarios involving interactions between two objects such as assembly, tool use, and bimanual grasping. To address these challenges, we introduce a novel VLM-Assisted Siamese Flow Diffusion (VLM-SFD) framework for efficient imitation learning in dual-arm cooperative manipulation. The proposed VLM-SFD framework exhibits outstanding adaptability, significantly enhancing the ability to rapidly adapt and generalize to diverse real-world tasks from only a minimal number of human demonstrations. Specifically, we propose a Siamese Flow Diffusion Network (SFDNet) employs a dual-encoder-decoder Siamese architecture to embed two target objects into a shared latent space, while a diffusion-based conditioning process - conditioned by task instructions - generates two-stream object-centric motion flows that guide dual-arm coordination. We further design a dynamic task assignment strategy that seamlessly maps the predicted 2D motion flows into 3D space and incorporates a pre-trained vision-language model (VLM) to adaptively assign the optimal motion to each robotic arm over time. Experiments validate the effectiveness of the proposed method, demonstrating its ability to generalize to diverse manipulation tasks while maintaining high efficiency and adaptability. The code and demo videos are publicly available on our project website https://sites.google.com/view/vlm-sfd/.
comment: Accepted by IEEE RA-L
AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Advances in AI and Robotics have accelerated significant initiatives in agriculture, particularly in the areas of robot navigation and 3D digital twin creation. A significant bottleneck impeding this progress is the critical lack of "in-the-wild" datasets that capture the full complexities of real farmland, including non-rigid motion from wind, drastic illumination variance, and morphological changes resulting from growth. This data gap fundamentally limits research on robust AI models for autonomous field navigation and scene-level dynamic 3D reconstruction. In this paper, we present AgriChrono, a modular robotic data collection platform and multi-modal dataset designed to capture these dynamic farmland conditions. Our platform integrates multiple sensors, enabling remote, time-synchronized acquisition of RGB, Depth, LiDAR, IMU, and Pose data for efficient and repeatable long-term data collection in real-world agricultural environments. We successfully collected 18TB of data over one month, documenting the entire growth cycle of Canola under diverse illumination conditions. We benchmark state-of-the-art 3D reconstruction methods on AgriChrono, revealing the profound challenge of reconstructing high-fidelity, dynamic non-rigid scenes in such farmland settings. This benchmark validates AgriChrono as a critical asset for advancing model generalization, and its public release is expected to significantly accelerate research and development in precision agriculture. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono
OpenVLN: Open-world Aerial Vision-Language Navigation
Vision-language models (VLMs) have been widely-applied in ground-based vision-language navigation (VLN). However, the vast complexity of outdoor aerial environments compounds data acquisition challenges and imposes long-horizon trajectory planning requirements on Unmanned Aerial Vehicles (UAVs), introducing novel complexities for aerial VLN. To address these challenges, we propose a data-efficient Open-world aerial Vision-Language Navigation (i.e., OpenVLN) framework, which could execute language-guided flight with limited data constraints and enhance long-horizon trajectory planning capabilities in complex aerial environments. Specifically, we reconfigure a reinforcement learning framework to optimize the VLM for UAV navigation tasks, which can efficiently fine-tune VLM by using rule-based policies under limited training data. Concurrently, we introduce a long-horizon planner for trajectory synthesis that dynamically generates precise UAV actions via value-based rewards. To the end, we conduct sufficient navigation experiments on the TravelUAV benchmark with dataset scaling across diverse reward settings. Our method demonstrates consistent performance gains of up to 4.34% in Success Rate, 6.19% in Oracle Success Rate, and 4.07% in Success weighted by Path Length over baseline methods, validating its deployment efficacy for long-horizon UAV navigation in complex aerial environments.
comment: Content: 8 pages 4 figures, conference paper under review
Learning to Drive Anywhere with Model-Based Reannotation
Developing broadly generalizable visual navigation policies for robots is a significant challenge, primarily constrained by the availability of large-scale, diverse training data. While curated datasets collected by researchers offer high quality, their limited size restricts policy generalization. To overcome this, we explore leveraging abundant, passively collected data sources, including large volumes of crowd-sourced teleoperation data and unlabeled YouTube videos, despite their potential for lower quality or missing action labels. We propose Model-Based ReAnnotation (MBRA), a framework that utilizes a learned short-horizon, model-based expert model to relabel or generate high-quality actions for these passive datasets. This relabeled data is then distilled into LogoNav, a long-horizon navigation policy conditioned on visual goals or GPS waypoints. We demonstrate that LogoNav, trained using MBRA-processed data, achieves state-of-the-art performance, enabling robust navigation over distances exceeding 300 meters in previously unseen indoor and outdoor environments. Our extensive real-world evaluations, conducted across a fleet of robots (including quadrupeds) in six cities on three continents, validate the policy's ability to generalize and navigate effectively even amidst pedestrians in crowded settings.
comment: 9 pages, 8 figures, 6 tables
FalconWing: An Ultra-Light Indoor Fixed-Wing UAV Platform for Vision-Based Autonomy
We introduce FalconWing, an ultra-light (150 g) indoor fixed-wing UAV platform for vision-based autonomy. Controlled indoor environment enables year-round repeatable UAV experiment but imposes strict weight and maneuverability limits on the UAV, motivating our ultra-light FalconWing design. FalconWing couples a lightweight hardware stack (137g airframe with a 9g camera) and offboard computation with a software stack featuring a photorealistic 3D Gaussian Splat (GSplat) simulator for developing and evaluating vision-based controllers. We validate FalconWing on two challenging vision-based aerial case studies. In the leader-follower case study, our best vision-based controller, trained via imitation learning on GSplat-rendered data augmented with domain randomization, achieves 100% tracking success across 3 types of leader maneuvers over 30 trials and shows robustness to leader's appearance shifts in simulation. In the autonomous landing case study, our vision-based controller trained purely in simulation transfers zero-shot to real hardware, achieving an 80% success rate over ten landing trials. We will release hardware designs, GSplat scenes, and dynamics models upon publication to make FalconWing an open-source flight kit for engineering students and research labs.
DeepFleet: Multi-Agent Foundation Models for Mobile Robots
We introduce DeepFleet, a suite of foundation models designed to support coordination and planning for large-scale mobile robot fleets. These models are trained on fleet movement data, including robot positions, goals, and interactions, from hundreds of thousands of robots in Amazon warehouses worldwide. DeepFleet consists of four architectures that each embody a distinct inductive bias and collectively explore key points in the design space for multi-agent foundation models: the robot-centric (RC) model is an autoregressive decision transformer operating on neighborhoods of individual robots; the robot-floor (RF) model uses a transformer with cross-attention between robots and the warehouse floor; the image-floor (IF) model applies convolutional encoding to a multi-channel image representation of the full fleet; and the graph-floor (GF) model combines temporal attention with graph neural networks for spatial relationships. In this paper, we describe these models and present our evaluation of the impact of these design choices on prediction task performance. We find that the robot-centric and graph-floor models, which both use asynchronous robot state updates and incorporate the localized structure of robot interactions, show the most promise. We also present experiments that show that these two models can make effective use of larger warehouses operation datasets as the models are scaled up.
comment: 27 pages, 10 figures, 2 tables
Ionospheric and Plasmaspheric Delay Characterization for Lunar Terrestrial GNSS Receivers with Global Core Plasma Model
Recent advancements in lunar positioning, navigation, and timing (PNT) have demonstrated that terrestrial GNSS signals, including weak sidelobe transmissions, can be exploited for lunar spacecraft positioning and timing. While GNSS-based navigation at the Moon has been validated recently, unmodeled ionospheric and plasmaspheric delays remain a significant error source, particularly given the unique signal geometry and extended propagation paths. This paper characterizes these delays using the Global Core Plasma Model (GCPM) and a custom low-cost ray-tracing algorithm that iteratively solves for bent signal paths. We simulate first-, second-, and third-order group delays, as well as excess path length from ray bending, for GNSS signals received at both lunar orbit and the lunar south pole under varying solar and geomagnetic conditions. Results show that mean group delays are typically on the order of 1 m, but can exceed 100 m for low-altitude ray paths during high solar activity, while bending delays are generally smaller but non-negligible for low-altitude ray paths. We also quantify the influence of signal frequency, geomagnetic $K_p$ index, and solar R12 index. These findings inform the design of robust positioning and timing algorithms that utilize terrestrial GNSS signals.
comment: Submitted NAVIGATION: Journal of the Institute of Navigation
Multiagent Systems
MDG: Masked Denoising Generation for Multi-Agent Behavior Modeling in Traffic Environments
Modeling realistic and interactive multi-agent behavior is critical to autonomous driving and traffic simulation. However, existing diffusion and autoregressive approaches are limited by iterative sampling, sequential decoding, or task-specific designs, which hinder efficiency and reuse. We propose Masked Denoising Generation (MDG), a unified generative framework that reformulates multi-agent behavior modeling as the reconstruction of independently noised spatiotemporal tensors. Instead of relying on diffusion time steps or discrete tokenization, MDG applies continuous, per-agent and per-timestep noise masks that enable localized denoising and controllable trajectory generation in a single or few forward passes. This mask-driven formulation generalizes across open-loop prediction, closed-loop simulation, motion planning, and conditional generation within one model. Trained on large-scale real-world driving datasets, MDG achieves competitive closed-loop performance on the Waymo Sim Agents and nuPlan Planning benchmarks, while providing efficient, consistent, and controllable open-loop multi-agent trajectory generation. These results position MDG as a simple yet versatile paradigm for multi-agent behavior modeling.
The Effects of Latency on a Progressive Second-Price Auction
The progressive second-price auction of Lazar and Semret is a decentralized mechanism for the allocation and real-time pricing of a divisible resource. Our focus is on how delays in the receipt of bid messages, asynchronous analysis by buyers of the market and randomness in the initial bids affect the $\varepsilon$-Nash equilibria obtained by the method of truthful $\varepsilon$-best reply. We introduce an algorithm for finding minimal-revenue equilibrium states and then show that setting a reserve price just below clearing stabilizes seller revenue while maintaining efficiency. Utility is of primary interest given the assumption of elastic demand. Although some buyers experienced unpredictability in the value and cost of their individual allocations, their respective utilities were predictable.
Agentifying Agentic AI
Agentic AI seeks to endow systems with sustained autonomy, reasoning, and interaction capabilities. To realize this vision, its assumptions about agency must be complemented by explicit models of cognition, cooperation, and governance. This paper argues that the conceptual tools developed within the Autonomous Agents and Multi-Agent Systems (AAMAS) community, such as BDI architectures, communication protocols, mechanism design, and institutional modelling, provide precisely such a foundation. By aligning adaptive, data-driven approaches with structured models of reasoning and coordination, we outline a path toward agentic systems that are not only capable and flexible, but also transparent, cooperative, and accountable. The result is a perspective on agency that bridges formal theory and practical autonomy.
comment: 10 pages; 1 figure
A segment anchoring-based balancing algorithm for agricultural multi-robot task allocation with energy constraints
Multi-robot systems have emerged as a key technology for addressing the efficiency and cost challenges in labor-intensive industries. In the representative scenario of smart farming, planning efficient harvesting schedules for a fleet of electric robots presents a highly challenging frontier problem. The complexity arises not only from the need to find Pareto-optimal solutions for the conflicting objectives of makespan and transportation cost, but also from the necessity to simultaneously manage payload constraints and finite battery capacity. When robot loads are dynamically updated during planned multi-trip operations, a mandatory recharge triggered by energy constraints introduces an unscheduled load reset. This interaction creates a complex cascading effect that disrupts the entire schedule and renders traditional optimization methods ineffective. To address this challenge, this paper proposes the segment anchoring-based balancing algorithm (SABA). The core of SABA lies in the organic combination of two synergistic mechanisms: the sequential anchoring and balancing mechanism, which leverages charging decisions as `anchors' to systematically reconstruct disrupted routes, while the proportional splitting-based rebalancing mechanism is responsible for the fine-grained balancing and tuning of the final solutions' makespans. Extensive comparative experiments, conducted on a real-world case study and a suite of benchmark instances, demonstrate that SABA comprehensively outperforms 6 state-of-the-art algorithms in terms of both solution convergence and diversity. This research provides a novel theoretical perspective and an effective solution for the multi-robot task allocation problem under energy constraints.
Optimizing PyTorch Inference with LLM-Based Multi-Agent Systems
Maximizing performance on available GPU hardware is an ongoing challenge for modern AI inference systems. Traditional approaches include writing custom GPU kernels and using specialized model compilers to tune high-level code for specific GPU targets. Recent work shows that LLM-based multi-agent systems can effectively perform such tuning, often outperforming existing compilers and eliminating the need for manual kernel development. However, the dynamics of multi-agent systems for this task remain unexplored. In this work, we present a logical framework for comparing multi-agent PyTorch optimization systems. Our evaluation shows that exploit-heavy strategies perform best when paired with error-fixing agents, and that performance correlates with the granularity of optimization steps. The best implementation achieves an average 2.88x speedup on an H100 GPU across diverse tasks in KernelBench, a benchmark suite covering a range of machine learning architectures in PyTorch.
Multi-UAV Swarm Obstacle Avoidance Based on Potential Field Optimization
In multi UAV scenarios,the traditional Artificial Potential Field (APF) method often leads to redundant flight paths and frequent abrupt heading changes due to unreasonable obstacle avoidance path planning,and is highly prone to inter UAV collisions during the obstacle avoidance process.To address these issues,this study proposes a novel hybrid algorithm that combines the improved Multi-Robot Formation Obstacle Avoidance (MRF IAPF) algorithm with an enhanced APF optimized for single UAV path planning.Its core ideas are as follows:first,integrating three types of interaction forces from MRF IAPF obstacle repulsion force,inter UAV interaction force,and target attraction force;second,incorporating a refined single UAV path optimization mechanism,including collision risk assessment and an auxiliary sub goal strategy.When a UAV faces a high collision threat,temporary waypoints are generated to guide obstacle avoidance,ensuring eventual precise arrival at the actual target.Simulation results demonstrate that compared with traditional APF based formation algorithms,the proposed algorithm achieves significant improvements in path length optimization and heading stability,can effectively avoid obstacles and quickly restore the formation configuration,thus verifying its applicability and effectiveness in static environments with unknown obstacles.
comment: 12 pages, 13 figures, and 2 tables
Episodic Memory in Agentic Frameworks: Suggesting Next Tasks
Agentic frameworks powered by Large Language Models (LLMs) can be useful tools in scientific workflows by enabling human-AI co-creation. A key challenge is recommending the next steps during workflow creation without relying solely on LLMs, which risk hallucination and require fine-tuning with scarce proprietary data. We propose an episodic memory architecture that stores and retrieves past workflows to guide agents in suggesting plausible next tasks. By matching current workflows with historical sequences, agents can recommend steps based on prior patterns.
LEARN: Learning End-to-End Aerial Resource-Constrained Multi-Robot Navigation
Nano-UAV teams offer great agility yet face severe navigation challenges due to constrained onboard sensing, communication, and computation. Existing approaches rely on high-resolution vision or compute-intensive planners, rendering them infeasible for these platforms. We introduce LEARN, a lightweight, two-stage safety-guided reinforcement learning (RL) framework for multi-UAV navigation in cluttered spaces. Our system combines low-resolution Time-of-Flight (ToF) sensors and a simple motion planner with a compact, attention-based RL policy. In simulation, LEARN outperforms two state-of-the-art planners by $10\%$ while using substantially fewer resources. We demonstrate LEARN's viability on six Crazyflie quadrotors, achieving fully onboard flight in diverse indoor and outdoor environments at speeds up to $2.0 m/s$ and traversing $0.2 m$ gaps.
comment: 20 pages, 15 figures
LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Design of Multi Active/Passive Core-Agent Architectures
In an era where vast amounts of data are collected and processed from diverse sources, there is a growing demand for sophisticated AI systems capable of intelligently fusing and analyzing this information. To address these challenges, researchers have turned towards integrating tools into LLM-powered agents to enhance the overall information fusion process. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture, resulting in a lack of modularity and terminological inconsistencies among researchers. To address these issues, we propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF) that establishes a clear foundation for agent development from both functional and software architectural perspectives, developed and evaluated using the Architecture Tradeoff and Risk Analysis Framework (ATRAF). Our framework clearly distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent, which plays the role of central coordinator. This pivotal entity comprises five modules: planning, memory, profile, action, and security -- the latter often neglected in previous works. By classifying core-agents into passive and active types based on their authoritative natures, we propose various multi-core agent architectures that combine unique characteristics of distinctive agents to tackle complex tasks more efficiently. We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying overlooked architectural aspects. Moreover, we thoroughly assess five architecture variants of our framework by designing new agent architectures that combine characteristics of state-of-the-art agents to address specific goals. ...
comment: 39 pages, 19 figures, 3 tables. Published in Information Fusion, Volume 127, March 2026, 103865. Part of the special issue "Data Fusion Approaches in Data-Centric AI for Developing Trustworthy AI Systems"
Steering Noncooperative Games Through Conjecture Design
In dynamic noncooperative games, each player makes conjectures about other players' reactions before choosing a strategy. However, resulting equilibria may be multiple and do not always lead to desirable outcomes. These issues are typically addressed separately, for example, through opponent modelling and incentive design. Drawing inspiration from conjectural variations games, we propose an incentive design framework in which a coordinator first computes an equilibrium by optimizing a predefined objective function, then communicates this equilibrium as a target for the players to reach. In a centralized setting, the coordinator also optimizes the conjectures to steer the players towards the target. In decentralized settings, players independently compute conjectures and update their strategies based on individual targets. We provide a guarantee of equilibrium existence in both cases. This framework uses conjectures not only to guide the system towards desirable outcomes but also to decouple the game into independent optimization problems, enabling efficient computation and parallelization in large-scale settings. We illustrate our theoretical results on classical representative noncooperative games, demonstrating its application potential.
Area-Optimal Control Strategies for Heterogeneous Multi-Agent Pursuit AAAI
This paper presents a novel strategy for a multi-agent pursuit-evasion game involving multiple faster pursuers with heterogenous speeds and a single slower evader. We define a geometric region, the evader's safe-reachable set, as the intersection of Apollonius circles derived from each pursuer-evader pair. The capture strategy is formulated as a zero-sum game where the pursuers cooperatively minimize the area of this set, while the evader seeks to maximize it, effectively playing a game of spatial containment. By deriving the analytical gradients of the safe-reachable set's area with respect to agent positions, we obtain closed-form, instantaneous optimal control laws for the heading of each agent. These strategies are computationally efficient, allowing for real-time implementation. Simulations demonstrate that the gradient-based controls effectively steer the pursuers to systematically shrink the evader's safe region, leading to guaranteed capture. This area-minimization approach provides a clear geometric objective for cooperative capture.
comment: Published as a conference paper at the Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
DeepFleet: Multi-Agent Foundation Models for Mobile Robots
We introduce DeepFleet, a suite of foundation models designed to support coordination and planning for large-scale mobile robot fleets. These models are trained on fleet movement data, including robot positions, goals, and interactions, from hundreds of thousands of robots in Amazon warehouses worldwide. DeepFleet consists of four architectures that each embody a distinct inductive bias and collectively explore key points in the design space for multi-agent foundation models: the robot-centric (RC) model is an autoregressive decision transformer operating on neighborhoods of individual robots; the robot-floor (RF) model uses a transformer with cross-attention between robots and the warehouse floor; the image-floor (IF) model applies convolutional encoding to a multi-channel image representation of the full fleet; and the graph-floor (GF) model combines temporal attention with graph neural networks for spatial relationships. In this paper, we describe these models and present our evaluation of the impact of these design choices on prediction task performance. We find that the robot-centric and graph-floor models, which both use asynchronous robot state updates and incorporate the localized structure of robot interactions, show the most promise. We also present experiments that show that these two models can make effective use of larger warehouses operation datasets as the models are scaled up.
comment: 27 pages, 10 figures, 2 tables
Consensus Planning with Primal, Dual, and Proximal Agents
Consensus planning is a method for coordinating decision making across complex systems and organizations, including complex supply chain optimization pipelines. It arises when large interdependent distributed agents (systems) share common resources and must act in order to achieve a joint goal. In prior consensus planning work, all agents have been assumed to have the same interaction pattern (e.g., all dual agents or all primal agents or all proximal agents), most commonly using the Alternating Direction Method of Multipliers (ADMM) as proximal agents. However, this is often not a valid assumption in practice, where agents consist of large complex systems, and where we might not have the luxury of modifying these large complex systems at will. In this paper, we introduce a consensus algorithm that overcomes this hurdle by allowing for the coordination of agents with different types of interfaces (named primal, dual, and proximal). Our consensus planning algorithm allows for any mix of agents by combining ADMM-like updates for the proximal agents, dual ascent updates for the dual agents, and linearized ADMM updates for the primal agents. We prove convergence results for the algorithm, namely a sublinear O(1/k) convergence rate under mild assumptions, and two-step linear convergence under stronger assumptions. We also discuss enhancements to the basic method and provide illustrative empirical results.
Systems and Control (EESS)
Harnessing Data from Clustered LQR Systems: Personalized and Collaborative Policy Optimization
It is known that reinforcement learning (RL) is data-hungry. To improve sample-efficiency of RL, it has been proposed that the learning algorithm utilize data from 'approximately similar' processes. However, since the process models are unknown, identifying which other processes are similar poses a challenge. In this work, we study this problem in the context of the benchmark Linear Quadratic Regulator (LQR) setting. Specifically, we consider a setting with multiple agents, each corresponding to a copy of a linear process to be controlled. The agents' local processes can be partitioned into clusters based on similarities in dynamics and tasks. Combining ideas from sequential elimination and zeroth-order policy optimization, we propose a new algorithm that performs simultaneous clustering and learning to output a personalized policy (controller) for each cluster. Under a suitable notion of cluster separation that captures differences in closed-loop performance across systems, we prove that our approach guarantees correct clustering with high probability. Furthermore, we show that the sub-optimality gap of the policy learned for each cluster scales inversely with the size of the cluster, with no additional bias, unlike in prior works on collaborative learning-based control. Our work is the first to reveal how clustering can be used in data-driven control to learn personalized policies that enjoy statistical gains from collaboration but do not suffer sub-optimality due to inclusion of data from dissimilar processes. From a distributed implementation perspective, our method is attractive as it incurs only a mild logarithmic communication overhead.
A Patient-Centric Blockchain Framework for Secure Electronic Health Record Management: Decoupling Data Storage from Access Control
We present a patient-centric architecture for electronic health record (EHR) sharing that separates content storage from authorization and audit. Encrypted FHIR resources are stored off-chain; a public blockchain records only cryptographic commitments and patient-signed, time-bounded permissions using EIP-712. Keys are distributed via public-key wrapping, enabling storage providers to remain honest-but-curious without risking confidentiality. We formalize security goals (confidentiality, integrity, cryptographically attributable authorization, and auditability of authorization events) and provide a Solidity reference implementation deployed as single-patient contracts. On-chain costs for permission grants average 78,000 gas (L1), and end-to-end access latency for 1 MB records is 0.7--1.4s (mean values for S3 and IPFS respectively), dominated by storage retrieval. Layer-2 deployment reduces gas usage by 10--13x, though data availability charges dominate actual costs. We discuss metadata privacy, key registry requirements, and regulatory considerations (HIPAA/GDPR), demonstrating a practical route to restoring patient control while preserving security properties required for sensitive clinical data.
Incorporating Bayesian Transfer Learning into Particle Filter for Dual-Tracking System with Asymmetric Noise Intensities
Using Bayesian transfer learning, we develop a particle filter approach for tracking a nonlinear dynamical model in a dual-tracking system where intensities of measurement noise for both sensors are asymmetric. The densities for Bayesian transfer learning are approximated with the sum of weighted particles to improve the tracking performance of the primary sensor, which experiences a higher noise intensity compared to the source sensor. We present simulation results that validate the effectiveness of the proposed approach compared to an isolated particle filter and transfer learning applied to the unscented Kalman filter and the cubature Kalman filter. Furthermore, increasing the number of particles shows an improvement in the performance of transfer learning applied to the particle filter with a higher rate compared to the isolated particle filter. However, increasing the number of particles raises computational time per step. Moreover, the performance gain from incorporating Bayesian transfer learning is approximately linearly proportional to the absolute difference value between the noise intensities of the sensors in the dual-tracking system.
comment: 20 pages, 8 figures
A Framework for Adaptive Stabilisation of Nonlinear Stochastic Systems
We consider the adaptive control problem for discrete-time, nonlinear stochastic systems with linearly parameterised uncertainty. Assuming access to a parameterised family of controllers that can stabilise the system in a bounded set within an informative region of the state space when the parameter is well-chosen, we propose a certainty equivalence learning-based adaptive control strategy, and subsequently derive stability bounds on the closed-loop system that hold for some probabilities. We then show that if the entire state space is informative, and the family of controllers is globally stabilising with appropriately chosen parameters, high probability stability guarantees can be derived.
comment: 22 pages, 1 figure
The Iberian Blackout: A Black Swan or a Gray Rhino? A Thorough Power System Analysis
On April 28, 2025, the Iberian power system suffered a full blackout. It was the first documented overvoltage-driven cascade in Europe. The event sparked debate about root causes, including high renewables output, low inertia, and operator actions. This paper presents a thorough power system analysis of the incident to sort signal from noise and explain, step by step, how the blackout unfolded. Specifically, we (i) reconstruct the timeline and causal chain of the incident, (ii) present and summarize contributing factors using factual findings from incident reports, (iii) reproduce the blackout on an IEEE test system, (iv) analyze the incident from a system-theoretic, voltage-control perspective, and (v) translate our analysis into practical, technical measures that aim to mitigate and prevent similar incidents.
Convergence and stability of Q-learning in Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning promises, among other benefits, to efficiently capture and utilize the temporal structure of a decision-making problem and to enhance continual learning capabilities, but theoretical guarantees lag behind practice. In this paper, we propose a Feudal Q-learning scheme and investigate under which conditions its coupled updates converge and are stable. By leveraging the theory of Stochastic Approximation and the ODE method, we present a theorem stating the convergence and stability properties of Feudal Q-learning. This provides a principled convergence and stability analysis tailored to Feudal RL. Moreover, we show that the updates converge to a point that can be interpreted as an equilibrium of a suitably defined game, opening the door to game-theoretic approaches to Hierarchical RL. Lastly, experiments based on the Feudal Q-learning algorithm support the outcomes anticipated by theory.
Computing the Hard Scaled Relative Graph of LTI Systems
Scaled Relative Graphs (SRGs) provide a novel graphical frequency-domain method for the analysis of nonlinear systems, where Linear Time-Invariant (LTI) systems are the fundamental building block. To analyze feedback loops with unstable LTI components, the hard SRG is required, since it aptly captures the input/output behavior on the extended $L_2$ space. In this paper, we develop a systematic computational method to exactly compute the hard SRG of LTI systems, which may be unstable and contain integrators. We also study its connection to the Nyquist criterion, including the multivariable case, and demonstrate our method on several examples.
comment: 8 pages
Chance constrained optimization of energy intensive production as beneficial power units
We study linear policy approximations for the risk-conscious operation of an industrial energy system with uncertain wind power, significant and variable electricity demand, and high thermal output, as found in a modern foundry. The system incorporates thermal storage and operates under rolling forecasts, leading to a sequential decision-making framework. To address uncertainty in key parameters, we formulate chance-constrained optimization problems that limit the probability of critical constraint violations, such as unmet demand requirements or the exceedance of system boundaries. To reduce computational effort, we replace direct uncertainty handling with a parameter-modified cost function that approximates the underlying risk structure. We validate our method through a numerical case study, demonstrating the trade-offs between operational efficiency and reliability in a stochastic environment.
Algorithmic design and implementation considerations of deep MPC
Deep Model Predictive Control (Deep MPC) is an evolving field that integrates model predictive control and deep learning. This manuscript is focused on a particular approach, which employs deep neural network in the loop with MPC. This class of approaches distributes control authority between a neural network and an MPC controller, in such a way that the neural network learns the model uncertainties while the MPC handles constraints. The approach is appealing because training data collected while the system is in operation can be used to fine-tune the neural network, and MPC prevents unsafe behavior during those learning transients. This manuscript explains implementation challenges of Deep MPC, algorithmic way to distribute control authority and argues that a poor choice in distributing control authority may lead to poor performance. A reason of poor performance is explained through a numerical experiment on a four-wheeled skid-steer dynamics.
Influence of Transmission Rank on EMF Exposure Measured With Provoked Data Traffic Around 5G Massive MIMO Base Stations
The introduction of 5G New Radio networks with massive MIMO technology has complicated electromagnetic field exposure assessments for radiation protection. Massive MIMO transmission enables beamforming, beam steering, and spatial multiplexing across multiple transmission layers, with the number of simultaneous transmission paths depending on the rank of the radio channel, further named 'transmission rank'. Since the total transmission power of a base station is shared among these layers, rank variations affect the measured exposure levels, e.g., when assessments use provoked traffic via user equipment. This study investigates the impact of the transmission rank on the measured maximum exposure in the 3.6 GHz (n78) band of a German 5G network employing massive MIMO technology. Field measurements were performed using a spectrum analyzer with isotropic probe, to capture maximum field strengths under full-load traffic conditions. The transmission rank was manipulated by artificially degrading the reception quality of the user equipment with a shielding bag, forcing a single transmission layer (rank-1). The results were compared with unshielded operation allowing up to the maximum number of four independent transmission layers (rank-4). The data reveal exposure differences ranging from 1.7 dB to 5.4 dB, with a median of 4.3 dB at the measurement points studied. These findings highlight the necessity of considering the transmission rank in exposure assessments to electromagnetic fields.
comment: 4 pages, 3 figures
Distributed Switching Model Predictive Control Meets Koopman Operator for Dynamic Obstacle Avoidance
This paper introduces a Koopman-enhanced distributed switched model predictive control (SMPC) framework for safe and scalable navigation of quadrotor unmanned aerial vehicles (UAVs) in dynamic environments with moving obstacles. The proposed method integrates switched motion modes and data-driven prediction to enable real-time, collision-free coordination. A localized Koopman operator approximates nonlinear obstacle dynamics as linear models based on online measurements, enabling accurate trajectory forecasting. These predictions are embedded into a distributed SMPC structure, where each UAV makes autonomous decisions using local and cluster-based information. This computationally efficient architecture is particularly promising for applications in surface transportation, including coordinated vehicle flows, shared infrastructure with pedestrians or cyclists, and urban UAV traffic. Simulation results demonstrate reliable formation control and real-time obstacle avoidance, highlighting the frameworks broad relevance for intelligent and cooperative mobility systems.
Power Flow Solution in Unbalanced 3-Wire MV and 4-Wire LV Networks Using Symmetrical and Eigen-basis Coordinates
The large penetration of distributed generations impacts both the secondary low-voltage (LV) and the primary medium-voltage (MV) segments of the distribution network. Optimizing power flow calculations for the integrated MV/LV networks is crucial for the real-time management of modern distribution networks. Traditional methods in symmetrical coordinates are primarily limited to the three-wire model of three-phase networks, often leading to inaccuracies in power flow calculations when applied to three-phase four-wire LV segments. This paper introduces a novel power flow method for integrated three-wire MV and four-wire LV networks. Using eigenvector decomposition to diagonalize the admittance matrix of four-wire LV lines, the proposed method improves the computational efficiency of power flow calculations and accurately calculates the neutral-to-ground voltage. The results of the case studies show over 50\% reduction in the number of non-zero elements in the LU factors of the bus admittance matrix, and speed-up factors of 2.78 on the IEEE 123-node test system and 3.63 on the IEEE 8500-node test system in execution times for Volt/Var control (VVC), compared to the phase coordinates model.
comment: 10 pages, 7 figures. Submitted to Journal of Modern Power Systems and Clean Energy
KNN and Time Series Based Prediction of Power Generation from Renewable Resources
As the world shifts towards utilizing natural resources for electricity generation, there is need to enhance forecasting systems to guarantee a stable electricity provision and to incorporate the generated power into the network systems. This work provides a machine learning environment for renewable energy forecasting that prevents the flaws which are usually experienced in the actual process; intermittency, nonlinearity and intricacy in nature which is difficult to grasp by ordinary existing forecasting procedures. Leveraging a comprehensive approximately 30-year dataset encompassing multiple renewable energy sources, our research evaluates two distinct approaches: K-Nearest Neighbors (KNN) model and Non-Linear Autoregressive distributed called with Seasonal Autoregressive Integrated Moving Average (SARIMA) model to forecast total power generation using the solar, wind, and hydroelectric resources. The framework uses high temporal resolution and multiple parameters of the environment to improve the predictions. The fact that both the models in terms of error metrics were equally significant and had some unique tendencies at certain circumstances. The long history allows for better model calibration of temporal fluctuations and seasonal and climatic effects on power generation. The reliability enhancement in the prediction function, which benefits from 30 years of data, has value to grid operators, energy traders, and those establishing renewable energy policies and standards concerning reliability
Comparison of linear observation techniques for robust load torque estimation in actuators
The paper addresses the problem of estimating robustly the external load torque in rotary actuator systems, when only the generated motor drive torque and angular displacement are the available input and output. We compare, theoretically and experimentally, two sufficiently established linear observation techniques (i) reduced-order Luenberger observer and (ii) disturbance observer, both using the same identified model of a permanent magnet synchronous motor (PMSM)-based actuator. Our goal is to highlight several aspects related to the implementation, relative degree of the input-torque to estimated-load-torque transfer characteristics, observer open-loop transfer function, and the associated sensitivity (respectively stability margins) with respect to inherently uncertain system plants. Apart from the developed analysis, a detailed experimental case study is demonstrated where the load torque sensor provides reference measurements and allows for evaluation of both observers.
comment: 6 pages, 5 figures
Continuous Resilience in Cyber-Physical Systems of Systems: Extending Architectural Models through Adaptive Coordination and Learning
Cyber-physical systems of systems (CPSoS) are highly complex, dynamic environments in which technical, cybernetic and organisational subsystems interact closely with one another. Dynamic, continuously adaptable resilience is required to ensure their functionality under variable conditions. However, existing resilience architectures usually only deal with adaptation implicitly and thus remain predominantly static. This paper addresses this gap by introducing a new Adaptive Coordination Layer (ACL) and conceptually redefining the Adaptation & Learning Layer (AL). The ACL acts as an operational control layer that detects risks in real time, prioritises countermeasures and coordinates them dynamically. The AL is reinterpreted as a strategic-cooperative layer that evaluates the operational decisions of the ACL, learns from them, and derives long-term adjustments at the policy, governance, and architecture levels. Together, both layers operationalise the resilience principle of adaptation and combine short-term responsiveness with long-term learning and development capabilities. The paper describes various implementation variants of both levels - from rule-based and KPI-driven approaches to AI-supported and meta-learning mechanisms - and shows how these can be combined depending on system complexity, data availability and degree of regulation. The proposed architecture model no longer understands resilience as a static system property, but as a continuous, data-driven process of mutual coordination and systemic learning. This creates a methodological basis for the next generation of adaptive and resilient CPSoS.
comment: 27 pages, 6 tables, 1 figure
Generative MIMO Beam Map Construction for Location Recovery and Beam Tracking
Machine learning (ML) has greatly advanced data-driven channel modeling and resource optimization in wireless communication systems. However, most existing ML-based methods rely on large, accurately labeled datasets with location information, which are often difficult and costly to obtain. This paper proposes a generative framework to recover location labels directly from sequences of sparse channel state information (CSI) measurements, without explicit location labels for radio map construction. Instead of directly storing raw CSI, we learn a compact low-dimensional radio map embedding and leverage a generative model to reconstruct the high-dimensional CSI. Specifically, to address the uncertainty of sparse CSI, a dual-scale feature extraction scheme is designed to enhance feature representation by jointly exploiting correlations from angular space and across neighboring samples. We develop a hybrid recurrent-convolutional encoder to learn mobility patterns, which combines a truncation strategy and multi-scale convolutions in the recurrent neural network (RNN) to ensure feature robustness against short-term fluctuations. Unlike conventional Gaussian priors in latent space, we embed a learnable radio map to capture the location information by encoding high-level positional features from CSI measurements. Finally, a diffusion-based generative decoder reconstructs the full CSI with high fidelity by conditioning on the positional features in the radio map. Numerical experiments demonstrate that the proposed model can improve localization accuracy by over 30% and achieve a 20% capacity gain in non-line-of-sight (NLOS) scenarios compared with model-based Kalman filter approaches.
Feature Partitioning and Semantic Equalization for Intrinsic Robustness in Semantic Communication under Packet Loss
Semantic communication can improve transmission efficiency by focusing on task-relevant information. However, under packet-based communication protocols, any error typically results in the loss of an entire packet, making semantic communication particularly vulnerable to packet loss. Since high-dimensional semantic features must be partitioned into one-dimensional transmission units during packetization. A critical open question is how to partition semantic features to maximize robustness. To address this, we systematically investigate the performance of two mainstream architectures, Transformer and Convolutional neural networks (CNN), under various feature partitioning schemes. The results show that the Transformer architecture exhibits inherent robustness to packet loss when partitioned along the channel dimension. In contrast, the CNN-based baseline exhibits imbalanced channel utilization, causing severe degradation once dominant channels are lost. To enhance the CNN resilience, we propose a lightweight Semantic Equalization Mechanism (SEM) that balances channel contributions and prevents a few channels from dominating. SEM consists of two parallel approaches: a Dynamic Scale module that adaptively adjusts channel importance, and a Broadcast module that facilitates information interaction among channels. Experimental results demonstrate that CNN equipped with SEM achieve graceful degradation under packet loss (retaining about 85% of lossless PSNR at 40% packet loss), comparable to that of Transformer models. Our findings indicate that, under an appropriate partitioning strategy, maintaining a balanced semantic representation is a fundamental condition for achieving intrinsic robustness against packet loss. These insights may also extend to other modalities such as video and support practical semantic communication design.
comment: This work has been submitted to the IEEE for possible publication
State-Derivative Feedback Control for Damping Low-Frequency Oscillations in Bulk Power Systems
Low-frequency oscillations remain a major challenge in bulk power systems with high renewable penetration, long lines, and large loads. Existing damping strategies based on power modulation of high voltage DC (HVDC) or energy storage, are often limited by fixed control architectures, leaving some modes poorly damped. This paper introduces a state-derivative feedback (SDF) damping controller that uses both frequency and its rate of change as feedback signals. Incorporating state derivatives enhances modal damping and accelerates frequency recovery, enabling HVDC and energy storage to effectively stabilize the grid. We evaluate the SDF controller on two- and three-area systems and compare performance with a frequency difference-based damping scheme. Results show that the SDF control reproduces state-feedback performance while providing good damping of both inter- and intra-area oscillations compared to the frequency-difference method, highlighting its potential as a practical solution for stabilizing power-electronics-rich grids.
comment: 5 pages, 6 figures, 1 table, Submitted to IEEE PES General Meeting 2026
When Motion Learns to Listen: Diffusion-Prior Lyapunov Actor-Critic Framework with LLM Guidance for Stable and Robust AUV Control in Underwater Tasks
Autonomous Underwater Vehicles (AUVs) are indispensable for marine exploration; yet, their control is hindered by nonlinear hydrodynamics, time-varying disturbances, and localization uncertainty. Traditional controllers provide only limited adaptability, while Reinforcement Learning (RL), though promising, suffers from sample inefficiency, weak long-term planning, and lacks stability guarantees, leading to unreliable behavior. To address these challenges, we propose a diffusion-prior Lyapunov actor-critic framework that unifies exploration, stability, and semantic adaptability. Specifically, a diffusion model generates smooth, multimodal, and disturbance-resilient candidate actions; a Lyapunov critic further imposes dual constraints that ensure stability; and a Large Language Model (LLM)-driven outer loop adaptively selects and refines Lyapunov functions based on task semantics and training feedback. This "generation-filtering-optimization" mechanism not only enhances sample efficiency and planning capability but also aligns stability guarantees with diverse mission requirements in the multi-objective optimization task. Extensive simulations under complex ocean dynamics demonstrate that the proposed framework achieves more accurate trajectory tracking, higher task completion rates, improved energy efficiency, faster convergence, and improved robustness compared with conventional RL and diffusion-augmented baselines.
comment: This paper is currently under review and does not represent the final version. Jingzehua Xu, Weiyi Liu and Weihang Zhang are co-first authors of this paper, with Zhuofan Xi as the second author
Single-Pixel Tactile Skin via Compressive Sampling
Development of large-area, high-speed electronic skins is a grand challenge for robotics, prosthetics, and human-machine interfaces, but is fundamentally limited by wiring complexity and data bottlenecks. Here, we introduce Single-Pixel Tactile Skin (SPTS), a paradigm that uses compressive sampling to reconstruct rich tactile information from an entire sensor array via a single output channel. This is achieved through a direct circuit-level implementation where each sensing element, equipped with a miniature microcontroller, contributes a dynamically weighted analog signal to a global sum, performing distributed compressed sensing in hardware. Our flexible, daisy-chainable design simplifies wiring to a few input lines and one output, and significantly reduces measurement requirements compared to raster scanning methods. We demonstrate the system's performance by achieving object classification at an effective 3500 FPS and by capturing transient dynamics, resolving an 8 ms projectile impact into 23 frames. A key feature is the support for adaptive reconstruction, where sensing fidelity scales with measurement time. This allows for rapid contact localization using as little as 7% of total data, followed by progressive refinement to a high-fidelity image - a capability critical for responsive robotic systems. This work offers an efficient pathway towards large-scale tactile intelligence for robotics and human-machine interfaces.
comment: 24 pages, 6 main figures, 6 supplemental figures
AI- and Ontology-Based Enhancements to FMEA for Advanced Systems Engineering: Current Developments and Future Directions
This article presents a state-of-the-art review of recent advances aimed at transforming traditional Failure Mode and Effects Analysis (FMEA) into a more intelligent, data-driven, and semantically enriched process. As engineered systems grow in complexity, conventional FMEA methods, largely manual, document-centric, and expert-dependent, have become increasingly inadequate for addressing the demands of modern systems engineering. We examine how techniques from Artificial Intelligence (AI), including machine learning and natural language processing, can transform FMEA into a more dynamic, data-driven, intelligent, and model-integrated process by automating failure prediction, prioritisation, and knowledge extraction from operational data. In parallel, we explore the role of ontologies in formalising system knowledge, supporting semantic reasoning, improving traceability, and enabling cross-domain interoperability. The review also synthesises emerging hybrid approaches, such as ontology-informed learning and large language model integration, which further enhance explainability and automation. These developments are discussed within the broader context of Model-Based Systems Engineering (MBSE) and function modelling, showing how AI and ontologies can support more adaptive and resilient FMEA workflows. We critically analyse a range of tools, case studies, and integration strategies, while identifying key challenges related to data quality, explainability, standardisation, and interdisciplinary adoption. By leveraging AI, systems engineering, and knowledge representation using ontologies, this review offers a structured roadmap for embedding FMEA within intelligent, knowledge-rich engineering environments.
comment: This manuscript is based on research undertaken by our doctoral student at the University of Bradford. The associated PhD thesis has been formally submitted to the University and is currently awaiting final examination. The review article is being shared on arXiv to make the review accessible to the research community while the thesis examination process is ongoing
Safety and Risk Pathways in Cooperative Generative Multi-Agent Systems: A Telecom Perspective
Generative multiagent systems are rapidly emerging as transformative tools for scalable automation and adaptive decisionmaking in telecommunications. Despite their promise, these systems introduce novel risks that remain underexplored, particularly when agents operate asynchronously across layered architectures. This paper investigates key safety pathways in telecomfocused Generative MultiAgent Systems (GMAS), emphasizing risks of miscoordination and semantic drift shaped by persona diversity. We propose a modular safety evaluation framework that integrates agentlevel checks on code quality and compliance with systemlevel safety metrics. Using controlled simulations across 32 persona sets, five questions, and multiple iterative runs, we demonstrate progressive improvements in analyzer penalties and AllocatorCoder consistency, alongside persistent vulnerabilities such as policy drift and variability under specific persona combinations. Our findings provide the first domaingrounded evidence that persona design, coding style, and planning orientation directly influence the stability and safety of telecom GMAS, highlighting both promising mitigation strategies and open risks for future deployment.
Risk-Based Capacity Accreditation of Resource-Colocated Large Loads in Capacity Markets
We study capacity accreditation of resource-colocated large loads, defined as large demands such as data center and manufacturing loads colocated with behind-the-meter generation and storage resources, synchronously connected to the bulk power system, and capable of participating in the wholesale electricity market as an integrated unit. Because the qualified capacity of a resource portfolio is not equal to the sum of its individual resources' qualified capacities, we propose a novel risk-based capacity accreditation framework that evaluates the collective contribution to system reliability. Grounded in the effective load carrying capability (ELCC) metric, the proposed capacity accreditation employs a convex optimization engine that jointly dispatches colocated resources to minimize reliability risk. We apply the developed methodology to a hydrogen manufacturing facility with colocated renewable generation, storage, and fuel cell resources.
Systemic approach for modeling a generic smart grid
Smart grid technological advances present a recent class of complex interdisciplinary modeling and increasingly difficult simulation problems to solve using traditional computational methods. To simulate a smart grid requires a systemic approach to integrated modeling of power systems, energy markets, demand-side management, and much other resources and assets that are becoming part of the current paradigm of the power grid. This paper presents a backbone model of a smart grid to test alternative scenarios for the grid. This tool simulates disparate systems to validate assumptions before the human scale model. Thanks to a distributed optimization of subsystems, the production and consumption scheduling is achieved while maintaining flexibility and scalability.
Resilient Controller Design with Exponential Reaching Law for Enhanced Load Frequency Stability in Multi-Area Interconnected Microgrids
We present a load frequency control strategy deploying a decentralized robust global integral terminal sliding mode control (GITSMC) method to maintain stable frequency and tie-line power in multi-area interconnected microgrids with aggregated uncertainties. To achieve this, firstly, we have developed a mathematical model of the multi-area interconnected system incorporating disturbances from solar photovoltaic (PV), wind turbine (WT) generation and load demand, as aggregated uncertainties. Secondly, we have designed a global integral terminal sliding surface with an exponential reaching law for each area to enhance system dynamic performance and suppress chattering within a finite time. Thirdly, the overall stability of the closed-loop system is analyzed using the Lyapunov stability theorem. Finally, extensive simulations are conducted on the IEEE 10-generator New England 39-bus power system, including load disturbances and variable PV and WT generation. The results demonstrate the performance of the proposed GITSMC approach, achieving approximately 94.9% improvement in ITSE and 94.4% improvement in ISE, confirming its superior accuracy and dynamic performance compared to the existing controller.
On the Contraction of Excitable Systems
We analyze contraction in conductance-based excitable systems and link it to reliable spike timing. For a Hodgkin-Huxley neuron with synaptic input, we prove the unforced dynamics is incrementally exponentially stable on a compact physiological set. With impulsive inputs, contraction persists under an average dwell-time condition, and for periodic spike trains we derive an explicit lower bound on the inter-impulse period. In the high-rate limit the synapse is effectively held open, the conductance is nearly constant, and self-sustained limit-cycle oscillations can arise, so contraction no longer holds. This continuous-time view explains when spike times extracted by an event detector remain robust across trials, and simulations confirm both regimes.
Robust H-infinity control and worst-case search in constrained parametric space
Standard H-infinity/H2 robust control and analysis tools operate on uncertain parameters assumed to vary independently within prescribed bounds. This paper extends their capabilities in the presence of constraints coupling these parameters and restricting the parametric space. Focusing on the worst-case search, we demonstrate -- based on the theory of upper-C1 functions -- the validity of using standard, readily available smooth optimization algorithms to address this nonsmooth constrained optimization problem. Accordingly, we propose to explore the parametric space with either Monte-Carlo sampling or particle swarm optimization, and to subsequently perform local exploitation with Sequential Quadratic Programming to compute Karush-Kuhn-Tucker points. This worst-case search then enables robust controller synthesis: as in the state-of-art algorithm for standard robust control, identified worst-case configurations are iteratively added to an active set on which a non-smooth multi-models optimization of the controller is performed. The methodology is illustrated on a satellite benchmark with flexible appendages, of order 50 with 43 uncertain parameters. We show that the proposed method largely outperforms Monte-Carlo sampling alone, is able to reliably detect even rare worst-case configurations in minutes on a standard laptop, and that the robust controller optimization converges with less than 10 active configurations. Even in the unconstrained case, the proposed framework complements traditional methods, as it scales to plants with many parameters and states and explores the entire parametric space, albeit without formal guarantees of global optimality.
comment: Preprint
Perception, Control and Hardware for In-Hand Slip-Aware Object Manipulation with Parallel Grippers
Dexterous in-hand manipulation offers significant potential to enhance robotic manipulator capabilities. This paper presents a sensori-motor architecture for in-hand slip-aware control, being embodied in a sensorized gripper. The gripper in our architecture features rapid closed-loop, low-level force control, and is equipped with sensors capable of independently measuring contact forces and sliding velocities. Our system can quickly estimate essential object properties during pick-up using only in-hand sensing, without relying on prior object information. We introduce four distinct slippage controllers: gravity-assisted trajectory following for both rotational and linear slippage, a hinge controller that maintains the object's orientation while the gripper rotates, and a slip-avoidance controller. The gripper is mounted on a robot arm and validated through extensive experiments involving a diverse range of objects, demonstrating the architecture's novel capabilities for manipulating objects with flat surfaces.
AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Advances in AI and Robotics have accelerated significant initiatives in agriculture, particularly in the areas of robot navigation and 3D digital twin creation. A significant bottleneck impeding this progress is the critical lack of "in-the-wild" datasets that capture the full complexities of real farmland, including non-rigid motion from wind, drastic illumination variance, and morphological changes resulting from growth. This data gap fundamentally limits research on robust AI models for autonomous field navigation and scene-level dynamic 3D reconstruction. In this paper, we present AgriChrono, a modular robotic data collection platform and multi-modal dataset designed to capture these dynamic farmland conditions. Our platform integrates multiple sensors, enabling remote, time-synchronized acquisition of RGB, Depth, LiDAR, IMU, and Pose data for efficient and repeatable long-term data collection in real-world agricultural environments. We successfully collected 18TB of data over one month, documenting the entire growth cycle of Canola under diverse illumination conditions. We benchmark state-of-the-art 3D reconstruction methods on AgriChrono, revealing the profound challenge of reconstructing high-fidelity, dynamic non-rigid scenes in such farmland settings. This benchmark validates AgriChrono as a critical asset for advancing model generalization, and its public release is expected to significantly accelerate research and development in precision agriculture. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono
System Synchronization Based on Complex Frequency
The increasing penetration of renewable energy leads to a continuous reduction in system inertia, for which conventional synchronization criteria based solely on frequency consistency can no longer accurately capture the coupled dynamics of frequency and voltage during transients. To address this issue, this paper employs the concept of complex frequency and develops an analysis framework that integrates theory, indices, and simulation for assessing synchronization stability in low-inertia power systems. First, the basic concepts and mathematical formulation of complex frequency and complex-frequency synchronization are introduced. Then, dynamic criteria for local and global complex synchronization are established, upon which a complex inertia index is proposed. This index unifies the supporting role of traditional frequency inertia and the voltage support capability associated with voltage inertia, enabling quantitative evaluation of the strength of coordinated frequency-voltage support and disturbance rejection within a region. Finally, transient simulations on a modified IEEE 9-bus system are carried out to validate the proposed method. The results show that the method can clearly reveal the synchronization relationships between subnetworks and the overall system, providing a useful theoretical reference for stability analysis and control strategy design in low-inertia power systems.
comment: 13 pages,11 figures
Solving Infinite-Horizon Optimal Control Problems using the Extreme Theory of Functional Connections
This paper presents a physics-informed machine learning approach for synthesizing optimal feedback control policy for infinite-horizon optimal control problems by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation(PDE). The optimal control policy is derived analytically for affine dynamical systems with separable and strictly convex control costs, expressed as a function of the gradient of the value function. The resulting HJB-PDE is then solved by approximating the value function using the Extreme Theory of Functional Connections (X-TFC) - a hybrid approach that combines the Theory of Functional Connections (TFC) with the Extreme Learning Machine (ELM) algorithm. This approach ensures analytical satisfaction of boundary conditions and significantly reduces training cost compared to traditional Physics-Informed Neural Networks (PINNs). We benchmark the method on linear and non-linear systems with known analytical solutions as well as demonstrate its effectiveness on control tasks such as spacecraft optimal de-tumbling control.
comment: Accepted to Indian Control Conference (ICC-11), 6 pages, 12 figures
Learning to Drive Anywhere with Model-Based Reannotation
Developing broadly generalizable visual navigation policies for robots is a significant challenge, primarily constrained by the availability of large-scale, diverse training data. While curated datasets collected by researchers offer high quality, their limited size restricts policy generalization. To overcome this, we explore leveraging abundant, passively collected data sources, including large volumes of crowd-sourced teleoperation data and unlabeled YouTube videos, despite their potential for lower quality or missing action labels. We propose Model-Based ReAnnotation (MBRA), a framework that utilizes a learned short-horizon, model-based expert model to relabel or generate high-quality actions for these passive datasets. This relabeled data is then distilled into LogoNav, a long-horizon navigation policy conditioned on visual goals or GPS waypoints. We demonstrate that LogoNav, trained using MBRA-processed data, achieves state-of-the-art performance, enabling robust navigation over distances exceeding 300 meters in previously unseen indoor and outdoor environments. Our extensive real-world evaluations, conducted across a fleet of robots (including quadrupeds) in six cities on three continents, validate the policy's ability to generalize and navigate effectively even amidst pedestrians in crowded settings.
comment: 9 pages, 8 figures, 6 tables
How improving performance may imply losing consistency in event-triggered consensus
Event-triggered control is often argued to lower the average triggering rate compared to time-triggered control while still achieving a desired control goal, e.g., the same performance level. However, this property, often called consistency, cannot be taken for granted and can be hard to analyze in many settings. In particular, the performance properties of decentralized event-triggered control schemes with respect to time-triggered control remain mostly unexplored. Therefore, in this paper, we examine these performance properties for a consensus problem considering single-integrator agent dynamics, a level-triggering rule, and a complete communication graph. We consider the long-term average quadratic deviation from consensus as a performance measure. For this setting, we show that enriching the information the local controllers use improves the performance of the consensus algorithm but renders a previously consistent event-triggered control scheme inconsistent. In addition, we do so while deploying optimal control inputs which we derive for both information cases and triggering schemes. With this insight, we can furthermore explain the relationship between two seemingly contrasting consistency results from the literature.
comment: Accepted for publication in Automatica
Certifying the Nonexistence of Feasible Path Between Power System Operating Points
By providing the optimal operating point that satisfies both the power flow equations and engineering limits, the optimal power flow (OPF) problem is central to power systems operations. While extensive research has focused on computing high-quality OPF solutions, assessing the feasibility of transitioning between operating points remains challenging since the feasible spaces of OPF problems may consist of multiple disconnected components. It is not possible to transition between operating points in different disconnected components without violating OPF constraints. To identify such situations, this paper introduces an algorithm for certifying the infeasibility of transitioning between two operating points within an OPF feasible space. As an indication of potential disconnectedness, the algorithm first seeks an infeasible point on the line connecting a pair of feasible points. The algorithm then certifies disconnectedness by using convex relaxation and bound tightening techniques to show that all points on the plane that is normal to this line are infeasible. Using this algorithm, we provide the first certifications of disconnected feasible spaces for a variety of OPF test cases.
Markov Potential Game Construction and Multi-Agent Reinforcement Learning with Applications to Autonomous Driving
Markov games (MGs) provide a mathematical foundation for multi-agent reinforcement learning (MARL), enabling self-interested agents to learn their optimal policies while interacting with others in a shared environment. However, due to the complexities of an MG problem, seeking (Markov perfect) Nash equilibrium (NE) is often very challenging for a general-sum MG. Markov potential games (MPGs), which are a special class of MGs, have appealing properties such as guaranteed existence of pure NEs and guaranteed convergence of gradient play algorithms, thereby leading to desirable properties for many MARL algorithms in their NE-seeking processes. However, the question of how to construct MPGs has remained open. This paper provides sufficient conditions on the reward design and on the Markov decision process (MDP), under which an MG is an MPG. Numerical results on autonomous driving applications are reported.
Robotics
Dexterity from Smart Lenses: Multi-Fingered Robot Manipulation with In-the-Wild Human Demonstrations
Learning multi-fingered robot policies from humans performing daily tasks in natural environments has long been a grand goal in the robotics community. Achieving this would mark significant progress toward generalizable robot manipulation in human environments, as it would reduce the reliance on labor-intensive robot data collection. Despite substantial efforts, progress toward this goal has been bottle-necked by the embodiment gap between humans and robots, as well as by difficulties in extracting relevant contextual and motion cues that enable learning of autonomous policies from in-the-wild human videos. We claim that with simple yet sufficiently powerful hardware for obtaining human data and our proposed framework AINA, we are now one significant step closer to achieving this dream. AINA enables learning multi-fingered policies from data collected by anyone, anywhere, and in any environment using Aria Gen 2 glasses. These glasses are lightweight and portable, feature a high-resolution RGB camera, provide accurate on-board 3D head and hand poses, and offer a wide stereo view that can be leveraged for depth estimation of the scene. This setup enables the learning of 3D point-based policies for multi-fingered hands that are robust to background changes and can be deployed directly without requiring any robot data (including online corrections, reinforcement learning, or simulation). We compare our framework against prior human-to-robot policy learning approaches, ablate our design choices, and demonstrate results across nine everyday manipulation tasks. Robot rollouts are best viewed on our website: https://aina-robot.github.io.
InternData-A1: Pioneering High-Fidelity Synthetic Data for Pre-training Generalist Policy
Recent works explore how real and synthetic data contribute to Vision-Language-Action (VLA) models' generalization. While current VLA models have shown the strong effectiveness of large-scale real-robot pre-training, synthetic data has not previously demonstrated comparable capability at scale. This paper provides the first evidence that synthetic data alone can match the performance of the strongest $π$-dataset in pre-training a VLA model, revealing the substantial value of large-scale simulation. The resulting model also exhibits surprisingly zero-shot sim-to-real transfer on several challenging tasks. Our synthetic dataset, InternData-A1, contains over 630k trajectories and 7,433 hours across 4 embodiments, 18 skills, 70 tasks, and 227 scenes, covering rigid, articulated, deformable, and fluid-object manipulation. It is generated through a highly autonomous, fully decoupled, and compositional simulation pipeline that enables long-horizon skill composition, flexible task assembly, and heterogeneous embodiments with minimal manual tuning. Using the same architecture as $π_0$, we pre-train a model entirely on InternData-A1 and find that it matches the official $π_0$ across 49 simulation tasks, 5 real-world tasks, and 4 long-horizon dexterous tasks. We release the dataset and will open-source the generation pipeline to broaden access to large-scale robotic data and to lower the barrier to scalable data creation for embodied AI research.
Green Resilience of Cyber-Physical Systems: Doctoral Dissertation
Cyber-physical systems (CPS) combine computational and physical components. Online Collaborative AI System (OL-CAIS) is a type of CPS that learn online in collaboration with humans to achieve a common goal, which makes it vulnerable to disruptive events that degrade performance. Decision-makers must therefore restore performance while limiting energy impact, creating a trade-off between resilience and greenness. This research addresses how to balance these two properties in OL-CAIS. It aims to model resilience for automatic state detection, develop agent-based policies that optimize the greenness-resilience trade-off, and understand catastrophic forgetting to maintain performance consistency. We model OL-CAIS behavior through three operational states: steady, disruptive, and final. To support recovery during disruptions, we introduce the GResilience framework, which provides recovery strategies through multi-objective optimization (one-agent), game-theoretic decision-making (two-agent), and reinforcement learning (RL-agent). We also design a measurement framework to quantify resilience and greenness. Empirical evaluation uses real and simulated experiments with a collaborative robot learning object classification from human demonstrations. Results show that the resilience model captures performance transitions during disruptions, and that GResilience policies improve green recovery by shortening recovery time, stabilizing performance, and reducing human dependency. RL-agent policies achieve the strongest results, although with a marginal increase in CO2 emissions. We also observe catastrophic forgetting after repeated disruptions, while our policies help maintain steadiness. A comparison with containerized execution shows that containerization cuts CO2 emissions by half. Overall, this research provides models, metrics, and policies that ensure the green recovery of OL-CAIS.
MiMo-Embodied: X-Embodied Foundation Model Technical Report
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
comment: Code: https://github.com/XiaomiMiMo/MiMo-Embodied Model: https://huggingface.co/XiaomiMiMo/MiMo-Embodied-7B
From Prompts to Printable Models: Support-Effective 3D Generation via Offset Direct Preference Optimization
The transition from digital 3D models to physical objects via 3D printing often requires support structures to prevent overhanging features from collapsing during the fabrication process. While current slicing technologies offer advanced support strategies, they focus on post-processing optimizations rather than addressing the underlying need for support-efficient design during the model generation phase. This paper introduces SEG (\textit{\underline{S}upport-\underline{E}ffective \underline{G}eneration}), a novel framework that integrates Direct Preference Optimization with an Offset (ODPO) into the 3D generation pipeline to directly optimize models for minimal support material usage. By incorporating support structure simulation into the training process, SEG encourages the generation of geometries that inherently require fewer supports, thus reducing material waste and production time. We demonstrate SEG's effectiveness through extensive experiments on two benchmark datasets, Thingi10k-Val and GPT-3DP-Val, showing that SEG significantly outperforms baseline models such as TRELLIS, DPO, and DRO in terms of support volume reduction and printability. Qualitative results further reveal that SEG maintains high fidelity to input prompts while minimizing the need for support structures. Our findings highlight the potential of SEG to transform 3D printing by directly optimizing models during the generative process, paving the way for more sustainable and efficient digital fabrication practices.
comment: Technical report (7 pages)
LAOF: Robust Latent Action Learning with Optical Flow Constraints
Learning latent actions from large-scale videos is crucial for the pre-training of scalable embodied foundation models, yet existing methods often struggle with action-irrelevant distractors. Although incorporating action supervision can alleviate these distractions, its effectiveness is restricted by the scarcity of available action labels. Optical flow represents pixel-level motion between consecutive frames, naturally suppressing background elements and emphasizing moving objects. Motivated by this, we propose robust Latent Action learning with Optical Flow constraints, called LAOF, a pseudo-supervised framework that leverages the agent's optical flow as an action-driven signal to learn latent action representations robust to distractors. Experimental results show that the latent representations learned by LAOF outperform existing methods on downstream imitation learning and reinforcement learning tasks. This superior performance arises from optical flow constraints, which substantially stabilize training and improve the quality of latent representations under extremely label-scarce conditions, while remaining effective as the proportion of action labels increases to 10 percent. Importantly, even without action supervision, LAOF matches or surpasses action-supervised methods trained with 1 percent of action labels.
comment: Code can be found at https://github.com/XizoB/LAOF
Homogeneous Proportional-Integral-Derivative Controller in Mobile Robotic Manipulators
Mobile robotic manipulators (MRMs), which integrate mobility and manipulation capabilities, present significant control challenges due to their nonlinear dynamics, underactuation, and coupling between the base and manipulator subsystems. This paper proposes a novel homogeneous Proportional-Integral-Derivative (hPID) control strategy tailored for MRMs to achieve robust and coordinated motion control. Unlike classical PID controllers, the hPID controller leverages the mathematical framework of homogeneous control theory to systematically enhance the stability and convergence properties of the closed-loop system, even in the presence of dynamic uncertainties and external disturbances involved into a system in a homogeneous way. A homogeneous PID structure is designed, ensuring improved convergence of tracking errors through a graded homogeneity approach that generalizes traditional PID gains to nonlinear, state-dependent functions. Stability analysis is conducted using Lyapunov-based methods, demonstrating that the hPID controller guarantees global asymptotic stability and finite-time convergence under mild assumptions. Experimental results on a representative MRM model validate the effectiveness of the hPID controller in achieving high-precision trajectory tracking for both the mobile base and manipulator arm, outperforming conventional linear PID controllers in terms of response time, steady-state error, and robustness to model uncertainties. This research contributes a scalable and analytically grounded control framework for enhancing the autonomy and reliability of next-generation mobile manipulation systems in structured and unstructured environments.
Robot Metacognition: Decision Making with Confidence for Tool Invention
Robots today often miss a key ingredient of truly intelligent behavior: the ability to reflect on their own cognitive processes and decisions. In humans, this self-monitoring or metacognition is crucial for learning, decision making and problem solving. For instance, they can evaluate how confident they are in performing a task, thus regulating their own behavior and allocating proper resources. Taking inspiration from neuroscience, we propose a robot metacognition architecture centered on confidence (a second-order judgment on decisions) and we demonstrate it on the use case of autonomous tool invention. We propose the use of confidence as a metacognitive measure within the robot decision making scheme. Confidence-informed robots can evaluate the reliability of their decisions, improving their robustness during real-world physical deployment. This form of robotic metacognition emphasizes embodied action monitoring as a means to achieve better informed decisions. We also highlight potential applications and research directions for robot metacognition.
comment: under review
Flow-Aided Flight Through Dynamic Clutters From Point To Motion
Challenges in traversing dynamic clutters lie mainly in the efficient perception of the environmental dynamics and the generation of evasive behaviors considering obstacle movement. Previous solutions have made progress in explicitly modeling the dynamic obstacle motion for avoidance, but this key dependency of decision-making is time-consuming and unreliable in highly dynamic scenarios with occlusions. On the contrary, without introducing object detection, tracking, and prediction, we empower the reinforcement learning (RL) with single LiDAR sensing to realize an autonomous flight system directly from point to motion. For exteroception, a depth sensing distance map achieving fixed-shape, low-resolution, and detail-safe is encoded from raw point clouds, and an environment change sensing point flow is adopted as motion features extracted from multi-frame observations. These two are integrated into a lightweight and easy-to-learn representation of complex dynamic environments. For action generation, the behavior of avoiding dynamic threats in advance is implicitly driven by the proposed change-aware sensing representation, where the policy optimization is indicated by the relative motion modulated distance field. With the deployment-friendly sensing simulation and dynamics model-free acceleration control, the proposed system shows a superior success rate and adaptability to alternatives, and the policy derived from the simulator can drive a real-world quadrotor with safe maneuvers.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L), November, 2025
The Shawshank Redemption of Embodied AI: Understanding and Benchmarking Indirect Environmental Jailbreaks
The adoption of Vision-Language Models (VLMs) in embodied AI agents, while being effective, brings safety concerns such as jailbreaking. Prior work have explored the possibility of directly jailbreaking the embodied agents through elaborated multi-modal prompts. However, no prior work has studied or even reported indirect jailbreaks in embodied AI, where a black-box attacker induces a jailbreak without issuing direct prompts to the embodied agent. In this paper, we propose, for the first time, indirect environmental jailbreak (IEJ), a novel attack to jailbreak embodied AI via indirect prompt injected into the environment, such as malicious instructions written on a wall. Our key insight is that embodied AI does not ''think twice'' about the instructions provided by the environment -- a blind trust that attackers can exploit to jailbreak the embodied agent. We further design and implement open-source prototypes of two fully-automated frameworks: SHAWSHANK, the first automatic attack generation framework for the proposed attack IEJ; and SHAWSHANK-FORGE, the first automatic benchmark generation framework for IEJ. Then, using SHAWSHANK-FORGE, we automatically construct SHAWSHANK-BENCH, the first benchmark for indirectly jailbreaking embodied agents. Together, our two frameworks and one benchmark answer the questions of what content can be used for malicious IEJ instructions, where they should be placed, and how IEJ can be systematically evaluated. Evaluation results show that SHAWSHANK outperforms eleven existing methods across 3,957 task-scene combinations and compromises all six tested VLMs. Furthermore, current defenses only partially mitigate our attack, and we have responsibly disclosed our findings to all affected VLM vendors.
Safe and Optimal Variable Impedance Control via Certified Reinforcement Learning
Reinforcement learning (RL) offers a powerful approach for robots to learn complex, collaborative skills by combining Dynamic Movement Primitives (DMPs) for motion and Variable Impedance Control (VIC) for compliant interaction. However, this model-free paradigm often risks instability and unsafe exploration due to the time-varying nature of impedance gains. This work introduces Certified Gaussian Manifold Sampling (C-GMS), a novel trajectory-centric RL framework that learns combined DMP and VIC policies while guaranteeing Lyapunov stability and actuator feasibility by construction. Our approach reframes policy exploration as sampling from a mathematically defined manifold of stable gain schedules. This ensures every policy rollout is guaranteed to be stable and physically realizable, thereby eliminating the need for reward penalties or post-hoc validation. Furthermore, we provide a theoretical guarantee that our approach ensures bounded tracking error even in the presence of bounded model errors and deployment-time uncertainties. We demonstrate the effectiveness of C-GMS in simulation and verify its efficacy on a real robot, paving the way for reliable autonomous interaction in complex environments.
InEKFormer: A Hybrid State Estimator for Humanoid Robots
Humanoid robots have great potential for a wide range of applications, including industrial and domestic use, healthcare, and search and rescue missions. However, bipedal locomotion in different environments is still a challenge when it comes to performing stable and dynamic movements. This is where state estimation plays a crucial role, providing fast and accurate feedback of the robot's floating base state to the motion controller. Although classical state estimation methods such as Kalman filters are widely used in robotics, they require expert knowledge to fine-tune the noise parameters. Due to recent advances in the field of machine learning, deep learning methods are increasingly used for state estimation tasks. In this work, we propose the InEKFormer, a novel hybrid state estimation method that incorporates an invariant extended Kalman filter (InEKF) and a Transformer network. We compare our method with the InEKF and the KalmanNet approaches on datasets obtained from the humanoid robot RH5. The results indicate the potential of Transformers in humanoid state estimation, but also highlight the need for robust autoregressive training in these high-dimensional problems.
comment: Accepted at The 22nd International Conference on Advanced Robotics (ICAR 2025)
Funabot-Upper: McKibben Actuated Haptic Suit Inducing Kinesthetic Perceptions in Trunk, Shoulder, Elbow, and Wrist
This paper presents Funabot-Upper, a wearable haptic suit that enables users to perceive 14 upper-body motions, including those of the trunk, shoulder, elbow, and wrist. Inducing kinesthetic perception through wearable haptic devices has attracted attention, and various devices have been developed in the past. However, these have been limited to verifications on single body parts, and few have applied the same method to multiple body parts as well. In our previous study, we developed a technology that uses the contraction of artificial muscles to deform clothing in three dimensions. Using this technology, we developed a haptic suit that induces kinesthetic perception of 7 motions in multiple upper body. However, perceptual mixing caused by stimulating multiple human muscles has occurred between the shoulder and the elbow. In this paper, we established a new, simplified design policy and developed a novel haptic suit that induces kinesthetic perceptions in the trunk, shoulder, elbow, and wrist by stimulating joints and muscles independently. We experimentally demonstrated the induced kinesthetic perception and examined the relationship between stimulation and perceived kinesthetic perception under the new design policy. Experiments confirmed that Funabot-Upper successfully induces kinesthetic perception across multiple joints while reducing perceptual mixing observed in previous designs. The new suit improved recognition accuracy from 68.8% to 94.6% compared to the previous Funabot-Suit, demonstrating its superiority and potential for future haptic applications.
comment: 8 pages, 8 figures. This work has been submitted to the IEEE for possible publication
How Robot Dogs See the Unseeable
Peering, a side-to-side motion used by animals to estimate distance through motion parallax, offers a powerful bio-inspired strategy to overcome a fundamental limitation in robotic vision: partial occlusion. Conventional robot cameras, with their small apertures and large depth of field, render both foreground obstacles and background objects in sharp focus, causing occluders to obscure critical scene information. This work establishes a formal connection between animal peering and synthetic aperture (SA) sensing from optical imaging. By having a robot execute a peering motion, its camera describes a wide synthetic aperture. Computational integration of the captured images synthesizes an image with an extremely shallow depth of field, effectively blurring out occluding elements while bringing the background into sharp focus. This efficient, wavelength-independent technique enables real-time, high-resolution perception across various spectral bands. We demonstrate that this approach not only restores basic scene understanding but also empowers advanced visual reasoning in large multimodal models, which fail with conventionally occluded imagery. Unlike feature-dependent multi-view 3D vision methods or active sensors like LiDAR, SA sensing via peering is robust to occlusion, computationally efficient, and immediately deployable on any mobile robot. This research bridges animal behavior and robotics, suggesting that peering motions for synthetic aperture sensing are a key to advanced scene understanding in complex, cluttered environments.
FT-NCFM: An Influence-Aware Data Distillation Framework for Efficient VLA Models AAAI
The powerful generalization of Vision-Language-Action (VLA) models is bottlenecked by their heavy reliance on massive, redundant, and unevenly valued datasets, hindering their widespread application. Existing model-centric optimization paths, such as model compression (which often leads to performance degradation) or policy distillation (whose products are model-dependent and lack generality), fail to fundamentally address this data-level challenge. To this end, this paper introduces FT-NCFM, a fundamentally different, data-centric generative data distillation framework. Our framework employs a self-contained Fact-Tracing (FT) engine that combines causal attribution with programmatic contrastive verification to assess the intrinsic value of samples. Guided by these assessments, an adversarial NCFM process synthesizes a model-agnostic, information-dense, and reusable data asset. Experimental results on several mainstream VLA benchmarks show that models trained on just 5% of our distilled coreset achieve a success rate of 85-90% compared with training on the full dataset, while reducing training time by over 80%. Our work demonstrates that intelligent data distillation is a highly promising new path for building efficient, high-performance VLA models.
comment: Accepted at the AAAI Conference on Artificial Intelligence (AAAI-26)
DynaMimicGen: A Data Generation Framework for Robot Learning of Dynamic Tasks
Learning robust manipulation policies typically requires large and diverse datasets, the collection of which is time-consuming, labor-intensive, and often impractical for dynamic environments. In this work, we introduce DynaMimicGen (D-MG), a scalable dataset generation framework that enables policy training from minimal human supervision while uniquely supporting dynamic task settings. Given only a few human demonstrations, D-MG first segments the demonstrations into meaningful sub-tasks, then leverages Dynamic Movement Primitives (DMPs) to adapt and generalize the demonstrated behaviors to novel and dynamically changing environments. Improving prior methods that rely on static assumptions or simplistic trajectory interpolation, D-MG produces smooth, realistic, and task-consistent Cartesian trajectories that adapt in real time to changes in object poses, robot states, or scene geometry during task execution. Our method supports different scenarios - including scene layouts, object instances, and robot configurations - making it suitable for both static and highly dynamic manipulation tasks. We show that robot agents trained via imitation learning on D-MG-generated data achieve strong performance across long-horizon and contact-rich benchmarks, including tasks like cube stacking and placing mugs in drawers, even under unpredictable environment changes. By eliminating the need for extensive human demonstrations and enabling generalization in dynamic settings, D-MG offers a powerful and efficient alternative to manual data collection, paving the way toward scalable, autonomous robot learning.
PIPHEN: Physical Interaction Prediction with Hamiltonian Energy Networks AAAI
Multi-robot systems in complex physical collaborations face a "shared brain dilemma": transmitting high-dimensional multimedia data (e.g., video streams at ~30MB/s) creates severe bandwidth bottlenecks and decision-making latency. To address this, we propose PIPHEN, an innovative distributed physical cognition-control framework. Its core idea is to replace "raw data communication" with "semantic communication" by performing "semantic distillation" at the robot edge, reconstructing high-dimensional perceptual data into compact, structured physical representations. This idea is primarily realized through two key components: (1) a novel Physical Interaction Prediction Network (PIPN), derived from large model knowledge distillation, to generate this representation; and (2) a Hamiltonian Energy Network (HEN) controller, based on energy conservation, to precisely translate this representation into coordinated actions. Experiments show that, compared to baseline methods, PIPHEN can compress the information representation to less than 5% of the original data volume and reduce collaborative decision-making latency from 315ms to 76ms, while significantly improving task success rates. This work provides a fundamentally efficient paradigm for resolving the "shared brain dilemma" in resource-constrained multi-robot systems.
comment: Accepted at the AAAI Conference on Artificial Intelligence (AAAI-26)
MagBotSim: Physics-Based Simulation and Reinforcement Learning Environments for Magnetic Robotics
Magnetic levitation is about to revolutionize in-machine material flow in industrial automation. Such systems are flexibly configurable and can include a large number of independently actuated shuttles (movers) that dynamically rebalance production capacity. Beyond their capabilities for dynamic transportation, these systems possess the inherent yet unexploited potential to perform manipulation. By merging the fields of transportation and manipulation into a coordinated swarm of magnetic robots (MagBots), we enable manufacturing systems to achieve significantly higher efficiency, adaptability, and compactness. To support the development of intelligent algorithms for magnetic levitation systems, we introduce MagBotSim (Magnetic Robotics Simulation): a physics-based simulation for magnetic levitation systems. By framing magnetic levitation systems as robot swarms and providing a dedicated simulation, this work lays the foundation for next generation manufacturing systems powered by Magnetic Robotics. MagBotSim's documentation, videos, experiments, and code are available at: https://ubi-coro.github.io/MagBotSim/
LEGO-SLAM: Language-Embedded Gaussian Optimization SLAM
Recent advances in 3D Gaussian Splatting (3DGS) have enabled Simultaneous Localization and Mapping (SLAM) systems to build photorealistic maps. However, these maps lack the open-vocabulary semantic understanding required for advanced robotic interaction. Integrating language features into SLAM remains a significant challenge, as storing high-dimensional features demands excessive memory and rendering overhead, while existing methods with static models lack adaptability for novel environments. To address these limitations, we propose LEGO-SLAM (Language-Embedded Gaussian Optimization SLAM), the first framework to achieve real-time, open-vocabulary mapping within a 3DGS-based SLAM system. At the core of our method is a scene-adaptive encoder-decoder that distills high-dimensional language embeddings into a compact 16-dimensional feature space. This design reduces the memory per Gaussian and accelerates rendering, enabling real-time performance. Unlike static approaches, our encoder adapts online to unseen scenes. These compact features also enable a language-guided pruning strategy that identifies semantic redundancy, reducing the map's Gaussian count by over 60\% while maintaining rendering quality. Furthermore, we introduce a language-based loop detection approach that reuses these mapping features, eliminating the need for a separate detection model. Extensive experiments demonstrate that LEGO-SLAM achieves competitive mapping quality and tracking accuracy, all while providing open-vocabulary capabilities at 15 FPS.
comment: 18 pages
Heterogeneous Stroke: Using Unique Vibration Cues to Improve the Wrist-Worn Spatiotemporal Tactile Display
Beyond a simple notification of incoming calls or messages, more complex information such as alphabets and digits can be delivered through spatiotemporal tactile patterns (STPs) on a wrist-worn tactile display (WTD) with multiple tactors. However, owing to the limited skin area and spatial acuity of the wrist, frequent confusions occur between closely located tactors, resulting in a low recognition accuracy. Furthermore, the accuracies reported in previous studies have mostly been measured for a specific posture and could further decrease with free arm postures in real life. Herein, we present Heterogeneous Stroke, a design concept for improving the recognition accuracy of STPs on a WTD. By assigning unique vibrotactile stimuli to each tactor, the confusion between tactors can be reduced. Through our implementation of Heterogeneous Stroke, the alphanumeric characters could be delivered with high accuracy (93.8% for 26 alphabets and 92.4% for 10 digits) across different arm postures.
comment: ACM CHI 2021
Bi-AQUA: Bilateral Control-Based Imitation Learning for Underwater Robot Arms via Lighting-Aware Action Chunking with Transformers
Underwater robotic manipulation is fundamentally challenged by extreme lighting variations, color distortion, and reduced visibility. We introduce Bi-AQUA, the first underwater bilateral control-based imitation learning framework that integrates lighting-aware visual processing for underwater robot arms. Bi-AQUA employs a hierarchical three-level lighting adaptation mechanism: a Lighting Encoder that extracts lighting representations from RGB images without manual annotation and is implicitly supervised by the imitation objective, FiLM modulation of visual backbone features for adaptive, lighting-aware feature extraction, and an explicit lighting token added to the transformer encoder input for task-aware conditioning. Experiments on a real-world underwater pick-and-place task under diverse static and dynamic lighting conditions show that Bi-AQUA achieves robust performance and substantially outperforms a bilateral baseline without lighting modeling. Ablation studies further confirm that all three lighting-aware components are critical. This work bridges terrestrial bilateral control-based imitation learning and underwater manipulation, enabling force-sensitive autonomous operation in challenging marine environments. For additional material, please check: https://mertcookimg.github.io/bi-aqua
Semantic Glitch: Agency and Artistry in an Autonomous Pixel Cloud NeurIPS 2025
While mainstream robotics pursues metric precision and flawless performance, this paper explores the creative potential of a deliberately "lo-fi" approach. We present the "Semantic Glitch," a soft flying robotic art installation whose physical form, a 3D pixel style cloud, is a "physical glitch" derived from digital archaeology. We detail a novel autonomous pipeline that rejects conventional sensors like LiDAR and SLAM, relying solely on the qualitative, semantic understanding of a Multimodal Large Language Model to navigate. By authoring a bio-inspired personality for the robot through a natural language prompt, we create a "narrative mind" that complements the "weak," historically, loaded body. Our analysis begins with a 13-minute autonomous flight log, and a follow-up study statistically validates the framework's robustness for authoring quantifiably distinct personas. The combined analysis reveals emergent behaviors, from landmark-based navigation to a compelling "plan to execution" gap, and a character whose unpredictable, plausible behavior stems from a lack of precise proprioception. This demonstrates a lo-fi framework for creating imperfect companions whose success is measured in character over efficiency.
comment: NeurIPS 2025 Creative AI Track, The Thirty-Ninth Annual Conference on Neural Information Processing Systems
Towards a Safer and Sustainable Manufacturing Process: Material classification in Laser Cutting Using Deep Learning
Laser cutting is a widely adopted technology in material processing across various industries, but it generates a significant amount of dust, smoke, and aerosols during operation, posing a risk to both the environment and workers' health. Speckle sensing has emerged as a promising method to monitor the cutting process and identify material types in real-time. This paper proposes a material classification technique using a speckle pattern of the material's surface based on deep learning to monitor and control the laser cutting process. The proposed method involves training a convolutional neural network (CNN) on a dataset of laser speckle patterns to recognize distinct material types for safe and efficient cutting. Previous methods for material classification using speckle sensing may face issues when the color of the laser used to produce the speckle pattern is changed. Experiments conducted in this study demonstrate that the proposed method achieves high accuracy in material classification, even when the laser color is changed. The model achieved an accuracy of 98.30 % on the training set and 96.88% on the validation set. Furthermore, the model was evaluated on a set of 3000 new images for 30 different materials, achieving an F1-score of 0.9643. The proposed method provides a robust and accurate solution for material-aware laser cutting using speckle sensing.
PushingBots: Collaborative Pushing via Neural Accelerated Combinatorial Hybrid Optimization
Many robots are not equipped with a manipulator and many objects are not suitable for prehensile manipulation (such as large boxes and cylinders). In these cases, pushing is a simple yet effective non-prehensile skill for robots to interact with and further change the environment. Existing work often assumes a set of predefined pushing modes and fixed-shape objects. This work tackles the general problem of controlling a robotic fleet to push collaboratively numerous arbitrary objects to respective destinations, within complex environments of cluttered and movable obstacles. It incorporates several characteristic challenges for multi-robot systems such as online task coordination under large uncertainties of cost and duration, and for contact-rich tasks such as hybrid switching among different contact modes, and under-actuation due to constrained contact forces. The proposed method is based on combinatorial hybrid optimization over dynamic task assignments and hybrid execution via sequences of pushing modes and associated forces. It consists of three main components: (I) the decomposition, ordering and rolling assignment of pushing subtasks to robot subgroups; (II) the keyframe guided hybrid search to optimize the sequence of parameterized pushing modes for each subtask; (III) the hybrid control to execute these modes and transit among them. Last but not least, a diffusion-based accelerator is adopted to predict the keyframes and pushing modes that should be prioritized during hybrid search; and further improve planning efficiency. The framework is complete under mild assumptions. Its efficiency and effectiveness under different numbers of robots and general-shaped objects are validated extensively in simulations and hardware experiments, as well as generalizations to heterogeneous robots, planar assembly and 6D pushing.
comment: 20 pages, 24 figures. Accepted to IEEE Transactions on Robotics (T-RO), 2025
The Role of Consequential and Functional Sound in Human-Robot Interaction: Toward Audio Augmented Reality Interfaces
As robots become increasingly integrated into everyday environments, understanding how they communicate with humans is critical. Sound offers a powerful channel for interaction, encompassing both operational noises and intentionally designed auditory cues. In this study, we examined the effects of consequential and functional sounds on human perception and behavior, including a novel exploration of spatial sound through localization and handover tasks. Results show that consequential sounds of the Kinova Gen3 manipulator did not negatively affect perceptions, spatial localization is highly accurate for lateral cues but declines for frontal cues, and spatial sounds can simultaneously convey task-relevant information while promoting warmth and reducing discomfort. These findings highlight the potential of functional and transformative auditory design to enhance human-robot collaboration and inform future sound-based interaction strategies.
comment: 9 pages, 6 figures
BOP-ASK: Object-Interaction Reasoning for Vision-Language Models
Vision Language Models (VLMs) have achieved impressive performance on spatial reasoning benchmarks, yet these evaluations mask critical weaknesses in understanding object interactions. Current benchmarks test high level relationships ('left of,' 'behind', etc.) but ignore fine-grained spatial understanding needed for real world applications: precise 3D localization, physical compatibility between objects, object affordances and multi step spatial planning. In this work, we present BOP-ASK, a novel large scale dataset for object interaction reasoning for both training and benchmarking. Our data generation pipeline leverages 6D object poses from the Benchmark for Object Pose Estimation (BOP) datasets from which we derive fine grained annotations such as grasp poses, referred object poses, path planning trajectories, relative spatial and depth relationships, and object-to-object relationships. BOP-ASK comprises over 150k images and 33M question answer pairs spanning six tasks (four novel), providing a rich resource for training and evaluating VLMs. We evaluate proprietary and open sourced VLMs, and conduct human evaluations on BOP-ASK-core, a contributed test benchmark. We also release BOP-ASK-lab, an out-of-distribution benchmark with images not sourced from BOP, enabling testing of generalization. Our experiments demonstrate that models trained on BOP-ASK outperform baselines and exhibit emergent capabilities such as precise object and grasp pose estimation, trajectory planning, and fine-grained object-centric spatial reasoning in cluttered environments. We will publicly release our datasets and dataset generation pipeline.
A*-based Temporal Logic Path Planning with User Preferences on Relaxed Task Satisfaction
In this work, we consider the problem of planning for temporal logic tasks in large robot environments. When full task compliance is unattainable, we aim to achieve the best possible task satisfaction by integrating user preferences for relaxation into the planning process. Utilizing the automata-based representations for temporal logic goals and user preferences, we propose an A*-based planning framework. This approach effectively tackles large-scale problems while generating near-optimal high-level trajectories. To facilitate this, we propose a simple, efficient heuristic that allows for planning over large robot environments in a fraction of time and search memory as compared to uninformed search algorithms. We present extensive case studies to demonstrate the scalability, runtime analysis as well as empirical bounds on the suboptimality of the proposed heuristic.
CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation BMVC 2025
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
Non-Gaited Legged Locomotion with Monte-Carlo Tree Search and Supervised Learning
Legged robots are able to navigate complex terrains by continuously interacting with the environment through careful selection of contact sequences and timings. However, the combinatorial nature behind contact planning hinders the applicability of such optimization problems on hardware. In this work, we present a novel approach that optimizes gait sequences and respective timings for legged robots in the context of optimization-based controllers through the use of sampling-based methods and supervised learning techniques. We propose to bootstrap the search by learning an optimal value function in order to speed-up the gait planning procedure making it applicable in real-time. To validate our proposed method, we showcase its performance both in simulation and on hardware using a 22 kg electric quadruped robot. The method is assessed on different terrains, under external perturbations, and in comparison to a standard control approach where the gait sequence is fixed a priori.
A Continuous sEMG-Based Prosthetic Hand Control System Without Motion or Force Sensors
Regressively-based surface electromyography (sEMG) prosthetics are widely used for their ability to continuously convert muscle activity into finger force and motion. However, they typically require additional kinematic or dynamic sensors, which increases complexity and limits practical application. To address this, this paper proposes a method based on the simplified near-linear relationship between sEMG and finger force, using the near-linear model ResDD proposed in this work. By applying the principle that a line can be determined by two points, we eliminate the need for complex sensor calibration. Specifically, by recording the sEMG during maximum finger flexion and extension, and assigning corresponding forces of 1 and -1, the ResDD model can fit the simplified relationship between sEMG signals and force, enabling continuous prediction and control of finger force and gestures. Offline experiments were conducted to evaluate the model's classification accuracy and its ability to learn sufficient information. It uses interpolation analysis to open up the internal structure of the trained model and checks whether the fitted curve of the model conforms to the nearly linear relationship between sEMG and force. Finally, online control and sine wave tracking experiments were carried out to further verify the practicality of the proposed method. The results show that the method effectively extracts meaningful information from sEMG and accurately decodes them. The near-linear model sufficiently reflects the expected relationship between sEMG and finger force. Fitting this simplified near-linear relationship is adequate to achieve continuous and smooth control of finger force and gestures, confirming the feasibility and effectiveness of the proposed approach.
comment: 12 pages
Risk Map As Middleware: Towards Interpretable Cooperative End-to-end Autonomous Driving for Risk-Aware Planning
End-to-end paradigm has emerged as a promising approach to autonomous driving. However, existing single-agent end-to-end pipelines are often constrained by occlusion and limited perception range, resulting in hazardous driving. Furthermore, their black-box nature prevents the interpretability of the driving behavior, leading to an untrustworthiness system. To address these limitations, we introduce Risk Map as Middleware (RiskMM) and propose an interpretable cooperative end-to-end driving framework. The risk map learns directly from the driving data and provides an interpretable spatiotemporal representation of the scenario from the upstream perception and the interactions between the ego vehicle and the surrounding environment for downstream planning. RiskMM first constructs a multi-agent spatiotemporal representation with unified Transformer-based architecture, then derives risk-aware representations by modeling interactions among surrounding environments with attention. These representations are subsequently fed into a learning-based Model Predictive Control (MPC) module. The MPC planner inherently accommodates physical constraints and different vehicle types and can provide interpretation by aligning learned parameters with explicit MPC elements. Evaluations conducted on the real-world V2XPnP-Seq dataset confirm that RiskMM achieves superior and robust performance in risk-aware trajectory planning, significantly enhancing the interpretability of the cooperative end-to-end driving framework. The codebase will be released to facilitate future research in this field.
comment: IEEE RA-L
UltraDP: Generalizable Carotid Ultrasound Scanning with Force-Aware Diffusion Policy
Ultrasound scanning is a critical imaging technique for real-time, non-invasive diagnostics. However, variations in patient anatomy and complex human-in-the-loop interactions pose significant challenges for autonomous robotic scanning. Existing ultrasound scanning robots are commonly limited to relatively low generalization and inefficient data utilization. To overcome these limitations, we present UltraDP, a Diffusion-Policy-based method that receives multi-sensory inputs (ultrasound images, wrist camera images, contact wrench, and probe pose) and generates actions that are fit for multi-modal action distributions in autonomous ultrasound scanning of carotid artery. We propose a specialized guidance module to enable the policy to output actions that center the artery in ultrasound images. To ensure stable contact and safe interaction between the robot and the human subject, a hybrid force-impedance controller is utilized to drive the robot to track such trajectories. Also, we have built a large-scale training dataset for carotid scanning comprising 210 scans with 460k sample pairs from 21 volunteers of both genders. By exploring our guidance module and DP's strong generalization ability, UltraDP achieves a 95% success rate in transverse scanning on previously unseen subjects, demonstrating its effectiveness.
Relative Pose Estimation for Nonholonomic Robot Formation with UWB-IO Measurements (Extended version)
This article studies the problem of distributed formation control for multiple robots by using onboard ultra wide band (UWB) distance and inertial odometer (IO) measurements. Although this problem has been widely studied, a fundamental limitation of most works is that they require each robot's pose and sensor measurements are expressed in a common reference frame. However, it is inapplicable for nonholonomic robot formations due to the practical difficulty of aligning IO measurements of individual robot in a common frame. To address this problem, firstly, a concurrent-learning based estimator is firstly proposed to achieve relative localization between neighboring robots in a local frame. Different from most relative localization methods in a global frame, both relative position and orientation in a local frame are estimated with only UWB ranging and IO measurements. Secondly, to deal with information loss caused by directed communication topology, a cooperative localization algorithm is introduced to estimate the relative pose to the leader robot. Thirdly, based on the theoretical results on relative pose estimation, a distributed formation tracking controller is proposed for nonholonomic robots. Both 3D and 2D real-world experiments conducted on aerial robots and grounded robots are provided to demonstrate the effectiveness of the proposed method.
comment: 17 pages, 26 figures
Barrier-Riccati Synthesis for Nonlinear Safe Control with Expanded Region of Attraction
We present a Riccati-based framework for safety-critical nonlinear control that integrates the barrier states (BaS) methodology with the State-Dependent Riccati Equation (SDRE) approach. The BaS formulation embeds safety constraints into the system dynamics via auxiliary states, enabling safety to be treated as a control objective. To overcome the limited region of attraction in linear BaS controllers, we extend the framework to nonlinear systems using SDRE synthesis applied to the barrier-augmented dynamics and derive a matrix inequality condition that certifies forward invariance of a large region of attraction and guarantees asymptotic safe stabilization. The resulting controller is computed online via pointwise Riccati solutions. We validate the method on an unstable constrained system and cluttered quadrotor navigation tasks, demonstrating improved constraint handling, scalability, and robustness near safety boundaries. This framework offers a principled and computationally tractable solution for synthesizing nonlinear safe feedback in safety-critical environments.
Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback
Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed Large Language Models (LLMs) for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning.
comment: Preprint version. Accepted full paper available here: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adrr.202500072
Searching in Space and Time: Unified Memory-Action Loops for Open-World Object Retrieval
Service robots must retrieve objects in dynamic, open-world settings where requests may reference attributes ("the red mug"), spatial context ("the mug on the table"), or past states ("the mug that was here yesterday"). Existing approaches capture only parts of this problem: scene graphs capture spatial relations but ignore temporal grounding, temporal reasoning methods model dynamics but do not support embodied interaction, and dynamic scene graphs handle both but remain closed-world with fixed vocabularies. We present STAR (SpatioTemporal Active Retrieval), a framework that unifies memory queries and embodied actions within a single decision loop. STAR leverages non-parametric long-term memory and a working memory to support efficient recall, and uses a vision-language model to select either temporal or spatial actions at each step. We introduce STARBench, a benchmark of spatiotemporal object search tasks across simulated and real environments. Experiments in STARBench and on a Tiago robot show that STAR consistently outperforms scene-graph and memory-only baselines, demonstrating the benefits of treating search in time and search in space as a unified problem. For more information: https://amrl.cs.utexas.edu/STAR.
comment: https://amrl.cs.utexas.edu/STAR/
DynoSAM: Open-Source Smoothing and Mapping Framework for Dynamic SLAM
Traditional Visual Simultaneous Localization and Mapping (vSLAM) systems focus solely on static scene structures, overlooking dynamic elements in the environment. Although effective for accurate visual odometry in complex scenarios, these methods discard crucial information about moving objects. By incorporating this information into a Dynamic SLAM framework, the motion of dynamic entities can be estimated, enhancing navigation whilst ensuring accurate localization. However, the fundamental formulation of Dynamic SLAM remains an open challenge, with no consensus on the optimal approach for accurate motion estimation within a SLAM pipeline. Therefore, we developed DynoSAM, an open-source framework for Dynamic SLAM that enables the efficient implementation, testing, and comparison of various Dynamic SLAM optimization formulations. DynoSAM integrates static and dynamic measurements into a unified optimization problem solved using factor graphs, simultaneously estimating camera poses, static scene, object motion or poses, and object structures. We evaluate DynoSAM across diverse simulated and real-world datasets, achieving state-of-the-art motion estimation in indoor and outdoor environments, with substantial improvements over existing systems. Additionally, we demonstrate DynoSAM utility in downstream applications, including 3D reconstruction of dynamic scenes and trajectory prediction, thereby showcasing potential for advancing dynamic object-aware SLAM systems. DynoSAM is open-sourced at https://github.com/ACFR-RPG/DynOSAM.
comment: 20 pages, 10 figures. Submitted to T-RO Visual SLAM SI 2025
AeroVerse: UAV-Agent Benchmark Suite for Simulating, Pre-training, Finetuning, and Evaluating Aerospace Embodied World Models
Aerospace embodied intelligence aims to empower unmanned aerial vehicles (UAVs) and other aerospace platforms to achieve autonomous perception, cognition, and action, as well as egocentric active interaction with humans and the environment. The aerospace embodied world model serves as an effective means to realize the autonomous intelligence of UAVs and represents a necessary pathway toward aerospace embodied intelligence. However, existing embodied world models primarily focus on ground-level intelligent agents in indoor scenarios, while research on UAV intelligent agents remains unexplored. To address this gap, we construct the first large-scale real-world image-text pre-training dataset, AerialAgent-Ego10k, featuring urban drones from a first-person perspective. We also create a virtual image-text-pose alignment dataset, CyberAgent Ego500k, to facilitate the pre-training of the aerospace embodied world model. For the first time, we clearly define 5 downstream tasks, i.e., aerospace embodied scene awareness, spatial reasoning, navigational exploration, task planning, and motion decision, and construct corresponding instruction datasets, i.e., SkyAgent-Scene3k, SkyAgent-Reason3k, SkyAgent-Nav3k and SkyAgent-Plan3k, and SkyAgent-Act3k, for fine-tuning the aerospace embodiment world model. Simultaneously, we develop SkyAgentEval, the downstream task evaluation metrics based on GPT-4, to comprehensively, flexibly, and objectively assess the results, revealing the potential and limitations of 2D/3D visual language models in UAV-agent tasks. Furthermore, we integrate over 10 2D/3D visual-language models, 2 pre-training datasets, 5 finetuning datasets, more than 10 evaluation metrics, and a simulator into the benchmark suite, i.e., AeroVerse, which will be released to the community to promote exploration and development of aerospace embodied intelligence.
Multiagent Systems
Large Language Model-Based Reward Design for Deep Reinforcement Learning-Driven Autonomous Cyber Defense AAAI-26
Designing rewards for autonomous cyber attack and defense learning agents in a complex, dynamic environment is a challenging task for subject matter experts. We propose a large language model (LLM)-based reward design approach to generate autonomous cyber defense policies in a deep reinforcement learning (DRL)-driven experimental simulation environment. Multiple attack and defense agent personas were crafted, reflecting heterogeneity in agent actions, to generate LLM-guided reward designs where the LLM was first provided with contextual cyber simulation environment information. These reward structures were then utilized within a DRL-driven attack-defense simulation environment to learn an ensemble of cyber defense policies. Our results suggest that LLM-guided reward designs can lead to effective defense strategies against diverse adversarial behaviors.
comment: Accepted in the AAAI-26 Workshop on Artificial Intelligence for Cyber Security (AICS)
A Mathematical Framework for Custom Reward Functions in Job Application Evaluation using Reinforcement Learning
Conventional Applicant Tracking Systems (ATS) tend to be inflexible keyword-matchers, and deny gifted candidates a role due to a few minor semantic mismatches. This article describes a new two-step process to design a more refined resume evaluation model based on a small language model (<600M parameters) that is finetuned using GRPO on a custom reward function. To begin with, Supervised Fine-Tuning (SFT) was used to build a solid baseline model. Second, this SFT model was also optimized with the help of Reinforcement Learning (RL) through GRPO under the guidance of a new, multi-component reward function that can holistically assess candidates beyond simple keyword matching. We indicate that the RL application presents a critical problem of reward hacking due to the initial experiments of aggressive penalties, which produces faulty, excessively negative model behaviors. We have overcome this challenge by refining the reward function repeatedly and training hyperparameters into a stable "gentle polishing process" of the reward function. Our resulting GRPO-polished model demonstrates significant real-world efficacy, achieving a final accuracy of 91% on unseen test data. The model shows a strong ability to correctly identify qualified candidates (recall of 0.85 for the 'SELECTED' class) while also showing exceptional precision (1.0), confirming its reliability. These results indicate that a properly executed, two-step fine-tuning procedure can indeed effectively refine a small language model to be able to conduct fine-tuned and human-like candidate scoring, overcoming the drawbacks of both traditional ATS and naive RL usage.
comment: 13 pages, 4 figures, 2 equations, 3 Tables
Multi-Agent Code Verification with Compound Vulnerability Detection
LLMs generate buggy code: 29.6% of SWE-bench "solved" patches fail, 62% of BaxBench solutions have vulnerabilities, and existing tools only catch 65% of bugs with 35% false positives. We built CodeX-Verify, a multi-agent system that uses four specialized agents to detect different types of bugs. We prove mathematically that combining agents with different detection patterns finds more bugs than any single agent when the agents look for different problems, confirmed by measuring agent correlation of p = 0.05--0.25. We also show that multiple vulnerabilities in the same code create exponentially more risk than previously thought--SQL injection plus exposed credentials creates 15x more danger (risk 300 vs. 20) than traditional models predict. Testing on 99 code samples with verified labels shows our system catches 76.1% of bugs, matching the best existing method while running faster and without test execution. We tested 15 different agent combinations and found that using multiple agents improves accuracy by 39.7 percentage points (from 32.8% to 72.4%) compared to single agents, with gains of +14.9pp, +13.5pp, and +11.2pp for agents 2, 3, and 4. The best two-agent combination reaches 79.3% accuracy. Testing on 300 real patches from Claude Sonnet 4.5 runs in under 200ms per sample, making this practical for production use.
comment: 18 pages, 3 figures, 9 tables
Multi-Agent Coordination in Autonomous Vehicle Routing: A Simulation-Based Study of Communication, Memory, and Routing Loops
Multi-agent coordination is critical for next-generation autonomous vehicle (AV) systems, yet naive implementations of communication-based rerouting can lead to catastrophic performance degradation. This study investigates a fundamental problem in decentralized multi-agent navigation: routing loops, where vehicles without persistent obstacle memory become trapped in cycles of inefficient path recalculation. Through systematic simulation experiments involving 72 unique configurations across varying vehicle densities (15, 35, 55 vehicles) and obstacle frequencies (6, 20 obstacles), we demonstrate that memory-less reactive rerouting increases average travel time by up to 682% compared to baseline conditions. To address this, we introduce Object Memory Management (OMM), a lightweight mechanism enabling agents to retain and share knowledge of previously encountered obstacles. OMM operates by maintaining a distributed blacklist of blocked nodes, which each agent consults during Dijkstra-based path recalculation, effectively preventing redundant routing attempts. Our results show that OMM-enabled coordination reduces average travel time by 75.7% and wait time by 88% compared to memory-less systems, while requiring only 1.67 route recalculations per vehicle versus 9.83 in memory-less scenarios. This work provides empirical evidence that persistent, shared memory is not merely beneficial but essential for robust multi-agent coordination in dynamic environments. The findings have implications beyond autonomous vehicles, informing the design of decentralized systems in robotics, network routing, and distributed AI. We provide a comprehensive experimental analysis, including detailed scenario breakdowns, scalability assessments, and visual documentation of the routing loop phenomenon, demonstrating OMM's critical role in preventing detrimental feedback cycles in cooperative multi-agent systems.
Dialogue Diplomats: An End-to-End Multi-Agent Reinforcement Learning System for Automated Conflict Resolution and Consensus Building
Conflict resolution and consensus building represent critical challenges in multi-agent systems, negotiations, and collaborative decision-making processes. This paper introduces Dialogue Diplomats, a novel end-to-end multi-agent reinforcement learning (MARL) framework designed for automated conflict resolution and consensus building in complex, dynamic environments. The proposed system integrates advanced deep reinforcement learning architectures with dialogue-based negotiation protocols, enabling autonomous agents to engage in sophisticated conflict resolution through iterative communication and strategic adaptation. We present three primary contributions: first, a novel Hierarchical Consensus Network (HCN) architecture that combines attention mechanisms with graph neural networks to model inter-agent dependencies and conflict dynamics. second, a Progressive Negotiation Protocol (PNP) that structures multi-round dialogue interactions with adaptive concession strategies; and third, a Context-Aware Reward Shaping mechanism that balances individual agent objectives with collective consensus goals.
Securing Smart Contract Languages with a Unified Agentic Framework for Vulnerability Repair in Solidity and Move
The rapid growth of the blockchain ecosystem and the increasing value locked in smart contracts necessitate robust security measures. While languages like Solidity and Move aim to improve smart contract security, vulnerabilities persist. This paper presents Smartify, a novel multi-agent framework leveraging Large Language Models (LLMs) to automatically detect and repair vulnerabilities in Solidity and Move smart contracts. Unlike traditional methods that rely solely on vast pre-training datasets, Smartify employs a team of specialized agents working on different specially fine-tuned LLMs to analyze code based on underlying programming concepts and language-specific security principles. We evaluated Smartify on a dataset for Solidity and a curated dataset for Move, demonstrating its effectiveness in fixing a wide range of vulnerabilities. Our results show that Smartify (Gemma2+codegemma) achieves state-of-the-art performance, surpassing existing LLMs and enhancing general-purpose models' capabilities, such as Llama 3.1. Notably, Smartify can incorporate language-specific knowledge, such as the nuances of Move, without requiring massive language-specific pre-training datasets. This work offers a detailed analysis of various LLMs' performance on smart contract repair, highlighting the strengths of our multi-agent approach and providing a blueprint for developing more secure and reliable decentralized applications in the growing blockchain landscape. We also provide a detailed recipe for extending this to other similar use cases.
Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Agentic AI aims to create systems that set their own goals, adapt proactively to change, and refine behavior through continuous experience. Recent advances suggest that, when facing multiple and unforeseen tasks, agents could benefit from sharing machine-learned knowledge and reusing policies that have already been fully or partially learned by other agents. However, how to query, select, and retrieve policies from a pool of agents, and how to integrate such policies remains a largely unexplored area. This study explores how an agent decides what knowledge to select, from whom, and when and how to integrate it in its own policy in order to accelerate its own learning. The proposed algorithm, \emph{Modular Sharing and Composition in Collective Learning} (MOSAIC), improves learning in agentic collectives by combining (1) knowledge selection using performance signals and cosine similarity on Wasserstein task embeddings, (2) modular and transferable neural representations via masks, and (3) policy integration, composition and fine-tuning. MOSAIC outperforms isolated learners and global sharing approaches in both learning speed and overall performance, and in some cases solves tasks that isolated agents cannot. The results also demonstrate that selective, goal-driven reuse leads to less susceptibility to task interference. We also observe the emergence of self-organization, where agents solving simpler tasks accelerate the learning of harder ones through shared knowledge.
comment: 24 pages, 20 figures, 8 tables
Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems
Large Language Models (LLMs) are increasingly deployed within agentic systems - collections of interacting, LLM-powered agents that execute complex, adaptive workflows using memory, tools, and dynamic planning. While enabling powerful new capabilities, these systems also introduce unique forms of uncertainty stemming from probabilistic reasoning, evolving memory states, and fluid execution paths. Traditional software observability and operations practices fall short in addressing these challenges. This paper presents our vision of AgentOps: a comprehensive framework for observing, analyzing, optimizing, and automating operation of agentic AI systems. We identify distinct needs across four key roles - developers, testers, site reliability engineers (SREs), and business users - each of whom engages with the system at different points in its lifecycle. We present the AgentOps Automation Pipeline, a six-stage process encompassing behavior observation, metric collection, issue detection, root cause analysis, optimized recommendations, and runtime automation. Throughout, we emphasize the critical role of automation in managing uncertainty and enabling self-improving AI systems - not by eliminating uncertainty, but by taming it to ensure safe, adaptive, and effective operation.
Binary Decision Process in Pre-Evacuation Behavior
In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
comment: 6 pages
Systems and Control (EESS)
Stabilizing Policy Gradient Methods via Reward Profiling
Policy gradient methods, which have been extensively studied in the last decade, offer an effective and efficient framework for reinforcement learning problems. However, their performances can often be unsatisfactory, suffering from unreliable reward improvements and slow convergence, due to high variance in gradient estimations. In this paper, we propose a universal reward profiling framework that can be seamlessly integrated with any policy gradient algorithm, where we selectively update the policy based on high-confidence performance estimations. We theoretically justify that our technique will not slow down the convergence of the baseline policy gradient methods, but with high probability, will result in stable and monotonic improvements of their performance. Empirically, on eight continuous-control benchmarks (Box2D and MuJoCo/PyBullet), our profiling yields up to 1.5x faster convergence to near-optimal returns, up to 1.75x reduction in return variance on some setups. Our profiling approach offers a general, theoretically grounded path to more reliable and efficient policy learning in complex environments.
Synthesis of Safety Specifications for Probabilistic Systems
Ensuring that agents satisfy safety specifications can be crucial in safety-critical environments. While methods exist for controller synthesis with safe temporal specifications, most existing methods restrict safe temporal specifications to probabilistic-avoidance constraints. Formal methods typically offer more expressive ways to express safety in probabilistic systems, such as Probabilistic Computation Tree Logic (PCTL) formulas. Thus, in this paper, we develop a new approach that supports more general temporal properties expressed in PCTL. Our contribution is twofold. First, we develop a theoretical framework for the Synthesis of safe-PCTL specifications. We show how the reducing global specification satisfaction to local constraints, and define CPCTL, a fragment of safe-PCTL. We demonstrate how the expressiveness of CPCTL makes it a relevant fragment for the Synthesis Problem. Second, we leverage these results and propose a new Value Iteration-based algorithm to solve the synthesis problem for these more general temporal properties, and we prove the soundness and completeness of our method.
comment: 23 pages
Auditable Ledger Snapshot for Non-Repudiable Cross-Blockchain Communication
Blockchain interoperability is increasingly recognized as the centerpiece for robust interactions among decentralized services. Blockchain ledgers are generally tamper-proof and thus enforce non-repudiation for transactions recorded within the same network. However, such a guarantee does not hold for cross-blockchain transactions. When disruptions occur due to malicious activities or system failures within one blockchain network, foreign networks can take advantage by denying legitimate claims or mounting fraudulent liabilities against the defenseless network. In response, this paper introduces InterSnap, a novel blockchain snapshot archival methodology, for enabling auditability of crossblockchain transactions, enforcing non-repudiation. InterSnap introduces cross-chain transaction receipts that ensure their irrefutability. Snapshots of ledger data along with these receipts are utilized as non-repudiable proof of bilateral agreements among different networks. InterSnap enhances system resilience through a distributed snapshot generation process, need-based snapshot scheduling process, and archival storage and sharing via decentralized platforms. Through a prototype implementation based on Hyperledger Fabric, we conducted experiments using on-premise machines, AWS public cloud instances, as well as a private cloud infrastructure. We establish that InterSnap can recover from malicious attacks while preserving crosschain transaction receipts. Additionally, our proposed solution demonstrates adaptability to increasing loads while securely transferring snapshot archives with minimal overhead.
Observer Design for Singularly Perturbed Linear Networked Control Systems Subject to Measurement Noise
This paper addresses the emulation-based observer design for linear networked control systems (NCS) operating at two time scales in the presence of measurement noise. The system is formulated as a hybrid singularly perturbed dynamical system, enabling the systematic use of singular perturbation techniques to derive explicit bounds on the maximum allowable transmission intervals (MATI) for both fast and slow communication channels. Under the resulting conditions, the proposed observer guarantees that the estimation error satisfies a global exponential derivative-input-to-state stability (DISS)-like property, where the ultimate bound scales proportionally with the magnitudes of the measurement noise and the time derivative of the control input. The effectiveness of the approach is illustrated through a numerical example.
comment: 9 pages, 2 figures, full version of the paper submitted to the IFAC World Congress
A convex approach for Markov chain estimation from aggregate data via inverse optimal transport
We address the problem of identifying the dynamical law governing the evolution of a population of indistinguishable particles, when only aggregate distributions at successive times are observed. Assuming a Markovian evolution on a discrete state space, the task reduces to estimating the underlying transition probability matrix from distributional data. We formulate this inverse problem within the framework of entropic optimal transport, as a joint optimization over the transition matrix and the transport plans connecting successive distributions. This formulation results in a convex optimization problem, and we propose an efficient iterative algorithm based on the entropic proximal method. We illustrate the accuracy and convergence of the method in two numerical setups, considering estimation from independent snapshots and estimation from a time series of aggregate observations, respectively.
comment: 8 pages, 3 Figures. Submitted to European Control Conference 2026 (ECC26)
Tube-Based Model Predictive Control with Random Fourier Features for Nonlinear Systems
This paper presents a computationally efficient approach for robust Model Predictive Control of nonlinear systems by combining Random Fourier Features with tube-based MPC. Tube-based Model Predictive Control provides robust constraint satisfaction under bounded model uncertainties arising from approximation errors and external disturbances. The Random Fourier Features method approximates nonlinear system dynamics by solving a numerically tractable least-squares problem, thereby reducing the approximation error. We develop the integration of RFF-based residual learning with tube MPC and demonstrate its application to an autonomous vehicle path-tracking problem using a nonlinear bicycle model. Compared to the linear baseline, the proposed method reduces the tube size by approximately 50%, leading to less conservative behavior and resulting in around 70% smaller errors in the test scenario. Furthermore, the proposed method achieves real-time performance while maintaining provable robustness guarantees.
comment: Submitted to IEEE IV 2026, The IEEE Intelligent Vehicles Symposium
Second-Order MPC-Based Distributed Q-Learning
The state of the art for model predictive control (MPC)-based distributed Q-learning is limited to first-order gradient updates of the MPC parameterization. In general, using secondorder information can significantly improve the speed of convergence for learning, allowing the use of higher learning rates without introducing instability. This work presents a second-order extension to MPC-based Q-learning with updates distributed across local agents, relying only on locally available information and neighbor-to-neighbor communication. In simulation the approach is demonstrated to significantly outperform first-order distributed Q-learning.
comment: 6 pages, 2 figures, submitted to IFAC World Congress 2026
Energy-Efficient and Actuator-Friendly Control Under Wave Disturbances: Model Reference vs. PID for Thruster Surge
In this study, we compare a model reference control (MRC) strategy against conventional PID controllers (tuned via metaheuristic algorithms) for surge velocity control of a thruster-driven marine system, under combined wave disturbance and sensor noise. The goal is to evaluate not only tracking performance but also control energy usage and actuator stress. A high-order identified model of a Blue Robotics T200 thruster with a 2~kg vehicle is used, with an 8~N sinusoidal wave disturbance applied and white noise ( added to the speed measurement. Results show that the optimized MRC (MRC-R*) yields the lowest control energy and smoothest command among all controllers, while maintaining acceptable tracking. The IMC-based design performs closely. In contrast, PID controllers achieve comparable RMS tracking error but at the cost of excessive actuator activity and energy use, making them impractical in such scenarios. Future
A Comprehensive Study on Cyber Attack Vectors in EV Traction Power Electronics
Electric vehicles (EVs) have drastically changed the auto industry and developed a new era of technologies where power electronics play the leading role in traction management, energy conversion and vehicle control processes. Nevertheless, this is a digital transformation, and the cyber-attack surface area has increased considerably, to the point that EV traction power electronics are becoming vulnerable to various cybersecurity risks. This paper is able to provide its expertise on possible cyber-attack vectors which can attack important parts of the traction, powertrain, including things like inverters, motor controllers, and communicated systems within the embedded bits. Using the (STRIDE) threat modeling framework, the research outlines and groups the vulnerabilities of the architecture and runs some attack simulations, such as the Denial of Service (DoS), spoofing, firmware manipulation, and data injection. The experiments prove the fact that a slight interruption in the control signal, the sensed data may lead to the severe working implications, such as unstable sensor values of the torque, abnormal voltage shifts, and entire system freezes. These results highlight the high priority on the need of injective embedded intrusion preventive mechanisms and secure design of firmware in EV powertrain electronics. In this paper, the author makes his contribution to the general body of knowledge that underpins the links existing between cyber security practices and the peculiar needs of automotive power electronics.
comment: 15 pages, 3 Figures
CorrectHDL: Agentic HDL Design with LLMs Leveraging High-Level Synthesis as Reference
Large Language Models (LLMs) have demonstrated remarkable potential in hardware front-end design using hardware description languages (HDLs). However, their inherent tendency toward hallucination often introduces functional errors into the generated HDL designs. To address this issue, we propose the framework CorrectHDL that leverages high-level synthesis (HLS) results as functional references to correct potential errors in LLM-generated HDL designs.The input to the proposed framework is a C/C++ program that specifies the target circuit's functionality. The program is provided to an LLM to directly generate an HDL design, whose syntax errors are repaired using a Retrieval-Augmented Generation (RAG) mechanism. The functional correctness of the LLM-generated circuit is iteratively improved by comparing its simulated behavior with an HLS reference design produced by conventional HLS tools, which ensures the functional correctness of the result but can lead to suboptimal area and power efficiency. Experimental results demonstrate that circuits generated by the proposed framework achieve significantly better area and power efficiency than conventional HLS designs and approach the quality of human-engineered circuits. Meanwhile, the correctness of the resulting HDL implementation is maintained, highlighting the effectiveness and potential of agentic HDL design leveraging the generative capabilities of LLMs and the rigor of traditional correctness-driven IC design flows.
comment: 7 pages, 15 figures, 2 tables
VersaPants: A Loose-Fitting Textile Capacitive Sensing System for Lower-Body Motion Capture
We present VersaPants, the first loose-fitting, textile-based capacitive sensing system for lower-body motion capture, built on the open-hardware VersaSens platform. By integrating conductive textile patches and a compact acquisition unit into a pair of pants, the system reconstructs lower-body pose without compromising comfort. Unlike IMU-based systems that require user-specific fitting or camera-based methods that compromise privacy, our approach operates without fitting adjustments and preserves user privacy. VersaPants is a custom-designed smart garment featuring 6 capacitive channels per leg. We employ a lightweight Transformer-based deep learning model that maps capacitance signals to joint angles, enabling embedded implementation on edge platforms. To test our system, we collected approximately 3.7 hours of motion data from 11 participants performing 16 daily and exercise-based movements. The model achieves a mean per-joint position error (MPJPE) of 11.96 cm and a mean per-joint angle error (MPJAE) of 12.3 degrees across the hip, knee, and ankle joints, indicating the model's ability to generalize to unseen users and movements. A comparative analysis of existing textile-based deep learning architectures reveals that our model achieves competitive reconstruction performance with up to 22 times fewer parameters and 18 times fewer FLOPs, enabling real-time inference at 42 FPS on a commercial smartwatch without quantization. These results position VersaPants as a promising step toward scalable, comfortable, and embedded motion-capture solutions for fitness, healthcare, and wellbeing applications.
comment: 14 pages, 8 figures
Optimizing Operation Recipes with Reinforcement Learning for Safe and Interpretable Control of Chemical Processes ECML24
Optimal operation of chemical processes is vital for energy, resource, and cost savings in chemical engineering. The problem of optimal operation can be tackled with reinforcement learning, but traditional reinforcement learning methods face challenges due to hard constraints related to quality and safety that must be strictly satisfied, and the large amount of required training data. Chemical processes often cannot provide sufficient experimental data, and while detailed dynamic models can be an alternative, their complexity makes it computationally intractable to generate the needed data. Optimal control methods, such as model predictive control, also struggle with the complexity of the underlying dynamic models. Consequently, many chemical processes rely on manually defined operation recipes combined with simple linear controllers, leading to suboptimal performance and limited flexibility. In this work, we propose a novel approach that leverages expert knowledge embedded in operation recipes. By using reinforcement learning to optimize the parameters of these recipes and their underlying linear controllers, we achieve an optimized operation recipe. This method requires significantly less data, handles constraints more effectively, and is more interpretable than traditional reinforcement learning methods due to the structured nature of the recipes. We demonstrate the potential of our approach through simulation results of an industrial batch polymerization reactor, showing that it can approach the performance of optimal controllers while addressing the limitations of existing methods.
comment: 16 pages, 3 figures, Part of the workshop 'Machine Learning for Chemistry and Chemical Engineering (ML4CCE)' at the ECML24 conference: Link: https://ml4cce-ecml.com/
Spatially Dependent Sampling of Component Failures for Power System Preventive Control Against Hurricane
Preventive control is a crucial strategy for power system operation against impending natural hazards, and its effectiveness fundamentally relies on the realism of scenario generation. While most existing studies employ sequential Monte Carlo simulation and assume independent sampling of component failures, this oversimplification neglects the spatial correlations induced by meteorological factors such as hurricanes. In this paper, we identify and address the gap in modeling spatial dependence among component failures under extreme weather. We analyze how the mean, variance, and correlation structure of weather intensity random variables influence the correlation of component failures. To fill this gap, we propose a spatially dependent sampling method that enables joint sampling of multiple component failures by generating correlated meteorological intensity random variables. Comparative studies show that our approach captures long-tailed scenarios and reveals more extreme events than conventional methods. Furthermore, we evaluate the impact of scenario selection on preventive control performance. Our key findings are: (1) Strong spatial correlations in uncertain weather intensity consistently lead to interdependent component failures, regardless of mean value level; (2) The proposed method uncovers more high-severity scenarios that are missed by independent sampling; (3) Preventive control requires balancing load curtailment and over-generation costs under different scenario severities; (4) Ignoring failure correlations results in underestimating risk from high-severity events, undermining the robustness of preventive control strategies.
Robust Self-Triggered Control Approaches Optimizing Sensors Utilization with Asynchronous Measurements
Most control systems run on digital hardware with limited communication resources. This work develops self-triggered control for linear systems where sensors update independently (asynchronous measurements). The controller computes an optimal horizon at each sampling instant, selecting which sensor to read over the next several time steps to maximize inter-sample intervals while maintaining stability. Two implementations address computational complexity. The online version solves an optimization problem at each update for theoretical optimality. The offline version precomputes optimal horizons using conic partitioning, reducing online computation to a lookup. Both guarantee exponential stability for unperturbed systems and global uniform ultimate boundedness for systems with bounded disturbances. Simulations demonstrate 59-74\% reductions in sensor utilization compared to periodic sampling. The framework enables resource-efficient control in networked systems with communication constraints.
comment: This research was conducted in 2017--2018. The literature review has not been updated and may not reflect subsequent or concurrent developments in the field
Describing Functions and Phase Response Curves of Excitable Systems
The describing function (DF) and phase response curve (PRC) are classical tools for the analysis of feedback oscillations and rhythmic behaviors, widely used across control engineering, biology, and neuroscience. These tools are known to have limitations in networks of relaxation oscillators and excitable systems. For this reason, the paper proposes a novel approach tailored to excitable systems. Our analysis focuses on the discrete-event operator mapping input trains of events to output trains of events. The methodology is illustrated on the excitability model of Hodgkin-Huxley. The proposed framework provides a basis for designing and analyzing central pattern generators in networks of excitable neurons, with direct relevance to neuromorphic control and neurophysiology.
comment: 7 pages, 6 figures, submitted to European Control Conference 2026
Physics-informed Gaussian Processes as Linear Model Predictive Controller with Constraint Satisfaction
Model Predictive Control evolved as the state of the art paradigm for safety critical control tasks. Control-as-Inference approaches thereof model the constrained optimization problem as a probabilistic inference problem. The constraints have to be implemented into the inference model. A recently introduced physics-informed Gaussian Process method uses Control-as-Inference with a Gaussian likelihood for state constraint modeling, but lacks guarantees of open-loop constraint satisfaction. We mitigate the lack of guarantees via an additional sampling step using Hamiltonian Monte Carlo sampling in order to obtain safe rollouts of the open-loop dynamics which are then used to obtain an approximation of the truncated normal distribution which has full probability mass in the safe area. We provide formal guarantees of constraint satisfaction while maintaining the ODE structure of the Gaussian Process on a discretized grid. Moreover, we show that we are able to perform optimization of a quadratic cost function by closed form Gaussian Process computations only and introduce the Matérn kernel into the inference model.
Parallelizable Complex Neural Dynamics Models for PMSM Temperature Estimation with Hardware Acceleration
Accurate and efficient thermal dynamics models of permanent magnet synchronous motors are vital to efficient thermal management strategies. Physics-informed methods combine model-based and data-driven methods, offering greater flexibility than model-based methods and superior explainability compared to data-driven methods. Nonetheless, there are still challenges in balancing real-time performance, estimation accuracy, and explainability. This paper presents a hardware-efficient complex neural dynamics model achieved through the linear decoupling, diagonalization, and reparameterization of the state-space model, introducing a novel paradigm for the physics-informed method that offers high explainability and accuracy in electric motor temperature estimation tasks. We validate this physics-informed method on an NVIDIA A800 GPU using the JAX machine learning framework, parallel prefix sum algorithm, and Compute Unified Device Architecture (CUDA) platform. We demonstrate its superior estimation accuracy and parallelizable hardware acceleration capabilities through experimental evaluation on a real electric motor.
Bellman Memory Units: A neuromorphic framework for synaptic reinforcement learning with an evolving network topology
Application of neuromorphic edge devices for control is limited by the constraints on gradient-free online learning and scalability of the hardware across control problems. This paper introduces a synaptic Q-learning algorithm for the control of the classical Cartpole, where the Bellman equations are incorporated at the synaptic level. This formulation enables the iterative evolution of the network topology, represented as a directed graph, throughout the training process. This is followed by a similar approach called neuromorphic Bellman Memory Units (BMU(s)), which are implemented with the Neural Engineering Framework on Intel's Loihi neuromorphic chip. Topology evolution, in conjunction with mixed-signal computation, leverages the optimization of the number of neurons and synapses that could be used to design spike-based reinforcement learning accelerators. The proposed architecture can potentially reduce resource utilization on board, aiding the manufacturing of compact application-specific neuromorphic ICs. Moreover, the on-chip learning introduced in this work and implemented on a neuromorphic chip can enable adaptation to unseen control scenarios.
comment: 11 pages, submitted to IEEE Transactions on Automatic Control
Physics Informed Multi-task Joint Generative Learning for Arterial Vehicle Trajectory Reconstruction Considering Lane Changing Behavior
Reconstructing complete traffic flow time-space diagrams from vehicle trajectories offer a comprehensive view on traffic dynamics at arterial intersections. However, obtaining full trajectories across networks is costly, and accurately inferring lane-changing (LC) and car-following behaviors in multi-lane environments remains challenging. This study proposes a generative framework for arterial vehicle trajectory reconstruction that jointly models lane-changing and car-following behaviors through physics-informed multi-task joint learning. The framework consists of a Lane-Change Generative Adversarial Network (LC-GAN) and a Trajectory-GAN. The LC-GAN models stochastic LC behavior from historical trajectories while considering physical conditions of arterial intersections, such as signal control, geometric configuration, and interactions with surrounding vehicles. The Trajectory-GAN then incorporates LC information from the LC-GAN with initial trajectories generated from physics-based car-following models, refining them in a data-driven manner to adapt to dynamic traffic conditions. The proposed framework is designed to reconstruct complete trajectories from only a small subset of connected vehicle (CV) trajectories; for example, even a single observed trajectory per lane, by incorporating partial trajectory information into the generative process. A multi-task joint learning facilitates synergistic interaction between the LC-GAN and Trajectory-GAN, allowing each component to serves as both auxiliary supervision and a physical condition for the other. Validation using two real-world trajectory datasets demonstrates that the framework outperforms conventional benchmark models in reconstructing complete time-space diagrams for multi-lane arterial intersections. This research advances the integration of trajectory-based sensing from CVs with physics-informed deep learning.
comment: 29 pages, 14 figures, 2 tables. Submitted to Transportation Research Part C: Emerging Technologies. Preprint version
What Does It Take to Get Guarantees? Systematizing Assumptions in Cyber-Physical Systems
Formal guarantees for cyber-physical systems (CPS) rely on diverse assumptions. If satisfied, these assumptions enable the transfer of abstract guarantees into real-world assurances about the deployed CPS. Although assumptions are central to assured CPS, there is little systematic knowledge about what assumptions are made, what guarantees they support, and what it would take to specify them precisely. To fill this gap, we present a survey of assumptions and guarantees in the control, verification, and runtime assurance areas of CPS literature. From 104 papers over a 10-year span (2014-2024), we extracted 423 assumptions and 321 guarantees using grounded-theory coding. We also annotated the assumptions with 21 tags indicating elementary language features needed for specifications. Our analysis highlighted prevalent trends and gaps in CPS assumptions, particularly related to initialization, sensing, perception, neural components, and uncertainty. Our observations culminated in a call to action on reporting and testing CPS assumptions.
The PV performance ratio paradox: annual data from large-scale, real-world PV systems show negligible meteorological and technical impact and points to dominant human factors
Performance ratio (PR) is a established measure of efficiency of photovoltaic (PV) systems. While previous research demonstrated the effects of meteorological and technical variables on PR, a gap persists in the literature on which variables strongly influence PR in large-scale, real-world, heterogeneous PV systems. This paper aims to fill this gap, applying data-driven models to PV systems located in Rondônia State, Brazil, to identify which variables strongly influence annual PR, and, hence, should be the target for optimization. Surprisingly, only negligible effects were found between meteorological and technical variables on annual PR, indicating that human-factors (such as installation, monitoring, and maintenance quality) might have a stronger effect. These findings indicates that, to improve performance of PV systems, policy makers could focus on creating educational programs to teach PV installers and technicians how to properly install, monitor, and maintain modern PV systems. Through estimating the probability density functions of PR, its peak value was found as 78.85% (mean 77.52%, 95% confidence interval of 76.12% to 78.84%, and 95% prediction interval of 58.83% to 92.70%). A map of annual final yield was developed for Rondônia State and can be used by entrepreneurs to quickly and cheaply estimate energy production.
comment: Paper and supplementary material in the same PDF
Experimental Multi-site Testbed for Advanced Control and Optimization of Hybrid Energy Systems
This paper presents a hybrid energy system (HES) experimental testbed developed at the University of Vermont to support prototyping and validation of advanced control and optimization strategies for grid services. The platform integrates hardware-in-the-loop (HIL) simulation with a reconfigurable set of kilowatt-scale assets, including solar photovoltaic (PV), battery storage, an electrolyzer as a controllable load, and grid-tied inverters. A unified monitoring and communication architecture supports real-time data acquisition, model validation, and control implementation. The testbed's capabilities are demonstrated through a controller hardware-in-the-loop (CHIL) experiment in which a battery system participates in PV power smoothing.
Design, Fabrication, and Measurement of a Hemispherical Multi-Layer Band-Pass Frequency Selective Surface
A hemispherical multilayer wide-band (7-13 GHz) band-pass frequency selective surface (FSS) is reported. A new design technique based on a Goldberg discretization and unit cell scaling technique is introduced to accommodate the curved profile of the FSS. The FSS is additively manufactured by sequentially printing dielectric layers and metallic patterns until 3 patterned silver-ink surfaces are integrated within a 4.5 mm (${λ_0}/6$ at 10 GHz) thick ABS hemispherical radome. The diameter and the height of the realized hemispherical FSS are around $5{λ_0}$ and $3{λ_0}$ respectively. Measurements demonstrate a roughly 1.7 dB insertion loss in the passband and 15-20 dB rejection in the stop-band. Additionally, a new postprocessing technique is used to suppress the effects of edge diffraction in the measured transmission spectrum. The design process, manufacturing technique, and measurement postprocessing represent novel advancements enabling future conformal frequency selective surfaces.
RampoNN: A Reachability-Guided System Falsification for Efficient Cyber-Kinetic Vulnerability Detection
Detecting kinetic vulnerabilities in Cyber-Physical Systems (CPS), vulnerabilities in control code that can precipitate hazardous physical consequences, is a critical challenge. This task is complicated by the need to analyze the intricate coupling between complex software behavior and the system's physical dynamics. Furthermore, the periodic execution of control code in CPS applications creates a combinatorial explosion of execution paths that must be analyzed over time, far exceeding the scope of traditional single-run code analysis. This paper introduces RampoNN, a novel framework that systematically identifies kinetic vulnerabilities given the control code, a physical system model, and a Signal Temporal Logic (STL) specification of safe behavior. RampoNN first analyzes the control code to map the control signals that can be generated under various execution branches. It then employs a neural network to abstract the physical system's behavior. To overcome the poor scaling and loose over-approximations of standard neural network reachability, RampoNN uniquely utilizes Deep Bernstein neural networks, which are equipped with customized reachability algorithms that yield orders of magnitude tighter bounds. This high-precision reachability analysis allows RampoNN to rapidly prune large sets of guaranteed-safe behaviors and rank the remaining traces by their potential to violate the specification. The results of this analysis are then used to effectively guide a falsification engine, focusing its search on the most promising system behaviors to find actual vulnerabilities. We evaluated our approach on a PLC-controlled water tank system and a switched PID controller for an automotive engine. The results demonstrate that RampoNN leads to acceleration of the process of finding kinetic vulnerabilities by up to 98.27% and superior scalability compared to other state-of-the-art methods.
Renewable-Colocated Green Hydrogen Production: Optimality, Profitability, and Policy Impacts
We study the optimal green hydrogen production and energy market participation of a renewable-colocated hydrogen producer (RCHP) that utilizes onsite renewable generation for both hydrogen production and grid services. Under deterministic and stochastic profit-maximization frameworks, we analyze RCHP's multiple market participation models and derive closed-form optimal scheduling policies that dynamically allocate renewable energy to hydrogen production and electricity export to the wholesale market. Analytical characterizations of the RCHP's operating profit and the optimal sizing of renewable and electrolyzer capacities are obtained. We use real-time renewable production and electricity price data from three independent system operators to assess impacts from market prices and environmental policies of renewable energy and green hydrogen subsidies on RCHP's profitability.
Differentially-Private Distributed Model Predictive Control of Linear Discrete-Time Systems with Global Constraints
Distributed model predictive control (DMPC) has attracted extensive attention as it can explicitly handle system constraints and achieve optimal control in a decentralized manner. However, the deployment of DMPC strategies generally requires the sharing of sensitive data among subsystems, which may violate the privacy of participating systems. In this paper, we propose a differentially-private DMPC algorithm for linear discrete-time systems subject to coupled global constraints. Specifically, we first show that a conventional distributed dual gradient algorithm can be used to address the considered DMPC problem but cannot provide strong privacy preservation. Then, to protect privacy against the eavesdropper, we incorporate a differential-privacy noise injection mechanism into the DMPC framework and prove that the resulting distributed optimization algorithm can ensure both provable convergence to a global optimal solution and rigorous $ε$-differential privacy. In addition, an implementation strategy of the DMPC is designed such that the recursive feasibility and stability of the closed-loop system are guaranteed. Simulation results are provided to demonstrate the effectiveness of the developed approach.
comment: 9 pages, 2 figures, Accepted to IEEE Transactions on Automatic Control
A Continuous sEMG-Based Prosthetic Hand Control System Without Motion or Force Sensors
Regressively-based surface electromyography (sEMG) prosthetics are widely used for their ability to continuously convert muscle activity into finger force and motion. However, they typically require additional kinematic or dynamic sensors, which increases complexity and limits practical application. To address this, this paper proposes a method based on the simplified near-linear relationship between sEMG and finger force, using the near-linear model ResDD proposed in this work. By applying the principle that a line can be determined by two points, we eliminate the need for complex sensor calibration. Specifically, by recording the sEMG during maximum finger flexion and extension, and assigning corresponding forces of 1 and -1, the ResDD model can fit the simplified relationship between sEMG signals and force, enabling continuous prediction and control of finger force and gestures. Offline experiments were conducted to evaluate the model's classification accuracy and its ability to learn sufficient information. It uses interpolation analysis to open up the internal structure of the trained model and checks whether the fitted curve of the model conforms to the nearly linear relationship between sEMG and force. Finally, online control and sine wave tracking experiments were carried out to further verify the practicality of the proposed method. The results show that the method effectively extracts meaningful information from sEMG and accurately decodes them. The near-linear model sufficiently reflects the expected relationship between sEMG and finger force. Fitting this simplified near-linear relationship is adequate to achieve continuous and smooth control of finger force and gestures, confirming the feasibility and effectiveness of the proposed approach.
comment: 12 pages
System Filter-Based Common Components Modeling for Cross-Subject EEG Decoding
Brain-computer interface (BCI) technology enables direct communication between the brain and external devices through electroencephalography (EEG) signals. However, existing decoding models often mix common and personalized components, leading to interference from individual variability that limits cross-subject decoding performance. To address this issue, this paper proposes a system filter that extends the concept of signal filtering to the system level. The method expands a system into its spectral representation, selectively removes unnecessary components, and reconstructs the system from the retained target components, thereby achieving explicit system-level decomposition and filtering. We further integrate the system filter into a Cross-Subject Decoding framework based on the System Filter (CSD-SF) and evaluate it on the four-class motor imagery (MI) task of the BCIC IV 2a dataset. Personalized models are transformed into relation spectrums, and statistical testing across subjects is used to remove personalized components. The remaining stable relations, representing common components across subjects, are then used to construct a common model for cross-subject decoding. Experimental results show an average improvement of 3.28% in decoding accuracy over baseline methods, demonstrating that the proposed system filter effectively isolates stable common components and enhances model robustness and generalizability in cross-subject EEG decoding.
comment: 12 pages, 11 figures
Nonlinear Control of a Quadrotor UAV Using Backstepping-Based Sliding Mode Technique
This paper presents the development of a sliding mode controller using the backstepping approach. The controller is employed to synthesize tracking errors and Lyapunov functions. A novel state-space representation is formulated by incorporating the dynamics of the quadrotor and accounting for non-holonomic constraints. The proposed sliding mode controller effectively addresses system nonlinearities and improves tracking of predefined trajectories. Simulation results are presented graphically to demonstrate the controller's performance.
comment: The paper contains an error in the derivation of the backstepping-based sliding mode control law. This affects the stability analysis in Section III-B and leads to incorrect simulation results in Section IV. The conclusions are therefore invalid
Discrete Event System Modeling of Neuromorphic Circuits
Excitable neuromorphic circuits are physical models of event behaviors: their continuous-time trajectories consist of sequences of discrete events. This paper explores the possibility of extracting a discrete-event model out of the physical continuous-time model. We discuss the potential of this methodology for analysis and design of neuromorphic control systems.
comment: Submitted to ECC2026
OptimizedDP: An Efficient, User-friendly Library For Optimal Control and Dynamic Programming
This paper introduces OptimizedDP, a high-performance software library for several common grid-based dynamic programming (DP) algorithms used in control theory and robotics. Specifically, OptimizedDP provides functions to numerically solve a class of time-dependent (dynamic) Hamilton-Jacobi (HJ) partial differential equations (PDEs), time-independent (static) HJ PDEs, and additionally value iteration for continuous action-state space Markov Decision Processes (MDP). The computational complexity of grid-based DP is exponential with respect to the number of grid or state space dimensions, and thus can have bad execution runtimes and memory usage whenapplied to large state spaces. We leverage the user-friendliness of Python for different problem specifications without sacrificing the efficiency of the core computation. This is achieved by implementing the core part of the code which the user does not see in heterocl, a framework we use to abstract away details of how computation is parallelized. Compared to similar toolboxes for level set methods that are used to solve the HJ PDE, our toolbox makes solving the PDE at higher dimensions possible as well as achieving an order of magnitude improvements in execution times, while keeping the interface easy for specifying different problem descriptions. Because of that, the toolbox has been adopted to solve control and optimization problems that were considered intractable before. Our toolbox is available publicly at https://github.com/SFU-MARS/optimized_dp.
comment: This paper has been submitted to ACM Transaction on Mathematical Software (TOMS) for review
Barrier-Riccati Synthesis for Nonlinear Safe Control with Expanded Region of Attraction
We present a Riccati-based framework for safety-critical nonlinear control that integrates the barrier states (BaS) methodology with the State-Dependent Riccati Equation (SDRE) approach. The BaS formulation embeds safety constraints into the system dynamics via auxiliary states, enabling safety to be treated as a control objective. To overcome the limited region of attraction in linear BaS controllers, we extend the framework to nonlinear systems using SDRE synthesis applied to the barrier-augmented dynamics and derive a matrix inequality condition that certifies forward invariance of a large region of attraction and guarantees asymptotic safe stabilization. The resulting controller is computed online via pointwise Riccati solutions. We validate the method on an unstable constrained system and cluttered quadrotor navigation tasks, demonstrating improved constraint handling, scalability, and robustness near safety boundaries. This framework offers a principled and computationally tractable solution for synthesizing nonlinear safe feedback in safety-critical environments.
Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
Binary Decision Process in Pre-Evacuation Behavior
In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
comment: 6 pages
Beyond yield: integrating energy, water, cost, and carbon to benchmark indoor vertical farming viability
The interest in vertical farming arises from its ability to ensure consistent, high-quality, and pest-free vegetable production while supporting synergies with energy systems and urban development. While previous studies have assessed energy use and cost-effectiveness in vertical farming using simplified models, this study fills a gap by providing a comprehensive analysis of how individual input parameters affect efficiency, sustainability, and economic viability through a detailed modeling framework with sensitivity and correlation analyses. 162 scenarios were evaluated by combining three levels of temperature, photosynthetic photon flux density, and CO2 concentration across three distinct localities, namely Trondheim, Shanghai, and Dubai regions, which differ from a socio-environmental viewpoint. Two insulation thicknesses were also tested in each scenario. Results indicate that, due to the heating, ventilation, and air conditioning and dehumidification system, crop productivity could be kept optimal regardless of insulation or the external climate. Photosynthetic photon flux density was the dominant growth factor (correlation: 0.85), followed by CO2 (0.36) and temperature (0.22), and also the driver of energy consumption (0.73). The lowest specific energy consumption coincided with the lowest productivity (55 kg/m2). Levelized cost of lettuce identified the most cost-effective setup as 24°C, 250 umol/m2s photosynthetic photon flux density, 1400ppm CO2, with insulation (102kg/m2). Only decarbonized energy systems can support vertical farming without increasing CO2 emissions compared to imported lettuce. These findings guide practitioners and policymakers in selecting cost-effective, sustainable vertical farming strategies and provide validated data for research and implementation across diverse climatic and energy contexts.
Robotics
In-N-On: Scaling Egocentric Manipulation with in-the-wild and on-task Data
Egocentric videos are a valuable and scalable data source to learn manipulation policies. However, due to significant data heterogeneity, most existing approaches utilize human data for simple pre-training, which does not unlock its full potential. This paper first provides a scalable recipe for collecting and using egocentric data by categorizing human data into two categories: in-the-wild and on-task alongside with systematic analysis on how to use the data. We first curate a dataset, PHSD, which contains over 1,000 hours of diverse in-the-wild egocentric data and over 20 hours of on-task data directly aligned to the target manipulation tasks. This enables learning a large egocentric language-conditioned flow matching policy, Human0. With domain adaptation techniques, Human0 minimizes the gap between humans and humanoids. Empirically, we show Human0 achieves several novel properties from scaling human data, including language following of instructions from only human data, few-shot learning, and improved robustness using on-task data. Project website: https://xiongyicai.github.io/In-N-On/
comment: Project webpage: https://xiongyicai.github.io/In-N-On/
MambaIO: Global-Coordinate Inertial Odometry for Pedestrians via Multi-Scale Frequency-Decoupled Modeling
Inertial Odometry (IO) enables real-time localization using only acceleration and angular velocity measurements from an Inertial Measurement Unit (IMU), making it a promising solution for localization in consumer-grade applications. Traditionally, IMU measurements in IO have been processed under two coordinate system paradigms: the body coordinate frame and the global coordinate frame, with the latter being widely adopted. However, recent studies in drone scenarios have demonstrated that the body frame can significantly improve localization accuracy, prompting a re-evaluation of the suitability of the global frame for pedestrian IO. To address this issue, this paper systematically evaluates the effectiveness of the global coordinate frame in pedestrian IO through theoretical analysis, qualitative inspection, and quantitative experiments. Building upon these findings, we further propose MambaIO, which decomposes IMU measurements into high-frequency and low-frequency components using a Laplacian pyramid. The low-frequency component is processed by a Mamba architecture to extract implicit contextual motion cues, while the high-frequency component is handled by a convolutional structure to capture fine-grained local motion details. Experiments on multiple public datasets show that MambaIO substantially reduces localization error and achieves state-of-the-art (SOTA) performance. To the best of our knowledge, this is the first application of the Mamba architecture to the inertial odometry task.
Optimus-Q: Utilizing Federated Learning in Adaptive Robots for Intelligent Nuclear Power Plant Operations through Quantum Cryptography
The integration of advanced robotics in nuclear power plants (NPPs) presents a transformative opportunity to enhance safety, efficiency, and environmental monitoring in high-stakes environments. Our paper introduces the Optimus-Q robot, a sophisticated system designed to autonomously monitor air quality and detect contamination while leveraging adaptive learning techniques and secure quantum communication. Equipped with advanced infrared sensors, the Optimus-Q robot continuously streams real-time environmental data to predict hazardous gas emissions, including carbon dioxide (CO$_2$), carbon monoxide (CO), and methane (CH$_4$). Utilizing a federated learning approach, the robot collaborates with other systems across various NPPs to improve its predictive capabilities without compromising data privacy. Additionally, the implementation of Quantum Key Distribution (QKD) ensures secure data transmission, safeguarding sensitive operational information. Our methodology combines systematic navigation patterns with machine learning algorithms to facilitate efficient coverage of designated areas, thereby optimizing contamination monitoring processes. Through simulations and real-world experiments, we demonstrate the effectiveness of the Optimus-Q robot in enhancing operational safety and responsiveness in nuclear facilities. This research underscores the potential of integrating robotics, machine learning, and quantum technologies to revolutionize monitoring systems in hazardous environments.
SRPO: Self-Referential Policy Optimization for Vision-Language-Action Models
Vision-Language-Action (VLA) models excel in robotic manipulation but are constrained by their heavy reliance on expert demonstrations, leading to demonstration bias and limiting performance. Reinforcement learning (RL) is a vital post-training strategy to overcome these limits, yet current VLA-RL methods, including group-based optimization approaches, are crippled by severe reward sparsity. Relying on binary success indicators wastes valuable information in failed trajectories, resulting in low training efficiency. To solve this, we propose Self-Referential Policy Optimization (SRPO), a novel VLA-RL framework. SRPO eliminates the need for external demonstrations or manual reward engineering by leveraging the model's own successful trajectories, generated within the current training batch, as a self-reference. This allows us to assign a progress-wise reward to failed attempts. A core innovation is the use of latent world representations to measure behavioral progress robustly. Instead of relying on raw pixels or requiring domain-specific fine-tuning, we utilize the compressed, transferable encodings from a world model's latent space. These representations naturally capture progress patterns across environments, enabling accurate, generalized trajectory comparison. Empirical evaluations on the LIBERO benchmark demonstrate SRPO's efficiency and effectiveness. Starting from a supervised baseline with 48.9% success, SRPO achieves a new state-of-the-art success rate of 99.2% in just 200 RL steps, representing a 103% relative improvement without any extra supervision. Furthermore, SRPO shows substantial robustness, achieving a 167% performance improvement on the LIBERO-Plus benchmark.
UltraDP: Generalizable Carotid Ultrasound Scanning with Force-Aware Diffusion Policy
Ultrasound scanning is a critical imaging technique for real-time, non-invasive diagnostics. However, variations in patient anatomy and complex human-in-the-loop interactions pose significant challenges for autonomous robotic scanning. Existing ultrasound scanning robots are commonly limited to relatively low generalization and inefficient data utilization. To overcome these limitations, we present UltraDP, a Diffusion-Policy-based method that receives multi-sensory inputs (ultrasound images, wrist camera images, contact wrench, and probe pose) and generates actions that are fit for multi-modal action distributions in autonomous ultrasound scanning of carotid artery. We propose a specialized guidance module to enable the policy to output actions that center the artery in ultrasound images. To ensure stable contact and safe interaction between the robot and the human subject, a hybrid force-impedance controller is utilized to drive the robot to track such trajectories. Also, we have built a large-scale training dataset for carotid scanning comprising 210 scans with 460k sample pairs from 21 volunteers of both genders. By exploring our guidance module and DP's strong generalization ability, UltraDP achieves a 95% success rate in transverse scanning on previously unseen subjects, demonstrating its effectiveness.
NMPC-based Motion Planning with Adaptive Weighting for Dynamic Object Interception
Catching fast-moving objects serves as a benchmark for robotic agility, posing significant coordination challenges for cooperative manipulator systems holding a catcher, particularly due to inherent closed-chain constraints. This paper presents a nonlinear model predictive control (MPC)-based motion planner that bridges high-level interception planning with real-time joint space control, enabling dynamic object interception for systems comprising two cooperating arms. We introduce an Adaptive- Terminal (AT) MPC formulation featuring cost shaping, which contrasts with a simpler Primitive-Terminal (PT) approach relying heavily on terminal penalties for rapid convergence. The proposed AT formulation is shown to effectively mitigate issues related to actuator power limit violations frequently encountered with the PT strategy, yielding trajectories and significantly reduced control effort. Experimental results on a robotic platform with two cooperative arms, demonstrating excellent real time performance, with an average planner cycle computation time of approximately 19 ms-less than half the 40 ms system sampling time. These results indicate that the AT formulation achieves significantly improved motion quality and robustness with minimal computational overhead compared to the PT baseline, making it well-suited for dynamic, cooperative interception tasks.
comment: This work has been submitted to the IFAC World Congress for possible publication. Under review
Decentralized Gaussian Process Classification and an Application in Subsea Robotics IROS 2025
Teams of cooperating autonomous underwater vehicles (AUVs) rely on acoustic communication for coordination, yet this communication medium is constrained by limited range, multi-path effects, and low bandwidth. One way to address the uncertainty associated with acoustic communication is to learn the communication environment in real-time. We address the challenge of a team of robots building a map of the probability of communication success from one location to another in real-time. This is a decentralized classification problem -- communication events are either successful or unsuccessful -- where AUVs share a subset of their communication measurements to build the map. The main contribution of this work is a rigorously derived data sharing policy that selects measurements to be shared among AUVs. We experimentally validate our proposed sharing policy using real acoustic communication data collected from teams of Virginia Tech 690 AUVs, demonstrating its effectiveness in underwater environments.
comment: 8 pages, 8 figures, IROS 2025 conference
PCARNN-DCBF: Minimal-Intervention Geofence Enforcement for Ground Vehicles
Runtime geofencing for ground vehicles is rapidly emerging as a critical technology for enforcing Operational Design Domains (ODDs). However, existing solutions struggle to reconcile high-fidelity learning with the structural requirements of verifiable control. We address this by introducing PCARNN-DCBF, a novel pipeline integrating a Physics-encoded Control-Affine Residual Neural Network with a preview-based Discrete Control Barrier Function. Unlike generic learned models, PCARNN explicitly preserves the control-affine structure of vehicle dynamics, ensuring the linearity required for reliable optimization. This enables the DCBF to enforce polygonal keep-in constraints via a real-time Quadratic Program (QP) that handles high relative degree and mitigates actuator saturation. Experiments in CARLA across electric and combustion platforms demonstrate that this structure-preserving approach significantly outperforms analytical and unstructured neural baselines.
Theoretical Closed-loop Stability Bounds for Dynamical System Coupled with Diffusion Policies
Diffusion Policy has shown great performance in robotic manipulation tasks under stochastic perturbations, due to its ability to model multimodal action distributions. Nonetheless, its reliance on a computationally expensive reverse-time diffusion (denoising) process, for action inference, makes it challenging to use for real-time applications where quick decision-making is mandatory. This work studies the possibility of conducting the denoising process only partially before executing an action, allowing the plant to evolve according to its dynamics in parallel to the reverse-time diffusion dynamics ongoing on the computer. In a classical diffusion policy setting, the plant dynamics are usually slow and the two dynamical processes are uncoupled. Here, we investigate theoretical bounds on the stability of closed-loop systems using diffusion policies when the plant dynamics and the denoising dynamics are coupled. The contribution of this work gives a framework for faster imitation learning and a metric that yields if a controller will be stable based on the variance of the demonstrations.
comment: 5 pages, 3 figures
Discovering Optimal Natural Gaits of Dissipative Systems via Virtual Energy Injection
Legged robots offer several advantages when navigating unstructured environments, but they often fall short of the efficiency achieved by wheeled robots. One promising strategy to improve their energy economy is to leverage their natural (unactuated) dynamics using elastic elements. This work explores that concept by designing energy-optimal control inputs through a unified, multi-stage framework. It starts with a novel energy injection technique to identify passive motion patterns by harnessing the system's natural dynamics. This enables the discovery of passive solutions even in systems with energy dissipation caused by factors such as friction or plastic collisions. Building on these passive solutions, we then employ a continuation approach to derive energy-optimal control inputs for the fully actuated, dissipative robotic system. The method is tested on simulated models to demonstrate its applicability in both single- and multi-legged robotic systems. This analysis provides valuable insights into the design and operation of elastic legged robots, offering pathways to improve their efficiency and adaptability by exploiting the natural system dynamics.
comment: Preprint Version, IEEE Robotics and Automation Letters (RA-L), accepted November 2025
RRT*former: Environment-Aware Sampling-Based Motion Planning using Transformer IROS 2025
We investigate the sampling-based optimal path planning problem for robotics in complex and dynamic environments. Most existing sampling-based algorithms neglect environmental information or the information from previous samples. Yet, these pieces of information are highly informative, as leveraging them can provide better heuristics when sampling the next state. In this paper, we propose a novel sampling-based planning algorithm, called \emph{RRT*former}, which integrates the standard RRT* algorithm with a Transformer network in a novel way. Specifically, the Transformer is used to extract features from the environment and leverage information from previous samples to better guide the sampling process. Our extensive experiments demonstrate that, compared to existing sampling-based approaches such as RRT*, Neural RRT*, and their variants, our algorithm achieves considerable improvements in both the optimality of the path and sampling efficiency. The code for our implementation is available on https://github.com/fengmingyang666/RRTformer.
comment: Accepted to IROS 2025
Platform-Agnostic Reinforcement Learning Framework for Safe Exploration of Cluttered Environments with Graph Attention
Autonomous exploration of obstacle-rich spaces requires strategies that ensure efficiency while guaranteeing safety against collisions with obstacles. This paper investigates a novel platform-agnostic reinforcement learning framework that integrates a graph neural network-based policy for next-waypoint selection, with a safety filter ensuring safe mobility. Specifically, the neural network is trained using reinforcement learning through the Proximal Policy Optimization (PPO) algorithm to maximize exploration efficiency while minimizing safety filter interventions. Henceforth, when the policy proposes an infeasible action, the safety filter overrides it with the closest feasible alternative, ensuring consistent system behavior. In addition, this paper introduces a reward function shaped by a potential field that accounts for both the agent's proximity to unexplored regions and the expected information gain from reaching them. The proposed framework combines the adaptability of reinforcement learning-based exploration policies with the reliability provided by explicit safety mechanisms. This feature plays a key role in enabling the deployment of learning-based policies on robotic platforms operating in real-world environments. Extensive evaluations in both simulations and experiments performed in a lab environment demonstrate that the approach achieves efficient and safe exploration in cluttered spaces.
comment: 8 pages, 6 figures, submitted to the 2026 IEEE International Conference on Robotics & Automation
Fast Post-Hoc Confidence Fusion for 3-Class Open-Set Aerial Object Detection
Developing reliable UAV navigation systems requires robust air-to-air object detectors capable of distinguishing between objects seen during training and previously unseen objects. While many methods address closed-set detection and achieve high-confidence recognition of in-domain (ID) targets, they generally do not tackle open-set detection, which requires simultaneous handling of both ID and out-of-distribution (OOD) objects. Existing open-set approaches typically rely on a single uncertainty score with thresholding, limiting flexibility and often conflating OOD objects with background clutter. In contrast, we propose a lightweight, model-agnostic post-processing framework that explicitly separates background from unknown objects while preserving the base detector's performance. Our approach extends open-set detection beyond binary ID/OOD classification to real-time three-way classification among ID targets, OOD objects, and background. To this end, we employ a fusion scheme that aggregates multiple confidence estimates and per-detection features using a compact multilayer perceptron (MLP). Incorporating different logit variants into the MLP consistently enhances performance across both binary and three-class classification without compromising throughput. Extensive ablation and comparative experiments confirm that our method surpasses threshold-based baselines in two-class classification by an average of 2.7% AUROC, while retaining or improving open-set mAP. Furthermore, our study uniquely enables robust three-class classification, a critical capability for safe UAV navigation, where OOD objects must be actively avoided and background regions safely ignored. Comparative analysis highlights that our method surpasses competitive techniques in AUROC across datasets, while improving closed-set mAP by up to 9 points, an 18% relative gain.
C2F-Space: Coarse-to-Fine Space Grounding for Spatial Instructions using Vision-Language Models
Space grounding refers to localizing a set of spatial references described in natural language instructions. Traditional methods often fail to account for complex reasoning -- such as distance, geometry, and inter-object relationships -- while vision-language models (VLMs), despite strong reasoning abilities, struggle to produce a fine-grained region of outputs. To overcome these limitations, we propose C2F-Space, a novel coarse-to-fine space-grounding framework that (i) estimates an approximated yet spatially consistent region using a VLM, then (ii) refines the region to align with the local environment through superpixelization. For the coarse estimation, we design a grid-based visual-grounding prompt with a propose-validate strategy, maximizing VLM's spatial understanding and yielding physically and semantically valid canonical region (i.e., ellipses). For the refinement, we locally adapt the region to surrounding environment without over-relaxed to free space. We construct a new space-grounding benchmark and compare C2F-Space with five state-of-the-art baselines using success rate and intersection-over-union. Our C2F-Space significantly outperforms all baselines. Our ablation study confirms the effectiveness of each module in the two-step process and their synergistic effect of the combined framework. We finally demonstrate the applicability of C2F-Space to simulated robotic pick-and-place tasks.
comment: 16 pages, 12 figures
MSA - Technique for Stiffness Modeling of Manipulators with Complex and Hybrid Structures
The paper presents a systematic approach for stiffness modeling of manipulators with complex and hybrid structures using matrix structural analysis. In contrast to previous results, it is suitable for mixed architectures containing closed-loops, flexible links, rigid connections, passive and elastic joints with external loadings and preloadings. The proposed approach produces the Cartesian stiffness matrices in a semi-analytical manner. It presents the manipulator stiffness model as a set of conventional equations describing the link elasticities that are supplemented by a set of constraints describing connections between links. Its allows user straightforward aggregation of stiffness model equations avoiding traditional column/row merging procedures in the extended stiffness matrix. Advantages of this approach are illustrated by stiffness analysis of NaVaRo manipulator.
Optimizing Robot Positioning Against Placement Inaccuracies: A Study on the Fanuc CRX10iA/L
This study presents a methodology for determining the optimal base placement of a Fanuc CRX10iA/L collaborative robot for a desired trajectory corresponding to an industrial task. The proposed method uses a particle swarm optimization algorithm that explores the search space to find positions for performing the trajectory. An $α$-shape algorithm is then used to draw the borders of the feasibility areas, and the largest circle inscribed is calculated from the Voronoi diagrams. The aim of this approach is to provide a robustness criterion in the context of robot placement inaccuracies that may be encountered, for example, if the robot is placed on a mobile base when the system is deployed by an operator. The approach developed uses an inverse kinematics model to evaluate all initial configurations, then moves the robot end-effector along the reference trajectory using the Jacobian matrix and assigns a score to the attempt. For the Fanuc CRX10iA/L robot, there can be up to 16 solutions to the inverse kinematics model. The calculation of these solutions is not trivial and requires a specific study that planning tools such as MoveIt cannot fully take into account. Additionally, the optimization process must consider constraints such as joint limits, singularities, and workspace limitations to ensure feasible and efficient trajectory execution.
Path Planning through Multi-Agent Reinforcement Learning in Dynamic Environments
Path planning in dynamic environments is a fundamental challenge in intelligent transportation and robotics, where obstacles and conditions change over time, introducing uncertainty and requiring continuous adaptation. While existing approaches often assume complete environmental unpredictability or rely on global planners, these assumptions limit scalability and practical deployment in real-world settings. In this paper, we propose a scalable, region-aware reinforcement learning (RL) framework for path planning in dynamic environments. Our method builds on the observation that environmental changes, although dynamic, are often localized within bounded regions. To exploit this, we introduce a hierarchical decomposition of the environment and deploy distributed RL agents that adapt to changes locally. We further propose a retraining mechanism based on sub-environment success rates to determine when policy updates are necessary. Two training paradigms are explored: single-agent Q-learning and multi-agent federated Q-learning, where local Q-tables are aggregated periodically to accelerate the learning process. Unlike prior work, we evaluate our methods in more realistic settings, where multiple simultaneous obstacle changes and increasing difficulty levels are present. Results show that the federated variants consistently outperform their single-agent counterparts and closely approach the performance of A* Oracle while maintaining shorter adaptation times and robust scalability. Although initial training remains time-consuming in large environments, our decentralized framework eliminates the need for a global planner and lays the groundwork for future improvements using deep RL and flexible environment decomposition.
Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception
In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.
Behavior Trees vs Executable Ontologies: a Comparative Analysis of Robot Control Paradigms
This paper compares two distinct approaches to modeling robotic behavior: imperative Behavior Trees (BTs) and declarative Executable Ontologies (EO), implemented through the boldsea framework. BTs structure behavior hierarchically using control-flow, whereas EO represents the domain as a temporal, event-based semantic graph driven by dataflow rules. We demonstrate that EO achieves comparable reactivity and modularity to BTs through a fundamentally different architecture: replacing polling-based tick execution with event-driven state propagation. We propose that EO offers an alternative framework, moving from procedural programming to semantic domain modeling, to address the semantic-process gap in traditional robotic control. EO supports runtime model modification, full temporal traceability, and a unified representation of data, logic, and interface - features that are difficult or sometimes impossible to achieve with BTs, although BTs excel in established, predictable scenarios. The comparison is grounded in a practical mobile manipulation task. This comparison highlights the respective operational strengths of each approach in dynamic, evolving robotic systems.
comment: 22 pages, 8 figures
Symmetry-Breaking in Multi-Agent Navigation: Winding Number-Aware MPC with a Learned Topological Strategy
We address the fundamental challenge of resolving symmetry-induced deadlocks in distributed multi-agent navigation by proposing a new hierarchical navigation method. When multiple agents interact, it is inherently difficult for them to autonomously break the symmetry of deciding how to pass each other. To tackle this problem, we introduce an approach that quantifies cooperative symmetry-breaking strategies using a topological invariant called the winding number, and learns the strategies themselves through reinforcement learning. Our method features a hierarchical policy consisting of a learning-based Planner, which plans topological cooperative strategies, and a model-based Controller, which executes them. Through reinforcement learning, the Planner learns to produce two types of parameters for the Controller: one is the topological cooperative strategy represented by winding numbers, and the other is a set of dynamic weights that determine which agent interaction to prioritize in dense scenarios where multiple agents cross simultaneously. The Controller then generates collision-free and efficient motions based on the strategy and weights provided by the Planner. This hierarchical structure combines the flexible decision-making ability of learning-based methods with the reliability of model-based approaches. Simulation and real-world robot experiments demonstrate that our method outperforms existing baselines, particularly in dense environments, by efficiently avoiding collisions and deadlocks while achieving superior navigation performance. The code for the experiments is available at https://github.com/omron-sinicx/WNumMPC.
comment: 11 pages, 5 figures
Modelling and Model-Checking a ROS2 Multi-Robot System using Timed Rebeca
Model-based development enables quicker prototyping, earlier experimentation and validation of design intents. For a multi-agent system with complex asynchronous interactions and concurrency, formal verification, model-checking in particular, offers an automated mechanism for verifying desired properties. Timed Rebeca is an actor-based modelling language supporting reactive, concurrent and time semantics, accompanied with a model-checking compiler. These capabilities allow using Timed Rebeca to correctly model ROS2 node topographies, recurring physical signals, motion primitives and other timed and time-convertible behaviors. The biggest challenges in modelling and verifying a multi-robot system lie in abstracting complex information, bridging the gap between a discrete model and a continuous system and compacting the state space, while maintaining the model's accuracy. We develop different discretization strategies for different kinds of information, identifying the 'enough' thresholds of abstraction, and applying efficient optimization techniques to boost computations. With this work we demonstrate how to use models to design and verify a multi-robot system, how to discretely model a continuous system to do model-checking efficiently, and the round-trip engineering flow between the model and the implementation. The released Rebeca and ROS2 codes can serve as a foundation for modelling multiple autonomous robots systems.
A Class of Dual-Frame Passively-Tilting Fully-Actuated Hexacopter
This paper proposed a novel fully-actuated hexacopter. It features a dual-frame passive tilting structure and achieves independent control of translational motion and attitude with minimal actuators. Compared to previous fully-actuated UAVs, it liminates internal force cancellation, resulting in higher flight efficiency and endurance under equivalent payload conditions. Based on the dynamic model of fully-actuated hexacopter, a full-actuation controller is designed to achieve efficient and stable control. Finally, simulation is conducted, validating the superior fully-actuated motion capability of fully-actuated hexacopter and the effectiveness of the proposed control strategy.
VIRAL: Visual Sim-to-Real at Scale for Humanoid Loco-Manipulation
A key barrier to the real-world deployment of humanoid robots is the lack of autonomous loco-manipulation skills. We introduce VIRAL, a visual sim-to-real framework that learns humanoid loco-manipulation entirely in simulation and deploys it zero-shot to real hardware. VIRAL follows a teacher-student design: a privileged RL teacher, operating on full state, learns long-horizon loco-manipulation using a delta action space and reference state initialization. A vision-based student policy is then distilled from the teacher via large-scale simulation with tiled rendering, trained with a mixture of online DAgger and behavior cloning. We find that compute scale is critical: scaling simulation to tens of GPUs (up to 64) makes both teacher and student training reliable, while low-compute regimes often fail. To bridge the sim-to-real gap, VIRAL combines large-scale visual domain randomization over lighting, materials, camera parameters, image quality, and sensor delays--with real-to-sim alignment of the dexterous hands and cameras. Deployed on a Unitree G1 humanoid, the resulting RGB-based policy performs continuous loco-manipulation for up to 54 cycles, generalizing to diverse spatial and appearance variations without any real-world fine-tuning, and approaching expert-level teleoperation performance. Extensive ablations dissect the key design choices required to make RGB-based humanoid loco-manipulation work in practice.
comment: Project website: https://viral-humanoid.github.io/
Eq.Bot: Enhance Robotic Manipulation Learning via Group Equivariant Canonicalization
Robotic manipulation systems are increasingly deployed across diverse domains. Yet existing multi-modal learning frameworks lack inherent guarantees of geometric consistency, struggling to handle spatial transformations such as rotations and translations. While recent works attempt to introduce equivariance through bespoke architectural modifications, these methods suffer from high implementation complexity, computational cost, and poor portability. Inspired by human cognitive processes in spatial reasoning, we propose Eq.Bot, a universal canonicalization framework grounded in SE(2) group equivariant theory for robotic manipulation learning. Our framework transforms observations into a canonical space, applies an existing policy, and maps the resulting actions back to the original space. As a model-agnostic solution, Eq.Bot aims to endow models with spatial equivariance without requiring architectural modifications. Extensive experiments demonstrate the superiority of Eq.Bot under both CNN-based (e.g., CLIPort) and Transformer-based (e.g., OpenVLA-OFT) architectures over existing methods on various robotic manipulation tasks, where the most significant improvement can reach 50.0%.
comment: 12 pages, 4 figures and 3 tables
Nonholonomic Robot Parking by Feedback -- Part I: Modular Strict CLF Designs
It has been known in the robotics literature since about 1995 that, in polar coordinates, the nonholonomic unicycle is asymptotically stabilizable by smooth feedback, even globally. We introduce a modular design framework that selects the forward velocity to decouple the radial coordinate, allowing the steering subsystem to be stabilized independently. Within this structure, we develop families of feedback laws using passivity, backstepping, and integrator forwarding. Each law is accompanied by a strict control Lyapunov function, including barrier variants that enforce angular constraints. These strict CLFs provide constructive class KL convergence estimates and enable eigenvalue assignment at the target equilibrium. The framework generalizes and extends prior modular and nonmodular approaches, while preparing the ground for inverse optimal and adaptive redesigns in the sequel paper.
Painted Heart Beats ICRA 2025
In this work we present AURA, a framework for synergistic human-artist painting. We developed a robot arm that collaboratively paints with a human artist. The robot has an awareness of the artist's heartbeat through the EmotiBit sensor, which provides the arousal levels of the painter. Given the heartbeat detected, the robot decides to increase proximity to the artist's workspace or retract. If a higher heartbeat is detected, which is associated with increased arousal in human artists, the robot will move away from that area of the canvas. If the artist's heart rate is detected as neutral, indicating the human artist's baseline state, the robot will continue its painting actions across the entire canvas. We also demonstrate and propose alternative robot-artist interactions using natural language and physical touch. This work combines the biometrics of a human artist to inform fluent artistic interactions.
comment: 4 pages, 2 figures, ICRA 2025
Learning Human-Like RL Agents Through Trajectory Optimization With Action Quantization NeurIPS 2025
Human-like agents have long been one of the goals in pursuing artificial intelligence. Although reinforcement learning (RL) has achieved superhuman performance in many domains, relatively little attention has been focused on designing human-like RL agents. As a result, many reward-driven RL agents often exhibit unnatural behaviors compared to humans, raising concerns for both interpretability and trustworthiness. To achieve human-like behavior in RL, this paper first formulates human-likeness as trajectory optimization, where the objective is to find an action sequence that closely aligns with human behavior while also maximizing rewards, and adapts the classic receding-horizon control to human-like learning as a tractable and efficient implementation. To achieve this, we introduce Macro Action Quantization (MAQ), a human-like RL framework that distills human demonstrations into macro actions via Vector-Quantized VAE. Experiments on D4RL Adroit benchmarks show that MAQ significantly improves human-likeness, increasing trajectory similarity scores, and achieving the highest human-likeness rankings among all RL agents in the human evaluation study. Our results also demonstrate that MAQ can be easily integrated into various off-the-shelf RL algorithms, opening a promising direction for learning human-like RL agents. Our code is available at https://rlg.iis.sinica.edu.tw/papers/MAQ.
comment: Accepted by the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
Lie Group Control Architectures for UAVs: a Comparison of SE2(3)-Based Approaches in Simulation and Hardware
This paper presents the integration and experimental validation of advanced control strategies for quadcopters based on Lie groups. We build upon recent theoretical developments on SE2(3)-based controllers and introduce a novel SE2(3) model predictive controller (MPC) that combines the predictive capabilities and constraint-handling of optimal control with the geometric properties of Lie group formulations. We evaluated this MPC against a state-of-the-art SE2(3)-based LQR approach and obtained comparable performance in simulation. Both controllers where also deployed on the Quanser QDrone platform and compared to each other and an industry standard control architecture. Results show that the SE_2(3) MPC achieves superior trajectory tracking performance and robustness across a range of scenarios. This work demonstrates the practical effectiveness of Lie group-based controllers and offers comparative insights into their impact on system behaviour and real-time performance
Communication-Aware Asynchronous Distributed Trajectory Optimization for UAV Swarm
Distributed optimization offers a promising paradigm for trajectory planning in Unmanned Aerial Vehicle (UAV) swarms, yet its deployment in communication-constrained environments remains challenging due to unreliable links and limited data exchange. This paper addresses this issue via a two-tier architecture explicitly designed for operation under communication constraints. We develop a Communication-Aware Asynchronous Distributed Trajectory Optimization (CA-ADTO) framework that integrates Parameterized Differential Dynamic Programming (PDDP) for local trajectory optimization of individual UAVs with an asynchronous Alternating Direction Method of Multipliers (async-ADMM) for swarm-level coordination. The proposed architecture enables fully distributed optimization while substantially reducing communication overhead, making it suitable for real-world scenarios in which reliable connectivity cannot be guaranteed. The method is particularly effective in handling nonlinear dynamics and spatio-temporal coupling under communication constraints.
An Alignment-Based Approach to Learning Motions from Demonstrations
Learning from Demonstration (LfD) has shown to provide robots with fundamental motion skills for a variety of domains. Various branches of LfD research (e.g., learned dynamical systems and movement primitives) can generally be classified into ''time-dependent'' or ''time-independent'' systems. Each provides fundamental benefits and drawbacks -- time-independent methods cannot learn overlapping trajectories, while time-dependence can result in undesirable behavior under perturbation. This paper introduces Cluster Alignment for Learned Motions (CALM), an LfD framework dependent upon an alignment with a representative ''mean" trajectory of demonstrated motions rather than pure time- or state-dependence. We discuss the convergence properties of CALM, introduce an alignment technique able to handle the shifts in alignment possible under perturbation, and utilize demonstration clustering to generate multi-modal behavior. We show how CALM mitigates the drawbacks of time-dependent and time-independent techniques on 2D datasets and implement our system on a 7-DoF robot learning tasks in three domains.
comment: 8 pages, 8 figures, originally published in the IEEE Robotics and Automation Letters
I've Changed My Mind: Robots Adapting to Changing Human Goals during Collaboration
For effective human-robot collaboration, a robot must align its actions with human goals, even as they change mid-task. Prior approaches often assume fixed goals, reducing goal prediction to a one-time inference. However, in real-world scenarios, humans frequently shift goals, making it challenging for robots to adapt without explicit communication. We propose a method for detecting goal changes by tracking multiple candidate action sequences and verifying their plausibility against a policy bank. Upon detecting a change, the robot refines its belief in relevant past actions and constructs Receding Horizon Planning (RHP) trees to actively select actions that assist the human while encouraging Differentiating Actions to reveal their updated goal. We evaluate our approach in a collaborative cooking environment with up to 30 unique recipes and compare it to three comparable human goal prediction algorithms. Our method outperforms all baselines, quickly converging to the correct goal after a switch, reducing task completion time, and improving collaboration efficiency.
comment: Accepted to RA-L
Gimballed Rotor Mechanism for Omnidirectional Quadrotors
This paper presents the design of a gimballed rotor mechanism as a modular and efficient solution for constructing omnidirectional quadrotors. Unlike conventional quadrotors, which are underactuated, this class of quadrotors achieves full actuation, enabling independent motion in all six degrees of freedom. While existing omnidirectional quadrotor designs often require significant structural modifications, the proposed gimballed rotor system maintains a lightweight and easy-to-integrate design by incorporating servo motors within the rotor platforms, allowing independent tilting of each rotor without major alterations to the central structure of a quadrotor. To accommodate this unconventional design, we develop a new control allocation scheme in PX4 Autopilot and present successful flight tests, validating the effectiveness of the proposed approach.
comment: 6 pages, 7 figures, CASE 2025
Inverse k-visibility for RSSI-based Indoor Geometric Mapping
In recent years, the increased availability of WiFi in indoor environments has gained interest in the robotics community to utilize WiFi signals for indoor simultaneous localization and mapping algorithms. This paper discusses the challenges of achieving high-accuracy geometric map building using WiFi signals. The paper introduces the concept of inverse k-visibility, developed from the k-visibility algorithm, to identify free space in an unknown environment, used for planning, navigation, and obstacle avoidance. Comprehensive experiments, including those utilizing single and multiple RSSI signals, were conducted in both simulated and real-world environments to demonstrate the robustness of the proposed algorithm. Additionally, a detailed analysis comparing the resulting maps with ground-truth LiDAR-based maps is provided to highlight the algorithm's accuracy and reliability.
Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds? IROS 2025
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing data. Recently, many MSDA techniques have been developed for point clouds, but they mainly target LiDAR data, leaving their application to radar point clouds largely unexplored. In this paper, we examine the feasibility of applying existing MSDA methods to radar point clouds and identify several challenges in adapting these techniques. These obstacles stem from the radar's irregular angular distribution, deviations from a single-sensor polar layout in multi-radar setups, and point sparsity. To address these issues, we propose Class-Aware PillarMix (CAPMix), a novel MSDA approach that applies MixUp at the pillar level in 3D point clouds, guided by class labels. Unlike methods that rely a single mix ratio to the entire sample, CAPMix assigns an independent ratio to each pillar, boosting sample diversity. To account for the density of different classes, we use class-specific distributions: for dense objects (e.g., large vehicles), we skew ratios to favor points from another sample, while for sparse objects (e.g., pedestrians), we sample more points from the original. This class-aware mixing retains critical details and enriches each sample with new information, ultimately generating more diverse training data. Experimental results demonstrate that our method not only significantly boosts performance but also outperforms existing MSDA approaches across two datasets (Bosch Street and K-Radar). We believe that this straightforward yet effective approach will spark further investigation into MSDA techniques for radar data.
comment: 8 pages, 6 figures, 4 tables, accepted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). Code: https://github.com/boschresearch/CAPMIX
Robust Adaptive Safe Robotic Grasping with Tactile Sensing
Robotic grasping requires safe force interaction to prevent a grasped object from being damaged or slipping out of the hand. In this vein, this paper proposes an integrated framework for grasping with formal safety guarantees based on Control Barrier Functions. We first design contact force and force closure constraints, which are enforced by a safety filter to accomplish safe grasping with finger force control. For sensory feedback, we develop a technique to estimate contact point, force, and torque from tactile sensors at each finger. We verify the framework with various safety filters in a numerical simulation under a two-finger grasping scenario. We then experimentally validate the framework by grasping multiple objects, including fragile lab glassware, in a real robotic setup, showing that safe grasping can be successfully achieved in the real world. We evaluate the performance of each safety filter in the context of safety violation and conservatism, and find that disturbance observer-based control barrier functions provide superior performance for safety guarantees with minimum conservatism.
comment: This paper was accepted to ECC 2025. The demonstration video is available at https://youtu.be/Cuj47mkXRdg
RIZE: Adaptive Regularization for Imitation Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo and Adroit environments, surpassing baseline methods on the Humanoid-v2 task with limited expert demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning. Our source code is available at https://github.com/adibka/RIZE.
comment: Camera-ready version. Published in Transactions on Machine Learning Research (2025). Official version: https://openreview.net/forum?id=a6DWqXJZCZ
U2UData+: A Scalable Swarm UAVs Autonomous Flight Dataset for Embodied Long-horizon Tasks AAAI26
Swarm UAV autonomous flight for Embodied Long-Horizon (ELH) tasks is crucial for advancing the low-altitude economy. However, existing methods focus only on specific basic tasks due to dataset limitations, failing in real-world deployment for ELH tasks. ELH tasks are not mere concatenations of basic tasks, requiring handling long-term dependencies, maintaining embodied persistent states, and adapting to dynamic goal shifts. This paper presents U2UData+, the first large-scale swarm UAV autonomous flight dataset for ELH tasks and the first scalable swarm UAV data online collection and algorithm closed-loop verification platform. The dataset is captured by 15 UAVs in autonomous collaborative flights for ELH tasks, comprising 12 scenes, 720 traces, 120 hours, 600 seconds per trajectory, 4.32M LiDAR frames, and 12.96M RGB frames. This dataset also includes brightness, temperature, humidity, smoke, and airflow values covering all flight routes. The platform supports the customization of simulators, UAVs, sensors, flight algorithms, formation modes, and ELH tasks. Through a visual control window, this platform allows users to collect customized datasets through one-click deployment online and to verify algorithms by closed-loop simulation. U2UData+ also introduces an ELH task for wildlife conservation and provides comprehensive benchmarks with 9 SOTA models. U2UData+ can be found at https://fengtt42.github.io/U2UData-2/.
comment: Accepted by AAAI26
APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
comment: 9 pages; Previously this version appeared as arXiv:2511.09091, which was submitted as a new work by accident
APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
comment: This work was intended as a replacement of arXiv:2505.10022 and any subsequent updates will appear there
Towards High-Consistency Embodied World Model with Multi-View Trajectory Videos
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
comment: 15 pages, 23 figures
RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass the performance of skilled human operators. We present RL-100, a real-world reinforcement learning framework built on diffusion-based visuomotor policies. RL-100 unifies imitation and reinforcement learning under a single PPO-style objective applied within the denoising process, yielding conservative and stable policy improvements across both offline and online stages. To meet deployment latency constraints, we employ a lightweight consistency distillation procedure that compresses multi-step diffusion into a one-step controller for high-frequency control. The framework is task-, embodiment-, and representation-agnostic, and supports both single-action outputs and action-chunking control. We evaluate RL-100 on seven diverse real-robot manipulation tasks, ranging from dynamic pushing and agile bowling to pouring, cloth folding, unscrewing, and multi-stage juicing. RL-100 attains 100% success across evaluated trials, achieving 900 out of 900 successful episodes, including up to 250 out of 250 consecutive trials on one task, and matches or surpasses expert teleoperators in time-to-completion. Without retraining, a single policy attains approximately 90% zero-shot success under environmental and dynamics shifts, adapts in a few-shot regime to significant task variations (86.7%), and remains robust to aggressive human perturbations (about 95%). In a public shopping-mall deployment, the juicing robot served random customers continuously for roughly seven hours without failure. Together, these results suggest a practical path toward deployment-ready robot learning: start from human priors, align training objectives with human-grounded metrics, and reliably extend performance beyond human demonstrations.
comment: https://lei-kun.github.io/RL-100/
GPA-RAM: Grasp-Pretraining Augmented Robotic Attention Mamba for Spatial Task Learning
Task failures in prior fine-grained robotic manipulation methods often stem from suboptimal initial grasping, which is critical for subsequent manipulation and reducing the requirement for complex pose adjustments. To address this, we propose Grasp-Pretraining Augmentation (GPA), a general multi-modal learning framework that enhances grasp perception without additional grasp pose data collection and labeling. GPA achieves evident enhancement on RLBench multi-task benchmark (from 79.3% to 84.2%) and ALOHA bimanual manipulation tasks (from 86%/16% to 98%/38%). Although GPA enhances fine-grained grasping performance by leveraging increased model capacity, it incurs computational latency and hinders real-time deployment. To mitigate this limitation, we propose Robotic Attention Mamba (RAM). This architecture synergizes attention mechanisms with state space models (SSMs), effectively capturing complex spatial features while maintaining superior inference efficiency. Our unified GPA-RAM framework balances model capacity with efficiency and applies to both discrete and continuous action generation. GPA-RAM demonstrates superior performance across four robotic systems with diverse camera configurations in both simulation and the real world. Compared with previous state-of-the-art methods, it improves average success rates by 8.2% over RVT2 (from 79.3% to 87.5%) and 2.6% over ARP^+ (from 84.9% to 87.5%) on the RLBench multi-task benchmark and 40% (from 16% to 56%), 12% (from 86% to 98%) on ALOHA bimanual continuous tasks, with inference speed of about 71 FPS. This work provides a framework for developing robotic systems that are simultaneously precise and responsive. The project and code are at https://gpa-ram.github.io/
RoboTidy : A 3D Gaussian Splatting Household Tidying Benchmark for Embodied Navigation and Action
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
$π^{*}_{0.6}$: a VLA That Learns From Experience
We study how vision-language-action (VLA) models can improve through real-world deployments via reinforcement learning (RL). We present a general-purpose method, RL with Experience and Corrections via Advantage-conditioned Policies (RECAP), that provides for RL training of VLAs via advantage conditioning. Our method incorporates heterogeneous data into the self-improvement process, including demonstrations, data from on-policy collection, and expert teleoperated interventions provided during autonomous execution. RECAP starts by pre-training a generalist VLA with offline RL, which we call $π^{*}_{0.6}$, that can then be specialized to attain high performance on downstream tasks through on-robot data collection. We show that the $π^{*}_{0.6}$ model trained with the full RECAP method can fold laundry in real homes, reliably assemble boxes, and make espresso drinks using a professional espresso machine. On some of the hardest tasks, RECAP more than doubles task throughput and roughly halves the task failure rate.
Is Your VLM for Autonomous Driving Safety-Ready? A Comprehensive Benchmark for Evaluating External and In-Cabin Risks
Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots IROS 2025
Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to enhance policy robustness across diverse environments, they potentially compromise the policy's performance in any specific environment, leading to suboptimal real-world deployment due to the No Free Lunch theorem. To address this, we propose LoopSR, a lifelong policy adaptation framework that continuously refines RL policies in the post-deployment stage. LoopSR employs a transformer-based encoder to map real-world trajectories into a latent space and reconstruct a digital twin of the real world for further improvement. Autoencoder architecture and contrastive learning methods are adopted to enhance feature extraction of real-world dynamics. Simulation parameters for continual training are derived by combining predicted values from the decoder with retrieved parameters from a pre-collected simulation trajectory dataset. By leveraging simulated continual training, LoopSR achieves superior data efficiency compared with strong baselines, yielding eminent performance with limited data in both sim-to-sim and sim-to-real experiments. Please refer to https://peilinwu.site/looping-sim-and-real.github.io/ for videos and code.
comment: IROS 2025
Searching in Space and Time: Unified Memory-Action Loops for Open-World Object Retrieval ICRA
Service robots must retrieve objects in dynamic, open-world settings where requests may reference attributes ("the red mug"), spatial context ("the mug on the table"), or past states ("the mug that was here yesterday"). Existing approaches capture only parts of this problem: scene graphs capture spatial relations but ignore temporal grounding, temporal reasoning methods model dynamics but do not support embodied interaction, and dynamic scene graphs handle both but remain closed-world with fixed vocabularies. We present STAR (SpatioTemporal Active Retrieval), a framework that unifies memory queries and embodied actions within a single decision loop. STAR leverages non-parametric long-term memory and a working memory to support efficient recall, and uses a vision-language model to select either temporal or spatial actions at each step. We introduce STARBench, a benchmark of spatiotemporal object search tasks across simulated and real environments. Experiments in STARBench and on a Tiago robot show that STAR consistently outperforms scene-graph and memory-only baselines, demonstrating the benefits of treating search in time and search in space as a unified problem.
comment: This paper is under review at ICRA
Inference of Human-derived Specifications of Object Placement via Demonstration IJCAI'25
As robots' manipulation capabilities improve for pick-and-place tasks (e.g., object packing, sorting, and kitting), methods focused on understanding human-acceptable object configurations remain limited expressively with regard to capturing spatial relationships important to humans. To advance robotic understanding of human rules for object arrangement, we introduce positionally-augmented RCC (PARCC), a formal logic framework based on region connection calculus (RCC) for describing the relative position of objects in space. Additionally, we introduce an inference algorithm for learning PARCC specifications via demonstrations. Finally, we present the results from a human study, which demonstrate our framework's ability to capture a human's intended specification and the benefits of learning from demonstration approaches over human-provided specifications.
comment: IJCAI'25
Vector Quantized-Elites: Unsupervised and Problem-Agnostic Quality-Diversity Optimization
Quality-Diversity algorithms have transformed optimization by prioritizing the discovery of diverse, high-performing solutions over a single optimal result. However, traditional Quality-Diversity methods, such as MAP-Elites, rely heavily on predefined behavior descriptors and complete prior knowledge of the task to define the behavior space grid, limiting their flexibility and applicability. In this work, we introduce Vector Quantized-Elites (VQ-Elites), a novel Quality-Diversity algorithm that autonomously constructs a structured behavior space grid using unsupervised learning, eliminating the need for prior task-specific knowledge. At the core of VQ-Elites is the integration of Vector Quantized Variational Autoencoders, which enables the dynamic learning of behavior descriptors and the generation of a structured, rather than unstructured, behavior space grid -- a significant advancement over existing unsupervised Quality-Diversity approaches. This design establishes VQ-Elites as a flexible, robust, and task-agnostic optimization framework. To further enhance the performance of unsupervised Quality-Diversity algorithms, we introduce behavior space bounding and cooperation mechanisms, which significantly improve convergence and performance, as well as the Effective Diversity Ratio and Coverage Diversity Score, two novel metrics that quantify the actual diversity in the unsupervised setting. We validate VQ-Elites on robotic arm pose-reaching, mobile robot space-covering, and MiniGrid exploration tasks. The results demonstrate its ability to efficiently generate diverse, high-quality solutions, emphasizing its adaptability, scalability, robustness to hyperparameters, and potential to extend Quality-Diversity optimization to complex, previously inaccessible domains.
comment: 15 pages (+4 supplementary), 14 (+1) figures, 1 algorithm, 1 (+8) table(s), accepted at IEEE Transactions on Evolutionary Computation
RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
This paper introduces a learning-based visual planner for agile drone flight in cluttered environments. The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules. Learning-based methods, such as behavior cloning (BC) and reinforcement learning (RL), demonstrate promising performance in visual navigation but still face inherent limitations. BC is susceptible to compounding errors due to limited expert imitation, while RL struggles with reward function design and sample inefficiency. To address these limitations, this paper proposes an inverse reinforcement learning (IRL)-based framework for high-speed visual navigation. By leveraging IRL, it is possible to reduce the number of interactions with simulation environments and improve capability to deal with high-dimensional spaces while preserving the robustness of RL policies. A motion primitive-based path planning algorithm collects an expert dataset with privileged map data from diverse environments, ensuring comprehensive scenario coverage. By leveraging both the acquired expert and learner dataset gathered from the agent's interactions with the simulation environments, a robust reward function and policy are learned across diverse states. While the proposed method is trained in a simulation environment only, it can be directly applied to real-world scenarios without additional training or tuning. The performance of the proposed method is validated in both simulation and real-world environments, including forests and various structures. The trained policy achieves an average speed of 7 m/s and a maximum speed of 8.8 m/s in real flight experiments. To the best of our knowledge, this is the first work to successfully apply an IRL framework for high-speed visual navigation of drones.
comment: 18 pages, 11 figures, 58 references, and appendix is included
Multiagent Systems
Navigating Quantum Missteps in Agent-Based Modeling: A Schelling Model Case Study
Quantum computing promises transformative advances, but remains constrained by recurring misconceptions and methodological pitfalls. This paper demonstrates a fundamental incompatibility between traditional agent-based modeling (ABM) implementations and quantum optimization frameworks like Quadratic Unconstrained Binary Optimization (QUBO). Using Schelling's segregation model as a case study, we show that the standard practice of directly translating ABM state observations into QUBO formulations not only fails to deliver quantum advantage, but actively undermines computational efficiency. The fundamental issue is architectural. Traditional ABM implementations entail observing the state of the system at each iteration, systematically destroying the quantum superposition required for computational advantage. Through analysis of Schelling's segregation dynamics on lollipop networks, we demonstrate how abandoning the QUBO reduction paradigm and instead reconceptualizing the research question, from "simulate agent dynamics iteratively until convergence" to "compute minimum of agent moves required for global satisfaction", enables a faster classical solution. This structural reconceptualization yields an algorithm that exploits network symmetries obscured in traditional ABM simulations and QUBO formulations. It establishes a new lower bound which quantum approaches must outperform to achieve advantage. Our work emphasizes that progress in quantum agent-based modeling does not require forcing classical ABM implementations into quantum frameworks. Instead, it should focus on clarifying when quantum advantage is structurally possible, developing best-in-class classical baselines through problem analysis, and fundamentally reformulating research questions rather than preserving classical iterative state change observation paradigms.
NAMeGEn: Creative Name Generation via A Novel Agent-based Multiple Personalized Goal Enhancement Framework
Trained on diverse human-authored texts, Large Language Models (LLMs) unlocked the potential for Creative Natural Language Generation (CNLG), benefiting various applications like advertising and storytelling. Nevertheless, CNLG still remains difficult due to two main challenges. (1) Multi-objective flexibility: user requirements are often personalized, fine-grained, and pluralistic, which LLMs struggle to satisfy simultaneously; (2) Interpretive complexity: beyond generation, creativity also involves understanding and interpreting implicit meaning to enhance users' perception. These challenges significantly limit current methods, especially in short-form text generation, in generating creative and insightful content. To address this, we focus on Chinese baby naming, a representative short-form CNLG task requiring adherence to explicit user constraints (e.g., length, semantics, anthroponymy) while offering meaningful aesthetic explanations. We propose NAMeGEn, a novel multi-agent optimization framework that iteratively alternates between objective extraction, name generation, and evaluation to meet diverse requirements and generate accurate explanations. To support this task, we further construct a classical Chinese poetry corpus with 17k+ poems to enhance aesthetics, and introduce CBNames, a new benchmark with tailored metrics. Extensive experiments demonstrate that NAMeGEn effectively generates creative names that meet diverse, personalized requirements while providing meaningful explanations, outperforming six baseline methods spanning various LLM backbones without any training.
comment: 13 pages,9 figures. This work has been submitted to the IEEE for possible publication
Opinion Dynamics Models for Sentiment Evolution in Weibo Blogs
Online social media platforms enable influencers to distribute content and quickly capture audience reactions, significantly shaping their promotional strategies and advertising agreements. Understanding how sentiment dynamics and emotional contagion unfold among followers is vital for influencers and marketers, as these processes shape engagement, brand perception, and purchasing behavior. While sentiment analysis tools effectively track sentiment fluctuations, dynamical models explaining their evolution remain limited, often neglecting network structures and interactions both among blogs and between their topic-focused follower groups. In this study, we tracked influential tech-focused Weibo bloggers over six months, quantifying follower sentiment from text-mined feedback. By treating each blogger's audience as a single "macro-agent", we find that sentiment trajectories follow the principle of iterative averaging -- a foundational mechanism in many dynamical models of opinion formation, a theoretical framework at the intersection of social network analysis and dynamical systems theory. The sentiment evolution aligns closely with opinion-dynamics models, particularly modified versions of the classical French-DeGroot model that incorporate delayed perception and distinguish between expressed and private opinions. The inferred influence structures reveal interdependencies among blogs that may arise from homophily, whereby emotionally similar users subscribe to the same blogs and collectively shape the shared sentiment expressed within these communities.
Adversarial Attack on Black-Box Multi-Agent by Adaptive Perturbation
Evaluating security and reliability for multi-agent systems (MAS) is urgent as they become increasingly prevalent in various applications. As an evaluation technique, existing adversarial attack frameworks face certain limitations, e.g., impracticality due to the requirement of white-box information or high control authority, and a lack of stealthiness or effectiveness as they often target all agents or specific fixed agents. To address these issues, we propose AdapAM, a novel framework for adversarial attacks on black-box MAS. AdapAM incorporates two key components: (1) Adaptive Selection Policy simultaneously selects the victim and determines the anticipated malicious action (the action would lead to the worst impact on MAS), balancing effectiveness and stealthiness. (2) Proxy-based Perturbation to Induce Malicious Action utilizes generative adversarial imitation learning to approximate the target MAS, allowing AdapAM to generate perturbed observations using white-box information and thus induce victims to execute malicious action in black-box settings. We evaluate AdapAM across eight multi-agent environments and compare it with four state-of-the-art and commonly-used baselines. Results demonstrate that AdapAM achieves the best attack performance in different perturbation rates. Besides, AdapAM-generated perturbations are the least noisy and hardest to detect, emphasizing the stealthiness.
Symmetry-Breaking in Multi-Agent Navigation: Winding Number-Aware MPC with a Learned Topological Strategy
We address the fundamental challenge of resolving symmetry-induced deadlocks in distributed multi-agent navigation by proposing a new hierarchical navigation method. When multiple agents interact, it is inherently difficult for them to autonomously break the symmetry of deciding how to pass each other. To tackle this problem, we introduce an approach that quantifies cooperative symmetry-breaking strategies using a topological invariant called the winding number, and learns the strategies themselves through reinforcement learning. Our method features a hierarchical policy consisting of a learning-based Planner, which plans topological cooperative strategies, and a model-based Controller, which executes them. Through reinforcement learning, the Planner learns to produce two types of parameters for the Controller: one is the topological cooperative strategy represented by winding numbers, and the other is a set of dynamic weights that determine which agent interaction to prioritize in dense scenarios where multiple agents cross simultaneously. The Controller then generates collision-free and efficient motions based on the strategy and weights provided by the Planner. This hierarchical structure combines the flexible decision-making ability of learning-based methods with the reliability of model-based approaches. Simulation and real-world robot experiments demonstrate that our method outperforms existing baselines, particularly in dense environments, by efficiently avoiding collisions and deadlocks while achieving superior navigation performance. The code for the experiments is available at https://github.com/omron-sinicx/WNumMPC.
comment: 11 pages, 5 figures
Distributed primal-dual algorithm for constrained multi-agent reinforcement learning under coupled policies
In this work, we investigate constrained multi-agent reinforcement learning (CMARL), where agents collaboratively maximize the sum of their local objectives while satisfying individual safety constraints. We propose a framework where agents adopt coupled policies that depend on both local states and parameters, as well as those of their $κ_p$-hop neighbors, with $κ_p>0$ denoting the coupling distance. A distributed primal-dual algorithm is further developed under this framework, wherein each agent has access only to state-action pairs within its $2κ_p$-hop neighborhood and to reward information within its $κ+ 2κ_p$-hop neighborhood, with $κ> 0$ representing the truncation distance. Moreover, agents are not permitted to directly share their true policy parameters or Lagrange multipliers. Instead, each agent constructs and maintains local estimates of these variables for other agents and employs such estimates to execute its policy. Additionally, these estimates are further updated and exchanged exclusively through an independent, time-varying networks, which enhances the overall system security. We establish that, with high probability, our algorithm can achieve an $ε$-first-order stationary convergence with an approximation error of $\mathcal{O}(γ^{\frac{κ+1}{κ_{p}}})$ for discount factor $γ\in(0,1)$. Finally, simulations in GridWorld environment are conducted to demonstrate the effectiveness of the proposed algorithm.
Area-Optimal Control Strategies for Heterogeneous Multi-Agent Pursuit
This paper presents a novel strategy for a multi-agent pursuit-evasion game involving multiple faster pursuers with heterogenous speeds and a single slower evader. We define a geometric region, the evader's safe-reachable set, as the intersection of Apollonius circles derived from each pursuer-evader pair. The capture strategy is formulated as a zero-sum game where the pursuers cooperatively minimize the area of this set, while the evader seeks to maximize it, effectively playing a game of spatial containment. By deriving the analytical gradients of the safe-reachable set's area with respect to agent positions, we obtain closed-form, instantaneous optimal control laws for the heading of each agent. These strategies are computationally efficient, allowing for real-time implementation. Simulations demonstrate that the gradient-based controls effectively steer the pursuers to systematically shrink the evader's safe region, leading to guaranteed capture. This area-minimization approach provides a clear geometric objective for cooperative capture.
The Subtle Art of Defection: Understanding Uncooperative Behaviors in LLM based Multi-Agent Systems
This paper introduces a novel framework for simulating and analyzing how uncooperative behaviors can destabilize or collapse LLM-based multi-agent systems. Our framework includes two key components: (1) a game theory-based taxonomy of uncooperative agent behaviors, addressing a notable gap in the existing literature; and (2) a structured, multi-stage simulation pipeline that dynamically generates and refines uncooperative behaviors as agents' states evolve. We evaluate the framework via a collaborative resource management setting, measuring system stability using metrics such as survival time and resource overuse rate. Empirically, our framework achieves 96.7% accuracy in generating realistic uncooperative behaviors, validated by human evaluations. Our results reveal a striking contrast: cooperative agents maintain perfect system stability (100% survival over 12 rounds with 0% resource overuse), while any uncooperative behavior can trigger rapid system collapse within 1 to 7 rounds. These findings demonstrate that uncooperative agents can significantly degrade collective outcomes, highlighting the need for designing more resilient multi-agent systems.
Build AI Assistants using Large Language Models and Agents to Enhance the Engineering Education of Biomechanics
While large language models (LLMs) have demonstrated remarkable versatility across a wide range of general tasks, their effectiveness often diminishes in domain-specific applications due to inherent knowledge gaps. Moreover, their performance typically declines when addressing complex problems that require multi-step reasoning and analysis. In response to these challenges, we propose leveraging both LLMs and AI agents to develop education assistants aimed at enhancing undergraduate learning in biomechanics courses that focus on analyzing the force and moment in the musculoskeletal system of the human body. To achieve our goal, we construct a dual-module framework to enhance LLM performance in biomechanics educational tasks: 1) we apply Retrieval-Augmented Generation (RAG) to improve the specificity and logical consistency of LLM's responses to the conceptual true/false questions; 2) we build a Multi-Agent System (MAS) to solve calculation-oriented problems involving multi-step reasoning and code execution. Specifically, we evaluate the performance of several LLMs, i.e., Qwen-1.0-32B, Qwen-2.5-32B, and Llama-70B, on a biomechanics dataset comprising 100 true/false conceptual questions and problems requiring equation derivation and calculation. Our results demonstrate that RAG significantly enhances the performance and stability of LLMs in answering conceptual questions, surpassing those of vanilla models. On the other hand, the MAS constructed using multiple LLMs demonstrates its ability to perform multi-step reasoning, derive equations, execute code, and generate explainable solutions for tasks that require calculation. These findings demonstrate the potential of applying RAG and MAS to enhance LLM performance for specialized courses in engineering curricula, providing a promising direction for developing intelligent tutoring in engineering education.
A Data-Driven Model Predictive Control Framework for Multi-Aircraft TMA Routing Under Travel Time Uncertainty AAAI 2026
This paper presents a closed-loop framework for conflict-free routing and scheduling of multi-aircraft in Terminal Manoeuvring Areas (TMA), aimed at reducing congestion and enhancing landing efficiency. Leveraging data-driven arrival inputs (either historical or predicted), we formulate a mixed-integer optimization model for real-time control, incorporating an extended TMA network spanning a 50-nautical-mile radius around Changi Airport. The model enforces safety separation, speed adjustments, and holding time constraints while maximizing runway throughput. A rolling-horizon Model Predictive Control (MPC) strategy enables closed-loop integration with a traffic simulator, dynamically updating commands based on real-time system states and predictions. Computational efficiency is validated across diverse traffic scenarios, demonstrating a 7-fold reduction in computation time during peak congestion compared to onetime optimization, using Singapore ADS-B dataset. Monte Carlo simulations under travel time disturbances further confirm the framework's robustness. Results highlight the approach's operational resilience and computational scalability, offering actionable decision support for Air Traffic Controller Officers (ATCOs) through real-time optimization and adaptive replanning.
comment: This is the complete 8-page version of accepted workshop paper for Artificial Intelligence for Air Transportation (AI4AT) @ AAAI 2026
Core Safety Values for Provably Corrigible Agents AAAI 2026
We introduce the first complete formal solution to corrigibility in the off-switch game, with provable guarantees in multi-step, partially observed environments. Our framework consists of five *structurally separate* utility heads -- deference, switch-access preservation, truthfulness, low-impact behavior via a belief-based extension of Attainable Utility Preservation, and bounded task reward -- combined lexicographically by strict weight gaps. Theorem 1 proves exact single-round corrigibility in the partially observable off-switch game; Theorem 3 extends the guarantee to multi-step, self-spawning agents, showing that even if each head is *learned* to mean-squared error $\varepsilon$ and the planner is $\varepsilon$-sub-optimal, the probability of violating *any* safety property is bounded while still ensuring net human benefit. In contrast to Constitutional AI or RLHF/RLAIF, which merge all norms into one learned scalar, our separation makes obedience and impact-limits provably dominate even when incentives conflict. For settings where adversaries can modify the agent, we prove that deciding whether an arbitrary post-hack agent will ever violate corrigibility is undecidable by reduction to the halting problem, then carve out a finite-horizon "decidable island" where safety can be certified in randomized polynomial time and verified with privacy-preserving, constant-round zero-knowledge proofs.
comment: 14 pages. To appear in AAAI 2026 Machine Ethics Workshop (W37) Proceedings
Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis AAAI 2026
We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,δ\rangle$-agreement, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives, with probability at least $1-δ$. Analyzing communication complexity, we prove an information-theoretic lower bound showing that once either $M$ or $N$ is large enough, no amount of computational power or rationality can avoid intrinsic alignment overheads. This establishes rigorous limits to alignment *itself*, not merely to particular methods, clarifying a "No-Free-Lunch" principle: encoding "all human values" is inherently intractable and must be managed through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we construct explicit algorithms as achievability certificates for alignment under both unbounded and bounded rationality with noisy communication. Even in these best-case regimes, our bounded-agent and sampling analysis shows that with large task spaces ($D$) and finite samples, *reward hacking is globally inevitable*: rare high-loss states are systematically under-covered, implying scalable oversight must target safety-critical slices rather than uniform coverage. Together, these results identify fundamental complexity barriers -- tasks ($M$), agents ($N$), and state-space size ($D$) -- and offer principles for more scalable human-AI collaboration.
comment: 21 pages, 1 figure, 1 table. To appear in AAAI 2026 Special Track on AI Alignment (oral)
S-DAG: A Subject-Based Directed Acyclic Graph for Multi-Agent Heterogeneous Reasoning AAAI 2026
Large Language Models (LLMs) have achieved impressive performance in complex reasoning problems. Their effectiveness highly depends on the specific nature of the task, especially the required domain knowledge. Existing approaches, such as mixture-of-experts, typically operate at the task level; they are too coarse to effectively solve the heterogeneous problems involving multiple subjects. This work proposes a novel framework that performs fine-grained analysis at subject level equipped with a designated multi-agent collaboration strategy for addressing heterogeneous problem reasoning. Specifically, given an input query, we first employ a Graph Neural Network to identify the relevant subjects and infer their interdependencies to generate an \textit{Subject-based Directed Acyclic Graph} (S-DAG), where nodes represent subjects and edges encode information flow. Then we profile the LLM models by assigning each model a subject-specific expertise score, and select the top-performing one for matching corresponding subject of the S-DAG. Such subject-model matching enables graph-structured multi-agent collaboration where information flows from the starting model to the ending model over S-DAG. We curate and release multi-subject subsets of standard benchmarks (MMLU-Pro, GPQA, MedMCQA) to better reflect complex, real-world reasoning tasks. Extensive experiments show that our approach significantly outperforms existing task-level model selection and multi-agent collaboration baselines in accuracy and efficiency. These results highlight the effectiveness of subject-aware reasoning and structured collaboration in addressing complex and multi-subject problems.
comment: Accepted by AAAI 2026
FLARE: Adaptive Multi-Dimensional Reputation for Robust Client Reliability in Federated Learning
Federated learning (FL) enables collaborative model training while preserving data privacy. However, it remains vulnerable to malicious clients who compromise model integrity through Byzantine attacks, data poisoning, or adaptive adversarial behaviors. Existing defense mechanisms rely on static thresholds and binary classification, failing to adapt to evolving client behaviors in real-world deployments. We propose FLARE, an adaptive reputation-based framework that transforms client reliability assessment from binary decisions to a continuous, multi-dimensional trust evaluation. FLARE integrates: (i) a multi-dimensional reputation score capturing performance consistency, statistical anomaly indicators, and temporal behavior, (ii) a self-calibrating adaptive threshold mechanism that adjusts security strictness based on model convergence and recent attack intensity, (iii) reputation-weighted aggregation with soft exclusion to proportionally limit suspicious contributions rather than eliminating clients outright, and (iv) a Local Differential Privacy (LDP) mechanism enabling reputation scoring on privatized client updates. We further introduce a highly evasive Statistical Mimicry (SM) attack, a benchmark adversary that blends honest gradients with synthetic perturbations and persistent drift to remain undetected by traditional filters. Extensive experiments with 100 clients on MNIST, CIFAR-10, and SVHN demonstrate that FLARE maintains high model accuracy and converges faster than state-of-the-art Byzantine-robust methods under diverse attack types, including label flipping, gradient scaling, adaptive attacks, ALIE, and SM. FLARE improves robustness by up to 16% and preserves model convergence within 30% of the non-attacked baseline, while achieving strong malicious-client detection performance with minimal computational overhead. https://github.com/Anonymous0-0paper/FLARE
U2UData+: A Scalable Swarm UAVs Autonomous Flight Dataset for Embodied Long-horizon Tasks AAAI26
Swarm UAV autonomous flight for Embodied Long-Horizon (ELH) tasks is crucial for advancing the low-altitude economy. However, existing methods focus only on specific basic tasks due to dataset limitations, failing in real-world deployment for ELH tasks. ELH tasks are not mere concatenations of basic tasks, requiring handling long-term dependencies, maintaining embodied persistent states, and adapting to dynamic goal shifts. This paper presents U2UData+, the first large-scale swarm UAV autonomous flight dataset for ELH tasks and the first scalable swarm UAV data online collection and algorithm closed-loop verification platform. The dataset is captured by 15 UAVs in autonomous collaborative flights for ELH tasks, comprising 12 scenes, 720 traces, 120 hours, 600 seconds per trajectory, 4.32M LiDAR frames, and 12.96M RGB frames. This dataset also includes brightness, temperature, humidity, smoke, and airflow values covering all flight routes. The platform supports the customization of simulators, UAVs, sensors, flight algorithms, formation modes, and ELH tasks. Through a visual control window, this platform allows users to collect customized datasets through one-click deployment online and to verify algorithms by closed-loop simulation. U2UData+ also introduces an ELH task for wildlife conservation and provides comprehensive benchmarks with 9 SOTA models. U2UData+ can be found at https://fengtt42.github.io/U2UData-2/.
comment: Accepted by AAAI26
Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation AAAI 2026
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.
comment: Accepted as an oral presentation by AAAI 2026
Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs DASFAA 2025
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.
comment: This paper has been ACCEPTED as a FULL PAPER at DASFAA 2025 (Oral)
Sync or Sink: Bounds on Algorithmic Collective Action with Noise and Multiple Groups NeurIPS
Collective action against algorithmic systems provides an opportunity for a small group of individuals to strategically manipulate their data to get specific outcomes, from classification to recommendation models. This effectiveness will invite more growth of this type of coordinated actions, both in the size and the number of distinct collectives. With a small group, however, coordination is key. Currently, there is no formal analysis of how coordination challenges within a collective can impact downstream outcomes, or how multiple collectives may affect each other's success. In this work, we aim to provide guarantees on the success of collective action in the presence of both coordination noise and multiple groups. Our insight is that data generated by either multiple collectives or by coordination noise can be viewed as originating from multiple data distributions. Using this framing, we derive bounds on the success of collective action. We conduct experiments to study the effects of noise on collective action. We find that sufficiently high levels of noise can reduce the success of collective action. In certain scenarios, large noise can sink a collective success rate from $100\%$ to just under $60\%$. We identify potential trade-offs between collective size and coordination noise; for example, a collective that is twice as big but with four times more noise experiencing worse outcomes than the smaller, more coordinated one. This work highlights the importance of understanding nuanced dynamics of strategic behavior in algorithmic systems.
comment: Updated with feedback for NeurIPS workshop
MedBuild AI: An Agent-Based Hybrid Intelligence Framework for Reshaping Agency in Healthcare Infrastructure Planning through Generative Design for Medical Architecture
Globally, disparities in healthcare infrastructure remain stark, leaving countless communities without access to even basic services. Traditional infrastructure planning is often slow and inaccessible, and although many architects are actively delivering humanitarian and aid-driven hospital projects worldwide, these vital efforts still fall far short of the sheer scale and urgency of demand. This paper introduces MedBuild AI, a hybrid-intelligence framework that integrates large language models (LLMs) with deterministic expert systems to rebalance the early design and conceptual planning stages. As a web-based platform, it enables any region with satellite internet access to obtain guidance on modular, low-tech, low-cost medical building designs. The system operates through three agents: the first gathers local health intelligence via conversational interaction; the second translates this input into an architectural functional program through rule-based computation; and the third generates layouts and 3D models. By embedding computational negotiation into the design process, MedBuild AI fosters a reciprocal, inclusive, and equitable approach to healthcare planning, empowering communities and redefining agency in global healthcare architecture.
comment: 24 pages, 16 figures. Submitted to the IJAC Special Issue "Rebalance and Reciprocity"
Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF
Systems and Control (EESS)
Assessing Power Flow Controllability via Variable Line Reactance
The rapid growth of large data center loads and inverter-based generation is increasing the stress on transmission networks, while expanding grid capacity at the required pace remains challenging. Power flow controllers (PFCs) that adjust effective line reactances to redistribute flows are often viewed as an interim solution to improve transmission network utilization. Traditional flexibility metrics and analysis approaches for PFCs focus on a limited number of operating points and contingencies. Towards gaining system-wide insights, this paper introduces a framework to quantify network flow controllability- the extent to which line flows can be reshaped through reactance adjustments. We derive analytical results demonstrating that installing PFCs on all lines enables complete controllability of feasible flow patterns. Building on these, we conduct empirical studies on the IEEE 39-bus system to examine how controllability varies with the number of PFCs and their reactance adjustment range. These analyses employ a mixed-integer linear program to optimize the siting and sizing of PFCs. Finally, we validate findings under AC power flow physics using an optimization routine that steers flows toward desired setpoints.
comment: 5 pages, 3 figures
Economic Linear Quadratic MPC With Non-Unique Optimal Solutions
Asymptotic stability in economic receding horizon control can be obtained under a strict dissipativity assumption, related to positive-definiteness of a so-called rotated cost, and through the use of suitable terminal cost and constraints. In the linear-quadratic case, a common assumption is that the rotated cost is positive definite. The positive semi-definite case has received surprisingly little attention, and the connection to the standard dissipativity assumption has not been investigated. In this paper, we fill this gap by connecting existing results in economic model predictive control with the stability results for the semi-definite case, the properties of the constrained generalized discrete algebraic Riccati equation, and of two optimal control problems. Moreover, we extend recent results relating exponential stability to the choice of terminal cost in the absence of terminal constraints.
GPU-Accelerated Dynamic Programming for Multistage Stochastic Energy Storage Arbitrage
We develop a GPU-accelerated dynamic programming (DP) method for valuing, operating, and bidding energy storage under multistage stochastic electricity prices. Motivated by computational limitations in existing models, we formulate DP backward induction entirely in tensor-based algebraic operations that map naturally onto massively parallel GPU hardware. Our method accommodates general, potentially non-concave payoff structures, by combining a discretized DP formulation with a convexification procedure that produces market-feasible, monotonic price-quantity bid curves. Numerical experiments using ISO-NE real-time prices demonstrate up to a 100x speedup by the proposed GPU-based DP method relative to CPU computation, and an 8,000x speedup compared to a commercial MILP solver, while retaining sub-0.3% optimality gaps compared to exact benchmarks.
comment: This work has been submitted to the IEEE for possible publication
Fast and Certified Bounding of Security-Constrained DCOPF via Interval Bound Propagation
Security-Constrained DC Optimal Power Flow (SC DCOPF) is an important tool for transmission system operators, enabling economically efficient and physically secure dispatch decisions. Although CPU-based commercial solvers (e.g., Gurobi) can efficiently solve SC-DCOPF problems with a reasonable number of security constraints, their performance degrades rapidly as both system size and the number of contingencies grow into thousands, leading to a significant computational burden. This introduces a bottleneck for system operators who seek timely decision-making across a wide range of potential threats. In this paper, we design a computational graph representation of the SC-DCOPF-based market-clearing problem, inspired by the third ARPA-E Grid Optimization Competition (GO3). We are able to quickly bound the optimal solution of large-scale SC-DCOPF problems using a GPU-accelerated Neural Network verification tool called Interval Bound Propagation (IBP). Using IBP, we compute certified bounds with a maximum gap of 6.53% for instances up to 617 buses, while demonstrating scalability on challenging systems up to 8,316 buses with a runtime of approximately 0.07 seconds. These results demonstrate that IBP can provide high-quality solution bounds at very fast speeds, and it can help identify infeasibility drivers in challenging SC-DCOPF instances.
Discrete Event System Modeling of Neuromorphic Circuits
Excitable neuromorphic circuits are physical models of event behaviors: their continuous-time trajectories consist of sequences of discrete events. This paper explores the possibility of extracting a discrete-event model out of the physical continuous-time model. We discuss the potential of this methodology for analysis and design of neuromorphic control systems.
comment: Submitted to ECC2026
NMPC-based Motion Planning with Adaptive Weighting for Dynamic Object Interception
Catching fast-moving objects serves as a benchmark for robotic agility, posing significant coordination challenges for cooperative manipulator systems holding a catcher, particularly due to inherent closed-chain constraints. This paper presents a nonlinear model predictive control (MPC)-based motion planner that bridges high-level interception planning with real-time joint space control, enabling dynamic object interception for systems comprising two cooperating arms. We introduce an Adaptive- Terminal (AT) MPC formulation featuring cost shaping, which contrasts with a simpler Primitive-Terminal (PT) approach relying heavily on terminal penalties for rapid convergence. The proposed AT formulation is shown to effectively mitigate issues related to actuator power limit violations frequently encountered with the PT strategy, yielding trajectories and significantly reduced control effort. Experimental results on a robotic platform with two cooperative arms, demonstrating excellent real time performance, with an average planner cycle computation time of approximately 19 ms-less than half the 40 ms system sampling time. These results indicate that the AT formulation achieves significantly improved motion quality and robustness with minimal computational overhead compared to the PT baseline, making it well-suited for dynamic, cooperative interception tasks.
comment: This work has been submitted to the IFAC World Congress for possible publication. Under review
Robust H-infinity control and worst-case search in constrained parametric space
Standard H-infinity/H2 robust control and analysis tools operate on uncertain parameters assumed to vary independently within prescribed bounds. This paper extends their capabilities in the presence of constraints coupling these parameters and restricting the parametric space. Focusing on the worst-case search, we demonstrate -- based on the theory of upper-C1 functions -- the validity of using standard, readily available smooth optimization algorithms to address this nonsmooth constrained optimization problem. Accordingly, we propose to explore the parametric space with either Monte-Carlo sampling or particle swarm optimization, and to subsequently perform local exploitation with Sequential Quadratic Programming to compute Karush-Kuhn-Tucker points. This worst-case search then enables robust controller synthesis: as in the state-of-art algorithm for standard robust control, identified worst-case configurations are iteratively added to an active set on which a non-smooth multi-models optimization of the controller is performed. The methodology is illustrated on a satellite benchmark with flexible appendages, of order 50 with 43 uncertain parameters. We show that the proposed method largely outperforms Monte-Carlo sampling alone, is able to reliably detect even rare worst-case configurations in minutes on a standard laptop, and that the robust controller optimization converges with less than 10 active configurations. Even in the unconstrained case, the proposed framework complements traditional methods, as it scales to plants with many parameters and states and explores the entire parametric space, albeit without formal guarantees of global optimality.
comment: Preprint
On the Contraction of Excitable Systems
We analyze contraction in conductance-based excitable systems and link it to reliable spike timing. For a Hodgkin-Huxley neuron with synaptic input, we prove the unforced dynamics is incrementally exponentially stable on a compact physiological set. With impulsive inputs, contraction persists under an average dwell-time condition, and for periodic spike trains we derive an explicit lower bound on the inter-impulse period. In the high-rate limit the synapse is effectively held open, the conductance is nearly constant, and self-sustained limit-cycle oscillations can arise, so contraction no longer holds. This continuous-time view explains when spike times extracted by an event detector remain robust across trials, and simulations confirm both regimes.
Spatially Consistent Air-to-Ground Channel Modeling and Simulation via 3D Shadow Projections
We present an approach for spatially-consistent semi-deterministic Air-to-Ground (A2G) channel modeling in Unmanned Aerial Vehicle-assisted networks. We use efficient 3D building shadow projections to determine Line-of-Sight (LOS) regions, enabling fast generation of LOS maps. By integrating LOS-aware deterministic path loss with stochastic shadow fading, the approach produces spatially consistent A2G radio maps suitable for environment- and mobility-aware channel evaluation and performance prediction. Simulation results in ITU-compliant Manhattan grid environments demonstrate the model's ability to reflect key urban propagation characteristics, such as LOS blockage patterns and outage behavior. The proposed approach provides an efficient alternative to ray tracing or fully stochastic models, with particular relevance for user mobility, link planning, and radio map generation in 6G non-terrestrial networks.
comment: International Conference on Computing, Networking and Communications (ICNC 2026)
Techno-Economic Modelling and Component Sizing in Renewable Energy Communities: A Participant Perspective
This article proposes an optimization problem formulation to find the optimal sizes of Photovoltaics (PV) and Battery Energy Storage Systems (BESS) for individual participants within the context of the Renewable Energy Community (REC). An optimization problem considered the dynamic nature of electricity pricing, solar irradiation levels, financial aspects such as capital investment, and operational and maintenance expenditures of PV and BESS. The analysis also considered replacement costs and the efficiency of charging and discharging the BESS unit. We employed Mixed-Integer Non-Linear Programming (MINLP) to determine the optimal system size that maximizes the Net Present Value (NPV) of individual participants. Furthermore, in this study, we used daily representative signals for each season of the year to reduce simulation runtime. The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) was used to extract these signals. Then, these representative signals obtained were used in the optimization problem formulation to reduce simulation time and extend our analysis to a wider planning horizon. In addition, the study introduced fairness by applying the individual marginal contribution method to distribute incentives equitably among REC participants, ensuring that each member benefited from their contribution. A simulation study was conducted using a real demand dataset of five houses located in Roseto Valfortore, a small town and commune in the Foggia Province of the Apulia region in southern Italy, to demonstrate the practical relevance and usefulness of the ideas discussed. Ultimately, the goal of the article was to empower the REC with the knowledge necessary to make informed decisions and shape the future of sustainable energy.
Formulation and Experimental Validation of Price-Based Control of Flexible Prosumers in Distribution Grids with the Alternating Direction Method of Multipliers
This paper describes a method for computing price signals for prosumers, incentivizing them to adjust their consumption according to the constraints of the distribution grids to which they are connected, thereby preventing voltage violations and line congestion. The proposed method leverages an interpretation of the Alternating Direction Method of Multipliers (ADMM), which enables the extraction of a price signal to coordinate the operations of prosumers and the distribution grid's constraints while limiting the sharing of sensitive information among them. The method can be used by Distribution System Operators (DSOs) to dynamically adjust a pre-existing retail electricity tariff (e.g., a constant or time-of-use tariff), thereby triggering grid-support actions from prosumers. The method is validated experimentally in a 9-node low-voltage distribution grid laboratory with real components (lines and controllable power converters). The experiments validate the algorithm's performance in terms of convergence and operational efficiency, demonstrating its viability in a real-life setting.
Transient Stability Analysis of Grid-Forming Converters with Current Limiting Considering Asymmetrical Grid Faults
Under asymmetrical faults, analyzing the transient stability of grid-forming voltage-source converters (GFM-VSCs) becomes essential because their behavior fundamentally differs from that under symmetrical faults. When current limiting is activated under asymmetrical faults, the point-of-common-coupling voltage of a GFM-VSC contains both positive- and negative-sequence components, and the interaction between these components generates a non-negligible negative-sequence-driven active power. However, the transient stability of GFM-VSCs under asymmetrical faults has not been sufficiently investigated, and the influence of negative-sequence-driven active power remains unclear. Accordingly, this letter derives the P-δ curve of a GFM-VSC with an elliptical current limiter under asymmetrical faults by explicitly accounting for negative-sequence effects. This enables a more accurate transient stability assessment when extending conventional symmetrical-fault analyses to asymmetrical conditions. The theoretical analysis is validated by the agreement between the derived P-δ curve and both simulation and experimental results.
Computing Sound and Accurate Upper and Lower Bounds on Hamilton-Jacobi Reachability Value Functions
Hamilton-Jacobi (HJ) reachability analysis is a fundamental tool for safety verification and control synthesis for nonlinear-control systems. Classical HJ reachability analysis methods discretize the continuous state space and solve the HJ partial differential equation over a grid, but these approaches do not account for discretization errors and can under-approximate backward reachable sets, which represent unsafe sets of states. We present a framework for computing sound upper and lower bounds on the HJ value functions via value iteration over grids. Additionally, we develop a refinement algorithm that splits cells that were not possible to classify as safe or unsafe given the computed bounds. This algorithm enables computing accurate over-approximations of backward reachable sets even when starting from coarse grids. Finally, we validate the effectiveness of our method in two case studies.
Nonholonomic Robot Parking by Feedback -- Part II: Nonmodular, Inverse Optimal, Adaptive, Prescribed/Fixed-Time and Safe Designs
For the unicycle system, we provide constructive methods for the design of feedback laws that have one or more of the following properties: being nonmodular and globally exponentially stabilizing, inverse optimal, robust to arbitrary decrease or increase of input coefficients, adaptive, prescribed/fixed-time stabilizing, and safe (ensuring the satisfaction of state constraints). Our nonmodular backstepping feedbacks are implementable with either unidirectional or bidirectional velocity actuation. Thanks to constructing families of strict CLFs for the unicycle, we introduce a general design framework and families of feedback laws for the unicycle, which are inverse optimal with respect to meaningful costs. These inverse optimal feedback laws are endowed with robustness to actuator uncertainty and arbitrarily low input saturation due to the unicycle's driftlessness. Besides ensuring robustness to unknown input coefficients, we also develop adaptive laws for these unknown coefficients, enabling the achievement of good transient performance with lower initial control effort. Additionally, we develop controllers that achieve stabilization within a user-specified time horizon using two systematic methods: time-dilated prescribed-time design with smooth-in-time convergence to zero of both the states and the inputs and homogeneity-based fixed-time control that provides an explicit bound on the settling time. Finally, with a nonovershooting design we guarantee strictly forward motion without curb violation. This article, along with its Part I, lays a broad constructive design foundation for stabilization of the nonholonomic unicycle.
comment: 16 pages
Nonholonomic Robot Parking by Feedback -- Part I: Modular Strict CLF Designs
It has been known in the robotics literature since about 1995 that, in polar coordinates, the nonholonomic unicycle is asymptotically stabilizable by smooth feedback, even globally. We introduce a modular design framework that selects the forward velocity to decouple the radial coordinate, allowing the steering subsystem to be stabilized independently. Within this structure, we develop families of feedback laws using passivity, backstepping, and integrator forwarding. Each law is accompanied by a strict control Lyapunov function, including barrier variants that enforce angular constraints. These strict CLFs provide constructive class KL convergence estimates and enable eigenvalue assignment at the target equilibrium. The framework generalizes and extends prior modular and nonmodular approaches, while preparing the ground for inverse optimal and adaptive redesigns in the sequel paper.
Data-driven control of network systems: Accounting for communication adaptivity and security
Over the past decades, network systems have surged in significance, driven by merging technological advancements. These systems play pivotal roles in diverse applications ranging from autonomous driving to smart grids, yet they confront complexities arising from network imperfections and intricate interconnections, which challenge system identification, controller design, as well as stability and performance analysis. This survey provides an in-depth exploration of network systems from most recent data-driven perspective, across four key issues: communication delay, aperiodic sampling, network security, and distributed configurations. By doing so, this survey enhances our comprehension of the challenges and theoretical innovations within the realm of network systems.
comment: to be published in Science China Information Sciences
Inverse optimal design of input-to-state stabilizing homogeneous controllers for nonlinear homogeneous systems
This work studies the inverse optimality of input-to-state stabilizing controllers with input-output stability guarantees for nonlinear homogeneous systems. We formulate a new inverse optimal control problem, where the cost functional incorporates penalties on the output, in addition to the state, control and disturbance as in current related works. One benefit of penalizing the output is that the resulting inverse optimal controllers can ensure both input-to-state stability and input-output stability. We propose a technique for constructing the corresponding meaningful cost functional by using homogeneity properties, and provide sufficient conditions on solving the inverse optimal gain assignment problem. We show that homogeneous stabilizability of homogeneous systems in the case without disturbance is sufficient for the solvability of inverse optimal gain assignment problem for homogeneous systems.
comment: Accepted for Publication in Automatica
GeoShield: Byzantine Fault Detection and Recovery for Geo-Distributed Real-Time Cyber-Physical Systems
Large-scale cyber-physical systems (CPS), such as railway control systems and smart grids, consist of geographically distributed subsystems that are connected via unreliable, asynchronous inter-region networks. Their scale and distribution make them especially vulnerable to faults and attacks. Unfortunately, existing fault-tolerant methods either consume excessive resources or provide only eventual guarantees, making them unsuitable for real-time resource-constrained CPS. We present GeoShield, a resource-efficient solution for defending geo-distributed CPS against Byzantine faults. GeoShield leverages the property that CPS are designed to tolerate brief disruptions and maintain safety, as long as they recover (i.e., resume normal operations or transition to a safe mode) within a bounded amount of time following a fault. Instead of masking faults, it detects them and recovers the system within bounded time, thus guaranteeing safety with much fewer resources. GeoShield introduces protocols for Byzantine fault-resilient network measurement and inter-region omission fault detection that proactively detect malicious message delays, along with recovery mechanisms that guarantee timely recovery while maximizing operational robustness. It is the first bounded-time recovery solution that operates effectively under unreliable networks without relying on trusted hardware. Evaluations using real-world case studies show that it significantly outperforms existing methods in both effectiveness and resource efficiency.
An Interpretable Federated Learning Control Framework Design for Smart Grid Resilience
Power systems remain highly vulnerable to disturbances and cyber-attacks, underscoring the need for resilient and adaptive control strategies. In this work, we investigate a data-driven Federated Learning Control (FLC) framework for transient stability resilience under cyber-physical disturbances. The FLC employs interpretable neural controllers based on the Chebyshev Kolmogorov-Arnold Network (ChebyKAN), trained on a shared centralized control policy and deployed for distributed execution. Simulation results on the IEEE 39-bus New England system show that the proposed FLC consistently achieves faster stabilization than distributed baselines at moderate control levels (10\%--60\%), highlighting its potential as a scalable, resilient, and interpretable learning-based control solution for modern power grids.
comment: Accepted for the IEEE T&D 2026 conference
DustNet: A Wireless Network of Ultrasonic Neural Implants
Spatially distributed peripheral nerve recordings can be used to reconstruct motor intention and improve natural control of prosthetics in patients with limb deficiencies. However, many existing clinical solutions rely on percutaneous wires to access peripheral nerves; these sites are prone to infection and electrode degradation, preventing chronic use. To enable longterm recording of deeply-seated peripheral nerves, this paper presents DustNet: a network of ultrasonically-powered neural recording implants capable of supporting up to 8 simultaneously recording nodes over a single ultrasound link. To enable high throughput multi-implant communication, DustNet implements a time-division multiple-access (TDMA) protocol with up to 16-level amplitude modulation of the ultrasound backscatter that achieves up to 4x higher data rates than traditional on-off keying methods. Each neural implant consists of a 0.7x0.7x0.7 mm^3 piezoceramic transducer, a 10 nF off-chip capacitor, and an IC mounted on a flexible PCB. The implant IC was fabricated in a 28nm CMOS process and occupies an area of 0.43 mm^2. System functionality was verified within FDA power limits at 90mm depth, achieving a maximum data rate of 400 kb/s at 2 MHz ultrasound carrier frequency, with each implant transmitting uplink data at 50 kb/s and dissipating just 7 μW of power
Cyber-Resilient Data-Driven Event-Triggered Secure Control for Autonomous Vehicles Under False Data Injection Attacks
This paper proposes a cyber-resilient secure control framework for autonomous vehicles (AVs) subject to false data injection (FDI) threats as actuator attacks. The framework integrates data-driven modeling, event-triggered communication, and fractional-order sliding mode control (FSMC) to enhance the resilience against adversarial interventions. A dynamic model decomposition (DMD)-based methodology is employed to extract the lateral dynamics from real-world data, eliminating the reliance on conventional mechanistic modeling. To optimize communication efficiency, an event-triggered transmission scheme is designed to reduce the redundant transmissions while ensuring system stability. Furthermore, an extended state observer (ESO) is developed for real-time estimation and mitigation of actuator attack effects. Theoretical stability analysis, conducted using Lyapunov methods and linear matrix inequality (LMI) formulations, guarantees exponential error convergence. Extensive simulations validate the proposed event-triggered secure control framework, demonstrating substantial improvements in attack mitigation, communication efficiency, and lateral tracking performance. The results show that the framework effectively counteracts actuator attacks while optimizing communication-resource utilization, making it highly suitable for safety-critical AV applications.
comment: 14 pages, 8 figures
Development of a velocity form for a class of RNNs, with application to offset-free nonlinear MPC design
This paper addresses the offset-free tracking problem for nonlinear systems described by a class of recurrent neural networks (RNNs). To compensate for constant disturbances and guarantee offset-free tracking in the presence of model-plant mismatches, we propose a novel reformulation of the RNN model in velocity form. Conditions based on linear matrix inequalities are then derived for the design of a nonlinear state observer and a nonlinear state-feedback controller, ensuring global or regional closed-loop stability of the origin of the velocity form dynamics. Moreover, to handle input and output constraints, a theoretically sound offset-free nonlinear model predictive control algorithm is developed. The algorithm exploits the velocity form model as the prediction model and the static controller as an auxiliary law for the definition of the terminal ingredients. Simulations on a pH-neutralisation process benchmark demonstrate the effectiveness of the proposed approach.
comment: 14 pages, 3 figures, under review
Rapid and Accurate Changepoint Detection of Power System Forced Oscillations
This paper describes a new approach for using changepoint detection (CPD) to estimate the starting and stopping times of a forced oscillation (FO) in measured power system data. As with a previous application of CPD to this problem, the pruned exact linear time (PELT) algorithm is used. However, instead of allowing PELT to automatically tune its penalty parameter, a method of manually providing it is presented that dramatically reduces computation time without sacrificing accuracy. Additionally, the new algorithm requires fewer input parameters and provides a formal, data-driven approach to setting the minimum FO segment length to consider as troublesome for an electromechanical mode meter. A low-order ARMAX representation of the minniWECC model is used to test the approach, where a 98\% reduction in computation time is enjoyed with high estimation accuracy.
comment: Currently under review for the proceedings of the 2026 IEEE Power and Energy Society General Meeting (PESGM26)
OODTE: A Differential Testing Engine for the ONNX Optimizer
With over 760 stars on GitHub and being part of the official ONNX repository, the ONNX Optimizer is the default tool for applying graph-based optimizations to ONNX models. Despite its widespread use, its ability to maintain model accuracy during optimization has not been thoroughly investigated. In this work, we present OODTE, a utility designed to automatically and comprehensively evaluate the correctness of the ONNX Optimizer. OODTE adopts a straightforward yet powerful differential testing and evaluation methodology, which can be readily adapted for use with other compiler optimizers. Specifically, OODTE takes a collection of ONNX models, applies optimizations, and executes both the original and optimized versions across a user-defined input set, automatically capturing any issues encountered during optimization. When discrepancies in accuracy arise, OODTE iteratively isolates the responsible optimization pass by repeating the process at a finer granularity. We applied OODTE to 130 well-known models from the official ONNX Model Hub, spanning diverse tasks including classification, object detection, semantic segmentation, text summarization, question answering, and sentiment analysis. Our evaluation revealed that 9.2% of the model instances either caused the optimizer to crash or led to the generation of invalid models using default optimization strategies. Additionally, 30% of classification models and 16.6% of object detection and segmentation models exhibited differing outputs across original and optimized versions, whereas models focused on text-related tasks were generally robust to optimization. OODTE uncovered 15 issues-14 previously unknown-affecting 9 of 47 optimization passes and the optimizer overall. All issues were reported to the ONNX Optimizer team. OODTE offers a simple but effective framework for validating AI model optimizers, applicable beyond the ONNX ecosystem.
comment: 12 pages, 2 figures, 4 tables
Artifacts Are Not Noise: Embodied Resonance and the 70% Signal Loss in Conventional EEG
Current AI systems excel at pattern recognition but fail at causal reasoning. We argue this is not an engineering limitation but reveals something fundamental about the nature of understanding itself. We propose that causal cognition requires a specific physical architecture: stochastic, coupled oscillators with whole-system coordination. To test this, we analyzed high-density EEG (64 channels, 10 subjects, 500 plus trials) from a P300 target recognition task. We computed the Kuramoto Order Parameter (R) to measure global phase synchronization and compared it to standard voltage (ERP) and coherence (ITC) metrics. Four findings establish the framework. Phase and voltage are globally independent (r of 0.048) yet strongly trial-coupled (r of 0.590), proving R captures hidden cognitive structure. Voltage precedes phase by 293 ms, revealing sequential computation. Frequency decomposition shows Theta (169 ms), Alpha (286 ms), and Beta (777 ms) cascade. Our metric is distinct from standard ITC (r of 0.155). Then we tested the standard assumption. Conventional artifact rejection removes eye movements, muscle activity, and autonomic signals before analysis. The standard model assumes cognition is neural activity plus noise. We ran the identical analysis with and without rejection. Removing artifacts reduced the trial-level correlation threefold (from 0.590 to 0.195). Target discrimination reversed sign (from positive 0.6 percent to negative 0.4 percent). What we discard as noise is 70 percent of the signal. This falsifies the standard model. Cognition is not isolated neural computation. It is whole-body phase synchronization spanning neural, muscular, and autonomic systems. For AI, the implications are direct: embodied sensorimotor integration is not optional. It is the substrate that makes understanding possible.
comment: v3: Major revision. Adds ICA vs. raw data comparison. Finds artifact rejection masks the core correlation (r=0.59 -> r=0.19), supporting an embodied cognition framework. R vs. ITC comparison added to main text. Expanded discussion on methodology, embodied resonance, & AI. Abstract & theory updated based on new data & feedback
Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
Efficient Discovery of Actual Causality in Stochastic Systems
Identifying the actual cause of events in engineered systems is a fundamental challenge in system analysis. Finding such causes becomes more challenging in the presence of noise and stochastic behavior in real-world systems. In this paper, we adopt the notion of probabilistic actual causality by Fenton-Glynn, which is a probabilistic extension of Halpern and Pearl's actual causality, and propose a novel method to formally reason about causal effect of events in stochastic systems. We (1) formulate the discovery of probabilistic actual causes in computing systems as an SMT problem, and (2) address the scalability challenges by introducing an abstraction-refinement technique that improves efficiency by up to 95%. We demonstrate the effectiveness of our approach through three case studies, identifying probabilistic actual causes of safety violations in (1) the Mountain Car problem, (2) the Lunar Lander benchmark, and (3) MPC controller for an F-16 autopilot simulator.
Density control of multi-agent swarms via bio-inspired leader-follower plasticity
The design of control systems for the spatial self-organization of mobile agents is an open challenge across several engineering domains, including swarm robotics and synthetic biology. Here, we propose a bio-inspired leader-follower solution, which is aware of energy constraints of mobile agents and is apt to deal with large swarms. Akin to many natural systems, control objectives are formulated for the entire collective, and leaders and followers are allowed to plastically switch their role in time. We frame a density control problem, modeling the agents' population via a system of nonlinear partial differential equations. This approach allows for a compact description that inherently avoids the curse of dimensionality and improves analytical tractability. We derive analytical guarantees for the existence of desired steady-state solutions and their local stability for one-dimensional and higher-dimensional problems. We numerically validate our control methodology, offering support to the effectiveness, robustness, and versatility of our proposed bio-inspired control strategy.
Flexibility aggregation via set projection for distribution grids with multiple interconnections
With the increasing number of flexible energy devices in distribution grids, coordination between Transmission System Operators (TSOs) and Distribution System Operators (DSOs) becomes critical for optimal system operation. One form of coordination is to solve the overall system operation problem in a hierarchical way, computing Feasible Operational Regions (FORs) for the interconnection between TSO/DSO. Most methods for computing FORs rely on the assumption of only one interconnection point between TSO and DSOs, which is often violated in practice. In this work, we propose a method for computing FORs in distribution grids with multiple interconnection points to the transmission grid. We test our method in a grid with two interconnecting points and analyze the properties of the resulting high-dimensional FOR from a power systems perspective.
Uniform Sampling from the Reachable Set Using Optimal Transport
Estimating the reachable set of a dynamical system is a fundamental problem in control theory, particularly when control inputs are bounded. Direct simulation using randomly sampled admissible controls often leads to trajectories that cluster near attractors, resulting in poor coverage of the reachable set. To achieve a more uniform distribution of terminal states, we formulate the problem within an Optimal Transport (OT) framework. In this setting, the goal is to steer the system so that the final state distribution, determined by the chosen controls and initial conditions, matches a desired target distribution. Enforcing this condition exactly is not possible since the reachable set is not known. So we introduce an $L_2$-norm based regularization of the terminal distribution that relaxes the constraint while promoting uniform coverage. The resulting formulation can be approximated by a finite-dimensional, particle-based optimal control problem with kernel-coupled terminal cost. We show that this approach converges to the original formulation and demonstrate through numerical examples that it provides significantly more uniform reachable-set sampling than random control strategies.
Robust Adaptive Safe Robotic Grasping with Tactile Sensing
Robotic grasping requires safe force interaction to prevent a grasped object from being damaged or slipping out of the hand. In this vein, this paper proposes an integrated framework for grasping with formal safety guarantees based on Control Barrier Functions. We first design contact force and force closure constraints, which are enforced by a safety filter to accomplish safe grasping with finger force control. For sensory feedback, we develop a technique to estimate contact point, force, and torque from tactile sensors at each finger. We verify the framework with various safety filters in a numerical simulation under a two-finger grasping scenario. We then experimentally validate the framework by grasping multiple objects, including fragile lab glassware, in a real robotic setup, showing that safe grasping can be successfully achieved in the real world. We evaluate the performance of each safety filter in the context of safety violation and conservatism, and find that disturbance observer-based control barrier functions provide superior performance for safety guarantees with minimum conservatism.
comment: This paper was accepted to ECC 2025. The demonstration video is available at https://youtu.be/Cuj47mkXRdg
Minimizing Conservatism in Safety-Critical Control for Input-Delayed Systems via Adaptive Delay Estimation
Input delays affect systems such as teleoperation and wirelessly autonomous connected vehicles, and may lead to safety violations. One promising way to ensure safety in the presence of delay is to employ control barrier functions (CBFs), and extensions thereof that account for uncertainty: delay adaptive CBFs (DaCBFs). This paper proposes an online adaptive safety control framework for reducing the conservatism of DaCBFs. The main idea is to reduce the maximum delay estimation error bound so that the state prediction error bound is monotonically non-increasing. To this end, we first leverage the estimation error bound of a disturbance observer to bound the state prediction error. Second, we design two nonlinear programs to update the maximum delay estimation error bound satisfying the prediction error bound, and subsequently update the maximum state prediction error bound used in DaCBFs. The proposed method ensures the maximum state prediction error bound is monotonically non-increasing, yielding less conservatism in DaCBFs. We verify the proposed method in an automated connected truck application, showing that the proposed method reduces the conservatism of DaCBFs.
comment: This paper was accepted to ECC 2025
Threshold dynamics in time-delay systems: polynomial $β$-control in a pressing process and connections to blow-up
This paper addresses a press control problem in straightening machines with small time delays due to system communication. To handle this, we propose a generalized $β$-control method, which replaces conventional linear velocity control with a polynomial of degree $β\ge 1$. The resulting model is a delay differential equation (DDE), for which we derive basic properties through nondimensionalization and analysis. Numerical experiments suggest the existence of a threshold initial velocity separating overshoot and non-overshoot dynamics, which we formulate as a conjecture. Based on this, we design a control algorithm under velocity constraints and confirm its effectiveness. We also highlight a connection between threshold behavior and finite-time blow-up in DDEs. This study provides a practical control strategy and contributes new insights into threshold dynamics and blow-up phenomena in delay systems.
comment: 11 pages, 9 figures
Agentic AI Systems in Electrical Power Systems Engineering: Current State-of-the-Art and Challenges
Agentic AI systems have recently emerged as a critical and transformative approach in artificial intelligence, offering capabilities that extend far beyond traditional AI agents and contemporary generative AI models. This rapid evolution necessitates a clear conceptual and taxonomical understanding to differentiate this new paradigm. Our paper addresses this gap by providing a comprehensive review that establishes a precise definition and taxonomy for "agentic AI," with the aim of distinguishing it from previous AI paradigms. The concepts are gradually introduced, starting with a highlight of its diverse applications across the broader field of engineering. The paper then presents four detailed, state-of-the-art use case applications specifically within electrical engineering. These case studies demonstrate practical impact, ranging from an advanced agentic framework for streamlining complex power system studies and benchmarking to a novel system developed for survival analysis of dynamic pricing strategies in battery swapping stations. Finally, to ensure robust deployment, the paper provides detailed failure mode investigations. From these findings, we derive actionable recommendations for the design and implementation of safe, reliable, and accountable agentic AI systems, offering a critical resource for researchers and practitioners.
Nonlinear Control of a Quadrotor UAV Using Backstepping-Based Sliding Mode Technique
This paper presents the development of a sliding mode controller using the backstepping approach. The controller is employed to synthesize tracking errors and Lyapunov functions. A novel state-space representation is formulated by incorporating the dynamics of the quadrotor and accounting for non-holonomic constraints. The proposed sliding mode controller effectively addresses system nonlinearities and improves tracking of predefined trajectories. Simulation results are presented graphically to demonstrate the controller's performance.
comment: The paper contains an error in the derivation of the backstepping-based sliding mode control law. This affects the stability analysis in Section III-B and leads to incorrect simulation results in Section IV. The conclusions are therefore invalid
Ultra-Low Insertion Loss Stepped Impedance Resonator Topology for HTSC RF Front-End
We present the design, fabrication, and measurement of a high-temperature superconductor (HTSC) Stepped Impedance Resonator (SIR) band-pass filter for S-band applications, and its incorporation into a cryogenic receiver cascade. The 11-pole filter, implemented in YBa2Cu3O(7-x) (YBCO) thin films on sapphire, exhibits an ultra-low insertion loss (IL) of -0.1~dB, a sharp roll-off of 100~MHz, and a rejection level exceeding --80~dB. These measured results represent, to the best of our knowledge, the lowest reported IL for an S-band filter with this number of poles. When integrated with a cryogenic low-noise amplifier (LNA), system-level simulations and measurements predict a receiver noise figure (NF) of 0.34~dB at 3.39~GHz, enabling a 20% increase in radar detection range compared with conventional copper-based front ends. This work demonstrates the feasibility of practical HTSC-based RF front-ends for next-generation communication and radar systems.
Robotics
$π^{*}_{0.6}$: a VLA That Learns From Experience
We study how vision-language-action (VLA) models can improve through real-world deployments via reinforcement learning (RL). We present a general-purpose method, RL with Experience and Corrections via Advantage-conditioned Policies (RECAP), that provides for RL training of VLAs via advantage conditioning. Our method incorporates heterogeneous data into the self-improvement process, including demonstrations, data from on-policy collection, and expert teleoperated interventions provided during autonomous execution. RECAP starts by pre-training a generalist VLA with offline RL, which we call $π^{*}_{0.6}$, that can then be specialized to attain high performance on downstream tasks through on-robot data collection. We show that the $π^{*}_{0.6}$ model trained with the full RECAP method can fold laundry in real homes, reliably assemble boxes, and make espresso drinks using a professional espresso machine. On some of the hardest tasks, RECAP more than doubles task throughput and roughly halves the task failure rate.
HMC: Learning Heterogeneous Meta-Control for Contact-Rich Loco-Manipulation
Learning from real-world robot demonstrations holds promise for interacting with complex real-world environments. However, the complexity and variability of interaction dynamics often cause purely positional controllers to struggle with contacts or varying payloads. To address this, we propose a Heterogeneous Meta-Control (HMC) framework for Loco-Manipulation that adaptively stitches multiple control modalities: position, impedance, and hybrid force-position. We first introduce an interface, HMC-Controller, for blending actions from different control profiles continuously in the torque space. HMC-Controller facilitates both teleoperation and policy deployment. Then, to learn a robust force-aware policy, we propose HMC-Policy to unify different controllers into a heterogeneous architecture. We adopt a mixture-of-experts style routing to learn from large-scale position-only data and fine-grained force-aware demonstrations. Experiments on a real humanoid robot show over 50% relative improvement vs. baselines on challenging tasks such as compliant table wiping and drawer opening, demonstrating the efficacy of HMC.
Robust Verification of Controllers under State Uncertainty via Hamilton-Jacobi Reachability Analysis
As perception-based controllers for autonomous systems become increasingly popular in the real world, it is important that we can formally verify their safety and performance despite perceptual uncertainty. Unfortunately, the verification of such systems remains challenging, largely due to the complexity of the controllers, which are often nonlinear, nonconvex, learning-based, and/or black-box. Prior works propose verification algorithms that are based on approximate reachability methods, but they often restrict the class of controllers and systems that can be handled or result in overly conservative analyses. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for general nonlinear systems that can compute optimal reachable sets under worst-case system uncertainties; however, its application to perception-based systems is currently underexplored. In this work, we propose RoVer-CoRe, a framework for the Robust Verification of Controllers via HJ Reachability. To the best of our knowledge, RoVer-CoRe is the first HJ reachability-based framework for the verification of perception-based systems under perceptual uncertainty. Our key insight is to concatenate the system controller, observation function, and the state estimation modules to obtain an equivalent closed-loop system that is readily compatible with existing reachability frameworks. Within RoVer-CoRe, we propose novel methods for formal safety verification and robust controller design. We demonstrate the efficacy of the framework in case studies involving aircraft taxiing and NN-based rover navigation. Code is available at the link in the footnote.
comment: Submitted to the 8th Annual Learning for Dynamics & Control Conference
Co-Me: Confidence-Guided Token Merging for Visual Geometric Transformers
We propose Confidence-Guided Token Merging (Co-Me), an acceleration mechanism for visual geometric transformers without retraining or finetuning the base model. Co-Me distilled a light-weight confidence predictor to rank tokens by uncertainty and selectively merge low-confidence ones, effectively reducing computation while maintaining spatial coverage. Compared to similarity-based merging or pruning, the confidence signal in Co-Me reliably indicates regions emphasized by the transformer, enabling substantial acceleration without degrading performance. Co-Me applies seamlessly to various multi-view and streaming visual geometric transformers, achieving speedups that scale with sequence length. When applied to VGGT and MapAnything, Co-Me achieves up to $11.3\times$ and $7.2\times$ speedup, making visual geometric transformers practical for real-time 3D perception and reconstruction.
NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-based Preference Rewards
Vision--language--action (VLA) models have recently shown promising performance on a variety of embodied tasks, yet they still fall short in reliability and generalization, especially when deployed across different embodiments or real-world environments. In this work, we introduce NORA-1.5, a VLA model built from the pre-trained NORA backbone by adding to it a flow-matching-based action expert. This architectural enhancement alone yields substantial performance gains, enabling NORA-1.5 to outperform NORA and several state-of-the-art VLA models across both simulated and real-world benchmarks. To further improve robustness and task success, we develop a set of reward models for post-training VLA policies. Our rewards combine (i) an action-conditioned world model (WM) that evaluates whether generated actions lead toward the desired goal, and (ii) a deviation-from-ground-truth heuristic that distinguishes good actions from poor ones. Using these reward signals, we construct preference datasets and adapt NORA-1.5 to target embodiments through direct preference optimization (DPO). Extensive evaluations show that reward-driven post-training consistently improves performance in both simulation and real-robot settings, demonstrating significant VLA model-reliability gains through simple yet effective reward models. Our findings highlight NORA-1.5 and reward-guided post-training as a viable path toward more dependable embodied agents suitable for real-world deployment.
comment: https://declare-lab.github.io/nora-1.5
Gallant: Voxel Grid-based Humanoid Locomotion and Local-navigation across 3D Constrained Terrains
Robust humanoid locomotion requires accurate and globally consistent perception of the surrounding 3D environment. However, existing perception modules, mainly based on depth images or elevation maps, offer only partial and locally flattened views of the environment, failing to capture the full 3D structure. This paper presents Gallant, a voxel-grid-based framework for humanoid locomotion and local navigation in 3D constrained terrains. It leverages voxelized LiDAR data as a lightweight and structured perceptual representation, and employs a z-grouped 2D CNN to map this representation to the control policy, enabling fully end-to-end optimization. A high-fidelity LiDAR simulation that dynamically generates realistic observations is developed to support scalable, LiDAR-based training and ensure sim-to-real consistency. Experimental results show that Gallant's broader perceptual coverage facilitates the use of a single policy that goes beyond the limitations of previous methods confined to ground-level obstacles, extending to lateral clutter, overhead constraints, multi-level structures, and narrow passages. Gallant also firstly achieves near 100% success rates in challenging scenarios such as stair climbing and stepping onto elevated platforms through improved end-to-end optimization.
Active Matter as a framework for living systems-inspired Robophysics
Robophysics investigates the physical principles that govern living-like robots operating in complex, realworld environments. Despite remarkable technological advances, robots continue to face fundamental efficiency limitations. At the level of individual units, locomotion remains a challenge, while at the collective level, robot swarms struggle to achieve shared purpose, coordination, communication, and cost efficiency. This perspective article examines the key challenges faced by bio-inspired robotic collectives and highlights recent research efforts that incorporate principles from active-matter physics and biology into the modeling and design of robot swarms.
Is Your VLM for Autonomous Driving Safety-Ready? A Comprehensive Benchmark for Evaluating External and In-Cabin Risks
Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
Masked IRL: LLM-Guided Reward Disambiguation from Demonstrations and Language
Robots can adapt to user preferences by learning reward functions from demonstrations, but with limited data, reward models often overfit to spurious correlations and fail to generalize. This happens because demonstrations show robots how to do a task but not what matters for that task, causing the model to focus on irrelevant state details. Natural language can more directly specify what the robot should focus on, and, in principle, disambiguate between many reward functions consistent with the demonstrations. However, existing language-conditioned reward learning methods typically treat instructions as simple conditioning signals, without fully exploiting their potential to resolve ambiguity. Moreover, real instructions are often ambiguous themselves, so naive conditioning is unreliable. Our key insight is that these two input types carry complementary information: demonstrations show how to act, while language specifies what is important. We propose Masked Inverse Reinforcement Learning (Masked IRL), a framework that uses large language models (LLMs) to combine the strengths of both input types. Masked IRL infers state-relevance masks from language instructions and enforces invariance to irrelevant state components. When instructions are ambiguous, it uses LLM reasoning to clarify them in the context of the demonstrations. In simulation and on a real robot, Masked IRL outperforms prior language-conditioned IRL methods by up to 15% while using up to 4.7 times less data, demonstrating improved sample-efficiency, generalization, and robustness to ambiguous language. Project page: https://MIT-CLEAR-Lab.github.io/Masked-IRL and Code: https://github.com/MIT-CLEAR-Lab/Masked-IRL
Aerial Assistance System for Automated Firefighting during Turntable Ladder Operations
Fires in industrial facilities pose special challenges to firefighters, e.g., due to the sheer size and scale of the buildings. The resulting visual obstructions impair firefighting accuracy, further compounded by inaccurate assessments of the fire's location. Such imprecision simultaneously increases the overall damage and prolongs the fire-brigades operation unnecessarily. We propose an automated assistance system for firefighting using a motorized fire monitor on a turntable ladder with aerial support from an unmanned aerial vehicle (UAV). The UAV flies autonomously within an obstacle-free flight funnel derived from geodata, detecting and localizing heat sources. An operator supervises the operation on a handheld controller and selects a fire target in reach. After the selection, the UAV automatically plans and traverses between two triangulation poses for continued fire localization. Simultaneously, our system steers the fire monitor to ensure the water jet reaches the detected heat source. In preliminary tests, our assistance system successfully localized multiple heat sources and directed a water jet towards the fires.
comment: 7 pages, Presented at IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Galway, Ireland, 2025
Enhancing End-to-End Autonomous Driving with Risk Semantic Distillaion from VLM
The autonomous driving (AD) system has exhibited remarkable performance in complex driving scenarios. However, generalization is still a key limitation for the current system, which refers to the ability to handle unseen scenarios or unfamiliar sensor configurations.Related works have explored the use of Vision-Language Models (VLMs) to address few-shot or zero-shot tasks. While promising, these methods introduce a new challenge: the emergence of a hybrid AD system, where two distinct systems are used to plan a trajectory, leading to potential inconsistencies. Alternative research directions have explored Vision-Language-Action (VLA) frameworks that generate control actions from VLM directly. However, these end-to-end solutions demonstrate prohibitive computational demands. To overcome these challenges, we introduce Risk Semantic Distillation (RSD), a novel framework that leverages VLMs to enhance the training of End-to-End (E2E) AD backbones. By providing risk attention for key objects, RSD addresses the issue of generalization. Specifically, we introduce RiskHead, a plug-in module that distills causal risk estimates from Vision-Language Models into Bird's-Eye-View (BEV) features, yielding interpretable risk-attention maps.This approach allows BEV features to learn richer and more nuanced risk attention representations, which directly enhance the model's ability to handle spatial boundaries and risky objects.By focusing on risk attention, RSD aligns better with human-like driving behavior, which is essential to navigate in complex and dynamic environments. Our experiments on the Bench2Drive benchmark demonstrate the effectiveness of RSD in managing complex and unpredictable driving conditions. Due to the enhanced BEV representations enabled by RSD, we observed a significant improvement in both perception and planning capabilities.
Advancing Minimally Invasive Precision Surgery in Open Cavities with Robotic Flexible Endoscopy
Flexible robots hold great promise for enhancing minimally invasive surgery (MIS) by providing superior dexterity, precise control, and safe tissue interaction. Yet, translating these advantages into endoscopic interventions within open cavities remains challenging. The lack of anatomical constraints and the inherent flexibility of such devices complicate their control, while the limited field of view of endoscopes restricts situational awareness. We present a robotic platform designed to overcome these challenges and demonstrate its potential in fetoscopic laser coagulation, a complex MIS procedure typically performed only by highly experienced surgeons. Our system combines a magnetically actuated flexible endoscope with teleoperated and semi-autonomous navigation capabilities for performing targeted laser ablations. To enhance surgical awareness, the platform reconstructs real-time mosaics of the endoscopic scene, providing an extended and continuous visual context. The ability of this system to address the key limitations of MIS in open spaces is validated in vivo in an ovine model.
Towards A Catalogue of Requirement Patterns for Space Robotic Missions
In the development of safety and mission-critical systems, including autonomous space robotic missions, complex behaviour is captured during the requirements elicitation phase. Requirements are typically expressed using natural language which is ambiguous and not amenable to formal verification methods that can provide robust guarantees of system behaviour. To support the definition of formal requirements, specification patterns provide reusable, logic-based templates. A suite of robotic specification patterns, along with their formalisation in NASA's Formal Requirements Elicitation Tool (FRET) already exists. These pre-existing requirement patterns are domain agnostic and, in this paper we explore their applicability for space missions. To achieve this we carried out a literature review of existing space missions and formalised their requirements using FRET, contributing a corpus of space mission requirements. We categorised these requirements using pre-existing specification patterns which demonstrated their applicability in space missions. However, not all of the requirements that we formalised corresponded to an existing pattern so we have contributed 5 new requirement specification patterns as well as several variants of the existing and new patterns. We also conducted an expert evaluation of the new patterns, highlighting their benefits and limitations.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
Achieving Safe Control Online through Integration of Harmonic Control Lyapunov-Barrier Functions with Unsafe Object-Centric Action Policies
We propose a method for combining Harmonic Control Lyapunov-Barrier Functions (HCLBFs) derived from Signal Temporal Logic (STL) specifications with any given robot policy to turn an unsafe policy into a safe one with formal guarantees. The two components are combined via HCLBF-derived safety certificates, thus producing commands that preserve both safety and task-driven behavior. We demonstrate with a simple proof-of-concept implementation for an object-centric force-based policy trained through reinforcement learning for a movement task of a stationary robot arm that is able to avoid colliding with obstacles on a table top after combining the policy with the safety constraints. The proposed method can be generalized to more complex specifications and dynamic task settings.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
Safe-ROS: An Architecture for Autonomous Robots in Safety-Critical Domains
Deploying autonomous robots in safety-critical domains requires architectures that ensure operational effectiveness and safety compliance. In this paper, we contribute the Safe-ROS architecture for developing reliable and verifiable autonomous robots in such domains. It features two distinct subsystems: (1) an intelligent control system that is responsible for normal/routine operations, and (2) a Safety System consisting of Safety Instrumented Functions (SIFs) that provide formally verifiable independent oversight. We demonstrate Safe-ROS on an AgileX Scout Mini robot performing autonomous inspection in a nuclear environment. One safety requirement is selected and instantiated as a SIF. To support verification, we implement the SIF as a cognitive agent, programmed to stop the robot whenever it detects that it is too close to an obstacle. We verify that the agent meets the safety requirement and integrate it into the autonomous inspection. This integration is also verified, and the full deployment is validated in a Gazebo simulation, and lab testing. We evaluate this architecture in the context of the UK nuclear sector, where safety and regulation are crucial aspects of deployment. Success criteria include the development of a formal property from the safety requirement, implementation, and verification of the SIF, and the integration of the SIF into the operational robotic autonomous system. Our results demonstrate that the Safe-ROS architecture can provide safety verifiable oversight while deploying autonomous robots in safety-critical domains, offering a robust framework that can be extended to additional requirements and various applications.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
Mutation Testing for Industrial Robotic Systems
Industrial robotic systems (IRS) are increasingly deployed in diverse environments, where failures can result in severe accidents and costly downtime. Ensuring the reliability of the software controlling these systems is therefore critical. Mutation testing, a technique widely used in software engineering, evaluates the effectiveness of test suites by introducing small faults, or mutants, into the code. However, traditional mutation operators are poorly suited to robotic programs, which involve message-based commands and interactions with the physical world. This paper explores the adaptation of mutation testing to IRS by defining domain-specific mutation operators that capture the semantics of robot actions and sensor readings. We propose a methodology for generating meaningful mutants at the level of high-level read and write operations, including movement, gripper actions, and sensor noise injection. An empirical study on a pick-and-place scenario demonstrates that our approach produces more informative mutants and reduces the number of invalid or equivalent cases compared to conventional operators. Results highlight the potential of mutation testing to enhance test suite quality and contribute to safer, more reliable industrial robotic systems.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
Self-Supervised Multisensory Pretraining for Contact-Rich Robot Reinforcement Learning
Effective contact-rich manipulation requires robots to synergistically leverage vision, force, and proprioception. However, Reinforcement Learning agents struggle to learn in such multisensory settings, especially amidst sensory noise and dynamic changes. We propose MultiSensory Dynamic Pretraining (MSDP), a novel framework for learning expressive multisensory representations tailored for task-oriented policy learning. MSDP is based on masked autoencoding and trains a transformer-based encoder by reconstructing multisensory observations from only a subset of sensor embeddings, leading to cross-modal prediction and sensor fusion. For downstream policy learning, we introduce a novel asymmetric architecture, where a cross-attention mechanism allows the critic to extract dynamic, task-specific features from the frozen embeddings, while the actor receives a stable pooled representation to guide its actions. Our method demonstrates accelerated learning and robust performance under diverse perturbations, including sensor noise, and changes in object dynamics. Evaluations in multiple challenging, contact-rich robot manipulation tasks in simulation and the real world showcase the effectiveness of MSDP. Our approach exhibits strong robustness to perturbations and achieves high success rates on the real robot with as few as 6,000 online interactions, offering a simple yet powerful solution for complex multisensory robotic control.
comment: 9 pages, 10 figures, preprint
Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
Perception-aware Exploration for Consumer-grade UAVs
In our work, we extend the current state-of-the-art approach for autonomous multi-UAV exploration to consumer-level UAVs, such as the DJI Mini 3 Pro. We propose a pipeline that selects viewpoint pairs from which the depth can be estimated and plans the trajectory that satisfies motion constraints necessary for odometry estimation. For the multi-UAV exploration, we propose a semi-distributed communication scheme that distributes the workload in a balanced manner. We evaluate our model performance in simulation for different numbers of UAVs and prove its ability to safely explore the environment and reconstruct the map even with the hardware limitations of consumer-grade UAVs.
Identifying Time-varying Costs in Finite-horizon Linear Quadratic Gaussian Games
We address cost identification in a finite-horizon linear quadratic Gaussian game. We characterize the set of cost parameters that generate a given Nash equilibrium policy. We propose a backpropagation algorithm to identify the time-varying cost parameters. We derive a probabilistic error bound when the cost parameters are identified from finite trajectories. We test our method in numerical and driving simulations. Our algorithm identifies the cost parameters that can reproduce the Nash equilibrium policy and trajectory observations.
Going Places: Place Recognition in Artificial and Natural Systems
Place recognition, the ability to identify previously visited locations, is critical for both biological navigation and autonomous systems. This review synthesizes findings from robotic systems, animal studies, and human research to explore how different systems encode and recall place. We examine the computational and representational strategies employed across artificial systems, animals, and humans, highlighting convergent solutions such as topological mapping, cue integration, and memory management. Animal systems reveal evolved mechanisms for multimodal navigation and environmental adaptation, while human studies provide unique insights into semantic place concepts, cultural influences, and introspective capabilities. Artificial systems showcase scalable architectures and data-driven models. We propose a unifying set of concepts by which to consider and develop place recognition mechanisms and identify key challenges such as generalization, robustness, and environmental variability. This review aims to foster innovations in artificial localization by connecting future developments in artificial place recognition systems to insights from both animal navigation research and human spatial cognition studies.
Simultaneous Localization and 3D-Semi Dense Mapping for Micro Drones Using Monocular Camera and Inertial Sensors
Monocular simultaneous localization and mapping (SLAM) algorithms estimate drone poses and build a 3D map using a single camera. Current algorithms include sparse methods that lack detailed geometry, while learning-driven approaches produce dense maps but are computationally intensive. Monocular SLAM also faces scale ambiguities, which affect its accuracy. To address these challenges, we propose an edge-aware lightweight monocular SLAM system combining sparse keypoint-based pose estimation with dense edge reconstruction. Our method employs deep learning-based depth prediction and edge detection, followed by optimization to refine keypoints and edges for geometric consistency, without relying on global loop closure or heavy neural computations. We fuse inertial data with vision by using an extended Kalman filter to resolve scale ambiguity and improve accuracy. The system operates in real time on low-power platforms, as demonstrated on a DJI Tello drone with a monocular camera and inertial sensors. In addition, we demonstrate robust autonomous navigation and obstacle avoidance in indoor corridors and on the TUM RGBD dataset. Our approach offers an effective, practical solution to real-time mapping and navigation in resource-constrained environments.
MA-SLAM: Active SLAM in Large-Scale Unknown Environment using Map Aware Deep Reinforcement Learning
Active Simultaneous Localization and Mapping (Active SLAM) involves the strategic planning and precise control of a robotic system's movement in order to construct a highly accurate and comprehensive representation of its surrounding environment, which has garnered significant attention within the research community. While the current methods demonstrate efficacy in small and controlled settings, they face challenges when applied to large-scale and diverse environments, marked by extended periods of exploration and suboptimal paths of discovery. In this paper, we propose MA-SLAM, a Map-Aware Active SLAM system based on Deep Reinforcement Learning (DRL), designed to address the challenge of efficient exploration in large-scale environments. In pursuit of this objective, we put forward a novel structured map representation. By discretizing the spatial data and integrating the boundary points and the historical trajectory, the structured map succinctly and effectively encapsulates the visited regions, thereby serving as input for the deep reinforcement learning based decision module. Instead of sequentially predicting the next action step within the decision module, we have implemented an advanced global planner to optimize the exploration path by leveraging long-range target points. We conducted experiments in three simulation environments and deployed in a real unmanned ground vehicle (UGV), the results demonstrate that our approach significantly reduces both the duration and distance of exploration compared with state-of-the-art methods.
Dual-Variable Force Characterisation method for Human-Robot Interaction in Wearable Robotics
Understanding the physical interaction with wearable robots is essential to ensure safety and comfort. However, this interaction is complex in two key aspects: (1) the motion involved, and (2) the non-linear behaviour of soft tissues. Multiple approaches have been undertaken to better understand this interaction and to improve the quantitative metrics of physical interfaces or cuffs. As these two topics are closely interrelated, finite modelling and soft tissue characterisation offer valuable insights into pressure distribution and shear stress induced by the cuff. Nevertheless, current characterisation methods typically rely on a single fitting variable along one degree of freedom, which limits their applicability, given that interactions with wearable robots often involve multiple degrees of freedom. To address this limitation, this work introduces a dual-variable characterisation method, involving normal and tangential forces, aimed at identifying reliable material parameters and evaluating the impact of single-variable fitting on force and torque responses. This method demonstrates the importance of incorporating two variables into the characterisation process by analysing the normalized mean square error (NMSE) across different scenarios and material models, providing a foundation for simulation at the closest possible level, with a focus on the cuff and the human limb involved in the physical interaction between the user and the wearable robot.
comment: 36 pages, 10 figures, submitted and under-review in Journal of the Mechanical Behavior of Biomedical Materials
Multi-Timescale Model Predictive Control for Slow-Fast Systems
Model Predictive Control (MPC) has established itself as the primary methodology for constrained control, enabling autonomy across diverse applications. While model fidelity is crucial in MPC, solving the corresponding optimization problem in real time remains challenging when combining long horizons with high-fidelity models that capture both short-term dynamics and long-term behavior. Motivated by results on the Exponential Decay of Sensitivities (EDS), which imply that, under certain conditions, the influence of modeling inaccuracies decreases exponentially along the prediction horizon, this paper proposes a multi-timescale MPC scheme for fast-sampled control. Tailored to systems with both fast and slow dynamics, the proposed approach improves computational efficiency by i) switching to a reduced model that captures only the slow, dominant dynamics and ii) exponentially increasing integration step sizes to progressively reduce model detail along the horizon. We evaluate the method on three practically motivated robotic control problems in simulation and observe speed-ups of up to an order of magnitude.
Towards Deploying VLA without Fine-Tuning: Plug-and-Play Inference-Time VLA Policy Steering via Embodied Evolutionary Diffusion
Vision-Language-Action (VLA) models have demonstrated significant potential in real-world robotic manipulation. However, pre-trained VLA policies still suffer from substantial performance degradation during downstream deployment. Although fine-tuning can mitigate this issue, its reliance on costly demonstration collection and intensive computation makes it impractical in real-world settings. In this work, we introduce VLA-Pilot, a plug-and-play inference-time policy steering method for zero-shot deployment of pre-trained VLA without any additional fine-tuning or data collection. We evaluate VLA-Pilot on six real-world downstream manipulation tasks across two distinct robotic embodiments, encompassing both in-distribution and out-of-distribution scenarios. Experimental results demonstrate that VLA-Pilot substantially boosts the success rates of off-the-shelf pre-trained VLA policies, enabling robust zero-shot generalization to diverse tasks and embodiments. Experimental videos and code are available at: https://rip4kobe.github.io/vla-pilot/.
comment: 9 pages, 8 figures, submitted to IEEE RA-L
RoboTidy : A 3D Gaussian Splatting Household Tidying Benchmark for Embodied Navigation and Action
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
AsyncVLA: Asynchronous Flow Matching for Vision-Language-Action Models
Vision-language-action (VLA) models have recently emerged as a powerful paradigm for building generalist robots. However, traditional VLA models that generate actions through flow matching (FM) typically rely on rigid and uniform time schedules, i.e., synchronous FM (SFM). Without action context awareness and asynchronous self-correction, SFM becomes unstable in long-horizon tasks, where a single action error can cascade into failure. In this work, we propose asynchronous flow matching VLA (AsyncVLA), a novel framework that introduces temporal flexibility in asynchronous FM (AFM) and enables self-correction in action generation. AsyncVLA breaks from the vanilla SFM in VLA models by generating the action tokens in a non-uniform time schedule with action context awareness. Besides, our method introduces the confidence rater to extract confidence of the initially generated actions, enabling the model to selectively refine inaccurate action tokens before execution. Moreover, we propose a unified training procedure for SFM and AFM that endows a single model with both modes, improving KV-cache utilization. Extensive experiments on robotic manipulation benchmarks demonstrate that AsyncVLA is data-efficient and exhibits self-correction ability. AsyncVLA achieves state-of-the-art results across general embodied evaluations due to its asynchronous generation in AFM. Our code is available at https://github.com/YuhuaJiang2002/AsyncVLA.
FlexiCup: Wireless Multimodal Suction Cup with Dual-Zone Vision-Tactile Sensing
Conventional suction cups lack sensing capabilities for contact-aware manipulation in unstructured environments. This paper presents FlexiCup, a fully wireless multimodal suction cup that integrates dual-zone vision-tactile sensing. The central zone dynamically switches between vision and tactile modalities via illumination control for contact detection, while the peripheral zone provides continuous spatial awareness for approach planning. FlexiCup supports both vacuum and Bernoulli suction modes through modular mechanical configurations, achieving complete wireless autonomy with onboard computation and power. We validate hardware versatility through dual control paradigms. Modular perception-driven grasping across structured surfaces with varying obstacle densities demonstrates comparable performance between vacuum (90.0% mean success) and Bernoulli (86.7% mean success) modes. Diffusion-based end-to-end learning achieves 73.3% success on inclined transport and 66.7% on orange extraction tasks. Ablation studies confirm that multi-head attention coordinating dual-zone observations provides 13% improvements for contact-aware manipulation. Hardware designs and firmware are available at https://anonymous.4open.science/api/repo/FlexiCup-DA7D/file/index.html?v=8f531b44.
BIM-Discrepancy-Driven Active Sensing for Risk-Aware UAV-UGV Navigation
This paper presents a BIM-discrepancy-driven active sensing framework for cooperative navigation between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) in dynamic construction environments. Traditional navigation approaches rely on static Building Information Modeling (BIM) priors or limited onboard perception. In contrast, our framework continuously fuses real-time LiDAR data from aerial and ground robots with BIM priors to maintain an evolving 2D occupancy map. We quantify navigation safety through a unified corridor-risk metric integrating occupancy uncertainty, BIM-map discrepancy, and clearance. When risk exceeds safety thresholds, the UAV autonomously re-scans affected regions to reduce uncertainty and enable safe replanning. Validation in PX4-Gazebo simulation with Robotec GPU LiDAR demonstrates that risk-triggered re-scanning reduces mean corridor risk by 58% and map entropy by 43% compared to static BIM navigation, while maintaining clearance margins above 0.4 m. Compared to frontier-based exploration, our approach achieves similar uncertainty reduction in half the mission time. These results demonstrate that integrating BIM priors with risk-adaptive aerial sensing enables scalable, uncertainty-aware autonomy for construction robotics.
FACA: Fair and Agile Multi-Robot Collision Avoidance in Constrained Environments with Dynamic Priorities
Multi-robot systems are increasingly being used for critical applications such as rescuing injured people, delivering food and medicines, and monitoring key areas. These applications usually involve navigating at high speeds through constrained spaces such as small gaps. Navigating such constrained spaces becomes particularly challenging when the space is crowded with multiple heterogeneous agents all of which have urgent priorities. What makes the problem even harder is that during an active response situation, roles and priorities can quickly change on a dime without informing the other agents. In order to complete missions in such environments, robots must not only be safe, but also agile, able to dodge and change course at a moment's notice. In this paper, we propose FACA, a fair and agile collision avoidance approach where robots coordinate their tasks by talking to each other via natural language (just as people do). In FACA, robots balance safety with agility via a novel artificial potential field algorithm that creates an automatic ``roundabout'' effect whenever a conflict arises. Our experiments show that FACA achieves a improvement in efficiency, completing missions more than 3.5X faster than baselines with a time reduction of over 70% while maintaining robust safety margins.
Searching in Space and Time: Unified Memory-Action Loops for Open-World Object Retrieval ICRA
Service robots must retrieve objects in dynamic, open-world settings where requests may reference attributes ("the red mug"), spatial context ("the mug on the table"), or past states ("the mug that was here yesterday"). Existing approaches capture only parts of this problem: scene graphs capture spatial relations but ignore temporal grounding, temporal reasoning methods model dynamics but do not support embodied interaction, and dynamic scene graphs handle both but remain closed-world with fixed vocabularies. We present STAR (SpatioTemporal Active Retrieval), a framework that unifies memory queries and embodied actions within a single decision loop. STAR leverages non-parametric long-term memory and a working memory to support efficient recall, and uses a vision-language model to select either temporal or spatial actions at each step. We introduce STARBench, a benchmark of spatiotemporal object search tasks across simulated and real environments. Experiments in STARBench and on a Tiago robot show that STAR consistently outperforms scene-graph and memory-only baselines, demonstrating the benefits of treating search in time and search in space as a unified problem.
comment: This paper is under review at ICRA
SVBRD-LLM: Self-Verifying Behavioral Rule Discovery for Autonomous Vehicle Identification
As more autonomous vehicles operate on public roads, understanding real-world behavior of autonomous vehicles is critical to analyzing traffic safety, making policies, and public acceptance. This paper proposes SVBRD-LLM, a framework that automatically discovers, verifies, and applies interpretable behavioral rules from real traffic videos through zero-shot prompt engineering. The framework extracts vehicle trajectories using YOLOv8 and ByteTrack, computes kinematic features, and employs GPT-5 zero-shot prompting to compare autonomous and human-driven vehicles, generating 35 structured behavioral rule hypotheses. These rules are tested on a validation set, iteratively refined based on failure cases to filter spurious correlations, and compiled into a high-confidence rule library. The framework is evaluated on an independent test set for speed change prediction, lane change prediction, and autonomous vehicle identification tasks. Experiments on over 1500 hours of real traffic videos show that the framework achieves 90.0% accuracy and 93.3% F1-score in autonomous vehicle identification. The discovered rules clearly reveal distinctive characteristics of autonomous vehicles in speed control smoothness, lane change conservativeness, and acceleration stability, with each rule accompanied by semantic description, applicable context, and validation confidence.
EGSA-PT:Edge-Guided Spatial Attention with Progressive Training for Monocular Depth Estimation and Segmentation of Transparent Objects
Transparent object perception remains a major challenge in computer vision research, as transparency confounds both depth estimation and semantic segmentation. Recent work has explored multi-task learning frameworks to improve robustness, yet negative cross-task interactions often hinder performance. In this work, we introduce Edge-Guided Spatial Attention (EGSA), a fusion mechanism designed to mitigate destructive interactions by incorporating boundary information into the fusion between semantic and geometric features. On both Syn-TODD and ClearPose benchmarks, EGSA consistently improved depth accuracy over the current state of the art method (MODEST), while preserving competitive segmentation performance, with the largest improvements appearing in transparent regions. Besides our fusion design, our second contribution is a multi-modal progressive training strategy, where learning transitions from edges derived from RGB images to edges derived from predicted depth images. This approach allows the system to bootstrap learning from the rich textures contained in RGB images, and then switch to more relevant geometric content in depth maps, while it eliminates the need for ground-truth depth at training time. Together, these contributions highlight edge-guided fusion as a robust approach capable of improving transparent object perception.
Artificial intelligence approaches for energy-efficient laser cutting machines
This research addresses the significant challenges of energy consumption and environmental impact in laser cutting by proposing novel deep learning (DL) methodologies to achieve energy reduction. Recognizing the current lack of adaptive control and the open-loop nature of CO2 laser suction pumps, this study utilizes closed-loop configurations that dynamically adjust pump power based on both the material being cut and the smoke level generated. To implement this adaptive system, diverse material classification methods are introduced, including techniques leveraging lens-less speckle sensing with a customized Convolutional Neural Network (CNN) and an approach using a USB camera with transfer learning via the pre-trained VGG16 CNN model. Furthermore, a separate DL model for smoke level detection is employed to simultaneously refine the pump's power output. This integration prompts the exhaust suction pump to automatically halt during inactive times and dynamically adjust power during operation, leading to experimentally proven and remarkable energy savings, with results showing a 20% to 50% reduction in the smoke suction pump's energy consumption, thereby contributing substantially to sustainable development in the manufacturing sector.
A visual study of ICP variants for Lidar Odometry
Odometry with lidar sensors is a state-of-the-art method to estimate the ego pose of a moving vehicle. Many implementations of lidar odometry use variants of the Iterative Closest Point (ICP) algorithm. Real-world effects such as dynamic objects, non-overlapping areas, and sensor noise diminish the accuracy of ICP. We build on a recently proposed method that makes these effects visible by visualizing the multidimensional objective function of ICP in two dimensions. We use this method to study different ICP variants in the context of lidar odometry. In addition, we propose a novel method to filter out dynamic objects and to address the ego blind spot problem.
comment: Iterative closest point; Registration; Odometry; Mapping
Z-Merge: Multi-Agent Reinforcement Learning for On-Ramp Merging with Zone-Specific V2X Traffic Information
Ramp merging is a critical and challenging task for autonomous vehicles (AVs), particularly in mixed traffic environments with human-driven vehicles (HVs). Existing approaches typically rely on either lane-changing or inter-vehicle gap creation strategies based solely on local or neighboring information, often leading to suboptimal performance in terms of safety and traffic efficiency. In this paper, we present a V2X (vehicle-to-everything communication)-assisted Multiagent Reinforcement Learning (MARL) framework for on-ramp merging that effectively coordinates the complex interplay between lane-changing and inter-vehicle gap adaptation strategies by utilizing zone-specific global information available from a roadside unit (RSU). The merging control problem is formulated as a Multiagent Partially Observable Markov Decision Process (MA-POMDP), where agents leverage both local and global observations through V2X communication. To support both discrete and continuous control decisions, we design a hybrid action space and adopt a parameterized deep Q-learning approach. Extensive simulations, integrating the SUMO traffic simulator and the MOSAIC V2X simulator, demonstrate that our framework significantly improves merging success rate, traffic efficiency, and road safety across diverse traffic scenarios.
Attacking Autonomous Driving Agents with Adversarial Machine Learning: A Holistic Evaluation with the CARLA Leaderboard
To autonomously control vehicles, driving agents use outputs from a combination of machine-learning (ML) models, controller logic, and custom modules. Although numerous prior works have shown that adversarial examples can mislead ML models used in autonomous driving contexts, it remains unclear if these attacks are effective at producing harmful driving actions for various agents, environments, and scenarios. To assess the risk of adversarial examples to autonomous driving, we evaluate attacks against a variety of driving agents, rather than against ML models in isolation. To support this evaluation, we leverage CARLA, an urban driving simulator, to create and evaluate adversarial examples. We create adversarial patches designed to stop or steer driving agents, stream them into the CARLA simulator at runtime, and evaluate them against agents from the CARLA Leaderboard, a public repository of best-performing autonomous driving agents from an annual research competition. Unlike prior work, we evaluate attacks against autonomous driving systems without creating or modifying any driving-agent code and against all parts of the agent included with the ML model. We perform a case-study investigation of two attack strategies against three open-source driving agents from the CARLA Leaderboard across multiple driving scenarios, lighting conditions, and locations. Interestingly, we show that, although some attacks can successfully mislead ML models into predicting erroneous stopping or steering commands, some driving agents use modules, such as PID control or GPS-based rules, that can overrule attacker-manipulated predictions from ML models.
comment: 12 pages
OG-VLA: Orthographic Image Generation for 3D-Aware Vision-Language Action Model
We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and one or more RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA unprojects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/
comment: 13 pages
LED: Light Enhanced Depth Estimation at Night BMVC 2025
Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. Models trained on daytime data often fail in the absence of precise but costly LiDAR. Even vision foundation models trained on large amounts of data are unreliable in low-light conditions. In this work, we aim to improve the reliability of perception systems at night time. To this end, we introduce Light Enhanced Depth (LED), a novel, cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer, Depth Anything V2) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.
comment: BMVC 2025 (Poster). Code and dataset available on the project page : https://simondemoreau.github.io/LED/ 21 pages, 13 figures
StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
Personalization, while extensively studied in conventional autonomous driving pipelines, has been largely overlooked in the context of end-to-end autonomous driving (E2EAD), despite its critical role in fostering user trust, safety perception, and real-world adoption. A primary bottleneck is the absence of large-scale real-world datasets that systematically capture driving preferences, severely limiting the development and evaluation of personalized E2EAD models. In this work, we introduce the first large-scale real-world dataset explicitly curated for personalized E2EAD, integrating comprehensive scene topology with rich dynamic context derived from agent dynamics and semantics inferred via a fine-tuned vision-language model (VLM). We propose a hybrid annotation pipeline that combines behavioral analysis, rule-and-distribution-based heuristics, and subjective semantic modeling guided by VLM reasoning, with final refinement through human-in-the-loop verification. Building upon this dataset, we introduce the first standardized benchmark for systematically evaluating personalized E2EAD models. Empirical evaluations on state-of-the-art architectures demonstrate that incorporating personalized driving preferences significantly improves behavioral alignment with human demonstrations.
comment: 25 pages, 7 figures, 5 tables
CARScenes: Semantic VLM Dataset for Safe Autonomous Driving
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
comment: 8 pages, 6 figures, 7 tables
DepthVision: Enabling Robust Vision-Language Models with GAN-Based LiDAR-to-RGB Synthesis for Autonomous Driving
Ensuring reliable autonomous operation when visual input is degraded remains a key challenge in intelligent vehicles and robotics. We present DepthVision, a multimodal framework that enables Vision--Language Models (VLMs) to exploit LiDAR data without any architectural changes or retraining. DepthVision synthesizes dense, RGB-like images from sparse LiDAR point clouds using a conditional GAN with an integrated refiner, and feeds these into off-the-shelf VLMs through their standard visual interface. A Luminance-Aware Modality Adaptation (LAMA) module fuses synthesized and real camera images by dynamically weighting each modality based on ambient lighting, compensating for degradation such as darkness or motion blur. This design turns LiDAR into a drop-in visual surrogate when RGB becomes unreliable, effectively extending the operational envelope of existing VLMs. We evaluate DepthVision on real and simulated datasets across multiple VLMs and safety-critical tasks, including vehicle-in-the-loop experiments. The results show substantial improvements in low-light scene understanding over RGB-only baselines while preserving full compatibility with frozen VLM architectures. These findings demonstrate that LiDAR-guided RGB synthesis is a practical pathway for integrating range sensing into modern vision-language systems for autonomous driving.
Robust Adaptive Time-Varying Control Barrier Function with Application to Robotic Surface Treatment
Set invariance techniques such as control barrier functions (CBFs) can be used to enforce time-varying constraints such as keeping a safe distance from dynamic objects. However, existing methods for enforcing time-varying constraints often overlook model uncertainties. To address this issue, this paper proposes a CBFs-based robust adaptive controller design endowing time-varying constraints while considering parametric uncertainty and additive disturbances. To this end, we first leverage Robust adaptive Control Barrier Functions (RaCBFs) to handle model uncertainty, along with the concept of Input-to-State Safety (ISSf) to ensure robustness towards input disturbances. Furthermore, to alleviate the inherent conservatism in robustness, we also incorporate a set membership identification scheme. We demonstrate the proposed method on robotic surface treatment that requires time-varying force bounds to ensure uniform quality, in numerical simulation and real robotic setup, showing that the quality is formally guaranteed within an acceptable range.
comment: This work has been accepted to ECC 2025
Tac2Motion: Contact-Aware Reinforcement Learning with Tactile Feedback for Robotic Hand Manipulation
This paper proposes Tac2Motion, a contact-aware reinforcement learning framework to facilitate the learning of contact-rich in-hand manipulation tasks, such as removing a lid. To this end, we propose tactile sensing-based reward shaping and incorporate the sensing into the observation space through embedding. The designed rewards encourage an agent to ensure firm grasping and smooth finger gaiting at the same time, leading to higher data efficiency and robust performance compared to the baseline. We verify the proposed framework on the opening a lid scenario, showing generalization of the trained policy into a couple of object types and various dynamics such as torsional friction. Lastly, the learned policy is demonstrated on the multi-fingered robot, Shadow Robot, showing that the control policy can be transferred to the real world. The video is available: https://youtu.be/poeJBPR7urQ.
comment: This paper has submitted to Dexterous Humanoid Manipulation Workshop, Humanoid 2025
RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
comment: The technical report of RynnEC, an embodied cognition MLLM
Combining High Level Scheduling and Low Level Control to Manage Fleets of Mobile Robots
The deployment of mobile robots for material handling in industrial environments requires scalable coordination of large fleets in dynamic settings. This paper presents a two-layer framework that combines high-level scheduling with low-level control. Tasks are assigned and scheduled using the compositional algorithm ComSat, which generates time-parameterized routes for each robot. These schedules are then used by a distributed Model Predictive Control (MPC) system in real time to compute local reference trajectories, accounting for static and dynamic obstacles. The approach ensures safe, collision-free operation, and supports rapid rescheduling in response to disruptions such as robot failures or environmental changes. We evaluate the method in simulated 2D environments with varying road capacities and traffic conditions, demonstrating high task completion rates and robust behavior even under congestion. The modular structure of the framework allows for computational tractability and flexibility, making it suitable for deployment in complex, real-world industrial scenarios.
Benchmarking Population-Based Reinforcement Learning across Robotic Tasks with GPU-Accelerated Simulation
In recent years, deep reinforcement learning (RL) has shown its effectiveness in solving complex continuous control tasks. However, this comes at the cost of an enormous amount of experience required for training, exacerbated by the sensitivity of learning efficiency and the policy performance to hyperparameter selection, which often requires numerous trials of time-consuming experiments. This work leverages a Population-Based Reinforcement Learning (PBRL) approach and a GPU-accelerated physics simulator to enhance the exploration capabilities of RL by concurrently training multiple policies in parallel. The PBRL framework is benchmarked against three state-of-the-art RL algorithms -- PPO, SAC, and DDPG -- dynamically adjusting hyperparameters based on the performance of learning agents. The experiments are performed on four challenging tasks in Isaac Gym -- Anymal Terrain, Shadow Hand, Humanoid, Franka Nut Pick -- by analyzing the effect of population size and mutation mechanisms for hyperparameters. The results show that PBRL agents achieve superior performance, in terms of cumulative reward, compared to non-evolutionary baseline agents. Moreover, the trained agents are finally deployed in the real world for a Franka Nut Pick task. To our knowledge, this is the first sim-to-real attempt for deploying PBRL agents on real hardware. Code and videos of the learned policies are available on our project website (https://sites.google.com/view/pbrl).
comment: Accepted for publication at 2025 IEEE 21st International Conference on Automation Science and Engineering
Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum -- one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is exceeded with the PINN by up to a factor of 467 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of a pneumatic ASR. Accurate position tracking with the MPC running at 47 Hz is achieved in six dynamic experiments.
comment: Accepted for publication in IEEE Transactions on Robotics (T-RO) 2025
Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Vision-centric hierarchical embodied models have demonstrated strong potential. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through the spatial plan table. Then, we propose a flow-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP substantially outperforms state-of-the-art baselines, achieving over 33% improvement on Meta-World and over 25% improvement on iTHOR, demonstrating strong effectiveness across 23 embodied control tasks. We additionally evaluate SP in real-world robotic experiments to verify its practical viability. SP enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
Uni-Hand: Universal Hand Motion Forecasting in Egocentric Views IROS'25
Forecasting how human hands move in egocentric views is critical for applications like augmented reality and human-robot policy transfer. Recently, several hand trajectory prediction (HTP) methods have been developed to generate future possible hand waypoints, which still suffer from insufficient prediction targets, inherent modality gaps, entangled hand-head motion, and limited validation in downstream tasks. To address these limitations, we present a universal hand motion forecasting framework considering multi-modal input, multi-dimensional and multi-target prediction patterns, and multi-task affordances for downstream applications. We harmonize multiple modalities by vision-language fusion, global context incorporation, and task-aware text embedding injection, to forecast hand waypoints in both 2D and 3D spaces. A novel dual-branch diffusion is proposed to concurrently predict human head and hand movements, capturing their motion synergy in egocentric vision. By introducing target indicators, the prediction model can forecast the specific joint waypoints of the wrist or the fingers, besides the widely studied hand center points. In addition, we enable Uni-Hand to additionally predict hand-object interaction states (contact/separation) to facilitate downstream tasks better. As the first work to incorporate downstream task evaluation in the literature, we build novel benchmarks to assess the real-world applicability of hand motion forecasting algorithms. The experimental results on multiple publicly available datasets and our newly proposed benchmarks demonstrate that Uni-Hand achieves the state-of-the-art performance in multi-dimensional and multi-target hand motion forecasting. Extensive validation in multiple downstream tasks also presents its impressive human-robot policy transfer to enable robotic manipulation, and effective feature enhancement for action anticipation/recognition.
comment: Extended journal version of MMTwin (IROS'25)
The Developments and Challenges towards Dexterous and Embodied Robotic Manipulation: A Survey
Achieving human-like dexterous robotic manipulation remains a central goal and a pivotal challenge in robotics. The development of Artificial Intelligence (AI) has allowed rapid progress in robotic manipulation. This survey summarizes the evolution of robotic manipulation from mechanical programming to embodied intelligence, alongside the transition from simple grippers to multi-fingered dexterous hands, outlining key characteristics and main challenges. Focusing on the current stage of embodied dexterous manipulation, we highlight recent advances in two critical areas: dexterous manipulation data collection (via simulation, human demonstrations, and teleoperation) and skill-learning frameworks (imitation and reinforcement learning). Then, based on the overview of the existing data collection paradigm and learning framework, three key challenges restricting the development of dexterous robotic manipulation are summarized and discussed.
Large Language Models and 3D Vision for Intelligent Robotic Perception and Autonomy
With the rapid advancement of artificial intelligence and robotics, the integration of Large Language Models (LLMs) with 3D vision is emerging as a transformative approach to enhancing robotic sensing technologies. This convergence enables machines to perceive, reason and interact with complex environments through natural language and spatial understanding, bridging the gap between linguistic intelligence and spatial perception. This review provides a comprehensive analysis of state-of-the-art methodologies, applications and challenges at the intersection of LLMs and 3D vision, with a focus on next-generation robotic sensing technologies. We first introduce the foundational principles of LLMs and 3D data representations, followed by an in-depth examination of 3D sensing technologies critical for robotics. The review then explores key advancements in scene understanding, text-to-3D generation, object grounding and embodied agents, highlighting cutting-edge techniques such as zero-shot 3D segmentation, dynamic scene synthesis and language-guided manipulation. Furthermore, we discuss multimodal LLMs that integrate 3D data with touch, auditory and thermal inputs, enhancing environmental comprehension and robotic decision-making. To support future research, we catalog benchmark datasets and evaluation metrics tailored for 3D-language and vision tasks. Finally, we identify key challenges and future research directions, including adaptive model architectures, enhanced cross-modal alignment and real-time processing capabilities, which pave the way for more intelligent, context-aware and autonomous robotic sensing systems.
comment: 45 pages, 15 figures, MDPI Sensors Journal
HACL: History-Aware Curriculum Learning for Fast Locomotion
We address the problem of agile and rapid locomotion, a key characteristic of quadrupedal and bipedal robots. We present a new algorithm that maintains stability and generates high-speed trajectories by considering the temporal aspect of locomotion. Our formulation takes into account past information based on a novel history-aware curriculum Learning (HACL) algorithm. We model the history of joint velocity commands with respect to the observed linear and angular rewards using a recurrent neural net (RNN). The hidden state helps the curriculum learn the relationship between the forward linear velocity and angular velocity commands and the rewards over a given time-step. We validate our approach on the MIT Mini Cheetah,Unitree Go1, and Go2 robots in a simulated environment and on a Unitree Go1 robot in real-world scenarios. In practice, HACL achieves peak forward velocity of 6.7 m/s for a given command velocity of 7m/s and outperforms prior locomotion algorithms by nearly 20%.
SocialNav-Map: Dynamic Mapping with Human Trajectory Prediction for Zero-Shot Social Navigation
Social navigation in densely populated dynamic environments poses a significant challenge for autonomous mobile robots, requiring advanced strategies for safe interaction. Existing reinforcement learning (RL)-based methods require over 2000+ hours of extensive training and often struggle to generalize to unfamiliar environments without additional fine-tuning, limiting their practical application in real-world scenarios. To address these limitations, we propose SocialNav-Map, a novel zero-shot social navigation framework that combines dynamic human trajectory prediction with occupancy mapping, enabling safe and efficient navigation without the need for environment-specific training. Specifically, SocialNav-Map first transforms the task goal position into the constructed map coordinate system. Subsequently, it creates a dynamic occupancy map that incorporates predicted human movements as dynamic obstacles. The framework employs two complementary methods for human trajectory prediction: history prediction and orientation prediction. By integrating these predicted trajectories into the occupancy map, the robot can proactively avoid potential collisions with humans while efficiently navigating to its destination. Extensive experiments on the Social-HM3D and Social-MP3D datasets demonstrate that SocialNav-Map significantly outperforms state-of-the-art (SOTA) RL-based methods, which require 2,396 GPU hours of training. Notably, it reduces human collision rates by over 10% without necessitating any training in novel environments. By eliminating the need for environment-specific training, SocialNav-Map achieves superior navigation performance, paving the way for the deployment of social navigation systems in real-world environments characterized by diverse human behaviors. The code is available at: https://github.com/linglingxiansen/SocialNav-Map.
SF-Loc: A Visual Mapping and Geo-Localization System based on Sparse Visual Structure Frames
For high-level geo-spatial applications and intelligent robotics, accurate global pose information is of crucial importance. Map-aided localization is a universal approach to overcome the limitations of global navigation satellite system (GNSS) in challenging environments. However, current solutions face challenges in terms of mapping flexibility, storage burden and re-localization performance. In this work, we present SF-Loc, a lightweight visual mapping and map-aided localization system, whose core idea is the map representation based on sparse frames with dense but compact depth, termed as visual structure frames. In the mapping phase, multi-sensor dense bundle adjustment (MS-DBA) is applied to construct geo-referenced visual structure frames. The local co-visbility is checked to keep the map sparsity and achieve incremental mapping. In the localization phase, coarse-to-fine vision-based localization is performed, in which multi-frame information and the map distribution are fully integrated. To be specific, the concept of spatially smoothed similarity (SSS) is proposed to overcome the place ambiguity, and pairwise frame matching is applied for efficient and robust pose estimation. Experimental results on the cross-season dataset verify the effectiveness of the system. In complex urban road scenarios, the map size is down to 3 MB per kilometer and stable decimeter-level re-localization can be achieved. The code will be made open-source soon (https://github.com/GREAT-WHU/SF-Loc).
Rethinking Progression of Memory State in Robotic Manipulation: An Object-Centric Perspective AAAI 2026
As embodied agents operate in increasingly complex environments, the ability to perceive, track, and reason about individual object instances over time becomes essential, especially in tasks requiring sequenced interactions with visually similar objects. In these non-Markovian settings, key decision cues are often hidden in object-specific histories rather than the current scene. Without persistent memory of prior interactions (what has been interacted with, where it has been, or how it has changed) visuomotor policies may fail, repeat past actions, or overlook completed ones. To surface this challenge, we introduce LIBERO-Mem, a non-Markovian task suite for stress-testing robotic manipulation under object-level partial observability. It combines short- and long-horizon object tracking with temporally sequenced subgoals, requiring reasoning beyond the current frame. However, vision-language-action (VLA) models often struggle in such settings, with token scaling quickly becoming intractable even for tasks spanning just a few hundred frames. We propose Embodied-SlotSSM, a slot-centric VLA framework built for temporal scalability. It maintains spatio-temporally consistent slot identities and leverages them through two mechanisms: (1) slot-state-space modeling for reconstructing short-term history, and (2) a relational encoder to align the input tokens with action decoding. Together, these components enable temporally grounded, context-aware action prediction. Experiments show Embodied-SlotSSM's baseline performance on LIBERO-Mem and general tasks, offering a scalable solution for non-Markovian reasoning in object-centric robotic policies.
comment: Accepted at AAAI 2026
iA*: Imperative Learning-based A* Search for Path Planning
Path planning, which aims to find a collision-free path between two locations, is critical for numerous applications ranging from mobile robots to self-driving vehicles. Traditional search-based methods like A* search guarantee path optimality but are often computationally expensive when handling large-scale maps. While learning-based methods alleviate this issue by incorporating learned constraints into their search procedures, they often face challenges like overfitting and reliance on extensive labeled datasets. To address these limitations, we propose Imperative A* (iA*), a novel self-supervised path planning framework leveraging bilevel optimization (BLO) and imperative learning (IL). The iA* framework integrates a neural network that predicts node costs with a differentiable A* search mechanism, enabling efficient self-supervised training via bilevel optimization. This integration significantly enhances the balance between search efficiency and path optimality while improving generalization to previously unseen maps. Extensive experiments demonstrate that iA* outperforms both classical and supervised learning-based methods, achieving an average reduction of 65.7\% in search area and 54.4\% in runtime, underscoring its effectiveness in robot path planning tasks.
Bridging Language and Action: A Survey of Language-Conditioned Robot Manipulation
Language-conditioned robot manipulation is an emerging field aimed at enabling seamless communication and cooperation between humans and robotic agents by teaching robots to comprehend and execute instructions conveyed in natural language. This interdisciplinary area integrates scene understanding, language processing, and policy learning to bridge the gap between human instructions and robot actions. In this comprehensive survey, we systematically explore recent advancements in language-conditioned robot manipulation. We categorize existing methods based on the primary ways language is integrated into the robot system, namely language for state evaluation, language as a policy condition, and language for cognitive planning and reasoning. Specifically, we further analyze state-of-the-art techniques from four axes of action granularity, data and supervision regimes, system cost and latency, and environments and evaluations. Additionally, we highlight the key debates in the field. Finally, we discuss open challenges and future research directions, focusing on potentially enhancing generalization capabilities and addressing safety issues in language-conditioned robot manipulators.
Natural Selection via Foundation Models for Soft Robot Evolution
Designing soft robots is a complex and iterative process that demands cross-disciplinary expertise in materials science, mechanics, and control, often relying on intuition and extensive experimentation. While foundation models, especially Large Language Models (LLMs), have demonstrated impressive reasoning abilities, their capacity to conduct embodied design remains largely unexplored. This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether LLMs can learn representations of soft robot designs that effectively bridge the gap between high-level task descriptions and low-level morphological and material choices. RoboCrafter-QA leverages the EvoGym simulator to generate a diverse set of soft robot design challenges, spanning robotic locomotion, manipulation, and balancing tasks. Our experiments with SOTA multi-modal LLMs reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences. To overcome these limitations, we finetune an efficient, open-source LLM that achieves SOTA performance on our benchmark, demonstrating superior capabilities in both design selection and direct generation of high-performing robot morphologies. Furthermore, we construct a physical replica of the modular soft robot and demonstrate a strong sim-to-real correlation, validating that superior benchmark performance has the potential to translate to effective real-world design selection. Our full system will be open-sourced to foster this exciting direction.
Maestro: Orchestrating Robotics Modules with Vision-Language Models for Zero-Shot Generalist Robots
Today's best-explored routes towards generalist robots center on collecting ever larger "observations-in actions-out" robotics datasets to train large end-to-end models, copying a recipe that has worked for vision-language models (VLMs). We pursue a road less traveled: building generalist policies directly around VLMs by augmenting their general capabilities with specific robot capabilities encapsulated in a carefully curated set of perception, planning, and control modules. In Maestro, a VLM coding agent dynamically composes these modules into a programmatic policy for the current task and scenario. Maestro's architecture benefits from a streamlined closed-loop interface without many manually imposed structural constraints, and a comprehensive and diverse tool repertoire. As a result, it largely surpasses today's VLA models for zero-shot performance on challenging manipulation skills. Further, Maestro is easily extensible to incorporate new modules, easily editable to suit new embodiments such as a quadruped-mounted arm, and even easily adapts from minimal real-world experiences through local code edits.
comment: Plan to resubmit after significant revisions
Multiagent Systems
\textit{FLARE}: Adaptive Multi-Dimensional Reputation for Robust Client Reliability in Federated Learning
Federated learning (FL) enables collaborative model training while preserving data privacy. However, it remains vulnerable to malicious clients who compromise model integrity through Byzantine attacks, data poisoning, or adaptive adversarial behaviors. Existing defense mechanisms rely on static thresholds and binary classification, failing to adapt to evolving client behaviors in real-world deployments. We propose FLARE, an adaptive reputation-based framework that transforms client reliability assessment from binary decisions to a continuous, multi-dimensional trust evaluation. FLARE integrates: (i) a multi-dimensional reputation score capturing performance consistency, statistical anomaly indicators, and temporal behavior, (ii) a self-calibrating adaptive threshold mechanism that adjusts security strictness based on model convergence and recent attack intensity, (iii) reputation-weighted aggregation with soft exclusion to proportionally limit suspicious contributions rather than eliminating clients outright, and (iv) a Local Differential Privacy (LDP) mechanism enabling reputation scoring on privatized client updates. We further introduce a highly evasive Statistical Mimicry (SM) attack, a benchmark adversary that blends honest gradients with synthetic perturbations and persistent drift to remain undetected by traditional filters. Extensive experiments with 100 clients on MNIST, CIFAR-10, and SVHN demonstrate that FLARE maintains high model accuracy and converges faster than state-of-the-art Byzantine-robust methods under diverse attack types, including label flipping, gradient scaling, adaptive attacks, ALIE, and SM. FLARE improves robustness by up to 16% and preserves model convergence within 30% of the non-attacked baseline, while achieving strong malicious-client detection performance with minimal computational overhead. https://github.com/Anonymous0-0paper/FLARE
comment: Under Review
Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent
DataSage: Multi-agent Collaboration for Insight Discovery with External Knowledge Retrieval, Multi-role Debating, and Multi-path Reasoning
In today's data-driven era, fully automated end-to-end data analytics, particularly insight discovery, is critical for discovering actionable insights that assist organizations in making effective decisions. With the rapid advancement of large language models (LLMs), LLM-driven agents have emerged as a promising paradigm for automating data analysis and insight discovery. However, existing data insight agents remain limited in several key aspects, often failing to deliver satisfactory results due to: (1) insufficient utilization of domain knowledge, (2) shallow analytical depth, and (3) error-prone code generation during insight generation. To address these issues, we propose DataSage, a novel multi-agent framework that incorporates three innovative features including external knowledge retrieval to enrich the analytical context, a multi-role debating mechanism to simulate diverse analytical perspectives and deepen analytical depth, and multi-path reasoning to improve the accuracy of the generated code and insights. Extensive experiments on InsightBench demonstrate that DataSage consistently outperforms existing data insight agents across all difficulty levels, offering an effective solution for automated data insight discovery.
Fair-GNE : Generalized Nash Equilibrium-Seeking Fairness in Multiagent Healthcare Automation
Enforcing a fair workload allocation among multiple agents tasked to achieve an objective in learning enabled demand side healthcare worker settings is crucial for consistent and reliable performance at runtime. Existing multi-agent reinforcement learning (MARL) approaches steer fairness by shaping reward through post hoc orchestrations, leaving no certifiable self-enforceable fairness that is immutable by individual agents at runtime. Contextualized within a setting where each agent shares resources with others, we address this shortcoming with a learning enabled optimization scheme among self-interested decision makers whose individual actions affect those of other agents. This extends the problem to a generalized Nash equilibrium (GNE) game-theoretic framework where we steer group policy to a safe and locally efficient equilibrium, so that no agent can improve its utility function by unilaterally changing its decisions. Fair-GNE models MARL as a constrained generalized Nash equilibrium-seeking (GNE) game, prescribing an ideal equitable collective equilibrium within the problem's natural fabric. Our hypothesis is rigorously evaluated in our custom-designed high-fidelity resuscitation simulator. Across all our numerical experiments, Fair-GNE achieves significant improvement in workload balance over fixed-penalty baselines (0.89 vs.\ 0.33 JFI, $p < 0.01$) while maintaining 86\% task success, demonstrating statistically significant fairness gains through adaptive constraint enforcement. Our results communicate our formulations, evaluation metrics, and equilibrium-seeking innovations in large multi-agent learning-based healthcare systems with clarity and principled fairness enforcement.
Collaborative QA using Interacting LLMs. Impact of Network Structure, Node Capability and Distributed Data
In this paper, we model and analyze how a network of interacting LLMs performs collaborative question-answering (CQA) in order to estimate a ground truth given a distributed set of documents. This problem is interesting because LLMs often hallucinate when direct evidence to answer a question is lacking, and these effects become more pronounced in a network of interacting LLMs. The hallucination spreads, causing previously accurate LLMs to hallucinate. We study interacting LLMs and their hallucination by combining novel ideas of mean-field dynamics (MFD) from network science and the randomized utility model from economics to construct a useful generative model. We model the LLM with a latent state that indicates if it is truthful or not with respect to the ground truth, and extend a tractable analytical model considering an MFD to model the diffusion of information in a directed network of LLMs. To specify the probabilities that govern the dynamics of the MFD, we propose a randomized utility model. For a network of LLMs, where each LLM has two possible latent states, we posit sufficient conditions for the existence and uniqueness of a fixed point and analyze the behavior of the fixed point in terms of the incentive (e.g., test-time compute) given to individual LLMs. We experimentally study and analyze the behavior of a network of $100$ open-source LLMs with respect to data heterogeneity, node capability, network structure, and sensitivity to framing on multiple semi-synthetic datasets.
AISAC: An Integrated multi-agent System for Transparent, Retrieval-Grounded Scientific Assistance
AI Scientific Assistant Core (AISAC) is an integrated multi-agent system developed at Argonne National Laboratory for scientific and engineering workflows. AISAC builds on established technologies - LangGraph for orchestration, FAISS for vector search, and SQLite for persistence - and integrates them into a unified system prototype focused on transparency, provenance tracking, and scientific adaptability. The system implements a Router-Planner-Coordinator workflow and an optional Evaluator role, using prompt-engineered agents coordinated via LangGraph's StateGraph and supported by helper agents such as a Researcher. Each role is defined through custom system prompts that enforce structured JSON outputs. A hybrid memory approach (FAISS + SQLite) enables both semantic retrieval and structured conversation history. An incremental indexing strategy based on file hashing minimizes redundant re-embedding when scientific corpora evolve. A configuration-driven project bootstrap layer allows research teams to customize tools, prompts, and data sources without modifying core code. All agent decisions, tool invocations, and retrievals are logged and visualized through a custom Gradio interface, providing step-by-step transparency for each reasoning episode. The authors have applied AISAC to multiple research areas at Argonne, including specialized deployments for waste-to-products research and energy process safety, as well as general-purpose scientific assistance, demonstrating its cross-domain applicability.
Iterative Negotiation and Oversight: A Case Study in Decentralized Air Traffic Management
Achieving consensus among noncooperative agents remains challenging in decentralized multi-agent systems, where agents often have conflicting preferences. Existing coordination methods enable agents to reach consensus without a centralized coordinator, but do not provide formal guarantees on system-level objectives such as efficiency or fairness. To address this limitation, we propose an iterative negotiation and oversight framework that augments a decentralized negotiation mechanism with taxation-like oversight. The framework builds upon the trading auction for consensus, enabling noncooperative agents with conflicting preferences to negotiate through asset trading while preserving valuation privacy. We introduce an oversight mechanism, which implements a taxation-like intervention that guides decentralized negotiation toward system-efficient and equitable outcomes while also regulating how fast the framework converges. We establish theoretical guarantees of finite-time termination and derive bounds linking system efficiency and convergence rate to the level of central intervention. A case study based on the collaborative trajectory options program, a rerouting initiative in U.S. air traffic management, demonstrates that the framework can reliably achieve consensus among noncooperative airspace sector managers, and reveals how the level of intervention regulates the relationship between system efficiency and convergence speed. Taken together, the theoretical and experimental results indicate that the proposed framework provides a general mechanism for decentralized coordination in noncooperative multi-agent systems while safeguarding system-level objectives.
From Competition to Coordination: Market Making as a Scalable Framework for Safe and Aligned Multi-Agent LLM Systems
As foundation models are increasingly deployed as interacting agents in multi-agent systems, their collective behavior raises new challenges for trustworthiness, transparency, and accountability. Traditional coordination mechanisms, such as centralized oversight or adversarial adjudication, struggle to scale and often obscure how decisions emerge. We introduce a market-making framework for multi-agent large language model (LLM) coordination that organizes agent interactions as structured economic exchanges. In this setup, each agent acts as a market participant, updating and trading probabilistic beliefs, to converge toward shared, truthful outcomes. By aligning local incentives with collective epistemic goals, the framework promotes self-organizing, verifiable reasoning without requiring external enforcement. Empirically, we evaluate this approach across factual reasoning, ethical judgment, and commonsense inference tasks. Market-based coordination yields accuracy gains of up to 10% over single-shot baselines while preserving interpretability and transparency of intermediate reasoning steps. Beyond these improvements, our findings demonstrate that economic coordination principles can operationalize accountability and robustness in multi-agent LLM systems, offering a scalable pathway toward self-correcting, socially responsible AI capable of maintaining trust and oversight in real world deployment scenarios.
MI9: An Integrated Runtime Governance Framework for Agentic AI
Agentic AI systems capable of reasoning, planning, and executing actions present fundamentally distinct governance challenges compared to traditional AI models. Unlike conventional AI, these systems exhibit emergent and unexpected behaviors during runtime, introducing novel agent-related risks that cannot be fully anticipated through pre-deployment governance alone. To address this critical gap, we introduce MI9, the first fully integrated runtime governance framework designed specifically for safety and alignment of agentic AI systems. MI9 introduces real-time controls through six integrated components: agency-risk index, agent-semantic telemetry capture, continuous authorization monitoring, Finite-State-Machine (FSM)-based conformance engines, goal-conditioned drift detection, and graduated containment strategies. Operating transparently across heterogeneous agent architectures, MI9 enables the systematic, safe, and responsible deployment of agentic systems in production environments where conventional governance approaches fall short, providing the foundational infrastructure for safe agentic AI deployment at scale. Detailed analysis through a diverse set of scenarios demonstrates MI9's systematic coverage of governance challenges that existing approaches fail to address, establishing the technical foundation for comprehensive agentic AI oversight.
Automatic Differentiation of Agent-Based Models
Agent-based models (ABMs) simulate complex systems by capturing the bottom-up interactions of individual agents comprising the system. Many complex systems of interest, such as epidemics or financial markets, involve thousands or even millions of agents. Consequently, ABMs often become computationally demanding and rely on the calibration of numerous free parameters, which has significantly hindered their widespread adoption. In this paper, we demonstrate that automatic differentiation (AD) techniques can effectively alleviate these computational burdens. By applying AD to ABMs, the gradients of the simulator become readily available, greatly facilitating essential tasks such as calibration and sensitivity analysis. Specifically, we show how AD enables variational inference (VI) techniques for efficient parameter calibration. Our experiments demonstrate substantial performance improvements and computational savings using VI on three prominent ABMs: Axtell's model of firms; Sugarscape; and the SIR epidemiological model. Our approach thus significantly enhances the practicality and scalability of ABMs for studying complex systems.
comment: Rev. 1: Updated references and code availability
Characterizing Agent-Based Model Dynamics via $ε$-Machines and Kolmogorov-Style Complexity
We propose a two-level information-theoretic framework for characterizing the informational organization of Agent-Based Model (ABM) dynamics within the broader paradigm of Complex Adaptive Systems (CAS). At the macro level, a pooled $\varepsilon$-machine is reconstructed as a reference model summarizing the system-wide informational regime. At the micro level, $\varepsilon$-machines are reconstructed for each caregiver--elder dyad and variable, complemented by algorithm-agnostic Kolmogorov-style measures, including normalized LZ78 complexity and bits per symbol from lossless compression. The resulting feature set, $\{h_μ, C_μ, E, \mathrm{LZ78}, \mathrm{bps}\}$, enables distributional analysis, stratified comparisons, and unsupervised clustering across agents and scenarios. Empirical results show that coupling $\varepsilon$-machines with compression diagnostics yields a coherent picture of where predictive information resides in the caregiving ABM. Global reconstructions provide a memoryless baseline ($L{=}0$ under coarse symbolizations), whereas per-dyad models reveal localized structure, particularly for walkability under ordinal encodings ($m{=}3$). Compression metrics corroborate these patterns: dictionary compressors agree on algorithmic redundancy, while normalized LZ78 captures statistical novelty. Socioeconomic variables display cross-sectional heterogeneity and near-memoryless dynamics, whereas spatial interaction induces bounded temporal memory and recurrent regimes. The framework thus distinguishes semantic organization (predictive causation and memory) from syntactic simplicity (description length) and clarifies how emergence manifests at different system layers. It is demonstrated on a caregiver--elder case study with dyad-level $\varepsilon$-machine reconstructions and compression-based diagnostics.
comment: 33 pages, methodological preprint
Resilient by Design -- Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This work-in-progress paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
A Computational Social Simulation of Ageing and Care Accessibility in Italian Inner Areas
Ageing societies face increasing strain on formal and informal care systems, par- ticularly in low-density mountainous municipalities where sparse services and steep terrain constrain access. This study presents a spatially explicit agent-based model that integrates a road-network GIS, synthetic populations derived through Iterative Proportional Fitting, and behavioural heterogeneity to examine how alternative service configurations shape accessibility and caregiver burden. The model, applied to Premeno (Piedmont, Italy), compares a baseline distribution of ambulatory services with a relocation scenario at Villa Bernocchi. System-level indicators (Caregiver Effort, Overwhelm, Hours Not Cared, Walkability) and micro-spatial metrics (Walkability, Detour Ratio, Proximity) are analysed across 40 batches and 50 stochastic replications per scenario. Results reveal aggregate neutrality but pronounced local redistribution of accessibility. Sensitivity analysis shows that spatial impedance dominates accessibility, whereas behavioural capac- ity modulates care effort. The findings illustrate hallmark properties of complex adaptive social systems-emergence, heterogeneity, and feedback-demonstrating how computational social simulation can illuminate policy trade-offs between spatial efficiency, social equity, and care sustainability in ageing territories.
comment: Comments: 9 pages, 2 figures, 6 tables; appendix included. Code and processed inputs available on request from the corresponding author
Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs DASFAA 2025
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.
comment: This paper has been ACCEPTED as a FULL PAPER at DASFAA 2025 (Oral)
MedBuild AI: An Agent-Based Hybrid Intelligence Framework for Reshaping Agency in Healthcare Infrastructure Planning through Generative Design for Medical Architecture
Globally, disparities in healthcare infrastructure remain stark, leaving countless communities without access to even basic services. Traditional infrastructure planning is often slow and inaccessible, and although many architects are actively delivering humanitarian and aid-driven hospital projects worldwide, these vital efforts still fall far short of the sheer scale and urgency of demand. This paper introduces MedBuild AI, a hybrid-intelligence framework that integrates large language models (LLMs) with deterministic expert systems to rebalance the early design and conceptual planning stages. As a web-based platform, it enables any region with satellite internet access to obtain guidance on modular, low-tech, low-cost medical building designs. The system operates through three agents: the first gathers local health intelligence via conversational interaction; the second translates this input into an architectural functional program through rule-based computation; and the third generates layouts and 3D models. By embedding computational negotiation into the design process, MedBuild AI fosters a reciprocal, inclusive, and equitable approach to healthcare planning, empowering communities and redefining agency in global healthcare architecture.
comment: 25 pages, 16 figures. Submitted to the IJAC Special Issue "Rebalance and Reciprocity"
Kalman-Bucy Filtering with Randomized Sensing: Fundamental Limits and Sensor Network Design for Field Estimation
Stability analysis of the Kalman filter under randomly lost measurements has been widely studied. We revisit this problem in a general continuous-time framework, where both the measurement matrix and noise covariance evolve as random processes, capturing variability in sensing locations. Within this setting, we derive a closed-form upper bound on the expected estimation covariance for continuous-time Kalman filtering. We then apply this framework to spatiotemporal field estimation, where the field is modeled as a Gaussian process observed by randomly located, noisy sensors. Using clarity, introduced in our earlier work as a rescaled form of the differential entropy of a random variable, we establish a grid-independent lower bound on the spatially averaged expected clarity. This result exposes fundamental performance limits through a composite sensing parameter that jointly captures the effects of the number of sensors, noise level, and measurement frequency. Simulations confirm that the proposed bound is tight for the discrete-time Kalman filter, approaching it as the measurement rate decreases, while avoiding the recursive computations required in the discrete-time formulation. Most importantly, the derived limits provide principled and efficient guidelines for sensor network design problem prior to deployment.
Skill-Aligned Fairness in Multi-Agent Learning for Collaboration in Healthcare
Fairness in multi-agent reinforcement learning (MARL) is often framed as a workload balance problem, overlooking agent expertise and the structured coordination required in real-world domains. In healthcare, equitable task allocation requires workload balance or expertise alignment to prevent burnout and overuse of highly skilled agents. Workload balance refers to distributing an approximately equal number of subtasks or equalised effort across healthcare workers, regardless of their expertise. We make two contributions to address this problem. First, we propose FairSkillMARL, a framework that defines fairness as the dual objective of workload balance and skill-task alignment. Second, we introduce MARLHospital, a customizable healthcare-inspired environment for modeling team compositions and energy-constrained scheduling impacts on fairness, as no existing simulators are well-suited for this problem. We conducted experiments to compare FairSkillMARL in conjunction with four standard MARL methods, and against two state-of-the-art fairness metrics. Our results suggest that fairness based solely on equal workload might lead to task-skill mismatches and highlight the need for more robust metrics that capture skill-task misalignment. Our work provides tools and a foundation for studying fairness in heterogeneous multi-agent systems where aligning effort with expertise is critical.
Co-Alignment: Rethinking Alignment as Bidirectional Human-AI Cognitive Adaptation
Current AI alignment through RLHF follows a single directional paradigm that AI conforms to human preferences while treating human cognition as fixed. We propose a shift to co-alignment through Bidirectional Cognitive Alignment (BiCA), where humans and AI mutually adapt. BiCA uses learnable protocols, representation mapping, and KL-budget constraints for controlled co-evolution. In collaborative navigation, BiCA achieved 85.5% success versus 70.3% baseline, with 230% better mutual adaptation and 332% better protocol convergence. Emergent protocols outperformed handcrafted ones by 84%, while bidirectional adaptation unexpectedly improved safety (+23% out-of-distribution robustness). The 46% synergy improvement demonstrates optimal collaboration exists at the intersection, not union, of human and AI capabilities, validating the shift from single-directional to co-alignment paradigms.
Systems and Control (EESS)
Robust Verification of Controllers under State Uncertainty via Hamilton-Jacobi Reachability Analysis
As perception-based controllers for autonomous systems become increasingly popular in the real world, it is important that we can formally verify their safety and performance despite perceptual uncertainty. Unfortunately, the verification of such systems remains challenging, largely due to the complexity of the controllers, which are often nonlinear, nonconvex, learning-based, and/or black-box. Prior works propose verification algorithms that are based on approximate reachability methods, but they often restrict the class of controllers and systems that can be handled or result in overly conservative analyses. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for general nonlinear systems that can compute optimal reachable sets under worst-case system uncertainties; however, its application to perception-based systems is currently underexplored. In this work, we propose RoVer-CoRe, a framework for the Robust Verification of Controllers via HJ Reachability. To the best of our knowledge, RoVer-CoRe is the first HJ reachability-based framework for the verification of perception-based systems under perceptual uncertainty. Our key insight is to concatenate the system controller, observation function, and the state estimation modules to obtain an equivalent closed-loop system that is readily compatible with existing reachability frameworks. Within RoVer-CoRe, we propose novel methods for formal safety verification and robust controller design. We demonstrate the efficacy of the framework in case studies involving aircraft taxiing and NN-based rover navigation. Code is available at the link in the footnote.
comment: Submitted to the 8th Annual Learning for Dynamics & Control Conference
A Sequential Operator-Splitting Framework for Exploration of Nonconvex Trajectory Optimization Solution Spaces
Trajectory optimization methods provide an efficient and reliable means of computing feasible trajectories in nonconvex solution spaces. However, a well-known limitation of these algorithms is that they are inherently local in nature, and typically converge to a solution in the neighborhood of their initial guess. This paper presents a sequential operator-splitting framework, based on the alternating direction method of multipliers (ADMM), aimed at promoting exploration within the sequential convex programming (SCP) framework. In particular, diverse initial solutions are modeled as agents within the consensus ADMM framework. Driving these agents toward consensus facilitates exploration of the nonconvex optimization landscape. Numerical simulations demonstrate that the proposed method consistently yields equivalent or lower-cost solutions compared to the standard SCP approach, with the same number of or fewer agents.
comment: Submitted to European Control Conference 2026
Towards AC Feasibility of DCOPF Dispatch
DC Optimal Power Flow (DCOPF) is widely utilized in power system operations due to its simplicity and computational efficiency. However, its lossless, reactive power-agnostic model often yields dispatches that are infeasible under practical operating scenarios such as the nonlinear AC power flow (ACPF) equations. While theoretical analysis demonstrates that DCOPF solutions are inherently AC-infeasible, their widespread industry adoption suggests substantial practical utility. This paper develops a unified DCOPF-ACPF pipeline to recover AC feasible solutions from DCOPF-based dispatches. The pipeline uses four DCOPF variants and applies AC feasibility recovery using both distributed slack allocation and PV/PQ switching. The main objective is to identify the most effective pipeline for restoring AC feasibility. Evaluation across over 10,000 dispatch scenarios on various test cases demonstrates that the structured ACPF model yields solutions that satisfy both the ACPF equations, and all engineering inequality constraints. In a 13,659 bus case, the mean absolute error and cost differences between DCOPF and ACOPF are reduced by 75% and 93%, respectively, compared to conventional single slack bus methods. Under extreme loading conditions, the pipeline reduces inequality constraint violations by a factor of 3 to 5.
Robust Offset-free Kernelized Data-Driven Predictive Control for Nonlinear Systems
This paper proposes a novel Kernelized Data-Driven Predictive Control (KDPC) scheme for robust, offset-free tracking of nonlinear systems. Our computationally efficient hybrid approach separates the prediction: (1) kernel ridge regression learns the nonlinear map from past trajectories, and (2) analytical linearization of the kernel map approximates the effect of future inputs. This linearization is key, allowing the controller to be formulated as a standard Quadratic Program (QP) for efficient real-time implementation. Offset-free tracking is inherently achieved by using input increments. We provide theoretical guarantees for recursive feasibility and asymptotic stability. The algorithm is validated on a nonlinear Van der Pol oscillator, where it successfully rejects unmeasured disturbances and eliminates steady-state errors, outperforming a standard model-based controller.
Concave Comparison Functions for Accelerating Constrained Lyapunov Decay
What limits how fast a Lyapunov function can decay under input bounds? We address this question by showing how the shape of Lyapunov comparison functions governs guaranteed decay for control affine systems. Using a windowed nominal exponential rate together with the endpoint cap induced by actuator limits, we establish a strict ordering: concave comparison functions strictly outperform linear and convex ones, and strict concavity is necessary to improve the best achievable global exponential rate under a fixed endpoint cap. We derive a computable lower bound on the required actuation level for a target nominal rate and show that only concave shaping can reduce this level under the endpoint cap. We then establish a feasibility-preserving acceleration result: whenever a margin exists on a sublevel set, a feasible linear comparison can be replaced by a concave one that preserves feasibility while strictly increasing the guaranteed windowed decay. Finally, we give a tunable rational concave factor with controlled slope that yields a constructive design and integrates with CLF QP, as illustrated by examples.
Stratospheric Grid: A Wireless Power Transfer Enabled HAP Network with Integrated Generation-Grid-Load-Storage Functions
Conventional high-altitude platforms (HAPs) face challenges in achieving continuous all-weather operation due to intermittent photovoltaic power generation, limited energy storage capacity, and high mission loads resulting from functional integration. To address this fundamental issue, we propose a stratospheric energy grid in which wireless power transfer (WPT) interconnections constitute the grid layer, while HAPs operate as dynamically reconfigurable integrated generation-grid-load-storage (IGGLS) nodes that harvest, buffer, consume, and peer-to-peer transfer energy for constellation-level balancing and resilience. In this system, each HAP node can flexibly switch among energy source, load, and storage roles according to its energy status and mission requirements, enabling energy exchange and spatiotemporal optimization within the stratosphere. Through cooperative scheduling, the stratospheric grid not only enables surplus-to-deficit energy support among HAPs but also extends upward to satellites and downward to the terrestrial grid and communication infrastructure, forming a heterogeneous, WPT-mediated interconnection. As an IGGLS ecosystem, it exploits peer-to-peer energy logistics, spatiotemporal smoothing of intermittency, cross-domain backup via the terrestrial grid, and service-aware dispatch, thereby boosting overall energy utilization and operational resilience. The proposed approach is validated through case studies, and we delineate an agenda of feasible research directions.
Agentic AI Systems in Electrical Power Systems Engineering: Current State-of-the-Art and Challenges
Agentic AI systems have recently emerged as a critical and transformative approach in artificial intelligence, offering capabilities that extend far beyond traditional AI agents and contemporary generative AI models. This rapid evolution necessitates a clear conceptual and taxonomical understanding to differentiate this new paradigm. Our paper addresses this gap by providing a comprehensive review that establishes a precise definition and taxonomy for "agentic AI," with the aim of distinguishing it from previous AI paradigms. The concepts are gradually introduced, starting with a highlight of its diverse applications across the broader field of engineering. The paper then presents four detailed, state-of-the-art use case applications specifically within electrical engineering. These case studies demonstrate practical impact, ranging from an advanced agentic framework for streamlining complex power system studies and benchmarking to a novel system developed for survival analysis of dynamic pricing strategies in battery swapping stations. Finally, to ensure robust deployment, the paper provides detailed failure mode investigations. From these findings, we derive actionable recommendations for the design and implementation of safe, reliable, and accountable agentic AI systems, offering a critical resource for researchers and practitioners.
Ultra-Low Insertion Loss Stepped Impedance Resonator Topology for HTSC RF Front-End
We present the design, fabrication, and measurement of a high-temperature superconductor (HTSC) Stepped Impedance Resonator (SIR) band-pass filter for S-band applications, and its incorporation into a cryogenic receiver cascade. The 11-pole filter, implemented in YBa2Cu3O(7-x) (YBCO) thin films on sapphire, exhibits an ultra-low insertion loss (IL) of -0.1~dB, a sharp roll-off of 100~MHz, and a rejection level exceeding --80~dB. These measured results represent, to the best of our knowledge, the lowest reported IL for an S-band filter with this number of poles. When integrated with a cryogenic low-noise amplifier (LNA), system-level simulations and measurements predict a receiver noise figure (NF) of 0.34~dB at 3.39~GHz, enabling a 20% increase in radar detection range compared with conventional copper-based front ends. This work demonstrates the feasibility of practical HTSC-based RF front-ends for next-generation communication and radar systems.
Accelerating Automatic Differentiation of Direct Form Digital Filters
We introduce a general formulation for automatic differentiation through direct form filters, yielding a closed-form backpropagation that includes initial condition gradients. The result is a single expression that can represent both the filter and its gradients computation while supporting parallelism. C++/CUDA implementations in PyTorch achieve at least 1000x speedup over naive Python implementations and consistently run fastest on the GPU. For the low-order filters commonly used in practice, exact time-domain filtering with analytical gradients outperforms the frequency-domain method in terms of speed. The source code is available at https://github.com/yoyolicoris/philtorch.
comment: Accepted at the 1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025
Identifying Time-varying Costs in Finite-horizon Linear Quadratic Gaussian Games
We address cost identification in a finite-horizon linear quadratic Gaussian game. We characterize the set of cost parameters that generate a given Nash equilibrium policy. We propose a backpropagation algorithm to identify the time-varying cost parameters. We derive a probabilistic error bound when the cost parameters are identified from finite trajectories. We test our method in numerical and driving simulations. Our algorithm identifies the cost parameters that can reproduce the Nash equilibrium policy and trajectory observations.
Offset-free Data-Driven Predictive Control for Grid-Connected Power Converters in Weak Grid Faults
Grid-connected power converters encounter significant stability challenges during weak grid faults, when conventional PI-based controllers exhibit an oscillatory response and poor fault-ride-through performance. This paper addresses this problem by replacing the conventional outer PI controllers that regulate DC-link and PCC voltages with an offset-free data-driven predictive controller. The developed algorithm leverages either pre-fault or fault-time data to construct input-output predictors, yielding offset-free control without the need for physics-based modelling. Simulation results show that pre-fault offset-free DPC doubles the critical equivalent grid impedance that can be handled and reduces the root mean squared error during faults by a factor of 40, while maintaining computation times comparable to conventional PI control. These findings demonstrate that the developed offset-free data predictive controller offers a simple, robust, and computationally efficient alternative to conventional control, significantly enhancing fault-ride-through capabilities of converters in weak grids.
An adaptive extension to robust data-driven predictive control under parametric uncertainty
Robust data-driven controllers typically rely on datasets from previous experiments, which embed information on the variability of the system parameters across past operational conditions. Complementarily, data collected online can contribute to improving the feedback performance relative to the current system's conditions, but are unable to account for the overall -- possibly time-varying -- system operation. With this in mind, we consider the problem of stabilizing a time-varying linear system, whose parameters are only known to lie within a bounded polytopic set. Taking a robust data-driven approach, we synthesize the control law by simultaneously leveraging two sets of historical state and input measures: an offline dataset -- which covers the extreme variations of the system parameters -- and an online dataset consisting of a rolling window of the latest state and input samples. Our approach relies on the data informativity framework: we thus relax persistent excitation requirements (i.e., the collected samples need not be sufficient for system identification), while still allowing for the design of a stabilizing controller. The state feedback law is obtained from standard Lyapunov arguments, implemented via semi-definite optimization: this also yields an upper bound on the cost-to-go for the class of systems that are consistent with the online data, while guaranteeing a decreasing cost for all systems compatible with the offline data. Numerical experiments are presented to illustrate the effectiveness of the proposed controller.
comment: 6 pages, 2 figures. Comments are welcome!
Multi-Timescale Model Predictive Control for Slow-Fast Systems
Model Predictive Control (MPC) has established itself as the primary methodology for constrained control, enabling autonomy across diverse applications. While model fidelity is crucial in MPC, solving the corresponding optimization problem in real time remains challenging when combining long horizons with high-fidelity models that capture both short-term dynamics and long-term behavior. Motivated by results on the Exponential Decay of Sensitivities (EDS), which imply that, under certain conditions, the influence of modeling inaccuracies decreases exponentially along the prediction horizon, this paper proposes a multi-timescale MPC scheme for fast-sampled control. Tailored to systems with both fast and slow dynamics, the proposed approach improves computational efficiency by i) switching to a reduced model that captures only the slow, dominant dynamics and ii) exponentially increasing integration step sizes to progressively reduce model detail along the horizon. We evaluate the method on three practically motivated robotic control problems in simulation and observe speed-ups of up to an order of magnitude.
Overtourism to Equilibrium: A System Dynamics & Multi-Objective Model for Sustainable Destinations
Overtourism poses severe challenges to popular destinations worldwide, threatening natural environments and local communities. This paper develops a decision-making model integrating system dynamics with multi-objective evolutionary algorithms (NSGA-II) to balance economic returns, environmental protection, and social satisfaction. We collect multi-source data from 2008-2024 including visitor arrivals (up to 3.1M), government revenue/expenditure (up to $10.3M), glacier retreat (220-350 ft), CO2 emissions (77K-105K tons), and social satisfaction (0.29-0.48), and establish a dynamic system with four modules: tourist behavior, government finance, environmental evolution, and social well-being. We optimize three objectives via NSGA-II: cumulative net revenue, final environmental index, and final social satisfaction. Experiments on Juneau show optimal solutions yield net revenue up to $1.64B with environmental index 0.93 and social satisfaction 0.86. Extending to Iceland reveals Pareto fronts spanning revenues $150M-$200M, environment indices up to 0.92, and social satisfaction above 0.80. Sobol and Morris sensitivity analyses indicate carbon fees and price elasticity account for over 60% of environmental outcome variance, while capacity limits explain around 90% of net revenue variability. Scenario simulations demonstrate how capacity limits and dynamic pricing on crowded attractions, combined with marketing and infrastructure investment in lesser-known sites, mitigate congestion and enhance sustainability. This work contributes: (i) an integrated system-dynamics and NSGA-II framework for sustainable tourism management; (ii) demonstrated portability via case studies on Juneau and Iceland; and (iii) global sensitivity analysis highlighting influential policy levers for decision makers.
comment: 16 pages, 16 figures, 2 tables. This work was originally prepared for the 2025 MCM/ICM competition (Problem B), where it received the Meritorious Winner award
A graph-informed regret metric for optimal distributed control
We consider the optimal control of large-scale systems using distributed controllers with a network topology that mirrors the coupling graph between subsystems. In this work, we introduce spatial regret, a graph-informed metric that measures the worst-case performance gap between a distributed controller and an oracle which is assumed to have access to additional sensor information. The oracle's graph is a user-specified augmentation of the available information graph, resulting in a benchmark policy that highlights disturbances for which additional sensor information would significantly improve performance. Minimizing spatial regret yields distributed controllers-respecting the nominal information graph-that emulate the oracle's response to disturbances that are characteristic of large-scale networks, such as localized perturbations. We show that minimizing spatial regret admits a convex reformulation as an infinite program with a finite-dimensional approximation. To scale to large networks, we derive a computable upper bound on the spatial regret metric whose minimization problem can be solved in a distributed way. Numerical experiments on power-system models demonstrate that the resulting controllers mitigate localized disturbances more effectively than controllers optimized using classical metrics.
Secure parameter identification of ARX systems with CKKS cryptosystem
This paper focuses on the cloud-based parameter identification problem of ARX systems while protecting the system input and output. To do so, a CKKS-cryptosystem-based parameter identification algorithm is proposed. By rigorously proving that the statistical distance between the Gaussian distribution and the truncated discrete one is negligible, the algorithm has the same security level as the standard CKKS cryptosystem. By utilizing the projection mapping on the estimates, the conditions for correct encryption and decryption are given. Based on these conditions, the stochastic approximation method is further employed to achieve the almost sure and mean square convergence of the algorithm. The effectiveness is demonstrated through a numerical example.
comment: 12 pages, 2 figures, submitted to IFAC World Congress 2026
Two-dimensional Spatial Optimization for Electric Motorcycle Powertrain Elements using Mixed-integer Programming
This study presents a framework for optimizing the two-dimensional (2D) placement of electric motorcycle powertrain elements, accounting for the position, the orientation and geometric irregularities. Specifically, we construct a 2D placement model at the component level in which we include near-continuous rotation of components and allow for irregular subsystem geometries to make optimal use of the limited design space. Second, we introduce linearization techniques for the trigonometric constraints and formulate the placement problem as a mixed-integer quadratic program (MIQP). Finally, we demonstrate our framework on two electric motorcycle powertrain topologies and study the influence of the geometry complexity on the placement solutions. The results show that gradually increasing complexity leads to more manageable computation times and higher the complexity solution improves handling performance by 2.5% compared to the benchmark placement found in existing electric motorcycles.
comment: Submitted to European Control Conference 2026
Improved Decoupled Control of Modular Multilevel Converter under Constaint of Nearest Level Modulation via Disturbance Observer Design
Nearest level modulation (NLM) is an attractive modulation method for its implementation simplicity in modular multilevel converter (MMC). However, it introduces significant voltage and current distortion when the number of submodules (SMs) per arm is small, as in medium-voltage applications. While indirect modulation offers fully decoupled control of ac-side current, dc-side current and SM capacitor energy, its performance is fundamentally reliant on accurate arm voltage synthesis, making it incompatible with the large quantization error inherent in NLM. To resolve this conflict, this paper proposes a new control strategy based on a disturbance observer (DOB). The key idea is to estimate and actively compensate for the inevitable arm voltage synthesis error induced by NLM, thereby enabling fully decoupled control of indirect-modulated MMC even under NLM operation with a small number of SMs. A key advantage is its ease of implementation, as it requires no modifications to the conventional NLM and decoupled control structure. The validity and effectiveness of the proposed method in improving current quality and decoupled SM energy control are verified through both simulation and experimental results.
Entirely Transformerless Universal Direct-Injection Power-Flow Controller
An increasing penetration of renewable energy resources, electric vehicle chargers, and energy storage systems into low-voltage power grids causes several power management and stability problems, such as reverse power flow, (local) overload lines, and over- / under-voltage. Previous power-flow and soft-open-point solutions are bulky and expensive. They need transformers and large magnetics, some on grid frequency, others more compact at high frequency. Even suggested circuits with high-frequency transformers still struggle with cost and size. We present a compact partial power-conversion high-current full-power-flow control circuit without a single transformer. We combine silicon and silicon-carbide, each with their specific advantages for current-dense direct injection. The circuit further needs fewer semiconductors than previous concepts. The circuit links a shunt converter through a non-isolated inverter bidirectionally with low-voltage series modules that practically float with their respective phases can serve between different feeders in low-voltage power grids. We analyze the circuit mathematically and evaluate the operation in simulation and experimental results.
comment: 8 pages, 12 figures
A Receding Horizon Reinforcement Learning Framework for Campus Chiller Energy Management - A case study from an Australian University
This work presents a case study of optimal energy management of a large Heating Ventilation and Cooling (HVAC) system within a university campus in Australia using Reinforcement Learning (RL). The HVAC system supplies to nine university buildings with an annual average electricity consumption of $\sim2$ GWh. Updated chiller Coefficient of Performance (COP) curves are identified, and a predictive building cooling demand model is developed using historical data from the HVAC system. Based on these inputs, a Proximal Policy Optimization based RL model is trained to optimally schedule the chillers in a receding horizon control framework with a priority reward function for constraint satisfaction. Compared to the traditional way of controlling the HVAC system based on a reactive rule-based method, the proposed controller saves up to 28\% of the electricity consumed by simply controlling the mass flow rates of the chiller banks and with minimal constraint violations.
comment: 5 pages
Uncertainty Discounting in Deterministic Black Box Price Predictions for Energy Arbitrage
This study examines the economic impact of post-hoc uncertainty discounting in predictive energy management, specifically in battery energy arbitrage. A 2.2 MWh, 1.1 MW Tesla battery, emulating operations at the University of Queensland's St. Lucia campus, is used as a test system. Traditionally, Model Predictive Control (MPC) frameworks rely on deterministic spot price forecasts from the Australian Energy Market Operator (AEMO) to optimize battery scheduling. However, these forecasts lack uncertainty awareness, making arbitrage strategies vulnerable to extreme price volatility. To address this, we propose simple heuristic uncertainty discounting methods, which require no access to the predictive model's architecture or inputs. By integrating these strategies into existing MPC frameworks, we demonstrate a more than 20% improvement in economic returns under identical operational constraints. This approach enhances decision-making in energy arbitrage while remaining practical, scalable, and independent of specific forecasting models
comment: 5 pages, 3 figures, 1 table
Data Center Control Against Sub-Synchronous Resonance: A Data-Driven Approach
Data centers host a variety of essential services such as cloud computing and artificial intelligence. Electric grid operators, however, have limited knowledge of the reliability risks of data center interconnection due to their unique operational characteristics. An emerging concern is the sub-synchronous resonance (SSR) which refer to unexpected voltage/current oscillations at typical frequencies below 60/50 Hz. It remains unknown whether and how the interactions between data centers and the grid may trigger resonances, equipment damages, and even cascading failures. In this paper, we focus on grid-connected data centers that draw electricity from the grid through power factor correction (PFC) converters. We conduct two-tone frequency sweep to investigate the data centers' impedance characteristics, i.e. magnitude and phase angle variations over frequencies, and showcase their deep dependence on compute workloads. The impedance modeling provides a direct approach to evaluating SSR risks and enable a cooperative mechanism to alarm and avoid resonance-prone situations. Building upon the impedance, a data-driven preventive controller is then established to raise early warnings of risky operation and suggest flexible workload management according to the given grid conditions. Through case study, we demonstrate how to use impedance to understand the unexpected interactions. Data-driven impedance is validated to show decent performance in capturing the unique impedance dips and tracking the impedance variations across a range of workload scenarios. The early warning and preventive control approaches are further effective to improve the safety margins with minimal workload rescheduling. The key findings of this work will provide valuable insights for grid operators and data center managers, and support preparation for future scenarios involving large-scale data center integration.
comment: 12 pages, CIGRE Grid of the Future Symposium
Collaborative QA using Interacting LLMs. Impact of Network Structure, Node Capability and Distributed Data
In this paper, we model and analyze how a network of interacting LLMs performs collaborative question-answering (CQA) in order to estimate a ground truth given a distributed set of documents. This problem is interesting because LLMs often hallucinate when direct evidence to answer a question is lacking, and these effects become more pronounced in a network of interacting LLMs. The hallucination spreads, causing previously accurate LLMs to hallucinate. We study interacting LLMs and their hallucination by combining novel ideas of mean-field dynamics (MFD) from network science and the randomized utility model from economics to construct a useful generative model. We model the LLM with a latent state that indicates if it is truthful or not with respect to the ground truth, and extend a tractable analytical model considering an MFD to model the diffusion of information in a directed network of LLMs. To specify the probabilities that govern the dynamics of the MFD, we propose a randomized utility model. For a network of LLMs, where each LLM has two possible latent states, we posit sufficient conditions for the existence and uniqueness of a fixed point and analyze the behavior of the fixed point in terms of the incentive (e.g., test-time compute) given to individual LLMs. We experimentally study and analyze the behavior of a network of $100$ open-source LLMs with respect to data heterogeneity, node capability, network structure, and sensitivity to framing on multiple semi-synthetic datasets.
Intrinsic Resonance depends on Network Size of Coupled-Delayed Interacting Oscillators
The collective frequency that emerges from synchronized neuronal populations--the network resonance--shows a systematic relationship with brain size: whole-brain's large networks oscillate slowly, whereas finer parcellations of fixed volume exhibit faster rhythms. This resonance-size scaling has been reported in delayed neural mass models and human neuroimaging, yet the physical mechanism remained unresolved. Here we show that size-dependent resonance follows directly from propagation delays in delay-coupled phase oscillators. Starting from a Kuramoto model with heterogeneous delays, we linearize around the near-synchronous solution and obtain a closed-form approximation linking the resonance $Ω$ to the mean delay and the effective coupling field. The analysis predicts a generic scaling law: $Ω\approx (\sum_j c_{ij} τ)^{-1}$, so resonance is delay-limited and therefore depends systematically on geometric size or parcellation density. We evaluate four growth scenarios--expanding geometry, fixed-volume parcellation, constant geometry, and an unphysical reference case--and show that only geometry-consistent scaling satisfies the analytical prediction. Numerical simulations with heterogeneous delays validate the law and quantify its error as a function of delay dispersion. These results identify a minimal physical mechanism for size-dependent cortical resonance and provide an analytical framework that unifies numeric simulation outputs.
comment: 16 pages, 3 figures: 2 figures in the main text and 1 figure in the appendix
Wasserstein Distributionally Robust Nash Equilibrium Seeking with Heterogeneous Data: A Lagrangian Approach
We study a class of distributionally robust games where agents are allowed to heterogeneously choose their risk aversion with respect to distributional shifts of the uncertainty. In our formulation, heterogeneous Wasserstein ball constraints on each distribution are enforced through a penalty function leveraging a Lagrangian formulation. We then formulate the distributionally robust Nash equilibrium problem and show that under certain assumptions it is equivalent to a finite-dimensional variational inequality problem with a strongly monotone mapping. We then design an approximate Nash equilibrium seeking algorithm and prove convergence of the average regret to a quantity that diminishes with the number of iterations, thus learning the desired equilibrium up to an a priori specified accuracy. Numerical simulations corroborate our theoretical findings.
Ein Fenster zur gleichzeitigen Messung der Uebertragungsfunktion eines realen Systems und des Leistungsdichtespektrums des ueberlagerten Rauschens am Systemausgang (Teil 2)
The method described in the first part for frequency-selectively measuring the transfer function and the noise power spectral density of the superimposed noise at the output of a disturbed, real system with nonlinearities using windowing was limited to time-invariant systems with stationary and zero-mean processes. Here, we investigate how this measurement method can be extended so that all correlations existing between the input and output signals can also be measured using windowing for a periodically time-varying system disturbed by a cyclostationary noise process. An extended version of the window construction algorithm presented in the first part is introduced, in which some degrees of freedom not used there can be used to appropriately influence the properties of the window sequence depending on the application. -- Das im ersten Teil beschriebene Verfahren die Uebertragungsfunktion und das Rauschleistungsdichtespektrum des ueberlagerten Rauschens am Ausgang eines gestoerten, realen Systems mit Nichtlinearitaeten mit Hilfe der Fensterung frequenzselektiv zu vermessen beschraenkte sich auf zeitinvariante Systeme mit stationaeren und mittelwertfreien Prozessen. Hier wird untersucht, wie dieses Messverfahren zu erweitern ist, so dass man damit auch alle Korrelationen, die zwischen Ein- und Ausgangssignal bestehen, bei einem periodisch zeitvarianten System, das von einem zyklostationaeren Rauschprozess gestoert wird, mit einer Fensterung messen kann. Es wird eine erweiterte Variante des im ersten Teil vorgestellten Algorithmus zur Konstruktion des Fensters angegeben, bei der einige dort nicht genutzte Freiheitsgrade dazu verwendet werden koennen, die Eigenschaften der Fensterfolge je nach Applikation geeignet zu beeinflussen.
comment: 288 pages, in German
How much can we save? Upper bound cost and emissions benefits from commercial and industrial load flexibility
Load shifting by commercial and industrial power consumers reduces costs and Scope 2 emissions for the consumer and the grid. Incentivizing this behavior requires tools for valuing flexibility amidst the heterogeneity in load characteristics across diverse sectors and the spatiotemporal variation in electricity prices and emissions factors. This work presents a top-down approach to screen and broadly understand the benefits of flexibility based on system uptime, power capacity (PC), energy capacity (EC), and round- trip efficiency (RTE). Depending on the region and season, cost savings from flexibility range from 0 to over 100% and emissions savings are generally bounded between 5-40%. We also find the magnitude and cost of emissions abatement from flexibility is highly variable and, in some cases, up to four orders of magnitude less than regional renewable energy credits or common investing or policy benchmarks like the social cost of carbon. While the value of flexibility is highly dynamic, estimating savings as a function of load characteristics and incentives can inform heuristic design of new systems, siting strategies, comparison of flexibility to other decarbonization options, and new avenues for incentivizing flexibility.
A $μ$-Analysis and Synthesis Framework for Partial Integral Equations using IQCs
We develop a $μ$-analysis and synthesis framework for infinite-dimensional systems that leverages the Integral Quadratic Constraints (IQCs) to compute the structured singular value's upper bound. The methodology formulates robust stability and performance conditions jointly as Linear Partial Integral Inequalities within the Partial Integral Equation framework, establishing connections between IQC multipliers and $μ$-theory. Computational implementation via PIETOOLS enables computational tools that practically applicable to spatially distributed infinite dimensional systems. Illustrations with the help of Partial and Delay Differential Equations validate the effectiveness of the framework, showing a significant reduction in conservatism compared to unstructured methods and providing systematic tools for stability-performance trade-off analysis.
Ein Fenster zur gleichzeitigen Messung der Uebertragungsfunktion eines realen Systems und des Leistungsdichtespektrums des ueberlagerten Rauschens am Systemausgang (Teil 1) SC
There is already a method known from the literature with which it is possible to measure both the transfer function and the noise power spectral density of the superimposed noise at the output of a disturbed, time-invariant, real system with nonlinearities in one measurement. By using a suitable window, the frequency selectivity of the measurement of the power spectral density of the superimposed noise can be noticeably improved without significantly increasing the computational complexity of the method. The unbiasedness and consistency of the measurement method with a suitable window are proven. The measurement of the power spectral density of a zero-mean, stationary process without measuring the transfer function is investigated as a special case for both real-valued and complex-valued signals. It is derived which requirements a suitable window should meet and how it can be calculated with high numerical accuracy. -- Es gibt bereits eine aus der Literatur bekannte Methode mit der es moeglich ist in einer Messung sowohl die Uebertragungsfunktion als auch das Rauschleistungsdichtespektrum des ueberlagerten Rauschens am Ausgang eines gestoerten, zeitinvarianten, realen Systems mit Nichtlinearitaeten zu messen. Durch den Einsatz eines geeigneten Fensters kann die Frequenzselektivitaet der Messung des Leistungsdichtespektrums der Stoerung deutlich verbessert werden, ohne den Aufwand der Berechnungen des Verfahrens nennenswert zu erhoehen. Die Erwartungstreue und die Konsistenz des Messverfahren mit Fensterung wird gezeigt. Die Messung des Leistungsdichtespektrums eines mittelwertfreien, stationaeren Prozesses ohne Messung der Uebertragungsfunktion wird als Sonderfall sowohl fuer reellwertige, als auch fuer komplexwertige Signale untersucht. Es wird hergeleitet, welche Forderungen ein geeignetes Fenster erfuellen sollte und wie es sich numerisch hochgenau berechnen laesst.
comment: 256 pages, in German, MATLAB and SCILAB programs for calculating a window in a ZIP folder attached as ancillary file
Concentration inequalities for semidefinite least squares based on data
We study data-driven least squares (LS) problems with semidefinite (SD) constraints and derive finite-sample guarantees on the spectrum of their optimal solutions when these constraints are relaxed. In particular, we provide a high confidence bound allowing one to solve a simpler program in place of the full SDLS problem, while ensuring that the eigenvalues of the resulting solution are $\varepsilon$-close of those enforced by the SD constraints. The developed certificate, which consistently shrinks as the number of data increases, turns out to be easy-to-compute, distribution-free, and only requires independent and identically distributed samples. Moreover, when the SDLS is used to learn an unknown quadratic function, we establish bounds on the error between a gradient descent iterate minimizing the surrogate cost obtained with no SD constraints and the true minimizer.
Identifiability and Maximum Likelihood Estimation for System Identification of Networks of Dynamical Systems
In this paper we investigate identifiability and maximum likelihood estimation for direct system identification of networks of dynamical systems. We provide necessary and sufficient conditions for network identifiability in terms of Gröbner bases. We show that the maximum likelihood approach is both consistent and efficient, which is in contrast to existing prediction error approaches. Moreover, our approach has wider applicability, i.e., it is applicable whenever network identifiability holds. Finally, we show that we can formulate the maximum likelihood problem without the use of a predictor, which is the key to numerically being able to solve it efficiently.
comment: This work has been submitted to the IEEE for possible publication. Submitted to IEEE Transactions on Automatic Control
Time-causal and time-recursive wavelets
When to apply wavelet analysis to real-time temporal signals, where the future cannot be accessed, it is essential to base all the steps in the signal processing pipeline on computational mechanisms that are truly time-causal. This paper describes how a time-causal wavelet analysis can be performed based on concepts developed in the area of temporal scale-space theory, originating from a complete classification of temporal smoothing kernels that guarantee non-creation of new structures from finer to coarser temporal scale levels. By necessity, convolution with truncated exponential kernels in cascade constitutes the only permissable class of kernels, as well as their temporal derivatives as a natural complement to fulfil the admissibility conditions of wavelet representations. For a particular way of choosing the time constants in the resulting infinite convolution of truncated exponential kernels, to ensure temporal scale covariance and thus self-similarity over temporal scales, we describe how mother wavelets can be chosen as temporal derivatives of the resulting time-causal limit kernel. By developing connections between wavelet theory and scale-space theory, we characterize and quantify how the continuous scaling properties transfer to the discrete implementation, demonstrating how the proposed time-causal wavelet representation can reflect the duration of locally dominant temporal structures in the input signals. We propose that this notion of time-causal wavelet analysis could be a valuable tool for signal processing tasks, where streams of signals are to be processed in real time, specifically for signals that may contain local variations over a rich span of temporal scales, or more generally for analysing physical or biophysical temporal phenomena, where a fully time-causal analysis is called for to be physically realistic.
comment: 28 pages, 11 figures
Combining High Level Scheduling and Low Level Control to Manage Fleets of Mobile Robots
The deployment of mobile robots for material handling in industrial environments requires scalable coordination of large fleets in dynamic settings. This paper presents a two-layer framework that combines high-level scheduling with low-level control. Tasks are assigned and scheduled using the compositional algorithm ComSat, which generates time-parameterized routes for each robot. These schedules are then used by a distributed Model Predictive Control (MPC) system in real time to compute local reference trajectories, accounting for static and dynamic obstacles. The approach ensures safe, collision-free operation, and supports rapid rescheduling in response to disruptions such as robot failures or environmental changes. We evaluate the method in simulated 2D environments with varying road capacities and traffic conditions, demonstrating high task completion rates and robust behavior even under congestion. The modular structure of the framework allows for computational tractability and flexibility, making it suitable for deployment in complex, real-world industrial scenarios.
Instantaneous Core Loss -- Cycle-by-cycle Modeling of Power Magnetics in PWM DC-AC Converters
Nowadays, PWM excitation is one of the most common waveforms seen by magnetic components in power electronic converters. Core loss modelling approaches such as improved Generalized Steinmetz equation (iGSE) or the loss map based on composite waveform hypothesis (CWH) process the PWM excitation piecewisely, which is proven to be effective for DC DC converters. As the additional challenge in PWM DC AC converters, the fundamental-frequency sinewave component induces the "major loop loss" on top of the piecewise high-frequency segments, which however cannot be modelled on a switching cycle basis by any existing methods. To address this gap, this paper proposes a novel fundamental concept, instantaneous core loss, which is the time-domain core loss observed experimentally for the first time in history. Extending the reactive voltage cancellation concept, this work presents a method to measure the instantaneous core loss, which only contains real power loss, as a function of time. Based on measurements in evaluated soft magnetic components, it was discovered that the discharging stage exhibits higher core loss than the charging stage. A modelling approach is then proposed to break down the major loop core loss, typically an average value in the literature, into the time domain to enable cycle-by-cycle modelling of core losses in PWM converters. This work enhances the fundamental understanding of the core loss process by moving from the average model to the time-domain model.
comment: Accepted for publication in IEEE Open Journal of Power Electronics, November 2025. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. The published version is available at: https://ieeexplore.ieee.org/document/11224551
Lossless optimal transient control for rigid bodies in 3D space
In this letter, we propose a control scheme for rigid bodies designed to optimise transient behaviors. The search space for the optimal control input is parameterized to yield a passive, specifically lossless, nonlinear feedback controller. As a result, it can be combined with other stabilizing controllers without compromising the stability of the closed-loop system. The controller commands torques generating fictitious gyroscopic effects characteristics of 3D rotational rigid body motions, and as such does not inject nor extract kinetic energy from the system. We validate the controller in simulation using a model predictive control (MPC) scheme, successfully combining stability and performance in a stabilization task with obstacle avoidance constraints.
Physics-Informed Neural Networks for Nonlinear Output Regulation
This work addresses the full-information output regulation problem for nonlinear systems, assuming the states of both the plant and the exosystem are known. In this setting, perfect tracking or rejection is achieved by constructing a zero-regulation-error manifold $π(w)$ and a feedforward input $c(w)$ that render such manifold invariant. The pair $(π(w), c(w))$ is characterized by the regulator equations, i.e., a system of PDEs with an algebraic constraint. We focus on accurately solving the regulator equations introducing a physics-informed neural network (PINN) approach that directly approximates $π(w)$ and $c(w)$ by minimizing the residuals under boundary and feasibility conditions, without requiring precomputed trajectories or labeled data. The learned operator maps exosystem states to steady state plant states and inputs, enables real-time inference and, critically, generalizes across families of the exosystem with varying initial conditions and parameters. The framework is validated on a regulation task that synchronizes a helicopter's vertical dynamics with a harmonically oscillating platform. The resulting PINN-based solver reconstructs the zero-error manifold with high fidelity and sustains regulation performance under exosystem variations, highlighting the potential of learning-enabled solvers for nonlinear output regulation. The proposed approach is broadly applicable to nonlinear systems that admit a solution to the output regulation problem.
Communication-Efficient Distributed Online Nonconvex Optimization with Time-Varying Constraints
This paper considers distributed online nonconvex optimization with time-varying inequality constraints over a network of agents, where the nonconvex local loss and convex local constraint functions can vary arbitrarily across iterations. For a time-varying directed graph, we propose two distributed bandit online primal--dual algorithm with compressed communication to efficiently utilize communication resources in the one-point and two-point bandit feedback settings, respectively. To measure the performance of the proposed algorithms, we use a network regret metric grounded in the first-order optimality condition associated with the variational inequality. We show that the compressed algorithms establish sublinear network regret and cumulative constraint violation bounds. Moreover, the network cumulative constraint violation bounds are reduced under Slater's condition. Finally, a simulation example is presented to validate the theoretical results.
comment: 48 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:2503.22410
On topological properties of closed attractors
The notion of an attractor has various definitions in the theory of dynamical systems. Under compactness assumptions, several of those definitions coincide and the theory is rather complete. However, without compactness, the picture becomes blurry. To improve our understanding, we characterize in this work when a closed, not necessarily compact, asymptotically stable attractor on a locally compact metric space is homotopy equivalent to its domain of attraction. This enables a further structural study of the corresponding feedback stabilization problem.
comment: 31 pages, 3 figures, comments are very welcome!
Artifacts Are Not Noise: Embodied Resonance and the 70% Signal Loss in Conventional EEG
Current AI systems excel at pattern recognition but fail at causal reasoning. We argue this is not an engineering limitation but reveals something fundamental about the nature of understanding itself. We propose that causal cognition requires a specific physical architecture: stochastic, coupled oscillators with whole-system coordination. To test this, we analyzed high-density EEG (64 channels, 10 subjects, 500 plus trials) from a P300 target recognition task. We computed the Kuramoto Order Parameter (R) to measure global phase synchronization and compared it to standard voltage (ERP) and coherence (ITC) metrics. Four findings establish the framework. Phase and voltage are globally independent (r of 0.048) yet strongly trial-coupled (r of 0.590), proving R captures hidden cognitive structure. Voltage precedes phase by 293 ms, revealing sequential computation. Frequency decomposition shows Theta (169 ms), Alpha (286 ms), and Beta (777 ms) cascade. Our metric is distinct from standard ITC (r of 0.155). Then we tested the standard assumption. Conventional artifact rejection removes eye movements, muscle activity, and autonomic signals before analysis. The standard model assumes cognition is neural activity plus noise. We ran the identical analysis with and without rejection. Removing artifacts reduced the trial-level correlation threefold (from 0.590 to 0.195). Target discrimination reversed sign (from positive 0.6 percent to negative 0.4 percent). What we discard as noise is 70 percent of the signal. This falsifies the standard model. Cognition is not isolated neural computation. It is whole-body phase synchronization spanning neural, muscular, and autonomic systems. For AI, the implications are direct: embodied sensorimotor integration is not optional. It is the substrate that makes understanding possible.
comment: v3: Major revision. Adds ICA vs. raw data comparison. Finds artifact rejection masks the core correlation (r=0.59 -> r=0.19), supporting an embodied cognition framework. R vs. ITC comparison added to main text. Expanded discussion on methodology, embodied resonance, & AI. Abstract & theory updated based on new data & feedback
Time-Optimal Model Predictive Control for Linear Systems with Multiplicative Uncertainties
This paper presents a time-optimal Model Predictive Control (MPC) scheme for linear discrete-time systems subject to multiplicative uncertainties represented by interval matrices. To render the uncertainty propagation computationally tractable, the set-valued error system dynamics are approximated using a matrix-zonotope-based bounding operator. Recursive feasibility and finite-time convergence are ensured through an adaptive terminal constraint mechanism. A key advantage of the proposed approach is that all the necessary bounding sets can be computed offline, substantially reducing the online computational burden. The effectiveness of the method is illustrated via a numerical case study on an orbital rendezvous maneuver between two satellites.
Trajectory Optimization for Unknown Maneuvering Target Tracking with Bearing-only Measurements
This paper studies trajectory optimization of an autonomous underwater vehicle (AUV) to track an unknown maneuvering target both in the 2D and 3D space. Due to the restrictions on sensing capabilities in the underwater scenario, the AUV is limited to collecting only bearing measurements to the target. A framework called {\it GP-based Bearing-only Tracking (GBT)} is proposed with integration of online learning and planning. First, a Gaussian process learning method is proposed for the AUV to handle unknown target motion, wherein pseudo linear transformation of bearing measurements is introduced to address nonlinearity of bearings. A probabilistic bearing-data-dependent bound on tracking error is then rigorously established. Based on it, optimal desired bearings that can reduce tracking uncertainty are obtained analytically. Finally, the trajectory optimization problem is formulated and transformed into an easily solved one with parametric transformation. Numerical examples and comparison with existing methods verify the feasibility and superior performance of our proposed framework.
Statistically Consistent Approximate Model Predictive Control
Model Predictive Control (MPC) offers rigorous safety and performance guarantees but is computationally intensive. Approximate MPC (AMPC) aims to circumvent this drawback by learning a computationally cheaper surrogate policy. Common approaches focus on imitation learning (IL) via behavioral cloning (BC), minimizing a mean-squared-error loss on a collection of state-input pairs. However, BC fundamentally fails to provide accurate approximations when MPC solutions are set-valued due to non-convex constraints or local minima. We propose a two-stage IL procedure to accurately approximate nonlinear, potentially set-valued MPC policies. The method integrates an approximation of the MPC's optimal value function into a one-step look-ahead loss function, and thereby embeds the MPC's constraint and performance objectives into the IL objective. This is achieved by adopting a stabilizing soft constrained MPC formulation, which reflects constraint violations in the optimal value function by combining a constraint tightening with slack penalties. We prove statistical consistency for policies that exactly minimize our IL objective, implying convergence to a safe and stabilizing control law, and establish input-to-state stability guarantees for approximate minimizers. Simulations demonstrate improved performance compared to BC.
Joint Communication and Over-the-Air Computation for Semi-Federated Learning Towards Scalable AI in Computing-Heterogeneous IoT Systems
The proliferation of Internet of Things (IoT) systems demands scalable artificial intelligence (AI) solutions that can operate in computing-heterogeneous environments with diverse hardware capabilities and non-independent and identically distributed data. This paper proposes a semi-federated learning (SemiFL) framework that integrates centralized learning (CL) and federated learning (FL) to enable efficient model training across heterogeneous IoT devices. In SemiFL, only devices with sufficient computational resources are designated for local model training (referred to as FL users), while the remaining devices transmit raw data to a base station (BS) for remote computation (referred to as CL users). This collaborative computing framework enables all IoT devices to participate in global model training, regardless of their computational capabilities and data distributions. Furthermore, to alleviate radio resource scarcity of SemiFL, we propose a joint communication and over-the-air computation design that unifies wireless transmission and model aggregation. This approach reduces latency and enhances spectrum efficiency by allowing simultaneous communication and computation over the air. Furthermore, we design a transceiver architecture that integrates receive beamforming and successive interference cancellation to mitigate multi-user interference, ensuring reliable aggregation at the BS. Subsequently, two scenarios are examined to assess the efficacy of SemiFL within IoT systems. Simulation results demonstrate that the proposed next-generation multiple access (NGMA)-based SemiFL outperforms the fixed beamforming-based FL by 8% and the AirComp-based FL by 6.4%, demonstrating its superior learning efficiency and convergence performance.
comment: 9 pages, 6 figures
Strategic Data Center Load Shifting: Implications for Market Efficiency and Transmission Value
Data center electricity use may reach 12% of U.S. demand by 2030, alongside growing ability to shift workloads geographically in response to prices or carbon signals. We examine the system-level implications of such strategic flexibility using a bilevel two-zone model that couples economic dispatch with consumer cost minimization. Two market failures emerge. First, discontinuous price changes at generator capacity limits can induce flexible consumers to shift load in socially inefficient directions-for example, toward a higher-cost region to trigger a price drop elsewhere. Second, by positioning near capacity boundaries, consumers can eliminate the marginal value of transmission expansion: although shadow prices suggest additional capacity is valuable, consumers reoptimize to offset resulting flow changes, leaving dispatch and costs unchanged. We derive conditions under which these effects arise and show that conventional price signals and planning methods can misrepresent system value in the presence of large flexible loads.
Inertia-aware Unit Commitment and Remuneration Methods for Decarbonized Power System
To maintain frequency stability in decarbonized power systems, inertia services from synchronous generators (SGs) and inverter-based resources must be procured. However, designing an inertia-aware system operation poses significant challenges in considering the variability and uncertainty of renewable energy sources (RES) and adopting a remuneration method for inertia provision due to SG commitment variables. To address this research gap, we renovate the inertia-aware chance constraints unit commitment model by incorporating time-coupling constraints for SGs and joint chance constraints for RES uncertainty. We investigate remuneration methods for inertia provision, including uplift, marginal pricing (MP), approximated convex hull pricing (aCHP), and average incremental cost pricing (AIP), applying these to the renovated model. Numerical experiments show that the model enhances frequency stability during a contingency. Among the remuneration methods, only aCHP guarantees revenue adequacy without requiring uplift while maximizing economic welfare. However, the MP requires the highest level of uplift to adequately compensate generation costs, as the price function fails to account for inertia provision.
comment: 10pages, 7 figures
Convex Reformulation of LMI-Based Distributed Controller Design with a Class of Non-Block-Diagonal Lyapunov Functions
This study addresses a distributed state feedback controller design problem for continuous-time linear time-invariant systems by means of linear matrix inequalities (LMIs). As structural constraints on a control gain result in non-convexity in general, the block-diagonal relaxation of Lyapunov functions has been prevalent despite its conservatism. In this work, we target a class of non-block-diagonal Lyapunov functions with the same sparsity pattern as distributed controllers. By leveraging a block-diagonal factorization of sparse matrices and Finsler's lemma, we first present a nonlinear matrix inequality for stabilizing distributed controllers with such Lyapunov functions, which boils down to a necessary and sufficient condition for such controllers if the sparsity pattern is chordal. As its relaxation, we derive novel LMIs, one of which strictly covers the conventional relaxation, and then provide analogous results for $H_\infty$ control. Lastly, numerical examples underscore the efficacy of our results.
comment: 17 pages, 5 figures. This paper has been accepted to IEEE Transactions on Automatic Control. This is the supplemental material
Kalman-Bucy Filtering with Randomized Sensing: Fundamental Limits and Sensor Network Design for Field Estimation
Stability analysis of the Kalman filter under randomly lost measurements has been widely studied. We revisit this problem in a general continuous-time framework, where both the measurement matrix and noise covariance evolve as random processes, capturing variability in sensing locations. Within this setting, we derive a closed-form upper bound on the expected estimation covariance for continuous-time Kalman filtering. We then apply this framework to spatiotemporal field estimation, where the field is modeled as a Gaussian process observed by randomly located, noisy sensors. Using clarity, introduced in our earlier work as a rescaled form of the differential entropy of a random variable, we establish a grid-independent lower bound on the spatially averaged expected clarity. This result exposes fundamental performance limits through a composite sensing parameter that jointly captures the effects of the number of sensors, noise level, and measurement frequency. Simulations confirm that the proposed bound is tight for the discrete-time Kalman filter, approaching it as the measurement rate decreases, while avoiding the recursive computations required in the discrete-time formulation. Most importantly, the derived limits provide principled and efficient guidelines for sensor network design problem prior to deployment.
DiffOP: Reinforcement Learning of Optimization-Based Control Policies via Implicit Policy Gradients AAAI 2026
Real-world control systems require policies that are not only high-performing but also interpretable and robust. A promising direction toward this goal is model-based control, which learns system dynamics and cost functions from historical data and then uses these models to inform decision-making. Building on this paradigm, we introduce DiffOP, a novel framework for learning optimization-based control policies defined implicitly through optimization control problems. Without relying on value function approximation, DiffOP jointly learns the cost and dynamics models and directly optimizes the actual control costs using policy gradients. To enable this, we derive analytical policy gradients by applying implicit differentiation to the underlying optimization problem and integrating it with the standard policy gradient framework. Under standard regularity conditions, we establish that DiffOP converges to an $ε$-stationary point within $\mathcal{O}(ε^{-1})$ iterations. We demonstrate the effectiveness of DiffOP through experiments on nonlinear control tasks and power system voltage control with constraints. The code is available at https://github.com/alwaysbyx/DiffOP.
comment: The paper is accepted by AAAI 2026
Operator learning for energy-efficient building ventilation control with computational fluid dynamics simulation of a real-world classroom
Energy-efficient ventilation control plays a vital role in reducing building energy consumption while ensuring occupant health and comfort. While Computational Fluid Dynamics (CFD) simulations provide detailed and physically accurate representation of indoor airflow, their high computational cost limits their use in real-time building control. In this work, we present a neural operator learning framework that combines the physical accuracy of CFD with the computational efficiency of machine learning to enable building ventilation control with the high-fidelity fluid dynamics models. Our method jointly optimizes the airflow supply rates and vent angles to reduce energy use and adhere to air quality constraints. We train an ensemble of neural operator transformer models to learn the mapping from building control actions to airflow fields using high-resolution CFD data. This learned neural operator is then embedded in an optimization-based control framework for building ventilation control. Experimental results show that our approach achieves significant energy savings compared to maximum airflow rate control, rule-based control, as well as data-driven control methods using spatially averaged CO2 prediction and deep learning based reduced order model, while consistently maintaining safe indoor air quality. These results highlight the practicality and scalability of our method in maintaining energy efficiency and indoor air quality in real-world buildings.
comment: The paper is accepted by Applied Energy
Optimal Control of Nonlinear Systems with Unknown Dynamics
This paper presents a data-driven method to find a closed-loop optimal controller, which minimizes a specified infinite-horizon cost function for systems with unknown dynamics. Suppose the closed-loop optimal controller can be parameterized by a given class of functions, hereafter referred to as the policy. The proposed method introduces a novel gradient estimation framework, which approximates the gradient of the cost function with respect to the policy parameters via integrating the Koopman operator with the classical concept of actor-critic. This enables the policy parameters to be tuned iteratively using gradient descent to achieve an optimal controller, leveraging the linearity of the Koopman operator. The convergence analysis of the proposed framework is provided. The control performance of the proposed method is evaluated through simulations compared with classical optimal control methods that usually assume the dynamics are known.
Stochastically Structured Reservoir Computers for Financial and Economic System Identification
This paper introduces a methodology for identifying and simulating financial and economic systems using stochastically structured reservoir computers (SSRCs). The framework combines structure-preserving embeddings with graph-informed coupling matrices to model inter-agent dynamics while enhancing interpretability. A constrained optimization scheme guarantees compliance with both stochastic and structural constraints. Two empirical case studies, a nonlinear stochastic dynamic model and regional inflation network dynamics, demonstrate the effectiveness of the approach in capturing complex nonlinear patterns and enabling interpretable predictive analysis under uncertainty.
Robotics
Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision
comment: Project page: https://jianglongye.com/power-to-precision
OpenRoboCare: A Multimodal Multi-Task Expert Demonstration Dataset for Robot Caregiving IROS 2025
We present OpenRoboCare, a multimodal dataset for robot caregiving, capturing expert occupational therapist demonstrations of Activities of Daily Living (ADLs). Caregiving tasks involve complex physical human-robot interactions, requiring precise perception under occlusions, safe physical contact, and long-horizon planning. While recent advances in robot learning from demonstrations have shown promise, there is a lack of a large-scale, diverse, and expert-driven dataset that captures real-world caregiving routines. To address this gap, we collect data from 21 occupational therapists performing 15 ADL tasks on two manikins. The dataset spans five modalities: RGB-D video, pose tracking, eye-gaze tracking, task and action annotations, and tactile sensing, providing rich multimodal insights into caregiver movement, attention, force application, and task execution strategies. We further analyze expert caregiving principles and strategies, offering insights to improve robot efficiency and task feasibility. Additionally, our evaluations demonstrate that OpenRoboCare presents challenges for state-of-the-art robot perception and human activity recognition methods, both critical for developing safe and adaptive assistive robots, highlighting the value of our contribution. See our website for additional visualizations: https://emprise.cs.cornell.edu/robo-care/.
comment: IROS 2025
PhysX-Anything: Simulation-Ready Physical 3D Assets from Single Image
3D modeling is shifting from static visual representations toward physical, articulated assets that can be directly used in simulation and interaction. However, most existing 3D generation methods overlook key physical and articulation properties, thereby limiting their utility in embodied AI. To bridge this gap, we introduce PhysX-Anything, the first simulation-ready physical 3D generative framework that, given a single in-the-wild image, produces high-quality sim-ready 3D assets with explicit geometry, articulation, and physical attributes. Specifically, we propose the first VLM-based physical 3D generative model, along with a new 3D representation that efficiently tokenizes geometry. It reduces the number of tokens by 193x, enabling explicit geometry learning within standard VLM token budgets without introducing any special tokens during fine-tuning and significantly improving generative quality. In addition, to overcome the limited diversity of existing physical 3D datasets, we construct a new dataset, PhysX-Mobility, which expands the object categories in prior physical 3D datasets by over 2x and includes more than 2K common real-world objects with rich physical annotations. Extensive experiments on PhysX-Mobility and in-the-wild images demonstrate that PhysX-Anything delivers strong generative performance and robust generalization. Furthermore, simulation-based experiments in a MuJoCo-style environment validate that our sim-ready assets can be directly used for contact-rich robotic policy learning. We believe PhysX-Anything can substantially empower a broad range of downstream applications, especially in embodied AI and physics-based simulation.
comment: Project page: https://physx-anything.github.io/
Towards Affect-Adaptive Human-Robot Interaction: A Protocol for Multimodal Dataset Collection on Social Anxiety
Social anxiety is a prevalent condition that affects interpersonal interactions and social functioning. Recent advances in artificial intelligence and social robotics offer new opportunities to examine social anxiety in the human-robot interaction context. Accurate detection of affective states and behaviours associated with social anxiety requires multimodal datasets, where each signal modality provides complementary insights into its manifestations. However, such datasets remain scarce, limiting progress in both research and applications. To address this, this paper presents a protocol for multimodal dataset collection designed to reflect social anxiety in a human-robot interaction context. The dataset will consist of synchronised audio, video, and physiological recordings acquired from at least 70 participants, grouped according to their level of social anxiety, as they engage in approximately 10-minute interactive Wizard-of-Oz role-play scenarios with the Furhat social robot under controlled experimental conditions. In addition to multimodal data, the dataset will be enriched with contextual data providing deeper insight into individual variability in social anxiety responses. This work can contribute to research on affect-adaptive human-robot interaction by providing support for robust multimodal detection of social anxiety.
comment: Accepted at the Workshop on Benefits of pErsonalization and behAvioral adaptation in assistive Robots (BEAR 2025), held at the IEEE RO-MAN Conference 2025
Contact-Safe Reinforcement Learning with ProMP Reparameterization and Energy Awareness
Reinforcement learning (RL) approaches based on Markov Decision Processes (MDPs) are predominantly applied in the robot joint space, often relying on limited task-specific information and partial awareness of the 3D environment. In contrast, episodic RL has demonstrated advantages over traditional MDP-based methods in terms of trajectory consistency, task awareness, and overall performance in complex robotic tasks. Moreover, traditional step-wise and episodic RL methods often neglect the contact-rich information inherent in task-space manipulation, especially considering the contact-safety and robustness. In this work, contact-rich manipulation tasks are tackled using a task-space, energy-safe framework, where reliable and safe task-space trajectories are generated through the combination of Proximal Policy Optimization (PPO) and movement primitives. Furthermore, an energy-aware Cartesian Impedance Controller objective is incorporated within the proposed framework to ensure safe interactions between the robot and the environment. Our experimental results demonstrate that the proposed framework outperforms existing methods in handling tasks on various types of surfaces in 3D environments, achieving high success rates as well as smooth trajectories and energy-safe interactions.
ZeroDexGrasp: Zero-Shot Task-Oriented Dexterous Grasp Synthesis with Prompt-Based Multi-Stage Semantic Reasoning
Task-oriented dexterous grasping holds broad application prospects in robotic manipulation and human-object interaction. However, most existing methods still struggle to generalize across diverse objects and task instructions, as they heavily rely on costly labeled data to ensure task-specific semantic alignment. In this study, we propose \textbf{ZeroDexGrasp}, a zero-shot task-oriented dexterous grasp synthesis framework integrating Multimodal Large Language Models with grasp refinement to generate human-like grasp poses that are well aligned with specific task objectives and object affordances. Specifically, ZeroDexGrasp employs prompt-based multi-stage semantic reasoning to infer initial grasp configurations and object contact information from task and object semantics, then exploits contact-guided grasp optimization to refine these poses for physical feasibility and task alignment. Experimental results demonstrate that ZeroDexGrasp enables high-quality zero-shot dexterous grasping on diverse unseen object categories and complex task requirements, advancing toward more generalizable and intelligent robotic grasping.
EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.
comment: 10 pages; 2 figures; 1 table. Prprint submitted to the European Robotics Forum 2026
Proceedings Seventh International Workshop on Formal Methods for Autonomous Systems
This EPTCS volume contains the papers from the Seventh International Workshop on Formal Methods for Autonomous Systems (FMAS 2025), which was held between the 17th and 19th of November 2025. The goal of the FMAS workshop series is to bring together leading researchers who are using formal methods to tackle the unique challenges that autonomous systems present, so that they can publish and discuss their work with a growing community of researchers. FMAS 2025 was co-located with the 20th International Conference on integrated Formal Methods (iFM'25), hosted by Inria Paris, France at the Inria Paris Center. In total, FMAS 2025 received 16 submissions from researchers at institutions in: Canada, China, France, Germany, Ireland, Italy, Japan, the Netherlands, Portugal, Sweden, the United States of America, and the United Kingdom. Though we received fewer submissions than last year, we are encouraged to see the submissions being sent from a wide range of countries. Submissions come from both past and new FMAS authors, which shows us that the existing community appreciates the network that FMAS has built over the past 7 years, while new authors also show the FMAS community's great potential of growth.
GaRLILEO: Gravity-aligned Radar-Leg-Inertial Enhanced Odometry
Deployment of legged robots for navigating challenging terrains (e.g., stairs, slopes, and unstructured environments) has gained increasing preference over wheel-based platforms. In such scenarios, accurate odometry estimation is a preliminary requirement for stable locomotion, localization, and mapping. Traditional proprioceptive approaches, which rely on leg kinematics sensor modalities and inertial sensing, suffer from irrepressible vertical drift caused by frequent contact impacts, foot slippage, and vibrations, particularly affected by inaccurate roll and pitch estimation. Existing methods incorporate exteroceptive sensors such as LiDAR or cameras. Further enhancement has been introduced by leveraging gravity vector estimation to add additional observations on roll and pitch, thereby increasing the accuracy of vertical pose estimation. However, these approaches tend to degrade in feature-sparse or repetitive scenes and are prone to errors from double-integrated IMU acceleration. To address these challenges, we propose GaRLILEO, a novel gravity-aligned continuous-time radar-leg-inertial odometry framework. GaRLILEO decouples velocity from the IMU by building a continuous-time ego-velocity spline from SoC radar Doppler and leg kinematics information, enabling seamless sensor fusion which mitigates odometry distortion. In addition, GaRLILEO can reliably capture accurate gravity vectors leveraging a novel soft S2-constrained gravity factor, improving vertical pose accuracy without relying on LiDAR or cameras. Evaluated on a self-collected real-world dataset with diverse indoor-outdoor trajectories, GaRLILEO demonstrates state-of-the-art accuracy, particularly in vertical odometry estimation on stairs and slopes. We open-source both our dataset and algorithm to foster further research in legged robot odometry and SLAM. https://garlileo.github.io/GaRLILEO
PIGEON: VLM-Driven Object Navigation via Points of Interest Selection
Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.
Collision-Free Navigation of Mobile Robots via Quadtree-Based Model Predictive Control
This paper presents an integrated navigation framework for Autonomous Mobile Robots (AMRs) that unifies environment representation, trajectory generation, and Model Predictive Control (MPC). The proposed approach incorporates a quadtree-based method to generate structured, axis-aligned collision-free regions from occupancy maps. These regions serve as both a basis for developing safe corridors and as linear constraints within the MPC formulation, enabling efficient and reliable navigation without requiring direct obstacle encoding. The complete pipeline combines safe-area extraction, connectivity graph construction, trajectory generation, and B-spline smoothing into one coherent system. Experimental results demonstrate consistent success and superior performance compared to baseline approaches across complex environments.
comment: This paper has been accepted by IEEE SII 2026
Monolithic Units: Actuation, Sensing, and Simulation for Integrated Soft Robot Design
This work introduces the Monolithic Unit (MU), an actuator-lattice-sensor building block for soft robotics. The MU integrates pneumatic actuation, a compliant lattice envelope, and candidate sites for optical waveguide sensing into a single printed body. In order to study reproducibility and scalability, a parametric design framework establishes deterministic rules linking actuator chamber dimensions to lattice unit cell size. Experimental homogenization of lattice specimens provides effective material properties for finite element simulation. Within this simulation environment, sensor placement is treated as a discrete optimization problem, where a finite set of candidate waveguide paths derived from lattice nodes is evaluated by introducing local stiffening, and the configuration minimizing deviation from baseline mechanical response is selected. Optimized models are fabricated and experimentally characterized, validating the preservation of mechanical performance while enabling embedded sensing. The workflow is further extended to scaled units and a two-finger gripper, demonstrating generality of the MU concept. This approach advances monolithic soft robotic design by combining reproducible co-design rules with simulation-informed sensor integration.
comment: 8 pages, 6 figures, 1 algorithm, 1 table
Count Every Rotation and Every Rotation Counts: Exploring Drone Dynamics via Propeller Sensing
As drone-based applications proliferate, paramount contactless sensing of airborne drones from the ground becomes indispensable. This work demonstrates concentrating on propeller rotational speed will substantially improve drone sensing performance and proposes an event-camera-based solution, \sysname. \sysname features two components: \textit{Count Every Rotation} achieves accurate, real-time propeller speed estimation by mitigating ultra-high sensitivity of event cameras to environmental noise. \textit{Every Rotation Counts} leverages these speeds to infer both internal and external drone dynamics. Extensive evaluations in real-world drone delivery scenarios show that \sysname achieves a sensing latency of 3$ms$ and a rotational speed estimation error of merely 0.23\%. Additionally, \sysname infers drone flight commands with 96.5\% precision and improves drone tracking accuracy by over 22\% when combined with other sensing modalities. \textit{ Demo: {\color{blue}https://eventpro25.github.io/EventPro/.} }
ResAlignNet: A Data-Driven Approach for INS/DVL Alignment
Autonomous underwater vehicles rely on precise navigation systems that combine the inertial navigation system and the Doppler velocity log for successful missions in challenging environments where satellite navigation is unavailable. The effectiveness of this integration critically depends on accurate alignment between the sensor reference frames. Standard model-based alignment methods between these sensor systems suffer from lengthy convergence times, dependence on prescribed motion patterns, and reliance on external aiding sensors, significantly limiting operational flexibility. To address these limitations, this paper presents ResAlignNet, a data-driven approach using the 1D ResNet-18 architecture that transforms the alignment problem into deep neural network optimization, operating as an in-situ solution that requires only sensors on board without external positioning aids or complex vehicle maneuvers, while achieving rapid convergence in seconds. Additionally, the approach demonstrates the learning capabilities of Sim2Real transfer, enabling training in synthetic data while deploying in operational sensor measurements. Experimental validation using the Snapir autonomous underwater vehicle demonstrates that ResAlignNet achieves alignment accuracy within 0.8° using only 25 seconds of data collection, representing a 65\% reduction in convergence time compared to standard velocity-based methods. The trajectory-independent solution eliminates motion pattern requirements and enables immediate vehicle deployment without lengthy pre-mission procedures, advancing underwater navigation capabilities through robust sensor-agnostic alignment that scales across different operational scenarios and sensor specifications.
Orientation-Free Neural Network-Based Bias Estimation for Low-Cost Stationary Accelerometers
Low-cost micro-electromechanical accelerometers are widely used in navigation, robotics, and consumer devices for motion sensing and position estimation. However, their performance is often degraded by bias errors. To eliminate deterministic bias terms a calibration procedure is applied under stationary conditions. It requires accelerom- eter leveling or complex orientation-dependent calibration procedures. To overcome those requirements, in this paper we present a model-free learning-based calibration method that estimates accelerometer bias under stationary conditions, without requiring knowledge of the sensor orientation and without the need to rotate the sensors. The proposed approach provides a fast, practical, and scalable solution suitable for rapid field deployment. Experimental validation on a 13.39-hour dataset collected from six accelerometers shows that the proposed method consistently achieves error levels more than 52% lower than traditional techniques. On a broader scale, this work contributes to the advancement of accurate calibration methods in orientation-free scenarios. As a consequence, it improves the reliability of low-cost inertial sensors in diverse scientific and industrial applications and eliminates the need for leveled calibration.
comment: 22 pages, 10 figures
Unidirectional-Road-Network-Based Global Path Planning for Cleaning Robots in Semi-Structured Environments ICRA
Practical global path planning is critical for commercializing cleaning robots working in semi-structured environments. In the literature, global path planning methods for free space usually focus on path length and neglect the traffic rule constraints of the environments, which leads to high-frequency re-planning and increases collision risks. In contrast, those for structured environments are developed mainly by strictly complying with the road network representing the traffic rule constraints, which may result in an overlong path that hinders the overall navigation efficiency. This article proposes a general and systematic approach to improve global path planning performance in semi-structured environments. A unidirectional road network is built to represent the traffic constraints in semi-structured environments and a hybrid strategy is proposed to achieve a guaranteed planning result.Cutting across the road at the starting and the goal points are allowed to achieve a shorter path. Especially, a two-layer potential map is proposed to achieve a guaranteed performance when the starting and the goal points are in complex intersections. Comparative experiments are carried out to validate the effectiveness of the proposed method. Quantitative experimental results show that, compared with the state-of-art, the proposed method guarantees a much better balance between path length and the consistency with the road network.
comment: 2023 IEEE International Conference on Robotics and Automation (ICRA)
DiffPixelFormer: Differential Pixel-Aware Transformer for RGB-D Indoor Scene Segmentation
Indoor semantic segmentation is fundamental to computer vision and robotics, supporting applications such as autonomous navigation, augmented reality, and smart environments. Although RGB-D fusion leverages complementary appearance and geometric cues, existing methods often depend on computationally intensive cross-attention mechanisms and insufficiently model intra- and inter-modal feature relationships, resulting in imprecise feature alignment and limited discriminative representation. To address these challenges, we propose DiffPixelFormer, a differential pixel-aware Transformer for RGB-D indoor scene segmentation that simultaneously enhances intra-modal representations and models inter-modal interactions. At its core, the Intra-Inter Modal Interaction Block (IIMIB) captures intra-modal long-range dependencies via self-attention and models inter-modal interactions with the Differential-Shared Inter-Modal (DSIM) module to disentangle modality-specific and shared cues, enabling fine-grained, pixel-level cross-modal alignment. Furthermore, a dynamic fusion strategy balances modality contributions and fully exploits RGB-D information according to scene characteristics. Extensive experiments on the SUN RGB-D and NYUDv2 benchmarks demonstrate that DiffPixelFormer-L achieves mIoU scores of 54.28% and 59.95%, outperforming DFormer-L by 1.78% and 2.75%, respectively. Code is available at https://github.com/gongyan1/DiffPixelFormer.
comment: 11 pages, 5 figures, 5 tables
APP: A* Post-Processing Algorithm for Robots with Bidirectional Shortcut and Path Perturbation
Paths generated by A* and other graph-search-based planners are widely used in the robotic field. Due to the restricted node-expansion directions, the resulting paths are usually not the shortest. Besides, unnecessary heading changes, or zig-zag patterns, exist even when no obstacle is nearby, which is inconsistent with the human intuition that the path segments should be straight in wide-open space due to the absence of obstacles. This article puts forward a general and systematic post-processing algorithm for A* and other graph-search-based planners. The A* post-processing algorithm, called APP, is developed based on the costmap, which is widely used in commercial service robots. First, a bidirectional vertices reduction algorithm is proposed to tackle the asymm- etry of the path and the environments. During the forward and backward vertices reduction, a thorough shortcut strategy is put forward to improve the path-shortening performance and avoid unnecessary heading changes. Second, an iterative path perturbation algorithm is adopted to locally reduce the number of unnecessary heading changes and improve the path smooth- ness. Comparative experiments are then carried out to validate the superiority of the proposed method. Quantitative performance indexes show that APP outperforms the existing methods in planning time, path length as well as the number of unnecessary heading changes. Finally, field navigation experiments are carried out to verify the practicability of APP.
CUTE-Planner: Confidence-aware Uneven Terrain Exploration Planner
Planetary exploration robots must navigate uneven terrain while building reliable maps for space missions. However, most existing methods incorporate traversability constraints but may not handle high uncertainty in elevation estimates near complex features like craters, do not consider exploration strategies for uncertainty reduction, and typically fail to address how elevation uncertainty affects navigation safety and map quality. To address the problems, we propose a framework integrating safe path generation, adaptive confidence updates, and confidence-aware exploration strategies. Using Kalman-based elevation estimation, our approach generates terrain traversability and confidence scores, then incorporates them into Graph-Based exploration Planner (GBP) to prioritize exploration of traversable low-confidence regions. We evaluate our framework through simulated lunar experiments using a novel low-confidence region ratio metric, achieving 69% uncertainty reduction compared to baseline GBP. In terms of mission success rate, our method achieves 100% while baseline GBP achieves 0%, demonstrating improvements in exploration safety and map reliability.
comment: Accepted in International Conference on Space Robotics 2025
SplatSearch: Instance Image Goal Navigation for Mobile Robots using 3D Gaussian Splatting and Diffusion Models
The Instance Image Goal Navigation (IIN) problem requires mobile robots deployed in unknown environments to search for specific objects or people of interest using only a single reference goal image of the target. This problem can be especially challenging when: 1) the reference image is captured from an arbitrary viewpoint, and 2) the robot must operate with sparse-view scene reconstructions. In this paper, we address the IIN problem, by introducing SplatSearch, a novel architecture that leverages sparse-view 3D Gaussian Splatting (3DGS) reconstructions. SplatSearch renders multiple viewpoints around candidate objects using a sparse online 3DGS map, and uses a multi-view diffusion model to complete missing regions of the rendered images, enabling robust feature matching against the goal image. A novel frontier exploration policy is introduced which uses visual context from the synthesized viewpoints with semantic context from the goal image to evaluate frontier locations, allowing the robot to prioritize frontiers that are semantically and visually relevant to the goal image. Extensive experiments in photorealistic home and real-world environments validate the higher performance of SplatSearch against current state-of-the-art methods in terms of Success Rate and Success Path Length. An ablation study confirms the design choices of SplatSearch.
comment: Project Page: https://splat-search.github.io/
GUIDE: Gaussian Unified Instance Detection for Enhanced Obstacle Perception in Autonomous Driving
In the realm of autonomous driving, accurately detecting surrounding obstacles is crucial for effective decision-making. Traditional methods primarily rely on 3D bounding boxes to represent these obstacles, which often fail to capture the complexity of irregularly shaped, real-world objects. To overcome these limitations, we present GUIDE, a novel framework that utilizes 3D Gaussians for instance detection and occupancy prediction. Unlike conventional occupancy prediction methods, GUIDE also offers robust tracking capabilities. Our framework employs a sparse representation strategy, using Gaussian-to-Voxel Splatting to provide fine-grained, instance-level occupancy data without the computational demands associated with dense voxel grids. Experimental validation on the nuScenes dataset demonstrates GUIDE's performance, with an instance occupancy mAP of 21.61, marking a 50\% improvement over existing methods, alongside competitive tracking capabilities. GUIDE establishes a new benchmark in autonomous perception systems, effectively combining precision with computational efficiency to better address the complexities of real-world driving environments.
DiffuDepGrasp: Diffusion-based Depth Noise Modeling Empowers Sim2Real Robotic Grasping
Transferring the depth-based end-to-end policy trained in simulation to physical robots can yield an efficient and robust grasping policy, yet sensor artifacts in real depth maps like voids and noise establish a significant sim2real gap that critically impedes policy transfer. Training-time strategies like procedural noise injection or learned mappings suffer from data inefficiency due to unrealistic noise simulation, which is often ineffective for grasping tasks that require fine manipulation or dependency on paired datasets heavily. Furthermore, leveraging foundation models to reduce the sim2real gap via intermediate representations fails to mitigate the domain shift fully and adds computational overhead during deployment. This work confronts dual challenges of data inefficiency and deployment complexity. We propose DiffuDepGrasp, a deploy-efficient sim2real framework enabling zero-shot transfer through simulation-exclusive policy training. Its core innovation, the Diffusion Depth Generator, synthesizes geometrically pristine simulation depth with learned sensor-realistic noise via two synergistic modules. The first Diffusion Depth Module leverages temporal geometric priors to enable sample-efficient training of a conditional diffusion model that captures complex sensor noise distributions, while the second Noise Grafting Module preserves metric accuracy during perceptual artifact injection. With only raw depth inputs during deployment, DiffuDepGrasp eliminates computational overhead and achieves a 95.7% average success rate on 12-object grasping with zero-shot transfer and strong generalization to unseen objects.Project website: https://diffudepgrasp.github.io/.
TOPP-DWR: Time-Optimal Path Parameterization of Differential-Driven Wheeled Robots Considering Piecewise-Constant Angular Velocity Constraints
Differential-driven wheeled robots (DWR) represent the quintessential type of mobile robots and find extensive appli- cations across the robotic field. Most high-performance control approaches for DWR explicitly utilize the linear and angular velocities of the trajectory as control references. However, existing research on time-optimal path parameterization (TOPP) for mobile robots usually neglects the angular velocity and joint vel- ocity constraints, which can result in degraded control perfor- mance in practical applications. In this article, a systematic and practical TOPP algorithm named TOPP-DWR is proposed for DWR and other mobile robots. First, the non-uniform B-spline is adopted to represent the initial trajectory in the task space. Second, the piecewise-constant angular velocity, as well as joint velocity, linear velocity, and linear acceleration constraints, are incorporated into the TOPP problem. During the construction of the optimization problem, the aforementioned constraints are uniformly represented as linear velocity constraints. To boost the numerical computational efficiency, we introduce a slack variable to reformulate the problem into second-order-cone programming (SOCP). Subsequently, comparative experiments are conducted to validate the superiority of the proposed method. Quantitative performance indexes show that TOPP-DWR achieves TOPP while adhering to all constraints. Finally, field autonomous navigation experiments are carried out to validate the practicability of TOPP-DWR in real-world applications.
Air-Chamber Based Soft Six-Axis Force/Torque Sensor for Human-Robot Interaction
Soft multi-axis force/torque sensors provide safe and precise force interaction. Capturing the complete degree-of-freedom of force is imperative for accurate force measurement with six-axis force/torque sensors. However, cross-axis coupling can lead to calibration issues and decreased accuracy. In this instance, developing a soft and accurate six-axis sensor is a challenging task. In this paper, a soft air-chamber type six-axis force/torque sensor with 16-channel barometers is introduced, which housed in hyper-elastic air chambers made of silicone rubber. Additionally, an effective decoupling method is proposed, based on a rigid-soft hierarchical structure, which reduces the six-axis decoupling problem to two three-axis decoupling problems. Finite element model simulation and experiments demonstrate the compatibility of the proposed approach with reality. The prototype's sensing performance is quantitatively measured in terms of static load response, dynamic load response and dynamic response characteristic. It possesses a measuring range of 50 N force and 1 Nm torque, and the average deviation, repeatability, non-linearity and hysteresis are 4.9$\%$, 2.7$\%$, 5.8$\%$ and 6.7$\%$, respectively. The results indicate that the prototype exhibits satisfactory sensing performance while maintaining its softness due to the presence of soft air chambers.
Towards High-Consistency Embodied World Model with Multi-View Trajectory Videos
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
comment: 11 pages, 5 figures
Uni-Hand: Universal Hand Motion Forecasting in Egocentric Views IROS'25
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., "how to interact"). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., "when to interact") is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.
comment: Extended journal version of MMTwin (IROS'25)
Structured Imitation Learning of Interactive Policies through Inverse Games
Generative model-based imitation learning methods have recently achieved strong results in learning high-complexity motor skills from human demonstrations. However, imitation learning of interactive policies that coordinate with humans in shared spaces without explicit communication remains challenging, due to the significantly higher behavioral complexity in multi-agent interactions compared to non-interactive tasks. In this work, we introduce a structured imitation learning framework for interactive policies by combining generative single-agent policy learning with a flexible yet expressive game-theoretic structure. Our method explicitly separates learning into two steps: first, we learn individual behavioral patterns from multi-agent demonstrations using standard imitation learning; then, we structurally learn inter-agent dependencies by solving an inverse game problem. Preliminary results in a synthetic 5-agent social navigation task show that our method significantly improves non-interactive policies and performs comparably to the ground truth interactive policy using only 50 demonstrations. These results highlight the potential of structured imitation learning in interactive settings.
comment: Presented at the "Workshop on Generative Modeling Meets Human-Robot Interaction" at Robotics: Science and Systems 2025. Workshop website: https://sites.google.com/view/gai-hri/
LIO-MARS: Non-uniform Continuous-time Trajectories for Real-time LiDAR-Inertial-Odometry
Autonomous robotic systems heavily rely on environment knowledge to safely navigate. For search & rescue, a flying robot requires robust real-time perception, enabled by complementary sensors. IMU data constrains acceleration and rotation, whereas LiDAR measures accurate distances around the robot. Building upon the LiDAR odometry MARS, our LiDAR-inertial odometry (LIO) jointly aligns multi-resolution surfel maps with a Gaussian mixture model (GMM) using a continuous-time B-spline trajectory. Our new scan window uses non-uniform temporal knot placement to ensure continuity over the whole trajectory without additional scan delay. Moreover, we accelerate essential covariance and GMM computations with Kronecker sums and products by a factor of 3.3. An unscented transform de-skews surfels, while a splitting into intra-scan segments facilitates motion compensation during spline optimization. Complementary soft constraints on relative poses and preintegrated IMU pseudo-measurements further improve robustness and accuracy. Extensive evaluation showcases the state-of-the-art quality of our LIO-MARS w.r.t. recent LIO systems on various handheld, ground and aerial vehicle-based datasets.
comment: submitted to T-RO, 19 pages
Hessians in Birkhoff-Theoretic Trajectory Optimization
This paper derives various Hessians associated with Birkhoff-theoretic methods for trajectory optimization. According to a theorem proved in this paper, approximately 80% of the eigenvalues are contained in the narrow interval [-2, 4] for all Birkhoff-discretized optimal control problems. A preliminary analysis of computational complexity is also presented with further discussions on the grand challenge of solving a million point trajectory optimization problem.
comment: This paper appeared as an Engineering Note in the J. Guid. Control & Dynamics
FICO: Finite-Horizon Closed-Loop Factorization for Unified Multi-Agent Path Finding
Multi-Agent Path Finding is a fundamental problem in robotics and AI, yet most existing formulations treat planning and execution separately and address variants of the problem in an ad hoc manner. This paper presents a system-level framework for MAPF that integrates planning and execution, generalizes across variants, and explicitly models uncertainties. At its core is the MAPF system, a formal model that casts MAPF as a control design problem encompassing classical and uncertainty-aware formulations. To solve it, we introduce Finite-Horizon Closed-Loop Factorization (FICO), a factorization-based algorithm inspired by receding-horizon control that exploits compositional structure for efficient closed-loop operation. FICO enables real-time responses -- commencing execution within milliseconds -- while scaling to thousands of agents and adapting seamlessly to execution-time uncertainties. Extensive case studies demonstrate that it reduces computation time by up to two orders of magnitude compared with open-loop baselines, while delivering significantly higher throughput under stochastic delays and agent arrivals. These results establish a principled foundation for analyzing and advancing MAPF through system-level modeling, factorization, and closed-loop design.
A Trajectory-free Crash Detection Framework with Generative Approach and Segment Map Diffusion
Real-time crash detection is essential for developing proactive safety management strategy and enhancing overall traffic efficiency. To address the limitations associated with trajectory acquisition and vehicle tracking, road segment maps recording the individual-level traffic dynamic data were directly served in crash detection. A novel two-stage trajectory-free crash detection framework, was present to generate the rational future road segment map and identify crashes. The first-stage diffusion-based segment map generation model, Mapfusion, conducts a noisy-to-normal process that progressively adds noise to the road segment map until the map is corrupted to pure Gaussian noise. The denoising process is guided by sequential embedding components capturing the temporal dynamics of segment map sequences. Furthermore, the generation model is designed to incorporate background context through ControlNet to enhance generation control. Crash detection is achieved by comparing the monitored segment map with the generations from diffusion model in second stage. Trained on non-crash vehicle motion data, Mapfusion successfully generates realistic road segment evolution maps based on learned motion patterns and remains robust across different sampling intervals. Experiments on real-world crashes indicate the effectiveness of the proposed two-stage method in accurately detecting crashes.
comment: To be presented at TRB 2026 (TRBAM-26-01711) and a revised version will be submitted to Transportation Research Part C: Emerging Technologies
GRIM: Task-Oriented Grasping with Conditioning on Generative Examples AAAI-26
Task-Oriented Grasping (TOG) requires robots to select grasps that are functionally appropriate for a specified task - a challenge that demands an understanding of task semantics, object affordances, and functional constraints. We present GRIM (Grasp Re-alignment via Iterative Matching), a training-free framework that addresses these challenges by leveraging Video Generation Models (VGMs) together with a retrieve-align-transfer pipeline. Beyond leveraging VGMs, GRIM can construct a memory of object-task exemplars sourced from web images, human demonstrations, or generative models. The retrieved task-oriented grasp is then transferred and refined by evaluating it against a set of geometrically stable candidate grasps to ensure both functional suitability and physical feasibility. GRIM demonstrates strong generalization and achieves state-of-the-art performance on standard TOG benchmarks. Project website: https://grim-tog.github.io
comment: Accepted to AAAI-26 (Oral). Project website: https://grim-tog.github.io
On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
Bench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
comment: 7 pages, 9 figures
Benchmarking LLM Privacy Recognition for Social Robot Decision Making
While robots have previously utilized rule-based systems or probabilistic models for user interaction, the rapid evolution of large language models (LLMs) presents new opportunities to develop LLM-powered robots for enhanced human-robot interaction (HRI). To fully realize these capabilities, however, robots need to collect data such as audio, fine-grained images, video, and locations. As a result, LLMs often process sensitive personal information, particularly within private environments, such as homes. Given the tension between utility and privacy risks, evaluating how current LLMs manage sensitive data is critical. Specifically, we aim to explore the extent to which out-of-the-box LLMs are privacy-aware in the context of household robots. In this work, we present a set of privacy-relevant scenarios developed using the Contextual Integrity (CI) framework. We first surveyed users' privacy preferences regarding in-home robot behaviors and then examined how their privacy orientations affected their choices of these behaviors (N = 450). We then provided the same set of scenarios and questions to state-of-the-art LLMs (N = 10) and found that the agreement between humans and LLMs was generally low. To further investigate the capabilities of LLMs as potential privacy controllers, we implemented four additional prompting strategies and compared their results. We discuss the performance of the evaluated models as well as the implications and potential of AI privacy awareness in human-robot interaction.
comment: 18 pages, 7 figures. Dakota Sullivan and Shirley Zhang contributed equally to this work
Certified Coil Geometry Learning for Short-Range Magnetic Actuation and Spacecraft Docking Application
This paper presents a learning-based framework for approximating an exact magnetic-field interaction model, supported by both numerical and experimental validation. High-fidelity magnetic-field interaction modeling is essential for achieving exceptional accuracy and responsiveness across a wide range of fields, including transportation, energy systems, medicine, biomedical robotics, and aerospace robotics. In aerospace engineering, magnetic actuation has been investigated as a fuel-free solution for multi-satellite attitude and formation control. Although the exact magnetic field can be computed from the Biot-Savart law, the associated computational cost is prohibitive, and prior studies have therefore relied on dipole approximations to improve efficiency. However, these approximations lose accuracy during proximity operations, leading to unstable behavior and even collisions. To address this limitation, we develop a learning-based approximation framework that faithfully reproduces the exact field while dramatically reducing computational cost. The proposed method additionally provides a certified error bound, derived from the number of training samples, ensuring reliable prediction accuracy. The learned model can also accommodate interactions between coils of different sizes through appropriate geometric transformations, without retraining. To verify the effectiveness of the proposed framework under challenging conditions, a spacecraft docking scenario is examined through both numerical simulations and experimental validation.
comment: Submitted to IEEE Robotics and Automation Letters
Sequential Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper proposes a 2-D autonomous exploration and mapping framework for LiDAR-based SLAM mobile robots, designed to address the major challenges on low-cost platforms, including process instability, map drift, and increased risks of collisions and deadlocks. For frontier search, the local-global sampling architecture based on Rapidly-exploring Random Trees (RRTs) is employed. For local exploration, the proposed Self-Convergent RRT (SC-RRT) efficiently covers the reachable space within a finite time while the robot remains stationary, without relying on motion-induced sampling diversity. In addition, traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. For frontier point navigation, a stepwise consistent motion strategy is employed to generate motion trajectories that are more amenable to stable scan matching. The resulting straight-segment and in-place-rotation pattern improves scan-matching robustness and effectively suppresses map drift on resource-constrained platforms. For the process control, the framework serializes frontier point selection and navigation, avoiding oscillations caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is incorporated to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency. Experiments in challenging simulated and real-world environments validate the effectiveness of the framework. Compared with baseline methods, the proposed framework achieves higher mapping success rates and stronger robustness on resource-constrained robots and maintains consistent mapping quality across various LiDAR field-of-view (FoV) configurations.
comment: 9 pages, 10 figures. This work has been submitted to the IEEE for possible publication
Model Predictive Inferential Control of Neural State-Space Models for Autonomous Vehicle Motion Planning
Model predictive control (MPC) has proven useful in enabling safe and optimal motion planning for autonomous vehicles. In this paper, we investigate how to achieve MPC-based motion planning when a neural state-space model represents the vehicle dynamics. As the neural state-space model will lead to highly complex, nonlinear and nonconvex optimization landscapes, mainstream gradient-based MPC methods will struggle to provide viable solutions due to heavy computational load. In a departure, we propose the idea of model predictive inferential control (MPIC), which seeks to infer the best control decisions from the control objectives and constraints. Following this idea, we convert the MPC problem for motion planning into a Bayesian state estimation problem. Then, we develop a new implicit particle filtering/smoothing approach to perform the estimation. This approach is implemented as banks of unscented Kalman filters/smoothers and offers high sampling efficiency, fast computation, and estimation accuracy. We evaluate the MPIC approach through a simulation study of autonomous driving in different scenarios, along with an exhaustive comparison with gradient-based MPC. The simulation results show that the MPIC approach has considerable computational efficiency despite complex neural network architectures and the capability to solve large-scale MPC problems for neural state-space models.
MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
TopAY: Efficient Trajectory Planning for Differential Drive Mobile Manipulators via Topological Paths Search and Arc Length-Yaw Parameterization
Differential drive mobile manipulators combine the mobility of wheeled bases with the manipulation capability of multi-joint arms, enabling versatile applications but posing considerable challenges for trajectory planning due to their high-dimensional state space and nonholonomic constraints. This paper introduces TopAY, an optimization-based planning framework designed for efficient and safe trajectory generation for differential drive mobile manipulators. The framework employs a hierarchical initial value acquisition strategy, including topological paths search for the base and parallel sampling for the manipulator. A polynomial trajectory representation with arc length-yaw parameterization is also proposed to reduce optimization complexity while preserving dynamic feasibility. Extensive simulation and real-world experiments validate that TopAY achieves higher planning efficiency and success rates than state-of-the-art method in dense and complex scenarios. The source code is released at https://github.com/TopAY-Planner/TopAY .
comment: 8 pages, 5 figures
Scalable Policy Evaluation with Video World Models
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline. Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
Task-Driven Implicit Representations for Automated Design of LiDAR Systems
Imaging system design is a complex, time-consuming, and largely manual process; LiDAR design, ubiquitous in mobile devices, autonomous vehicles, and aerial imaging platforms, adds further complexity through unique spatial and temporal sampling requirements. In this work, we propose a framework for automated, task-driven LiDAR system design under arbitrary constraints. To achieve this, we represent LiDAR configurations in a continuous six-dimensional design space and learn task-specific implicit densities in this space via flow-based generative modeling. We then synthesize new LiDAR systems by modeling sensors as parametric distributions in 6D space and fitting these distributions to our learned implicit density using expectation-maximization, enabling efficient, constraint-aware LiDAR system design. We validate our method on diverse tasks in 3D vision, enabling automated LiDAR system design across real-world-inspired applications in face scanning, robotic tracking, and object detection.
A Skeleton-Based Topological Planner for Exploration in Complex Unknown Environments ICRA 2025
The capability of autonomous exploration in complex, unknown environments is important in many robotic applications. While recent research on autonomous exploration have achieved much progress, there are still limitations, e.g., existing methods relying on greedy heuristics or optimal path planning are often hindered by repetitive paths and high computational demands. To address such limitations, we propose a novel exploration framework that utilizes the global topology information of observed environment to improve exploration efficiency while reducing computational overhead. Specifically, global information is utilized based on a skeletal topological graph representation of the environment geometry. We first propose an incremental skeleton extraction method based on wavefront propagation, based on which we then design an approach to generate a lightweight topological graph that can effectively capture the environment's structural characteristics. Building upon this, we introduce a finite state machine that leverages the topological structure to efficiently plan coverage paths, which can substantially mitigate the back-and-forth maneuvers (BFMs) problem. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods. The source code will be made publicly available at: https://github.com/Haochen-Niu/STGPlanner.
comment: 7 pages, 7 figures. Accepted to be presented at the ICRA 2025
Hierarchical LLMs In-the-Loop Optimization for Real-Time Multi-Robot Target Tracking under Unknown Hazards
Real-time multi-robot coordination in hazardous and adversarial environments requires fast, reliable adaptation to dynamic threats. While Large Language Models (LLMs) offer strong high-level reasoning capabilities, the lack of safety guarantees limits their direct use in critical decision-making. In this paper, we propose a hierarchical optimization framework that integrates LLMs into the decision loop for multi-robot target tracking in dynamic and hazardous environments. Rather than generating control actions directly, LLMs are used to generate task configuration and adjust parameters in a bi-level task allocation and planning problem. We formulate multi-robot coordination for tracking tasks as a bi-level optimization problem, with LLMs to reason about potential hazards in the environment and the status of the robot team and modify both the inner and outer levels of the optimization. This hierarchical approach enables real-time adjustments to the robots' behavior. Additionally, a human supervisor can offer broad guidance and assessments to address unexpected dangers, model mismatches, and performance issues arising from local minima. We validate our proposed framework in both simulation and real-world experiments with comprehensive evaluations, demonstrating its effectiveness and showcasing its capability for safe LLM integration for multi-robot systems.
Towards Sharper Object Boundaries in Self-Supervised Depth Estimation BMVC 2025
Accurate monocular depth estimation is crucial for 3D scene understanding, but existing methods often blur depth at object boundaries, introducing spurious intermediate 3D points. While achieving sharp edges usually requires very fine-grained supervision, our method produces crisp depth discontinuities using only self-supervision. Specifically, we model per-pixel depth as a mixture distribution, capturing multiple plausible depths and shifting uncertainty from direct regression to the mixture weights. This formulation integrates seamlessly into existing pipelines via variance-aware loss functions and uncertainty propagation. Extensive evaluations on KITTI and VKITTIv2 show that our method achieves up to 35% higher boundary sharpness and improves point cloud quality compared to state-of-the-art baselines.
comment: BMVC 2025 Oral, 10 pages, 6 figures
Long Duration Inspection of GNSS-Denied Environments with a Tethered UAV-UGV Marsupial System
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a tethered marsupial robotic system composed of a UAV and an Unmanned Ground Vehicle (UGV), specifically designed for autonomous, long-duration inspection tasks in Global Navigation Satellite System (GNSS)-denied environments. The system extends the UAV's operational time by supplying power through a tether connected to high-capacity battery packs carried by the UGV. Our work details the hardware architecture based on off-the-shelf components to ensure replicability and describes our full-stack software framework used by the system, which is composed of open-source components and built upon the Robot Operating System (ROS). The proposed software architecture enables precise localization using a Direct LiDAR Localization (DLL) method and ensures safe path planning and coordinated trajectory tracking for the integrated UGV-tether-UAV system. We validate the system through three sets of field experiments involving (i) three manual flight endurance tests to estimate the operational duration, (ii) three experiments for validating the localization and the trajectory tracking systems, and (iii) three executions of an inspection mission to demonstrate autonomous inspection capabilities. The results of the experiments confirm the robustness and autonomy of the system in GNSS-denied environments. Finally, all experimental data have been made publicly available to support reproducibility and to serve as a common open dataset for benchmarking.
comment: 31 pages, 17 figures, 6 tables. Published in Drones. https://doi.org/10.3390/drones9110765
Dynamically Extensible and Retractable Robotic Leg Linkages for Multi-task Execution in Search and Rescue Scenarios
Search and rescue (SAR) robots are required to quickly traverse terrain and perform high-force rescue tasks, necessitating both terrain adaptability and controlled high-force output. Few platforms exist today for SAR, and fewer still have the ability to cover both tasks of terrain adaptability and high-force output when performing extraction. While legged robots offer significant ability to traverse uneven terrain, they typically are unable to incorporate mechanisms that provide variable high-force outputs, unlike traditional wheel-based drive trains. This work introduces a novel concept for a dynamically extensible and retractable robot leg. Leveraging a dynamically extensible and retractable five-bar linkage design, it allows for mechanically switching between height-advantaged and force-advantaged configurations via a geometric transformation. A testbed evaluated leg performance across linkage geometries and operating modes, with empirical and analytical analyses conducted on stride length, force output, and stability. The results demonstrate that the morphing leg offers a promising path toward SAR robots that can both navigate terrain quickly and perform rescue tasks effectively.
Multiagent Systems
Market-Dependent Communication in Multi-Agent Alpha Generation
Multi-strategy hedge funds face a fundamental organizational choice: should analysts generating trading strategies communicate, and if so, how? We investigate this using 5-agent LLM-based trading systems across 450 experiments spanning 21 months, comparing five organizational structures from isolated baseline to collaborative and competitive conversation. We show that communication improves performance, but optimal communication design depends on market characteristics. Competitive conversation excels in volatile technology stocks, while collaborative conversation dominates stable general stocks. Finance stocks resist all communication interventions. Surprisingly, all structures, including isolated agents, converge to similar strategy alignments, challenging assumptions that transparency causes harmful diversity loss. Performance differences stem from behavioral mechanisms: competitive agents focus on stock-level allocation while collaborative agents develop technical frameworks. Conversation quality scores show zero correlation with returns. These findings demonstrate that optimal communication design must match market volatility characteristics, and sophisticated discussions don't guarantee better performance.
Asymptotic analysis of cooperative censoring policies in sensor networks
The problem of cooperative data censoring in battery-powered multihop sensor networks is analyzed in this paper. We are interested in scenarios where nodes generate messages (which are related to the sensor measurements) that can be graded with some importance value. Less important messages can be censored in order to save energy for later communications. The problem is modeled using a joint Markov Decision Process of the whole network dynamics, and a theoretically optimal censoring policy, which maximizes a long-term reward, is found. Though the optimal censoring rules are computationally prohibitive, our analysis suggests that, under some conditions, they can be approximated by a finite collection of constant-threshold rules. A centralized algorithm for the computation of these thresholds is proposed. The experimental simulations show that cooperative censoring policies are energy-efficient, and outperform other non-cooperative schemes.
Collective decision-making with higher-order interactions on $d$-uniform hypergraphs
Understanding how group interactions influence opinion dynamics is fundamental to the study of collective behavior. In this work, we propose and study a model of opinion dynamics on $d$-uniform hypergraphs, where individuals interact through group-based (higher-order) structures rather than simple pairwise connections. Each one of the two opinions $A$ and $B$ is characterized by a quality, $Q_A$ and $Q_B$, and agents update their opinions according to a general mechanism that takes into account the weighted fraction of agents supporting either opinion and the pooling error, $α$, a proxy for the information lost during the interaction. Through bifurcation analysis of the mean-field model, we identify two critical thresholds, $α_{\text{crit}}^{(1)}$ and $α_{\text{crit}}^{(2)}$, which delimit stability regimes for the consensus states. These analytical predictions are validated through extensive agent-based simulations on both random and scale-free hypergraphs. Moreover, the analytical framework demonstrates that the bifurcation structure and critical thresholds are independent of the underlying topology of the higher-order network, depending solely on the parameters $d$, i.e., the size of the interaction groups, and the quality ratio. Finally, we bring to the fore a nontrivial effect: the large sizes of the interaction groups, could drive the system toward the adoption of the worst option.
How Hard is it to Explain Preferences Using Few Boolean Attributes? AAAI 2026
We study the computational complexity of explaining preference data through Boolean attribute models (BAMs), motivated by extensive research involving attribute models and their promise in understanding preference structure and enabling more efficient decision-making processes. In a BAM, each alternative has a subset of Boolean attributes, each voter cares about a subset of attributes, and voters prefer alternatives with more of their desired attributes. In the BAM problem, we are given a preference profile and a number k, and want to know whether there is a Boolean k-attribute model explaining the profile. We establish a complexity dichotomy for the number of attributes k: BAM is linear-time solvable for $k \le 2$ but NP-complete for $k \ge 3$. The problem remains hard even when preference orders have length two. On the positive side, BAM becomes fixed-parameter tractable when parameterized by the number of alternatives m. For the special case of two voters, we provide a linear-time algorithm. We also analyze variants where partial information is given: When voter preferences over attributes are known (BAM WITH CARES) or when alternative attributes are specified (BAM WITH HAS), we show that for most parameters BAM WITH CARES is more difficult whereas BAM WITH HAS is more tractable except for being NP-hard even for one voter.
comment: Accepted at AAAI 2026
MedDCR: Learning to Design Agentic Workflows for Medical Coding
Medical coding converts free-text clinical notes into standardized diagnostic and procedural codes, which are essential for billing, hospital operations, and medical research. Unlike ordinary text classification, it requires multi-step reasoning: extracting diagnostic concepts, applying guideline constraints, mapping to hierarchical codebooks, and ensuring cross-document consistency. Recent advances leverage agentic LLMs, but most rely on rigid, manually crafted workflows that fail to capture the nuance and variability of real-world documentation, leaving open the question of how to systematically learn effective workflows. We present MedDCR, a closed-loop framework that treats workflow design as a learning problem. A Designer proposes workflows, a Coder executes them, and a Reflector evaluates predictions and provides constructive feedback, while a memory archive preserves prior designs for reuse and iterative refinement. On benchmark datasets, MedDCR outperforms state-of-the-art baselines and produces interpretable, adaptable workflows that better reflect real coding practice, improving both the reliability and trustworthiness of automated systems.
KForge: Program Synthesis for Diverse AI Hardware Accelerators
GPU kernels are critical for ML performance but difficult to optimize across diverse accelerators. We present KForge, a platform-agnostic framework built on two collaborative LLM-based agents: a generation agent that produces and iteratively refines programs through compilation and correctness feedback, and a performance analysis agent that interprets profiling data to guide optimization. This agent-based architecture requires only a single-shot example to target new platforms. We make three key contributions: (1) introducing an iterative refinement system where the generation agent and performance analysis agent collaborate through functional and optimization passes, interpreting diverse profiling data (from programmatic APIs to GUI-based tools) to generate actionable recommendations that guide program synthesis for arbitrary accelerators; (2) demonstrating that the generation agent effectively leverages cross-platform knowledge transfer, where a reference implementation from one architecture substantially improves generation quality for different hardware targets; and (3) validating the platform-agnostic nature of our approach by demonstrating effective program synthesis across fundamentally different parallel computing platforms: NVIDIA CUDA and Apple Metal.
comment: Under review at MLSys 2026
LLM-based Multi-Agent System for Simulating Strategic and Goal-Oriented Data Marketplaces
Data marketplaces, which mediate the purchase and exchange of data from third parties, have attracted growing attention for reducing the cost and effort of data collection while enabling the trading of diverse datasets. However, a systematic understanding of the interactions between market participants, data, and regulations remains limited. To address this gap, we propose a Large Language Model-based Multi-Agent System (LLM-MAS) for data marketplaces. In our framework, buyer and seller agents powered by LLMs operate with explicit objectives and autonomously perform strategic actions, such as planning, searching, purchasing, pricing, and updating data. These agents can reason about market dynamics, forecast future demand, and adjust strategies accordingly. Unlike conventional model-based simulations, which are typically constrained to predefined rules, LLM-MAS supports broader and more adaptive behavior selection through natural language reasoning. We evaluated the framework via simulation experiments using three distribution-based metrics: (1) the number of purchases per dataset, (2) the number of purchases per buyer, and (3) the number of repeated purchases of the same dataset. The results demonstrate that LLM-MAS more faithfully reproduces trading patterns observed in real data marketplaces compared to traditional approaches, and further captures the emergence and evolution of market trends.
comment: 10 pages, 12 figures
Agent-Oriented Visual Programming for the Web of Things
In this paper we introduce and discuss an approach for multi-agent-oriented visual programming. This aims at enabling individuals without programming experience but with knowledge in specific target domains to design and (re)configure autonomous software. We argue that, compared to procedural programming, it should be simpler for users to create programs when agent abstractions are employed. The underlying rationale is that these abstractions, and specifically the belief-desire-intention architecture that is aligned with human practical reasoning, match more closely with people's everyday experience in interacting with other agents and artifacts in the real world. On top of this, we designed and implemented a visual programming system for agents that hides the technicalities of agent-oriented programming using a blocks-based visual development environment that is built on the JaCaMo platform. To further validate the proposed solution, we integrate the Web of Things (WoT) to let users create autonomous behaviour on top of physical mashups of devices, following the trends in industrial end-user programming. Finally, we report on a pilot user study where we verified that novice users are indeed able to make use of this development environment to create multi-agent systems to solve simple automation tasks.
comment: Accepted and presented at the 10th International Workshop on Engineering Multi-Agent Systems (EMAS 2022), 9-10 May 2022, Auckland, New Zealand
Transformer-Based Scalable Multi-Agent Reinforcement Learning for Networked Systems with Long-Range Interactions
Multi-agent reinforcement learning (MARL) has shown promise for large-scale network control, yet existing methods face two major limitations. First, they typically rely on assumptions leading to decay properties of local agent interactions, limiting their ability to capture long-range dependencies such as cascading power failures or epidemic outbreaks. Second, most approaches lack generalizability across network topologies, requiring retraining when applied to new graphs. We introduce STACCA (Shared Transformer Actor-Critic with Counterfactual Advantage), a unified transformer-based MARL framework that addresses both challenges. STACCA employs a centralized Graph Transformer Critic to model long-range dependencies and provide system-level feedback, while its shared Graph Transformer Actor learns a generalizable policy capable of adapting across diverse network structures. Further, to improve credit assignment during training, STACCA integrates a novel counterfactual advantage estimator that is compatible with state-value critic estimates. We evaluate STACCA on epidemic containment and rumor-spreading network control tasks, demonstrating improved performance, network generalization, and scalability. These results highlight the potential of transformer-based MARL architectures to achieve scalable and generalizable control in large-scale networked systems.
comment: 8 pages, 7 figures, submitted for review
Reuse, Don't Recompute: Efficient Large Reasoning Model Inference via Memory Orchestration
Large reasoning models (LRMs) achieve strong accuracy through test-time scaling, generating longer chains of thought or sampling multiple solutions, but at steep costs in tokens and latency. We argue that memory is a core ingredient for efficient reasoning: when evidence already exists, models should think less by reusing structured memory instead of recomputing derivations. We present ENGRAM-R, an inference-time memory layer that integrates typed retrieval with compact fact card representations and explicit citation control. On the LoCoMo benchmark, ENGRAM-R reduces input tokens by 85% and reasoning tokens by 75% compared to full context while maintaining high accuracy. On a multi-hop slice of the LongMemEval benchmark, it achieves similar efficiency with substantial accuracy gains. These results show that memory is not only critical for long-horizon correctness but also a practical lever for efficient reasoning under tight compute, memory, and latency budgets.
ENGRAM: Effective, Lightweight Memory Orchestration for Conversational Agents
Large language models (LLMs) deployed in user-facing applications require long-horizon consistency: the ability to remember prior interactions, respect user preferences, and ground reasoning in past events. However, contemporary memory systems often adopt complex architectures such as knowledge graphs, multi-stage retrieval pipelines, and OS-style schedulers, which introduce engineering complexity and reproducibility challenges. We present ENGRAM, a lightweight memory system that organizes conversation into three canonical memory types (episodic, semantic, and procedural) through a single router and retriever. Each user turn is converted into typed memory records with normalized schemas and embeddings and stored in a database. At query time, the system retrieves top-k dense neighbors for each type, merges results with simple set operations, and provides the most relevant evidence as context to the model. ENGRAM attains state-of-the-art results on LoCoMo, a multi-session conversational QA benchmark for long-horizon memory, and exceeds the full-context baseline by 15 points on LongMemEval while using only about 1% of the tokens. These results show that careful memory typing and straightforward dense retrieval can enable effective long-term memory management in language models without requiring complex architectures.
On the Fundamental Limits of LLMs at Scale
Large Language Models (LLMs) have benefited enormously from scaling, yet these gains are bounded by five fundamental limitations: (1) hallucination, (2) context compression, (3) reasoning degradation, (4) retrieval fragility, and (5) multimodal misalignment. While existing surveys describe these phenomena empirically, they lack a rigorous theoretical synthesis connecting them to the foundational limits of computation, information, and learning. This work closes that gap by presenting a unified, proof-informed framework that formalizes the innate theoretical ceilings of LLM scaling. First, computability and uncomputability imply an irreducible residue of error: for any computably enumerable model family, diagonalization guarantees inputs on which some model must fail, and undecidable queries (e.g., halting-style tasks) induce infinite failure sets for all computable predictors. Second, information-theoretic and statistical constraints bound attainable accuracy even on decidable tasks, finite description length enforces compression error, and long-tail factual knowledge requires prohibitive sample complexity. Third, geometric and computational effects compress long contexts far below their nominal size due to positional under-training, encoding attenuation, and softmax crowding. We further show how likelihood-based training favors pattern completion over inference, how retrieval under token limits suffers from semantic drift and coupling noise, and how multimodal scaling inherits shallow cross-modal alignment. Across sections, we pair theorems and empirical evidence to outline where scaling helps, where it saturates, and where it cannot progress, providing both theoretical foundations and practical mitigation paths like bounded-oracle retrieval, positional curricula, and sparse or hierarchical attention.
comment: Submitted to TMLR 2025
Seeding with Differentially Private Network Information AAMAS 2023
In public health interventions such as distributing preexposure prophylaxis (PrEP) for HIV prevention, decision makers often use seeding algorithms to identify key individuals who can amplify intervention impact. However, building a complete sexual activity network is typically infeasible due to privacy concerns. Instead, contact tracing can provide influence samples, observed sequences of sexual contacts, without full network reconstruction. This raises two challenges: protecting individual privacy in these samples and adapting seeding algorithms to incomplete data. We study differential privacy guarantees for influence maximization when the input consists of randomly collected cascades. Building on recent advances in costly seeding, we propose privacy-preserving algorithms that introduce randomization in data or outputs and bound the privacy loss of each node. Theoretical analysis and simulations on synthetic and real-world sexual contact data show that performance degrades gracefully as privacy budgets tighten, with central privacy regimes achieving better trade-offs than local ones.
comment: Preliminary version in AAMAS 2023: https://dl.acm.org/doi/10.5555/3545946.3599081 -- Code and data: https://github.com/aminrahimian/dp-inf-max
SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: 1. To ensure result rigor, the model outputs require further evaluation by human experts. 2. The results may affect our conclusions and methods, thus necessitating a more detailed review. 3. We anticipate subsequent revisions may be substantial, potentially involving major adjustments to the methodology. Given the uncertainty surrounding the revision process, we decide to request a withdrawal
Scalable Satellite Swarm Deployment via Distance-based Orbital Transition Under $J_2$ Perturbation
This paper presents an autonomous guidance and control strategy for a satellite swarm that enables scalable distributed space structures for innovative science and business opportunities. The averaged $J_2$ orbital parameters that describe the drift and periodic orbital motion were derived along with their target values to achieve a distributed space structure in a decentralized manner. This enabled the design of a distance-based orbital stabilizer to ensure autonomous deployment into a monolithic formation of a coplanar equidistant configuration on a user-defined orbital plane. Continuous formation control was assumed to be achieved through fuel-free actuation, such as satellite magnetic field interaction and differential aerodynamic forces, thereby maintaining long-term formation stability without thruster usage. A major challenge for such actuation systems is the potential loss of control capability due to increasing inter-satellite distances resulting from unstable orbital dynamics, particularly for autonomous satellite swarms. To mitigate this risk, our decentralized deployment controller minimized drift distance during unexpected communication outages. As a case study, we consider the deployment of palm-sized satellites into a coplanar equidistant formation in a $J_2$-perturbed orbit. Moreover, centralized grouping strategies are presented.
comment: Submitted to AIAA Journal of Guidance, Control, and Dynamics
CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
Surrogate Modeling and Explainable Artificial Intelligence for Complex Systems: A Workflow for Automated Simulation Exploration
Complex systems are increasingly explored through simulation-driven engineering workflows that combine physics-based and empirical models with optimization and analytics. Despite their power, these workflows face two central obstacles: (1) high computational cost, since accurate exploration requires many expensive simulator runs; and (2) limited transparency and reliability when decisions rely on opaque blackbox components. We propose a workflow that addresses both challenges by training lightweight emulators on compact designs of experiments that (i) provide fast, low-latency approximations of expensive simulators, (ii) enable rigorous uncertainty quantification, and (iii) are adapted for global and local Explainable Artificial Intelligence (XAI) analyses. This workflow unifies every simulation-based complex-system analysis tool, ranging from engineering design to agent-based models for socio-environmental understanding. In this paper, we proposea comparative methodology and practical recommendations for using surrogate-based explainability tools within the proposed workflow. The methodology supports continuous and categorical inputs, combines global-effect and uncertainty analyses with local attribution, and evaluates the consistency of explanations across surrogate models, thereby diagnosing surrogate adequacy and guiding further data collection or model refinement. We demonstrate the approach on two contrasting case studies: a multidisciplinary design analysis of a hybrid-electric aircraft and an agent-based model of urban segregation. Results show that the surrogate model and XAI coupling enables large-scale exploration in seconds, uncovers nonlinear interactions and emergent behaviors, identifies key design and policy levers, and signals regions where surrogates require more data or alternative architectures.
Who Gets the Reward, Who Gets the Blame? Evaluation-Aligned Training Signals for Multi-LLM Agents
Large Language Models (LLMs) in multi-agent systems (MAS) have shown promise for complex tasks, yet current training methods lack principled ways to connect system-level evaluation with agent-level and message-level learning. We propose a theoretical framework that unifies cooperative game-theoretic attribution with process reward modeling to transform system evaluation into agent credit and then into response-level signals. Unlike prior approaches that rely only on attribution (e.g., Shapley) or step-level labels (e.g., PRM), our method produces local, signed, and credit-conserving signals. In success cases, Shapley-based credit assignment fairly allocates outcomes across agents and is refined into per-message rewards that promote cooperation while discouraging redundancy or sabotage. In failure cases, first-error localization yields repair-aware preferences that penalize harmful steps while rewarding corrective attempts. The resulting signals are bounded, cooperative, and directly compatible with reinforcement-based or preference-based post-training, providing a unified and auditable pathway from global evaluation to local supervision in LLM multi-agent training. Our contribution is conceptual: we present a theoretical foundation and training signals, leaving empirical validation for future work.
comment: Withdrawing temporarily to coordinate revisions with co-authors. A revised version will be resubmitted
Systems and Control (EESS)
Resilient Distribution Network Planning against Dynamic Malicious Power Injection Attacks
Active distribution networks facilitating bidirectional power exchange with renewable energy resources are susceptible to cyberattacks due to integration of a diverse array of cyber components. This study introduces a grid-level defense strategy aimed at enhancing attack resiliency based on distribution network planning. Our proposed framework imposes a security requirement into existing planning methodologies, ensuring that voltage deviation from its rated value remains within a tolerable range against dynamically and maliciously injected power at end-user nodes. Unfortunately, the formulated problem in its original form is intractable because it is an infinite-dimensional bi-level optimization problem over a function space. To address this complexity, we develop an equivalent transformation into a tractable form as mixed-integer linear program leveraging linear dynamical system theory and graph theory. Notably, our investigation reveals that the severity of potential attacks hinges solely on the cumulative reactances over the path from the substation to the targeted node, thereby reducing the problem to a finite-dimensional problem. Further, the bi-level optimization problem is reduced to a single-level optimization problem by using a technique utilized in solving the shortest path problem. Through extensive numerical simulations conducted on a 54-node distribution network benchmark, our proposed methodology exhibits a noteworthy 29.3% enhancement in the resiliency, with a mere 2.1% uptick in the economic cost.
comment: Accepted at IEEE Transactions on Control of Network Systems
Novel Stability Criteria for Discrete and Hybrid Systems via Ramanujan Inner Products
This paper introduces a Ramanujan inner product and its corresponding norm, establishing a novel framework for the stability analysis of hybrid and discrete-time systems as an alternative to traditional Euclidean metrics. We establish new $ε$-$δ$ stability conditions that utilize the unique properties of Ramanujan summations and their relationship with number-theoretic concepts. The proposed approach provides enhanced robustness guarantees and reveals fundamental connections between system stability and arithmetic properties of the system dynamics. Theoretical results are rigorously proven, and simulation results on numerical examples are presented to validate the efficacy of the proposed approach.
comment: 6 pages, 2 figures
Scalable Iterative Algorithm for Solving Optimal Transmission Switching with De-energization
Transmission System Operators routinely use transmission switching as a tool to manage congestion and ensure system security. Motivated by sub-transmission operations at RTE, this paper considers the Optimal Transmission Switching with De-energization (OTSD), which captures potential loss of connectivity (and therefore localized blackout) following loss of transmission elements. While directly relevant to real-life operations, this problem has received very little attention in the literature. The paper proposes a new mixed-integer linear programming formulation for OTSD that represents post-contingency loss of connectivity without requiring additional binary variables. This new formulation provides the foundation for a fast, iterative heuristic algorithm. Computational experiments confirms that state-of-the-art optimization solvers struggle to solve the extensive formulation of OTSD, often failing to find even trivial solutions within reasonable time. In contrast, numerical results demonstrate the efficiency of the proposed heuristic, which finds high-quality feasible solutions 100-1000x faster than using Gurobi.
Physics-Informed Neural Networks for Nonlinear Output Regulation
This work addresses the full-information output regulation problem for nonlinear systems, assuming the states of both the plant and the exosystem are known. In this setting, perfect tracking or rejection is achieved by constructing a zero-regulation-error manifold π(w) and a feedforward input c(w) that render such manifold invariant. The pair (π(w), c(w)) is characterized by the regulator equations, i.e., a system of PDEs with an algebraic constraint. We focus on accurately solving the regulator equations introducing a physics-informed neural network (PINN) approach that directly approximates π(w) and c(w) by minimizing the residuals under boundary and feasibility conditions, without requiring precomputed trajectories or labeled data. The learned operator maps exosystem states to steady state plant states and inputs, enables real-time inference and, critically, generalizes across families of the exosystem with varying initial conditions and parameters. The framework is validated on a regulation task that synchronizes a helicopter's vertical dynamics with a harmonically oscillating platform. The resulting PINN-based solver reconstructs the zero-error manifold with high fidelity and sustains regulation performance under exosystem variations, highlighting the potential of learning-enabled solvers for nonlinear output regulation. The proposed approach is broadly applicable to nonlinear systems that admit a solution to the output regulation problem.
Data-driven Acceleration of MPC with Guarantees
Model Predictive Control (MPC) is a powerful framework for optimal control but can be too slow for low-latency applications. We present a data-driven framework to accelerate MPC by replacing online optimization with a nonparametric policy constructed from offline MPC solutions. Our policy is greedy with respect to a constructed upper bound on the optimal cost-to-go, and can be implemented as a nonparametric lookup rule that is orders of magnitude faster than solving MPC online. Our analysis shows that under sufficient coverage condition of the offline data, the policy is recursively feasible and admits provable, bounded optimality gap. These conditions establish an explicit trade-off between the amount of data collected and the tightness of the bounds. Our experiments show that this policy is between 100 and 1000 times faster than standard MPC, with only a modest hit to optimality, showing potential for real-time control tasks.
On the controller form for linear hyperbolic MIMO systems with dynamic boundary conditions
This contribution develops an algebraic approach to obtain a controller form for a class of linear hyperbolic MIMO systems, bidirectionally coupled with a linear ODE system at the unactuated boundary. After a short summary of established controller forms for SISO and MIMO ODE as well as SISO hyperbolic PDE systems, it is shown that the direct ap- proach to state a controller form fails already for a very simple MIMO example. Next, a generalised hyperbolic controller form with different variants is proposed and a new flatnesss-based scheme to compute said form is presented. Therein, the system is treated in an algebraic setting where generalised polynomials with real exponents are used to describe the predictions and delays in the system. The proposed algorithm is then applied to the motivating example.
comment: Submitted to the 24th European Control Conference (ECC), 6 pages, 1 figure
The Liquid Buffer: Multi-Year Storage for Defossilization and Energy Security under Climate Uncertainty
The climate-driven uncertainty of renewable generation and electricity demand challenges energy security in net-zero energy systems. By introducing a scalable stochastic model that implicitly accounts for 51'840 climate years, this paper identifies multi-year storage of liquid hydrocarbons as a key option for managing climate uncertainty and ensuring energy security. In Europe, multi-year storage reduces system costs by 4.1%, fossil imports by 86%, and curtailment by 60%. The benefit of multi-year storage is that a renewable surplus in one year is not curtailed but converted to synthetic oil, with hydrogen as an intermediate product, and stored to balance a future deficit. We find that the required energy capacity for liquid hydrocarbons is 525 TWh, a quarter of the European Union's current oil and gas reserves, complemented by 116 TWh for hydrogen storage. Security of supply remains high and unserved energy only amounts to 0.0035 per thousand, well below the common target of 0.02 per thousand.
Naga: Vedic Encoding for Deep State Space Models
This paper presents Naga, a deep State Space Model (SSM) encoding approach inspired by structural concepts from Vedic mathematics. The proposed method introduces a bidirectional representation for time series by jointly processing forward and time-reversed input sequences. These representations are then combined through an element-wise (Hadamard) interaction, resulting in a Vedic-inspired encoding that enhances the model's ability to capture temporal dependencies across distant time steps. We evaluate Naga on multiple long-term time series forecasting (LTSF) benchmarks, including ETTh1, ETTh2, ETTm1, ETTm2, Weather, Traffic, and ILI. The experimental results show that Naga outperforms 28 current state of the art models and demonstrates improved efficiency compared to existing deep SSM-based approaches. The findings suggest that incorporating structured, Vedic-inspired decomposition can provide an interpretable and computationally efficient alternative for long-range sequence modeling.
comment: submitted to JMLR
Uniform Feasibility For Smoothed Backup Control Barrier Functions
We study feasibility guarantees for safety filters developed using Control Barrier Functions (CBFs) when a safe set is defined using the pointwise minimum of continuously differentiable functions, a construction that is common for the backup CBF method and typically nonsmooth. We replace the minimum by its log-sum-exp (soft-min) smoothing and show that, under a strict safety condition, the smooth function becomes a CBF (or extended CBF) for a range of the smoothing parameter. For compact safe sets, we derive an explicit lower bound on the smoothing parameter that makes the smooth function a CBF and hence renders the corresponding safety filter feasible. For unbounded sets, we introduce tail conditions under which the smooth function satisfies an extended CBF condition uniformly. Finally, we apply these results to backup CBFs. We show that safety of a compact (terminal) backup set under a backup controller, together with a condition ensuring safety of the backup trajectories on the relevant boundary of the safe set, is sufficient for feasibility for backup CBFs. These results provide a recipe for a priori feasibility guarantees for smooth inner approximations of nonsmooth safe sets without the need for additional online certification.
comment: 8 pages, submitted to ECC
Handover-Aware URLLC UAV Trajectory Planning: A Continuous-Time Trajectory Optimization via Graphs of Convex Sets
In this paper, we study a cellular-connected unmanned aerial vehicle (UAV) which aims to fly between two predetermined locations while maintaining ultra-reliable low-latency communications (URLLC) for command-and-control (C2) links with terrestrial base stations (BSs). Long-range flights often trigger frequent inter-cell handovers, which may introduce delays and synchronization overhead. We jointly optimize the continuous trajectory and BS association to minimize handovers, path length, and flying time, subject to communication reliability and kinematic constraints. To address this problem, we reformulate it as an optimization based on the graph of convex sets (GCS). First, the URLLC requirement is translated into spatially feasible regions in the flight plane for each BS. And an intersection graph is constructed including the start and goal points. Each graph node is associated with a smooth and dynamically feasible trajectory segment. The trajectory is parameterized in space by Bézier curves and in time by a monotonic Bézier scaling, together with convex constraints that ensure continuity and enforce speed bounds. Next, we impose unit-flow constraints to enforce a single path, and by coupling the resulting binary edge-selection variables with the convex constraints, we obtain a mixed-integer convex program (MICP). Applying a convex relaxation and rounding to the mixed-integer convex program produces nearly globally optimal routes, and a final refinement yields smooth, dynamically feasible trajectories. Simulations verify that the method preserves URLLC connectivity while achieving a clear trade-off between fewer handovers and flight efficiency.
comment: submited to IEEE International Conference on Communications
High-resolution hierarchical PV system performance modeling in urban environments
Accurate performance modeling of PV systems in urban environments is a significant challenge due to complex partial shading. This study introduces a high-resolution, hierarchical modeling framework that provides detailed insights from the solar cell to the system level. Rigorously validated against field-test data from calibrated equipment, the model demonstrates high accuracy in predicting minute-wised dynamic electrical characteristics (R2 > 0.90). A key finding is the critical shortcoming of conventional, coarser-resolution models under realistic shading; these are shown to overestimate the actual string operating power by up to 163% and the monthly energy yield by up to 54%. The proposed framework avoids these errors by precisely capturing mismatch losses and the time-varying phenomena of system components, such as bypass diode activations. Furthermore, the model accurately quantifies the effectiveness of mitigation technologies, showing that Module-Level Power Electronics (MLPEs) can increase the monthly energy yield of a heavily shaded string by over 20%. This research provides a crucial tool for reliable system design, accurate power forecasting, and the optimization of PV systems in complex urban settings.
comment: This manuscript has been submitted to Energy Conversion and Management for peer review. 65 pages, 22 figures
Microwave-acoustic-driven power electronics
Electrical isolation is critical to ensure safety and minimize electromagnetic interference (EMI), yet existing methods struggle to simultaneously transmit power and signals through a unified channel. Here we demonstrate a mechanically-isolated gate driver based on microwave-frequency surface acoustic wave (SAW) device on lithium niobate that achieves galvanic isolation of 2.75 kV with ultralow isolation capacitance (0.032 pF) over 1.25 mm mechanical propagation length, delivering 13.4 V open-circuit voltage and 44.4 mA short-circuit current. We demonstrate isolated gate driving for a gallium nitride (GaN) high-electron-mobility transistor, achieving a turn-on time of 108.8 ns comparable to commercial drivers and validate its operation in a buck converter. In addition, our SAW device operates over an ultrawide temperature range from 0.5 K (-272.6 °C) to 544 K (271 °C). The microwave-frequency SAW devices offer inherent EMI immunity and potential for heterogeneous integration on multiple semiconductor platforms, enabling compact, high-performance isolated power and signal transmission in advanced power electronics.
Event-triggered Dual Gradient Tracking for Distributed Resource Allocation
High communication costs create a major bottleneck for distributed resource allocation over unbalanced directed networks. Conventional dual gradient tracking methods, while effective for problems on unbalanced digraphs, rely on periodic communication that creates significant overhead in resource-constrained networks. This paper introduces a novel event-triggered dual gradient tracking algorithm to mitigate this limitation, wherein agents communicate only when local state deviations surpass a predefined threshold. We establish comprehensive convergence guarantees for this approach. First, we prove sublinear convergence for non-convex dual objectives and linear convergence under the Polyak-Łojasiewicz condition. Building on this, we demonstrate that the proposed algorithm achieves sublinear convergence for general strongly convex cost functions and linear convergence for those that are also Lipschitz-smooth. Numerical experiments confirm that our event-triggered method significantly reduces communication events compared to periodic schemes while preserving comparable convergence performance.
Congestionamento Aeroportuario, Escassez de Capacidade e Planejamento na Macrometropole Paulista
This article presents an analytical account of the capacity limits and operational challenges of the main airports in the São Paulo Macrometropolis. Drawing on international examples, such as London Heathrow, it discusses how large hubs combine high traffic generation with severe physical constraints, highlighting how saturation intensifies delays, operating costs, and pressures for expansion. It analyzes capacity scarcity as a central economic problem, in which runways, aprons, boarding gates, and terminals become critical resources whose use requires administrative and market mechanisms, including slot coordination, prioritization rules, and regulatory incentives. It discusses the limitations imposed by high earthmoving costs, environmental impacts, and expropriation costs, which restrict the physical expansion of central airports such as Congonhas and increase dependence on efficiency gains. Demand projections indicate that the combined capacity of Congonhas, Guarulhos, and Viracopos is likely to be exceeded, even in conservative scenarios, reinforcing the urgency of integrated planning. The effects of regulatory restrictions on Congonhas, the challenges of expanding Guarulhos, and the structural difficulties of Viracopos are evaluated, highlighting the strategic relevance of this multi-airport system for sustaining national connectivity.
comment: Article in Portuguese
Beyond Energy Functions and Numerical Integration: A New Methodology to Determine Transient Stability at the Initial State
This paper presents a novel method for transient stability analysis (TSA) that circumvents the limitations of sequential numerical integration and energy functions. The proposed method begins by constructing a trajectory-dependent stability indicator function to distinguish the system's destiny. To overcome the difficulty in analyzing the asymptotic behavior at infinite time, a strategic time contraction mapping is then applied. This allows TSA to be recast as a pole-placement detection problem for the indicator function. By leveraging high-order derivatives at the initial state, a rational function approximation is derived, yielding a mathematically direct and computationally efficient prediction. Numerical validations on benchmark systems demonstrate that the method not only provides a direct mathematical shortcut for TSA in power systems but also establishes a promising new methodology for evaluating the transient stability of a broad class of nonlinear dynamical systems.
comment: This work has been submitted to 2026 IEEE PES General Meeting
Robust Control Design Using a Hybrid-Gain Finite-Time Sliding-Mode Controller
This paper proposes a hybrid-gain finite-time sliding-mode control (HG-FTSMC) strategy for a class of perturbed nonlinear systems. The controller combines a finite-time reaching law that drives the sliding variable to a predefined boundary layer with an inner mixed-power or exponential law that guarantees rapid convergence within the layer while maintaining smooth and bounded control action. The resulting control design achieves finite-time convergence and robustness to matched disturbances, while explicitly limits the control effort. The control framework is first analyzed on a perturbed first-order integrator model, and then extended to Euler-Lagrange (EL) systems, representing a broad class of robotic and mechanical systems. Comparative simulations demonstrate that the proposed controller achieves settling times comparable to recent finite-time approaches [1], while substantially reducing the control effort. Finally, trajectory-tracking simulations on a two-link manipulator further validate the robustness and practical feasibility of the proposed HG-FTSMC approach.
comment: Under review in ECC
Event-Triggered Regulation of Mixed-Autonomy Traffic Under Varying Traffic Conditions
Modeling and congestion mitigation of mixed-autonomy traffic systems consisting of human-driven vehicles (HVs) and autonomous vehicles (AVs) have become increasingly critical with the rapid development of autonomous driving technology. This paper develops an event-triggered control (ETC) framework for mitigating congestion in such systems, which are modeled using an extended Aw-Rascle-Zhang (ARZ) formulation consisting of coupled 4 x 4 hyperbolic partial differential equations (PDEs). Ramp metering is employed as the boundary actuation mechanism. To reduce computational and communication burdens while avoiding excessive ramp signal changes, we design the ETC strategy based on the backstepping method, together with an observer-based ETC formulation for practical implementation under limited sensing. Rigorous Lyapunov analysis ensures exponential convergence and avoidance of Zeno behavior. Extensive simulations validate the proposed approach under diverse traffic scenarios, including varying AV penetration rates, different spacing policies, multiple demand levels, and non-recurrent congestion patterns. Results show that ETC not only stabilizes mixed traffic flows but also significantly reduces control updates, improving driver comfort, and roadway safety. Higher AV penetration rates lead to longer release time and fewer triggering events, indicating the positive impact of AVs in mitigating traffic congestion while reducing computational resource usage. Compared to continuous backstepping controllers, the proposed ETC achieves near-equivalent stabilization performance with far fewer controller updates, resulting in longer signal release time that reduces driver distraction, which demonstrates great potential for ETC applications in traffic management.
comment: 15 pages, Accepted by IEEE TITS
Collision-Free Navigation of Mobile Robots via Quadtree-Based Model Predictive Control
This paper presents an integrated navigation framework for Autonomous Mobile Robots (AMRs) that unifies environment representation, trajectory generation, and Model Predictive Control (MPC). The proposed approach incorporates a quadtree-based method to generate structured, axis-aligned collision-free regions from occupancy maps. These regions serve as both a basis for developing safe corridors and as linear constraints within the MPC formulation, enabling efficient and reliable navigation without requiring direct obstacle encoding. The complete pipeline combines safe-area extraction, connectivity graph construction, trajectory generation, and B-spline smoothing into one coherent system. Experimental results demonstrate consistent success and superior performance compared to baseline approaches across complex environments.
comment: This paper has been accepted by IEEE SII 2026
DiffFP: Learning Behaviors from Scratch via Diffusion-based Fictitious Play IJCAI 2025
Self-play reinforcement learning has demonstrated significant success in learning complex strategic and interactive behaviors in competitive multi-agent games. However, achieving such behaviors in continuous decision spaces remains challenging. Ensuring adaptability and generalization in self-play settings is critical for achieving competitive performance in dynamic multi-agent environments. These challenges often cause methods to converge slowly or fail to converge at all to a Nash equilibrium, making agents vulnerable to strategic exploitation by unseen opponents. To address these challenges, we propose DiffFP, a fictitious play (FP) framework that estimates the best response to unseen opponents while learning a robust and multimodal behavioral policy. Specifically, we approximate the best response using a diffusion policy that leverages generative modeling to learn adaptive and diverse strategies. Through empirical evaluation, we demonstrate that the proposed FP framework converges towards $ε$-Nash equilibria in continuous- space zero-sum games. We validate our method on complex multi-agent environments, including racing and multi-particle zero-sum games. Simulation results show that the learned policies are robust against diverse opponents and outperform baseline reinforcement learning policies. Our approach achieves up to 3$\times$ faster convergence and 30$\times$ higher success rates on average against RL-based baselines, demonstrating its robustness to opponent strategies and stability across training iterations
comment: Initial results presented at the IJCAI 2025 Workshop on User-Aligned Assessment of Adaptive AI Systems. Project page: https://aku02.github.io/projects/difffp/
Cyber-Resilient Fault Diagnosis Methodology in Inverter-Based Resource-Dominated Microgrids with Single-Point Measurement
Cyber-attacks jeopardize the safe operation of inverter-based resource-dominated microgrids (IBR-dominated microgrids). At the same time, existing diagnostic methods either depend on expensive multi-point instrumentation or stringent modeling assumptions that are untenable under single-point measurement constraints. This paper proposes a Fractional-Order Memory-Enhanced Attack-Diagnosis Scheme (FO-MADS) that achieves timely fault localization and cyber-resilient fault diagnosis using only one VPQ (voltage, active power, reactive power) measurement point. FO-MADS first constructs a dual fractional-order feature library by jointly applying Caputo and Grünwald-Letnikov derivatives, thereby amplifying micro-perturbations and slow drifts in the VPQ signal. A two-stage hierarchical classifier then pinpoints the affected inverter and isolates the faulty IGBT switch, effectively alleviating class imbalance. Robustness is further strengthened through Progressive Memory-Replay Adversarial Training (PMR-AT), whose attack-aware loss is dynamically re-weighted via Online Hard Example Mining (OHEM) to prioritize the most challenging samples. Experiments on a four-inverter IBR-dominated microgrid testbed comprising 1 normal and 24 fault classes under four attack scenarios demonstrate diagnostic accuracies of 96.6% (bias), 94.0% (noise), 92.8% (data replacement), and 95.7% (replay), while sustaining 96.7% under attack-free conditions. These results establish FO-MADS as a cost-effective and readily deployable solution that markedly enhances the cyber-physical resilience of IBR-dominated microgrids.
comment: 5 pages, 5 figures
Revealing POMDPs: Qualitative and Quantitative Analysis for Parity Objectives AAAI 2026
Partially observable Markov decision processes (POMDPs) are a central model for uncertainty in sequential decision making. The most basic objective is the reachability objective, where a target set must be eventually visited, and the more general parity objectives can model all omega-regular specifications. For such objectives, the computational analysis problems are the following: (a) qualitative analysis that asks whether the objective can be satisfied with probability 1 (almost-sure winning) or probability arbitrarily close to 1 (limit-sure winning); and (b) quantitative analysis that asks for the approximation of the optimal probability of satisfying the objective. For general POMDPs, almost-sure analysis for reachability objectives is EXPTIME-complete, but limit-sure and quantitative analyses for reachability objectives are undecidable; almost-sure, limit-sure, and quantitative analyses for parity objectives are all undecidable. A special class of POMDPs, called revealing POMDPs, has been studied recently in several works, and for this subclass the almost-sure analysis for parity objectives was shown to be EXPTIME-complete. In this work, we show that for revealing POMDPs the limit-sure analysis for parity objectives is EXPTIME-complete, and even the quantitative analysis for parity objectives can be achieved in EXPTIME.
comment: Conference AAAI 2026
A Comprehensive Review of Advancements in Powering and Charging Systems for Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) or drones have witnessed a spectacular surge in applications for military, commercial, and civilian purposes. However, their potential for flight is always limited by the finite power budget of their onboard power supplies. The limited flight time problem has led to intensive research into new sources of power and innovative charging strategies to enable protracted, autonomous flight. This paper gives a comparative summary of the current state-of-the-art in UAV power and refuelling technology. The paper begins with an analysis of the variety of energy sources, from classical batteries to fuel cells and hybrid systems, based on their relative advantages and disadvantages in energy density, weight, and safety. Subsequently, the review explores a spectrum of replenishment options, from simple manual battery swapping to sophisticated high-tech automatic docking stations and smart contact-based charging pads. Most of the review is dedicated to the newer technology of wireless power transfer, which involves near-field (inductive, capacitive) and far-field (laser, microwave) technology. The article also delves into the most important power electronic converter topologies, battery management systems, and control approaches that form the core of these charging systems. Finally, it recapitulates the most significant challenges in technical, economic, and social aspects for promising avenues of future research. The comprehensive review is a valuable guide for researchers, engineers, and policymakers striving to enhance UAV operational performance.
comment: This paper has been accepted for presentation at the 10th International Conference on Information and Communication Technology for Competitive Strategies (ICTCS-2025) and will be published in the conference proceedings under the Springer Lecture Notes in Networks and Systems (LNNS) series, ISSN: 2367-3370
Carbon Reduction Potential and Sensitivity Analysis of Rural Integrated Energy System with Carbon Trading and Coordinated Electric-Thermal Demand Response
Constructing clean and low-carbon rural integrated energy system (RIES) is a fundamental requirement for supporting China's rural modernization and new-type urbanization. Existing research on RIES decarbonization primarily focuses on the optimal low-carbon operation of system-level energy devices at the macro level, while the synergistic carbon-reduction effects of demand-side flexible loads and external carbon trading mechanisms have not been fully explored. Meanwhile, at the micro level, the carbon sensitivity of device parameters and their potential contribution to emission reduction remain insufficiently investigated. To address these gaps, this study integrates macro- and micro-level analyses. At the macro level, a multi-energy-coupled low-carbon optimal operation framework is developed, incorporating coordinated electric-thermal demand response (DR) and carbon trading. At the micro level, a carbon emission model for RIES components is established, and sensitivity analysis is conducted on 28 carbon-related parameters to identify highly sensitive determinants of emission reduction. Case studies based on typical operation data from a rural region in northern China demonstrate that coordinated electric-thermal DR and carbon trading can achieve maximum carbon-reduction potential. Furthermore, the identified high-sensitivity parameters provide essential theoretical guidance for enhancing the decarbonization potential of RIES.
Initial Excitation-based Adaptive Observers for Discrete-Time LTI Systems
In practical applications, the efficacy of a control algorithm relies critically on the accurate knowledge of the parameters and states of the underlying system. However, obtaining these quantities in practice is often challenging. Adaptive observers address this issue by performing simultaneous state and parameter estimation using only input-output measurements. While many adaptive observer designs exist for continuous-time systems, their discrete-time counterparts remain relatively unexplored. This paper proposes an initial excitation (IE)-based adaptive observer for discrete-time linear time-invariant systems. In contrast to conventional designs that rely on the persistence of excitation condition, which requires continuous excitation and infinite control effort, the proposed method does not require excitation for infinite time, thus making it more practical for stabilization tasks. We employ a two-layer filtering structure and a normalized gradient descent-based update law for learning the unknown parameters. We also propose modifying the regressors to enhance information extraction, leading to faster convergence. Rigorous theoretical analysis guarantees bounded and exponentially converging estimates of both states and parameters under the IE condition, and simulation results validate the efficacy of the proposed design.
Transformer-Based Scalable Multi-Agent Reinforcement Learning for Networked Systems with Long-Range Interactions
Multi-agent reinforcement learning (MARL) has shown promise for large-scale network control, yet existing methods face two major limitations. First, they typically rely on assumptions leading to decay properties of local agent interactions, limiting their ability to capture long-range dependencies such as cascading power failures or epidemic outbreaks. Second, most approaches lack generalizability across network topologies, requiring retraining when applied to new graphs. We introduce STACCA (Shared Transformer Actor-Critic with Counterfactual Advantage), a unified transformer-based MARL framework that addresses both challenges. STACCA employs a centralized Graph Transformer Critic to model long-range dependencies and provide system-level feedback, while its shared Graph Transformer Actor learns a generalizable policy capable of adapting across diverse network structures. Further, to improve credit assignment during training, STACCA integrates a novel counterfactual advantage estimator that is compatible with state-value critic estimates. We evaluate STACCA on epidemic containment and rumor-spreading network control tasks, demonstrating improved performance, network generalization, and scalability. These results highlight the potential of transformer-based MARL architectures to achieve scalable and generalizable control in large-scale networked systems.
comment: 8 pages, 7 figures, submitted for review
An Online Multiobjective Policy Gradient for Long-run Average-reward Markov Decision Process
We propose a reinforcement learning (RL) framework for multi-objective decision-making, where the agent seeks to optimize a vector of rewards rather than a single scalar value. The objective is to ensure that the time-averaged reward vector converges asymptotically to a predefined target set. Since standard RL algorithms operate on scalar rewards, we introduce a dynamic scalarization mechanism guided by Blackwell's Approachability Theorem. This theorem enables adaptive updates of the scalarization vector to guarantee convergence toward the target set. Assuming ergodicity, the Markov chain induced by the learned policies admits a stationary distribution, ensuring all states recur with finite return times. Our algorithm exploits this property by defining an inner loop that applies a policy gradient method (with baseline) between successive visits to a designated recurrent state, enforcing Blackwell's condition at each iteration. An outer loop then updates the scalarization vector after each recurrence. We establish theoretical convergence of the long-run average reward vector to the target set and validate the approach through a numerical example.
Cooperative ISAC for LAE: Joint Trajectory Planning, Power allocation, and Dynamic Time Division
To enhance the performance of aerial-ground networks, this paper proposes an integrated sensing and communication (ISAC) framework for multi-UAV systems. In our model, ground base stations (BSs) cooperatively serve multiple unmanned aerial vehicles (UAVs), and employ a time-division strategy in which beam scanning for sensing comes before data communication in each time slot. To maximize the sum communication rate while satisfying the total sensing mutual information (MI) requirement, we jointly optimize the UAV trajectories, communication and sensing power allocation, and the dynamic time-division ratio. The resulting non-convex optimization problem is efficiently solved using an alternating optimization (AO) framework. Simulation results demonstrate that our proposed joint design significantly outperforms benchmark schemes with static or partially optimized resources. The findings also reveal the critical importance of dynamic trajectory and resource management for effectively navigating the sensing-communication trade-off, especially under stringent power or sensing constraints.
Wide-Area Feedback Control for Renewables-Heavy Power Systems: A Comparative Study of Reinforcement Learning and Lyapunov-Based Design
As renewable energy sources become more prevalent, accurately modeling power grid dynamics is becoming increasingly more complex. Concurrently, data acquisition and realtime system state monitoring are becoming more available for control centers. This motivates shifting from \textit{model- and Lyapunov-based} feedback controller designs toward \textit{model-free} ones. Reinforcement learning (RL) has emerged as a key tool for designing model-free controllers. Various studies have been carried out to study voltage/frequency control strategies via RL. However, usually a simplified system model is used neglecting detailed dynamics of solar, wind, and composite loads -- and damping system-wide oscillations and modeling power flows are all usually ignored. To that end, we pose an optimal feedback control problem for a detailed renewables-heavy power system, defined by a set of nonlinear differential algebraic equations (NDAE). The control problem is solved using a completely model-free design via RL as well as using a model-based approach built upon the Lyapunov stability theory with guarantees. The paper in its essence seeks to explore whether data-driven feedback control should be used in power grids over its model-driven counterpart. Theoretical developments and thorough case studies are presented with an eye on this exploration. Finally, a detailed analysis is provided to delineate the strengths and weaknesses of both approaches for renewables-heavy grids.
Green Emergency Communications in RIS- and MA-Assisted Multi-UAV SAGINs: A Partially Observable Reinforcement Learning Approach
In post-disaster space-air-ground integrated networks (SAGINs), terrestrial infrastructure is often impaired, and unmanned aerial vehicles (UAVs) must rapidly restore connectivity for mission-critical ground terminals in cluttered non-line-of-sight (NLoS) urban environments. To enhance coverage, UAVs employ movable antennas (MAs), while reconfigurable intelligent surfaces (RISs) on surviving high-rises redirect signals. The key challenge is communication-limited partial observability, leaving each UAV with a narrow, fast-changing neighborhood view that destabilizes value estimation. Existing multi-agent reinforcement learning (MARL) approaches are inadequate--non-communication methods rely on unavailable global critics, heuristic sharing is brittle and redundant, and learnable protocols (e.g., CommNet, DIAL) lose per-neighbor structure and aggravate non-stationarity under tight bandwidth. To address partial observability, we propose a spatiotemporal A2C where each UAV transmits prior-decision messages with local state, a compact policy fingerprint, and a recurrent belief, encoded per neighbor and concatenated. A spatial discount shapes value targets to emphasize local interactions, while analysis under one-hop-per-slot latency explains stable training with delayed views. Experimental results show our policy outperforms IA2C, ConseNet, FPrint, DIAL, and CommNet--achieving faster convergence, higher asymptotic reward, reduced Temporal-Difference(TD)/advantage errors, and a better communication throughput-energy trade-off.
From Black-Box to White-Box: Control-Theoretic Neural Network Interpretability
Deep neural networks achieve state of the art performance but remain difficult to interpret mechanistically. In this work, we propose a control theoretic framework that treats a trained neural network as a nonlinear state space system and uses local linearization, controllability and observability Gramians, and Hankel singular values to analyze its internal computation. For a given input, we linearize the network around the corresponding hidden activation pattern and construct a state space model whose state consists of hidden neuron activations. The input state and state output Jacobians define local controllability and observability Gramians, from which we compute Hankel singular values and associated modes. These quantities provide a principled notion of neuron and pathway importance: controllability measures how easily each neuron can be excited by input perturbations, observability measures how strongly each neuron influences the output, and Hankel singular values rank internal modes that carry input output energy. We illustrate the framework on simple feedforward networks, including a 1 2 2 1 SwiGLU network and a 2 3 3 2 GELU network. By comparing different operating points, we show how activation saturation reduces controllability, shrinks the dominant Hankel singular value, and shifts the dominant internal mode to a different subset of neurons. The proposed method turns a neural network into a collection of local white box dynamical models and suggests which internal directions are natural candidates for pruning or constraints to improve interpretability.
On the Impact of Voltage Unbalance on Distribution Locational Marginal Prices
Finding clear economic signals for distribution-network operation and expansion is increasingly important as single-phase loads and distributed energy resources escalate. These devices create phase-to-phase imbalances that manifest as voltage unbalance, a power quality issue that accelerates insulation aging in machines and increases network losses, thereby raising costs for operators and consumers. Traditional grid codes address unbalance via disparate hard limits on various indices thresholds that differ across standards, offer no dynamic economic incentive and undermine optimality. This paper proposes instead to treat voltage unbalance as a `soft limit' by adding penalty terms to grid operation costs within a three-phase optimal power flow to reflect the cost of the decrease in lifetime of assets due to being subject to voltage unbalance. This unified approach yields dynamic economic signals unbalance-aware Distribution Locational Marginal Prices (DLMP) that reflect the cost of power quality deviations. A novel mathematical decomposition of DLMP is developed, isolating the energy, loss, congestion, and unbalance components. Case studies conducted on two benchmark networks demonstrate the effectiveness and practical value of the proposed method. The results indicate that unbalance penalties reshape nodal prices, produce unexpected phase-level effects, and even allow scenarios where added load reduces unbalance and lowers costs, while providing planners and market designers with actionable insights to balance investment, operation, and power quality in modern distribution systems.
Power Delivery for Cryogenic Scalable Quantum Applications: Challenges and Opportunities
Quantum technologies offer unprecedented capabilities in computation and secure information transfer. Their implementation requires qubits to operate at cryogenic temperatures (CT) while control and readout electronics typically still remains at room temperature (RT). As systems scale to millions of qubits, the electronics should also operate at CT to avoid a wiring bottleneck. However, wired power transfer from RT for such electronics introduces severe challenges, including thermal load between cooling stages, Joule heating, noise coupling, and wiring scalability. This paper addresses those challenges by evaluating several candidate architectures for scalable power transfer in the dilution frige: high-voltage (HV) wired power transfer, radiative wireless transfer, non-radiative wireless transfer, and a hybrid HV and non-radiative transfer. These architectures are analyzed in terms of thermal load, power loss, heating, coupling noise, power density, scalability, reliability, and complexity. Comparative analysis demonstrates the trade-offs among these architectures, while highlighting HV non-radiative transfer as a promising candidate for scalable quantum systems.
comment: 5 pages, 4 figures
Contactless Monitoring of Muscle Vibrations During Exercise with a Chaos-Inspired Radar
In this paper, our goal is to enable quantitative feedback on muscle fatigue during exercise to optimize exercise effectiveness while minimizing injury risk. We seek to capture fatigue by monitoring surface vibrations that muscle exertion induces. Muscle vibrations are unique as they arise from the asynchronous firing of motor units, producing surface micro-displacements that are broadband, nonlinear, and seemingly stochastic. Accurately sensing these noise-like signals requires new algorithmic strategies that can uncover their underlying structure. We present GigaFlex the first contactless system that measures muscle vibrations using mmWave radar to infer muscle force and detect fatigue. GigaFlex draws on algorithmic foundations from Chaos theory to model the deterministic patterns of muscle vibrations and extend them to the radar domain. Specifically, we design a radar processing architecture that systematically infuses principles from Chaos theory and nonlinear dynamics throughout the sensing pipeline, spanning localization, segmentation, and learning, to estimate muscle forces during static and dynamic weight-bearing exercises. Across a 23-participant study, GigaFlex estimates maximum voluntary isometric contraction (MVIC) root mean square error (RMSE) of 5.9\%, and detects one to three Repetitions in Reserve (RIR), a key quantitative muscle fatigue metric, with an AUC of 0.83 to 0.86, performing comparably to a contact-based IMU baseline. Our system can enable timely feedback that can help prevent fatigue-induced injury, and opens new opportunities for physiological sensing of complex, non-periodic biosignals.
dkpy: Robust Control with Structured Uncertainty in Python
Models used for control design are, to some degree, uncertain. Model uncertainty must be accounted for to ensure the robustness of the closed-loop system. $μ$-analysis and $μ$-synthesis methods allow for the analysis and design of controllers subject to structured uncertainties. Moreover, these tools can be applied to robust performance problems as they are fundamentally robust control problems with structured uncertainty. The contribution of this paper is dkpy, an open-source Python package for performing robust controller analysis and synthesis for systems subject to structured uncertainty. dkpy also provides tools for performing model uncertainty characterization using data from a set of perturbed systems. The open-source project can be found at https://github.com/decargroup/dkpy.
comment: 8 pages, 13 figures
Consensus-Based Stability Analysis of Multi-Agent Networks
The emergence of large-scale multi-agent systems has led to controller synthesis methods for sparse communication between agents. However, most sparse controller synthesis algorithms remain centralized, requiring information exchange and high computational costs. This underscores the need for distributed algorithms that design controllers using only local dynamics information from each agent. This paper presents a consensus-based distributed stability analysis. The proposed stability analysis algorithms leverage Vidyasagar's Network Dissipativity Theorem and the alternating direction methods of multipliers to perform general stability analysis. Numerical examples involving a 2D swarm of unmanned aerial vehicles demonstrate the convergence of the proposed algorithms.
comment: Accepted to CDC 2025. 6 pages, 4 figures
Dissipativity-Based Distributed Stability Analysis for Networks with Heterogeneous Nonlinear Agents
Stabilizing large networks of nonlinear agents is challenging; decomposition and distributed analysis of these networks are crucial for computational tractability and information security. Vidyasagar's Network Dissipativity Theorem enables both properties concurrently in distributed network analysis. This paper explored combining it with the alternating direction methods of multipliers to develop distributed stability analysis for networks of inhomogeneous, nonlinear agents. One algorithm enhances information security by requiring agents to share only a dissipativity characterization, not a dynamical model, for stability analysis. A second algorithm further restricts this information sharing to their clique, thereby enhancing security, and can also reduce the computational burden of stability analysis if the network allows chordal decomposition. The convergence of the proposed algorithms is demonstrated, and criteria are identified for decomposable networks facilitating chordal decomposition. The effectiveness of the proposed methods is demonstrated through numerical examples involving a swarm of linearized unmanned aerial vehicles and networks beyond linear time-invariant agents.
comment: Extended version of a paper accepted for presentation at the 2025 IEEE Conference on Decision and Control; 15 pages, 11 figures
L-Functions Certify Set Attractivity for Discrete-Time Uncertain Nonlinear Switched Systems
We introduce the class of L-functions to certify the attractivity of sets for uncertain nonlinear switched systems in discrete time. The existence of an L-function associated with a set guarantees the robust local attractivity of that set under the system dynamics. We propose a constructive method for obtaining piecewise-continuous L-functions based on contractive sets for the system, and show that the existence of a robust control contractive set for the dynamics implies the existence of an appropriate L-function, and hence the robust local attractivity of the set itself. We illustrate the proposed framework through examples that elucidate the theoretical concepts, and through the case study of a nonlinear switched system modelling antimicrobial resistance, which highlights the relevance of the approach to the analysis of biological systems.
A congestion-dependent imbalance pricing mechanism for regions allowing passive balancing
Maintaining system balance becomes increasingly challenging as market design and grid capacity enhancement lag behind the growing share of renewables, requiring greater effort from both the transmission system operator (TSO) and the Balance Responsible Parties (BRPs). An actor can support balancing actively by bidding into reserve markets, or passively by adjusting its portfolio in line with system needs. In some countries, BRPs are incentivized to engage in passive balancing when their deviations support overall system stability. However, BRPs focus on profit maximization rather than minimizing portfolio discrepancies, which can cause simultaneous responses to price signals and create issues at the transmission-distribution interface. This research provides a two-stage stochastic model that captures BRP dynamic behavior and their impact on the grid under day-ahead and balancing market price uncertainty across three imbalance pricing mechanisms: the single, dual, and two-price. Then, a congestion-dependent imbalance pricing mechanism is proposed that maintains incentives for passive balancing while satisfying the grid constraint. A proof of concept is provided via the simulation with a part of the Dutch distribution grid. Results show that the proposed method mitigates the unexpected peak flow issue in congested areas while preserving passive balancing contributions from other BRPs in non-congested areas.
comment: This manuscript has been submitted for possible publication in Sustainable Energy, Grids and Networks (SEGAN) journal
Dynamic state estimation of hybrid systems: Inverters that switch between grid-following and grid-forming control schemes
This paper develops a hybrid system modeling framework for inverters that switch between grid-following and grid-forming control schemes. In particular, such inverters are modeled as hybrid automata with guard conditions on voltage and frequency, and reset maps that maintain consistent phase, frequency, and droop references during mode transitions. The hybrid model is embedded within an extended Kalman filter to assess estimation performance under explicit mode switching. Results show that the proposed framework ensures stable, well-behaved dynamics and improves state estimation, especially near switching instants, compared with smooth continuous models.
Just Few States are Enough: Randomized Sparse Feedback for Stability of Dynamical Systems AAAI 2026
While classical control theory assumes that the controller has access to measurements of the entire state (or output) at every time instant, this paper investigates a setting where the feedback controller can only access a randomly selected subset of the state vector at each time step. Due to the random sparsification that selects only a subset of the state components at each step, we analyze the stability of the closed-loop system in terms of Asymptotic Mean-Square Stability (AMSS), which ensures that the system state converges to zero in the mean-square sense. We consider the problem of designing both a feedback gain matrix and a measurement sparsification strategy that minimizes the number of state components required for feedback, while ensuring AMSS of the closed-loop system. Interestingly, (1) we provide conditions on the dynamics of the system under which it is possible to find a sparsification strategy, and (2) we propose a Linear Matrix Inequality (LMI) based algorithm that jointly computes a stabilizing gain matrix, and a randomized sparsification strategy that minimizes the expected number of measured state coordinates while preserving the AMSS. Our approach is then extended to the case where the sparsification probabilities vary across the state components. Based on these theoretical findings, we propose an algorithmic procedure to compute the vector of sparsification parameters, along with the corresponding feedback gain matrix. To the best of our knowledge, this is the first study to investigate the stability properties of control systems that rely solely on randomly selected state measurements. Numerical simulations demonstrate that, in some settings, the system achieves comparable performance to full-state feedback while requiring measurements from only $0.3\%$ of the state coordinates.
comment: To appear in the proceedings of AAAI 2026
Data-Driven EV Charging Load Profile Estimation and Typical EV Daily Load Dataset Generation
Widespread electric vehicle (EV) adoption introduces new challenges for distribution grids due to large, localized load increases, stochastic charging behavior, and limited data availability. This paper proposes two data-driven methods to estimate residential EV charging profiles using real-world customer meter data from CenterPoint Energy serving the Houston area. The first approach applies a least-squares estimation to extract average charging rates by comparing aggregated EV and non-EV meter data, enabling a statistical method for starting and ending charge times. The second method isolates EV load from meter profiles and applies a kernel density estimation (KDE) to develop a probabilistic charging model. Both methods produce a distinct "u-shaped" daily charging profile, with most charging occurring overnight. The validated profiles offer a scalable tool for utilities to better anticipate EV-driven demand increases and support proactive grid planning.
Targeted Algorithmic Purpose-Driven Cyber Attacks in Distributed Multi-Agent Optimization
Distributed multi-agent optimization (DMAO) enables the scalable control and coordination of a large population of edge resources in complex multi-agent environments. Despite its great scalability, DMAO is prone to cyber attacks as it relies on frequent peer-to-peer communications that are vulnerable to malicious data injection and alteration. Existing cybersecurity research mainly focuses on \emph{broad-spectrum} attacks that aim to jeopardize the overall environment but fail to sustainably achieve specific or targeted objectives. This paper develops a class of novel strategic purpose-driven algorithmic attacks that are launched by participating agents and interface with DMAO to achieve self-interested attacking purposes. Theoretical foundations, in both primal and dual senses, are established for these attack vectors with and without stealthy features. Simulations on electric vehicle charging control validate the efficacy of the proposed algorithmic attacks and show the impacts of such attacks on the power distribution network.
comment: 8 pages, 5 Figures
Stochastic framework for scheduling preemptive upgrades of distribution transformers
Electrification of residential heating and transporta- tion has the potential to overload transformers in distribution feeders. Strategic scheduling of transformer upgrades to antici- pate increasing loads can avoid operational failures and reduce the risk of supply shortages. This work proposes a framework to prioritize transformer upgrades based on predicted loads at each meter, including heat pumps and electric vehicle chargers. The framework follows a Monte Carlo approach to forecasting, generating many possible loading instances and collecting a distribution of failure probabilities for each transformer. In each loading instance, heat pumps and EVs are added stochastically to each meter over time, based on an overall estimated growth rate and factors specific to each customer. We set heat pump load profiles by temperature and EV load profiles based on a stochastic driving model and charging pattern. The load profiles feed into network topology and transformer failure models to calculate failure probabilities.We formulate a cost optimization based on these failure probabilities to schedule transformer upgrades. We demonstrate this approach on a real-world distribution feeder in rural Vermont under low, medium, and high-electrification scenarios. We find generally less than 20% of transformers having substantial risk of failure over a 20-year simulation. Lastly, we develop an optimization routine to schedule upgrades and discuss the expected number of failures.
comment: 5 pages, 4 figures
Convex Reformulation of LMI-Based Distributed Controller Design with a Class of Non-Block-Diagonal Lyapunov Functions
This study addresses a distributed state feedback controller design problem for continuous-time linear time-invariant systems by means of linear matrix inequalities (LMIs). As structural constraints on a control gain result in non-convexity in general, the block-diagonal relaxation of Lyapunov functions has been prevalent despite its conservatism. In this work, we target a class of non-block-diagonal Lyapunov functions with the same sparsity pattern as distributed controllers. By leveraging a block-diagonal factorization of sparse matrices and Finsler's lemma, we first present a nonlinear matrix inequality for stabilizing distributed controllers with such Lyapunov functions, which boils down to a necessary and sufficient condition for such controllers if the sparsity pattern is chordal. As its relaxation, we derive novel LMIs, one of which strictly covers the conventional relaxation, and then provide analogous results for $H_\infty$ control. Lastly, numerical examples underscore the efficacy of our results.
comment: 17 pages, 5 figures. This paper has been accepted to IEEE Transactions on Automatic Control
On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
AI-Native Open RAN for Non-Terrestrial Networks: An Overview
Non-terrestrial network (NTN) is expected to be a critical component of Sixth Generation (6G) networks, providing ubiquitous services and enhancing the system resilience. However, the high-altitude operation and inherent mobility of NTN introduce significant challenges across the development and operations (DevOps) lifecycle. Apart from that, how to achieve artificial intelligence native (AI-Native) capabilities in NTN for intelligent network management and orchestration remains an important challenge. To solve the challenges above, we propose integrating the Open Radio Access Network (ORAN) with NTN as a promising solution, leveraging its principles of disaggregation, openness, virtualization, and embedded intelligence. Despite extensive technical literature on ORAN and NTN, respectively, there is a lack of a holistic view of the integration of ORAN and NTN architectures, particularly in terms of how intelligent ORAN can address the scalability challenge in NTN management. To address this gap, this paper provides a comprehensive and structured overview of an AI-native ORAN-based NTN framework to support dynamic configuration, scalability, and intelligent orchestration. The paper commences with an in-depth review of the existing literature from leading industry and academic institutions, subsequently providing the necessary background knowledge related to ORAN, NTN, and AI-Native for communication. Furthermore, the paper analyzes the unique DevOps challenges for NTN and proposes the orchestrated AI-Native ORAN-based NTN framework, with a detailed discussion on the key technological enablers within the framework. Finally, this paper presents various use cases and outlines the prospective research directions of this study in detail.
Inertia-aware Unit Commitment and Remuneration Methods for Decarbonized Power System
To maintain frequency stability in decarbonized power systems, inertia services from synchronous generators (SGs) and inverter-based resources must be procured. However, designing an inertia-aware system operation poses significant challenges in considering the variability and uncertainty of renewable energy sources (RES) and adopting a remuneration method for inertia provision due to SG commitment variables. To address this research gap, we renovate the inertia-aware chance constraints unit commitment model by incorporating time-coupling constraints for SGs and joint chance constraints for RES uncertainty. We investigate remuneration methods for inertia provision, including uplift, marginal pricing (MP), approximated convex hull pricing (aCHP), and average incremental cost pricing (AIP), applying these to the renovated model. Numerical experiments show that the model enhances frequency stability during a contingency. Among the remuneration methods, only aCHP guarantees revenue adequacy without requiring uplift while maximizing economic welfare. However, the MP requires the highest level of uplift to adequately compensate generation costs, as the price function fails to account for inertia provision.
comment: 10pages, 7 figures
Time-Series-Informed Closed-loop Learning for Sequential Decision Making and Control
Closed-loop performance of sequential decision making algorithms, such as model predictive control, depends strongly on the choice of controller parameters. Bayesian optimization allows learning of parameters from closed-loop experiments, but standard Bayesian optimization treats this as a black-box problem and ignores the temporal structure of closed-loop trajectories, leading to slow convergence and inefficient use of experimental resources. We propose a time-series-informed multi-fidelity Bayesian optimization framework that aligns the fidelity dimension with closed-loop time, enabling intermediate performance evaluations within a closed-loop experiment to be incorporated as lower-fidelity observations. Additionally, we derive probabilistic early stopping criteria to terminate unpromising closed-loop experiments based on the surrogate model's posterior belief, avoiding full episodes for poor parameterizations and thereby reducing resource usage. Simulation results on a nonlinear control benchmark demonstrate that, compared to standard black-box Bayesian optimization approaches, the proposed method achieves comparable closed-loop performance with roughly half the experimental resources, and yields better final performance when using the same resource budget, highlighting the value of exploiting temporal structure for sample-efficient closed-loop controller tuning.
comment: 7 pages, 3 figures
A Model Predictive Control Scheme for Flight Scheduling and Energy Management of Electric Aviation Networks
This paper presents a Model Predictive Control (MPC) scheme for flight scheduling and energy management of electric aviation networks, where electric aircraft transport passengers between electrified airports equipped with sustainable energy sources and battery storage, with the goal of minimizing grid dependency. Specifically, we first model the aircraft flight and charge scheduling problem jointly with the airport energy management problem, explicitly accounting for local weather forecasts. Second, we frame the minimum-grid-energy operational problem as a mixed-integer linear program and solve it in a receding horizon fashion, where the route assignment and charging decisions of each aircraft can be dynamically reassigned to mitigate disruptions. We showcase the proposed MPC scheme on real-world data taken from a conventional flight network and weather conditions in the US American North East. The proposed framework saves between 10 and 37% of grid energy requirements when compared to a baseline without re-routing. Hence, results show that MPC can effectively guarantee operation of the network by efficiently re-assigning flights and rescheduling aircraft charging, while maximizing the efficiency of the on-site energy systems.
Sequential Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper proposes a 2-D autonomous exploration and mapping framework for LiDAR-based SLAM mobile robots, designed to address the major challenges on low-cost platforms, including process instability, map drift, and increased risks of collisions and deadlocks. For frontier search, the local-global sampling architecture based on Rapidly-exploring Random Trees (RRTs) is employed. For local exploration, the proposed Self-Convergent RRT (SC-RRT) efficiently covers the reachable space within a finite time while the robot remains stationary, without relying on motion-induced sampling diversity. In addition, traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. For frontier point navigation, a stepwise consistent motion strategy is employed to generate motion trajectories that are more amenable to stable scan matching. The resulting straight-segment and in-place-rotation pattern improves scan-matching robustness and effectively suppresses map drift on resource-constrained platforms. For the process control, the framework serializes frontier point selection and navigation, avoiding oscillations caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is incorporated to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency. Experiments in challenging simulated and real-world environments validate the effectiveness of the framework. Compared with baseline methods, the proposed framework achieves higher mapping success rates and stronger robustness on resource-constrained robots and maintains consistent mapping quality across various LiDAR field-of-view (FoV) configurations.
comment: 9 pages, 10 figures. This work has been submitted to the IEEE for possible publication
Model Predictive Inferential Control of Neural State-Space Models for Autonomous Vehicle Motion Planning
Model predictive control (MPC) has proven useful in enabling safe and optimal motion planning for autonomous vehicles. In this paper, we investigate how to achieve MPC-based motion planning when a neural state-space model represents the vehicle dynamics. As the neural state-space model will lead to highly complex, nonlinear and nonconvex optimization landscapes, mainstream gradient-based MPC methods will struggle to provide viable solutions due to heavy computational load. In a departure, we propose the idea of model predictive inferential control (MPIC), which seeks to infer the best control decisions from the control objectives and constraints. Following this idea, we convert the MPC problem for motion planning into a Bayesian state estimation problem. Then, we develop a new implicit particle filtering/smoothing approach to perform the estimation. This approach is implemented as banks of unscented Kalman filters/smoothers and offers high sampling efficiency, fast computation, and estimation accuracy. We evaluate the MPIC approach through a simulation study of autonomous driving in different scenarios, along with an exhaustive comparison with gradient-based MPC. The simulation results show that the MPIC approach has considerable computational efficiency despite complex neural network architectures and the capability to solve large-scale MPC problems for neural state-space models.
Geometric Decentralized Stability Condition for Power Systems Based on Projecting DW Shells
The development of decentralized stability conditions has gained considerable attention due to the need to analyze multi-agent network systems, such as heterogeneous multi-converter power systems. A recent advance is the application of the small-phase theorem, which extends the passivity theory. However, it requires the transfer function matrix to be sectorial, which may not hold in some frequency range and will result in conservativeness. To address this issue, this paper proposes a geometric decentralized stability condition based on Davis-Wielandt (DW) shell and its projections. Our approach provides a geometric interpretation of the small-gain and small-phase theorems and enables decentralized stability analysis of power systems, serving as a visualization method to understand the closed-loop interactions and assess the stability of large-scale network systems in a scalable and modular manner.
A Dynamic Recurrent Adjacency Memory Network for Mixed-Generation Power System Stability Forecasting
Modern power systems with high penetration of inverter-based resources exhibit complex dynamic behaviors that challenge the scalability and generalizability of traditional stability assessment methods. This paper presents a dynamic recurrent adjacency memory network (DRAMN) that combines physics-informed analysis with deep learning for real-time power system stability forecasting. The framework employs sliding-window dynamic mode decomposition to construct time-varying, multi-layer adjacency matrices from phasor measurement unit and sensor data to capture system dynamics such as modal participation factors, coupling strengths, phase relationships, and spectral energy distributions. As opposed to processing spatial and temporal dependencies separately, DRAMN integrates graph convolution operations directly within recurrent gating mechanisms, enabling simultaneous modeling of evolving dynamics and temporal dependencies. Extensive validations on modified IEEE 9-bus, 39-bus, and a multi-terminal HVDC network demonstrate high performance, achieving 99.85%, 99.90%, and 99.69% average accuracies, respectively, surpassing all tested benchmarks, including classical machine learning algorithms and recent graph-based models. The framework identifies optimal combinations of measurements that reduce feature dimensionality by 82% without performance degradation. Correlation analysis between dominant measurements for small-signal and transient stability events validates generalizability across different stability phenomena. DRAMN achieves state-of-the-art accuracy while providing enhanced interpretability for power system operators, making it suitable for real-time deployment in modern control centers.
comment: Submitted to IEEE Transactions on Power Systems
Anytime Safe Reinforcement Learning
This paper considers the problem of solving constrained reinforcement learning problems with anytime guarantees, meaning that the algorithmic solution returns a safe policy regardless of when it is terminated. Drawing inspiration from anytime constrained optimization, we introduce Reinforcement Learning-based Safe Gradient Flow (RL-SGF), an on-policy algorithm which employs estimates of the value functions and their respective gradients associated with the objective and safety constraints for the current policy, and updates the policy parameters by solving a convex quadratically constrained quadratic program. We show that if the estimates are computed with a sufficiently large number of episodes (for which we provide an explicit bound), safe policies are updated to safe policies with a probability higher than a prescribed tolerance. We also show that iterates asymptotically converge to a neighborhood of a KKT point, whose size can be arbitrarily reduced by refining the estimates of the value function and their gradients. We illustrate the performance of RL-SGF in a navigation example.
System Identification Under Multi-rate Sensing Environment
This paper proposes a system identification algorithm for systems with multi-rate sensors in a discrete-time framework. It is challenging to obtain an accurate mathematical model when the ratios of inputs and outputs are different in the system. A cyclic reformulation-based model for multi-rate systems is formulated, and the multi-rate system can be reduced to a linear time-invariant system to derive the model under the multi-rate sensing environment. The proposed algorithm integrates a cyclic reformulation with a state coordinate transformation of the cycled system to enable precise identification of systems under the multi-rate sensing environment. The effectiveness of the proposed system identification method is demonstrated using numerical simulations.
Identifying the Smallest Adversarial Load Perturbation that Renders DC-OPF Infeasible
What is the globally smallest load perturbation that renders DC-OPF infeasible? Reliably identifying such "adversarial attack" perturbations has useful applications in a variety of emerging grid-related contexts, including machine learning performance verification, cybersecurity, and operational robustness of power systems dominated by stochastic renewable energy resources. In this paper, we formulate the inherently nonconvex adversarial attack problem by applying a parameterized version of Farkas' lemma to a perturbed set of DC-OPF equations. Since the resulting formulation is very hard to globally optimize, we also propose a parameterized generation control policy which, when applied to the primal DC-OPF problem, provides solvability guarantees. Together, these nonconvex problems provide guaranteed upper and lower bounds on adversarial attack size; by combining them into a single optimization problem, we can efficiently "squeeze" these bounds towards a common global solution. We apply these methods on a range of small- to medium-sized test cases from PGLib, benchmarking our results against the best adversarial attack lower bounds provided by Gurobi 12.0's spatial Branch and Bound solver.
Long Duration Inspection of GNSS-Denied Environments with a Tethered UAV-UGV Marsupial System
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a tethered marsupial robotic system composed of a UAV and an Unmanned Ground Vehicle (UGV), specifically designed for autonomous, long-duration inspection tasks in Global Navigation Satellite System (GNSS)-denied environments. The system extends the UAV's operational time by supplying power through a tether connected to high-capacity battery packs carried by the UGV. Our work details the hardware architecture based on off-the-shelf components to ensure replicability and describes our full-stack software framework used by the system, which is composed of open-source components and built upon the Robot Operating System (ROS). The proposed software architecture enables precise localization using a Direct LiDAR Localization (DLL) method and ensures safe path planning and coordinated trajectory tracking for the integrated UGV-tether-UAV system. We validate the system through three sets of field experiments involving (i) three manual flight endurance tests to estimate the operational duration, (ii) three experiments for validating the localization and the trajectory tracking systems, and (iii) three executions of an inspection mission to demonstrate autonomous inspection capabilities. The results of the experiments confirm the robustness and autonomy of the system in GNSS-denied environments. Finally, all experimental data have been made publicly available to support reproducibility and to serve as a common open dataset for benchmarking.
comment: 31 pages, 17 figures, 6 tables. Published in Drones. https://doi.org/10.3390/drones9110765
Dissipativity-Based Synthesis of Distributed Control and Communication Topology Co-Design for AC Microgrids
This paper presents a novel dissipativity-based framework for co-designing distributed controllers and communication topologies in AC microgrids (MGs). Unlike existing methods that treat control synthesis and topology design separately, we propose a unified approach that simultaneously optimizes both aspects to achieve voltage and frequency regulation and proportional power sharing among distributed generators (DGs). We formulate the closed-loop AC MG as a networked system where DGs, distribution lines, and loads are interconnected subsystems characterized by their dissipative properties. Each DG employs a hierarchical architecture combining local controllers for voltage regulation and distributed controllers for droop-free power sharing through normalized power consensus. By leveraging dissipativity theory, we establish necessary and sufficient conditions for subsystem passivity and cast the co-design problem as a convex linear matrix inequality (LMI) optimization, enabling efficient computation and guaranteed stability. Our framework systematically synthesizes sparse communication topologies while handling the coupled dq-frame dynamics and dual power flow objectives inherent to AC MGs. Simulation results on a representative AC MG demonstrate the effectiveness of the proposed approach in achieving accurate voltage regulation, frequency synchronization, and proportional power sharing.
Robotics
ActiveGrasp: Information-Guided Active Grasping with Calibrated Energy-based Model
Grasping in a densely cluttered environment is a challenging task for robots. Previous methods tried to solve this problem by actively gathering multiple views before grasp pose generation. However, they either overlooked the importance of the grasp distribution for information gain estimation or relied on the projection of the grasp distribution, which ignores the structure of grasp poses on the SE(3) manifold. To tackle these challenges, we propose a calibrated energy-based model for grasp pose generation and an active view selection method that estimates information gain from grasp distribution. Our energy-based model captures the multi-modality nature of grasp distribution on the SE(3) manifold. The energy level is calibrated to the success rate of grasps so that the predicted distribution aligns with the real distribution. The next best view is selected by estimating the information gain for grasp from the calibrated distribution conditioned on the reconstructed environment, which could efficiently drive the robot to explore affordable parts of the target object. Experiments on simulated environments and real robot setups demonstrate that our model could successfully grasp objects in a cluttered environment with limited view budgets compared to previous state-of-the-art models. Our simulated environment can serve as a reproducible platform for future research on active grasping. The source code of our paper will be made public when the paper is released to the public.
comment: under review
DR. Nav: Semantic-Geometric Representations for Proactive Dead-End Recovery and Navigation
We present DR. Nav (Dead-End Recovery-aware Navigation), a novel approach to autonomous navigation in scenarios where dead-end detection and recovery are critical, particularly in unstructured environments where robots must handle corners, vegetation occlusions, and blocked junctions. DR. Nav introduces a proactive strategy for navigation in unmapped environments without prior assumptions. Our method unifies dead-end prediction and recovery by generating a single, continuous, real-time semantic cost map. Specifically, DR. Nav leverages cross-modal RGB-LiDAR fusion with attention-based filtering to estimate per-cell dead-end likelihoods and recovery points, which are continuously updated through Bayesian inference to enhance robustness. Unlike prior mapping methods that only encode traversability, DR. Nav explicitly incorporates recovery-aware risk into the navigation cost map, enabling robots to anticipate unsafe regions and plan safer alternative trajectories. We evaluate DR. Nav across multiple dense indoor and outdoor scenarios and demonstrate an increase of 83.33% in accuracy in detection, a 52.4% reduction in time-to-goal (path efficiency), compared to state-of-the-art planners such as DWA, MPPI, and Nav2 DWB. Furthermore, the dead-end classifier functions
Density-Driven Optimal Control for Non-Uniform Area Coverage in Decentralized Multi-Agent Systems Using Optimal Transport
This paper addresses the fundamental problem of non-uniform area coverage in multi-agent systems, where different regions require varying levels of attention due to mission-dependent priorities. Existing uniform coverage strategies are insufficient for realistic applications, and many non-uniform approaches either lack optimality guarantees or fail to incorporate crucial real-world constraints such as agent dynamics, limited operation time, the number of agents, and decentralized execution. To resolve these limitations, we propose a novel framework called Density-Driven Optimal Control (D2OC). The central idea of D2OC is the integration of optimal transport theory with multi-agent coverage control, enabling each agent to continuously adjust its trajectory to match a mission-specific reference density map. The proposed formulation establishes optimality by solving a constrained optimization problem that explicitly incorporates physical and operational constraints. The resulting control input is analytically derived from the Lagrangian of the objective function, yielding closed-form optimal solutions for linear systems and a generalizable structure for nonlinear systems. Furthermore, a decentralized data-sharing mechanism is developed to coordinate agents without reliance on global information. Comprehensive simulation studies demonstrate that D2OC achieves significantly improved non-uniform area coverage performance compared to existing methods, while maintaining scalability and decentralized implementability.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
Prompt-Driven Domain Adaptation for End-to-End Autonomous Driving via In-Context RL
Despite significant progress and advances in autonomous driving, many end-to-end systems still struggle with domain adaptation (DA), such as transferring a policy trained under clear weather to adverse weather conditions. Typical DA strategies in the literature include collecting additional data in the target domain or re-training the model, or both. Both these strategies quickly become impractical as we increase scale and complexity of driving. These limitations have encouraged investigation into few-shot and zero-shot prompt-driven DA at inference time involving LLMs and VLMs. These methods work by adding a few state-action trajectories during inference to the prompt (similar to in-context learning). However, there are two limitations of such an approach: $(i)$ prompt-driven DA methods are currently restricted to perception tasks such as detection and segmentation and $(ii)$ they require expert few-shot data. In this work, we present a new approach to inference-time few-shot prompt-driven DA for closed-loop autonomous driving in adverse weather condition using in-context reinforcement learning (ICRL). Similar to other prompt-driven DA methods, our approach does not require any updates to the model parameters nor does it require additional data collection in adversarial weather regime. Furthermore, our approach advances the state-of-the-art in prompt-driven DA by extending to closed driving using general trajectories observed during inference. Our experiments using the CARLA simulator show that ICRL results in safer, more efficient, and more comfortable driving policies in the target domain compared to state-of-the-art prompt-driven DA baselines.
Are LLMs The Way Forward? A Case Study on LLM-Guided Reinforcement Learning for Decentralized Autonomous Driving
Autonomous vehicle navigation in complex environments such as dense and fast-moving highways and merging scenarios remains an active area of research. A key limitation of RL is its reliance on well-specified reward functions, which often fail to capture the full semantic and social complexity of diverse, out-of-distribution situations. As a result, a rapidly growing line of research explores using Large Language Models (LLMs) to replace or supplement RL for direct planning and control, on account of their ability to reason about rich semantic context. However, LLMs present significant drawbacks: they can be unstable in zero-shot safety-critical settings, produce inconsistent outputs, and often depend on expensive API calls with network latency. This motivates our investigation into whether small, locally deployed LLMs (< 14B parameters) can meaningfully support autonomous highway driving through reward shaping rather than direct control. We present a case study comparing RL-only, LLM-only, and hybrid approaches, where LLMs augment RL rewards by scoring state-action transitions during training, while standard RL policies execute at test time. Our findings reveal that RL-only agents achieve moderate success rates (73-89%) with reasonable efficiency, LLM-only agents can reach higher success rates (up to 94%) but with severely degraded speed performance, and hybrid approaches consistently fall between these extremes. Critically, despite explicit efficiency instructions, LLM-influenced approaches exhibit systematic conservative bias with substantial model-dependent variability, highlighting important limitations of current small LLMs for safety-critical control tasks.
Task-Aware Morphology Optimization of Planar Manipulators via Reinforcement Learning
In this work, Yoshikawa's manipulability index is used to investigate reinforcement learning (RL) as a framework for morphology optimization in planar robotic manipulators. A 2R manipulator tracking a circular end-effector path is first examined because this case has a known analytical optimum: equal link lengths and the second joint orthogonal to the first. This serves as a validation step to test whether RL can rediscover the optimum using reward feedback alone, without access to the manipulability expression or the Jacobian. Three RL algorithms (SAC, DDPG, and PPO) are compared with grid search and black-box optimizers, with morphology represented by a single action parameter phi that maps to the link lengths. All methods converge to the analytical solution, showing that numerical recovery of the optimum is possible without supplying analytical structure. Most morphology design tasks have no closed-form solutions, and grid or heuristic search becomes expensive as dimensionality increases. RL is therefore explored as a scalable alternative. The formulation used for the circular path is extended to elliptical and rectangular paths by expanding the action space to the full morphology vector (L1, L2, theta2). In these non-analytical settings, RL continues to converge reliably, whereas grid and black-box methods require far larger evaluation budgets. These results indicate that RL is effective for both recovering known optima and solving morphology optimization problems without analytical solutions.
comment: 10 pages, 11 figures, It is submitted as a journal option paper associated with the IFAC World Congress 2026
EcoFlight: Finding Low-Energy Paths Through Obstacles for Autonomous Sensing Drones
Obstacle avoidance path planning for uncrewed aerial vehicles (UAVs), or drones, is rarely addressed in most flight path planning schemes, despite obstacles being a realistic condition. Obstacle avoidance can also be energy-intensive, making it a critical factor in efficient point-to-point drone flights. To address these gaps, we propose EcoFlight, an energy-efficient pathfinding algorithm that determines the lowest-energy route in 3D space with obstacles. The algorithm models energy consumption based on the drone propulsion system and flight dynamics. We conduct extensive evaluations, comparing EcoFlight with direct-flight and shortest-distance schemes. The simulation results across various obstacle densities show that EcoFlight consistently finds paths with lower energy consumption than comparable algorithms, particularly in high-density environments. We also demonstrate that a suitable flying speed can further enhance energy savings.
comment: Autonomous drone, A* algorithm, 3D environments, path planning, obstacle avoidance, energy efficiency, MIT Conference
OPFormer: Object Pose Estimation leveraging foundation model with geometric encoding
We introduce a unified, end-to-end framework that seamlessly integrates object detection and pose estimation with a versatile onboarding process. Our pipeline begins with an onboarding stage that generates object representations from either traditional 3D CAD models or, in their absence, by rapidly reconstructing a high-fidelity neural representation (NeRF) from multi-view images. Given a test image, our system first employs the CNOS detector to localize target objects. For each detection, our novel pose estimation module, OPFormer, infers the precise 6D pose. The core of OPFormer is a transformer-based architecture that leverages a foundation model for robust feature extraction. It uniquely learns a comprehensive object representation by jointly encoding multiple template views and enriches these features with explicit 3D geometric priors using Normalized Object Coordinate Space (NOCS). A decoder then establishes robust 2D-3D correspondences to determine the final pose. Evaluated on the challenging BOP benchmarks, our integrated system demonstrates a strong balance between accuracy and efficiency, showcasing its practical applicability in both model-based and model-free scenarios.
Botany Meets Robotics in Alpine Scree Monitoring
According to the European Union's Habitat Directive, habitat monitoring plays a critical role in response to the escalating problems posed by biodiversity loss and environmental degradation. Scree habitats, hosting unique and often endangered species, face severe threats from climate change due to their high-altitude nature. Traditionally, their monitoring has required highly skilled scientists to conduct extensive fieldwork in remote, potentially hazardous locations, making the process resource-intensive and time-consuming. This paper presents a novel approach for scree habitat monitoring using a legged robot to assist botanists in data collection and species identification. Specifically, we deployed the ANYmal C robot in the Italian Alpine bio-region in two field campaigns spanning two years and leveraged deep learning to detect and classify key plant species of interest. Our results demonstrate that agile legged robots can navigate challenging terrains and increase the frequency and efficiency of scree monitoring. When paired with traditional phytosociological surveys performed by botanists, this robotics-assisted protocol not only streamlines field operations but also enhances data acquisition, storage, and usage. The outcomes of this research contribute to the evolving landscape of robotics in environmental science, paving the way for a more comprehensive and sustainable approach to habitat monitoring and preservation.
comment: Published as Early Access in IEEE Transactions on Field Robotics. 19 pages, 13 figures
Density-Driven Multi-Agent Coordination for Efficient Farm Coverage and Management in Smart Agriculture
The growing scale of modern farms has increased the need for efficient and adaptive multi-agent coverage strategies for pest, weed, and disease management. Traditional methods such as manual inspection and blanket pesticide spraying often lead to excessive chemical use, resource waste, and environmental impact. While unmanned aerial vehicles (UAVs) offer a promising platform for precision agriculture through targeted spraying and improved operational efficiency, existing UAV-based approaches remain limited by battery life, payload capacity, and scalability, especially in large fields where single-UAV or uniformly distributed spraying is insufficient. Although multi-UAV coordination has been explored, many current frameworks still assume uniform spraying and do not account for infestation severity, UAV dynamics, non-uniform resource allocation, or energy-efficient coordination. To address these limitations, this paper proposes a Density-Driven Optimal Control (D2OC) framework that integrates Optimal Transport (OT) theory with multi-UAV coverage control for large-scale agricultural spraying. The method supports non-uniform, priority-aware resource allocation based on infestation intensity, reducing unnecessary chemical application. UAVs are modeled as a linear time-varying (LTV) system to capture variations in mass and inertia during spraying missions. The D2OC control law, derived using Lagrangian mechanics, enables efficient coordination, balanced workload distribution, and improved mission duration. Simulation results demonstrate that the proposed approach outperforms uniform spraying and Spectral Multiscale Coverage (SMC) in coverage efficiency, chemical reduction, and operational sustainability, providing a scalable solution for smart agriculture.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in the IEEE Transactions on Control Systems Technology (TCST)
ClutterNav: Gradient-Guided Search for Efficient 3D Clutter Removal with Learned Costmaps
Dense clutter removal for target object retrieval presents a challenging problem, especially when targets are embedded deep within densely-packed configurations. It requires foresight to minimize overall changes to the clutter configuration while accessing target objects, avoiding stack destabilization and reducing the number of object removals required. Rule-based planners when applied to this problem, rely on rigid heuristics, leading to high computational overhead. End-to-end reinforcement learning approaches struggle with interpretability and generalizability over different conditions. To address these issues, we present ClutterNav, a novel decision-making framework that can identify the next best object to be removed so as to access a target object in a given clutter, while minimising stack disturbances. ClutterNav formulates the problem as a continuous reinforcement learning task, where each object removal dynamically updates the understanding of the scene. A removability critic, trained from demonstrations, estimates the cost of removing any given object based on geometric and spatial features. This learned cost is complemented by integrated gradients that assess how the presence or removal of surrounding objects influences the accessibility of the target. By dynamically prioritizing actions that balance immediate removability against long-term target exposure, ClutterNav achieves near human-like strategic sequencing, without predefined heuristics. The proposed approach is validated extensively in simulation and over real-world experiments. The results demonstrate real-time, occlusion-aware decision-making in partially observable environments.
RoboAfford++: A Generative AI-Enhanced Dataset for Multimodal Affordance Learning in Robotic Manipulation and Navigation
Robotic manipulation and navigation are fundamental capabilities of embodied intelligence, enabling effective robot interactions with the physical world. Achieving these capabilities requires a cohesive understanding of the environment, including object recognition to localize target objects, object affordances to identify potential interaction areas and spatial affordances to discern optimal areas for both object placement and robot movement. While Vision-Language Models (VLMs) excel at high-level task planning and scene understanding, they often struggle to infer actionable positions for physical interaction, such as functional grasping points and permissible placement regions. This limitation stems from the lack of fine-grained annotations for object and spatial affordances in their training datasets. To tackle this challenge, we introduce RoboAfford++, a generative AI-enhanced dataset for multimodal affordance learning for both robotic manipulation and navigation. Our dataset comprises 869,987 images paired with 2.0 million question answering (QA) annotations, covering three critical tasks: object affordance recognition to identify target objects based on attributes and spatial relationships, object affordance prediction to pinpoint functional parts for manipulation, and spatial affordance localization to identify free space for object placement and robot navigation. Complementing this dataset, we propose RoboAfford-Eval, a comprehensive benchmark for assessing affordance-aware prediction in real-world scenarios, featuring 338 meticulously annotated samples across the same three tasks. Extensive experimental results reveal the deficiencies of existing VLMs in affordance learning, while fine-tuning on the RoboAfford++ dataset significantly enhances their ability to reason about object and spatial affordances, validating the dataset's effectiveness.
Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Reinforcement Learning
Predicting a sequence of actions has been crucial in the success of recent behavior cloning algorithms in robotics. Can similar ideas improve reinforcement learning (RL)? We answer affirmatively by observing that incorporating action sequences when predicting ground-truth return-to-go leads to lower validation loss. Motivated by this, we introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based RL algorithm that learns a critic network that outputs Q-values over a sequence of actions, i.e., explicitly training the value function to learn the consequence of executing action sequences. Our experiments show that CQN-AS outperforms several baselines on a variety of sparse-reward humanoid control and tabletop manipulation tasks from BiGym and RLBench.
comment: 18 Pages. Website: https://younggyo.me/cqn-as/
Extendable Planning via Multiscale Diffusion
Long-horizon planning is crucial in complex environments, but diffusion-based planners like Diffuser are limited by the trajectory lengths observed during training. This creates a dilemma: long trajectories are needed for effective planning, yet they degrade model performance. In this paper, we introduce this extendable long-horizon planning challenge and propose a two-phase solution. First, Progressive Trajectory Extension incrementally constructs longer trajectories through multi-round compositional stitching. Second, the Hierarchical Multiscale Diffuser enables efficient training and inference over long horizons by reasoning across temporal scales. To avoid the need for multiple separate models, we propose Adaptive Plan Pondering and the Recursive HM-Diffuser, which unify hierarchical planning within a single model. Experiments show our approach yields strong performance gains, advancing scalable and efficient decision-making over long-horizons.
comment: First two authors contributed equally
HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning
For robotic manipulation, existing robotics datasets and simulation benchmarks predominantly cater to robot-arm platforms. However, for humanoid robots equipped with dual arms and dexterous hands, simulation tasks and high-quality demonstrations are notably lacking. Bimanual dexterous manipulation is inherently more complex, as it requires coordinated arm movements and hand operations, making autonomous data collection challenging. This paper presents HumanoidGen, an automated task creation and demonstration collection framework that leverages atomic dexterous operations and LLM reasoning to generate relational constraints. Specifically, we provide spatial annotations for both assets and dexterous hands based on the atomic operations, and perform an LLM planner to generate a chain of actionable spatial constraints for arm movements based on object affordances and scenes. To further improve planning ability, we employ a variant of Monte Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient annotation. In experiments, we create a novel benchmark with augmented scenarios to evaluate the quality of the collected data. The results show that the performance of the 2D and 3D diffusion policies can scale with the generated dataset. Project page is https://openhumanoidgen.github.io.
comment: Project Page: https://openhumanoidgen.github.io
FALCON: Learning Force-Adaptive Humanoid Loco-Manipulation
Humanoid loco-manipulation holds transformative potential for daily service and industrial tasks, yet achieving precise, robust whole-body control with 3D end-effector force interaction remains a major challenge. Prior approaches are often limited to lightweight tasks or quadrupedal/wheeled platforms. To overcome these limitations, we propose FALCON, a dual-agent reinforcement-learning-based framework for robust force-adaptive humanoid loco-manipulation. FALCON decomposes whole-body control into two specialized agents: (1) a lower-body agent ensuring stable locomotion under external force disturbances, and (2) an upper-body agent precisely tracking end-effector positions with implicit adaptive force compensation. These two agents are jointly trained in simulation with a force curriculum that progressively escalates the magnitude of external force exerted on the end effector while respecting torque limits. Experiments demonstrate that, compared to the baselines, FALCON achieves 2x more accurate upper-body joint tracking, while maintaining robust locomotion under force disturbances and achieving faster training convergence. Moreover, FALCON enables policy training without embodiment-specific reward or curriculum tuning. Using the same training setup, we obtain policies that are deployed across multiple humanoids, enabling forceful loco-manipulation tasks such as transporting payloads (0-20N force), cart-pulling (0-100N), and door-opening (0-40N) in the real world.
Scaffolding Dexterous Manipulation with Vision-Language Models
Dexterous robotic hands are essential for performing complex manipulation tasks, yet remain difficult to train due to the challenges of demonstration collection and high-dimensional control. While reinforcement learning (RL) can alleviate the data bottleneck by generating experience in simulation, it typically relies on carefully designed, task-specific reward functions, which hinder scalability and generalization. Thus, contemporary works in dexterous manipulation have often bootstrapped from reference trajectories. These trajectories specify target hand poses that guide the exploration of RL policies and object poses that enable dense, task-agnostic rewards. However, sourcing suitable trajectories - particularly for dexterous hands - remains a significant challenge. Yet, the precise details in explicit reference trajectories are often unnecessary, as RL ultimately refines the motion. Our key insight is that modern vision-language models (VLMs) already encode the commonsense spatial and semantic knowledge needed to specify tasks and guide exploration effectively. Given a task description (e.g., "open the cabinet") and a visual scene, our method uses an off-the-shelf VLM to first identify task-relevant keypoints (e.g., handles, buttons) and then synthesize 3D trajectories for hand motion and object motion. Subsequently, we train a low-level residual RL policy in simulation to track these coarse trajectories or "scaffolds" with high fidelity. Across a number of simulated tasks involving articulated objects and semantic understanding, we demonstrate that our method is able to learn robust dexterous manipulation policies. Moreover, we showcase that our method transfers to real-world robotic hands without any human demonstrations or handcrafted rewards.
Coordinated Humanoid Robot Locomotion with Symmetry Equivariant Reinforcement Learning Policy AAAI 2026
The human nervous system exhibits bilateral symmetry, enabling coordinated and balanced movements. However, existing Deep Reinforcement Learning (DRL) methods for humanoid robots neglect morphological symmetry of the robot, leading to uncoordinated and suboptimal behaviors. Inspired by human motor control, we propose Symmetry Equivariant Policy (SE-Policy), a new DRL framework that embeds strict symmetry equivariance in the actor and symmetry invariance in the critic without additional hyperparameters. SE-Policy enforces consistent behaviors across symmetric observations, producing temporally and spatially coordinated motions with higher task performance. Extensive experiments on velocity tracking tasks, conducted in both simulation and real-world deployment with the Unitree G1 humanoid robot, demonstrate that SE-Policy improves tracking accuracy by up to 40% compared to state-of-the-art baselines, while achieving superior spatial-temporal coordination. These results demonstrate the effectiveness of SE-Policy and its broad applicability to humanoid robots.
comment: AAAI 2026 accepted
A Cooperation Control Framework Based on Admittance Control and Time-varying Passive Velocity Field Control for Human-Robot Co-carrying Tasks
Human-robot co-carrying tasks reveal their potential in both industrial and everyday applications by leveraging the strengths of both parties. Effective control of robots in these tasks requires managing the energy level in the closed-loop systems to prevent potential dangers while also minimizing motion errors to complete the shared tasks. The collaborative tasks pose numerous challenges due to varied human intentions in adapting to workspace characteristics, leading to human-robot conflicts. In this paper, we develop a cooperation control framework for human-robot co-carrying tasks constructed by utilizing reference generator and low-level controller to aim to achieve safe interaction and synchronized human-robot movement. Firstly, the human motion predictions are corrected in the event of prediction errors based on the conflicts measured by the interaction forces through admittance control, thereby mitigating conflict levels. Low-level controller using an energy-compensation passive velocity field control approach allows encoding the corrected motion to produce control torques for the robot. In this manner, the closed-loop robotic system is passive when the energy level exceeds the predetermined threshold, and otherwise. Furthermore, the proposed control approach ensures that the system's kinetic energy is compensated within a finite time interval. The passivity, stability, convergence rate of energy, and power flow regulation are analyzed from theoretical viewpoints. Human-in-the-loop experiments involving 18 participants have demonstrated that the proposed method significantly enhances task performance and reduces human workload, as evidenced by both objective metrics and subjective evaluations, with improvements confirmed by statistical tests (p < 0.05) relative to baseline methods.
comment: 15 pages, 13 figures. This is a preprint of an article accepted for publication in IEEE Transactions on Automation Science and Engineering
A Communication-Latency-Aware Co-Simulation Platform for Safety and Comfort Evaluation of Cloud-Controlled ICVs
Testing cloud-controlled intelligent connected vehicles (ICVs) requires simulation environments that faithfully emulate both vehicle behavior and realistic communication latencies. This paper proposes a latency-aware co-simulation platform integrating CarMaker and Vissim to evaluate safety and comfort under real-world vehicle-to-cloud (V2C) latency conditions. Two communication latency models, derived from empirical 5G measurements in China and Hungary, are incorporated and statistically modeled using Gamma distributions. A proactive conflict module (PCM) is proposed to dynamically control background vehicles and generate safety-critical scenarios. The platform is validated through experiments involving an exemplary system under test (SUT) across six testing conditions combining two PCM modes (enabled/disabled) and three latency conditions (none, China, Hungary). Safety and comfort are assessed using metrics including collision rate, distance headway, post-encroachment time, and the spectral characteristics of longitudinal acceleration. Results show that the PCM effectively increases driving environment criticality, while V2C latency primarily affects ride comfort. These findings confirm the platform's effectiveness in systematically evaluating cloud-controlled ICVs under diverse testing conditions.
comment: 13 pages, 8 figures
MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).
EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation NeurIPS 2025
We introduce EnerVerse, a generative robotics foundation model that constructs and interprets embodied spaces. EnerVerse employs a chunk-wise autoregressive video diffusion framework to predict future embodied spaces from instructions, enhanced by a sparse context memory for long-term reasoning. To model the 3D robotics world, we adopt a multi-view video representation, providing rich perspectives to address challenges like motion ambiguity and 3D grounding. Additionally, EnerVerse-D, a data engine pipeline combining generative modeling with 4D Gaussian Splatting, forms a self-reinforcing data loop to reduce the sim-to-real gap. Leveraging these innovations, EnerVerse translates 4D world representations into physical actions via a policy head (EnerVerse-A), achieving state-of-the-art performance in both simulation and real-world tasks. For efficiency, EnerVerse-A reuses features from the first denoising step and predicts action chunks, achieving about 280 ms per 8-step action chunk on a single RTX 4090. Further video demos, dataset samples could be found in our project page.
comment: Accepted by NeurIPS 2025. Website: https://sites.google.com/view/enerverse
Dynamic Risk Assessment for Autonomous Vehicles from Spatio-Temporal Probabilistic Occupancy Heatmaps
Accurately assessing collision risk in dynamic traffic scenarios is a crucial requirement for trajectory planning in autonomous vehicles~(AVs) and enables a comprehensive safety evaluation of automated driving systems. To that end, this paper presents a novel probabilistic occupancy risk assessment~(PORA) metric. It uses spatiotemporal heatmaps as probabilistic occupancy predictions of surrounding traffic participants and estimates the risk of a collision along an AV's planned trajectory based on potential vehicle interactions. The use of probabilistic occupancy allows PORA to account for the uncertainty in future trajectories and velocities of traffic participants in the risk estimates. The risk from potential vehicle interactions is then further adjusted through a Cox model\edit{,} which considers the relative \edit{motion} between the AV and surrounding traffic participants. We demonstrate that the proposed approach enhances the accuracy of collision risk assessment in dynamic traffic scenarios, resulting in safer vehicle controllers, and provides a robust framework for real-time decision-making in autonomous driving systems. From evaluation in Monte Carlo simulations, PORA is shown to be more effective at accurately characterizing collision risk compared to other safety surrogate measures. Keywords: Dynamic Risk Assessment, Autonomous Vehicle, Probabilistic Occupancy, Driving Safety
Multiagent Systems
Adaptively Coordinating with Novel Partners via Learned Latent Strategies NeurIPS 2025
Adaptation is the cornerstone of effective collaboration among heterogeneous team members. In human-agent teams, artificial agents need to adapt to their human partners in real time, as individuals often have unique preferences and policies that may change dynamically throughout interactions. This becomes particularly challenging in tasks with time pressure and complex strategic spaces, where identifying partner behaviors and selecting suitable responses is difficult. In this work, we introduce a strategy-conditioned cooperator framework that learns to represent, categorize, and adapt to a broad range of potential partner strategies in real-time. Our approach encodes strategies with a variational autoencoder to learn a latent strategy space from agent trajectory data, identifies distinct strategy types through clustering, and trains a cooperator agent conditioned on these clusters by generating partners of each strategy type. For online adaptation to novel partners, we leverage a fixed-share regret minimization algorithm that dynamically infers and adjusts the partner's strategy estimation during interaction. We evaluate our method in a modified version of the Overcooked domain, a complex collaborative cooking environment that requires effective coordination among two players with a diverse potential strategy space. Through these experiments and an online user study, we demonstrate that our proposed agent achieves state of the art performance compared to existing baselines when paired with novel human, and agent teammates.
comment: Accepted to NeurIPS 2025
FINRS: A Risk-Sensitive Trading Framework for Real Financial Markets
Large language models (LLMs) have shown strong reasoning capabilities and are increasingly explored for financial trading. Existing LLM-based trading agents, however, largely focus on single-step prediction and lack integrated mechanisms for risk management, which reduces their effectiveness in volatile markets. We introduce FinRS, a risk-sensitive trading framework that combines hierarchical market analysis, dual-decision agents, and multi-timescale reward reflection to align trading actions with both return objectives and downside risk constraints. Experiments on multiple stocks and market conditions show that FinRS achieves superior profitability and stability compared to state-of-the-art methods.
comment: LLM Applications, LLM Agents, Financial Technology
Multi-agent Self-triage System with Medical Flowcharts
Online health resources and large language models (LLMs) are increasingly used as a first point of contact for medical decision-making, yet their reliability in healthcare remains limited by low accuracy, lack of transparency, and susceptibility to unverified information. We introduce a proof-of-concept conversational self-triage system that guides LLMs with 100 clinically validated flowcharts from the American Medical Association, providing a structured and auditable framework for patient decision support. The system leverages a multi-agent framework consisting of a retrieval agent, a decision agent, and a chat agent to identify the most relevant flowchart, interpret patient responses, and deliver personalized, patient-friendly recommendations, respectively. Performance was evaluated at scale using synthetic datasets of simulated conversations. The system achieved 95.29% top-3 accuracy in flowchart retrieval (N=2,000) and 99.10% accuracy in flowchart navigation across varied conversational styles and conditions (N=37,200). By combining the flexibility of free-text interaction with the rigor of standardized clinical protocols, this approach demonstrates the feasibility of transparent, accurate, and generalizable AI-assisted self-triage, with potential to support informed patient decision-making while improving healthcare resource utilization.
Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
comment: 19 pages, 6 figures, 3 tables
Hierarchical Adaptive Consensus Network: A Dynamic Framework for Scalable Consensus in Collaborative Multi-Agent AI Systems
The consensus strategies used in collaborative multi-agent systems (MAS) face notable challenges related to adaptability, scalability, and convergence certainties. These approaches, including structured workflows, debate models, and iterative voting, often lead to communication bottlenecks, stringent decision-making processes, and delayed responses in solving complex and evolving tasks. This article introduces a three-tier architecture, the Hierarchical Adaptive Consensus Network (\hacn), which suggests various consensus policies based on task characterization and agent performance metrics. The first layer collects the confidence-based voting outcomes of several local agent clusters. In contrast, the second level facilitates inter-cluster communication through cross-clustered partial knowledge sharing and dynamic timeouts. The third layer provides system-wide coordination and final arbitration by employing a global orchestration framework with adaptable decision rules. The proposed model achieves $\bigO(n)$ communication complexity, as opposed to the $\bigO(n^2)$ complexity of the existing fully connected MAS. Experiments performed in a simulated environment yielded a 99.9\% reduction in communication overhead during consensus convergence. Furthermore, the proposed approach ensures consensus convergence through hierarchical escalation and dynamic adaptation for a wide variety of complicated tasks.
comment: Submitted to Elsevier
Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs DASFAA 2025
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.
comment: This paper has been ACCEPTED as a FULL PAPER at DASFAA 2025 (Oral)
See it. Say it. Sorted: Agentic System for Compositional Diagram Generation
We study sketch-to-diagram generation: converting rough hand sketches into precise, compositional diagrams. Diffusion models excel at photorealism but struggle with the spatial precision, alignment, and symbolic structure required for flowcharts. We introduce See it. Say it. Sorted., a training-free agentic system that couples a Vision-Language Model (VLM) with Large Language Models (LLMs) to produce editable Scalable Vector Graphics (SVG) programs. The system runs an iterative loop in which a Critic VLM proposes a small set of qualitative, relational edits; multiple candidate LLMs synthesize SVG updates with diverse strategies (conservative->aggressive, alternative, focused); and a Judge VLM selects the best candidate, ensuring stable improvement. This design prioritizes qualitative reasoning over brittle numerical estimates, preserves global constraints (e.g., alignment, connectivity), and naturally supports human-in-the-loop corrections. On 10 sketches derived from flowcharts in published papers, our method more faithfully reconstructs layout and structure than two frontier closed-source image generation LLMs (GPT-5 and Gemini-2.5-Pro), accurately composing primitives (e.g., multi-headed arrows) without inserting unwanted text. Because outputs are programmatic SVGs, the approach is readily extensible to presentation tools (e.g., PowerPoint) via APIs and can be specialized with improved prompts and task-specific tools. The codebase is open-sourced at https://github.com/hantaoZhangrichard/see_it_say_it_sorted.git.
Systems and Control (EESS)
Discrete-Time Stability Analysis of ReLU Feedback Systems via Integral Quadratic Constraints
This paper analyzes internal stability of a discrete-time feedback system with a ReLU nonlinearity. This feedback system is motivated by recurrent neural networks. We first review existing static quadratic constraints (QCs) for slope-restricted nonlinearities. Next, we derive hard integral quadratic constraints (IQCs) for scalar ReLU by using finite impulse filters and structured matrices. These IQCs are combined with a dissipation inequality leading to an LMI condition that certifies internal stability. We show that our new dynamic IQCs for ReLU are a superset of the well-known Zames-Falb IQCs specified for slope-restricted nonlinearities. Numerical results show that the proposed hard IQCs give less conservative stability margins than Zames-Falb multipliers and prior static QC methods, sometimes dramatically so.
On Boundedness of Quadratic Dynamics with Energy-Preserving Nonlinearity
Boundedness is an important property of many physical systems. This includes incompressible fluid flows, which are often modeled by quadratic dynamics with an energy-preserving nonlinearity. For such systems, Schlegel and Noack proposed a sufficient condition for boundedness utilizing quadratic Lyapunov functions. They also propose a necessary condition for boundedness aiming to provide a more complete characterization of boundedness in this class of models. The sufficient condition is based on Lyapunov theory and is true. Our paper focuses on this necessary condition. We use an independent proof to show that the condition is true for two dimensional systems. However, we provide a three dimensional counterexample to illustrate that the necessary condition fails to hold in higher dimensions. Our results highlight a theoretical gap in boundedness analysis and suggest future directions to address the conservatism.
comment: 9 pages, 1 figures
Density-Driven Optimal Control for Non-Uniform Area Coverage in Decentralized Multi-Agent Systems Using Optimal Transport
This paper addresses the fundamental problem of non-uniform area coverage in multi-agent systems, where different regions require varying levels of attention due to mission-dependent priorities. Existing uniform coverage strategies are insufficient for realistic applications, and many non-uniform approaches either lack optimality guarantees or fail to incorporate crucial real-world constraints such as agent dynamics, limited operation time, the number of agents, and decentralized execution. To resolve these limitations, we propose a novel framework called Density-Driven Optimal Control (D2OC). The central idea of D2OC is the integration of optimal transport theory with multi-agent coverage control, enabling each agent to continuously adjust its trajectory to match a mission-specific reference density map. The proposed formulation establishes optimality by solving a constrained optimization problem that explicitly incorporates physical and operational constraints. The resulting control input is analytically derived from the Lagrangian of the objective function, yielding closed-form optimal solutions for linear systems and a generalizable structure for nonlinear systems. Furthermore, a decentralized data-sharing mechanism is developed to coordinate agents without reliance on global information. Comprehensive simulation studies demonstrate that D2OC achieves significantly improved non-uniform area coverage performance compared to existing methods, while maintaining scalability and decentralized implementability.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
Extracting resilience events from utility outage data based on overlapping times and locations
To study resilience with real data, it is necessary to group the individual outages recorded by utilities into events in which the outages bunch up and overlap due to extreme weather. We show how to automatically group utility outage data into resilience events based on their time and location. The methods work with both detailed utility outage data and EAGLE-I data.
Visibility-aware Satellite Selection and Resource Allocation in Multi-Orbit LEO Networks
Multi orbit low earth orbit (LEO) satellites communication is envisioned as a key infrastructure to deliver global coverage, enabling future services from space air ground integrated networks.However, the optimized design of LEO which jointly addresses satellite selection, association control, and resource scheduling while accounting for dynamic visibility in multi orbit constellations still remains open. Satellites moving along distinct orbital planes yield phase shifted ground tracks and heterogeneous, time varying coverage patterns that significantly complicate the optimization.To bridge the gap, we propose a dynamic visibility aware multi orbit satellite selection framework which can determine the optimal serving satellites across orbital layers. The framework is built upon Markov approximation and matching game theory. Specifically, we formulate a combinatorial optimization problem that maximizes the sum rate under per satellite power budgets. The problem is NP hard , combining discrete user association (UA) decisions with continuous power allocation, and an inherently non convex sum rate maximization objective. We address it through a problem specific Markov approximation. Moreover, we alternately solve UA or bandwidth allocation via a matching game and power allocation via a Lagrangian dual program, which together form a block coordinate descent method tailored to this problem. Simulation results show that the proposed algorithm converges to a suboptimal solution across all scenarios. Extensive experiments against four state of the art baselines further demonstrate that our algorithm achieves, on average, approximately 7.85% higher sum rate than the best performing baseline.
Task-Aware Morphology Optimization of Planar Manipulators via Reinforcement Learning
In this work, Yoshikawa's manipulability index is used to investigate reinforcement learning (RL) as a framework for morphology optimization in planar robotic manipulators. A 2R manipulator tracking a circular end-effector path is first examined because this case has a known analytical optimum: equal link lengths and the second joint orthogonal to the first. This serves as a validation step to test whether RL can rediscover the optimum using reward feedback alone, without access to the manipulability expression or the Jacobian. Three RL algorithms (SAC, DDPG, and PPO) are compared with grid search and black-box optimizers, with morphology represented by a single action parameter phi that maps to the link lengths. All methods converge to the analytical solution, showing that numerical recovery of the optimum is possible without supplying analytical structure. Most morphology design tasks have no closed-form solutions, and grid or heuristic search becomes expensive as dimensionality increases. RL is therefore explored as a scalable alternative. The formulation used for the circular path is extended to elliptical and rectangular paths by expanding the action space to the full morphology vector (L1, L2, theta2). In these non-analytical settings, RL continues to converge reliably, whereas grid and black-box methods require far larger evaluation budgets. These results indicate that RL is effective for both recovering known optima and solving morphology optimization problems without analytical solutions.
comment: 10 pages, 11 figures, It is submitted as a journal option paper associated with the IFAC World Congress 2026
On two-degrees-of-freedom agreement protocols
We propose a distributed two-degrees-of-freedom (2DOF) architecture for driving autonomous, possibly heterogeneous, agents to agreement. The scheme mirrors classical servo structures, separating local feedback from network filtering. This separation enables independent network-filter design for prescribed noise attenuation and allows controller heterogeneity to reject local disturbances, including disturbances exciting unstable agreement poles -- which is known to be impossible via standard diffusive couplings. The potential of the framework is illustrated via two numerical examples.
comment: 7 page, 9 figures, this work has been submitted to ECC 2026 for possible publication
PID-controlled Langevin Dynamics for Faster Sampling of Generative Models NeurIPS 2025
Langevin dynamics sampling suffers from extremely low generation speed, fundamentally limited by numerous fine-grained iterations to converge to the target distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a novel sampling acceleration algorithm that reinterprets the sampling process using control-theoretic principles. By treating energy gradients as feedback signals, PIDLD combines historical gradients (the integral term) and gradient trends (the derivative term) to efficiently traverse energy landscapes and adaptively stabilize, thereby significantly reducing the number of iterations required to produce high-quality samples. Our approach requires no additional training, datasets, or prior information, making it immediately integrable with any Langevin-based method. Extensive experiments across image generation and reasoning tasks demonstrate that PIDLD achieves higher quality with fewer steps, making Langevin-based generative models more practical for efficiency-critical applications. The implementation can be found at \href{https://github.com/tsinghua-fib-lab/PIDLD}{https://github.com/tsinghua-fib-lab/PIDLD}.
comment: NeurIPS 2025 poster paper
On hyperexponential stabilization of a chain of integrators in continuous and discrete time subject to unmatched perturbations
A recursive time-varying state feedback is presented for a chain of integrators with unmatched perturbations in continuous and discrete time. In continuous time, it is shown that hyperexponential convergence is achieved for the first state variable \(x_1\), while the second state \(x_2\) remains bounded. For the other states, we establish ISS {\cb property} by saturating the growing {\cb control} gain. In discrete time, we use implicit Euler discretization to {\cb preserve} hyperexponential convergence. The main results are demonstrated through several examples of the proposed control laws, illustrating the conditions established for both continuous and discrete-time systems.
comment: 15 pages, 2 figures
Density-Driven Multi-Agent Coordination for Efficient Farm Coverage and Management in Smart Agriculture
The growing scale of modern farms has increased the need for efficient and adaptive multi-agent coverage strategies for pest, weed, and disease management. Traditional methods such as manual inspection and blanket pesticide spraying often lead to excessive chemical use, resource waste, and environmental impact. While unmanned aerial vehicles (UAVs) offer a promising platform for precision agriculture through targeted spraying and improved operational efficiency, existing UAV-based approaches remain limited by battery life, payload capacity, and scalability, especially in large fields where single-UAV or uniformly distributed spraying is insufficient. Although multi-UAV coordination has been explored, many current frameworks still assume uniform spraying and do not account for infestation severity, UAV dynamics, non-uniform resource allocation, or energy-efficient coordination. To address these limitations, this paper proposes a Density-Driven Optimal Control (D2OC) framework that integrates Optimal Transport (OT) theory with multi-UAV coverage control for large-scale agricultural spraying. The method supports non-uniform, priority-aware resource allocation based on infestation intensity, reducing unnecessary chemical application. UAVs are modeled as a linear time-varying (LTV) system to capture variations in mass and inertia during spraying missions. The D2OC control law, derived using Lagrangian mechanics, enables efficient coordination, balanced workload distribution, and improved mission duration. Simulation results demonstrate that the proposed approach outperforms uniform spraying and Spectral Multiscale Coverage (SMC) in coverage efficiency, chemical reduction, and operational sustainability, providing a scalable solution for smart agriculture.
comment: Author Accepted Manuscript (AAM) of a paper accepted for publication in the IEEE Transactions on Control Systems Technology (TCST)
One Request, Multiple Experts: LLM Orchestrates Domain Specific Models via Adaptive Task Routing
With the integration of massive distributed energy resources and the widespread participation of novel market entities, the operation of active distribution networks (ADNs) is progressively evolving into a complex multi-scenario, multi-objective problem. Although expert engineers have developed numerous domain specific models (DSMs) to address distinct technical problems, mastering, integrating, and orchestrating these heterogeneous DSMs still entail considerable overhead for ADN operators. Therefore, an intelligent approach is urgently required to unify these DSMs and enable efficient coordination. To address this challenge, this paper proposes the ADN-Agent architecture, which leverages a general large language model (LLM) to coordinate multiple DSMs, enabling adaptive intent recognition, task decomposition, and DSM invocation. Within the ADN-Agent, we design a novel communication mechanism that provides a unified and flexible interface for diverse heterogeneous DSMs. Finally, for some language-intensive subtasks, we propose an automated training pipeline for fine-tuning small language models, thereby effectively enhancing the overall problem-solving capability of the system. Comprehensive comparisons and ablation experiments validate the efficacy of the proposed method and demonstrate that the ADN-Agent architecture outperforms existing LLM application paradigms.
Logarithmic Regret and Polynomial Scaling in Online Multi-step-ahead Prediction
This letter studies the problem of online multi-step-ahead prediction for unknown linear stochastic systems. Using conditional distribution theory, we derive an optimal parameterization of the prediction policy as a linear function of future inputs, past inputs, and past outputs. Based on this characterization, we propose an online least-squares algorithm to learn the policy and analyze its regret relative to the optimal model-based predictor. We show that the online algorithm achieves logarithmic regret with respect to the optimal Kalman filter in the multi-step setting. Furthermore, with new proof techniques, we establish an almost-sure regret bound that does not rely on fixed failure probabilities for sufficiently large horizons $N$. Finally, our analysis also reveals that, while the regret remains logarithmic in $N$, its constant factor grows polynomially with the prediction horizon $H$, with the polynomial order set by the largest Jordan block of eigenvalue 1 in the system matrix.
Online Adaptive Probabilistic Safety Certificate with Language Guidance
Achieving long-term safety in uncertain or extreme environments while accounting for human preferences remains a fundamental challenge for autonomous systems. Existing methods often trade off long-term guarantees for fast real-time control and cannot adapt to variability in human preferences or risk tolerance. To address these limitations, we propose a language-guided adaptive probabilistic safety certificate (PSC) framework that guarantees long-term safety for stochastic systems under environmental uncertainty while accommodating diverse human preferences. The proposed framework integrates natural-language inputs from users and Bayesian estimators of the environment into adaptive safety certificates that explicitly account for user preferences, system dynamics, and quantified uncertainties. Our key technical innovation leverages probabilistic invariance--a generalization of forward invariance to a probability space--to obtain myopic safety conditions with long-term safety guarantees that integrate language guidance, model information, and quantified uncertainty. We validate the framework through numerical simulations of autonomous lane-keeping with human-in-the-loop guidance under uncertain and extreme road conditions, demonstrating enhanced safety-performance trade-offs, adaptability to changing environments, and personalization to different user preferences.
Learning to Control Misinformation: a Closed-loop Approach for Misinformation Mitigation over Social Networks
Modern social networks rely on recommender systems that inadvertently amplify misinformation by prioritizing engagement over content veracity. We present a control framework that mitigates misinformation spread while maintaining user engagement by penalizing content characteristics commonly exploited by false information, specifically, extreme negative sentiment and novelty. We extend the closed-loop Friedkin-Johnsen model to incorporate the mitigation of misinformation together with the maximization of user engagement. Both model-free and model-based control strategies demonstrate up to 76% reduction in misinformation propagation across diverse network configurations, validated through simulations using the LIAR2 dataset with sentiment features extracted via large language models. Analysis of engagement-misinformation trade-offs reveals that in networks with radical users, median engagement improves even as misinformation decreases, suggesting content moderation enhances discourse quality for non-extremist users. The framework provides practical guidance for platform operators in balancing misinformation suppression with engagement objectives.
Quantifying Distribution Shift in Traffic Signal Control with Histogram-Based GEH Distance
Traffic signal control algorithms are vulnerable to distribution shift, where performance degrades under traffic conditions that differ from those seen during design or training. This paper introduces a principled approach to quantify distribution shift by representing traffic scenarios as demand histograms and comparing them with a GEH-based distance function. The method is policy-independent, interpretable, and leverages a widely used traffic engineering statistic. We validate the approach on 20 simulated scenarios using both a NEMA actuated controller and a reinforcement learning controller (FRAP++). Results show that larger scenario distances consistently correspond to increased travel time and reduced throughput, with particularly strong explanatory power for learning-based control. Overall, this method can predict performance degradation under distribution shift better than previously published techniques. These findings highlight the utility of the proposed framework for benchmarking, training regime design, and monitoring in adaptive traffic signal control.
Learning Koopman Models From Data Under General Noise Conditions
This paper presents a novel identification approach of Koopman models of nonlinear systems with inputs under rather general noise conditions. The method uses deep state-space encoders based on the concept of state reconstructability and an efficient multiple-shooting formulation of the squared loss of the prediction error to estimate the dynamics and the lifted state from input-output data. Furthermore, the Koopman model structure includes an innovation noise term that is used to handle process and measurement noise. It is shown that the proposed approach is statistically consistent and computationally efficient due to the multiple-shooting formulation where, on subsections of the data, multi-step prediction errors can be calculated in parallel. The latter allows for efficient batch optimization of the network parameters and, at the same time, excellent long-term prediction capabilities of the obtained models. The performance of the approach is illustrated by nonlinear benchmark examples and an experimental quadcopter setup.
comment: Submitted to SIAM Journal on Applied Dynamical Systems (SIADS)
Global Convergence of Policy Gradient for Entropy Regularized Linear-Quadratic Control with Multiplicative Noise
Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision-making in dynamic environments, particularly when system parameters are unknown. This paper investigates RL-based control for entropy-regularized Linear Quadratic control (LQC) problems with multiplicative noises over an infinite time horizon. First, we adapt the Regularized Policy Gradient (RPG) algorithm to stochastic optimal control settings, proving that despite the non-convexity of the problem, RPG converges globally under conditions of gradient domination and near-smoothness. Second, based on zero-order optimization approach, we introduce a novel model free RL algorithm: Sample-Based Regularized Policy Gradient (SB-RPG). SB-RPG operates without knowledge of system parameters yet still retains strong theoretical guarantees of global convergence. Our model leverages entropy regularization to accelerate convergence and address the exploration versus exploitation trade-off inherent in RL. Numerical simulations validate the theoretical results and demonstrate the efficacy of SB-RPG in unknown-parameters environments.
comment: The authors found that article contains some theoretical errors and decided to withdraw from arxiv
Robotics
Learning Adaptive Neural Teleoperation for Humanoid Robots: From Inverse Kinematics to End-to-End Control
Virtual reality (VR) teleoperation has emerged as a promising approach for controlling humanoid robots in complex manipulation tasks. However, traditional teleoperation systems rely on inverse kinematics (IK) solvers and hand-tuned PD controllers, which struggle to handle external forces, adapt to different users, and produce natural motions under dynamic conditions. In this work, we propose a learning-based neural teleoperation framework that replaces the conventional IK+PD pipeline with learned policies trained via reinforcement learning. Our approach learns to directly map VR controller inputs to robot joint commands while implicitly handling force disturbances, producing smooth trajectories, and adapting to user preferences. We train our policies in simulation using demonstrations collected from IK-based teleoperation as initialization, then fine-tune them with force randomization and trajectory smoothness rewards. Experiments on the Unitree G1 humanoid robot demonstrate that our learned policies achieve 34% lower tracking error, 45% smoother motions, and superior force adaptation compared to the IK baseline, while maintaining real-time performance (50Hz control frequency). We validate our approach on manipulation tasks including object pick-and-place, door opening, and bimanual coordination. These results suggest that learning-based approaches can significantly improve the naturalness and robustness of humanoid teleoperation systems.
comment: 9 pages, 5 figures
Evaluating Model-Agnostic Meta-Learning on MetaWorld ML10 Benchmark: Fast Adaptation in Robotic Manipulation Tasks
Meta-learning algorithms enable rapid adaptation to new tasks with minimal data, a critical capability for real-world robotic systems. This paper evaluates Model-Agnostic Meta-Learning (MAML) combined with Trust Region Policy Optimization (TRPO) on the MetaWorld ML10 benchmark, a challenging suite of ten diverse robotic manipulation tasks. We implement and analyze MAML-TRPO's ability to learn a universal initialization that facilitates few-shot adaptation across semantically different manipulation behaviors including pushing, picking, and drawer manipulation. Our experiments demonstrate that MAML achieves effective one-shot adaptation with clear performance improvements after a single gradient update, reaching final success rates of 21.0% on training tasks and 13.2% on held-out test tasks. However, we observe a generalization gap that emerges during meta-training, where performance on test tasks plateaus while training task performance continues to improve. Task-level analysis reveals high variance in adaptation effectiveness, with success rates ranging from 0% to 80% across different manipulation skills. These findings highlight both the promise and current limitations of gradient-based meta-learning for diverse robotic manipulation, and suggest directions for future work in task-aware adaptation and structured policy architectures.
comment: 7 pages, 5 figures
Multilaminate piezoelectric PVDF actuators to enhance performance of soft micro robots
Multilayer piezoelectric polyvinylidene fluoride (PVDF) actuators are a promising approach to enhance performance of soft microrobotic systems. In this work, we develop and characterize multilayer PVDF actuators with parallel voltage distribution across each layer, bridging a unique design space between brittle high-force PZT stacks and compliant but lower-bandwidth soft polymer actuators. We show the effects of layer thickness and number of layers in actuator performance and their agreement with a first principles model. By varying these parameters, we demonstrate actuators capable of >3 mm of free deflection, >20 mN of blocked force, and >=500 Hz, while operating at voltages as low as 150 volts. To illustrate their potential for robotic integration, we integrate our actuators into a planar, translating microrobot that leverages resonance to achieve locomotion with robustness to large perturbations.
SAC-MoE: Reinforcement Learning with Mixture-of-Experts for Control of Hybrid Dynamical Systems with Uncertainty
Hybrid dynamical systems result from the interaction of continuous-variable dynamics with discrete events and encompass various systems such as legged robots, vehicles and aircrafts. Challenges arise when the system's modes are characterized by unobservable (latent) parameters and the events that cause system dynamics to switch between different modes are also unobservable. Model-based control approaches typically do not account for such uncertainty in the hybrid dynamics, while standard model-free RL methods fail to account for abrupt mode switches, leading to poor generalization. To overcome this, we propose SAC-MoE which models the actor of the Soft Actor-Critic (SAC) framework as a Mixture-of-Experts (MoE) with a learned router that adaptively selects among learned experts. To further improve robustness, we develop a curriculum-based training algorithm to prioritize data collection in challenging settings, allowing better generalization to unseen modes and switching locations. Simulation studies in hybrid autonomous racing and legged locomotion tasks show that SAC-MoE outperforms baselines (up to 6x) in zero-shot generalization to unseen environments. Our curriculum strategy consistently improves performance across all evaluated policies. Qualitative analysis shows that the interpretable MoE router activates different experts for distinct latent modes.
Target Defense against Sequentially Arriving Intruders: Algorithm for Agents with Dubins Dynamics
We consider a variant of the target defense problem where a single defender is tasked to capture a sequence of incoming intruders. Both the defender and the intruders have non-holonomic dynamics. The intruders' objective is to breach the target perimeter without being captured by the defender, while the defender's goal is to capture as many intruders as possible. After one intruder breaches or is captured, the next appears randomly on a fixed circle surrounding the target. Therefore, the defender's final position in one game becomes its starting position for the next. We divide an intruder-defender engagement into two phases, partial information and full information, depending on the information available to the players. We address the capturability of an intruder by the defender using the notions of Dubins path and guarding arc. We quantify the percentage of capture for both finite and infinite sequences of incoming intruders. Finally, the theoretical results are verified through numerical examples using Monte-Carlo-type random trials of experiments.
Intermittent Rendezvous Plans with Mixed Integer Linear Program for Large-Scale Multi-Robot Exploration
Multi-Robot Exploration (MRE) systems with communication constraints have proven efficient in accomplishing a variety of tasks, including search-and-rescue, stealth, and military operations. While some works focus on opportunistic approaches for efficiency, others concentrate on pre-planned trajectories or scheduling for increased interpretability. However, scheduling usually requires knowledge of the environment beforehand, which prevents its deployment in several domains due to related uncertainties (e.g., underwater exploration). In our previous work, we proposed an intermittent communications framework for MRE under communication constraints that uses scheduled rendezvous events to mitigate such limitations. However, the system was unable to generate optimal plans and had no mechanisms to follow the plan considering realistic trajectories, which is not suited for real-world deployments. In this work, we further investigate the problem by formulating the Multi-Robot Exploration with Communication Constraints and Intermittent Connectivity (MRE-CCIC) problem. We propose a Mixed-Integer Linear Program (MILP) formulation to generate rendezvous plans and a policy to follow them based on the Rendezvous Tracking for Unknown Scenarios (RTUS) mechanism. The RTUS is a simple rule to allow robots to follow the assigned plan, considering unknown conditions. Finally, we evaluated our method in a large-scale environment configured in Gazebo simulations. The results suggest that our method can follow the plan promptly and accomplish the task efficiently. We provide an open-source implementation of both the MILP plan generator and the large-scale MRE-CCIC.
comment: 9 pages, 9 figures, International Conference on Advanced Robotics
SocialNav-Map: Dynamic Mapping with Human Trajectory Prediction for Zero-Shot Social Navigation
Social navigation in densely populated dynamic environments poses a significant challenge for autonomous mobile robots, requiring advanced strategies for safe interaction. Existing reinforcement learning (RL)-based methods require over 2000+ hours of extensive training and often struggle to generalize to unfamiliar environments without additional fine-tuning, limiting their practical application in real-world scenarios. To address these limitations, we propose SocialNav-Map, a novel zero-shot social navigation framework that combines dynamic human trajectory prediction with occupancy mapping, enabling safe and efficient navigation without the need for environment-specific training. Specifically, SocialNav-Map first transforms the task goal position into the constructed map coordinate system. Subsequently, it creates a dynamic occupancy map that incorporates predicted human movements as dynamic obstacles. The framework employs two complementary methods for human trajectory prediction: history prediction and orientation prediction. By integrating these predicted trajectories into the occupancy map, the robot can proactively avoid potential collisions with humans while efficiently navigating to its destination. Extensive experiments on the Social-HM3D and Social-MP3D datasets demonstrate that SocialNav-Map significantly outperforms state-of-the-art (SOTA) RL-based methods, which require 2,396 GPU hours of training. Notably, it reduces human collision rates by over 10% without necessitating any training in novel environments. By eliminating the need for environment-specific training, SocialNav-Map achieves superior navigation performance, paving the way for the deployment of social navigation systems in real-world environments characterized by diverse human behaviors. The code is available at: https://github.com/linglingxiansen/SocialNav-Map.
Locally Optimal Solutions to Constraint Displacement Problems via Path-Obstacle Overlaps
We present a unified approach for constraint displacement problems in which a robot finds a feasible path by displacing constraints or obstacles. To this end, we propose a two stage process that returns locally optimal obstacle displacements to enable a feasible path for the robot. The first stage proceeds by computing a trajectory through the obstacles while minimizing an appropriate objective function. In the second stage, these obstacles are displaced to make the computed robot trajectory feasible, that is, collision-free. Several examples are provided that successfully demonstrate our approach on two distinct classes of constraint displacement problems.
comment: Robotics and Autonomous Systems
Innovative Design of Multi-functional Supernumerary Robotic Limbs with Ellipsoid Workspace Optimization
Supernumerary robotic limbs (SRLs) offer substantial potential in both the rehabilitation of hemiplegic patients and the enhancement of functional capabilities for healthy individuals. Designing a general-purpose SRL device is inherently challenging, particularly when developing a unified theoretical framework that meets the diverse functional requirements of both upper and lower limbs. In this paper, we propose a multi-objective optimization (MOO) design theory that integrates grasping workspace similarity, walking workspace similarity, braced force for sit-to-stand (STS) movements, and overall mass and inertia. A geometric vector quantification method is developed using an ellipsoid to represent the workspace, aiming to reduce computational complexity and address quantification challenges. The ellipsoid envelope transforms workspace points into ellipsoid attributes, providing a parametric description of the workspace. Furthermore, the STS static braced force assesses the effectiveness of force transmission. The overall mass and inertia restricts excessive link length. To facilitate rapid and stable convergence of the model to high-dimensional irregular Pareto fronts, we introduce a multi-subpopulation correction firefly algorithm. This algorithm incorporates a strategy involving attractive and repulsive domains to effectively handle the MOO task. The optimized solution is utilized to redesign the prototype for experimentation to meet specified requirements. Six healthy participants and two hemiplegia patients participated in real experiments. Compared to the pre-optimization results, the average grasp success rate improved by 7.2%, while the muscle activity during walking and STS tasks decreased by an average of 12.7% and 25.1%, respectively. The proposed design theory offers an efficient option for the design of multi-functional SRL mechanisms.
Variable Impedance Control for Floating-Base Supernumerary Robotic Leg in Walking Assistance
In human-robot systems, ensuring safety during force control in the presence of both internal and external disturbances is crucial. As a typical loosely coupled floating-base robot system, the supernumerary robotic leg (SRL) system is particularly susceptible to strong internal disturbances. To address the challenge posed by floating base, we investigated the dynamics model of the loosely coupled SRL and designed a hybrid position/force impedance controller to fit dynamic torque input. An efficient variable impedance control (VIC) method is developed to enhance human-robot interaction, particularly in scenarios involving external force disturbances. By dynamically adjusting impedance parameters, VIC improves the dynamic switching between rigidity and flexibility, so that it can adapt to unknown environmental disturbances in different states. An efficient real-time stability guaranteed impedance parameters generating network is specifically designed for the proposed SRL, to achieve shock mitigation and high rigidity supporting. Simulations and experiments validate the system's effectiveness, demonstrating its ability to maintain smooth signal transitions in flexible states while providing strong support forces in rigid states. This approach provides a practical solution for accommodating individual gait variations in interaction, and significantly advances the safety and adaptability of human-robot systems.
Game-Theoretic Safe Multi-Agent Motion Planning with Reachability Analysis for Dynamic and Uncertain Environments (Extended Version)
Ensuring safe, robust, and scalable motion planning for multi-agent systems in dynamic and uncertain environments is a persistent challenge, driven by complex inter-agent interactions, stochastic disturbances, and model uncertainties. To overcome these challenges, particularly the computational complexity of coupled decision-making and the need for proactive safety guarantees, we propose a Reachability-Enhanced Dynamic Potential Game (RE-DPG) framework, which integrates game-theoretic coordination into reachability analysis. This approach formulates multi-agent coordination as a dynamic potential game, where the Nash equilibrium (NE) defines optimal control strategies across agents. To enable scalability and decentralized execution, we develop a Neighborhood-Dominated iterative Best Response (ND-iBR) scheme, built upon an iterated $\varepsilon$-BR (i$\varepsilon$-BR) process that guarantees finite-step convergence to an $\varepsilon$-NE. This allows agents to compute strategies based on local interactions while ensuring theoretical convergence guarantees. Furthermore, to ensure safety under uncertainty, we integrate a Multi-Agent Forward Reachable Set (MA-FRS) mechanism into the cost function, explicitly modeling uncertainty propagation and enforcing collision avoidance constraints. Through both simulations and real-world experiments in 2D and 3D environments, we validate the effectiveness of RE-DPG across diverse operational scenarios.
comment: 12 pages, 9 figures
Towards Obstacle-Avoiding Control of Planar Snake Robots Exploring Neuro-Evolution of Augmenting Topologies
This work aims to develop a resource-efficient solution for obstacle-avoiding tracking control of a planar snake robot in a densely cluttered environment with obstacles. Particularly, Neuro-Evolution of Augmenting Topologies (NEAT) has been employed to generate dynamic gait parameters for the serpenoid gait function, which is implemented on the joint angles of the snake robot, thus controlling the robot on a desired dynamic path. NEAT is a single neural-network based evolutionary algorithm that is known to work extremely well when the input layer is of significantly higher dimension and the output layer is of a smaller size. For the planar snake robot, the input layer consists of the joint angles, link positions, head link position as well as obstacle positions in the vicinity. However, the output layer consists of only the frequency and offset angle of the serpenoid gait that control the speed and heading of the robot, respectively. Obstacle data from a LiDAR and the robot data from various sensors, along with the location of the end goal and time, are employed to parametrize a reward function that is maximized over iterations by selective propagation of superior neural networks. The implementation and experimental results showcase that the proposed approach is computationally efficient, especially for large environments with many obstacles. The proposed framework has been verified through a physics engine simulation study on PyBullet. The approach shows superior results to existing state-of-the-art methodologies and comparable results to the very recent CBRL approach with significantly lower computational overhead. The video of the simulation can be found here: https://sites.google.com/view/neatsnakerobot
comment: 9 pages, 6 figures
Decoupled Action Head: Confining Task Knowledge to Conditioning Layers
Behavior Cloning (BC) is a data-driven supervised learning approach that has gained increasing attention with the success of scaling laws in language and vision domains. Among its implementations in robotic manipulation, Diffusion Policy (DP), with its two variants DP-CNN (DP-C) and DP-Transformer (DP-T), is one of the most effective and widely adopted models, demonstrating the advantages of predicting continuous action sequences. However, both DP and other BC methods remain constrained by the scarcity of paired training data, and the internal mechanisms underlying DP's effectiveness remain insufficiently understood, leading to limited generalization and a lack of principled design in model development. In this work, we propose a decoupled training recipe that leverages nearly cost-free kinematics-generated trajectories as observation-free data to pretrain a general action head (action generator). The pretrained action head is then frozen and adapted to novel tasks through feature modulation. Our experiments demonstrate the feasibility of this approach in both in-distribution and out-of-distribution scenarios. As an additional benefit, decoupling improves training efficiency; for instance, DP-C achieves up to a 41% speedup. Furthermore, the confinement of task-specific knowledge to the conditioning components under decoupling, combined with the near-identical performance of DP-C in both normal and decoupled training, indicates that the action generation backbone plays a limited role in robotic manipulation. Motivated by this observation, we introduce DP-MLP, which replaces the 244M-parameter U-Net backbone of DP-C with only 4M parameters of simple MLP blocks, achieving a 83.9% faster training speed under normal training and 89.1% under decoupling.
SBAMP: Sampling Based Adaptive Motion Planning
Autonomous robotic systems must navigate complex, dynamic environments in real time, often facing unpredictable obstacles and rapidly changing conditions. Traditional sampling-based methods, such as RRT*, excel at generating collision-free paths but struggle to adapt to sudden changes without extensive replanning. Conversely, learning-based dynamical systems, such as the Stable Estimator of Dynamical Systems (SEDS), offer smooth, adaptive trajectory tracking but typically rely on pre-collected demonstration data, limiting their generalization to novel scenarios. This paper introduces Sampling-Based Adaptive Motion Planning (SBAMP), a novel framework that overcomes these limitations by integrating RRT* for global path planning with a SEDS-based local controller for continuous, adaptive trajectory adjustment. Our approach requires no pre-trained datasets and ensures smooth transitions between planned waypoints, maintaining stability through Lyapunov-based guarantees. We validate SBAMP in both simulated environments and real hardware using the RoboRacer platform, demonstrating superior performance in dynamic obstacle scenarios, rapid recovery from perturbations, and robust handling of sharp turns. Experimental results highlight SBAMP's ability to adapt in real time without sacrificing global path optimality, providing a scalable solution for dynamic, unstructured environments.
comment: 8 pages, 13 figures
ARCSnake V2: An Amphibious Multi-Domain Screw-Propelled Snake-Like Robot ICRA
Robotic exploration in extreme environments such as caves, oceans, and planetary surfaces pose significant challenges, particularly in locomotion across diverse terrains. Conventional wheeled or legged robots often struggle in these contexts due to surface variability. This paper presents ARCSnake V2, an amphibious, screw propelled, snake like robot designed for teleoperated or autonomous locomotion across land, granular media, and aquatic environments. ARCSnake V2 combines the high mobility of hyper redundant snake robots with the terrain versatility of Archimedean screw propulsion. Key contributions include a water sealed mechanical design with serially linked screw and joint actuation, an integrated buoyancy control system, and teleoperation via a kinematically matched handheld controller. The robots design and control architecture enable multiple locomotion modes screwing, wheeling, and sidewinding with smooth transitions between them. Extensive experiments validate its underwater maneuverability, communication robustness, and force regulated actuation. These capabilities position ARCSnake V2 as a versatile platform for exploration, search and rescue, and environmental monitoring in multi domain settings.
comment: 8 pages, 9 figures, ICRA
Bootstrapped LLM Semantics for Context-Aware Path Planning
Prompting robots with natural language (NL) has largely been studied as what task to execute (goal selection, skill sequencing) rather than how to execute that task safely and efficiently in semantically rich, human-centric spaces. We address this gap with a framework that turns a large language model (LLM) into a stochastic semantic sensor whose outputs modulate a classical planner. Given a prompt and a semantic map, we draw multiple LLM "danger" judgments and apply a Bayesian bootstrap to approximate a posterior over per-class risk. Using statistics from the posterior, we create a potential cost to formulate a path planning problem. Across simulated environments and a BIM-backed digital twin, our method adapts how the robot moves in response to explicit prompts and implicit contextual information. We present qualitative and quantitative results.
Characterization and Evaluation of Screw-Based Locomotion Across Aquatic, Granular, and Transitional Media
Screw-based propulsion systems offer promising capabilities for amphibious mobility, yet face significant challenges in optimizing locomotion across water, granular materials, and transitional environments. This study presents a systematic investigation into the locomotion performance of various screw configurations in media such as dry sand, wet sand, saturated sand, and water. Through a principles-first approach to analyze screw performance, it was found that certain parameters are dominant in their impact on performance. Depending on the media, derived parameters inspired from optimizing heat sink design help categorize performance within the dominant design parameters. Our results provide specific insights into screw shell design and adaptive locomotion strategies to enhance the performance of screw-based propulsion systems for versatile amphibious applications.
Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.
comment: Repository: https://github.com/sisl/ConstructionBots.jl
AI-Driven Robotics for Optics
Optics is foundational to research in many areas of science and engineering, including nanophotonics, quantum information, materials science, biomedical imaging, and metrology. However, the design, assembly, and alignment of optical experiments remain predominantly manual, limiting throughput and reproducibility. Automating such experiments is challenging due to the strict, non-negotiable precision requirements and the diversity of optical configurations found in typical laboratories. Here, we introduce a platform that integrates generative artificial intelligence, computer vision, and robotics to automate free-space optical experiments. The platform translates user-defined goals into valid optical configurations, assembles them using a robotic arm, and performs micrometer-scale fine alignment using a robot-deployable tool. It then executes a range of automated measurements, including beam characterization, polarization mapping, and spectroscopy, with consistency surpassing that of human operators. This work demonstrates the first flexible, AI-driven automation platform for optics, offering a path towards remote operation, cloud labs, and high-throughput discovery in the optical sciences.
Local Guidance for Configuration-Based Multi-Agent Pathfinding AAAI-26
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: To be presented at AAAI-26
PB-NBV: Efficient Projection-Based Next-Best-View Planning Framework for Reconstruction of Unknown Objects
Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L), 2025
DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on restrictive assumptions, such as single-object settings or limited environments, showing constrained generalization. We present DexGraspVLA, a hierarchical framework for robust generalization in language-guided general dexterous grasping and beyond. It utilizes a pre-trained Vision-Language model as the high-level planner and learns a diffusion-based low-level Action controller. The key insight to achieve generalization lies in iteratively transforming diverse language and visual inputs into domain-invariant representations via foundation models, where imitation learning can be effectively applied due to the alleviation of domain shift. Notably, our method achieves a 90+% dexterous grasping success rate under thousands of challenging unseen cluttered scenes. Empirical analysis confirms the consistency of internal model behavior across environmental variations, validating our design. DexGraspVLA also, for the first time, simultaneously demonstrates free-form long-horizon prompt execution, robustness to adversarial objects and human disturbance, and failure recovery. Extended application to nonprehensile grasping further proves its generality. Project website: https://dexgraspvla.github.io.
comment: 18 pages, 11 figures
Whole-Body Control Framework for Humanoid Robots with Heavy Limbs: A Model-Based Approach
Humanoid robots often face significant balance issues due to the motion of their heavy limbs. These challenges are particularly pronounced when attempting dynamic motion or operating in environments with irregular terrain. To address this challenge, this manuscript proposes a whole-body control framework for humanoid robots with heavy limbs, using a model-based approach that combines a kino-dynamics planner and a hierarchical optimization problem. The kino-dynamics planner is designed as a model predictive control (MPC) scheme to account for the impact of heavy limbs on mass and inertia distribution. By simplifying the robot's system dynamics and constraints, the planner enables real-time planning of motion and contact forces. The hierarchical optimization problem is formulated using Hierarchical Quadratic Programming (HQP) to minimize limb control errors and ensure compliance with the policy generated by the kino-dynamics planner. Experimental validation of the proposed framework demonstrates its effectiveness. The humanoid robot with heavy limbs controlled by the proposed framework can achieve dynamic walking speeds of up to 1.2~m/s, respond to external disturbances of up to 60~N, and maintain balance on challenging terrains such as uneven surfaces, and outdoor environments.
LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions
Members of the Human-Robot Interaction (HRI) and Machine Learning (ML) communities have proposed Large Language Models (LLMs) as a promising resource for robotics tasks such as natural language interaction, household and workplace tasks, approximating 'common sense reasoning', and modeling humans. However, recent research has raised concerns about the potential for LLMs to produce discriminatory outcomes and unsafe behaviors in real-world robot experiments and applications. To assess whether such concerns are well placed in the context of HRI, we evaluate several highly-rated LLMs on discrimination and safety criteria. Our evaluation reveals that LLMs are currently unsafe for people across a diverse range of protected identity characteristics, including, but not limited to, race, gender, disability status, nationality, religion, and their intersections. Concretely, we show that LLMs produce directly discriminatory outcomes- e.g., 'gypsy' and 'mute' people are labeled untrustworthy, but not 'european' or 'able-bodied' people. We find various such examples of direct discrimination on HRI tasks such as facial expression, proxemics, security, rescue, and task assignment. Furthermore, we test models in settings with unconstrained natural language (open vocabulary) inputs, and find they fail to act safely, generating responses that accept dangerous, violent, or unlawful instructions-such as incident-causing misstatements, taking people's mobility aids, and sexual predation. Our results underscore the urgent need for systematic, routine, and comprehensive risk assessments and assurances to improve outcomes and ensure LLMs only operate on robots when it is safe, effective, and just to do so. We provide code to reproduce our experiments at https://github.com/rumaisa-azeem/llm-robots-discrimination-safety .
comment: Published in International Journal of Social Robotics (2025). 49 pages (65 with references and appendix), 27 Figures, 8 Tables. Andrew Hundt and Rumaisa Azeem are equal contribution co-first authors. The positions of the two co-first authors were swapped from arxiv version 1 with the written consent of all four authors. The Version of Record is available via DOI: 10.1007/s12369-025-01301-x
Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing methods, which often rely on coarsely-aligned video pairs, are typically constrained to learning global or task-level features. As a result, they tend to neglect the fine-grained frame-level dynamics required for complex manipulation and generalization to novel tasks. We posit that this limitation stems from a vicious circle of inadequate datasets and the methods they inspire. To break this cycle, we propose a paradigm shift that treats fine-grained human-robot alignment as a conditional video generation problem. To this end, we first introduce H&R, a novel third-person dataset containing 2,600 episodes of precisely synchronized human and robot motions, collected using a VR teleoperation system. We then present Human2Robot, a framework designed to leverage this data. Human2Robot employs a Video Prediction Model to learn a rich and implicit representation of robot dynamics by generating robot videos from human input, which in turn guides a decoupled action decoder. Our real-world experiments demonstrate that this approach not only achieves high performance on seen tasks but also exhibits significant one-shot generalization to novel positions, objects, instances, and even new task categories.
Reward Redistribution via Gaussian Process Likelihood Estimation AAAI-26
In many practical reinforcement learning tasks, feedback is only provided at the end of a long horizon, leading to sparse and delayed rewards. Existing reward redistribution methods typically assume that per-step rewards are independent, thus overlooking interdependencies among state-action pairs. In this paper, we propose a Gaussian process based Likelihood Reward Redistribution (GP-LRR) framework that addresses this issue by modeling the reward function as a sample from a Gaussian process, which explicitly captures dependencies between state-action pairs through the kernel function. By maximizing the likelihood of the observed episodic return via a leave-one-out strategy that leverages the entire trajectory, our framework inherently introduces uncertainty regularization. Moreover, we show that conventional mean-squared-error (MSE) based reward redistribution arises as a special case of our GP-LRR framework when using a degenerate kernel without observation noise. When integrated with an off-policy algorithm such as Soft Actor-Critic, GP-LRR yields dense and informative reward signals, resulting in superior sample efficiency and policy performance on several MuJoCo benchmarks.
comment: Accepted by AAAI-26
Multiagent Systems
Intermittent Rendezvous Plans with Mixed Integer Linear Program for Large-Scale Multi-Robot Exploration
Multi-Robot Exploration (MRE) systems with communication constraints have proven efficient in accomplishing a variety of tasks, including search-and-rescue, stealth, and military operations. While some works focus on opportunistic approaches for efficiency, others concentrate on pre-planned trajectories or scheduling for increased interpretability. However, scheduling usually requires knowledge of the environment beforehand, which prevents its deployment in several domains due to related uncertainties (e.g., underwater exploration). In our previous work, we proposed an intermittent communications framework for MRE under communication constraints that uses scheduled rendezvous events to mitigate such limitations. However, the system was unable to generate optimal plans and had no mechanisms to follow the plan considering realistic trajectories, which is not suited for real-world deployments. In this work, we further investigate the problem by formulating the Multi-Robot Exploration with Communication Constraints and Intermittent Connectivity (MRE-CCIC) problem. We propose a Mixed-Integer Linear Program (MILP) formulation to generate rendezvous plans and a policy to follow them based on the Rendezvous Tracking for Unknown Scenarios (RTUS) mechanism. The RTUS is a simple rule to allow robots to follow the assigned plan, considering unknown conditions. Finally, we evaluated our method in a large-scale environment configured in Gazebo simulations. The results suggest that our method can follow the plan promptly and accomplish the task efficiently. We provide an open-source implementation of both the MILP plan generator and the large-scale MRE-CCIC.
comment: 9 pages, 9 figures, International Conference on Advanced Robotics
Goal-Oriented Multi-Agent Reinforcement Learning for Decentralized Agent Teams
Connected and autonomous vehicles across land, water, and air must often operate in dynamic, unpredictable environments with limited communication, no centralized control, and partial observability. These real-world constraints pose significant challenges for coordination, particularly when vehicles pursue individual objectives. To address this, we propose a decentralized Multi-Agent Reinforcement Learning (MARL) framework that enables vehicles, acting as agents, to communicate selectively based on local goals and observations. This goal-aware communication strategy allows agents to share only relevant information, enhancing collaboration while respecting visibility limitations. We validate our approach in complex multi-agent navigation tasks featuring obstacles and dynamic agent populations. Results show that our method significantly improves task success rates and reduces time-to-goal compared to non-cooperative baselines. Moreover, task performance remains stable as the number of agents increases, demonstrating scalability. These findings highlight the potential of decentralized, goal-driven MARL to support effective coordination in realistic multi-vehicle systems operating across diverse domains.
comment: Accepted poster at the IEEE Consumer Communications & Networking Conference (CCNC) 2026
A novel strategy for multi-resource load balancing in agent-based systems
The paper presents a multi-resource load balancing strategy which can be utilised within an agent-based system. This approach can assist system designers in their attempts to optimise the structure for complex enterprise architectures. In this system, the social behaviour of the agent and its adaptation abilities are applied to determine an optimal setup for a given configuration. All the methods have been developed to allow the agent's self-assessment. The proposed agent system has been implemented and the experiment results are presented here.
Efficient Multiagent Planning via Shared Action Suggestions AAAI 2026
Decentralized partially observable Markov decision processes with communication (Dec-POMDP-Com) provide a framework for multiagent decision making under uncertainty, but the NEXP-complete complexity for finite-horizon problems renders solutions intractable in general. While sharing actions and observations can reduce the complexity to PSPACE-complete, we propose an approach that bridges POMDPs and Dec-POMDPs by communicating only suggested joint actions, eliminating the need to share observations while retaining near-centralized performance. Our algorithm estimates joint beliefs using shared actions to prune infeasible beliefs. Each agent maintains possible belief sets for other agents, pruning them based on suggested actions to form an estimated joint belief usable with any centralized policy. This approach requires solving a POMDP for each agent, reducing computational complexity while preserving performance. We demonstrate its effectiveness on several Dec-POMDP benchmarks, showing performance comparable to centralized methods when shared actions enable effective belief pruning. This action-based communication framework offers a natural avenue for integrating human-agent cooperation, opening new directions for scalable multiagent planning under uncertainty, with applications in both autonomous systems and human-agent teams.
comment: Repository: https://github.com/sisl/MCAS Accepted to AAAI 2026
Local Guidance for Configuration-Based Multi-Agent Pathfinding AAAI-26
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: To be presented at AAAI-26
LLM-Enhanced Multi-Agent Reinforcement Learning with Expert Workflow for Real-Time P2P Energy Trading
Real-time peer-to-peer (P2P) electricity markets dynamically adapt to fluctuations in renewable energy and variations in demand, maximizing economic benefits through instantaneous price responses while enhancing grid flexibility. However, scaling expert guidance for massive personalized prosumers poses critical challenges, including diverse decision-making demands and lack of customized modeling frameworks. This paper proposed an integrated large language model-multi-agent reinforcement learning (LLM-MARL) framework for real-time P2P energy trading to address challenges such as the limited technical capability of prosumers, the lack of expert experience, and security issues of distribution networks. LLMs are introduced as experts to generate personalized strategy, guiding MARL under the centralized training with decentralized execution (CTDE) paradigm through imitation learning. A differential attention-based critic network is designed to enhance convergence performance. Experimental results demonstrate that LLM generated strategies effectively substitute human experts. The proposed multi-agent imitation learning algorithms achieve significantly lower economic costs and voltage violation rates on test sets compared to baselines algorithms, while maintaining robust stability. This work provides an effective solution for real-time P2P electricity market decision-making by bridging expert knowledge with agent learning.
Riemannian Manifold Learning for Stackelberg Games with Neural Flow Representations
We present a novel framework for online learning in Stackelberg general-sum games, where two agents, the leader and follower, engage in sequential turn-based interactions. At the core of this approach is a learned diffeomorphism that maps the joint action space to a smooth spherical Riemannian manifold, referred to as the Stackelberg manifold. This mapping, facilitated by neural normalizing flows, ensures the formation of tractable isoplanar subspaces, enabling efficient techniques for online learning. Leveraging the linearity of the agents' reward functions on the Stackelberg manifold, our construct allows the application of linear bandit algorithms. We then provide a rigorous theoretical basis for regret minimization on the learned manifold and establish bounds on the simple regret for learning Stackelberg equilibrium. This integration of manifold learning into game theory uncovers a previously unrecognized potential for neural normalizing flows as an effective tool for multi-agent learning. We present empirical results demonstrating the effectiveness of our approach compared to standard baselines, with applications spanning domains such as cybersecurity and economic supply chain optimization.
comment: Stackelberg games. Manifold learning. Online learning
Systems and Control (EESS)
DER Day-Ahead Offering: A Neural Network Column-and-Constraint Generation Approach
In the day-ahead energy market, the offering strategy of distributed energy resource (DER) aggregators must be submitted before the uncertainty realization in the form of price-quantity pairs. This work addresses the day-ahead offering problem through a two-stage robust adaptive stochastic optimization model, wherein the first-stage price-quantity pairs and second-stage operational commitment decisions are made before and after DER uncertainty is realized, respectively. Uncertainty in day-ahead price is addressed using a stochastic programming, while uncertainty of DER generation is handled through robust optimization. To address the max-min structure of the second-stage problem, a neural network-accelerated column-and-constraint generation method is developed. A dedicated neural network is trained to approximate the value function, while optimality is maintained by the design of the network architecture. Numerical studies indicate that the proposed method yields high-quality solutions and is up to 100 times faster than Gurobi and 33 times faster than classical column-and-constraint generation on the same 1028-node synthetic distribution network.
comment: 5 pages, 1 figure. Submitted to IEEE PES General Meeting 2026
SAC-MoE: Reinforcement Learning with Mixture-of-Experts for Control of Hybrid Dynamical Systems with Uncertainty
Hybrid dynamical systems result from the interaction of continuous-variable dynamics with discrete events and encompass various systems such as legged robots, vehicles and aircrafts. Challenges arise when the system's modes are characterized by unobservable (latent) parameters and the events that cause system dynamics to switch between different modes are also unobservable. Model-based control approaches typically do not account for such uncertainty in the hybrid dynamics, while standard model-free RL methods fail to account for abrupt mode switches, leading to poor generalization. To overcome this, we propose SAC-MoE which models the actor of the Soft Actor-Critic (SAC) framework as a Mixture-of-Experts (MoE) with a learned router that adaptively selects among learned experts. To further improve robustness, we develop a curriculum-based training algorithm to prioritize data collection in challenging settings, allowing better generalization to unseen modes and switching locations. Simulation studies in hybrid autonomous racing and legged locomotion tasks show that SAC-MoE outperforms baselines (up to 6x) in zero-shot generalization to unseen environments. Our curriculum strategy consistently improves performance across all evaluated policies. Qualitative analysis shows that the interpretable MoE router activates different experts for distinct latent modes.
Target Defense against Sequentially Arriving Intruders: Algorithm for Agents with Dubins Dynamics
We consider a variant of the target defense problem where a single defender is tasked to capture a sequence of incoming intruders. Both the defender and the intruders have non-holonomic dynamics. The intruders' objective is to breach the target perimeter without being captured by the defender, while the defender's goal is to capture as many intruders as possible. After one intruder breaches or is captured, the next appears randomly on a fixed circle surrounding the target. Therefore, the defender's final position in one game becomes its starting position for the next. We divide an intruder-defender engagement into two phases, partial information and full information, depending on the information available to the players. We address the capturability of an intruder by the defender using the notions of Dubins path and guarding arc. We quantify the percentage of capture for both finite and infinite sequences of incoming intruders. Finally, the theoretical results are verified through numerical examples using Monte-Carlo-type random trials of experiments.
DataOps-driven CI/CD for analytics repositories
The proliferation of SQL for data processing has often occurred without the rigor of traditional software development, leading to siloed efforts, logic replication, and increased risk. This ad-hoc approach hampers data governance and makes validation nearly impossible. Organizations are adopting DataOps, a methodology combining Agile, Lean, and DevOps principles to address these challenges to treat analytics pipelines as production systems. However, a standardized framework for implementing DataOps is lacking. This perspective proposes a qualitative design for a DataOps-aligned validation framework. It introduces a DataOps Controls Scorecard, derived from a multivocal literature review, which distills key concepts into twelve testable controls. These controls are then mapped to a modular, extensible CI/CD pipeline framework designed to govern a single source of truth (SOT) SQL repository. The framework consists of five stages: Lint, Optimize, Parse, Validate, and Observe, each containing specific, automated checks. A Requirements Traceability Matrix (RTM) demonstrates how each high-level control is enforced by concrete pipeline checks, ensuring qualitative completeness. This approach provides a structured mechanism for enhancing data quality, governance, and collaboration, allowing teams to scale analytics development with transparency and control.
SCI: An Equilibrium for Signal Intelligence
We present SCI, a closed-loop, control-theoretic framework that models interpretability as a regulated state. SCI formalizes the interpretive error Delta SP and actively drives SP(t) in [0, 1] ("Surgical Precision") toward a target via a projected update on the parameters Theta under a human-gain budget. The framework operates through three coordinated components: (1) reliability-weighted, multiscale features P(t, s); (2) a knowledge-guided interpreter psi_Theta that emits traceable markers and rationales; and (3) a Lyapunov-guided controller equipped with rollback, trust-region safeguards, and a descent condition. Across biomedical (EEG/ECG/ICU), industrial (bearings/tool wear), and environmental (climate/seismic) domains, SCI reduces interpretive error by 25-42% (mean 38%, 95% confidence interval 22-43%) relative to static explainers while maintaining AUC/F1 within approximately 1-2 percentage points of baseline. SCI also reduces SP variance from 0.030 to 0.011, indicating substantially more stable explanations. Modeling interpretability as a control objective yields steadier, faster-recovering, and more trustworthy interpretive behavior across diverse signal regimes.
comment: 34 pages, 7 figures. Preprint
AI-Enhanced IoT Systems for Predictive Maintenance and Affordability Optimization in Smart Microgrids: A Digital Twin Approach
This study presents an AI enhanced IoT framework for predictive maintenance and affordability optimization in smart microgrids using a Digital Twin modeling approach. The proposed system integrates real time sensor data, machine learning based fault prediction, and cost aware operational analytics to improve reliability and energy efficiency in distributed microgrid environments. By synchronizing physical microgrid components with a virtual Digital Twin, the framework enables early detection of component degradation, dynamic load management, and optimized maintenance scheduling. Experimental evaluations demonstrate improved predictive accuracy, reduced operational downtime, and measurable cost savings compared to baseline microgrid management methods. The findings highlight the potential of Digital Twin driven IoT architectures as a scalable solution for next generation intelligent and affordable energy systems.
comment: 12 pages, 6 figures, includes simulation and evaluation results
Tight displacement-based formation control under bounded disturbances. A set-theoretic perspective
This paper investigates the synthesis of controllers for displacement-based formation control in the presence of bounded disturbances, specifically focusing on uncertainties originating from measurement noise. While the literature frequently addresses such problems using stochastic frameworks, this work proposes a deterministic methodology grounded in set-theoretic concepts. By leveraging the principles of set invariance, we adapt the theory of ultimate boundedness to the specific dynamics of displacement-based formations. This approach provides a rigorous method for analyzing the system's behavior under persistent disturbances. Furthermore, this set-theoretic framework allows for the optimized selection of the proposed control law parameters to guarantee pre-specified performance bounds. The efficacy of the synthesized controller is demonstrated in the challenging application of maintaining tight formations in a multi-obstacles environment.
comment: submitted to ECC'26
Novel Multi-objective Switched Model Predictive Control with Feasibility and Stability Guarantees
As the relevance of control systems capable of dealing with multiple objectives rises (e.g. being economic while maintaining a certain performance), multi-objective Switched Model Predictive Control combines all the advantages of Model Predictive Control while dealing with multiple objectives. We propose two novel frameworks, a nominal and a robust framework to guarantee recursive feasibility of each Model Predictive Controller under arbitrary switching and assure asymptotic stability of the closed-loop system applying the nominal framework and Input-to-State stability using the robust framework. The presented frameworks employ methods from switched systems, enabling the utilization of a supervisor control instance which allows for complex objectives and multi-objective control. Our numerical example confirms the superior performance of our proposed frameworks compared to a standard Model Predictive Control approach.
comment: 7 pages, 4 figures, submitted to the 24th European Control Conference (ECC26)
Fusion-ResNet: A Lightweight multi-label NILM Model Using PCA-ICA Feature Fusion
Non-intrusive load monitoring (NILM) is an advanced load monitoring technique that uses data-driven algorithms to disaggregate the total power consumption of a household into the consumption of individual appliances. However, real-world NILM deployment still faces major challenges, including overfitting, low model generalization, and disaggregating a large number of appliances operating at the same time. To address these challenges, this work proposes an end-to-end framework for the NILM classification task, which consists of high-frequency labeled data, a feature extraction method, and a lightweight neural network. Within this framework, we introduce a novel feature extraction method that fuses Independent Component Analysis (ICA) and Principal Component Analysis (PCA) features. Moreover, we propose a lightweight architecture for multi-label NILM classification (Fusion-ResNet). The proposed feature-based model achieves a higher $F1$ score on average and across different appliances compared to state-of-the-art NILM classifiers while minimizing the training and inference time. Finally, we assessed the performance of our model against baselines with a varying number of simultaneously active devices. Results demonstrate that Fusion-ResNet is relatively robust to stress conditions with up to 15 concurrently active appliances.
comment: Extended version of the conference paper "Enhancing Non-Intrusive Load Monitoring with Features Extracted by Independent Component Analysis" -- arXiv:2501.16817. Instead of solely using ICA or PCA for feature extraction, we propose the fusion of ICA and PCA, which outperforms other baseline models. This extended version is meant for journal publication
Real-Time Physics-Aware Battery Health Monitoring from Partial Charging Profiles via Physics-Informed Neural Networks
Monitoring battery health is essential for ensuring safe and efficient operation. However, there is an inherent trade-off between assessment speed and diagnostic depth-specifically, between rapid overall health estimation and precise identification of internal degradation states. Capturing detailed internal battery information efficiently remains a major challenge, yet such insights are key to understanding the various degradation mechanisms. To address this, we develop a parameterized physics-informed neural network (P-PINNSPM) over the key aging-related parameter space for a single particle model. The model can accurately predict internal battery variables across the parameter space and identifies internal parameters in about 30 seconds-achieving a 47x speedup over the finite volume method-while maintaining high accuracy. These parameters improve the battery state-of-health (SOH) estimation accuracy by at least 60.61%, compared to models without parameter incorporation. Moreover, they enable extrapolation to unseen SOH levels and support robust estimation across diverse charging profiles and operating conditions. Our results demonstrate the strong potential of physics-informed machine learning to advance real-time, data-efficient, and physics-aware battery management systems.
On The Detection of Minimum Forecast Horizon For Real-Time Scheduling of Energy Storage Systems in Smart Grid
The increasing integration of energy storage systems (ESSs) into power grids has necessitated effective real-time control strategies under uncertain and volatile electricity prices. An important problem of model predictive control of ESSs is identifying the minimum forecast horizon needed to exactly simulate the globally optimal control trajectory. Existing methods in the literature provide only sufficient conditions and might ignore real-world inconsistencies in control actions. In this paper, we introduce a trajectory-alignment-based definition of the minimum forecast horizon and propose an algorithm that identifies the minimum planning horizon for which all rolling-horizon control decisions match those of the full-horizon global optimization. Using real price data from the bidding zone DK1 in Denmark of the Nord Pool day-ahead market and a realistic ESS model, we illustrate that $60$ hours of forecast horizon allows us to exactly simulate the global control sequence and economic outcomes. In addition, we illustrate that under other parameter configurations, no forecast horizon ensures full convergence, demonstrating the sensitivity of the existence of a forecast horizon to various parameters. Our findings provide an operationally significant framework for minimum forecast horizon detection in storage scheduling and pave the way for the analytical description of this important planning measure.
SBAMP: Sampling Based Adaptive Motion Planning
Autonomous robotic systems must navigate complex, dynamic environments in real time, often facing unpredictable obstacles and rapidly changing conditions. Traditional sampling-based methods, such as RRT*, excel at generating collision-free paths but struggle to adapt to sudden changes without extensive replanning. Conversely, learning-based dynamical systems, such as the Stable Estimator of Dynamical Systems (SEDS), offer smooth, adaptive trajectory tracking but typically rely on pre-collected demonstration data, limiting their generalization to novel scenarios. This paper introduces Sampling-Based Adaptive Motion Planning (SBAMP), a novel framework that overcomes these limitations by integrating RRT* for global path planning with a SEDS-based local controller for continuous, adaptive trajectory adjustment. Our approach requires no pre-trained datasets and ensures smooth transitions between planned waypoints, maintaining stability through Lyapunov-based guarantees. We validate SBAMP in both simulated environments and real hardware using the RoboRacer platform, demonstrating superior performance in dynamic obstacle scenarios, rapid recovery from perturbations, and robust handling of sharp turns. Experimental results highlight SBAMP's ability to adapt in real time without sacrificing global path optimality, providing a scalable solution for dynamic, unstructured environments.
comment: 8 pages, 13 figures
Tri-Level Stochastic-Robust Co-Planning of Distribution Networks and Renewable Charging Stations With an Adaptive iC&CG Algorithm
Renewable charging stations (RCSs) that co-locate electric-vehicle (EV) charging with distributed generation (DG) can raise renewable utilization and improve distribution-network (DN) efficiency, yet their variability and the siting-dependent charging demand can overload feeders if placed poorly. This paper proposes a tri-level, two-stage stochastic-robust optimization (SRO) co-planning framework that jointly determines RCS siting and DN expansion while accounting for transportation flows and population density. The model distinguishes two uncertainty classes: (i) decision-dependent uncertainty (DDU), under which EV charging loads vary with RCS siting; and (ii) decision-independent uncertainty (DIU), under which load fluctuations and renewable-generation variability do not depend on the RCS locations or the DN topology. At the upper level, the framework selects RCS sites and DN expansions. At the middle level, EV routing and charging are dispatched given the RCS siting to produce charging loads DDU. At the lower level, DN operation minimizes annualized loss costs under the worst-case DIU, reformulated via Karush-Kuhn-Tucker (KKT) conditions. To solve the resulting problem efficiently, we develop an adaptive inexact column-and-constraint generation (A-iC&CG) algorithm and prove finite-iteration convergence. Case studies on a 47-node DN coupled with a 68-hub transportation network in Shenzhen, China, show that A-iC&CG outperforms benchmark algorithms and that PV-EV hybrid stations are cost-optimal, with RCS siting concentrated near substations and high-flow hubs.
Frequency Response Identification of Low-Order Systems: Finite-Sample Analysis
This paper proposes a frequency-domain system identification method for learning low-order systems. The identification problem is formulated as the minimization of the l2 norm between the identified and measured frequency responses, with the nuclear norm of the Loewner matrix serving as a regularization term. This formulation results in an optimization problem that can be efficiently solved using standard convex optimization techniques. We derive an upper bound on the sampled-frequency complexity of the identification process and subsequently extend this bound to characterize the identification error over all frequencies. A detailed analysis of the sample complexity is provided, along with a thorough interpretation of its terms and dependencies. Finally, the efficacy of the proposed method is demonstrated through an example, and numerical simulations validating the growth rate of the sample complexity bound.
comment: 16 pages, Submitted to IEEE Transactions on Automatic Control
Predictive Compensation in Finite-Horizon LQ Games under Gauss-Markov Deviations
This paper develops a predictive compensation framework for finite-horizon, discrete-time linear quadratic dynamic games subject to Gauss-Markov execution deviations from feedback Nash strategies. One player's control is corrupted by temporally correlated stochastic perturbations modeled as a first-order autoregressive (AR(1)) process, while the opposing player has causal access to past deviations and employs a predictive feedforward strategy that anticipates their future effect. We derive closed-form recursions for mean and covariance propagation under the resulting perturbed closed loop, establish boundedness and sensitivity properties of the equilibrium trajectory, and characterize the reduction in expected cost achieved by optimal predictive compensation. Numerical experiments corroborate the theoretical results and demonstrate performance gains relative to nominal Nash feedback across a range of disturbance persistence levels.
comment: 11 pages, 4 Figures, 1 Table, 1 Algorithm. This work has been submitted to Automatica for possible publication
Invariant Kalman Filter for Relative Dynamics
This paper develops a geometric framework for invariant filtering of relative dynamics on Lie groups. We first revisit the notion of state trajectory independence, under which the estimation error evolves autonomously, and derive new equivalent conditions by decomposing the system vector field into left-invariant, intrinsic, and right-invariant components. Building on this result, we introduce the concept of relative trajectory independence to characterize when the relative motion between two dynamical systems is autonomous. A key theoretical finding is that relative trajectory independence automatically ensures state trajectory independence for the corresponding estimation error. This connection provides the foundation for constructing invariant filters that preserve the Lie group structure, maintain exact linearization of the error dynamics, and enable consistent covariance propagation. These are illustrated with numerical examples.
Quantifying Grid-Forming Behavior: Bridging Device-Level Dynamics and System-Level Strength
Grid-forming (GFM) technology is widely regarded as a promising solution for future power systems dominated by power electronics. However, a precise method for quantifying GFM converter behavior and a universally accepted GFM definition remain elusive. Moreover, the impact of GFM on system stability is not precisely quantified, creating a significant disconnect between device and system levels. To address these gaps from a small-signal perspective, at the device level, we introduce a novel metric, the Forming Index (FI) to quantify a converter's response to grid voltage fluctuations. Rather than enumerating various control architectures, the FI provides a metric for the converter's GFM ability by quantifying its sensitivity to grid variations. At the system level, we propose a new quantitative measure of system strength that captures the multi-bus voltage stiffness, which quantifies the voltage and phase angle responses of multiple buses to current or power disturbances. We further extend and define this concept to grid strength and bus strength to identify weak areas within the system. Finally, we bridge the device and system levels by formally proving that GFM converters enhance system strength. Our proposed framework provides a unified benchmark for GFM converter design, optimal placement, and system stability assessment.
Customising Electricity Contracts at Scale with Large Language Models
The electricity system becomes more complex, connecting massive numbers of end-users and distributed generators. Adding or removing grid connections requires expert studies to align technical constraints with user requests. In times of labour shortages, carrying out these studies represents a significant amount of time that engineers at system operators spend in planning departments. As time is limited, only standard block connectivity contracts can be offered to end-users, or the requests pile up. Even if offers are made, these often do not perfectly match the user's requirements, leading to overpaying or underusing the grid capacity. This paper investigates whether end-users can negotiate individual, flexible time-of-use contracts directly with the grid using Large Language Models (LLMs) in chats at scale. This work addresses core technical challenges in automating contract design under grid constraints, integrating LLMs with power system models, and ensuring secure, reliable interaction. We develop a chat system using functional programs for power system analysis, enabling users to request customised, technically feasible contracts at scale. We demonstrate high accuracy in executing engineering studies, robustness to user input variations, self-assessment of connection requests by small and medium enterprises, and potential for secure, chat-enabled maintenance planning. This initial study paves the way toward developing a tailored LLM system, resulting in possible high-efficiency gains for grid planning and customer management. The code is available at: https://github.com/TU-Delft-AI-Energy-Lab/LLM-Electricity-Contracts
comment: 13 pages, 20 figures
Robotics
Drone Swarm Energy Management
This note presents an analytical framework for decision-making in drone swarm systems operating under uncertainty, based on the integration of Partially Observable Markov Decision Processes (POMDP) with Deep Deterministic Policy Gradient (DDPG) reinforcement learning. The proposed approach enables adaptive control and cooperative behavior of unmanned aerial vehicles (UAVs) within a cognitive AI platform, where each agent learns optimal energy management and navigation policies from dynamic environmental states. We extend the standard DDPG architecture with a belief-state representation derived from Bayesian filtering, allowing for robust decision-making in partially observable environments. In this paper, for the Gaussian case, we numerically compare the performance of policies derived from DDPG to optimal policies for discretized versions of the original continuous problem. Simulation results demonstrate that the POMDP-DDPG-based swarm control model significantly improves mission success rates and energy efficiency compared to baseline methods. The developed framework supports distributed learning and decision coordination across multiple agents, providing a foundation for scalable cognitive swarm autonomy. The outcomes of this research contribute to the advancement of energy-aware control algorithms for intelligent multi-agent systems and can be applied in security, environmental monitoring, and infrastructure inspection scenarios.
comment: 14 pages, 4 Tables, 2 Figures
Volumetric Ergodic Control
Ergodic control synthesizes optimal coverage behaviors over spatial distributions for nonlinear systems. However, existing formulations model the robot as a non-volumetric point, but in practice a robot interacts with the environment through its body and sensors with physical volume. In this work, we introduce a new ergodic control formulation that optimizes spatial coverage using a volumetric state representation. Our method preserves the asymptotic coverage guarantees of ergodic control, adds minimal computational overhead for real-time control, and supports arbitrary sample-based volumetric models. We evaluate our method across search and manipulation tasks -- with multiple robot dynamics and end-effector geometries or sensor models -- and show that it improves coverage efficiency by more than a factor of two while maintaining a 100% task completion rate across all experiments, outperforming the standard ergodic control method. Finally, we demonstrate the effectiveness of our method on a robot arm performing mechanical erasing tasks.
comment: 8 pages, 8 figures
Terrain Costmap Generation via Scaled Preference Conditioning
Successful autonomous robot navigation in off-road domains requires the ability to generate high-quality terrain costmaps that are able to both generalize well over a wide variety of terrains and rapidly adapt relative costs at test time to meet mission-specific needs. Existing approaches for costmap generation allow for either rapid test-time adaptation of relative costs (e.g., semantic segmentation methods) or generalization to new terrain types (e.g., representation learning methods), but not both. In this work, we present scaled preference conditioned all-terrain costmap generation (SPACER), a novel approach for generating terrain costmaps that leverages synthetic data during training in order to generalize well to new terrains, and allows for rapid test-time adaptation of relative costs by conditioning on a user-specified scaled preference context. Using large-scale aerial maps, we provide empirical evidence that SPACER outperforms other approaches at generating costmaps for terrain navigation, with the lowest measured regret across varied preferences in five of seven environments for global path planning.
Scalable Policy Evaluation with Video World Models
Training generalist policies for robotic manipulation has shown great promise, as they enable language-conditioned, multi-task behaviors across diverse scenarios. However, evaluating these policies remains difficult because real-world testing is expensive, time-consuming, and labor-intensive. It also requires frequent environment resets and carries safety risks when deploying unproven policies on physical robots. Manually creating and populating simulation environments with assets for robotic manipulation has not addressed these issues, primarily due to the significant engineering effort required and the often substantial sim-to-real gap, both in terms of physics and rendering. In this paper, we explore the use of action-conditional video generation models as a scalable way to learn world models for policy evaluation. We demonstrate how to incorporate action conditioning into existing pre-trained video generation models. This allows leveraging internet-scale in-the-wild online videos during the pre-training stage, and alleviates the need for a large dataset of paired video-action data, which is expensive to collect for robotic manipulation. Our paper examines the effect of dataset diversity, pre-trained weight and common failure cases for the proposed evaluation pipeline.Our experiments demonstrate that, across various metrics, including policy ranking and the correlation between actual policy values and predicted policy values, these models offer a promising approach for evaluating policies without requiring real-world interactions.
Scalable Coverage Trajectory Synthesis on GPUs as Statistical Inference
Coverage motion planning is essential to a wide range of robotic tasks. Unlike conventional motion planning problems, which reason over temporal sequences of states, coverage motion planning requires reasoning over the spatial distribution of entire trajectories, making standard motion planning methods limited in computational efficiency and less amenable to modern parallelization frameworks. In this work, we formulate the coverage motion planning problem as a statistical inference problem from the perspective of flow matching, a generative modeling technique that has gained significant attention in recent years. The proposed formulation unifies commonly used statistical discrepancy measures, such as Kullback-Leibler divergence and Sinkhorn divergence, with a standard linear quadratic regulator problem. More importantly, it decouples the generation of trajectory gradients for coverage from the synthesis of control under nonlinear system dynamics, enabling significant acceleration through parallelization on modern computational architectures, particularly Graphics Processing Units (GPUs). This paper focuses on the advantages of this formulation in terms of scalability through parallelization, highlighting its computational benefits compared to conventional methods based on waypoint tracking.
comment: Presented at the "Workshop on Fast Motion Planning and Control in the Era of Parallelism" at Robotics: Science and Systems 2025. Workshop website: https://sites.google.com/rice.edu/parallelized-planning-control/
Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
A Comparative Evaluation of Prominent Methods in Autonomous Vehicle Certification
The "Vision Zero" policy, introduced by the Swedish Parliament in 1997, aims to eliminate fatalities and serious injuries resulting from traffic accidents. To achieve this goal, the use of self-driving vehicles in traffic is envisioned and a roadmap for the certification of self-driving vehicles is aimed to be determined. However, it is still unclear how the basic safety requirements that autonomous vehicles must meet will be verified and certified, and which methods will be used. This paper focuses on the comparative evaluation of the prominent methods planned to be used in the certification process of autonomous vehicles. It examines the prominent methods used in the certification process, develops a pipeline for the certification process of autonomous vehicles, and determines the stages, actors, and areas where the addressed methods can be applied.
Rethinking Progression of Memory State in Robotic Manipulation: An Object-Centric Perspective AAAI 2026
As embodied agents operate in increasingly complex environments, the ability to perceive, track, and reason about individual object instances over time becomes essential, especially in tasks requiring sequenced interactions with visually similar objects. In these non-Markovian settings, key decision cues are often hidden in object-specific histories rather than the current scene. Without persistent memory of prior interactions (what has been interacted with, where it has been, or how it has changed) visuomotor policies may fail, repeat past actions, or overlook completed ones. To surface this challenge, we introduce LIBERO-Mem, a non-Markovian task suite for stress-testing robotic manipulation under object-level partial observability. It combines short- and long-horizon object tracking with temporally sequenced subgoals, requiring reasoning beyond the current frame. However, vision-language-action (VLA) models often struggle in such settings, with token scaling quickly becoming intractable even for tasks spanning just a few hundred frames. We propose Embodied-SlotSSM, a slot-centric VLA framework built for temporal scalability. It maintains spatio-temporally consistent slot identities and leverages them through two mechanisms: (1) slot-state-space modeling for reconstructing short-term history, and (2) a relational encoder to align the input tokens with action decoding. Together, these components enable temporally grounded, context-aware action prediction. Experiments show Embodied-SlotSSM's baseline performance on LIBERO-Mem and general tasks, offering a scalable solution for non-Markovian reasoning in object-centric robotic policies.
comment: Accepted at AAAI 2026
SimTac: A Physics-Based Simulator for Vision-Based Tactile Sensing with Biomorphic Structures
Tactile sensing in biological organisms is deeply intertwined with morphological form, such as human fingers, cat paws, and elephant trunks, which enables rich and adaptive interactions through a variety of geometrically complex structures. In contrast, vision-based tactile sensors in robotics have been limited to simple planar geometries, with biomorphic designs remaining underexplored. To address this gap, we present SimTac, a physics-based simulation framework for the design and validation of biomorphic tactile sensors. SimTac consists of particle-based deformation modeling, light-field rendering for photorealistic tactile image generation, and a neural network for predicting mechanical responses, enabling accurate and efficient simulation across a wide range of geometries and materials. We demonstrate the versatility of SimTac by designing and validating physical sensor prototypes inspired by biological tactile structures and further demonstrate its effectiveness across multiple Sim2Real tactile tasks, including object classification, slip detection, and contact safety assessment. Our framework bridges the gap between bio-inspired design and practical realisation, expanding the design space of tactile sensors and paving the way for tactile sensing systems that integrate morphology and sensing to enable robust interaction in unstructured environments.
RadAround: A Field-Expedient Direction Finder for Contested IoT Sensing & EM Situational Awareness
This paper presents RadAround, a passive 2-D direction-finding system designed for adversarial IoT sensing in contested environments. Using mechanically steered narrow-beam antennas and field-deployable SCADA software, it generates high-resolution electromagnetic (EM) heatmaps using low-cost COTS or 3D-printed components. The microcontroller-deployable SCADA coordinates antenna positioning and SDR sampling in real time for resilient, on-site operation. Its modular design enables rapid adaptation for applications such as EMC testing in disaster-response deployments, battlefield spectrum monitoring, electronic intrusion detection, and tactical EM situational awareness (EMSA). Experiments show RadAround detecting computing machinery through walls, assessing utilization, and pinpointing EM interference (EMI) leakage sources from Faraday enclosures.
comment: 6 pages. Cite as O. Maute, B. A. Roberts, and B. Peköz, "RadAround: A field-expedient direction finder for contested IoT sensing & EM situational awareness," in Proc. 2025 IEEE Military Commun. Conf. (MILCOM), Los Angeles, USA, Oct. 2025, pp. 1-6
Simulating an Autonomous System in CARLA using ROS 2
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
6D Strawberry Pose Estimation: Real-time and Edge AI Solutions Using Purely Synthetic Training Data
Automated and selective harvesting of fruits has become an important area of research, particularly due to challenges such as high costs and a shortage of seasonal labor in advanced economies. This paper focuses on 6D pose estimation of strawberries using purely synthetic data generated through a procedural pipeline for photorealistic rendering. We employ the YOLOX-6D-Pose algorithm, a single-shot approach that leverages the YOLOX backbone, known for its balance between speed and accuracy, and its support for edge inference. To address the lacking availability of training data, we introduce a robust and flexible pipeline for generating synthetic strawberry data from various 3D models via a procedural Blender pipeline, where we focus on enhancing the realism of the synthesized data in comparison to previous work to make it a valuable resource for training pose estimation algorithms. Quantitative evaluations indicate that our models achieve comparable accuracy on both the NVIDIA RTX 3090 and Jetson Orin Nano across several ADD-S metrics, with the RTX 3090 demonstrating superior processing speed. However, the Jetson Orin Nano is particularly suited for resource-constrained environments, making it an excellent choice for deployment in agricultural robotics. Qualitative assessments further confirm the model's performance, demonstrating its capability to accurately infer the poses of ripe and partially ripe strawberries, while facing challenges in detecting unripe specimens. This suggests opportunities for future improvements, especially in enhancing detection capabilities for unripe strawberries (if desired) by exploring variations in color. Furthermore, the methodology presented could be adapted easily for other fruits such as apples, peaches, and plums, thereby expanding its applicability and impact in the field of agricultural automation.
Experiences from Benchmarking Vision-Language-Action Models for Robotic Manipulation
Foundation models applied in robotics, particularly \textbf{Vision--Language--Action (VLA)} models, hold great promise for achieving general-purpose manipulation. Yet, systematic real-world evaluations and cross-model comparisons remain scarce. This paper reports our \textbf{empirical experiences} from benchmarking four representative VLAs -- \textbf{ACT}, \textbf{OpenVLA--OFT}, \textbf{RDT-1B}, and \boldmath{$π_0$} -- across four manipulation tasks conducted in both simulation and on the \textbf{ALOHA Mobile} platform. We establish a \textbf{standardized evaluation framework} that measures performance along three key dimensions: (1) \textit{accuracy and efficiency} (success rate and time-to-success), (2) \textit{adaptability} across in-distribution, spatial out-of-distribution, and instance-plus-spatial out-of-distribution settings, and (3) \textit{language instruction-following accuracy}. Through this process, we observe that \boldmath{$π_0$} demonstrates superior adaptability in out-of-distribution scenarios, while \textbf{ACT} provides the highest stability in-distribution. Further analysis highlights differences in computational demands, data-scaling behavior, and recurring failure modes such as near-miss grasps, premature releases, and long-horizon state drift. These findings reveal practical trade-offs among VLA model architectures in balancing precision, generalization, and deployment cost, offering actionable insights for selecting and deploying VLAs in real-world robotic manipulation tasks.
Sashimi-Bot: Autonomous Tri-manual Advanced Manipulation and Cutting of Deformable Objects
Advanced robotic manipulation of deformable, volumetric objects remains one of the greatest challenges due to their pliancy, frailness, variability, and uncertainties during interaction. Motivated by these challenges, this article introduces Sashimi-Bot, an autonomous multi-robotic system for advanced manipulation and cutting, specifically the preparation of sashimi. The objects that we manipulate, salmon loins, are natural in origin and vary in size and shape, they are limp and deformable with poorly characterized elastoplastic parameters, while also being slippery and hard to hold. The three robots straighten the loin; grasp and hold the knife; cut with the knife in a slicing motion while cooperatively stabilizing the loin during cutting; and pick up the thin slices from the cutting board or knife blade. Our system combines deep reinforcement learning with in-hand tool shape manipulation, in-hand tool cutting, and feedback of visual and tactile information to achieve robustness to the variabilities inherent in this task. This work represents a milestone in robotic manipulation of deformable, volumetric objects that may inspire and enable a wide range of other real-world applications.
Humanoid Whole-Body Badminton via Multi-Stage Reinforcement Learning
Humanoid robots have demonstrated strong capability for interacting with deterministic scenes across locomotion, manipulation, and more challenging loco-manipulation tasks. Yet the real world is dynamic, quasi-static interactions are insufficient to cope with the various environmental conditions. As a step toward more dynamic interaction scenario, we present a reinforcement-learning-based training pipeline that produces a unified whole-body controller for humanoid badminton, enabling coordinated lower-body footwork and upper-body striking without any motion priors or expert demonstrations. Training follows a three-stage curriculum: first footwork acquisition, then precision-guided racket swing generation, and finally task-focused refinement, yielding motions in which both legs and arms serve the hitting objective. For deployment, we incorporate an Extended Kalman Filter (EKF) to estimate and predict shuttlecock trajectories for target striking. We also introduce a prediction-free variant that dispenses with EKF and explicit trajectory prediction. To validate the framework, we conduct five sets of experiment in both simulation and the real world. In simulation, two robots sustain a rally of 21 consecutive hits. Moreover, the prediction-free variant achieves successful hits with comparable performance relative to the target-known policy. In real-world tests, both the prediction and controller module exhibit high accuracy, and on-court hitting achieves an outgoing shuttle speed up to 10 m/s with a mean return landing distance of 3.5 m. These experiment results show that our humanoid robot can deliver highly dynamic while precise goal striking in badminton, and can be adapted to more dynamism critical domains.
Phys-Liquid: A Physics-Informed Dataset for Estimating 3D Geometry and Volume of Transparent Deformable Liquids AAAI-26
Estimating the geometric and volumetric properties of transparent deformable liquids is challenging due to optical complexities and dynamic surface deformations induced by container movements. Autonomous robots performing precise liquid manipulation tasks, such as dispensing, aspiration, and mixing, must handle containers in ways that inevitably induce these deformations, complicating accurate liquid state assessment. Current datasets lack comprehensive physics-informed simulation data representing realistic liquid behaviors under diverse dynamic scenarios. To bridge this gap, we introduce Phys-Liquid, a physics-informed dataset comprising 97,200 simulation images and corresponding 3D meshes, capturing liquid dynamics across multiple laboratory scenes, lighting conditions, liquid colors, and container rotations. To validate the realism and effectiveness of Phys-Liquid, we propose a four-stage reconstruction and estimation pipeline involving liquid segmentation, multi-view mask generation, 3D mesh reconstruction, and real-world scaling. Experimental results demonstrate improved accuracy and consistency in reconstructing liquid geometry and volume, outperforming existing benchmarks. The dataset and associated validation methods facilitate future advancements in transparent liquid perception tasks. The dataset and code are available at https://dualtransparency.github.io/Phys-Liquid/.
comment: 14 pages, 19 figures. Accepted as an oral paper at AAAI-26 (Main Technical Track). Code and dataset: https://github.com/dualtransparency/Phys-Liquid-AAAI Project page: https://dualtransparency.github.io/Phys-Liquid/
AdaptPNP: Integrating Prehensile and Non-Prehensile Skills for Adaptive Robotic Manipulation
Non-prehensile (NP) manipulation, in which robots alter object states without forming stable grasps (for example, pushing, poking, or sliding), significantly broadens robotic manipulation capabilities when grasping is infeasible or insufficient. However, enabling a unified framework that generalizes across different tasks, objects, and environments while seamlessly integrating non-prehensile and prehensile (P) actions remains challenging: robots must determine when to invoke NP skills, select the appropriate primitive for each context, and compose P and NP strategies into robust, multi-step plans. We introduce ApaptPNP, a vision-language model (VLM)-empowered task and motion planning framework that systematically selects and combines P and NP skills to accomplish diverse manipulation objectives. Our approach leverages a VLM to interpret visual scene observations and textual task descriptions, generating a high-level plan skeleton that prescribes the sequence and coordination of P and NP actions. A digital-twin based object-centric intermediate layer predicts desired object poses, enabling proactive mental rehearsal of manipulation sequences. Finally, a control module synthesizes low-level robot commands, with continuous execution feedback enabling online task plan refinement and adaptive replanning through the VLM. We evaluate ApaptPNP across representative P&NP hybrid manipulation tasks in both simulation and real-world environments. These results underscore the potential of hybrid P&NP manipulation as a crucial step toward general-purpose, human-level robotic manipulation capabilities. Project Website: https://sites.google.com/view/adaptpnp/home
Autonomous Vehicle Path Planning by Searching With Differentiable Simulation
Planning allows an agent to safely refine its actions before executing them in the real world. In autonomous driving, this is crucial to avoid collisions and navigate in complex, dense traffic scenarios. One way to plan is to search for the best action sequence. However, this is challenging when all necessary components - policy, next-state predictor, and critic - have to be learned. Here we propose Differentiable Simulation for Search (DSS), a framework that leverages the differentiable simulator Waymax as both a next state predictor and a critic. It relies on the simulator's hardcoded dynamics, making state predictions highly accurate, while utilizing the simulator's differentiability to effectively search across action sequences. Our DSS agent optimizes its actions using gradient descent over imagined future trajectories. We show experimentally that DSS - the combination of planning gradients and stochastic search - significantly improves tracking and path planning accuracy compared to sequence prediction, imitation learning, model-free RL, and other planning methods.
Miniature Testbed for Validating Multi-Agent Cooperative Autonomous Driving
Cooperative autonomous driving, which extends vehicle autonomy by enabling real-time collaboration between vehicles and smart roadside infrastructure, remains a challenging yet essential problem. However, none of the existing testbeds employ smart infrastructure equipped with sensing, edge computing, and communication capabilities. To address this gap, we design and implement a 1:15-scale miniature testbed, CIVAT, for validating cooperative autonomous driving, consisting of a scaled urban map, autonomous vehicles with onboard sensors, and smart infrastructure. The proposed testbed integrates V2V and V2I communication with the publish-subscribe pattern through a shared Wi-Fi and ROS2 framework, enabling information exchange between vehicles and infrastructure to realize cooperative driving functionality. As a case study, we validate the system through infrastructure-based perception and intersection management experiments.
comment: 8 pages
Latent-Space Autoregressive World Model for Efficient and Robust Image-Goal Navigation
Traditional navigation methods rely heavily on accurate localization and mapping. In contrast, world models that capture environmental dynamics in latent space have opened up new perspectives for navigation tasks, enabling systems to move beyond traditional multi-module pipelines. However, world model often suffers from high computational costs in both training and inference. To address this, we propose LS-NWM - a lightweight latent space navigation world model that is trained and operates entirely in latent space, compared to the state-of-the-art baseline, our method reduces training time by approximately 3.2x and planning time by about 447x,while further improving navigation performance with a 35% higher SR and an 11% higher SPL. The key idea is that accurate pixel-wise environmental prediction is unnecessary for navigation. Instead, the model predicts future latent states based on current observational features and action inputs, then performs path planning and decision-making within this compact representation, significantly improving computational efficiency. By incorporating an autoregressive multi-frame prediction strategy during training, the model effectively captures long-term spatiotemporal dependencies, thereby enhancing navigation performance in complex scenarios. Experimental results demonstrate that our method achieves state-of-the-art navigation performance while maintaining a substantial efficiency advantage over existing approaches.
Dynamic Reconfiguration of Robotic Swarms: Coordination and Control for Precise Shape Formation
Coordination of movement and configuration in robotic swarms is a challenging endeavor. Deciding when and where each individual robot must move is a computationally complex problem. The challenge is further exacerbated by difficulties inherent to physical systems, such as measurement error and control dynamics. Thus, how to best determine the optimal path for each robot, when moving from one configuration to another, and how to best perform such determination and effect corresponding motion remains an open problem. In this paper, we show an algorithm for such coordination of robotic swarms. Our methods allow seamless transition from one configuration to another, leveraging geometric formulations that are mapped to the physical domain through appropriate control, localization, and mapping techniques. This paves the way for novel applications of robotic swarms by enabling more sophisticated distributed behaviors.
comment: accepted at the 9th International Conference on Algorithms, Computing and Systems (ICACS 2025)
Dexterous Manipulation Transfer via Progressive Kinematic-Dynamic Alignment AAAI 2026
The inherent difficulty and limited scalability of collecting manipulation data using multi-fingered robot hand hardware platforms have resulted in severe data scarcity, impeding research on data-driven dexterous manipulation policy learning. To address this challenge, we present a hand-agnostic manipulation transfer system. It efficiently converts human hand manipulation sequences from demonstration videos into high-quality dexterous manipulation trajectories without requirements of massive training data. To tackle the multi-dimensional disparities between human hands and dexterous hands, as well as the challenges posed by high-degree-of-freedom coordinated control of dexterous hands, we design a progressive transfer framework: first, we establish primary control signals for dexterous hands based on kinematic matching; subsequently, we train residual policies with action space rescaling and thumb-guided initialization to dynamically optimize contact interactions under unified rewards; finally, we compute wrist control trajectories with the objective of preserving operational semantics. Using only human hand manipulation videos, our system automatically configures system parameters for different tasks, balancing kinematic matching and dynamic optimization across dexterous hands, object categories, and tasks. Extensive experimental results demonstrate that our framework can automatically generate smooth and semantically correct dexterous hand manipulation that faithfully reproduces human intentions, achieving high efficiency and strong generalizability with an average transfer success rate of 73%, providing an easily implementable and scalable method for collecting robot dexterous manipulation data.
comment: 13 pages, 15 figures. Accepted by AAAI 2026
Terradynamics and design of tip-extending robotic anchors
Most engineered pilings require substantially more force to be driven into the ground than they can resist during extraction. This requires relatively heavy equipment for insertion, which is problematic for anchoring in hard-to-access sites, including in extraterrestrial locations. In contrast, for tree roots, the external reaction force required to extract is much greater than required to insert--little more than the weight of the seed initiates insertion. This is partly due to the mechanism by which roots insert into the ground: tip extension. Proof-of-concept robotic prototypes have shown the benefits of using this mechanism, but a rigorous understanding of the underlying granular mechanics and how they inform the design of a robotic anchor is lacking. Here, we study the terradynamics of tip-extending anchors compared to traditional piling-like intruders, develop a set of design insights, and apply these to create a deployable robotic anchor. Specifically, we identify that to increase an anchor's ratio of extraction force to insertion force, it should: (i) extend beyond a critical depth; (ii) include hair-like protrusions; (iii) extend near-vertically, and (iv) incorporate multiple smaller anchors rather than a single large anchor. Synthesizing these insights, we developed a lightweight, soft robotic, root-inspired anchoring device that inserts into the ground with a reaction force less than its weight. We demonstrate that the 300 g device can deploy a series of temperature sensors 45 cm deep into loose Martian regolith simulant while anchoring with an average of 120 N, resulting in an anchoring-to-weight ratio of 40:1.
Collaborative Multi-Robot Non-Prehensile Manipulation via Flow-Matching Co-Generation
Coordinating a team of robots to reposition multiple objects in cluttered environments requires reasoning jointly about where robots should establish contact, how to manipulate objects once contact is made, and how to navigate safely and efficiently at scale. Prior approaches typically fall into two extremes -- either learning the entire task or relying on privileged information and hand-designed planners -- both of which struggle to handle diverse objects in long-horizon tasks. To address these challenges, we present a unified framework for collaborative multi-robot, multi-object non-prehensile manipulation that integrates flow-matching co-generation with anonymous multi-robot motion planning. Within this framework, a generative model co-generates contact formations and manipulation trajectories from visual observations, while a novel motion planner conveys robots at scale. Crucially, the same planner also supports coordination at the object level, assigning manipulated objects to larger target structures and thereby unifying robot- and object-level reasoning within a single algorithmic framework. Experiments in challenging simulated environments demonstrate that our approach outperforms baselines in both motion planning and manipulation tasks, highlighting the benefits of generative co-design and integrated planning for scaling collaborative manipulation to complex multi-agent, multi-object settings. Visit gco-paper.github.io for code and demonstrations.
WetExplorer: Automating Wetland Greenhouse-Gas Surveys with an Autonomous Mobile Robot
Quantifying greenhouse-gases (GHG) in wetlands is critical for climate modeling and restoration assessment, yet manual sampling is labor-intensive, and time demanding. We present WetExplorer, an autonomous tracked robot that automates the full GHG-sampling workflow. The robot system integrates low-ground-pressure locomotion, centimeter-accurate lift placement, dual-RTK sensor fusion, obstacle avoidance planning, and deep-learning perception in a containerized ROS2 stack. Outdoor trials verified that the sensor-fusion stack maintains a mean localization error of 1.71 cm, the vision module estimates object pose with 7 mm translational and 3° rotational accuracy, while indoor trials demonstrated that the full motion-planning pipeline positions the sampling chamber within a global tolerance of 70 mm while avoiding obstacles, all without human intervention. By eliminating the manual bottleneck, WetExplorer enables high-frequency, multi-site GHG measurements and opens the door for dense, long-duration datasets in saturated wetland terrain.
comment: To be published in 2025 IEEE International Conference on Robotics and Biomimetics
MATT-Diff: Multimodal Active Target Tracking by Diffusion Policy
This paper proposes MATT-Diff: Multi-Modal Active Target Tracking by Diffusion Policy, a control policy that captures multiple behavioral modes - exploration, dedicated tracking, and target reacquisition - for active multi-target tracking. The policy enables agent control without prior knowledge of target numbers, states, or dynamics. Effective target tracking demands balancing exploration for undetected or lost targets with following the motion of detected but uncertain ones. We generate a demonstration dataset from three expert planners including frontier-based exploration, an uncertainty-based hybrid planner switching between frontier-based exploration and RRT* tracking based on target uncertainty, and a time-based hybrid planner switching between exploration and tracking based on target detection time. We design a control policy utilizing a vision transformer for egocentric map tokenization and an attention mechanism to integrate variable target estimates represented by Gaussian densities. Trained as a diffusion model, the policy learns to generate multi-modal action sequences through a denoising process. Evaluations demonstrate MATT-Diff's superior tracking performance against expert and behavior cloning baselines across multiple target motions, empirically validating its advantages in target tracking.
comment: 14 pages, 3 figures. Submitted to L4DC 2026
Autonomous Underwater Cognitive System for Adaptive Navigation: A SLAM-Integrated Cognitive Architecture
Deep-sea exploration poses significant challenges, including disorientation, communication loss, and navigational failures in dynamic underwater environments. This paper presents an Autonomous Underwater Cognitive System (AUCS) that integrates Simultaneous Localization and Mapping (SLAM) with a Soar-based cognitive architecture to enable adaptive navigation in complex oceanic conditions. The system fuses multi-sensor data from SONAR, LiDAR, IMU, and DVL with cognitive reasoning modules for perception, attention, planning, and learning. Unlike conventional SLAM systems, AUCS incorporates semantic understanding, adaptive sensor management, and memory-based learning to differentiate between dynamic and static objects, reducing false loop closures and enhancing long-term map consistency. The proposed architecture demonstrates a complete perception-cognition-action-learning loop, allowing autonomous underwater vehicles to sense, reason, and adapt intelligently. This work lays a foundation for next-generation cognitive submersible systems, improving safety, reliability, and autonomy in deep-sea exploration.
comment: 6 pages, 2 figures
LAVQA: A Latency-Aware Visual Question Answering Framework for Shared Autonomy in Self-Driving Vehicles
When uncertainty is high, self-driving vehicles may halt for safety and benefit from the access to remote human operators who can provide high-level guidance. This paradigm, known as {shared autonomy}, enables autonomous vehicle and remote human operators to jointly formulate appropriate responses. To address critical decision timing with variable latency due to wireless network delays and human response time, we present LAVQA, a latency-aware shared autonomy framework that integrates Visual Question Answering (VQA) and spatiotemporal risk visualization. LAVQA augments visual queries with Latency-Induced COllision Map (LICOM), a dynamically evolving map that represents both temporal latency and spatial uncertainty. It enables remote operator to observe as the vehicle safety regions vary over time in the presence of dynamic obstacles and delayed responses. Closed-loop simulations in CARLA, the de-facto standard for autonomous vehicle simulator, suggest that that LAVQA can reduce collision rates by over 8x compared to latency-agnostic baselines.
Large Language Models and 3D Vision for Intelligent Robotic Perception and Autonomy: A Review
With the rapid advancement of artificial intelligence and robotics, the integration of Large Language Models (LLMs) with 3D vision is emerging as a transformative approach to enhancing robotic sensing technologies. This convergence enables machines to perceive, reason and interact with complex environments through natural language and spatial understanding, bridging the gap between linguistic intelligence and spatial perception. This review provides a comprehensive analysis of state-of-the-art methodologies, applications and challenges at the intersection of LLMs and 3D vision, with a focus on next-generation robotic sensing technologies. We first introduce the foundational principles of LLMs and 3D data representations, followed by an in-depth examination of 3D sensing technologies critical for robotics. The review then explores key advancements in scene understanding, text-to-3D generation, object grounding and embodied agents, highlighting cutting-edge techniques such as zero-shot 3D segmentation, dynamic scene synthesis and language-guided manipulation. Furthermore, we discuss multimodal LLMs that integrate 3D data with touch, auditory and thermal inputs, enhancing environmental comprehension and robotic decision-making. To support future research, we catalog benchmark datasets and evaluation metrics tailored for 3D-language and vision tasks. Finally, we identify key challenges and future research directions, including adaptive model architectures, enhanced cross-modal alignment and real-time processing capabilities, which pave the way for more intelligent, context-aware and autonomous robotic sensing systems.
comment: 45 pages, 15 figures, MDPI Sensors Journal
EAST: Environment Aware Safe Tracking using Planning and Control Co-Design
This paper considers the problem of autonomous mobile robot navigation in unknown environments with moving obstacles. We propose a new method to achieve environment-aware safe tracking (EAST) of robot motion plans that integrates an obstacle clearance cost for path planning, a convex reachable set for robot motion prediction, and safety constraints for dynamic obstacle avoidance. EAST adapts the motion of the robot according to the locally sensed environment geometry and dynamics, leading to fast motion in wide open areas and cautious behavior in narrow passages or near moving obstacles. Our control design uses a reference governor, a virtual dynamical system that guides the robot's motion and decouples the path tracking and safety objectives. While reference governor methods have been used for safe tracking control in static environments, our key contribution is an extension to dynamic environments using convex optimization with control barrier function (CBF) constraints. Thus, our work establishes a connection between reference governor techniques and CBF techniques for safe control in dynamic environments. We validate our approach in simulated and real-world environments, featuring complex obstacle configurations and natural dynamic obstacle motion.
Sensory-Motor Control with Large Language Models via Iterative Policy Refinement
We propose a method that enables large language models (LLMs) to control embodied agents through the generation of control policies that directly map continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as GPT-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b and gpt-oss:20b. 27 pages (13 pages are from appendix), 8 figures, 2 tables, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
DiAReL: Reinforcement Learning with Disturbance Awareness for Robust Sim2Real Policy Transfer in Robot Control
Delayed Markov decision processes (DMDPs) fulfill the Markov property by augmenting the state space of agents with a finite time window of recently committed actions. In reliance on these state augmentations, delay-resolved reinforcement learning algorithms train policies to learn optimal interactions with environments featuring observation or action delays. Although such methods can be directly trained on the real robots, due to sample inefficiency, limited resources, or safety constraints, a common approach is to transfer models trained in simulation to the physical robot. However, robotic simulations rely on approximated models of the physical systems, which hinders the sim2real transfer. In this work, we consider various uncertainties in modeling the robot or environment dynamics as unknown intrinsic disturbances applied to the system input. We introduce the disturbance-augmented Markov decision process (DAMDP) in delayed settings as a novel representation to incorporate disturbance estimation in training on-policy reinforcement learning algorithms. The proposed method is validated across several metrics on learning robotic reaching and pushing tasks and compared with disturbance-unaware baselines. The results show that the disturbance-augmented models can achieve higher stabilization and robustness in the control response, which in turn improves the prospects of successful sim2real transfer.
comment: Accepted for publication in IEEE Transactions on Control Systems Technology (TCST)
Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
Reconfigurable hydrostatics: Toward versatile and efficient load-bearing robotics
Wearable and legged robot designers face multiple challenges when choosing actuation. Traditional fully actuated designs using electric motors are multifunctional but oversized and inefficient for bearing conservative loads and for being backdrivable. Alternatively, quasi-passive and underactuated designs reduce the amount of motorization and energy storage, but are often designed for specific tasks. Designers of versatile and stronger wearable robots will face these challenges unless future actuators become very torque-dense, backdrivable and efficient This paper explores a design paradigm for addressing this issue: reconfigurable hydrostatics. We show that a hydrostatic actuator can integrate a passive force mechanism and a sharing mechanism in the fluid domain and still be multifunctional. First, an analytical study compares the effect of these two mechanisms on the motorization requirements in the context of a load-bearing exoskeleton. Then, the hydrostatic concept integrating these two mechanisms using hydraulic components is presented. A case study analysis shows the mass/efficiency/inertia benefits of the concept over a fully actuated one. Then, experiments are conducted on robotic legs to demonstrate that the actuator concept can meet the expected performance in terms of force tracking, versatility, and efficiency under controlled conditions. The proof-of-concept can track the vertical ground reaction force (GRF) profiles of walking, running, squatting, and jumping, and the energy consumption is 4.8x lower for walking. The transient force behaviors due to switching from one leg to the other are also analyzed along with some mitigation to improve them.
Enhancing the NAO: Extending Capabilities of Legacy Robots for Long-Term Research
Legacy (unsupported) robotic platforms often lose research utility when manufacturer support ends, preventing integration of modern sensing, speech, and interaction capabilities. We present the Enhanced NAO, a revitalized version of Aldebaran's NAO robot featuring upgraded beamforming microphones, RGB-D and thermal cameras, and additional compute resources in a fully self-contained package. This system combines cloud-based and local models for perception and dialogue, while preserving the NAO's expressive body and behaviors. In a pilot user study validating conversational performance, the Enhanced NAO delivered significantly higher conversational quality and elicited stronger user preference compared to the NAO AI Edition, without increasing response latency. The added visual and thermal sensing modalities established a foundation for future perception-driven interaction. Beyond this implementation, our framework provides a platform-agnostic strategy for extending the lifespan and research utility of legacy robots, ensuring they remain valuable tools for human-robot interaction.
Large Language Model-assisted Autonomous Vehicle Recovery from Immobilization
Despite significant advancements in recent decades, autonomous vehicles (AVs) continue to face challenges in navigating certain traffic scenarios where human drivers excel. In such situations, AVs often become immobilized, disrupting overall traffic flow. Current recovery solutions, such as remote intervention (which is costly and inefficient) and manual takeover (which excludes non-drivers and limits AV accessibility), are inadequate. This paper introduces StuckSolver, a novel Large Language Model (LLM) driven recovery framework that enables AVs to resolve immobilization scenarios through self-reasoning and/or passenger-guided decision-making. StuckSolver is designed as a plug-in add-on module that operates on top of the AV's existing perception-planning-control stack, requiring no modification to its internal architecture. Instead, it interfaces with standard sensor data streams to detect immobilization states, interpret environmental context, and generate high-level recovery commands that can be executed by the AV's native planner. We evaluate StuckSolver on the Bench2Drive benchmark and in custom-designed uncertainty scenarios. Results show that StuckSolver achieves near-state-of-the-art performance through autonomous self-reasoning alone and exhibits further improvements when passenger guidance is incorporated.
comment: 7 pages
A Learning-Based Framework for Collision-Free Motion Planning
This paper presents a learning-based extension to a Circular Field (CF)-based motion planner for efficient, collision-free trajectory generation in cluttered environments. The proposed approach overcomes the limitations of hand-tuned force field parameters by employing a deep neural network trained to infer optimal planner gains from a single depth image of the scene. The pipeline incorporates a CUDA-accelerated perception module, a predictive agent-based planning strategy, and a dataset generated through Bayesian optimization in simulation. The resulting framework enables real-time planning without manual parameter tuning and is validated both in simulation and on a Franka Emika Panda robot. Experimental results demonstrate successful task completion and improved generalization compared to classical planners.
Pelican-VL 1.0: A Foundation Brain Model for Embodied Intelligence
This report presents Pelican-VL 1.0, a new family of open-source embodied brain models with parameter scales ranging from 7 billion to 72 billion. Our explicit mission is clearly stated as: To embed powerful intelligence into various embodiments. Pelican-VL 1.0 is currently the largest-scale open-source embodied multimodal brain model. Its core advantage lies in the in-depth integration of data power and intelligent adaptive learning mechanisms. Specifically, metaloop distilled a high-quality dataset from a raw dataset containing 4+ billion tokens. Pelican-VL 1.0 is trained on a large-scale cluster of 1000+ A800 GPUs, consuming over 50k+ A800 GPU-hours per checkpoint. This translates to a 20.3% performance uplift from its base model and outperforms 100B-level open-source counterparts by 10.6%, placing it on par with leading proprietary systems on well-known embodied benchmarks. We establish a novel framework, DPPO (Deliberate Practice Policy Optimization), inspired by human metacognition to train Pelican-VL 1.0. We operationalize this as a metaloop that teaches the AI to practice deliberately, which is a RL-Refine-Diagnose-SFT loop.
Leveraging Sidewalk Robots for Walkability-Related Analyses
Walkability is a key component of sustainable urban development. In walkability studies, collecting detailed pedestrian infrastructure data remains challenging due to the high costs and limited scalability of traditional methods. Sidewalk delivery robots, increasingly deployed in urban environments, offer a promising solution to these limitations. This paper explores how these robots can serve as mobile data collection platforms, capturing sidewalk-level features related to walkability in a scalable, automated, and real-time manner. A sensor-equipped robot was deployed on a sidewalk network at KTH in Stockholm, completing 101 trips covering 900 segment records. From the collected data, different typologies of features are derived, including robot trip characteristics (e.g., speed, duration), sidewalk conditions (e.g., width, surface unevenness), and sidewalk utilization (e.g., pedestrian density). Their walkability-related implications were investigated with a series of analyses. The results demonstrate that pedestrian movement patterns are strongly influenced by sidewalk characteristics, with higher density, reduced width, and surface irregularity associated with slower and more variable trajectories. Notably, robot speed closely mirrors pedestrian behavior, highlighting its potential as a proxy for assessing pedestrian dynamics. The proposed framework enables continuous monitoring of sidewalk conditions and pedestrian behavior, contributing to the development of more walkable, inclusive, and responsive urban environments.
TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Accepted to AAAI 2026. Camera-ready version
MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relation
comment: 10 pages
Towards Efficient Certification of Maritime Remote Operation Centers
Additional automation being build into ships implies a shift of crew from ship to shore. However, automated ships still have to be monitored and, in some situations, controlled remotely. These tasks are carried out by human operators located in shore-based remote operation centers. In this work, we present a concept for a hazard database that supports the safeguarding and certification of such remote operation centers. The concept is based on a categorization of hazard sources which we derive from a generic functional architecture. A subsequent preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
Efficient Learning-Based Control of a Legged Robot in Lunar Gravity
Legged robots are promising candidates for exploring challenging areas on low-gravity bodies such as the Moon, Mars, or asteroids, thanks to their advanced mobility on unstructured terrain. However, as planetary robots' power and thermal budgets are highly restricted, these robots need energy-efficient control approaches that easily transfer to multiple gravity environments. In this work, we introduce a reinforcement learning-based control approach for legged robots with gravity-scaled power-optimized reward functions. We use our approach to develop and validate a locomotion controller and a base pose controller in gravity environments from lunar gravity (1.62 m/s2) to a hypothetical super-Earth (19.62 m/s2). Our approach successfully scales across these gravity levels for locomotion and base pose control with the gravity-scaled reward functions. The power-optimized locomotion controller reached a power consumption for locomotion of 23.4 W in Earth gravity on a 15.65 kg robot at 0.4 m/s, a 23 % improvement over the baseline policy. Additionally, we designed a constant-force spring offload system that allowed us to conduct real-world experiments on legged locomotion in lunar gravity. In lunar gravity, the power-optimized control policy reached 12.2 W, 36 % less than a baseline controller which is not optimized for power efficiency. Our method provides a scalable approach to developing power-efficient locomotion controllers for legged robots across multiple gravity levels.
Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
Learning how to reach goals in an environment is a longstanding challenge in AI, yet reasoning over long horizons remains a challenge for modern methods. The key question is how to estimate the temporal distance between pairs of observations. While temporal difference methods leverage local updates to provide optimality guarantees, they often perform worse than Monte Carlo methods that perform global updates (e.g., with multi-step returns), which lack such guarantees. We show how these approaches can be integrated into a practical GCRL method that fits a quasimetric distance using a multistep Monte-Carlo return. We show our method outperforms existing GCRL methods on long-horizon simulated tasks with up to 4000 steps, even with visual observations. We also demonstrate that our method can enable stitching in the real-world robotic manipulation domain (Bridge setup). Our approach is the first end-to-end GCRL method that enables multistep stitching in this real-world manipulation domain from an unlabeled offline dataset of visual observations.
Zero-Shot Temporal Interaction Localization for Egocentric Videos IROS 2025
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We have released our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
comment: Accepted to IROS 2025
Fast Finite-Time Sliding Mode Control for Chattering-Free Trajectory Tracking of Robotic Manipulators
Achieving precise and efficient trajectory tracking in robotic arms remains a key challenge due to system uncertainties and chattering effects in conventional sliding mode control (SMC). This paper presents a chattering-free fast terminal sliding mode control (FTSMC) strategy for a three-degree-of-freedom (3-DOF) robotic arm, designed to enhance tracking accuracy and robustness while ensuring finite-time convergence. The control framework is developed using Newton-Euler dynamics, followed by a state-space representation that captures the system's angular position and velocity. By incorporating an improved sliding surface and a Lyapunov-based stability analysis, the proposed FTSMC effectively mitigates chattering while preserving the advantages of SMC, such as fast response and strong disturbance rejection. The controller's performance is rigorously evaluated through comparisons with conventional PD sliding mode control (PDSMC) and terminal sliding mode control (TSMC). Simulation results demonstrate that the proposed approach achieves superior trajectory tracking performance, faster convergence, and enhanced stability compared to existing methods, making it a promising solution for high-precision robotic applications.
Convergent Functions, Divergent Forms
We introduce LOKI, a compute-efficient framework for co-designing morphologies and control policies that generalize across unseen tasks. Inspired by biological adaptation -- where animals quickly adjust to morphological changes -- our method overcomes the inefficiencies of traditional evolutionary and quality-diversity algorithms. We propose learning convergent functions: shared control policies trained across clusters of morphologically similar designs in a learned latent space, drastically reducing the training cost per design. Simultaneously, we promote divergent forms by replacing mutation with dynamic local search, enabling broader exploration and preventing premature convergence. The policy reuse allows us to explore 780$\times$ more designs using 78% fewer simulation steps and 40% less compute per design. Local competition paired with a broader search results in a diverse set of high-performing final morphologies. Using the UNIMAL design space and a flat-terrain locomotion task, LOKI discovers a rich variety of designs -- ranging from quadrupeds to crabs, bipedals, and spinners -- far more diverse than those produced by prior work. These morphologies also transfer better to unseen downstream tasks in agility, stability, and manipulation domains (e.g., 2$\times$ higher reward on bump and push box incline tasks). Overall, our approach produces designs that are both diverse and adaptable, with substantially greater sample efficiency than existing co-design methods. (Project website: https://loki-codesign.github.io/)
Harnessing Bounded-Support Evolution Strategies for Policy Refinement
Improving competent robot policies with on-policy RL is often hampered by noisy, low-signal gradients. We revisit Evolution Strategies (ES) as a policy-gradient proxy and localize exploration with bounded, antithetic triangular perturbations, suitable for policy refinement. We propose Triangular-Distribution ES (TD-ES) which pairs bounded triangular noise with a centered-rank finite-difference estimator to deliver stable, parallelizable, gradient-free updates. In a two-stage pipeline - PPO pretraining followed by TD-ES refinement - this preserves early sample efficiency while enabling robust late-stage gains. Across a suite of robotic manipulation tasks, TD-ES raises success rates by 26.5% relative to PPO and greatly reduces variance, offering a simple, compute-light path to reliable refinement.
comment: 10 pages, 6 figures, to be published in Australasian Conference on Robotics and Automation (ACRA 2025)
Your Ride, Your Rules: Psychology and Cognition Enabled Automated Driving Systems
Despite rapid advances in autonomous driving technology, current autonomous vehicles (AVs) lack effective bidirectional human-machine communication, limiting their ability to personalize the riding experience and recover from uncertain or immobilized states. This limitation undermines occupant comfort and trust, potentially hindering the adoption of AV technologies. We propose PACE-ADS (Psychology and Cognition Enabled Automated Driving Systems), a human-centered autonomy framework enabling AVs to sense, interpret, and respond to both external traffic conditions and internal occupant states. PACE-ADS uses an agentic workflow where three foundation model agents collaborate: the Driver Agent interprets the external environment; the Psychologist Agent decodes passive psychological signals (e.g., EEG, heart rate, facial expressions) and active cognitive inputs (e.g., verbal commands); and the Coordinator Agent synthesizes these inputs to generate high-level decisions that enhance responsiveness and personalize the ride. PACE-ADS complements, rather than replaces, conventional AV modules. It operates at the semantic planning layer, while delegating low-level control to native systems. The framework activates only when changes in the rider's psychological state are detected or when occupant instructions are issued. It integrates into existing AV platforms with minimal adjustments, positioning PACE-ADS as a scalable enhancement. We evaluate it in closed-loop simulations across diverse traffic scenarios, including intersections, pedestrian interactions, work zones, and car-following. Results show improved ride comfort, dynamic behavioral adjustment, and safe recovery from edge-case scenarios via autonomous reasoning or rider input. PACE-ADS bridges the gap between technical autonomy and human-centered mobility.
comment: 32 pages, one colummns
GUIDES: Guidance Using Instructor-Distilled Embeddings for Pre-trained Robot Policy Enhancement IROS 2025
Pre-trained robot policies serve as the foundation of many validated robotic systems, which encapsulate extensive embodied knowledge. However, they often lack the semantic awareness characteristic of foundation models, and replacing them entirely is impractical in many situations due to high costs and the loss of accumulated knowledge. To address this gap, we introduce GUIDES, a lightweight framework that augments pre-trained policies with semantic guidance from foundation models without requiring architectural redesign. GUIDES employs a fine-tuned vision-language model (Instructor) to generate contextual instructions, which are encoded by an auxiliary module into guidance embeddings. These embeddings are injected into the policy's latent space, allowing the legacy model to adapt to this new semantic input through brief, targeted fine-tuning. For inference-time robustness, a large language model-based Reflector monitors the Instructor's confidence and, when confidence is low, initiates a reasoning loop that analyzes execution history, retrieves relevant examples, and augments the VLM's context to refine subsequent actions. Extensive validation in the RoboCasa simulation environment across diverse policy architectures shows consistent and substantial improvements in task success rates. Real-world deployment on a UR5 robot further demonstrates that GUIDES enhances motion precision for critical sub-tasks such as grasping. Overall, GUIDES offers a practical and resource-efficient pathway to upgrade, rather than replace, validated robot policies.
comment: 8 pages, 4 figures, Accepted by IEEE IROS 2025 Workshop WIR-M
Less is More: Contextual Sampling for Nonlinear Data-Driven Predictive Control
Data-Driven Predictive Control (DPC) optimizes system behavior directly from measured trajectories without requiring an explicit model. However, its computational cost scales with dataset size, limiting real-time applicability to nonlinear robotic systems. For robotic tasks such as trajectory tracking and motion planning, real-time feasibility and numerical robustness are essential. Nonlinear DPC often relies on large datasets or learned nonlinear representations to ensure accuracy, both of which increase computational demand. We propose Contextual Sampling, a dynamic data selection strategy that adaptively selects the most relevant trajectories based on the current state and reference. By reducing dataset size while preserving representativeness, it improves computational efficiency. Experiments on a scaled autonomous vehicle and a quadrotor show that Contextual Sampling achieves comparable or better tracking than Random Sampling with fewer trajectories, enabling real-time feasibility. Compared with Select-DPC, it achieves similar tracking accuracy at lower computational cost. In comparison with the full DPC formulation without sampling, Contextual Sampling attains comparable tracking performance while requiring less computation, highlighting the benefit of efficient data selection in data-driven predictive control.
comment: Submitted to ECC 2026 on November 14, 2025
Automating RT Planning at Scale: High Quality Data For AI Training
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.
comment: radiotherapy planning, data for AI training
Multiagent Systems
UFO$^3$: Weaving the Digital Agent Galaxy
Large language model (LLM)-powered agents are transforming digital devices from passive tools into proactive intelligent collaborators. However, most existing frameworks remain confined to a single OS or device, making cross-device workflows brittle and largely manual. We present UFO$^3$, a system that unifies heterogeneous endpoints, desktops, servers, mobile devices, and edge, into a single orchestration fabric. UFO$^3$ models each user request as a mutable TaskConstellation: a distributed DAG of atomic subtasks (TaskStars) with explicit control and data dependencies (TaskStarLines). The TaskConstellation continuously evolves as results stream in from distributed devices, enabling asynchronous execution, adaptive recovery, and dynamic optimization. A Constellation Orchestrator} executes tasks safely and asynchronously while applying dynamic DAG updates, and the Agent Interaction Protocol (AIP) provides persistent, low-latency channels for reliable task dispatch and result streaming. These designs dissolve the traditional boundaries between devices and platforms, allowing agents to collaborate seamlessly and amplify their collective intelligence. We evaluate UFO$^3$ on NebulaBench, a benchmark of 55 cross-device tasks across 5 machines and 10 categories. UFO$^3$ achieves 83.3% subtask completion, 70.9% task success, exposes parallelism with an average width of 1.72, and reduces end-to-end latency by 31% relative to a sequential baseline. Fault-injection experiments demonstrate graceful degradation and recovery under transient and permanent agent failures. These results show that UFO$^3$ achieves accurate, efficient, and resilient task orchestration across heterogeneous devices, uniting isolated agents into a coherent, adaptive computing fabric that extends across the landscape of ubiquitous computing.
comment: We developed UFO$^3$ as a fully engineered system with over 73K lines of code, encompassing agent implementations and integrations for Windows, Linux, and Android mobile devices. The entire project is open-sourced at https://github.com/microsoft/UFO/, accompanied by detailed documentation and tutorials at https://microsoft.github.io/UFO/
iMAD: Intelligent Multi-Agent Debate for Efficient and Accurate LLM Inference AAAI 2026
Large Language Model (LLM) agent systems have advanced rapidly, driven by their strong generalization in zero-shot settings. To further enhance reasoning and accuracy on complex tasks, Multi-Agent Debate (MAD) has emerged as a promising framework that engages multiple LLM agents in structured debates to encourage diverse reasoning. However, triggering MAD for every query is inefficient, as it incurs substantial computational (token) cost and may even degrade accuracy by overturning correct single-agent answers. To address these limitations, we propose intelligent Multi-Agent Debate (iMAD), a token-efficient framework that selectively triggers MAD only when it is likely to be beneficial (i.e., correcting an initially wrong answer). To achieve this goal, iMAD learns generalizable model behaviors to make accurate debate decisions. Specifically, iMAD first prompts a single agent to produce a structured self-critique response, from which we extract 41 interpretable linguistic and semantic features capturing hesitation cues. Then, iMAD uses a lightweight debate-decision classifier, trained using our proposed FocusCal loss, to determine whether to trigger MAD, enabling robust debate decisions without test dataset-specific tuning. Through extensive experiments using six (visual) question answering datasets against five competitive baselines, we have shown that iMAD significantly reduces token usage (by up to 92%) while also improving final answer accuracy (by up to 13.5%).
comment: Accepted in AAAI 2026 (Oral)
Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.
comment: for associated documentation, see https://svenschultze.github.io/VOIX/
Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning AAAI 2026
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.
comment: Accepted by AAAI 2026
GraphMASAL: A Graph-based Multi-Agent System for Adaptive Learning AAMAS 2026
The advent of Intelligent Tutoring Systems (ITSs) has marked a paradigm shift in education, enabling highly personalized learning pathways. However, true personalization requires adapting to learners' complex knowledge states (multi-source) and diverse goals (multi-sink); existing ITSs often lack the necessary structural-reasoning capability and knowledge dynamism to generate genuinely effective learning paths, and they lack scientifically rigorous validation paradigms. In this paper we propose GraphMASAL (A Graph-based Multi-Agent System for Adaptive Learning), which integrates (i) a dynamic knowledge graph for persistent, stateful learner modeling; (ii) a LangGraph-orchestrated trio of agents (Diagnostician, Planner, Tutor); (iii) a knowledge-graph-grounded two-stage neural IR component (dual-encoder dense retrieval with cross-encoder listwise re-ranking and calibrated score fusion); and (iv) a multi-source multi-sink (MSMS) planning engine with a cognitively grounded cost and an approximation guarantee via greedy set cover. Under blinded automated evaluations with matched inputs and inference settings across diverse student profiles, GraphMASAL consistently outperforms LLM prompting and structured ablations in planning--achieving stronger structural/sequence alignment of learning paths, higher coverage of weak concepts, and lower learning cost--while also surpassing prompt-based baselines in cognitive diagnosis. Agreement with expert/LLM-proxy ratings further supports the validity of our evaluation protocol. These findings indicate that grounding LLM agents in a dynamic knowledge graph, coupled with optimization under educational constraints, yields reliable, interpretable, and pedagogically plausible learning plans, advancing personalized and goal-oriented education.
comment: 9 pages, 3 figures,submitted to AAMAS 2026
Exposing Weak Links in Multi-Agent Systems under Adversarial Prompting
LLM-based agents are increasingly deployed in multi-agent systems (MAS). As these systems move toward real-world applications, their security becomes paramount. Existing research largely evaluates single-agent security, leaving a critical gap in understanding the vulnerabilities introduced by multi-agent design. However, existing systems fall short due to lack of unified frameworks and metrics focusing on unique rejection modes in MAS. We present SafeAgents, a unified and extensible framework for fine-grained security assessment of MAS. SafeAgents systematically exposes how design choices such as plan construction strategies, inter-agent context sharing, and fallback behaviors affect susceptibility to adversarial prompting. We introduce Dharma, a diagnostic measure that helps identify weak links within multi-agent pipelines. Using SafeAgents, we conduct a comprehensive study across five widely adopted multi-agent architectures (centralized, decentralized, and hybrid variants) on four datasets spanning web tasks, tool use, and code generation. Our findings reveal that common design patterns carry significant vulnerabilities. For example, centralized systems that delegate only atomic instructions to sub-agents obscure harmful objectives, reducing robustness. Our results highlight the need for security-aware design in MAS. Link to code is https://github.com/microsoft/SafeAgents
comment: 10 pages, 3 figures. Code available at https://github.com/microsoft/SafeAgents
Collaborative Multi-Robot Non-Prehensile Manipulation via Flow-Matching Co-Generation
Coordinating a team of robots to reposition multiple objects in cluttered environments requires reasoning jointly about where robots should establish contact, how to manipulate objects once contact is made, and how to navigate safely and efficiently at scale. Prior approaches typically fall into two extremes -- either learning the entire task or relying on privileged information and hand-designed planners -- both of which struggle to handle diverse objects in long-horizon tasks. To address these challenges, we present a unified framework for collaborative multi-robot, multi-object non-prehensile manipulation that integrates flow-matching co-generation with anonymous multi-robot motion planning. Within this framework, a generative model co-generates contact formations and manipulation trajectories from visual observations, while a novel motion planner conveys robots at scale. Crucially, the same planner also supports coordination at the object level, assigning manipulated objects to larger target structures and thereby unifying robot- and object-level reasoning within a single algorithmic framework. Experiments in challenging simulated environments demonstrate that our approach outperforms baselines in both motion planning and manipulation tasks, highlighting the benefits of generative co-design and integrated planning for scaling collaborative manipulation to complex multi-agent, multi-object settings. Visit gco-paper.github.io for code and demonstrations.
Conflict-Free Flight Scheduling Using Strategic Demand Capacity Balancing for Urban Air Mobility Operations
In this paper, we propose a conflict-free multi- agent flight scheduling that ensures robust separation in con- strained airspace for Urban Air Mobility (UAM) operations application. First, we introduce Pairwise Conflict Avoidance (PCA) based on delayed departures, leveraging kinematic principles to maintain safe distances. Next, we expand PCA to multi-agent scenarios, formulating an optimization approach that systematically determines departure times under increasing traffic densities. Performance metrics, such as average delay, assess the effectiveness of our solution. Through numerical simulations across diverse multi-agent environments and real- world UAM use cases, our method demonstrates a significant reduction in total delay while ensuring collision-free operations. This approach provides a scalable framework for emerging urban air mobility systems.
From Single to Societal: Analyzing Persona-Induced Bias in Multi-Agent Interactions AAAI-2026
Large Language Model (LLM)-based multi-agent systems are increasingly used to simulate human interactions and solve collaborative tasks. A common practice is to assign agents with personas to encourage behavioral diversity. However, this raises a critical yet underexplored question: do personas introduce biases into multi-agent interactions? This paper presents a systematic investigation into persona-induced biases in multi-agent interactions, with a focus on social traits like trustworthiness (how an agent's opinion is received by others) and insistence (how strongly an agent advocates for its opinion). Through a series of controlled experiments in collaborative problem-solving and persuasion tasks, we reveal that (1) LLM-based agents exhibit biases in both trustworthiness and insistence, with personas from historically advantaged groups (e.g., men and White individuals) perceived as less trustworthy and demonstrating less insistence; and (2) agents exhibit significant in-group favoritism, showing a higher tendency to conform to others who share the same persona. These biases persist across various LLMs, group sizes, and numbers of interaction rounds, highlighting an urgent need for awareness and mitigation to ensure the fairness and reliability of multi-agent systems.
comment: AAAI-2026
MALBO: Optimizing LLM-Based Multi-Agent Teams via Multi-Objective Bayesian Optimization
The optimal assignment of Large Language Models (LLMs) to specialized roles in multi-agent systems is a significant challenge, defined by a vast combinatorial search space, expensive black-box evaluations, and an inherent trade-off between performance and cost. Current optimization methods focus on single-agent settings and lack a principled framework for this multi-agent, multi-objective problem. This thesis introduces MALBO (Multi-Agent LLM Bayesian Optimization), a systematic framework designed to automate the efficient composition of LLM-based agent teams. We formalize the assignment challenge as a multi-objective optimization problem, aiming to identify the Pareto front of configurations between task accuracy and inference cost. The methodology employs multi-objective Bayesian Optimization (MOBO) with independent Gaussian Process surrogate models. By searching over a continuous feature-space representation of the LLMs, this approach performs a sample-efficient exploration guided by the expected hypervolume improvement. The primary contribution is a principled and automated methodology that yields a Pareto front of optimal team configurations. Our results demonstrate that the Bayesian optimization phase, compared to an initial random search, maintained a comparable average performance while reducing the average configuration cost by over 45%. Furthermore, MALBO identified specialized, heterogeneous teams that achieve cost reductions of up to 65.8% compared to homogeneous baselines, all while maintaining maximum performance. The framework thus provides a data-driven tool for deploying cost-effective and highly specialized multi-agent AI systems.
comment: Master's Thesis, University of Milano-Bicocca, 2025
Game-theoretic Decentralized Coordination for Airspace Sector Overload Mitigation
Decentralized air traffic management systems offer a scalable alternative to centralized control, but often assume high levels of cooperation. In practice, such assumptions frequently break down since airspace sectors operate independently and prioritize local objectives. We address the problem of sector overload in decentralized air traffic management by proposing a mechanism that models self-interested behaviors based on best response dynamics. Each sector adjusts the departure times of flights under its control to reduce its own congestion, without any shared decision making. A tunable cooperativeness factor models the degree to which each sector is willing to reduce overload in other sectors. We prove that the proposed mechanism satisfies a potential game structure, ensuring that best response dynamics converge to a pure Nash equilibrium, under a mild restriction. In addition, we identify a sufficient condition under which an overload-free solution corresponds to a global minimizer of the potential function. Numerical experiments using 24 hours of European flight data demonstrate that the proposed algorithm substantially reduces overload even with only minimal cooperation between sectors, while maintaining scalability and matching the solution quality of centralized solvers.
Systems and Control (EESS)
Who Moved My Distribution? Conformal Prediction for Interactive Multi-Agent Systems
Uncertainty-aware prediction is essential for safe motion planning, especially when using learned models to forecast the behavior of surrounding agents. Conformal prediction is a statistical tool often used to produce uncertainty-aware prediction regions for machine learning models. Most existing frameworks utilizing conformal prediction-based uncertainty predictions assume that the surrounding agents are non-interactive. This is because in closed-loop, as uncertainty-aware agents change their behavior to account for prediction uncertainty, the surrounding agents respond to this change, leading to a distribution shift which we call endogenous distribution shift. To address this challenge, we introduce an iterative conformal prediction framework that systematically adapts the uncertainty-aware ego-agent controller to the endogenous distribution shift. The proposed method provides probabilistic safety guarantees while adapting to the evolving behavior of reactive, non-ego agents. We establish a model for the endogenous distribution shift and provide the conditions for the iterative conformal prediction pipeline to converge under such a distribution shift. We validate our framework in simulation for 2- and 3- agent interaction scenarios, demonstrating collision avoidance without resulting in overly conservative behavior and an overall improvement in success rates of up to 9.6% compared to other conformal prediction-based baselines.
Multistability of Self-Attention Dynamics in Transformers
In machine learning, a self-attention dynamics is a continuous-time multiagent-like model of the attention mechanisms of transformers. In this paper we show that such dynamics is related to a multiagent version of the Oja flow, a dynamical system that computes the principal eigenvector of a matrix corresponding for transformers to the value matrix. We classify the equilibria of the ``single-head'' self-attention system into four classes: consensus, bipartite consensus, clustering and polygonal equilibria. Multiple asymptotically stable equilibria from the first three classes often coexist in the self-attention dynamics. Interestingly, equilibria from the first two classes are always aligned with the eigenvectors of the value matrix, often but not exclusively with the principal eigenvector.
comment: 8 pages, 3 figures
Translation-Symmetric Market: Enabling Incentive Compatibility For DER Aggregation
Virtual power plants (VPPs) are indispensable for coordinating the rapidly growing portfolios of distributed energy resources (DERs) and enabling them to deliver multiple services into higher-level electricity markets. However, the profit allocation procedures that govern VPP participants become increasingly challenging to keep incentive-compatible due to the enlarged DER market power within each VPP, compared to directly bidding into the wholesale market. In this paper, we formulate both the VPP's market participation and its internal operation and profit allocation as consistent market-clearing processes. Building on this unified view, we propose the concept of a translation-symmetric market (TSM) framework, in which market-clearing models maintain identical structural forms across all hierarchical levels. We prove that translation symmetry induces an inductive property: once incentive compatibility holds at one level, it propagates downward to the internal settlements between the VPP and its constituent DERs. TSM also preserves service prices across levels, ensuring competitive conditions and enabling transparent valuation of resource contributions. Theoretical analysis and case studies illustrate how TSM secures incentive-compatible profit allocation in aggregating DERs to provide multiple services.
comment: Submitted to 2026 IEEE PES General Meeting
Heterogeneous CACC Coexistence: Simulation, Analysis, and Modeling
The design of Cooperative Adaptive Cruise Control (CACC) algorithms for vehicle platooning has been extensively investigated, leading to a wide range of approaches with different requirements and performance. Most existing studies evaluate these algorithms under the assumption of homogeneous platoons, i.e., when all platoon members adopt the same CACC. However, market competition is likely to result in vehicles from different manufacturers implementing distinct CACCs. This raises fundamental questions about whether heterogeneous vehicles can safely cooperate within a platoon and what performance can be achieved. To date, these questions have received little attention, as heterogeneous platoons are difficult to model and analyze. In this work, we introduce the concept of mixed platoons, i.e., platoons made of vehicles running heterogeneous CACCs, and we study their performance through simulation-based experiments. We consider mixtures of three well-established CACCs from the literature. In the first part of the paper, we study a single mixed platoon in isolation to understand the microscopic effects on safety: we evaluate the performance of various CACC-mixtures across speed change and emergency braking scenarios. In the second part, we examine a high-density ring-road scenario to assess macroscopic impacts on safety, comfort, and traffic throughput, especially comparing throughput results with those obtained from vehicles controlled by a standard Adaptive Cruise Control (ACC) or by human drivers. Our findings highlight that some combinations of CACCs can operate robustly and safely, while others exhibit critical limitations in safety, comfort, or efficiency. These results emphasize the need for careful system design and the development of theoretical frameworks for modeling heterogeneous platoons.
Data-Driven Stabilization of Continuous-Time LTI Systems from Noisy Input-Output Data
We present an approach to compute stabilizing controllers for continuous-time linear time-invariant systems directly from an input-output trajectory affected by process and measurement noise. The proposed output-feedback design combines (i) an observer of a non-minimal realization of the plant and (ii) a feedback law obtained from a linear matrix inequality (LMI) that depends solely on the available data. Under a suitable interval excitation condition and knowledge of a noise energy bound, the feasibility of the LMI is shown to be necessary and sufficient for stabilizing all non-minimal realizations consistent with the data. We further provide a condition for the feasibility of the LMI related to the signal-to-noise ratio, guidelines to compute the noise energy bound, and numerical simulations that illustrate the effectiveness of the approach.
Simulating an Autonomous System in CARLA using ROS 2
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
Policy Optimization for Unknown Systems using Differentiable Model Predictive Control
Model-based policy optimization often struggles with inaccurate system dynamics models, leading to suboptimal closed-loop performance. This challenge is especially evident in Model Predictive Control (MPC) policies, which rely on the model for real-time trajectory planning and optimization. We introduce a novel policy optimization framework for MPC-based policies combining differentiable optimization with zeroth-order optimization. Our method combines model-based and model-free gradient estimation approaches, achieving faster transient performance compared to fully data-driven approaches while maintaining convergence guarantees, even under model uncertainty. We demonstrate the effectiveness of the proposed approach on a nonlinear control task involving a 12-dimensional quadcopter model.
Modeling and Physics-Enhanced Fault Detection in Wastewater Pump Stations
Monitoring wastewater pump stations is essential because they are critical infrastructure. However, monitoring is still often performed manually due to the lack of suitable algorithmic methods and data. This paper introduces a high-fidelity, physics-enhanced simulator of a three-pump wastewater station that captures transient hydro-mechanical dynamics at a one-second resolution. The simulator is fully parameter-driven, adaptable to other wastewater stations, and capable of generating datasets for data-driven analytics. It can also generate balanced faulty datasets when real failures are scarce or confidential. A comparison with high-frequency SCADA data from a municipal station shows strong agreement across key operational metrics. Furthermore, the paper proposes robust statistical and mathematical frameworks for fault detection and isolation, including a nested-model F-test to detect pump degradation or system faults, and a tangent residual approach to distinguish pump faults from system faults using operating-point kinematics. This framework enables what-if studies, facilitates early fault diagnosis based on flow rate and head, and provides actionable insights for condition-based maintenance in wastewater pumping infrastructure.
Language-Aided State Estimation
Natural language data, such as text and speech, have become readily available through social networking services and chat platforms. By leveraging human observations expressed in natural language, this paper addresses the problem of state estimation for physical systems, in which humans act as sensing agents. To this end, we propose a Language-Aided Particle Filter (LAPF), a particle filter framework that structures human observations via natural language processing and incorporates them into the update step of the state estimation. Finally, the LAPF is applied to the water level estimation problem in an irrigation canal and its effectiveness is demonstrated.
comment: 7 pages, 5 figures, submitted to IFAC World Congress 2026 with Journal option (IFAC Journal of Systems and Control)
Numerical Discretization Schemes that Preserve Flatness
Differential flatness serves as a powerful tool for controlling continuous time nonlinear systems in problems such as motion planning and trajectory tracking. A similar notion, called difference flatness, exists for discrete-time systems. Although many control systems evolve in continuous time, control implementation is performed digitally, requiring discretization. It is well known in the literature that discretization does not necessarily preserve structural properties, and it has been established that, in general, flatness is not preserved under discretization (whether exact or approximate). In this paper, inspired by our previous work [1] and based on the notion of discretization maps, we construct numerical schemes that preserve flatness.
comment: 7 pages, 5 figures
Prognostics and Health Management in Polymer Electrolyte Fuel Cells: Current Trends, Challenges, and Future Directions
Prognostics and Health Management is crucial for the reliability and lifetime assessment of Polymer Electrolyte Fuel Cells (PEFCs). Here, we review the current advances on this topic, focusing mainly on key degradation mechanisms and methodologies such as physics-aware, data-driven, and hybrid modeling approaches. Key open challenges are analyzed, including the need for more accurate degradation modeling, effective management of multi-stack systems, and advancements in the currently underdeveloped action phase, in which diagnostic and prognostic insights are translated into real-time system responses, such as dynamic load derating, thermal-management adjustments, or automated maintenance triggers, to prevent failures and extend PEFC life. While notable strides have been made in recent years in diagnostics and remaining useful life estimation, it remains challenging to seamlessly integrate these insights into actionable strategies. Future directions highlight the need to address data scarcity and advance interdisciplinary research. Key focus areas include sensor integration, artificial intelligence, and digital twins. Additionally material innovations play a crucial role in bridging existing gaps. This work, therefore, intends to map the further development of Prognostics and Health Management systems toward ensuring the viability of PEFCs in practical applications.
comment: Review article
Convergence of Flow-Policy Gradient Learning for Linear Quadratic Regulator Problems
Flow $Q$-learning has recently been introduced to integrate learning from expert demonstrations into an actor-critic structure. Central to this innovation is the ``the one-step policy'' network, which is optimized through a $Q$-function that is regularized with the behavioral cloning from expert trajectories, allowing learning more expressive policies using flow-based generative models. In this paper, we studied the convergence property and stabilizablity of the one-step policy during learning for linear quadratic problems under the offline settings. Our theoretical results are based on a new formulation of the one-step policy loss based on the average expected cost, and regularized with the behavioral cloning loss. Such a formulation allows us to tap into existing strong theoretical results from the policy gradient theorem to study the convergence properties of the one-step policy. We verify our theoretical finding with simulation results on a linearized inverted pendulum.
comment: Submitted to L4DC
Modeling and Control of Sustainable Transitions through Opinion-Behavior Coupling in Heterogeneous Networks
Understanding how sustainable behaviors spread within heterogeneous societies requires the integration of behavioral data, social influence mechanisms, and structured approaches to control. In this paper, we propose a data-driven computational framework for coupled opinion-adoption dynamics in social systems. Each node in the multilayer network represents a community characterized by a specific age group and mobility level, derived from large-scale survey data on the predisposition to adopt electric vehicles in Northern Europe. The proposed model captures three mechanisms: behavioral contagion through social and informational diffusion, abandonment driven by dissatisfaction, and feedback between opinions and adoption levels through social influence. Analyzing the equilibrium points of the coupled system allows us to derive the conditions that enable large-scale adoption. We empirically calibrate the model using data to construct synthetic populations and social similarity networks, which we use to explore targeted interventions that promote sustainable transitions. Specifically, the analysis focuses on two types of control strategies: opinion-based policies, which act on the social network layer, and policies that aim to improve experience and reduce dissatisfaction. Simulation results show that the latter ensure more stable and long-term adoption, offering concrete insights for designing effective interventions in sociotechnical transitions toward sustainability.
comment: 13 pages, 10 figures
Region of Attraction Estimate Learning and Verification for Nonlinear Systems using Neural-Network-based Lyapunov Functions
Estimating the Region of Attraction (RoA) for nonlinear dynamical systems is a fundamental problem in control theory, with direct implications for stability analysis and safe controller design. Traditional approaches rely on analytically derived Lyapunov functions, which are often conservative and challenging to construct for high-dimensional or highly nonlinear systems. In this work, we propose a data-driven framework for learning and verifying RoA estimates for nonlinear systems using neural-network-based Lyapunov functions. Our method employs a composite Lyapunov function that combines a quadratic term with a neural-network-based component, providing both structure and flexibility. We introduce a novel homogeneous loss function for training, which removes the imbalance typically caused by the two non-homogeneous Lyapunov conditions. Together, these two aspects enable efficient training of the Lyapunov candidate. To guarantee the correctness of the learned Lyapunov function, we employ a Satisfiability Modulo Theories (SMT) solver to formally verify the stability results. Lastly, we perform a deeper analysis near the origin to overcome numerical artifacts, ensuring strict asymptotic stability. We demonstrate the effectiveness of our approach on benchmark nonlinear systems, showing that it significantly reduces conservatism compared to traditional Lyapunov methods while maintaining verifiability. This framework bridges the gap between function approximation and stability certification, paving the way for scalable safety analysis in learning-based control and safety-critical applications.
WetExplorer: Automating Wetland Greenhouse-Gas Surveys with an Autonomous Mobile Robot
Quantifying greenhouse-gases (GHG) in wetlands is critical for climate modeling and restoration assessment, yet manual sampling is labor-intensive, and time demanding. We present WetExplorer, an autonomous tracked robot that automates the full GHG-sampling workflow. The robot system integrates low-ground-pressure locomotion, centimeter-accurate lift placement, dual-RTK sensor fusion, obstacle avoidance planning, and deep-learning perception in a containerized ROS2 stack. Outdoor trials verified that the sensor-fusion stack maintains a mean localization error of 1.71 cm, the vision module estimates object pose with 7 mm translational and 3° rotational accuracy, while indoor trials demonstrated that the full motion-planning pipeline positions the sampling chamber within a global tolerance of 70 mm while avoiding obstacles, all without human intervention. By eliminating the manual bottleneck, WetExplorer enables high-frequency, multi-site GHG measurements and opens the door for dense, long-duration datasets in saturated wetland terrain.
comment: To be published in 2025 IEEE International Conference on Robotics and Biomimetics
Sampling-Aware Control Barrier Functions for Safety-Critical and Finite-Time Constrained Control
In safety-critical control systems, ensuring both safety and feasibility under sampled-data implementations is crucial for practical deployment. Existing Control Barrier Function (CBF) frameworks, such as High-Order CBFs (HOCBFs), effectively guarantee safety in continuous time but may become unsafe when executed under zero-order-hold (ZOH) controllers due to inter-sampling effects. Moreover, they do not explicitly handle finite-time reach-and-remain requirements or multiple simultaneous constraints, which often lead to conflicts between safety and reach-and-remain objectives, resulting in feasibility issues during control synthesis. This paper introduces Sampling-Aware Control Barrier Functions (SACBFs), a unified framework that accounts for sampling effects and high relative-degree constraints by estimating and incorporating Taylor-based upper bounds on barrier evolution between sampling instants. The proposed method guarantees continuous-time forward invariance of safety and finite-time reach-and-remain sets under ZOH control. To further improve feasibility, a relaxed variant (r-SACBF) introduces slack variables for handling multiple constraints realized through time-varying CBFs. Simulation studies on a unicycle robot demonstrate that SACBFs achieve safe and feasible performance in scenarios where traditional HOCBF methods fail.
comment: 8 pages, 4 figures
Emulation-based Neuromorphic Control for the Stabilization of LTI Systems
Brain-inspired neuromorphic technologies can offer important advantages over classical digital clock-based technologies in various domains, including systems and control engineering. Indeed, neuromorphic engineering could provide low-latency, low-energy and adaptive control systems in the form of spiking neural networks (SNNs) exploiting spike-based control and communication. However, systematic methods for designing and analyzing neuron-inspired spiking controllers are currently lacking. This paper presents a new systematic approach for stabilizing linear time-invariant (LTI) systems using SNN-based controllers, designed as a network of integrate-and-fire neurons, whose input is the measured output from the plant and generating spiking control signals. The new approach consists of a two-step emulation-based design procedure. In the first step, we establish conditions on the neuron parameters to ensure that the spiking signal generated by a pair of neurons emulates any continuous-time signal input to the neurons with arbitrary accuracy in terms of a special metric for spiky signals. In the second step, we propose a novel stability notion, called integral spiking-input-to-state stability (iSISS) building on this special metric. We prove that an asymptotically stable LTI system has this iSISS property. By combining these steps, a certifiable practical stability property of the closed-loop system can be established. Generalizations are discussed and the effectiveness of the approach is illustrated in a numerical case study.
Neural Network-Augmented Iterative Learning Control for Friction Compensation of Motion Control Systems with Varying Disturbances
This paper proposes a robust control strategy that integrates Iterative Learning Control (ILC) with a simple lateral neural network to enhance the trajectory tracking performance of a linear Lorentz force actuator under friction and model uncertainties. The ILC compensates for nonlinear friction effects, while the neural network estimates the nonlinear ILC effort for varying reference commands. By dynamically adjusting the ILC effort, the method adapts to time-varying friction, reduces errors at reference changes, and accelerates convergence. Compared to previous approaches using complex neural networks, this method simplifies online training and implementation, making it practical for real-time applications. Experimental results confirm its effectiveness in achieving precise tracking across multiple tasks with different reference trajectories.
comment: 6 pages, 10 figures, conference paper to be submitted to IEEE Conference on Control Systems
Lessons Learned from Developing a Privacy-Preserving Multimodal Wearable for Local Voice-and-Vision Inference
Many promising applications of multimodal wearables require continuous sensing and heavy computation, yet users reject such devices due to privacy concerns. This paper shares our experiences building an ear-mounted voice-and-vision wearable that performs local AI inference using a paired smartphone as a trusted personal edge. We describe the hardware--software co-design of this privacy-preserving system, including challenges in integrating a camera, microphone, and speaker within a 30-gram form factor, enabling wake word-triggered capture, and running quantized vision-language and large-language models entirely offline. Through iterative prototyping, we identify key design hurdles in power budgeting, connectivity, latency, and social acceptability. Our initial evaluation shows that fully local multimodal inference is feasible on commodity mobile hardware with interactive latency. We conclude with design lessons for researchers developing embedded AI systems that balance privacy, responsiveness, and usability in everyday settings.
comment: 7 pages, 5 figures
Game-theoretic Decentralized Coordination for Airspace Sector Overload Mitigation
Decentralized air traffic management systems offer a scalable alternative to centralized control, but often assume high levels of cooperation. In practice, such assumptions frequently break down since airspace sectors operate independently and prioritize local objectives. We address the problem of sector overload in decentralized air traffic management by proposing a mechanism that models self-interested behaviors based on best response dynamics. Each sector adjusts the departure times of flights under its control to reduce its own congestion, without any shared decision making. A tunable cooperativeness factor models the degree to which each sector is willing to reduce overload in other sectors. We prove that the proposed mechanism satisfies a potential game structure, ensuring that best response dynamics converge to a pure Nash equilibrium, under a mild restriction. In addition, we identify a sufficient condition under which an overload-free solution corresponds to a global minimizer of the potential function. Numerical experiments using 24 hours of European flight data demonstrate that the proposed algorithm substantially reduces overload even with only minimal cooperation between sectors, while maintaining scalability and matching the solution quality of centralized solvers.
EAST: Environment Aware Safe Tracking using Planning and Control Co-Design
This paper considers the problem of autonomous mobile robot navigation in unknown environments with moving obstacles. We propose a new method to achieve environment-aware safe tracking (EAST) of robot motion plans that integrates an obstacle clearance cost for path planning, a convex reachable set for robot motion prediction, and safety constraints for dynamic obstacle avoidance. EAST adapts the motion of the robot according to the locally sensed environment geometry and dynamics, leading to fast motion in wide open areas and cautious behavior in narrow passages or near moving obstacles. Our control design uses a reference governor, a virtual dynamical system that guides the robot's motion and decouples the path tracking and safety objectives. While reference governor methods have been used for safe tracking control in static environments, our key contribution is an extension to dynamic environments using convex optimization with control barrier function (CBF) constraints. Thus, our work establishes a connection between reference governor techniques and CBF techniques for safe control in dynamic environments. We validate our approach in simulated and real-world environments, featuring complex obstacle configurations and natural dynamic obstacle motion.
Meta-Learning for Adaptive Control with Automated Mirror Descent
Adaptive control achieves concurrent parameter learning and stable control under uncertainties that are linearly parameterized with known nonlinear features. Nonetheless, it is often difficult to obtain such nonlinear features. To address this difficulty, recent progress has been made in integrating meta-learning with adaptive control to learn such nonlinear features from data. However, these meta-learning-based control methods rely on classical adaptation laws using gradient descent, which is confined to the Euclidean geometry. In this paper, we propose a novel method that combines meta-learning and adaptation laws based on mirror descent, a popular generalization of gradient descent, which takes advantage of the potentially non-Euclidean geometry of the parameter space. In our approach, meta-learning not only learns the nonlinear features but also searches for a suitable mirror-descent potential function that optimizes control performance. Through numerical simulations, we demonstrate the effectiveness of the proposed method in learning efficient representations and real-time tracking control performance under uncertain dynamics.
Beyond Prime Farmland: Solar Siting Tradeoffs for Cost-Effective Decarbonization
The feasibility and cost-effectiveness of continued growth in solar photovoltaics are closely tied to siting decisions. But trade-offs between costs and technical potential between land categories, especially brownfields and rooftop sites, have not been quantified, despite increasing resistance to and policy interest in reducing use of greenfield sites (e.g., prime agricultural lands). We examine the effect of siting decisions across land types for utility-scale and rooftop PV on the feasibility and cost of meeting solar deployment targets across the Eastern U.S. We build a database of solar PV supply curves by land type for each county in the Eastern Interconnect (EI) region (~2,400 counties). Our supply curves quantify technical potential versus levelized cost across greenfield, brownfield, and rooftop land types. With these supply curves and a 2035 solar deployment target (435 GW) aligned with a decarbonized power system, we quantify cost and capacity trade-offs using scenarios that prioritize solar PV deployment on different land types. We find greenfield, particularly prime agriculture, sites offer the lowest levelized costs for meeting capacity targets, of 39 to 57 $/MWh. Contaminated lands, often prioritized in policy to reduce land use conflict, have limited technical potential and impose a cost premium of 14-33% relative to greenfield sites. Rooftop PV provides enough technical potential for meeting capacity targets but comes at consistently higher costs, with minimum LCOEs of roughly 70 $/MWh or well above the highest-cost greenfield sites. Our results detail heterogeneous siting trade-offs across the Eastern United States, enabling targeted policy design to meet deployment targets while balancing costs and land use conflicts.
comment: 16 pages, 4 figures
DiAReL: Reinforcement Learning with Disturbance Awareness for Robust Sim2Real Policy Transfer in Robot Control
Delayed Markov decision processes (DMDPs) fulfill the Markov property by augmenting the state space of agents with a finite time window of recently committed actions. In reliance on these state augmentations, delay-resolved reinforcement learning algorithms train policies to learn optimal interactions with environments featuring observation or action delays. Although such methods can be directly trained on the real robots, due to sample inefficiency, limited resources, or safety constraints, a common approach is to transfer models trained in simulation to the physical robot. However, robotic simulations rely on approximated models of the physical systems, which hinders the sim2real transfer. In this work, we consider various uncertainties in modeling the robot or environment dynamics as unknown intrinsic disturbances applied to the system input. We introduce the disturbance-augmented Markov decision process (DAMDP) in delayed settings as a novel representation to incorporate disturbance estimation in training on-policy reinforcement learning algorithms. The proposed method is validated across several metrics on learning robotic reaching and pushing tasks and compared with disturbance-unaware baselines. The results show that the disturbance-augmented models can achieve higher stabilization and robustness in the control response, which in turn improves the prospects of successful sim2real transfer.
comment: Accepted for publication in IEEE Transactions on Control Systems Technology (TCST)
Interpolation Conditions for Data Consistency and Prediction in Noisy Linear Systems
We develop an interpolation-based framework for noisy linear systems with unknown system matrix with bounded norm (implying bounded growth or non-increasing energy), and bounded process noise energy. The proposed approach characterizes all trajectories consistent with the measured data and these prior bounds in a purely data-driven manner. This characterization enables data-consistency verification, inference, and one-step ahead prediction, which can be leveraged for safety verification and cost minimization. Ultimately, this work represents a preliminary step toward exploiting interpolation conditions in data-driven control, offering a systematic way to characterize trajectories consistent with a dynamical system within a given class and enabling their use in control design.
comment: 8 pages, 3 figures
When the Correct Model Fails: The Optimality of Stackelberg Equilibria with Follower Intention Updates
We study a two-player dynamic Stackelberg game between a leader and a follower whose intention is unknown to the leader. Classical formulations of the Stackelberg equilibrium (SE) assume that the follower's best response (BR) function is known to the leader. However, this is not always true in practice. We study a setting in which the leader receives updated beliefs about the follower BR before the end of the game, such that the update prompts the leader and subsequently the follower to re-optimize their strategies. We characterize the optimality guarantees of the SE solutions under this belief update for both open loop and feedback information structures. Interestingly, we prove that in general, assuming an incorrect follower's BR can lead to more optimal leader costs over the entire game than knowing the true follower's BR. We support these results with numerical examples in a linear quadratic (LQ) Stackelberg game, and use Monte Carlo simulations to show that the instances of incorrect BR achieving lower leader costs are non-trivial in collision avoidance LQ Stackelberg games.
comment: 9 pages, 6 figures, submitted to European Control Conference (ECC26)
Reconfigurable hydrostatics: Toward versatile and efficient load-bearing robotics
Wearable and legged robot designers face multiple challenges when choosing actuation. Traditional fully actuated designs using electric motors are multifunctional but oversized and inefficient for bearing conservative loads and for being backdrivable. Alternatively, quasi-passive and underactuated designs reduce the amount of motorization and energy storage, but are often designed for specific tasks. Designers of versatile and stronger wearable robots will face these challenges unless future actuators become very torque-dense, backdrivable and efficient This paper explores a design paradigm for addressing this issue: reconfigurable hydrostatics. We show that a hydrostatic actuator can integrate a passive force mechanism and a sharing mechanism in the fluid domain and still be multifunctional. First, an analytical study compares the effect of these two mechanisms on the motorization requirements in the context of a load-bearing exoskeleton. Then, the hydrostatic concept integrating these two mechanisms using hydraulic components is presented. A case study analysis shows the mass/efficiency/inertia benefits of the concept over a fully actuated one. Then, experiments are conducted on robotic legs to demonstrate that the actuator concept can meet the expected performance in terms of force tracking, versatility, and efficiency under controlled conditions. The proof-of-concept can track the vertical ground reaction force (GRF) profiles of walking, running, squatting, and jumping, and the energy consumption is 4.8x lower for walking. The transient force behaviors due to switching from one leg to the other are also analyzed along with some mitigation to improve them.
Strong Duality in Risk-Constrained Nonconvex Functional Programming
We show that a wide class of risk-constrained nonconvex functional optimization problems exhibit strong duality, regardless of nonconvexity. We develop two novel results under distinct sets of assumptions, establishing strong duality over both decomposable policy spaces (matching and extending prior work in the risk neutral case), and nondecomposable policy spaces with structure (e.g., continuity or smoothness), including certain universal finite-dimensional (fixed depth/width) neural network parametrizations as special cases (improving established results in the risk-neutral setting as well). We consider constraints featuring convex and positively homogeneous risk measures with bounded risk envelopes, generalizing expectations. Popular risk measures supported within our setting include the conditional value-at-risk (CVaR), the (even non-monotone) mean-absolute deviation (MAD), certain distributionally robust representations and more generally all real-valued coherent risk measures on the space $L_1$. We further discuss various generalizations of our base model, extensions for risk measures supported on $L_{p>1}$, implications in the context of mean-risk tradeoff models, as well as applications in wireless systems resource allocation, and supervised constrained learning. Our core proof technique appears to be new and relies on risk conjugate duality in tandem with J. J. Uhl's weak extension of A. A. Lyapunov's convexity theorem for vector measures taking values in infinite-dimensional Banach spaces.
comment: 47 pages, revised version
Protection Degree and Migration in the Stochastic SIRS Model: A Queueing System Perspective
With the prevalence of COVID-19, the modeling of epidemic propagation and its analyses have played a significant role in controlling epidemics. However, individual behaviors, in particular the self-protection and migration, which have a strong influence on epidemic propagation, were always neglected in previous studies. In this paper, we mainly propose two models from the individual and population perspectives. In the first individual model, we introduce the individual protection degree that effectively suppresses the epidemic level as a stochastic variable to the SIRS model. In the alternative population model, an open Markov queueing network is constructed to investigate the individual number of each epidemic state, and we present an evolving population network via the migration of people. Besides, stochastic methods are applied to analyze both models. In various simulations, the infected probability, the number of individuals in each state and its limited distribution are demonstrated.
Evolving Network Modeling Driven by the Degree Increase and Decrease Mechanism
Ever since the Barabási-Albert (BA) scale-free network has been proposed, network modeling has been studied intensively in light of the network growth and the preferential attachment (PA). However, numerous real systems are featured with a dynamic evolution including network reduction in addition to network growth. In this paper, we propose a novel mechanism for evolving networks from the perspective of vertex degree. We construct a queueing system to describe the increase and decrease of vertex degree, which drives the network evolution. In our mechanism, the degree increase rate is regarded as a function positively correlated to the degree of a vertex, ensuring the preferential attachment in a new way. Degree distributions are investigated under two expressions of the degree increase rate, one of which manifests a ``long tail'', and another one varies with different values of parameters. In simulations, we compare our theoretical distributions with simulation results and also apply them to real networks, which presents the validity and applicability of our model.
Time-Optimal Model Predictive Control for Linear Systems with Multiplicative Uncertainties
This paper presents a time-optimal Model Predictive Control (MPC) scheme for linear discrete-time systems subject to multiplicative uncertainties represented by interval matrices. To render the uncertainty propagation computationally tractable, the set-valued error system dynamics are approximated using a matrix-zonotope-based bounding operator. Recursive feasibility and finite-time convergence are ensured through an adaptive terminal constraint mechanism. A key advantage of the proposed approach is that all the necessary bounding sets can be computed offline, substantially reducing the online computational burden. The effectiveness of the method is illustrated via a numerical case study on an orbital rendezvous maneuver between two satellites.
Parking of Connected Automated Vehicles: Vehicle Control, Parking Assignment, and Multi-agent Simulation
This paper introduces a comprehensive approach to optimize parking efficiency for connected and Automated vehicle (CAVs) fleets. We present a multi-vehicle parking simulator, equipped with hierarchical path planning and collision avoidance capabilities for individual CAVs. The simulator is designed to capture the key decision-making processes in parking, from low-level vehicle control to high-level parking assignment, and it enables the effective assessment of parking strategies for large fleets of ground vehicles. We formulate and compare different strategic parking spot assignments to minimize a collective cost. While the proposed framework is designed to optimize various objective functions, we choose the total parking time for the experiment, as it directly reflects the congestion level and the cost associated with the parking efficiency. We validate the effectiveness of the proposed strategies through an empirical evaluation against a dataset of real-world parking lot dynamics, realizing a substantial reduction in parking time by up to 43.8%. This improvement is attributed to the synergistic benefits of driving automation, the utilization of shared infrastructure state data, the exclusion of pedestrian traffic, and the real-time computation of optimal parking spot allocation.
Mining--Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Optimizing the mining process -- particularly truck dispatch scheduling -- is a key driver of efficiency in open-pit operations. However, the dynamic and stochastic nature of these environments, with uncertainties such as equipment failures, truck maintenance, and variable haul cycle times, challenges traditional optimization. While Reinforcement Learning (RL) shows strong potential for adaptive decision-making in mining logistics, practical deployment requires evaluation in realistic, customizable simulation environments. The lack of standardized benchmarking hampers fair algorithm comparison, reproducibility, and real-world applicability of RL solutions. To address this, we present Mining-Gym -- a configurable, open-source benchmarking environment for training, testing, and evaluating RL algorithms in mining process optimization. Built on Salabim-based Discrete Event Simulation (DES) and integrated with Gymnasium, Mining-Gym captures mining-specific uncertainties through an event-driven decision-point architecture. It offers a GUI for parameter configuration, data logging, and real-time visualization, supporting reproducible evaluation of RL strategies and heuristic baselines. We validate Mining-Gym by comparing classical heuristics with RL-based scheduling across six scenarios from normal operation to severe equipment failures. Results show it is an effective, reproducible testbed, enabling fair evaluation of adaptive decision-making and demonstrating the strong performance potential of RL-trained schedulers.
Fast Finite-Time Sliding Mode Control for Chattering-Free Trajectory Tracking of Robotic Manipulators
Achieving precise and efficient trajectory tracking in robotic arms remains a key challenge due to system uncertainties and chattering effects in conventional sliding mode control (SMC). This paper presents a chattering-free fast terminal sliding mode control (FTSMC) strategy for a three-degree-of-freedom (3-DOF) robotic arm, designed to enhance tracking accuracy and robustness while ensuring finite-time convergence. The control framework is developed using Newton-Euler dynamics, followed by a state-space representation that captures the system's angular position and velocity. By incorporating an improved sliding surface and a Lyapunov-based stability analysis, the proposed FTSMC effectively mitigates chattering while preserving the advantages of SMC, such as fast response and strong disturbance rejection. The controller's performance is rigorously evaluated through comparisons with conventional PD sliding mode control (PDSMC) and terminal sliding mode control (TSMC). Simulation results demonstrate that the proposed approach achieves superior trajectory tracking performance, faster convergence, and enhanced stability compared to existing methods, making it a promising solution for high-precision robotic applications.
Further Results on Safety-Critical Stabilization of Force-Controlled Nonholonomic Mobile Robots SC
In this paper, we address the stabilization problem for force-controlled nonholonomic mobile robots under safety-critical constraints. We propose a continuous, time-invariant control law based on the gamma m-quadratic programming (gamma m-QP) framework, which unifies control Lyapunov functions (CLFs) and control barrier functions (CBFs) to enforce both stability and safety in the closed-loop system. For the first time, we construct a global, time-invariant, strict Lyapunov function for the closed-loop nonholonomic mobile robot full-dynamic system with a nominal stabilization controller in polar coordinates; this strict Lyapunov function then serves as the CLF in the QP design. Next, by exploiting the inherent cascaded structure of the vehicle dynamics, we develop a CBF for the mobile robot via an integrator backstepping procedure. Our main results guarantee both asymptotic stability and safety for the closed-loop system. Both the simulation and experimental results are presented to illustrate the effectiveness and performance of our approach.
comment: The paper has been accepted for publication in ASME Letters in Dynamic Systems and Control (ALDSC)
Meta-Learning Driven Movable-Antenna-assisted Full-Duplex RSMA for Multi-User Communication: Performance and Optimization
Full-duplex (FD) radios at base station (BS) have gained significant interest because of their ability to simultaneously transmit and receive signals on the same frequency band. However, FD communication is hindered by self-interference (SI) and intra-cell interference caused by simultaneous uplink (UL) transmissions affecting downlink (DL) reception. These interferences significantly limit the ability to fully exploit FD's potential. Recently, movable antenna (MA) technology has emerged as a groundbreaking innovation, offering an effective way to mitigate interference by adjusting the position of each MA within the transmitter or receiver region. This dynamic repositioning allows MAs to move away from high-interference zones to areas with minimal interference, thereby enhancing multiplexing gain and improving spectral efficiency (SE). In light of this, in this paper, we investigate an FD communication system by integrating it with MAs to evaluate and investigate its effectiveness in handling SI and intra-cell interference. Moreover, we utilize rate-splitting multiple access (RSMA) as our multiple access technique in both UL and DL transmission. To achieve the full potential of the system, we evaluated three different scenarios with FD-BS-RSMA with MAs where our goal is to maximize the total sum rate of the system by jointly optimizing the transmitting and receiving beamforming vectors, UL user equipment (UE) transmission power, MA positions, and common stream split ratio of RSMA while satisfying the minimum data rate requirements of all UEs, common stream constraint, power budget requirements of BS and UL UEs, and inter-MA distance. The formulated optimization problem is highly non-convex in nature, and hence, we propose a gradient-based meta-learning (GML) approach which can handle the non-convexity in a discrete manner by optimizing each variable in a different neural network.
zkSTAR: A zero knowledge system for time series attack detection enforcing regulatory compliance in critical infrastructure networks
Industrial control systems (ICS) form the operational backbone of critical infrastructure networks (CIN) such as power grids, water supply systems, and gas pipelines. As cyber threats to these systems escalate, regulatory agencies are imposing stricter compliance requirements to ensure system-wide security and reliability. A central challenge, however, is enabling regulators to verify the effectiveness of detection mechanisms without requiring utilities to disclose sensitive operational data. In this paper, we introduce zkSTAR, a cyberattack detection framework that leverages zk-SNARKs to reconcile these requirements and enable provable detection guarantees while preserving data confidentiality. Our approach builds on established residual-based statistical hypothesis testing methods applied to state-space detection models. Specifically, we design a two-pronged zk-SNARK architecture that enforces (i) temporal consistency of the state-space dynamics and (ii) statistical consistency of the detection tests, enabling regulators to verify correctness and prevent suppression of alarms without visibility into utility-level data. We formally analyze the soundness and zero-knowledge properties of our framework and validate its practical feasibility through computational experiments on real-world ICS datasets. As a result, our work demonstrates a scalable, privacy-preserving alternative for regulatory compliance for ICS driven critical infrastructure networks.
Streaming Generated Gaussian Process Experts for Online Learning and Control: Extended Version AAAI 2026
Gaussian Processes (GPs), as a nonparametric learning method, offer flexible modeling capabilities and calibrated uncertainty quantification for function approximations. Additionally, GPs support online learning by efficiently incorporating new data with polynomial-time computation, making them well-suited for safety-critical dynamical systems that require rapid adaptation. However, the inference and online updates of exact GPs, when processing streaming data, incur cubic computation time and quadratic storage memory complexity, limiting their scalability to large datasets in real-time settings. In this paper, we propose a streaming kernel-induced progressively generated expert framework of Gaussian processes (SkyGP) that addresses both computational and memory constraints by maintaining a bounded set of experts, while inheriting the learning performance guarantees from exact Gaussian processes. Furthermore, two SkyGP variants are introduced, each tailored to a specific objective, either maximizing prediction accuracy (SkyGP-Dense) or improving computational efficiency (SkyGP-Fast). The effectiveness of SkyGP is validated through extensive benchmarks and real-time control experiments demonstrating its superior performance compared to state-of-the-art approaches.
comment: Accepted at AAAI 2026
A Joint Delay-Energy-Security Aware Framework for Intelligent Task Scheduling in Satellite-Terrestrial Edge Computing Network
In this paper, we propose a two-stage optimization framework for secure task scheduling in satellite-terrestrial edge computing networks (STECNs). The framework jointly considers secure user association and task offloading to balance transmission delay, energy consumption, and physical-layer security. To address the inherent complexity, we decouple the problem into two stages. In the first stage, a secrecy-aware user association strategy is designed by discretizing artificial noise (AN) power ratios and identifying feasible links that satisfy secrecy constraints, resulting in a set of candidate secure associations. In the second stage, we formulate a delay-energy-aware task scheduling problem as an integer linear program and solve it using a heuristic Mayfly Algorithm (MA) to obtain low-complexity, high-quality solutions. Extensive simulation results demonstrate the effectiveness and superiority of the proposed framework in achieving secure and efficient task scheduling under dynamic satellite environments.
comment: 11 pages, 8 figures
Less is More: Contextual Sampling for Nonlinear Data-Driven Predictive Control
Data-Driven Predictive Control (DPC) optimizes system behavior directly from measured trajectories without requiring an explicit model. However, its computational cost scales with dataset size, limiting real-time applicability to nonlinear robotic systems. For robotic tasks such as trajectory tracking and motion planning, real-time feasibility and numerical robustness are essential. Nonlinear DPC often relies on large datasets or learned nonlinear representations to ensure accuracy, both of which increase computational demand. We propose Contextual Sampling, a dynamic data selection strategy that adaptively selects the most relevant trajectories based on the current state and reference. By reducing dataset size while preserving representativeness, it improves computational efficiency. Experiments on a scaled autonomous vehicle and a quadrotor show that Contextual Sampling achieves comparable or better tracking than Random Sampling with fewer trajectories, enabling real-time feasibility. Compared with Select-DPC, it achieves similar tracking accuracy at lower computational cost. In comparison with the full DPC formulation without sampling, Contextual Sampling attains comparable tracking performance while requiring less computation, highlighting the benefit of efficient data selection in data-driven predictive control.
comment: Submitted to ECC 2026 on November 14, 2025
Robotics
Robot Crash Course: Learning Soft and Stylized Falling
Despite recent advances in robust locomotion, bipedal robots operating in the real world remain at risk of falling. While most research focuses on preventing such events, we instead concentrate on the phenomenon of falling itself. Specifically, we aim to reduce physical damage to the robot while providing users with control over a robot's end pose. To this end, we propose a robot agnostic reward function that balances the achievement of a desired end pose with impact minimization and the protection of critical robot parts during reinforcement learning. To make the policy robust to a broad range of initial falling conditions and to enable the specification of an arbitrary and unseen end pose at inference time, we introduce a simulation-based sampling strategy of initial and end poses. Through simulated and real-world experiments, our work demonstrates that even bipedal robots can perform controlled, soft falls.
Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
Safe Planning in Interactive Environments via Iterative Policy Updates and Adversarially Robust Conformal Prediction
Safe planning of an autonomous agent in interactive environments -- such as the control of a self-driving vehicle among pedestrians and human-controlled vehicles -- poses a major challenge as the behavior of the environment is unknown and reactive to the behavior of the autonomous agent. This coupling gives rise to interaction-driven distribution shifts where the autonomous agent's control policy may change the environment's behavior, thereby invalidating safety guarantees in existing work. Indeed, recent works have used conformal prediction (CP) to generate distribution-free safety guarantees using observed data of the environment. However, CP's assumption on data exchangeability is violated in interactive settings due to a circular dependency where a control policy update changes the environment's behavior, and vice versa. To address this gap, we propose an iterative framework that robustly maintains safety guarantees across policy updates by quantifying the potential impact of a planned policy update on the environment's behavior. We realize this via adversarially robust CP where we perform a regular CP step in each episode using observed data under the current policy, but then transfer safety guarantees across policy updates by analytically adjusting the CP result to account for distribution shifts. This adjustment is performed based on a policy-to-trajectory sensitivity analysis, resulting in a safe, episodic open-loop planner. We further conduct a contraction analysis of the system providing conditions under which both the CP results and the policy updates are guaranteed to converge. We empirically demonstrate these safety and convergence guarantees on a two-dimensional car-pedestrian case study. To the best of our knowledge, these are the first results that provide valid safety guarantees in such interactive settings.
From Fold to Function: Dynamic Modeling and Simulation-Driven Design of Origami Mechanisms
Origami-inspired mechanisms can transform flat sheets into functional three-dimensional dynamic structures that are lightweight, compact, and capable of complex motion. These properties make origami increasingly valuable in robotic and deployable systems. However, accurately simulating their folding behavior and interactions with the environment remains challenging. To address this, we present a design framework for origami mechanism simulation that utilizes MuJoCo's deformable-body capabilities. In our approach, origami sheets are represented as graphs of interconnected deformable elements with user-specified constraints such as creases and actuation, defined through an intuitive graphical user interface (GUI). This framework allows users to generate physically consistent simulations that capture both the geometric structure of origami mechanisms and their interactions with external objects and surfaces. We demonstrate our method's utility through a case study on an origami catapult, where design parameters are optimized in simulation using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and validated experimentally on physical prototypes. The optimized structure achieves improved throwing performance, illustrating how our system enables rapid, simulation-driven origami design, optimization, and analysis.
comment: 8 Pages, 9 Figures, Submitted to IEEE RoboSoft
SemanticVLA: Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation AAAI 2026
Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA
comment: Accepted to AAAI 2026 (Oral), Project Page: https://github.com/JiuTian-VL/SemanticVLA
Improving dependability in robotized bolting operations
Bolting operations are critical in industrial assembly and in the maintenance of scientific facilities, requiring high precision and robustness to faults. Although robotic solutions have the potential to improve operational safety and effectiveness, current systems still lack reliable autonomy and fault management capabilities. To address this gap, we propose a control framework for dependable robotized bolting tasks and instantiate it on a specific robotic system. The system features a control architecture ensuring accurate driving torque control and active compliance throughout the entire operation, enabling safe interaction even under fault conditions. By designing a multimodal human-robot interface (HRI) providing real-time visualization of relevant system information and supporting seamless transitions between automatic and manual control, we improve operator situation awareness and fault detection capabilities. A high-level supervisor (SV) coordinates the execution and manages transitions between control modes, ensuring consistency with the supervisory control (SVC) paradigm, while preserving the human operator's authority. The system is validated in a representative bolting operation involving pipe flange joining, under several fault conditions. The results demonstrate improved fault detection capabilities, enhanced operator situational awareness, and accurate and compliant execution of the bolting operation. However, they also reveal the limitations of relying on a single camera to achieve full situational awareness.
comment: 10 pages, 9 figures
LongComp: Long-Tail Compositional Zero-Shot Generalization for Robust Trajectory Prediction
Methods for trajectory prediction in Autonomous Driving must contend with rare, safety-critical scenarios that make reliance on real-world data collection alone infeasible. To assess robustness under such conditions, we propose new long-tail evaluation settings that repartition datasets to create challenging out-of-distribution (OOD) test sets. We first introduce a safety-informed scenario factorization framework, which disentangles scenarios into discrete ego and social contexts. Building on analogies to compositional zero-shot image-labeling in Computer Vision, we then hold out novel context combinations to construct challenging closed-world and open-world settings. This process induces OOD performance gaps in future motion prediction of 5.0% and 14.7% in closed-world and open-world settings, respectively, relative to in-distribution performance for a state-of-the-art baseline. To improve generalization, we extend task-modular gating networks to operate within trajectory prediction models, and develop an auxiliary, difficulty-prediction head to refine internal representations. Our strategies jointly reduce the OOD performance gaps to 2.8% and 11.5% in the two settings, respectively, while still improving in-distribution performance.
comment: 8 pages, 3 figures
nuPlan-R: A Closed-Loop Planning Benchmark for Autonomous Driving via Reactive Multi-Agent Simulation
Recent advances in closed-loop planning benchmarks have significantly improved the evaluation of autonomous vehicles. However, existing benchmarks still rely on rule-based reactive agents such as the Intelligent Driver Model (IDM), which lack behavioral diversity and fail to capture realistic human interactions, leading to oversimplified traffic dynamics. To address these limitations, we present nuPlan-R, a new reactive closed-loop planning benchmark that integrates learning-based reactive multi-agent simulation into the nuPlan framework. Our benchmark replaces the rule-based IDM agents with noise-decoupled diffusion-based reactive agents and introduces an interaction-aware agent selection mechanism to ensure both realism and computational efficiency. Furthermore, we extend the benchmark with two additional metrics to enable a more comprehensive assessment of planning performance. Extensive experiments demonstrate that our reactive agent model produces more realistic, diverse, and human-like traffic behaviors, leading to a benchmark environment that better reflects real-world interactive driving. We further reimplement a collection of rule-based, learning-based, and hybrid planning approaches within our nuPlan-R benchmark, providing a clearer reflection of planner performance in complex interactive scenarios and better highlighting the advantages of learning-based planners in handling complex and dynamic scenarios. These results establish nuPlan-R as a new standard for fair, reactive, and realistic closed-loop planning evaluation. We will open-source the code for the new benchmark.
comment: 8 pages, 3 figures
MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relational edges with dynamically assigned images. Built on M3DSG, we propose MSGNav, a zero-shot navigation system that includes a Key Subgraph Selection module for efficient reasoning, an Adaptive Vocabulary Update module for open vocabulary support, and a Closed-Loop Reasoning module for accurate exploration reasoning. Additionally, we further identify the last-mile problem in zero-shot navigation - determining the feasible target location with a suitable final viewpoint, and propose a Visibility-based Viewpoint Decision module to explicitly resolve it. Comprehensive experimental results demonstrate that MSGNav achieves state-of-the-art performance on GOAT-Bench and HM3D-OVON datasets. The open-source code will be publicly available.
comment: 10 pages
RoboBenchMart: Benchmarking Robots in Retail Environment
Most existing robotic manipulation benchmarks focus on simplified tabletop scenarios, typically involving a stationary robotic arm interacting with various objects on a flat surface. To address this limitation, we introduce RoboBenchMart, a more challenging and realistic benchmark designed for dark store environments, where robots must perform complex manipulation tasks with diverse grocery items. This setting presents significant challenges, including dense object clutter and varied spatial configurations -- with items positioned at different heights, depths, and in close proximity. By targeting the retail domain, our benchmark addresses a setting with strong potential for near-term automation impact. We demonstrate that current state-of-the-art generalist models struggle to solve even common retail tasks. To support further research, we release the RoboBenchMart suite, which includes a procedural store layout generator, a trajectory generation pipeline, evaluation tools and fine-tuned baseline models.
VISTA: A Vision and Intent-Aware Social Attention Framework for Multi-Agent Trajectory Prediction WACV 2026
Multi-agent trajectory prediction is crucial for autonomous systems operating in dense, interactive environments. Existing methods often fail to jointly capture agents' long-term goals and their fine-grained social interactions, which leads to unrealistic multi-agent futures. We propose VISTA, a recursive goal-conditioned transformer for multi-agent trajectory forecasting. VISTA combines (i) a cross-attention fusion module that integrates long-horizon intent with past motion, (ii) a social-token attention mechanism for flexible interaction modeling across agents, and (iii) pairwise attention maps that make social influence patterns interpretable at inference time. Our model turns single-agent goal-conditioned prediction into a coherent multi-agent forecasting framework. Beyond standard displacement metrics, we evaluate trajectory collision rates as a measure of joint realism. On the high-density MADRAS benchmark and on SDD, VISTA achieves state-of-the-art accuracy and substantially fewer collisions. On MADRAS, it reduces the average collision rate of strong baselines from 2.14 to 0.03 percent, and on SDD it attains zero collisions while improving ADE, FDE, and minFDE. These results show that VISTA generates socially compliant, goal-aware, and interpretable trajectories, making it promising for safety-critical autonomous systems.
comment: Paper accepted at WACV 2026
Learning a Thousand Tasks in a Day
Humans are remarkably efficient at learning tasks from demonstrations, but today's imitation learning methods for robot manipulation often require hundreds or thousands of demonstrations per task. We investigate two fundamental priors for improving learning efficiency: decomposing manipulation trajectories into sequential alignment and interaction phases, and retrieval-based generalisation. Through 3,450 real-world rollouts, we systematically study this decomposition. We compare different design choices for the alignment and interaction phases, and examine generalisation and scaling trends relative to today's dominant paradigm of behavioural cloning with a single-phase monolithic policy. In the few-demonstrations-per-task regime (<10 demonstrations), decomposition achieves an order of magnitude improvement in data efficiency over single-phase learning, with retrieval consistently outperforming behavioural cloning for both alignment and interaction. Building on these insights, we develop Multi-Task Trajectory Transfer (MT3), an imitation learning method based on decomposition and retrieval. MT3 learns everyday manipulation tasks from as little as a single demonstration each, whilst also generalising to novel object instances. This efficiency enables us to teach a robot 1,000 distinct everyday tasks in under 24 hours of human demonstrator time. Through 2,200 additional real-world rollouts, we reveal MT3's capabilities and limitations across different task families. Videos of our experiments can be found on at https://www.robot-learning.uk/learning-1000-tasks.
comment: This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Robotics on 12 November 2025, DOI: https://www.science.org/doi/10.1126/scirobotics.adv7594. Link to project website: https://www.robot-learning.uk/learning-1000-tasks
Opinion: Towards Unified Expressive Policy Optimization for Robust Robot Learning NeurIPS 2025
Offline-to-online reinforcement learning (O2O-RL) has emerged as a promising paradigm for safe and efficient robotic policy deployment but suffers from two fundamental challenges: limited coverage of multimodal behaviors and distributional shifts during online adaptation. We propose UEPO, a unified generative framework inspired by large language model pretraining and fine-tuning strategies. Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy that efficiently captures diverse modalities without training multiple models; (2) a dynamic divergence regularization mechanism that enforces physically meaningful policy diversity; and (3) a diffusion-based data augmentation module that enhances dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9\% absolute improvement over Uni-O4 on locomotion tasks and +12.4\% on dexterous manipulation, demonstrating strong generalization and scalability.
comment: Accepted by NeurIPS 2025 Workshop on Embodied World Models for Decision Making
Physics-informed Machine Learning for Static Friction Modeling in Robotic Manipulators Based on Kolmogorov-Arnold Networks
Friction modeling plays a crucial role in achieving high-precision motion control in robotic operating systems. Traditional static friction models (such as the Stribeck model) are widely used due to their simple forms; however, they typically require predefined functional assumptions, which poses significant challenges when dealing with unknown functional structures. To address this issue, this paper proposes a physics-inspired machine learning approach based on the Kolmogorov Arnold Network (KAN) for static friction modeling of robotic joints. The method integrates spline activation functions with a symbolic regression mechanism, enabling model simplification and physical expression extraction through pruning and attribute scoring, while maintaining both high prediction accuracy and interpretability. We first validate the method's capability to accurately identify key parameters under known functional models, and further demonstrate its robustness and generalization ability under conditions with unknown functional structures and noisy data. Experiments conducted on both synthetic data and real friction data collected from a six-degree-of-freedom industrial manipulator show that the proposed method achieves a coefficient of determination greater than 0.95 across various tasks and successfully extracts concise and physically meaningful friction expressions. This study provides a new perspective for interpretable and data-driven robotic friction modeling with promising engineering applicability.
DecARt Leg: Design and Evaluation of a Novel Humanoid Robot Leg with Decoupled Actuation for Agile Locomotion
In this paper, we propose a novel design of an electrically actuated robotic leg, called the DecARt (Decoupled Actuation Robot) Leg, aimed at performing agile locomotion. This design incorporates several new features, such as the use of a quasi-telescopic kinematic structure with rotational motors for decoupled actuation, a near-anthropomorphic leg appearance with a forward facing knee, and a novel multi-bar system for ankle torque transmission from motors placed above the knee. To analyze the agile locomotion capabilities of the design numerically, we propose a new descriptive metric, called the `Fastest Achievable Swing Time` (FAST), and perform a quantitative evaluation of the proposed design and compare it with other designs. Then we evaluate the performance of the DecARt Leg-based robot via extensive simulation and preliminary hardware experiments.
Phantom Menace: Exploring and Enhancing the Robustness of VLA Models against Physical Sensor Attacks AAAI 2026
Vision-Language-Action (VLA) models revolutionize robotic systems by enabling end-to-end perception-to-action pipelines that integrate multiple sensory modalities, such as visual signals processed by cameras and auditory signals captured by microphones. This multi-modality integration allows VLA models to interpret complex, real-world environments using diverse sensor data streams. Given the fact that VLA-based systems heavily rely on the sensory input, the security of VLA models against physical-world sensor attacks remains critically underexplored. To address this gap, we present the first systematic study of physical sensor attacks against VLAs, quantifying the influence of sensor attacks and investigating the defenses for VLA models. We introduce a novel ``Real-Sim-Real'' framework that automatically simulates physics-based sensor attack vectors, including six attacks targeting cameras and two targeting microphones, and validates them on real robotic systems. Through large-scale evaluations across various VLA architectures and tasks under varying attack parameters, we demonstrate significant vulnerabilities, with susceptibility patterns that reveal critical dependencies on task types and model designs. We further develop an adversarial-training-based defense that enhances VLA robustness against out-of-distribution physical perturbations caused by sensor attacks while preserving model performance. Our findings expose an urgent need for standardized robustness benchmarks and mitigation strategies to secure VLA deployments in safety-critical environments.
comment: Accepted by AAAI 2026
Audio-VLA: Adding Contact Audio Perception to Vision-Language-Action Model for Robotic Manipulation
The Vision-Language-Action models (VLA) have achieved significant advances in robotic manipulation recently. However, vision-only VLA models create fundamental limitations, particularly in perceiving interactive and manipulation dynamic processes. This paper proposes Audio-VLA, a multimodal manipulation policy that leverages contact audio to perceive contact events and dynamic process feedback. Audio-VLA overcomes the vision-only constraints of VLA models. Additionally, this paper introduces the Task Completion Rate (TCR) metric to systematically evaluate dynamic operational processes. Audio-VLA employs pre-trained DINOv2 and SigLIP as visual encoders, AudioCLIP as the audio encoder, and Llama2 as the large language model backbone. We apply LoRA fine-tuning to these pre-trained modules to achieve robust cross-modal understanding of both visual and acoustic inputs. A multimodal projection layer aligns features from different modalities into the same feature space. Moreover RLBench and LIBERO simulation environments are enhanced by adding collision-based audio generation to provide realistic sound feedback during object interactions. Since current robotic manipulation evaluations focus on final outcomes rather than providing systematic assessment of dynamic operational processes, the proposed TCR metric measures how well robots perceive dynamic processes during manipulation, creating a more comprehensive evaluation metric. Extensive experiments on LIBERO, RLBench, and two real-world tasks demonstrate Audio-VLA's superior performance over vision-only comparative methods, while the TCR metric effectively quantifies dynamic process perception capabilities.
A Study on Enhancing the Generalization Ability of Visuomotor Policies via Data Augmentation
The generalization ability of visuomotor policy is crucial, as a good policy should be deployable across diverse scenarios. Some methods can collect large amounts of trajectory augmentation data to train more generalizable imitation learning policies, aimed at handling the random placement of objects on the scene's horizontal plane. However, the data generated by these methods still lack diversity, which limits the generalization ability of the trained policy. To address this, we investigate the performance of policies trained by existing methods across different scene layout factors via automate the data generation for those factors that significantly impact generalization. We have created a more extensively randomized dataset that can be efficiently and automatically generated with only a small amount of human demonstration. The dataset covers five types of manipulators and two types of grippers, incorporating extensive randomization factors such as camera pose, lighting conditions, tabletop texture, and table height across six manipulation tasks. We found that all of these factors influence the generalization ability of the policy. Applying any form of randomization enhances policy generalization, with diverse trajectories particularly effective in bridging visual gap. Notably, we investigated on low-cost manipulator the effect of the scene randomization proposed in this work on enhancing the generalization capability of visuomotor policies for zero-shot sim-to-real transfer.
Harnessing Bounded-Support Evolution Strategies for Policy Refinement
Improving competent robot policies with on-policy RL is often hampered by noisy, low-signal gradients. We revisit Evolution Strategies (ES) as a policy-gradient proxy and localize exploration with bounded, antithetic triangular perturbations, suitable for policy refinement. We propose Triangular-Distribution ES (TD-ES) which pairs bounded triangular noise with a centered-rank finite-difference estimator to deliver stable, parallelizable, gradient-free updates. In a two-stage pipeline -- PPO pretraining followed by TD-ES refinement -- this preserves early sample efficiency while enabling robust late-stage gains. Across a suite of robotic manipulation tasks, TD-ES raises success rates by 26.5% relative to PPO and greatly reduces variance, offering a simple, compute-light path to reliable refinement.
comment: 10 pages, 6 figures, to be published in Australasian Conference on Robotics and Automation (ACRA 2025)
PuffyBot: An Untethered Shape Morphing Robot for Multi-environment Locomotion
Amphibians adapt their morphologies and motions to accommodate movement in both terrestrial and aquatic environments. Inspired by these biological features, we present PuffyBot, an untethered shape morphing robot capable of changing its body morphology to navigate multiple environments. Our robot design leverages a scissor-lift mechanism driven by a linear actuator as its primary structure to achieve shape morphing. The transformation enables a volume change from 255.00 cm3 to 423.75 cm3, modulating the buoyant force to counteract a downward force of 3.237 N due to 330 g mass of the robot. A bell-crank linkage is integrated with the scissor-lift mechanism, which adjusts the servo-actuated limbs by 90 degrees, allowing a seamless transition between crawling and swimming modes. The robot is fully waterproof, using thermoplastic polyurethane (TPU) fabric to ensure functionality in aquatic environments. The robot can operate untethered for two hours with an onboard battery of 1000 mA h. Our experimental results demonstrate multi-environment locomotion, including crawling on the land, crawling on the underwater floor, swimming on the water surface, and bimodal buoyancy adjustment to submerge underwater or resurface. These findings show the potential of shape morphing to create versatile and energy efficient robotic platforms suitable for diverse environments.
comment: 8 pages, 10 figures, IEEE RoboSoft 2026
Provably Safe Stein Variational Clarity-Aware Informative Planning
Autonomous robots are increasingly deployed for information-gathering tasks in environments that vary across space and time. Planning informative and safe trajectories in such settings is challenging because information decays when regions are not revisited. Most existing planners model information as static or uniformly decaying, ignoring environments where the decay rate varies spatially; those that model non-uniform decay often overlook how it evolves along the robot's motion, and almost all treat safety as a soft penalty. In this paper, we address these challenges. We model uncertainty in the environment using clarity, a normalized representation of differential entropy from our earlier work that captures how information improves through new measurements and decays over time when regions are not revisited. Building on this, we present Stein Variational Clarity-Aware Informative Planning, a framework that embeds clarity dynamics within trajectory optimization and enforces safety through a low-level filtering mechanism based on our earlier gatekeeper framework for safety verification. The planner performs Bayesian inference-based learning via Stein variational inference, refining a distribution over informative trajectories while filtering each nominal Stein informative trajectory to ensure safety. Hardware experiments and simulations across environments with varying decay rates and obstacles demonstrate consistent safety and reduced information deficits.
comment: Submitted to Learning for Dynamics & Control Conference 2026. Paper Website: (https://usahai18.github.io/stein_clarity/)
Decentralized Swarm Control via SO(3) Embeddings for 3D Trajectories
This paper presents a novel decentralized approach for achieving emergent behavior in multi-agent systems with minimal information sharing. Based on prior work in simple orbits, our method produces a broad class of stable, periodic trajectories by stabilizing the system around a Lie group-based geometric embedding. Employing the Lie group SO(3), we generate a wider range of periodic curves than existing quaternion-based methods. Furthermore, we exploit SO(3) properties to eliminate the need for velocity inputs, allowing agents to receive only position inputs. We also propose a novel phase controller that ensures uniform agent separation, along with a formal stability proof. Validation through simulations and experiments showcases the method's adaptability to complex low-level dynamics and disturbances.
MIGHTY: Hermite Spline-based Efficient Trajectory Planning
Hard-constraint trajectory planners often rely on commercial solvers and demand substantial computational resources. Existing soft-constraint methods achieve faster computation, but either (1) decouple spatial and temporal optimization or (2) restrict the search space. To overcome these limitations, we introduce MIGHTY, a Hermite spline-based planner that performs spatiotemporal optimization while fully leveraging the continuous search space of a spline. In simulation, MIGHTY achieves a 9.3% reduction in computation time and a 13.1% reduction in travel time over state-of-the-art baselines, with a 100% success rate. In hardware, MIGHTY completes multiple high-speed flights up to 6.7 m/s in a cluttered static environment and long-duration flights with dynamically added obstacles.
comment: 9 pages, 10 figures
An Investigation into Dynamically Extensible and Retractable Robotic Leg Linkages for Multi-task Execution in Search and Rescue Scenarios
Search and rescue (SAR) robots are required to quickly traverse terrain and perform high-force rescue tasks, necessitating both terrain adaptability and controlled high-force output. Few platforms exist today for SAR, and fewer still have the ability to cover both tasks of terrain adaptability and high-force output when performing extraction. While legged robots offer significant ability to traverse uneven terrain, they typically are unable to incorporate mechanisms that provide variable high-force outputs, unlike traditional wheel-based drive trains. This work introduces a novel concept for a dynamically extensible and retractable robot leg. Leveraging a dynamically extensible and retractable five-bar linkage design, it allows for mechanically switching between height-advantaged and force-advantaged configurations via a geometric transformation. A testbed evaluated leg performance across linkage geometries and operating modes, with empirical and analytical analyses conducted on stride length, force output, and stability. The results demonstrate that the morphing leg offers a promising path toward SAR robots that can both navigate terrain quickly and perform rescue tasks effectively.
$\rm{A}^{\rm{SAR}}$: $\varepsilon$-Optimal Graph Search for Minimum Expected-Detection-Time Paths with Path Budget Constraints for Search and Rescue ICRA
Searches are conducted to find missing persons and/or objects given uncertain information, imperfect observers and large search areas in Search and Rescue (SAR). In many scenarios, such as Maritime SAR, expected survival times are short and optimal search could increase the likelihood of success. This optimization problem is complex for nontrivial problems given its probabilistic nature. Stochastic optimization methods search large problems by nondeterministically sampling the space to reduce the effective size of the problem. This has been used in SAR planning to search otherwise intractably large problems but the stochastic nature provides no formal guarantees on the quality of solutions found in finite time. This paper instead presents $\rm{A}^{\rm{SAR}}$, an $\varepsilon$-optimal search algorithm for SAR planning. It calculates a heuristic to bound the search space and uses graph-search methods to find solutions that are formally guaranteed to be within a user-specified factor, $\varepsilon$, of the optimal solution. It finds better solutions faster than existing optimization approaches in operational simulations. It is also demonstrated with a real-world field trial on Lake Ontario, Canada, where it was used to locate a drifting manikin in only 150s.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2026, 8 pages, 4 figures, 2 tables. The corresponding video can be found at https://www.youtube.com/watch?v=R73-YKWY78M
From Framework to Reliable Practice: End-User Perspectives on Social Robots in Public Spaces
As social robots increasingly enter public environments, their acceptance depends not only on technical reliability but also on ethical integrity, accessibility, and user trust. This paper reports on a pilot deployment of an ARI social robot functioning as a university receptionist, designed in alignment with the SecuRoPS framework for secure and ethical social robot deployment. Thirty-five students and staff interacted with the robot and provided structured feedback on safety, privacy, usability, accessibility, and transparency. The results show generally positive perceptions of physical safety, data protection, and ethical behavior, while also highlighting challenges related to accessibility, inclusiveness, and dynamic interaction. Beyond the empirical findings, the study demonstrates how theoretical frameworks for ethical and secure design can be implemented in real-world contexts through end-user evaluation. It also provides a public GitHub repository containing reusable templates for ARI robot applications to support reproducibility and lower the entry barrier for new researchers. By combining user perspectives with practical technical resources, this work contributes to ongoing discussions in AI and society and supports the development of trustworthy, inclusive, and ethically responsible social robots for public spaces.
comment: 26 pages, 3 figures
Attentive Feature Aggregation or: How Policies Learn to Stop Worrying about Robustness and Attend to Task-Relevant Visual Cues
The adoption of pre-trained visual representations (PVRs), leveraging features from large-scale vision models, has become a popular paradigm for training visuomotor policies. However, these powerful representations can encode a broad range of task-irrelevant scene information, making the resulting trained policies vulnerable to out-of-domain visual changes and distractors. In this work we address visuomotor policy feature pooling as a solution to the observed lack of robustness in perturbed scenes. We achieve this via Attentive Feature Aggregation (AFA), a lightweight, trainable pooling mechanism that learns to naturally attend to task-relevant visual cues, ignoring even semantically rich scene distractors. Through extensive experiments in both simulation and the real world, we demonstrate that policies trained with AFA significantly outperform standard pooling approaches in the presence of visual perturbations, without requiring expensive dataset augmentation or fine-tuning of the PVR. Our findings show that ignoring extraneous visual information is a crucial step towards deploying robust and generalisable visuomotor policies. Project Page: tsagkas.github.io/afa
comment: This paper stems from a split of our earlier work "When Pre-trained Visual Representations Fall Short: Limitations in Visuo-Motor Robot Learning." While "The Temporal Trap" replaces the original and focuses on temporal entanglement, this companion study examines policy robustness and task-relevant visual cue selection
Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
Onboard Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
UniGS: Unified Geometry-Aware Gaussian Splatting for Multimodal Rendering
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion
The human-like form of humanoid robots positions them uniquely to achieve the agility and versatility in motor skills that humans possess. Learning from human demonstrations offers a scalable approach to acquiring these capabilities. However, prior works either produce unnatural motions or rely on motion-specific tuning to achieve satisfactory naturalness. Furthermore, these methods are often motion- or goal-specific, lacking the versatility to compose diverse skills, especially when solving unseen tasks. We present BeyondMimic, a framework that scales to diverse motions and carries the versatility to compose them seamlessly in tackling unseen downstream tasks. At heart, a compact motion-tracking formulation enables mastering a wide range of radically agile behaviors, including aerial cartwheels, spin-kicks, flip-kicks, and sprinting, with a single setup and shared hyperparameters, all while achieving state-of-the-art human-like performance. Moving beyond the mere imitation of existing motions, we propose a unified latent diffusion model that empowers versatile goal specification, seamless task switching, and dynamic composition of these agile behaviors. Leveraging classifier guidance, a diffusion-specific technique for test-time optimization toward novel objectives, our model extends its capability to solve downstream tasks never encountered during training, including motion inpainting, joystick teleoperation, and obstacle avoidance, and transfers these skills zero-shot to real hardware. This work opens new frontiers for humanoid robots by pushing the limits of scalable human-like motor skill acquisition from human motion and advancing seamless motion synthesis that achieves generalization and versatility beyond training setups.
comment: Project page: https://beyondmimic.github.io/
Feedback-MPPI: Fast Sampling-Based MPC via Rollout Differentiation -- Adios low-level controllers
Model Predictive Path Integral control is a powerful sampling-based approach suitable for complex robotic tasks due to its flexibility in handling nonlinear dynamics and non-convex costs. However, its applicability in real-time, highfrequency robotic control scenarios is limited by computational demands. This paper introduces Feedback-MPPI (F-MPPI), a novel framework that augments standard MPPI by computing local linear feedback gains derived from sensitivity analysis inspired by Riccati-based feedback used in gradient-based MPC. These gains allow for rapid closed-loop corrections around the current state without requiring full re-optimization at each timestep. We demonstrate the effectiveness of F-MPPI through simulations and real-world experiments on two robotic platforms: a quadrupedal robot performing dynamic locomotion on uneven terrain and a quadrotor executing aggressive maneuvers with onboard computation. Results illustrate that incorporating local feedback significantly improves control performance and stability, enabling robust, high-frequency operation suitable for complex robotic systems.
Unlocking Efficient Vehicle Dynamics Modeling via Analytic World Models AAAI 2026
Differentiable simulators represent an environment's dynamics as a differentiable function. Within robotics and autonomous driving, this property is used in Analytic Policy Gradients (APG), which relies on backpropagating through the dynamics to train accurate policies for diverse tasks. Here we show that differentiable simulation also has an important role in world modeling, where it can impart predictive, prescriptive, and counterfactual capabilities to an agent. Specifically, we design three novel task setups in which the differentiable dynamics are combined within an end-to-end computation graph not with a policy, but a state predictor. This allows us to learn relative odometry, optimal planners, and optimal inverse states. We collectively call these predictors Analytic World Models (AWMs) and demonstrate how differentiable simulation enables their efficient, end-to-end learning. In autonomous driving scenarios, they have broad applicability and can augment an agent's decision-making beyond reactive control.
comment: Accepted at AAAI 2026
Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
ManipDreamer3D : Synthesizing Plausible Robotic Manipulation Video with Occupancy-aware 3D Trajectory
Data scarcity continues to be a major challenge in the field of robotic manipulation. Although diffusion models provide a promising solution for generating robotic manipulation videos, existing methods largely depend on 2D trajectories, which inherently face issues with 3D spatial ambiguity. In this work, we present a novel framework named ManipDreamer3D for generating plausible 3D-aware robotic manipulation videos from the input image and the text instruction. Our method combines 3D trajectory planning with a reconstructed 3D occupancy map created from a third-person perspective, along with a novel trajectory-to-video diffusion model. Specifically, ManipDreamer3D first reconstructs the 3D occupancy representation from the input image and then computes an optimized 3D end-effector trajectory, minimizing path length while avoiding collisions. Next, we employ a latent editing technique to create video sequences from the initial image latent and the optimized 3D trajectory. This process conditions our specially trained trajectory-to-video diffusion model to produce robotic pick-and-place videos. Our method generates robotic videos with autonomously planned plausible 3D trajectories, significantly reducing human intervention requirements. Experimental results demonstrate superior visual quality compared to existing methods.
comment: 7pages; 7figures; 3 tables
Keep on Going: Learning Robust Humanoid Motion Skills via Selective Adversarial Training AAAI2026
Humanoid robots are expected to operate reliably over long horizons while executing versatile whole-body skills. Yet Reinforcement Learning (RL) motion policies typically lose stability under prolonged operation, sensor/actuator noise, and real world disturbances. In this work, we propose a Selective Adversarial Attack for Robust Training (SA2RT) to enhance the robustness of motion skills. The adversary is learned to identify and sparsely perturb the most vulnerable states and actions under an attack-budget constraint, thereby exposing true weakness without inducing conservative overfitting. The resulting non-zero sum, alternating optimization continually strengthens the motion policy against the strongest discovered attacks. We validate our approach on the Unitree G1 humanoid robot across perceptive locomotion and whole-body control tasks. Experimental results show that adversarially trained policies improve the terrain traversal success rate by 40%, reduce the trajectory tracking error by 32%, and maintain long horizon mobility and tracking performance. Together, these results demonstrate that selective adversarial attacks are an effective driver for learning robust, long horizon humanoid motion skills.
comment: 13 pages, 10 figures, AAAI2026
Understanding while Exploring: Semantics-driven Active Mapping
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
GHOST: Solving the Traveling Salesman Problem on Graphs of Convex Sets AAAI-2026
We study GCS-TSP, a new variant of the Traveling Salesman Problem (TSP) defined over a Graph of Convex Sets (GCS) -- a powerful representation for trajectory planning that decomposes the configuration space into convex regions connected by a sparse graph. In this setting, edge costs are not fixed but depend on the specific trajectory selected through each convex region, making classical TSP methods inapplicable. We introduce GHOST, a hierarchical framework that optimally solves the GCS-TSP by combining combinatorial tour search with convex trajectory optimization. GHOST systematically explores tours on a complete graph induced by the GCS, using a novel abstract-path-unfolding algorithm to compute admissible lower bounds that guide best-first search at both the high level (over tours) and the low level (over feasible GCS paths realizing the tour). These bounds provide strong pruning power, enabling efficient search while avoiding unnecessary convex optimization calls. We prove that GHOST guarantees optimality and present a bounded-suboptimal variant for time-critical scenarios. Experiments show that GHOST is orders-of-magnitude faster than unified mixed-integer convex programming baselines for simple cases and uniquely handles complex trajectory planning problems involving high-order continuity constraints and an incomplete GCS.
comment: Accepted to AAAI-2026
Special Unitary Parameterized Estimators of Rotation
This paper revisits the topic of rotation estimation through the lens of special unitary matrices. We begin by reformulating Wahba's problem using $SU(2)$ to derive multiple solutions that yield linear constraints on corresponding quaternion parameters. We then explore applications of these constraints by formulating efficient methods for related problems. Finally, from this theoretical foundation, we propose two novel continuous representations for learning rotations in neural networks. Extensive experiments validate the effectiveness of the proposed methods.
comment: 32 pages; new algebraic formula for QuadMobiusAlg; three new benchmark experiments
VisualMimic: Visual Humanoid Loco-Manipulation via Motion Tracking and Generation
Humanoid loco-manipulation in unstructured environments demands tight integration of egocentric perception and whole-body control. However, existing approaches either depend on external motion capture systems or fail to generalize across diverse tasks. We introduce VisualMimic, a visual sim-to-real framework that unifies egocentric vision with hierarchical whole-body control for humanoid robots. VisualMimic combines a task-agnostic low-level keypoint tracker -- trained from human motion data via a teacher-student scheme -- with a task-specific high-level policy that generates keypoint commands from visual and proprioceptive input. To ensure stable training, we inject noise into the low-level policy and clip high-level actions using human motion statistics. VisualMimic enables zero-shot transfer of visuomotor policies trained in simulation to real humanoid robots, accomplishing a wide range of loco-manipulation tasks such as box lifting, pushing, football dribbling, and kicking. Beyond controlled laboratory settings, our policies also generalize robustly to outdoor environments. Videos are available at: https://visualmimic.github.io .
comment: Website: https://visualmimic.github.io
ATOM-CBF: Adaptive Safe Perception-Based Control under Out-of-Distribution Measurements
Ensuring the safety of real-world systems is challenging, especially when they rely on learned perception modules to infer the system state from high-dimensional sensor data. These perception modules are vulnerable to epistemic uncertainty, often failing when encountering out-of-distribution (OoD) measurements not seen during training. To address this gap, we introduce ATOM-CBF (Adaptive-To-OoD-Measurement Control Barrier Function), a novel safe control framework that explicitly computes and adapts to the epistemic uncertainty from OoD measurements, without the need for ground-truth labels or information on distribution shifts. Our approach features two key components: (1) an OoD-aware adaptive perception error margin and (2) a safety filter that integrates this adaptive error margin, enabling the filter to adjust its conservatism in real-time. We provide empirical validation in simulations, demonstrating that ATOM-CBF maintains safety for an F1Tenth vehicle with LiDAR scans and a quadruped robot with RGB images.
Decoupling Torque and Stiffness: A Unified Modeling and Control Framework for Antagonistic Artificial Muscles
Antagonistic soft actuators built from artificial muscles (PAMs, HASELs, DEAs) promise plant-level torque-stiffness decoupling, yet existing controllers for soft muscles struggle to maintain independent control through dynamic contact transients. We present a unified framework enabling independent torque and stiffness commands in real-time for diverse soft actuator types. Our unified force law captures diverse soft muscle physics in a single model with sub-ms computation, while our cascaded controller with analytical inverse dynamics maintains decoupling despite model errors and disturbances. Using co-contraction/bias coordinates, the controller independently modulates torque via bias and stiffness via co-contraction-replicating biological impedance strategies. Simulation-based validation through contact experiments demonstrates maintained independence: 200x faster settling on soft surfaces, 81% force reduction on rigid surfaces, and stable interaction vs 22-54% stability for fixed policies. This framework provides a foundation for enabling musculoskeletal antagonistic systems to execute adaptive impedance control for safe human-robot interaction.
GELATO: Multi-Instruction Trajectory Reshaping via Geometry-Aware Multiagent-based Orchestration
We present GELATO -- the first language-driven trajectory reshaping framework to embed geometric environment awareness and multi-agent feedback orchestration to support multi-instruction in human-robot interaction scenarios. Unlike prior learning-based methods, our approach automatically registers scene objects as 6D geometric primitives via a VLM-assisted multi-view pipeline, and an LLM translates free-form multiple instructions into explicit, verifiable geometric constraints. These are integrated into a geometric-aware vector field optimization to adapt initial trajectories while preserving smoothness, feasibility, and clearance. We further introduce a multi-agent orchestration with observer-based refinement to handle multi-instruction inputs and interactions among objectives -- increasing success rate without retraining. Simulation and real-world experiments demonstrate our method achieves smoother, safer, and more interpretable trajectory modifications compared to state-of-the-art baselines.
The Temporal Trap: Entanglement in Pre-Trained Visual Representations for Visuomotor Policy Learning
The integration of pre-trained visual representations (PVRs) has significantly advanced visuomotor policy learning. However, effectively leveraging these models remains a challenge. We identify temporal entanglement as a critical, inherent issue when using these time-invariant models in sequential decision-making tasks. This entanglement arises because PVRs, optimised for static image understanding, struggle to represent the temporal dependencies crucial for visuomotor control. In this work, we quantify the impact of temporal entanglement, demonstrating a strong correlation between a policy's success rate and the ability of its latent space to capture task-progression cues. Based on these insights, we propose a simple, yet effective disentanglement baseline designed to mitigate temporal entanglement. Our empirical results show that traditional methods aimed at enriching features with temporal components are insufficient on their own, highlighting the necessity of explicitly addressing temporal disentanglement for robust visuomotor policy learning.
comment: This submission replaces our earlier work "When Pre-trained Visual Representations Fall Short: Limitations in Visuo-Motor Robot Learning." The original paper was split into two studies; this version focuses on temporal entanglement in pre-trained visual representations. The companion paper is "Attentive Feature Aggregation."
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
A Humanoid Visual-Tactile-Action Dataset for Contact-Rich Manipulation
Contact-rich manipulation has become increasingly important in robot learning. However, previous studies on robot learning datasets have focused on rigid objects and underrepresented the diversity of pressure conditions for real-world manipulation. To address this gap, we present a humanoid visual-tactile-action dataset designed for manipulating deformable soft objects. The dataset was collected via teleoperation using a humanoid robot equipped with dexterous hands, capturing multi-modal interactions under varying pressure conditions. This work also motivates future research on models with advanced optimization strategies capable of effectively leveraging the complexity and diversity of tactile signals.
Multiagent Systems
Towards Emotionally Intelligent and Responsible Reinforcement Learning
Personalized decision systems in healthcare and behavioral support often rely on static rule-based or engagement-maximizing heuristics that overlook users' emotional context and ethical constraints. Such approaches risk recommending insensitive or unsafe interventions, especially in domains involving serious mental illness, substance use disorders, or depression. To address this limitation, we propose a Responsible Reinforcement Learning (RRL) framework that integrates emotional and contextual understanding with ethical considerations into the sequential decision-making process. RRL formulates personalization as a Constrained Markov Decision Process (CMDP), where the agent optimizes engagement and adherence while ensuring emotional alignment and ethical safety. We introduce a multi-objective reward function that explicitly balances short-term behavioral engagement with long-term user well-being, and define an emotion-informed state representation that captures fluctuations in emotional readiness, affect, and risk. The proposed architecture can be instantiated with any RL algorithm (e.g., DQN, PPO) augmented with safety constraints or Lagrangian regularization. Conceptually, this framework operationalizes empathy and responsibility within machine learning policy optimization, bridging safe RL, affective computing and responsible AI. We discuss the implications of this approach for human-centric domains such as behavioral health, education, and digital therapeutics, and outline simulation-based validation paths for future empirical work. This paper aims to initiate a methodological conversation about ethically aligned reinforcement learning for emotionally aware and trustworthy personalization systems.
Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
Behavior Modeling for Training-free Building of Private Domain Multi Agent System
The rise of agentic systems that combine orchestration, tool use, and conversational capabilities, has been more visible by the recent advent of large language models (LLMs). While open-domain frameworks exist, applying them in private domains remains difficult due to heterogeneous tool formats, domain-specific jargon, restricted accessibility of APIs, and complex governance. Conventional solutions, such as fine-tuning on synthetic dialogue data, are burdensome and brittle under domain shifts, and risk degrading general performance. In this light, we introduce a framework for private-domain multi-agent conversational systems that avoids training and data generation by adopting behavior modeling and documentation. Our design simply assumes an orchestrator, a tool-calling agent, and a general chat agent, with tool integration defined through structured specifications and domain-informed instructions. This approach enables scalable adaptation to private tools and evolving contexts without continual retraining. The framework supports practical use cases, including lightweight deployment of multi-agent systems, leveraging API specifications as retrieval resources, and generating synthetic dialogue for evaluation -- providing a sustainable method for aligning agent behavior with domain expertise in private conversational ecosystems.
comment: 10 pages, 1 figure, 2 tables
Facility Location for Congesting Commuters and Generalizing the Cost-Distance Problem
In Facility Location problems there are agents that should be connected to facilities and locations where facilities may be opened so that agents can connect to them. We depart from Uncapacitated Facility Location and by assuming that the connection costs of agents to facilities are congestion dependent, we define a novel problem, namely, Facility Location for Congesting (Selfish) Commuters. The connection costs of agents to facilities come as a result of how the agents commute to reach the facilities in an underlying network with cost functions on the edges. Inapproximability results follow from the related literature and thus approximate solutions is all we can hope for. For when the cost functions are nondecreasing we employ in a novel way an approximate version of Caratheodory's Theorem [5] to show how approximate solutions for different versions of the problem can be derived. For when the cost functions are nonincreasing we show how this problem generalizes the Cost-Distance problem [38] and provide an algorithm that for this more general case achieves the same approximation guarantees.
dHPR: A Distributed Halpern Peaceman--Rachford Method for Non-smooth Distributed Optimization Problems
This paper introduces the distributed Halpern Peaceman--Rachford (dHPR) method, an efficient algorithm for solving distributed convex composite optimization problems with non-smooth objectives, which achieves a non-ergodic $O(1/k)$ iteration complexity regarding Karush--Kuhn--Tucker residual. By leveraging the symmetric Gauss--Seidel decomposition, the dHPR effectively decouples the linear operators in the objective functions and consensus constraints while maintaining parallelizability and avoiding additional large proximal terms, leading to a decentralized implementation with provably fast convergence. The superior performance of dHPR is demonstrated through comprehensive numerical experiments on distributed LASSO, group LASSO, and $L_1$-regularized logistic regression problems.
Multi-agent In-context Coordination via Decentralized Memory Retrieval
Large transformer models, trained on diverse datasets, have demonstrated impressive few-shot performance on previously unseen tasks without requiring parameter updates. This capability has also been explored in Reinforcement Learning (RL), where agents interact with the environment to retrieve context and maximize cumulative rewards, showcasing strong adaptability in complex settings. However, in cooperative Multi-Agent Reinforcement Learning (MARL), where agents must coordinate toward a shared goal, decentralized policy deployment can lead to mismatches in task alignment and reward assignment, limiting the efficiency of policy adaptation. To address this challenge, we introduce Multi-agent In-context Coordination via Decentralized Memory Retrieval (MAICC), a novel approach designed to enhance coordination by fast adaptation. Our method involves training a centralized embedding model to capture fine-grained trajectory representations, followed by decentralized models that approximate the centralized one to obtain team-level task information. Based on the learned embeddings, relevant trajectories are retrieved as context, which, combined with the agents' current sub-trajectories, inform decision-making. During decentralized execution, we introduce a novel memory mechanism that effectively balances test-time online data with offline memory. Based on the constructed memory, we propose a hybrid utility score that incorporates both individual- and team-level returns, ensuring credit assignment across agents. Extensive experiments on cooperative MARL benchmarks, including Level-Based Foraging (LBF) and SMAC (v1/v2), show that MAICC enables faster adaptation to unseen tasks compared to existing methods. Code is available at https://github.com/LAMDA-RL/MAICC.
Truth, Justice, and Secrecy: Cake Cutting Under Privacy Constraints AAAI 2026
Cake-cutting algorithms, which aim to fairly allocate a continuous resource based on individual agent preferences, have seen significant progress over the past two decades. Much of the research has concentrated on fairness, with comparatively less attention given to other important aspects. Chen et al. (2010) introduced an algorithm that, in addition to ensuring fairness, was strategyproof -- meaning agents had no incentive to misreport their valuations. However, even in the absence of strategic incentives to misreport, agents may still hesitate to reveal their true preferences due to privacy concerns (e.g., when allocating advertising time between firms, revealing preferences could inadvertently expose planned marketing strategies or product launch timelines). In this work, we extend the strategyproof algorithm of Chen et al. by introducing a privacy-preserving dimension. To the best of our knowledge, we present the first private cake-cutting protocol, and, in addition, this protocol is also envy-free and strategyproof. Our approach replaces the algorithm's centralized computation with a novel adaptation of cryptographic techniques, enabling privacy without compromising fairness or strategyproofness. Thus, our protocol encourages agents to report their true preferences not only because they are not incentivized to lie, but also because they are protected from having their preferences exposed.
comment: This is the full version of our paper published in the Proceedings of AAAI 2026
Decentralized Swarm Control via SO(3) Embeddings for 3D Trajectories
This paper presents a novel decentralized approach for achieving emergent behavior in multi-agent systems with minimal information sharing. Based on prior work in simple orbits, our method produces a broad class of stable, periodic trajectories by stabilizing the system around a Lie group-based geometric embedding. Employing the Lie group SO(3), we generate a wider range of periodic curves than existing quaternion-based methods. Furthermore, we exploit SO(3) properties to eliminate the need for velocity inputs, allowing agents to receive only position inputs. We also propose a novel phase controller that ensures uniform agent separation, along with a formal stability proof. Validation through simulations and experiments showcases the method's adaptability to complex low-level dynamics and disturbances.
What the flock knows that the birds do not: exploring the emergence of joint agency in multi-agent active inference
Collective behavior pervades biological systems, from flocks of birds to neural assemblies and human societies. Yet, how such collectives acquire functional properties -- such as joint agency or knowledge -- that transcend those of their individual components remains an open question. Here, we combine active inference and information-theoretic analyses to explore how a minimal system of interacting agents can give rise to joint agency and collective knowledge. We model flocking dynamics using multiple active inference agents, each minimizing its own free energy while coupling reciprocally with its neighbors. We show that as agents self-organize, their interactions define higher-order statistical boundaries (Markov blankets) enclosing a ``flock'' that can be treated as an emergent agent with its own sensory, active, and internal states. When exposed to external perturbations (a ``predator''), the flock exhibits faster, coordinated responses than individual agents, reflecting collective sensitivity to environmental change. Crucially, analyses of synergistic information reveal that the flock encodes information about the predator's location that is not accessible to every individual bird, demonstrating implicit collective knowledge. Together, these results show how informational coupling among active inference agents can generate new levels of autonomy and inference, providing a framework for understanding the emergence of (implicit) collective knowledge and joint agency.
comment: 18 pages, 3 figures, appendix
Concept-RuleNet: Grounded Multi-Agent Neurosymbolic Reasoning in Vision Language Models AAAI 2026
Modern vision-language models (VLMs) deliver impressive predictive accuracy yet offer little insight into 'why' a decision is reached, frequently hallucinating facts, particularly when encountering out-of-distribution data. Neurosymbolic frameworks address this by pairing black-box perception with interpretable symbolic reasoning, but current methods extract their symbols solely from task labels, leaving them weakly grounded in the underlying visual data. In this paper, we introduce a multi-agent system - Concept-RuleNet that reinstates visual grounding while retaining transparent reasoning. Specifically, a multimodal concept generator first mines discriminative visual concepts directly from a representative subset of training images. Next, these visual concepts are utilized to condition symbol discovery, anchoring the generations in real image statistics and mitigating label bias. Subsequently, symbols are composed into executable first-order rules by a large language model reasoner agent - yielding interpretable neurosymbolic rules. Finally, during inference, a vision verifier agent quantifies the degree of presence of each symbol and triggers rule execution in tandem with outputs of black-box neural models, predictions with explicit reasoning pathways. Experiments on five benchmarks, including two challenging medical-imaging tasks and three underrepresented natural-image datasets, show that our system augments state-of-the-art neurosymbolic baselines by an average of 5% while also reducing the occurrence of hallucinated symbols in rules by up to 50%.
comment: AAAI 2026 (oral)
AdaptFly: Prompt-Guided Adaptation of Foundation Models for Low-Altitude UAV Networks
Low-altitude Unmanned Aerial Vehicle (UAV) networks rely on robust semantic segmentation as a foundational enabler for distributed sensing-communication-control co-design across heterogeneous agents within the network. However, segmentation foundation models deteriorate quickly under weather, lighting, and viewpoint drift. Resource-limited UAVs cannot run gradient-based test-time adaptation, while resource-massive UAVs adapt independently, wasting shared experience. To address these challenges, we propose AdaptFly, a prompt-guided test-time adaptation framework that adjusts segmentation models without weight updates. AdaptFly features two complementary adaptation modes. For resource-limited UAVs, it employs lightweight token-prompt retrieval from a shared global memory. For resource-massive UAVs, it uses gradient-free sparse visual prompt optimization via Covariance Matrix Adaptation Evolution Strategy. An activation-statistic detector triggers adaptation, while cross-UAV knowledge pool consolidates prompt knowledge and enables fleet-wide collaboration with negligible bandwidth overhead. Extensive experiments on UAVid and VDD benchmarks, along with real-world UAV deployments under diverse weather conditions, demonstrate that AdaptFly significantly improves segmentation accuracy and robustness over static models and state-of-the-art TTA baselines. The results highlight a practical path to resilient, communication-efficient perception in the emerging low-altitude economy.
Ax-Prover: A Deep Reasoning Agentic Framework for Theorem Proving in Mathematics and Quantum Physics
We present Ax-Prover, a multi-agent system for automated theorem proving in Lean that can solve problems across diverse scientific domains and operate either autonomously or collaboratively with human experts. To achieve this, Ax-Prover approaches scientific problem solving through formal proof generation, a process that demands both creative reasoning and strict syntactic rigor. Ax-Prover meets this challenge by equipping Large Language Models (LLMs), which provide knowledge and reasoning, with Lean tools via the Model Context Protocol (MCP), which ensure formal correctness. To evaluate its performance as an autonomous prover, we benchmark our approach against frontier LLMs and specialized prover models on two public math benchmarks and on two Lean benchmarks we introduce in the fields of abstract algebra and quantum theory. On public datasets, Ax-Prover is competitive with state-of-the-art provers, while it largely outperforms them on the new benchmarks. This shows that, unlike specialized systems that struggle to generalize, our tool-based agentic theorem prover approach offers a generalizable methodology for formal verification across diverse scientific domains. Furthermore, we demonstrate Ax-Prover's assistant capabilities in a practical use case, showing how it enabled an expert mathematician to formalize the proof of a complex cryptography theorem.
Transfer in Reinforcement Learning via Regret Bounds for Learning Agents
We present an approach for the quantification of the usefulness of transfer in reinforcement learning via regret bounds for a multi-agent setting. Considering a number of $\aleph$ agents operating in the same Markov decision process, however possibly with different reward functions, we consider the regret each agent suffers with respect to an optimal policy maximizing her average reward. We show that when the agents share their observations the total regret of all agents is smaller by a factor of $\sqrt{\aleph}$ compared to the case when each agent has to rely on the information collected by herself. This result demonstrates how considering the regret in multi-agent settings can provide theoretical bounds on the benefit of sharing observations in transfer learning.
Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
Enhancing PIBT via Multi-Action Operations
PIBT is a rule-based Multi-Agent Path Finding (MAPF) solver, widely used as a low-level planner or action sampler in many state-of-the-art approaches. Its primary advantage lies in its exceptional speed, enabling action selection for thousands of agents within milliseconds by considering only the immediate next timestep. However, this short-horizon design leads to poor performance in scenarios where agents have orientation and must perform time-consuming rotation actions. In this work, we present an enhanced version of PIBT that addresses this limitation by incorporating multi-action operations. We detail the modifications introduced to improve PIBT's performance while preserving its hallmark efficiency. Furthermore, we demonstrate how our method, when combined with graph-guidance technique and large neighborhood search optimization, achieves state-of-the-art performance in the online LMAPF-T setting.
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
Systems and Control (EESS)
Optimizing the flight path for a scouting Uncrewed Aerial Vehicle
Post-disaster situations pose unique navigation challenges. One of those challenges is the unstructured nature of the environment, which makes it hard to layout paths for rescue vehicles. We propose the use of Uncrewed Aerial Vehicle (UAV) in such scenario to perform reconnaissance across the environment. To accomplish this, we propose an optimization-based approach to plan a path for the UAV at optimal height where the sensors of the UAV can cover the most area and collect data with minimum uncertainty.
comment: This paper was prepared as an end of semester project for ME8710: Engineering Optimization, Clemson University. Consists of 7 pages and 8 figures
The Resonance Principle: Empirical Evidence for Emergent Phase Synchronization in Human Causal Reasoning
Current artificial intelligence systems excel at correlational pattern matching but fail to achieve genuine causal understanding, a limitation often described as the "Kepler versus Newton" problem. We argue that this limitation is inherent to deterministic digital architectures. We introduce the Resonance Principle, a theoretical framework proposing that causal understanding emerges only in stochastic, bounded agents with intrinsic cost functions. The agent's substrate is modeled as a network of weakly coupled oscillators, where action proposals arise as stable resonant modes excited by intrinsic noise. We hypothesize that the brain, a stochastic and resonant system, operates according to this principle. To test this, we analyzed high-density EEG data (25 recordings, 500 trials) from a P300 BCI task. We computed the Kuramoto Order Parameter (R) to measure global phase synchronization (resonance) and compared it to the Event-Related Potential (ERP) voltage. Global resonance and voltage were statistically uncorrelated (r = 0.048), yet trial-level analysis revealed a strong correlation (r = 0.590, p < 0.0001). This suggests that resonance is a hidden mechanism coordinating neural firing, giving rise to measurable ERPs. We conclude that phase synchronization is not a byproduct but a fundamental signature of emergent causal understanding.
Safe Planning in Interactive Environments via Iterative Policy Updates and Adversarially Robust Conformal Prediction
Safe planning of an autonomous agent in interactive environments -- such as the control of a self-driving vehicle among pedestrians and human-controlled vehicles -- poses a major challenge as the behavior of the environment is unknown and reactive to the behavior of the autonomous agent. This coupling gives rise to interaction-driven distribution shifts where the autonomous agent's control policy may change the environment's behavior, thereby invalidating safety guarantees in existing work. Indeed, recent works have used conformal prediction (CP) to generate distribution-free safety guarantees using observed data of the environment. However, CP's assumption on data exchangeability is violated in interactive settings due to a circular dependency where a control policy update changes the environment's behavior, and vice versa. To address this gap, we propose an iterative framework that robustly maintains safety guarantees across policy updates by quantifying the potential impact of a planned policy update on the environment's behavior. We realize this via adversarially robust CP where we perform a regular CP step in each episode using observed data under the current policy, but then transfer safety guarantees across policy updates by analytically adjusting the CP result to account for distribution shifts. This adjustment is performed based on a policy-to-trajectory sensitivity analysis, resulting in a safe, episodic open-loop planner. We further conduct a contraction analysis of the system providing conditions under which both the CP results and the policy updates are guaranteed to converge. We empirically demonstrate these safety and convergence guarantees on a two-dimensional car-pedestrian case study. To the best of our knowledge, these are the first results that provide valid safety guarantees in such interactive settings.
Belief Net: A Filter-Based Framework for Learning Hidden Markov Models from Observations
Hidden Markov Models (HMMs) are fundamental for modeling sequential data, yet learning their parameters from observations remains challenging. Classical methods like the Baum-Welch (EM) algorithm are computationally intensive and prone to local optima, while modern spectral algorithms offer provable guarantees but may produce probability outputs outside valid ranges. This work introduces Belief Net, a novel framework that learns HMM parameters through gradient-based optimization by formulating the HMM's forward filter as a structured neural network. Unlike black-box Transformer models, Belief Net's learnable weights are explicitly the logits of the initial distribution, transition matrix, and emission matrix, ensuring full interpretability. The model processes observation sequences using a decoder-only architecture and is trained end-to-end with standard autoregressive next-observation prediction loss. On synthetic HMM data, Belief Net achieves superior convergence speed compared to Baum-Welch, successfully recovering parameters in both undercomplete and overcomplete settings where spectral methods fail. Comparisons with Transformer-based models are also presented on real-world language data.
comment: 19 pages, 7 pages, submitted to conference: L4DC 2026
Formal Verification of Control Lyapunov-Barrier Functions for Safe Stabilization with Bounded Controls
We present verifiable conditions for synthesizing a single smooth Lyapunov function that certifies both asymptotic stability and safety under bounded controls. These sufficient conditions ensure the strict compatibility of a control barrier function (CBF) and a control Lyapunov function (CLF) on the exact safe set certified by the barrier. An explicit smooth control Lyapunov-barrier function (CLBF) is then constructed via a patching formula that is provably correct by design. Two examples illustrate the computational procedure, showing that the proposed approach is less conservative than sum-of-squares (SOS)-based compatible CBF-CLF designs.
Motivations and Actions of Human-Building Interactions from Environmental Momentary Assessments
The expansion of renewable electricity generation, growing demands due to electrification, greater prevalence of working from home, and increasing frequency and severity of extreme weather events, will place new demands on the electric supply and distribution grid. Broader adoption of demand response programs (DRPs) for the residential sector may help meet these challenges; however, experience shows that occupant overrides in DRPs compromises their effectiveness. There is a lack of formal understanding of how discomfort, routines, and other motivations affect DRP overrides and other related human building interactions (HBI). This paper reports preliminary findings from a study of 20 households in Colorado and Massachusetts, US over three months. Participants responded to ecological momentary assessments (EMA) triggered by thermostat interactions and at random times throughout the day. EMAs included Likert-scale questions of thermal preference, preference intensity, and changes to 7 different activity types that could affect thermal comfort, and an opened ended question about motivations of such actions. Twelve tags were developed to categorize motivation responses and analyzed statistically to identify associations between motivations, preferences, and HBI actions. Reactions to changes in the thermal environment were the most frequently observed motivation, 118 of 220 responses. On the other hand, 47% responses were at least partially motivated by non-thermal factors, suggesting limited utility for occupant behavior models founded solely on thermal comfort. Changes in activity level and clothing were less likely to be reported when EMAs were triggered by thermostat interactions, while fan interactions were more likely. Windows, shades, and portable heater interactions had no significant dependence on how the EMA was triggered.
On topological properties of closed attractors
The notion of an attractor has various definitions in the theory of dynamical systems. Under compactness assumptions, several of those definitions coincide and the theory is rather complete. However, without compactness, the picture becomes blurry. To improve our understanding, we characterize in this work when a closed, not necessarily compact, asymptotically stable attractor on a locally compact metric space is homotopy equivalent to its domain of attraction. This enables a further structural study of the corresponding feedback stabilization problem.
comment: 31 pages, 3 figures, comments are very welcome!
A Decomposition Approach to Solving Numerical Constraint Satisfaction Problems on Directed Acyclic Graphs
Certifying feasibility in decision-making, critical in many industries, can be framed as a constraint satisfaction problem. This paper focuses on characterising a subset of parameter values from an a priori set that satisfy constraints on a directed acyclic graph of constituent functions. The main assumption is that these functions and constraints may be evaluated for given parameter values, but they need not be known in closed form and could result from expensive or proprietary simulations. This setting lends itself to using sampling methods to gain an inner approximation of the feasible domain. To mitigate the curse of dimensionality, the paper contributes new methodology to leverage the graph structure for decomposing the problem into lower-dimensional subproblems defined on the respective nodes. The working hypothesis that the Cartesian product of the solution sets yielded by the subproblems will tighten the a priori parameter domain, before solving the full problem defined on the graph, is demonstrated through four case studies relevant to machine learning and engineering. Future research will extend this approach to cyclic graphs and account for parametric uncertainty.
Stability Analysis of a Nonlinear Distributed Control Framework for Current Sharing and Voltage Containment in DC Microgrids: The Fast Communication Scenario
As renewable energy generation becomes increasingly integrated into electrical grids, there is a critical need for a paradigm shift toward control schemes that ensure safe, stable, and scalable operations. Hence, in this study, we explore the stability guarantees of a promising control proposal for cyber-physical DC microgrids (MGs), specifically designed to simultaneously achieve proportional current sharing and voltage containment within pre-specified limits. Our scalable stability result relies on singular perturbation theory to prove global exponential stability by imposing a sufficient time-scale separation at the border between the inner(decentralized) and outer(distributed) nested loops, and thus, ensuring that the system reaches the desired (optimal) steady state under appropriate tuning verifying some stability conditions. To prove the effectiveness of our method, our findings are supported by testing the control method in a time-domain simulation case study involving a low-voltage DC microgrid, as well as a small-signal stability analysis
comment: 10 pages, 7 figures
Operator Models for Continuous-Time Offline Reinforcement Learning
Continuous-time stochastic processes underlie many natural and engineered systems. In healthcare, autonomous driving, and industrial control, direct interaction with the environment is often unsafe or impractical, motivating offline reinforcement learning from historical data. However, there is limited statistical understanding of the approximation errors inherent in learning policies from offline datasets. We address this by linking reinforcement learning to the Hamilton-Jacobi-Bellman equation and proposing an operator-theoretic algorithm based on a simple dynamic programming recursion. Specifically, we represent our world model in terms of the infinitesimal generator of controlled diffusion processes learned in a reproducing kernel Hilbert space. By integrating statistical learning methods and operator theory, we establish global convergence of the value function and derive finite-sample guarantees with bounds tied to system properties such as smoothness and stability. Our theoretical and numerical results indicate that operator-based approaches may hold promise in solving offline reinforcement learning using continuous-time optimal control.
Large-Signal Stability Guarantees for a Scalable DC Microgrid with Nonlinear Distributed Control: The Slow Communication Scenario
The increasing integration of renewable energy sources into electrical grids necessitates a paradigm shift toward advanced control schemes that guarantee safe and stable operations with scalable properties. Hence, this study explores large-signal stability guarantees of a promising distributed control framework for cyber-physical DC microgrids, ensuring proportional current sharing and voltage containment within pre-specified limits. The proposed control framework adopts nonlinear nested control loops--inner (decentralized) and outer (distributed)--specifically designed to simultaneously achieve the control objectives. Our scalable stability result relies on singular perturbation theory to prove global exponential stability by imposing a sufficient time-scale separation at the border between the nested control loops. In particular, by saturating the influence of the outer loop controller in the inner loop, the proposed controller preserves a more convenient mathematical structure, facilitating the scalability of the stability proof using Lyapunov arguments. The effectiveness of our proposed control strategy is supported through time-domain simulations of a case-specific low-voltage DC microgrid following a careful tuning strategy, and a small-signal stability analysis is conducted to derive practical guidelines that enhance the applicability of the method.
comment: 11 pages, 7 figures
Gradient Flow Equations for Deep Linear Neural Networks: A Survey from a Network Perspective
The paper surveys recent progresses in understanding the dynamics and loss landscape of the gradient flow equations associated to deep linear neural networks, i.e., the gradient descent training dynamics (in the limit when the step size goes to 0) of deep neural networks missing the activation functions and subject to quadratic loss functions. When formulated in terms of the adjacency matrix of the neural network, as we do in the paper, these gradient flow equations form a class of converging matrix ODEs which is nilpotent, polynomial, isospectral, and with conservation laws. The loss landscape is described in detail. It is characterized by infinitely many global minima and saddle points, both strict and nonstrict, but lacks local minima and maxima. The loss function itself is a positive semidefinite Lyapunov function for the gradient flow, and its level sets are unbounded invariant sets of critical points, with critical values that correspond to the amount of singular values of the input-output data learnt by the gradient along a certain trajectory. The adjacency matrix representation we use in the paper allows to highlight the existence of a quotient space structure in which each critical value of the loss function is represented only once, while all other critical points with the same critical value belong to the fiber associated to the quotient space. It also allows to easily determine stable and unstable submanifolds at the saddle points, even when the Hessian fails to obtain them.
comment: Manuscript accepted for publication in SIAM Review (SIREV)
Security-Constrained AC/DC Grid Optimal Power Flow Considering Asymmetrical HVDC Grid Operation using Sparse Tableau Formulation
This paper presents a security-constrained optimal power flow (SCOPF) model for HVDC grids that optimizes the asymmetrical operation of bipolar converter stations, i.e., different current injections of the positive and negative converter poles, to minimize operational costs under post-contingency conditions caused by single converter pole outages. The optimization model allows the selection of the number of converter stations that operate asymmetrically. The results indicate that increasing the number of asymmetrical stations lowers operational costs. The analysis also provides insight into the sensitivity of these costs to the level of asymmetrical operation. However, increased asymmetrical operation leads to higher DC neutral voltage offsets that can rise to undesired levels. Imposing limits on these offsets can, in turn, increase operational costs. To mitigate these effects, a neutral line switching (NLS) strategy is proposed for the post-contingency state.
Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions
Solar thermal systems (STS) present a promising avenue for low-carbon heat generation, with a well-running system providing heat at minimal cost and carbon emissions. However, STS can exhibit faults due to improper installation, maintenance, or operation, often resulting in a substantial reduction in efficiency or even damage to the system. As monitoring at the individual level is economically prohibitive for small-scale systems, automated monitoring and fault detection should be used to address such issues. Recent advances in data-driven anomaly detection, particularly in time series analysis, offer a cost-effective solution by leveraging existing sensors to identify abnormal system states. Here, we propose a probabilistic reconstruction-based framework for anomaly detection. We evaluate our method on the publicly available PaSTS dataset of operational domestic STS, which features real-world complexities and diverse fault types. Our experiments show that reconstruction-based methods can detect faults in domestic STS both qualitatively and quantitatively, while generalizing to previously unseen systems. We also demonstrate that our model outperforms both simple and more complex deep learning baselines. Additionally, we show that heteroscedastic uncertainty estimation is essential to fault detection performance. Finally, we discuss the engineering overhead required to unlock these improvements and make a case for simple deep learning models.
Generalized Intelligence for Tactical Decision-Making: Large Language Model-Driven Dynamic Weapon Target Assignment
Modern aerospace defense systems increasingly rely on autonomous decision-making to coordinate large numbers of interceptors against multiple incoming threats. Conventional weapon-target assignment (WTA) algorithms, including mixed-integer programming and auction-based methods, show limitations in dynamic and uncertain tactical environments where human-like reasoning and adaptive prioritization are required. This paper introduces a large language model (LLM) driven WTA framework that integrates generalized intelligence into cooperative missile guidance. The proposed system formulates the tactical decision process as a reasoning problem, in which an LLM evaluates spatial and temporal relationships among interceptors, targets, and defended assets to generate real-time assignments. In contrast to classical optimization methods, the approach leverages contextual mission data such as threat direction, asset priority, and closing velocity to adapt dynamically and reduce assignment switching. A dedicated simulation environment supports both static and dynamic assignment modes. Results demonstrate improved consistency, adaptability, and mission-level prioritization, establishing a foundation for integrating generalized artificial intelligence into tactical guidance systems.
comment: 8 Pages, 6 figures, submitted to IEEE Transactions on Aerospace and Electronic Systems
Equivalent Mechanical Models for Sloshing
Propellant sloshing is a well-known, but not completely mastered phenomenon in space vehicles. It is particularly critical in both microgravity environments - such as interplanetary spacecraft requiring high pointing stability - and high-g conditions, as encountered during launch, re-entry, and landing. In both cases, sloshing can significantly affect vehicle performance and stability, and must often be explicitly considered in the design of the guidance, navigation, and control (GNC) subsystem. For stability analysis and control design, the most common approach to modeling sloshing is through an equivalent mechanical representation, where the moving propellant is treated as a mechanical system interacting with the rigid (or flexible) spacecraft. Pendulum-based models and mass-spring-damper systems are widely used by control analysts to assess sloshing-induced perturbations on vehicles subjected to persistent non-gravitational acceleration along one of their body axes. In this work, we present a rigorous mathematical formulation of pendulum dynamics, starting from a single spherical pendulum attached to a rigid spacecraft. We derive the nonlinear equations of motion for this 8-degree-of-freedom multi-body system, and then extend the formulation to include multiple pendulums, representing multiple sloshing modes within a tank and/or multiple tanks on the same vehicle. Furthermore, we derive the corresponding linearized equations of motion, explicitly accounting for a nominal longitudinal force acting on the vehicle - consistent with the high-g sloshing regime - expressed in either the inertial or body frame. Finally, we demonstrate the mathematical equivalence between the pendulum and mass-spring-damper models and validate the proposed models through time-domain simulation and frequency-domain analysis.
Closed Form Modelling and Identification of Banking Effects in Confined Waters
Vessels navigating in confined waters are subject to banking effects, which are hydrodynamic forces and moments arising from pressure differentials between the vessel sides, significantly affecting manoeuvrability and safety. Existing numerical approaches such as computational fluid dynamics (CFD) can accurately capture these effects but are computationally expensive and unsuitable for real-time control or estimation. This paper presents a closed-form, first-principles model of banking effects. The model coefficients are identified using physics-informed regression on towing tank experiment data for a scaled container vessel. Validation through Shapley value analysis confirms the significance of the banking terms in reproducing the measured forces and moments. Lastly, the derived coefficients are shown to be non-dimensional, making the model applicable across different scales that preserve vessel geometry.
Consensus approximation and impulsive control for a class of uncertain multi-agent dynamics
This paper studies a class of consensus dynamics where the interactions between agents are affected by a time-varying unknown scaling factor. This situation is encountered in the control of robotic fleets over a wireless network or in opinion dynamics where the confidence given to the peers varies in time. Firstly, we establish conditions under which practical upper and lower bounds on the consensus value can be determined. Secondly, we propose control strategies for allocating a given control budget to shift agent states towards a desired consensus value despite the uncertainty. We provide computationally efficient linear programming-based approaches for both problems and validate the obtained results in numerical simulations.
Cooperative Control of Hybrid FES-Exoskeleton: Dynamic Allocation
Hybrid assistive systems that integrate functional electrical stimulation (FES) and robotic exoskeletons offer a promising approach for neurorehabilitation. However, control of these systems remains challenging due to actuator redundancy and heterogeneous assistive device constraints. This paper introduces a novel cooperative control architecture based on dynamic allocation to address actuator redundancy in a hybrid FES-exoskeleton system. The proposed approach employs a modular control allocator that redistributes required control torques between FES and exoskeleton actuators in real time, accounting for device-specific limitations and user preferences (e.g., prioritizing one assistive device over another). Within this framework, the high-level controller determines the total assistance level, while the allocator dynamically distributes control effort based on these assistive device-specific considerations. Simulation results and experimental validation demonstrate the method's effectiveness in resolving actuator redundancy in the FES-exoskeleton system while reflecting actuator constraints, indicating its potential for deployment in clinical studies to assess patient acceptance and clinical efficacy.
comment: 14 pages, 6 figures
VLF-MSC: Vision-Language Feature-Based Multimodal Semantic Communication System NeurIPS 2025
We propose Vision-Language Feature-based Multimodal Semantic Communication (VLF-MSC), a unified system that transmits a single compact vision-language representation to support both image and text generation at the receiver. Unlike existing semantic communication techniques that process each modality separately, VLF-MSC employs a pre-trained vision-language model (VLM) to encode the source image into a vision-language semantic feature (VLF), which is transmitted over the wireless channel. At the receiver, a decoder-based language model and a diffusion-based image generator are both conditioned on the VLF to produce a descriptive text and a semantically aligned image. This unified representation eliminates the need for modality-specific streams or retransmissions, improving spectral efficiency and adaptability. By leveraging foundation models, the system achieves robustness to channel noise while preserving semantic fidelity. Experiments demonstrate that VLF-MSC outperforms text-only and image-only baselines, achieving higher semantic accuracy for both modalities under low SNR with significantly reduced bandwidth.
comment: To appear in the AI4NextG Workshop at NeurIPS 2025
Efficient Verification and Falsification of ReLU Neural Barrier Certificates
Barrier certificates play an important role in verifying the safety of continuous-time systems, including autonomous driving, robotic manipulators and other critical applications. Recently, ReLU neural barrier certificates -- barrier certificates represented by the ReLU neural networks -- have attracted significant attention in the safe control community due to their promising performance. However, because of the approximate nature of neural networks, rigorous verification methods are required to ensure the correctness of these certificates. This paper presents a necessary and sufficient condition for verifying the correctness of ReLU neural barrier certificates. The proposed condition can be encoded as either an Satisfiability Modulo Theories (SMT) or optimization problem, enabling both verification and falsification. To the best of our knowledge, this is the first approach capable of falsifying ReLU neural barrier certificates. Numerical experiments demonstrate the validity and effectiveness of the proposed method in both verifying and falsifying such certificates.
The Age-Structured Chemostat with Substrate Dynamics as a Control System
In this work we study an age-structured chemostat model with a renewal boundary condition and a coupled substrate equation. The model is nonlinear and consists of a hyperbolic partial differential equation and an ordinary differential equation with nonlinear, nonlocal terms appearing both in the ordinary differential equation and the boundary condition. Both differential equations contain a non-negative control input, while the states of the model are required to be positive. Under an appropriate weak solution framework, we determine the state space and the input space for this model. We prove global existence and uniqueness of solutions for all admissible initial conditions and all allowable control inputs. To this purpose we employ a combination of Banach's fixed-point theorem with implicit solution formulas and useful solution estimates. Finally, we show that the age-structured chemostat model gives a well-defined control system on a metric space.
comment: 32 pages
Resilient Controller Design with Exponential Reaching Law for Enhanced Load Frequency Stability in Multi-Area Interconnected Microgrids
We present a load frequency control strategy deploying a decentralized robust global integral terminal sliding mode control (GITSMC) method to maintain stable frequency and tie-line power in multi-area interconnected microgrids with aggregated uncertainties. To achieve this, firstly, we have developed a mathematical model of the multi-area interconnected system incorporating disturbances from solar photovoltaic (PV), wind turbine (WT) generation and load demand, as aggregated uncertainties. Secondly, we have designed a global integral terminal sliding surface with an exponential reaching law for each area to enhance system dynamic performance and suppress chattering within a finite time. Thirdly, the overall stability of the closed-loop system is analyzed using the Lyapunov stability theorem. Finally, extensive simulations are conducted on the IEEE 10-generator New England 39-bus power system, including load disturbances and variable PV and WT generation. The results demonstrate the performance of the proposed GITSMC approach, achieving approximately 94.9% improvement in ITSE and 94.4% improvement in ISE, confirming its superior accuracy and dynamic performance compared to the existing controller.
Adaptive Digital Twin of Sheet Metal Forming via Proper Orthogonal Decomposition-Based Koopman Operator with Model Predictive Control
Digital Twin (DT) technologies are transforming manufacturing by enabling real-time prediction, monitoring, and control of complex processes. Yet, applying DT to deformation-based metal forming remains challenging because of the strongly coupled spatial-temporal behavior and the nonlinear relationship between toolpath and material response. For instance, sheet-metal forming by the English wheel, a highly flexible but artisan-dependent process, still lacks digital counterparts that can autonomously plan and adapt forming strategies. This study presents an adaptive DT framework that integrates Proper Orthogonal Decomposition (POD) for physics-aware dimensionality reduction with a Koopman operator for representing nonlinear system in a linear lifted space for the real-time decision-making via model predictive control (MPC). To accommodate evolving process conditions or material states, an online Recursive Least Squares (RLS) algorithm is introduced to update the operator coefficients in real time, enabling continuous adaptation of the DT model as new deformation data become available. The proposed framework is experimentally demonstrated on a robotic English Wheel sheet metal forming system, where deformation fields are measured and modeled under varying toolpaths. Results show that the adaptive DT is capable of controlling the forming process to achieve the given target shape by effectively capturing non-stationary process behaviors. Beyond this case study, the proposed framework establishes a generalizable approach for interpretable, adaptive, and computationally-efficient DT of nonlinear manufacturing systems, bridging reduced-order physics representations with data-driven adaptability to support autonomous process control and optimization.
Tissue Activation Calculation in Dual-lead Deep Brain Stimulation
Deep Brain Stimulation (DBS) is a well-established neurosurgical treatment aiming at symptom alleviation in a range of neurological and psychiatric diseases. Computational models of DBS are widely used to investigate the effects of stimulation on neural tissue, to explore stimulation targets and sweetspots, and ultimately, to aid clinicians in the DBS programming by calculating the stimulation parameters. Commonly, DBS is performed bilaterally, i.e. with one lead in each brain hemisphere, where computational models are solved independently for one lead at a time. This paper treats scenarios where multiple DBS leads are implanted in close proximity to one another, resulting in interacting electrical fields and, therefore, potentially overlapping stimulation spreads. In particular, a global dual-lead model is compared to approximations derived from single-lead approaches in a cohort of twelve multiple sclerosis (MS) tremor patients. It is concluded that simple superposition of volumes of tissue activated (VTAs) underestimates activation, while superposition of electric fields or activating functions leads to overestimation. It is concluded that given close proximity of DBS leads, the VTA cannot be computed individually as stimulation fields exhibit significant and complex interaction. The approach is extended to modeling two obsessive compulsive disorder patients with medially placed leads, where similar VTA discrepancies as in the MS patient cohort are observed.
comment: Submitted to European Control Conference 2026
Semantic Property Maps for Driving Applications ICIP 2025
We consider the problem of estimating the parameters of a vehicle dynamics model for predictive control in driving applications. Instead of solely using the instantaneous parameters estimated from the vehicle signals, we combine this with cameras and update a probabilistic map with parameter estimates and semantic information using Bayesian moment matching. Key to this approach is the map representation, which is constructed with conjugate priors to the measurement likelihoods and defined in the same path coordinates as the vehicle controller, such that the map can be externalized to provide a local representation of the parameter likelihoods that vary in space. The result is a spatial map of vehicle parameters adapted online to enhance the driving control system. We provide theoretical guarantees on the smoothness of relevant parameter likelihood statistics as a function of space, which is critical for their use in predictive control.
comment: 6 pages, 3 figures, workshop paper for ICIP 2025
Retail electricity costs and emissions incentives are misaligned for commercial and industrial power consumers
Electrification is contributing to substantial growth in U.S. commercial and industrial loads, but the cost and Scope 2 carbon emission implications of this load growth are opaque for both power consumers and utilities. This work describes a unique spatiotemporally resolved data set of U.S. electricity costs and emissions and applies time series approximation methods to quantify the alignment of electricity cost and emission incentives for large commercial and industrial consumers. We present a comprehensive spatiotemporal dataset of U.S. price-based demand response (i.e., tariff) and incentive-based demand response (IBDR) programs, enabling direct comparison to previously published marginal emission factor (MEF), average emission factor (AEF), and day-ahead market (DAM) prices. We resolved the structural incompatibility and fragmentation of these datasets by developing time series approximations of discrete data and unifying geospatially heterogeneous datasets. Analysis of these datasets reveals significant spatial and temporal heterogeneity in cost and carbon emissions incentives for demand-side energy flexibility, underscoring the importance of site selection as a key factor influencing power costs and scope 2 emissions. Analysis also reveals broad misalignment of economic and emissions incentives under existing electricity tariff structures, meaning tariffs are incentivizing consumption of more carbon-intensive electricity, and highlighting potential barriers to electrification delivering carbon savings.
comment: Main manuscript has 24 pages, 6 figures, and 1 table. Supplementary information has 10 pages, 4 figures, and 1 table
Privacy protection under the exposure of systems' prior information
For systems whose states implicate sensitive information, their privacy is of great concern. While notions like differential privacy have been successfully introduced to dynamical systems, it is still unclear how a system's privacy can be properly protected when facing the challenging yet frequently-encountered scenario where an adversary possesses prior knowledge, e.g., the steady state, of the system. This paper presents a new systematic approach to protect the privacy of a discrete-time linear time-invariant system against adversaries knowledgeable of the system's prior information. We employ a tailored \emph{pointwise maximal leakage (PML) privacy} criterion. PML characterizes the worst-case privacy performance, which is sharply different from that of the better-known mutual-information privacy. We derive necessary and sufficient conditions for PML privacy and construct tractable design procedures. Furthermore, our analysis leads to insight into how PML privacy, differential privacy, and mutual-information privacy are related. We then revisit Kalman filters from the perspective of PML privacy and derive a lower bound on the steady-state estimation-error covariance in terms of the PML parameters. Finally, the derived results are illustrated in a case study of privacy protection for distributed sensing in smart buildings.
Incremental DRL-Based Resource Management for Dynamic Network Slicing in an Urban-Wide Testbed
Multi-access edge computing provides localized resources within mobile networks to address the requirements of emerging latency-sensitive and computing-intensive applications. At the edge, dynamic requests necessitate sophisticated resource management for adaptive network slicing. This involves optimizing resource allocations, scaling functions, and load balancing to utilize only essential resources under constrained network scenarios. However, existing solutions largely assume static slice counts, ignoring the re-optimization overhead associated with management algorithms when slices fluctuate. Moreover, many approaches rely on simplified energy models that overlook intertemporal resource scheduling and are predominantly evaluated through simulations, neglecting critical practical considerations. This paper presents an incremental cooperative Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for resource management in dynamic edge slicing. The proposed approach optimizes long-term slicing benefits by reducing delay and energy consumption while minimizing retraining overhead in response to slice variations. Furthermore, we implement an urban-wide edge computing testbed based on OpenStack and Kubernetes to validate the algorithm's performance. Experimental results demonstrate that our incremental MADDPG method outperforms benchmark strategies in aggregated slicing utility and reduces training energy consumption by up to 50% compared to the re-optimization approach.
Kernel Modelling of Fading Memory Systems
The paper is a follow-up of the recently introduced kernel-based framework to identify nonlinear input-output systems regularized by desirable input-output incremental properties. Assuming that the system has fading memory, we propose to learn the functional that maps the past input to the present output rather than the operator mapping input trajectories to output trajectories. While retaining the benefits of the previously proposed framework, this modification simplifies the selection of the kernel, enforces causality, and enables temporal simulation.
Proactive Service Assurance in 5G and B5G Networks: A Closed-Loop Algorithm for End-to-End Network Slicing
The customization of services in Fifth-generation (5G) and Beyond 5G (B5G) networks relies heavily on network slicing, which creates multiple virtual networks on a shared physical infrastructure, tailored to meet specific requirements of distinct applications, using Software Defined Networking (SDN) and Network Function Virtualization (NFV). It is imperative to ensure that network services meet the performance and reliability requirements of various applications and users; thus, service assurance is one of the critical components in network slicing. One of the key functionalities of network slicing is the ability to scale Virtualized Network Functions (VNFs) in response to changing resource demand and to meet Customer Service Level agreements (SLAs). In this paper, we introduce a proactive closed-loop algorithm for end-to-end network orchestration, designed to provide service assurance in 5G and B5G networks. We focus on dynamically scaling resources to meet key performance indicators (KPIs) specific to each network slice and operate in parallel across multiple slices, making it scalable and capable of managing completely automatically real-time service assurance. Through our experiments, we demonstrate that the proposed algorithm effectively fulfills service assurance requirements for different network slice types, thereby minimizing network resource utilization and reducing the over-provisioning of spare resources.
comment: This work has been accepted by the IEEE Transactions on Network and Service Management (TNSM) for possible publication
Global and local observability of hypergraphs
This paper studies observability for non-uniform hypergraphs with inputs and outputs. To capture higher-order interactions, we define a canonical non-homogeneous dynamical system with nonlinear outputs on hypergraphs. We then construct algebraic necessary and sufficient conditions based on polynomial ideals and varieties for global observability at an initial state of hypergraphs. An example is given to illustrate the proposed criteria for observability. Further, necessary and sufficient conditions for local observability are derived based on rank conditions of observability matrices, which provide a framework to study local observability for non-uniform hypergraphs. Finally, the similarity of observability for hypergraphs is proposed using similarity of tensors, which reveals the relation of observability between two hypergraphs and helps to check the observability intuitively.
CarboNet: A Finite-Time Combustion-Tolerant Compartmental Network for Tropospheric Carbon Control
While governments and international organizations have set the net-zero target to prevent a climate event horizon, practical solutions are lacking mainly because of the impracticability in completely replacing combustion processes. To address the net-zero target problem, in this paper we first design a compartmental network whose states must remain in the nonnegative orthant for physical consistency and in which the carbon dioxide emissions result from the combustion of diesel in vehicles and gas in house heaters. Then, we design both full-state and output-feedback linear-quadratic regulators of the compartmental network to bring the mass of carbon dioxide to the pre-industrial era, which is reached in approximately 25 and 60 days, respectively. The output-feedback controller tolerates for 6 days the combustion taking place in 5,000 vehicles and in 10,000 house heating systems, meets the net-zero target, and nullifies the extraction of finite natural resources. With closed-loop control, the tropospheric temperature stabilizes approximately to the pre-industrial era reference condition, i.e., to 13.5 °C, which is 21.7 °C lower than the steady-state temperature achieved without carbon capture. This work is a first step in designing optimal network control systems for climate stability. Source code is publicly available.
comment: To be submitted
Mixed Platoon Control under Noise and Attacks: Robust Data-Driven Predictive Control and Human-in-the-Loop Validation
Controlling mixed platoons, which consist of both connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), poses significant challenges due to the uncertain and unknown human driving behaviors. Data-driven control methods offer promising solutions by leveraging available trajectory data, but their performance can be compromised by noise and attacks. To address this issue, this paper proposes a Robust Data-EnablEd Predictive Leading Cruise Control (RDeeP-LCC) framework based on data-driven reachability analysis. The framework over-approximates system dynamics under noise and attack using a matrix zonotope set derived from data, and develops a stabilizing feedback control law. By decoupling the mixed platoon system into nominal and error components, we employ data-driven reachability sets to recursively compute error reachable sets that account for noise and attacks, and obtain tightened safety constraints of the nominal system. This leads to a robust data-driven predictive control framework, solved in a tube-based control manner. Human-in-the-loop experiments demonstrate that the RDeeP-LCC method significantly improves robustness against noise and attacks, while enhancing tracking accuracy, control efficiency, energy economy, driving comfort, and driving safety.
comment: 12 pages, 6 figures
Differential Dynamic Programming for the Optimal Control Problem with an Ellipsoidal Target Set and Its Statistical Inference
This work addresses an extended class of optimal control problems where a target for a system state has the form of an ellipsoid rather than a fixed, single point. As a computationally affordable method for resolving the extended problem, we present a revised version of the differential dynamic programming (DDP), termed the differential dynamic programming with ellipsoidal target set (ETS-DDP). To this end, the problem with an ellipsoidal target set is reformulated into an equivalent form with the orthogonal projection operator, yielding that the resulting cost functions turn out to be discontinuous at some points. As the DDP usually requires the differentiability of cost functions, in the ETS-DDP formulation we locally approximate the (nonsmooth) cost functions to smoothed ones near the path generated at the previous iteration, by utilizing the orthogonal projection operator. Moreover, a statistical inference method is also presented for designing the ellipsoidal target set, based on data on admissible target points collected by expert demonstrations. Via a simulation on autonomous parking of a vehicle, it is seen that the proposed ETS-DDP efficiently derives an admissible state trajectory while running much faster than the point-targeted DDP, at the expense of optimality.
comment: 25th International Conference on Control, Automation and Systems (ICCAS)
Predict-then-Optimize for Seaport Power-Logistics Scheduling: Generalization across Varying Tasks Stream
Power-logistics scheduling in modern seaports typically follow a predict-then-optimize pipeline. To enhance the decision quality of forecasts, decision-focused learning has been proposed, which aligns the training of forecasting models with downstream decision outcomes. However, this end-to-end design inherently restricts the value of forecasting models to only a specific task structure, and thus generalize poorly to evolving tasks induced by varying seaport vessel arrivals. We address this gap with a decision-focused continual learning framework that adapts online to a stream of scheduling tasks. Specifically, we introduce Fisher information based regularization to enhance cross-task generalization by preserving parameters critical to prior tasks. A differentiable convex surrogate is also developed to stabilize gradient backpropagation. The proposed approach enables learning a decision-aligned forecasting model across a varying tasks stream with a sustainable long-term computational burden. Experiments calibrated to the Jurong Port demonstrate superior decision performance and generalization over existing methods with reduced computational cost.
comment: Preprint to IEEE Transactions on Smart Grid
ATOM-CBF: Adaptive Safe Perception-Based Control under Out-of-Distribution Measurements
Ensuring the safety of real-world systems is challenging, especially when they rely on learned perception modules to infer the system state from high-dimensional sensor data. These perception modules are vulnerable to epistemic uncertainty, often failing when encountering out-of-distribution (OoD) measurements not seen during training. To address this gap, we introduce ATOM-CBF (Adaptive-To-OoD-Measurement Control Barrier Function), a novel safe control framework that explicitly computes and adapts to the epistemic uncertainty from OoD measurements, without the need for ground-truth labels or information on distribution shifts. Our approach features two key components: (1) an OoD-aware adaptive perception error margin and (2) a safety filter that integrates this adaptive error margin, enabling the filter to adjust its conservatism in real-time. We provide empirical validation in simulations, demonstrating that ATOM-CBF maintains safety for an F1Tenth vehicle with LiDAR scans and a quadruped robot with RGB images.
Predictive Compensation in Finite-Horizon LQ Games under Gauss-Markov Deviations
This paper develops a predictive compensation framework for finite-horizon, discrete-time linear quadratic dynamic games subject to Gauss-Markov execution deviations from feedback Nash strategies. One player's control is corrupted by temporally correlated stochastic perturbations modeled as a first-order autoregressive (AR(1)) process, while the opposing player has causal access to past deviations and employs a predictive feedforward strategy that anticipates their future effect. We derive closed-form recursions for mean and covariance propagation under the resulting perturbed closed loop, establish boundedness and sensitivity properties of the equilibrium trajectory, and characterize the reduction in expected cost achieved by optimal predictive compensation. Numerical experiments corroborate the theoretical results and demonstrate performance gains relative to nominal Nash feedback across a range of disturbance persistence levels.
comment: 11 pages, 4 Figures, 1 Table, 1 Algorithm. This work has been submitted to Automatica for possible publication
OODTE: A Differential Testing Engine for the ONNX Optimizer
With over 760 stars on GitHub and being part of the official ONNX repository, the ONNX Optimizer is the default tool for applying graph-based optimizations to ONNX models. Despite its widespread use, its ability to maintain model accuracy during optimization has not been thoroughly investigated. In this work, we present OODTE, a utility designed to automatically and comprehensively evaluate the correctness of the ONNX Optimizer. OODTE adopts a straightforward yet powerful differential testing and evaluation methodology, which can be readily adapted for use with other compiler optimizers. Specifically, OODTE takes a collection of ONNX models, applies optimizations, and executes both the original and optimized versions across a user-defined input set, automatically capturing any issues encountered during optimization. When discrepancies in accuracy arise, OODTE iteratively isolates the responsible optimization pass by repeating the process at a finer granularity. We applied OODTE to 130 well-known models from the official ONNX Model Hub, spanning diverse tasks including classification, object detection, semantic segmentation, text summarization, question answering, and sentiment analysis. Our evaluation revealed that 9.2% of the model instances either caused the optimizer to crash or led to the generation of invalid models using default optimization strategies. Additionally, 30% of classification models and 16.6% of object detection and segmentation models exhibited differing outputs across original and optimized versions, whereas models focused on text-related tasks were generally robust to optimization. OODTE uncovered 15 issues-14 previously unknown-affecting 9 of 47 optimization passes and the optimizer overall. All issues were reported to the ONNX Optimizer team. OODTE offers a simple but effective framework for validating AI model optimizers, applicable beyond the ONNX ecosystem.
comment: 12 pages, 2 figures, 4 tables
Optimized Design of the Generalized Bilinear Transformation for Discretizing Analog Systems
A common approach to digital system design involves transforming a continuous-time (s-domain) transfer function into the discrete-time (z-domain) using methods such as Euler or Tustin. These transformations are shown to be specific cases of the Generalized Bilinear Transformation (GBT), characterized by a design parameter, $α$, whose physical interpretation and optimal selection remain inadequately explored. In this paper, we propose an alternative derivation of the GBT derived by employing a new hexagonal shape to approximate the enclosed area of the error function, and we define the parameter $α$ as a shape factor. We reveal, for the first time, the physical meaning of $α$ as the backward rectangular ratio of the proposed hexagonal shape. Through domain mapping, the stable range of is rigorously established to be [0.5, 1]. Depending on the operating frequency and the chosen $α$, we observe two distinct distortion modes, i.e., the magnitude and phase distortion. We further develop an optimal design method for $α$ by minimizing a normalized magnitude or phase error objective function. The effectiveness of the proposed method is validated through the design and testing of a low-pass filter (LPF), demonstrating strong agreement between theoretical predictions and experimental results.
Optimizing Parameters of the LinDistFlow Power Flow Approximation for Distribution Systems
The DistFlow model accurately represents power flows in distribution systems, but the model's nonlinearities result in computational challenges for many applications. Accordingly, a linear approximation known as \mbox{LinDistFlow} (and its three-phase extension LinDist3Flow) is commonly employed. This paper introduces a parameter optimization algorithm for enhancing the accuracy of this approximation for both balanced single-phase equivalent and unbalanced three-phase distribution network models, with the goal of aligning the outputs more closely with those from the nonlinear DistFlow model. Using sensitivity information, our algorithm optimizes the LinDistFlow approximation's coefficient and bias parameters to minimize discrepancies in predictions of voltage magnitudes relative to the nonlinear DistFlow model. The parameter optimization algorithm employs the Truncated Newton Conjugate-Gradient (TNC) method to fine-tune coefficients and bias parameters during an offline training phase to improve the LinDistFlow approximation's accuracy. % in optimization applications. Numerical results underscore the algorithm's efficacy, showcasing accuracy improvements in $L_{1}$-norm and $L_{\infty}$-norm losses of up to $92\%$ and $88\%$, respectively, relative to the traditional LinDistFlow model. We also assess how the optimized parameters perform under changes in the network topology and demonstrate the optimized LinDistFlow approximation's efficacy in a hosting capacity optimization problem.
Max-Min Fairness in Stacked Intelligent Metasurface-Aided Rate Splitting Networks
This paper investigates a downlink multiuser multiple-input single-output system that integrates rate-splitting multiple access (RSMA) with a stacked intelligent metasurface (SIM) to enable wave-domain beamforming. Unlike conventional digital beamforming, the proposed system leverages the programmable phase shifts of the SIM to perform beamforming entirely in the wave domain. In contrast to existing literature, this work introduces a fairness-centric SIM-RSMA design that shifts the emphasis from maximizing sum-rate to ensuring fair allocation of resources. In particular, we formulate a max-min rate optimization problem that jointly optimizes transmit power coefficients at the base station and SIM phase shifts. Given the non-convex nature of this problem, we develop an alternating optimization framework, where the power allocation is optimized through successive convex approximation and SIM beamforming is optimized using the Riemannian conjugate gradient method. Simulation results indicate that combining SIM with RSMA yields superior max-min performance compared to its integration with space division multiple access or non-orthogonal multiple access.
comment: 6 pages, 8 figures
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
Robotics
A Robust Task-Level Control Architecture for Learned Dynamical Systems
Dynamical system (DS)-based learning from demonstration (LfD) is a powerful tool for generating motion plans in the operation (`task') space of robotic systems. However, the realization of the generated motion plans is often compromised by a ''task-execution mismatch'', where unmodeled dynamics, persistent disturbances, and system latency cause the robot's actual task-space state to diverge from the desired motion trajectory. We propose a novel task-level robust control architecture, L1-augmented Dynamical Systems (L1-DS), that explicitly handles the task-execution mismatch in tracking a nominal motion plan generated by any DS-based LfD scheme. Our framework augments any DS-based LfD model with a nominal stabilizing controller and an L1 adaptive controller. Furthermore, we introduce a windowed Dynamic Time Warping (DTW)-based target selector, which enables the nominal stabilizing controller to handle temporal misalignment for improved phase-consistent tracking. We demonstrate the efficacy of our architecture on the LASA and IROS handwriting datasets.
Baby Sophia: A Developmental Approach to Self-Exploration through Self-Touch and Hand Regard
Inspired by infant development, we propose a Reinforcement Learning (RL) framework for autonomous self-exploration in a robotic agent, Baby Sophia, using the BabyBench simulation environment. The agent learns self-touch and hand regard behaviors through intrinsic rewards that mimic an infant's curiosity-driven exploration of its own body. For self-touch, high-dimensional tactile inputs are transformed into compact, meaningful representations, enabling efficient learning. The agent then discovers new tactile contacts through intrinsic rewards and curriculum learning that encourage broad body coverage, balance, and generalization. For hand regard, visual features of the hands, such as skin-color and shape, are learned through motor babbling. Then, intrinsic rewards encourage the agent to perform novel hand motions, and follow its hands with its gaze. A curriculum learning setup from single-hand to dual-hand training allows the agent to reach complex visual-motor coordination. The results of this work demonstrate that purely curiosity-based signals, with no external supervision, can drive coordinated multimodal learning, imitating an infant's progression from random motor babbling to purposeful behaviors.
comment: 5 pages, 3 tables
PALMS+: Modular Image-Based Floor Plan Localization Leveraging Depth Foundation Model WACV
Indoor localization in GPS-denied environments is crucial for applications like emergency response and assistive navigation. Vision-based methods such as PALMS enable infrastructure-free localization using only a floor plan and a stationary scan, but are limited by the short range of smartphone LiDAR and ambiguity in indoor layouts. We propose PALMS$+$, a modular, image-based system that addresses these challenges by reconstructing scale-aligned 3D point clouds from posed RGB images using a foundation monocular depth estimation model (Depth Pro), followed by geometric layout matching via convolution with the floor plan. PALMS$+$ outputs a posterior over the location and orientation, usable for direct or sequential localization. Evaluated on the Structured3D and a custom campus dataset consisting of 80 observations across four large campus buildings, PALMS$+$ outperforms PALMS and F3Loc in stationary localization accuracy -- without requiring any training. Furthermore, when integrated with a particle filter for sequential localization on 33 real-world trajectories, PALMS$+$ achieved lower localization errors compared to other methods, demonstrating robustness for camera-free tracking and its potential for infrastructure-free applications. Code and data are available at https://github.com/Head-inthe-Cloud/PALMS-Plane-based-Accessible-Indoor-Localization-Using-Mobile-Smartphones
comment: Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, Application Track. Main paper: 8 pages, 5 figures. Supplementary material included
A Shared-Autonomy Construction Robotic System for Overhead Works ICRA
We present the ongoing development of a robotic system for overhead work such as ceiling drilling. The hardware platform comprises a mobile base with a two-stage lift, on which a bimanual torso is mounted with a custom-designed drilling end effector and RGB-D cameras. To support teleoperation in dynamic environments with limited visibility, we use Gaussian splatting for online 3D reconstruction and introduce motion parameters to model moving objects. For safe operation around dynamic obstacles, we developed a neural configuration-space barrier approach for planning and control. Initial feasibility studies demonstrate the capability of the hardware in drilling, bolting, and anchoring, and the software in safe teleoperation in a dynamic environment.
comment: 4pages, 8 figures, ICRA construction workshop
IFG: Internet-Scale Guidance for Functional Grasping Generation
Large Vision Models trained on internet-scale data have demonstrated strong capabilities in segmenting and semantically understanding object parts, even in cluttered, crowded scenes. However, while these models can direct a robot toward the general region of an object, they lack the geometric understanding required to precisely control dexterous robotic hands for 3D grasping. To overcome this, our key insight is to leverage simulation with a force-closure grasping generation pipeline that understands local geometries of the hand and object in the scene. Because this pipeline is slow and requires ground-truth observations, the resulting data is distilled into a diffusion model that operates in real-time on camera point clouds. By combining the global semantic understanding of internet-scale models with the geometric precision of a simulation-based locally-aware force-closure, \our achieves high-performance semantic grasping without any manually collected training data. For visualizations of this please visit our website at https://ifgrasping.github.io/
comment: Website at https://ifgrasping.github.io/
SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation AAAI 2026
Robotic manipulation requires precise spatial understanding to interact with objects in the real world. Point-based methods suffer from sparse sampling, leading to the loss of fine-grained semantics. Image-based methods typically feed RGB and depth into 2D backbones pre-trained on 3D auxiliary tasks, but their entangled semantics and geometry are sensitive to inherent depth noise in real-world that disrupts semantic understanding. Moreover, these methods focus on high-level geometry while overlooking low-level spatial cues essential for precise interaction. We propose SpatialActor, a disentangled framework for robust robotic manipulation that explicitly decouples semantics and geometry. The Semantic-guided Geometric Module adaptively fuses two complementary geometry from noisy depth and semantic-guided expert priors. Also, a Spatial Transformer leverages low-level spatial cues for accurate 2D-3D mapping and enables interaction among spatial features. We evaluate SpatialActor on multiple simulation and real-world scenarios across 50+ tasks. It achieves state-of-the-art performance with 87.4% on RLBench and improves by 13.9% to 19.4% under varying noisy conditions, showing strong robustness. Moreover, it significantly enhances few-shot generalization to new tasks and maintains robustness under various spatial perturbations. Project Page: https://shihao1895.github.io/SpatialActor
comment: AAAI 2026 Oral | Project Page: https://shihao1895.github.io/SpatialActor
MAP-VLA: Memory-Augmented Prompting for Vision-Language-Action Model in Robotic Manipulation
Pre-trained Vision-Language-Action (VLA) models have achieved remarkable success in improving robustness and generalization for end-to-end robotic manipulation. However, these models struggle with long-horizon tasks due to their lack of memory and reliance solely on immediate sensory inputs. To address this limitation, we propose Memory-Augmented Prompting for Vision-Language-Action model (MAP-VLA), a novel framework that empowers pre-trained VLA models with demonstration-derived memory prompts to augment action generation for long-horizon robotic manipulation tasks. To achieve this, MAP-VLA first constructs a memory library from historical demonstrations, where each memory unit captures information about a specific stage of a task. These memory units are implemented as learnable soft prompts optimized through prompt tuning. Then, during real-time task execution, MAP-VLA retrieves relevant memory through trajectory similarity matching and dynamically integrates it into the VLA model for augmented action generation. Importantly, this prompt tuning and retrieval augmentation approach operates as a plug-and-play module for a frozen VLA model, offering a lightweight and flexible solution to improve task performance. Experimental results show that MAP-VLA delivers up to 7.0% absolute performance gains in the simulation benchmark and 25.0% on real robot evaluations for long-horizon tasks, surpassing the current state-of-the-art methods.
WMPO: World Model-based Policy Optimization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic manipulation, but their reliance on expert demonstrations limits their ability to learn from failures and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving interactions with the physical environment, but suffers from high sample complexity on real robots. We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-policy VLA RL without interacting with the real environment. In contrast to widely used latent world models, WMPO focuses on pixel-based predictions that align the "imagined" trajectories with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy to perform on-policy GRPO that provides stronger performance than the often-used off-policy methods. Extensive experiments in both simulation and real-robot settings demonstrate that WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii) exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization and lifelong learning capabilities.
comment: project website: https://wm-po.github.io
SPIDER: Scalable Physics-Informed Dexterous Retargeting
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.
comment: Project website: https://jc-bao.github.io/spider-project/
ScaleADFG: Affordance-based Dexterous Functional Grasping via Scalable Dataset
Dexterous functional tool-use grasping is essential for effective robotic manipulation of tools. However, existing approaches face significant challenges in efficiently constructing large-scale datasets and ensuring generalizability to everyday object scales. These issues primarily arise from size mismatches between robotic and human hands, and the diversity in real-world object scales. To address these limitations, we propose the ScaleADFG framework, which consists of a fully automated dataset construction pipeline and a lightweight grasp generation network. Our dataset introduce an affordance-based algorithm to synthesize diverse tool-use grasp configurations without expert demonstrations, allowing flexible object-hand size ratios and enabling large robotic hands (compared to human hands) to grasp everyday objects effectively. Additionally, we leverage pre-trained models to generate extensive 3D assets and facilitate efficient retrieval of object affordances. Our dataset comprising five object categories, each containing over 1,000 unique shapes with 15 scale variations. After filtering, the dataset includes over 60,000 grasps for each 2 dexterous robotic hands. On top of this dataset, we train a lightweight, single-stage grasp generation network with a notably simple loss design, eliminating the need for post-refinement. This demonstrates the critical importance of large-scale datasets and multi-scale object variant for effective training. Extensive experiments in simulation and on real robot confirm that the ScaleADFG framework exhibits strong adaptability to objects of varying scales, enhancing functional grasp stability, diversity, and generalizability. Moreover, our network exhibits effective zero-shot transfer to real-world objects. Project page is available at https://sizhe-wang.github.io/ScaleADFG_webpage
comment: Accepted by IEEE Robotics and Automation Letters
CoRL-MPPI: Enhancing MPPI With Learnable Behaviours For Efficient And Provably-Safe Multi-Robot Collision Avoidance
Decentralized collision avoidance remains a core challenge for scalable multi-robot systems. One of the promising approaches to tackle this problem is Model Predictive Path Integral (MPPI) -- a framework that is naturally suited to handle any robot motion model and provides strong theoretical guarantees. Still, in practice MPPI-based controller may provide suboptimal trajectories as its performance relies heavily on uninformed random sampling. In this work, we introduce CoRL-MPPI, a novel fusion of Cooperative Reinforcement Learning and MPPI to address this limitation. We train an action policy (approximated as deep neural network) in simulation that learns local cooperative collision avoidance behaviors. This learned policy is then embedded into the MPPI framework to guide its sampling distribution, biasing it towards more intelligent and cooperative actions. Notably, CoRL-MPPI preserves all the theoretical guarantees of regular MPPI. We evaluate our approach in dense, dynamic simulation environments against state-of-the-art baselines, including ORCA, BVC, and a multi-agent MPPI implementation. Our results demonstrate that CoRL-MPPI significantly improves navigation efficiency (measured by success rate and makespan) and safety, enabling agile and robust multi-robot navigation.
comment: The manuscript includes 9 pages, 4 figures, and 1 table
UMIGen: A Unified Framework for Egocentric Point Cloud Generation and Cross-Embodiment Robotic Imitation Learning
Data-driven robotic learning faces an obvious dilemma: robust policies demand large-scale, high-quality demonstration data, yet collecting such data remains a major challenge owing to high operational costs, dependence on specialized hardware, and the limited spatial generalization capability of current methods. The Universal Manipulation Interface (UMI) relaxes the strict hardware requirements for data collection, but it is restricted to capturing only RGB images of a scene and omits the 3D geometric information on which many tasks rely. Inspired by DemoGen, we propose UMIGen, a unified framework that consists of two key components: (1) Cloud-UMI, a handheld data collection device that requires no visual SLAM and simultaneously records point cloud observation-action pairs; and (2) a visibility-aware optimization mechanism that extends the DemoGen pipeline to egocentric 3D observations by generating only points within the camera's field of view. These two components enable efficient data generation that aligns with real egocentric observations and can be directly transferred across different robot embodiments without any post-processing. Experiments in both simulated and real-world settings demonstrate that UMIGen supports strong cross-embodiment generalization and accelerates data collection in diverse manipulation tasks.
Unveiling the Impact of Data and Model Scaling on High-Level Control for Humanoid Robots
Data scaling has long remained a critical bottleneck in robot learning. For humanoid robots, human videos and motion data are abundant and widely available, offering a free and large-scale data source. Besides, the semantics related to the motions enable modality alignment and high-level robot control learning. However, how to effectively mine raw video, extract robot-learnable representations, and leverage them for scalable learning remains an open problem. To address this, we introduce Humanoid-Union, a large-scale dataset generated through an autonomous pipeline, comprising over 260 hours of diverse, high-quality humanoid robot motion data with semantic annotations derived from human motion videos. The dataset can be further expanded via the same pipeline. Building on this data resource, we propose SCHUR, a scalable learning framework designed to explore the impact of large-scale data on high-level control in humanoid robots. Experimental results demonstrate that SCHUR achieves high robot motion generation quality and strong text-motion alignment under data and model scaling, with 37\% reconstruction improvement under MPJPE and 25\% alignment improvement under FID comparing with previous methods. Its effectiveness is further validated through deployment in real-world humanoid robot.
HOTFLoc++: End-to-End Hierarchical LiDAR Place Recognition, Re-Ranking, and 6-DoF Metric Localisation in Forests
This article presents HOTFLoc++, an end-to-end framework for LiDAR place recognition, re-ranking, and 6-DoF metric localisation in forests. Leveraging an octree-based transformer, our approach extracts hierarchical local descriptors at multiple granularities to increase robustness to clutter, self-similarity, and viewpoint changes in challenging scenarios, including ground-to-ground and ground-to-aerial in forest and urban environments. We propose a learnable multi-scale geometric verification module to reduce re-ranking failures in the presence of degraded single-scale correspondences. Our coarse-to-fine registration approach achieves comparable or lower localisation errors to baselines, with runtime improvements of two orders of magnitude over RANSAC for dense point clouds. Experimental results on public datasets show the superiority of our approach compared to state-of-the-art methods, achieving an average Recall@1 of 90.7% on CS-Wild-Places: an improvement of 29.6 percentage points over baselines, while maintaining high performance on single-source benchmarks with an average Recall@1 of 91.7% and 96.0% on Wild-Places and MulRan, respectively. Our method achieves under 2 m and 5 degrees error for 97.2% of 6-DoF registration attempts, with our multi-scale re-ranking module reducing localisation errors by ~2$\times$ on average. The code will be available upon acceptance.
comment: 9 pages, 2 figures. Submitted to RA-L
LODESTAR: Degeneracy-Aware LiDAR-Inertial Odometry with Adaptive Schmidt-Kalman Filter and Data Exploitation
LiDAR-inertial odometry (LIO) has been widely used in robotics due to its high accuracy. However, its performance degrades in degenerate environments, such as long corridors and high-altitude flights, where LiDAR measurements are imbalanced or sparse, leading to ill-posed state estimation. In this letter, we present LODESTAR, a novel LIO method that addresses these degeneracies through two key modules: degeneracy-aware adaptive Schmidt-Kalman filter (DA-ASKF) and degeneracy-aware data exploitation (DA-DE). DA-ASKF employs a sliding window to utilize past states and measurements as additional constraints. Specifically, it introduces degeneracy-aware sliding modes that adaptively classify states as active or fixed based on their degeneracy level. Using Schmidt-Kalman update, it partially optimizes active states while preserving fixed states. These fixed states influence the update of active states via their covariances, serving as reference anchors--akin to a lodestar. Additionally, DA-DE prunes less-informative measurements from active states and selectively exploits measurements from fixed states, based on their localizability contribution and the condition number of the Jacobian matrix. Consequently, DA-ASKF enables degeneracy-aware constrained optimization and mitigates measurement sparsity, while DA-DE addresses measurement imbalance. Experimental results show that LODESTAR outperforms existing LiDAR-based odometry methods and degeneracy-aware modules in terms of accuracy and robustness under various degenerate conditions.
comment: 8 pages, 5 figures, 6 tables, accepted for the publication in IEEE Robotics and Automation Letters
RGMP: Recurrent Geometric-prior Multimodal Policy for Generalizable Humanoid Robot Manipulation
Humanoid robots exhibit significant potential in executing diverse human-level skills. However, current research predominantly relies on data-driven approaches that necessitate extensive training datasets to achieve robust multimodal decision-making capabilities and generalizable visuomotor control. These methods raise concerns due to the neglect of geometric reasoning in unseen scenarios and the inefficient modeling of robot-target relationships within the training data, resulting in significant waste of training resources. To address these limitations, we present the Recurrent Geometric-prior Multimodal Policy (RGMP), an end-to-end framework that unifies geometric-semantic skill reasoning with data-efficient visuomotor control. For perception capabilities, we propose the Geometric-prior Skill Selector, which infuses geometric inductive biases into a vision language model, producing adaptive skill sequences for unseen scenes with minimal spatial common sense tuning. To achieve data-efficient robotic motion synthesis, we introduce the Adaptive Recursive Gaussian Network, which parameterizes robot-object interactions as a compact hierarchy of Gaussian processes that recursively encode multi-scale spatial relationships, yielding dexterous, data-efficient motion synthesis even from sparse demonstrations. Evaluated on both our humanoid robot and desktop dual-arm robot, the RGMP framework achieves 87% task success in generalization tests and exhibits 5x greater data efficiency than the state-of-the-art model. This performance underscores its superior cross-domain generalization, enabled by geometric-semantic reasoning and recursive-Gaussion adaptation.
Data Assessment for Embodied Intelligence
In embodied intelligence, datasets play a pivotal role, serving as both a knowledge repository and a conduit for information transfer. The two most critical attributes of a dataset are the amount of information it provides and how easily this information can be learned by models. However, the multimodal nature of embodied data makes evaluating these properties particularly challenging. Prior work has largely focused on diversity, typically counting tasks and scenes or evaluating isolated modalities, which fails to provide a comprehensive picture of dataset diversity. On the other hand, the learnability of datasets has received little attention and is usually assessed post-hoc through model training, an expensive, time-consuming process that also lacks interpretability, offering little guidance on how to improve a dataset. In this work, we address both challenges by introducing two principled, data-driven tools. First, we construct a unified multimodal representation for each data sample and, based on it, propose diversity entropy, a continuous measure that characterizes the amount of information contained in a dataset. Second, we introduce the first interpretable, data-driven algorithm to efficiently quantify dataset learnability without training, enabling researchers to assess a dataset's learnability immediately upon its release. We validate our algorithm on both simulated and real-world embodied datasets, demonstrating that it yields faithful, actionable insights that enable researchers to jointly improve diversity and learnability. We hope this work provides a foundation for designing higher-quality datasets that advance the development of embodied intelligence.
Decoupling Torque and Stiffness: A Unified Modeling and Control Framework for Antagonistic Artificial Muscles
Antagonistic soft actuators built from artificial muscles (PAMs, HASELs, DEAs) promise plant-level torque-stiffness decoupling, yet existing controllers for soft muscles struggle to maintain independent control through dynamic contact transients. We present a unified framework enabling independent torque and stiffness commands in real-time for diverse soft actuator types. Our unified force law captures diverse soft muscle physics in a single model with sub-ms computation, while our cascaded controller with analytical inverse dynamics maintains decoupling despite model errors and disturbances. Using co-contraction/bias coordinates, the controller independently modulates torque via bias and stiffness via co-contraction-replicating biological impedance strategies. Simulation-based validation through contact experiments demonstrates maintained independence: 200x faster settling on soft surfaces, 81% force reduction on rigid surfaces, and stable interaction vs 22-54% stability for fixed policies. This framework provides a foundation for enabling musculoskeletal antagonistic systems to execute adaptive impedance control for safe human-robot interaction.
APEX: Action Priors Enable Efficient Exploration for Robust Motion Tracking on Legged Robots
Learning natural, animal-like locomotion from demonstrations has become a core paradigm in legged robotics. Despite the recent advancements in motion tracking, most existing methods demand extensive tuning and rely on reference data during deployment, limiting adaptability. We present APEX (Action Priors enable Efficient Exploration), a plug-and-play extension to state-of-the-art motion tracking algorithms that eliminates any dependence on reference data during deployment, improves sample efficiency, and reduces parameter tuning effort. APEX integrates expert demonstrations directly into reinforcement learning (RL) by incorporating decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is combined with a multi-critic framework that balances task performance with motion style. Moreover, APEX enables a single policy to learn diverse motions and transfer reference-like styles across different terrains and velocities, while remaining robust to variations in reward design. We validate the effectiveness of our method through extensive experiments in both simulation and on a Unitree Go2 robot. By leveraging demonstrations to guide exploration during RL training, without imposing explicit bias toward them, APEX enables legged robots to learn with greater stability, efficiency, and generalization. We believe this approach paves the way for guidance-driven RL to boost natural skill acquisition in a wide array of robotic tasks, from locomotion to manipulation. Website and code: https://marmotlab.github.io/APEX/.
D-AWSIM: Distributed Autonomous Driving Simulator for Dynamic Map Generation Framework
Autonomous driving systems have achieved significant advances, and full autonomy within defined operational design domains near practical deployment. Expanding these domains requires addressing safety assurance under diverse conditions. Information sharing through vehicle-to-vehicle and vehicle-to-infrastructure communication, enabled by a Dynamic Map platform built from vehicle and roadside sensor data, offers a promising solution. Real-world experiments with numerous infrastructure sensors incur high costs and regulatory challenges. Conventional single-host simulators lack the capacity for large-scale urban traffic scenarios. This paper proposes D-AWSIM, a distributed simulator that partitions its workload across multiple machines to support the simulation of extensive sensor deployment and dense traffic environments. A Dynamic Map generation framework on D-AWSIM enables researchers to explore information-sharing strategies without relying on physical testbeds. The evaluation shows that D-AWSIM increases throughput for vehicle count and LiDAR sensor processing substantially compared to a single-machine setup. Integration with Autoware demonstrates applicability for autonomous driving research.
comment: 9 pages. This version includes minor lstlisting configuration adjustments for successful compilation. No changes to content or layout. Originally published at Euromicro DSD 2025
SMF-VO: Direct Ego-Motion Estimation via Sparse Motion Fields
Traditional Visual Odometry (VO) and Visual Inertial Odometry (VIO) methods rely on a 'pose-centric' paradigm, which computes absolute camera poses from the local map thus requires large-scale landmark maintenance and continuous map optimization. This approach is computationally expensive, limiting their real-time performance on resource-constrained devices. To overcome these limitations, we introduce Sparse Motion Field Visual Odometry (SMF-VO), a lightweight, 'motion-centric' framework. Our approach directly estimates instantaneous linear and angular velocity from sparse optical flow, bypassing the need for explicit pose estimation or expensive landmark tracking. We also employed a generalized 3D ray-based motion field formulation that works accurately with various camera models, including wide-field-of-view lenses. SMF-VO demonstrates superior efficiency and competitive accuracy on benchmark datasets, achieving over 100 FPS on a Raspberry Pi 5 using only a CPU. Our work establishes a scalable and efficient alternative to conventional methods, making it highly suitable for mobile robotics and wearable devices.
Argus: Resilience-Oriented Safety Assurance Framework for End-to-End ADSs
End-to-end autonomous driving systems (ADSs), with their strong capabilities in environmental perception and generalizable driving decisions, are attracting growing attention from both academia and industry. However, once deployed on public roads, ADSs are inevitably exposed to diverse driving hazards that may compromise safety and degrade system performance. This raises a strong demand for resilience of ADSs, particularly the capability to continuously monitor driving hazards and adaptively respond to potential safety violations, which is crucial for maintaining robust driving behaviors in complex driving scenarios. To bridge this gap, we propose a runtime resilience-oriented framework, Argus, to mitigate the driving hazards, thus preventing potential safety violations and improving the driving performance of an ADS. Argus continuously monitors the trajectories generated by the ADS for potential hazards and, whenever the EGO vehicle is deemed unsafe, seamlessly takes control through a hazard mitigator. We integrate Argus with three state-of-the-art end-to-end ADSs, i.e., TCP, UniAD and VAD. Our evaluation has demonstrated that Argus effectively and efficiently enhances the resilience of ADSs, improving the driving score of the ADS by up to 150.30% on average, and preventing up to 64.38% of the violations, with little additional time overhead.
comment: The paper has been accepted by the 40th IEEE/ACM International Conference on Automated Software Engineering, ASE 2025
A Quantum Tunneling and Bio-Phototactic Driven Enhanced Dwarf Mongoose Optimizer for UAV Trajectory Planning and Engineering Problem
With the widespread adoption of unmanned aerial vehicles (UAV), effective path planning has become increasingly important. Although traditional search methods have been extensively applied, metaheuristic algorithms have gained popularity due to their efficiency and problem-specific heuristics. However, challenges such as premature convergence and lack of solution diversity still hinder their performance in complex scenarios. To address these issues, this paper proposes an Enhanced Multi-Strategy Dwarf Mongoose Optimization (EDMO) algorithm, tailored for three-dimensional UAV trajectory planning in dynamic and obstacle-rich environments. EDMO integrates three novel strategies: (1) a Dynamic Quantum Tunneling Optimization Strategy (DQTOS) to enable particles to probabilistically escape local optima; (2) a Bio-phototactic Dynamic Focusing Search Strategy (BDFSS) inspired by microbial phototaxis for adaptive local refinement; and (3) an Orthogonal Lens Opposition-Based Learning (OLOBL) strategy to enhance global exploration through structured dimensional recombination. EDMO is benchmarked on 39 standard test functions from CEC2017 and CEC2020, outperforming 14 advanced algorithms in convergence speed, robustness, and optimization accuracy. Furthermore, real-world validations on UAV three-dimensional path planning and three engineering design tasks confirm its practical applicability and effectiveness in field robotics missions requiring intelligent, adaptive, and time-efficient planning.
UniMM-V2X: MoE-Enhanced Multi-Level Fusion for End-to-End Cooperative Autonomous Driving
Autonomous driving holds transformative potential but remains fundamentally constrained by the limited perception and isolated decision-making with standalone intelligence. While recent multi-agent approaches introduce cooperation, they often focus merely on perception-level tasks, overlooking the alignment with downstream planning and control, or fall short in leveraging the full capacity of the recent emerging end-to-end autonomous driving. In this paper, we present UniMM-V2X, a novel end-to-end multi-agent framework that enables hierarchical cooperation across perception, prediction, and planning. At the core of our framework is a multi-level fusion strategy that unifies perception and prediction cooperation, allowing agents to share queries and reason cooperatively for consistent and safe decision-making. To adapt to diverse downstream tasks and further enhance the quality of multi-level fusion, we incorporate a Mixture-of-Experts (MoE) architecture to dynamically enhance the BEV representations. We further extend MoE into the decoder to better capture diverse motion patterns. Extensive experiments on the DAIR-V2X dataset demonstrate our approach achieves state-of-the-art (SOTA) performance with a 39.7% improvement in perception accuracy, a 7.2% reduction in prediction error, and a 33.2% improvement in planning performance compared with UniV2X, showcasing the strength of our MoE-enhanced multi-level cooperative paradigm.
Think, Remember, Navigate: Zero-Shot Object-Goal Navigation with VLM-Powered Reasoning
While Vision-Language Models (VLMs) are set to transform robotic navigation, existing methods often underutilize their reasoning capabilities. To unlock the full potential of VLMs in robotics, we shift their role from passive observers to active strategists in the navigation process. Our framework outsources high-level planning to a VLM, which leverages its contextual understanding to guide a frontier-based exploration agent. This intelligent guidance is achieved through a trio of techniques: structured chain-of-thought prompting that elicits logical, step-by-step reasoning; dynamic inclusion of the agent's recent action history to prevent getting stuck in loops; and a novel capability that enables the VLM to interpret top-down obstacle maps alongside first-person views, thereby enhancing spatial awareness. When tested on challenging benchmarks like HM3D, Gibson, and MP3D, this method produces exceptionally direct and logical trajectories, marking a substantial improvement in navigation efficiency over existing approaches and charting a path toward more capable embodied agents.
Expand Your SCOPE: Semantic Cognition over Potential-Based Exploration for Embodied Visual Navigation
Embodied visual navigation remains a challenging task, as agents must explore unknown environments with limited knowledge. Existing zero-shot studies have shown that incorporating memory mechanisms to support goal-directed behavior can improve long-horizon planning performance. However, they overlook visual frontier boundaries, which fundamentally dictate future trajectories and observations, and fall short of inferring the relationship between partial visual observations and navigation goals. In this paper, we propose Semantic Cognition Over Potential-based Exploration (SCOPE), a zero-shot framework that explicitly leverages frontier information to drive potential-based exploration, enabling more informed and goal-relevant decisions. SCOPE estimates exploration potential with a Vision-Language Model and organizes it into a spatio-temporal potential graph, capturing boundary dynamics to support long-horizon planning. In addition, SCOPE incorporates a self-reconsideration mechanism that revisits and refines prior decisions, enhancing reliability and reducing overconfident errors. Experimental results on two diverse embodied navigation tasks show that SCOPE outperforms state-of-the-art baselines by 4.6\% in accuracy. Further analysis demonstrates that its core components lead to improved calibration, stronger generalization, and higher decision quality.
Diffusion Policies with Value-Conditional Optimization for Offline Reinforcement Learning IROS 2025
In offline reinforcement learning, value overestimation caused by out-of-distribution (OOD) actions significantly limits policy performance. Recently, diffusion models have been leveraged for their strong distribution-matching capabilities, enforcing conservatism through behavior policy constraints. However, existing methods often apply indiscriminate regularization to redundant actions in low-quality datasets, resulting in excessive conservatism and an imbalance between the expressiveness and efficiency of diffusion modeling. To address these issues, we propose DIffusion policies with Value-conditional Optimization (DIVO), a novel approach that leverages diffusion models to generate high-quality, broadly covered in-distribution state-action samples while facilitating efficient policy improvement. Specifically, DIVO introduces a binary-weighted mechanism that utilizes the advantage values of actions in the offline dataset to guide diffusion model training. This enables a more precise alignment with the dataset's distribution while selectively expanding the boundaries of high-advantage actions. During policy improvement, DIVO dynamically filters high-return-potential actions from the diffusion model, effectively guiding the learned policy toward better performance. This approach achieves a critical balance between conservatism and explorability in offline RL. We evaluate DIVO on the D4RL benchmark and compare it against state-of-the-art baselines. Empirical results demonstrate that DIVO achieves superior performance, delivering significant improvements in average returns across locomotion tasks and outperforming existing methods in the challenging AntMaze domain, where sparse rewards pose a major difficulty.
comment: IROS 2025
A Shared Control Framework for Mobile Robots with Planning-Level Intention Prediction
In mobile robot shared control, effectively understanding human motion intention is critical for seamless human-robot collaboration. This paper presents a novel shared control framework featuring planning-level intention prediction. A path replanning algorithm is designed to adjust the robot's desired trajectory according to inferred human intentions. To represent future motion intentions, we introduce the concept of an intention domain, which serves as a constraint for path replanning. The intention-domain prediction and path replanning problems are jointly formulated as a Markov Decision Process and solved through deep reinforcement learning. In addition, a Voronoi-based human trajectory generation algorithm is developed, allowing the model to be trained entirely in simulation without human participation or demonstration data. Extensive simulations and real-world user studies demonstrate that the proposed method significantly reduces operator workload and enhances safety, without compromising task efficiency compared with existing assistive teleoperation approaches.
MirrorLimb: Implementing hand pose acquisition and robot teleoperation based on RealMirror
In this work, we present a PICO-based robot remote operating framework that enables low-cost, real-time acquisition of hand motion and pose data, outperforming mainstream visual tracking and motion capture solutions in terms of cost-effectiveness. The framework is natively compatible with the RealMirror ecosystem, offering ready-to-use functionality for stable and precise robotic trajectory recording within the Isaac simulation environment, thereby facilitating the construction of Vision-Language-Action (VLA) datasets. Additionally, the system supports real-time teleoperation of a variety of end-effector-equipped robots, including dexterous hands and robotic grippers. This work aims to lower the technical barriers in the study of upper-limb robotic manipulation, thereby accelerating advancements in VLA-related research.
XPRESS: X-Band Radar Place Recognition via Elliptical Scan Shaping
X-band radar serves as the primary sensor on maritime vessels, however, its application in autonomous navigation has been limited due to low sensor resolution and insufficient information content. To enable X-band radar-only autonomous navigation in maritime environments, this paper proposes a place recognition algorithm specifically tailored for X-band radar, incorporating an object density-based rule for efficient candidate selection and intentional degradation of radar detections to achieve robust retrieval performance. The proposed algorithm was evaluated on both public maritime radar datasets and our own collected dataset, and its performance was compared against state-of-the-art radar place recognition methods. An ablation study was conducted to assess the algorithm's performance sensitivity with respect to key parameters.
comment: 9 pages, 9 figures, Published in IEEE RA-L
Semantic VLM Dataset for Safe Autonomous Driving
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
comment: 8 pages, 6 figures, 7 tables
DualVision ArthroNav: Investigating Opportunities to Enhance Localization and Reconstruction in Image-based Arthroscopy Navigation via External Cameras
Arthroscopic procedures can greatly benefit from navigation systems that enhance spatial awareness, depth perception, and field of view. However, existing optical tracking solutions impose strict workspace constraints and disrupt surgical workflow. Vision-based alternatives, though less invasive, often rely solely on the monocular arthroscope camera, making them prone to drift, scale ambiguity, and sensitivity to rapid motion or occlusion. We propose DualVision ArthroNav, a multi-camera arthroscopy navigation system that integrates an external camera rigidly mounted on the arthroscope. The external camera provides stable visual odometry and absolute localization, while the monocular arthroscope video enables dense scene reconstruction. By combining these complementary views, our system resolves the scale ambiguity and long-term drift inherent in monocular SLAM and ensures robust relocalization. Experiments demonstrate that our system effectively compensates for calibration errors, achieving an average absolute trajectory error of 1.09 mm. The reconstructed scenes reach an average target registration error of 2.16 mm, with high visual fidelity (SSIM = 0.69, PSNR = 22.19). These results indicate that our system provides a practical and cost-efficient solution for arthroscopic navigation, bridging the gap between optical tracking and purely vision-based systems, and paving the way toward clinically deployable, fully vision-based arthroscopic guidance.
Stochastic Adaptive Estimation in Polynomial Curvature Shape State Space for Continuum Robots
In continuum robotics, real-time robust shape estimation is crucial for planning and control tasks that involve physical manipulation in complex environments. In this paper, we present a novel stochastic observer-based shape estimation framework designed specifically for continuum robots. The shape state space is uniquely represented by the modal coefficients of a polynomial, enabled by leveraging polynomial curvature kinematics (PCK) to describe the curvature distribution along the arclength. Our framework processes noisy measurements from limited discrete position, orientation, or pose sensors to estimate the shape state robustly. We derive a novel noise-weighted observability matrix, providing a detailed assessment of observability variations under diverse sensor configurations. To overcome the limitations of a single model, our observer employs the Interacting Multiple Model (IMM) method, coupled with Extended Kalman Filters (EKFs), to mix polynomial curvature models of different orders. The IMM approach, rooted in Markov processes, effectively manages multiple model scenarios by dynamically adapting to different polynomial orders based on real-time model probabilities. This adaptability is key to ensuring robust shape estimation of the robot's behaviors under various conditions. Our comprehensive analysis, supported by both simulation studies and experimental validations, confirms the robustness and accuracy of our methods.
comment: 20 pages. IEEE Transactions on Robotics - Accepted; this arXiv version corresponds to the final revision. Supplementary appendix provided as an ancillary PDF
Improving Pre-Trained Vision-Language-Action Policies with Model-Based Search
Pre-trained vision-language-action (VLA) models offer a promising foundation for generalist robot policies, but often produce brittle behaviors or unsafe failures when deployed zero-shot in out-of-distribution scenarios. We present Vision-Language-Action Planning & Search (VLAPS) -- a novel framework and accompanying algorithms that embed model-based search into the inference procedure of pre-trained VLA policies to improve their performance on robotic tasks. Specifically, our method biases a modified Monte Carlo Tree Search (MCTS) algorithm -- run using a model of the target environment -- using action priors defined by the VLA policy. By using VLA-derived abstractions and priors in model-based search, VLAPS efficiently explores language-conditioned robotics tasks whose search spaces would otherwise be intractably large. Conversely, by integrating model-based search with the VLA policy's inference procedure, VLAPS yields behaviors that are more performant than those obtained by directly following the VLA policy's action predictions. VLAPS offers a principled framework to: i) control test-time compute in VLA models, ii) leverage a priori knowledge of the robotic environment, and iii) integrate established planning and reinforcement learning techniques into the VLA inference process. Across all experiments, VLAPS significantly outperforms VLA-only baselines on language-specified tasks that would otherwise be intractable for uninformed search algorithms, increasing success rates by as much as 67 percentage points.
Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper reviews works that advance agentic applications and architectures, including initial efforts with GPT-style interfaces and more complex systems where AI agents function as coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
vS-Graphs: Tightly Coupling Visual SLAM and 3D Scene Graphs Exploiting Hierarchical Scene Understanding
Current Visual Simultaneous Localization and Mapping (VSLAM) systems often struggle to create maps that are both semantically rich and easily interpretable. While incorporating semantic scene knowledge aids in building richer maps with contextual associations among mapped objects, representing them in structured formats, such as scene graphs, has not been widely addressed, resulting in complex map comprehension and limited scalability. This paper introduces vS-Graphs, a novel real-time VSLAM framework that integrates vision-based scene understanding with map reconstruction and comprehensible graph-based representation. The framework infers structural elements (i.e., rooms and floors) from detected building components (i.e., walls and ground surfaces) and incorporates them into optimizable 3D scene graphs. This solution enhances the reconstructed map's semantic richness, comprehensibility, and localization accuracy. Extensive experiments on standard benchmarks and real-world datasets demonstrate that vS-Graphs achieves an average of 15.22% accuracy gain across all tested datasets compared to state-of-the-art VSLAM methods. Furthermore, the proposed framework achieves environment-driven semantic entity detection accuracy comparable to that of precise LiDAR-based frameworks, using only visual features. The code is publicly available at https://github.com/snt-arg/visual_sgraphs and is actively being improved. Moreover, a web page containing more media and evaluation outcomes is available on https://snt-arg.github.io/vsgraphs-results/.
comment: 19 pages, 10 figures, 5 tables
KoopMotion: Learning Almost Divergence Free Koopman Flow Fields for Motion Planning
In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals - a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy. Code at: \href{https://alicekl.github.io/koop-motion/}{\color{blue}{https://alicekl.github.io/koop-motion}}.
comment: Revised with link to code. Accepted to CoRL 2025 (Conference on Robot Learning). 15 pages 11 figures
Real Garment Benchmark (RGBench): A Comprehensive Benchmark for Robotic Garment Manipulation featuring a High-Fidelity Scalable Simulator AAAI
While there has been significant progress to use simulated data to learn robotic manipulation of rigid objects, applying its success to deformable objects has been hindered by the lack of both deformable object models and realistic non-rigid body simulators. In this paper, we present Real Garment Benchmark (RGBench), a comprehensive benchmark for robotic manipulation of garments. It features a diverse set of over 6000 garment mesh models, a new high-performance simulator, and a comprehensive protocol to evaluate garment simulation quality with carefully measured real garment dynamics. Our experiments demonstrate that our simulator outperforms currently available cloth simulators by a large margin, reducing simulation error by 20% while maintaining a speed of 3 times faster. We will publicly release RGBench to accelerate future research in robotic garment manipulation. Website: https://rgbench.github.io/
comment: 2026 AAAI Accept
ViSA-Flow: Accelerating Robot Skill Learning via Large-Scale Video Semantic Action Flow
One of the central challenges preventing robots from acquiring complex manipulation skills is the prohibitive cost of collecting large-scale robot demonstrations. In contrast, humans are able to learn efficiently by watching others interact with their environment. To bridge this gap, we introduce semantic action flow as a core intermediate representation capturing the essential spatio-temporal manipulator-object interactions, invariant to superficial visual differences. We present ViSA-Flow, a framework that learns this representation self-supervised from unlabeled large-scale video data. First, a generative model is pre-trained on semantic action flows automatically extracted from large-scale human-object interaction video data, learning a robust prior over manipulation structure. Second, this prior is efficiently adapted to a target robot by fine-tuning on a small set of robot demonstrations processed through the same semantic abstraction pipeline. We demonstrate through extensive experiments on the CALVIN benchmark and real-world tasks that ViSA-Flow achieves state-of-the-art performance, particularly in low-data regimes, outperforming prior methods by effectively transferring knowledge from human video observation to robotic execution. Videos are available at https://visaflow-web.github.io/ViSAFLOW.
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
Primal-Dual iLQR for GPU-Accelerated Learning and Control in Legged Robots
This paper introduces a novel Model Predictive Control (MPC) implementation for legged robot locomotion that leverages GPU parallelization. Our approach enables both temporal and state-space parallelization by incorporating a parallel associative scan to solve the primal-dual Karush-Kuhn-Tucker (KKT) system. In this way, the optimal control problem is solved in $\mathcal{O}(n\log{N} + m)$ complexity, instead of $\mathcal{O}(N(n + m)^3)$, where $n$, $m$, and $N$ are the dimension of the system state, control vector, and the length of the prediction horizon. We demonstrate the advantages of this implementation over two state-of-the-art solvers (acados and crocoddyl), achieving up to a 60\% improvement in runtime for Whole Body Dynamics (WB)-MPC and a 700\% improvement for Single Rigid Body Dynamics (SRBD)-MPC when varying the prediction horizon length. The presented formulation scales efficiently with the problem state dimensions as well, enabling the definition of a centralized controller for up to 16 legged robots that can be computed in less than 25 ms. Furthermore, thanks to the JAX implementation, the solver supports large-scale parallelization across multiple environments, allowing the possibility of performing learning with the MPC in the loop directly in GPU.
SafeFlow: Safe Robot Motion Planning with Flow Matching via Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow matching (FM)-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with new environments with constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, safe flow matching (SafeFlow), a motion planning framework, is proposed for trajectory generation that integrates flow matching with safety guarantees. SafeFlow leverages our proposed flow matching barrier functions (FMBF) to ensure the planned trajectories remain within safe regions across the entire planning horizon. Crucially, our approach enables training-free, real-time safety enforcement at test time, eliminating the need for retraining. We evaluate SafeFlow on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io.
Target Tracking via LiDAR-RADAR Sensor Fusion for Autonomous Racing
High Speed multi-vehicle Autonomous Racing will increase the safety and performance of road-going Autonomous Vehicles. Precise vehicle detection and dynamics estimation from a moving platform is a key requirement for planning and executing complex autonomous overtaking maneuvers. To address this requirement, we have developed a Latency-Aware EKF-based Multi Target Tracking algorithm fusing LiDAR and RADAR measurements. The algorithm explots the different sensor characteristics by explicitly integrating the Range Rate in the EKF Measurement Function, as well as a-priori knowledge of the racetrack during state prediction. It can handle Out-Of-Sequence Measurements via Reprocessing using a double State and Measurement Buffer, ensuring sensor delay compensation with no information loss. This algorithm has been implemented on Team PoliMOVE's autonomous racecar, and was proved experimentally by completing a number of fully autonomous overtaking maneuvers at speeds up to 275 km/h.
comment: IEEE Conference, 6 pages
Strategic Coordination of Drones via Short-term Distributed Optimization and Long-term Reinforcement Learning
This paper addresses the problem of autonomous task allocation by a swarm of autonomous, interactive drones in large-scale, dynamic spatio-temporal environments. When each drone independently determines navigation, sensing, and recharging options to choose from such that system-wide sensing requirements are met, the collective decision-making becomes an NP-hard decentralized combinatorial optimization problem. Existing solutions face significant limitations: distributed optimization methods such as collective learning often lack long-term adaptability, while centralized deep reinforcement learning (DRL) suffers from high computational complexity, scalability and privacy concerns. To overcome these challenges, we propose a novel hybrid optimization approach that combines long-term DRL with short-term collective learning. In this approach, each drone uses DRL methods to proactively determine high-level strategies, such as flight direction and recharging behavior, while leveraging collective learning to coordinate short-term sensing and navigation tasks with other drones in a decentralized manner. Extensive experiments using datasets derived from realistic urban mobility demonstrate that the proposed solution outperforms standalone state-of-the-art collective learning and DRL approaches by $27.83\%$ and $23.17\%$ respectively. Our findings highlight the complementary strengths of short-term and long-term decision-making, enabling energy-efficient, accurate, and sustainable traffic monitoring through swarms of drones.
comment: 23 pages, 16 figures, accepted by Applied Soft Computing
4D Radar-Inertial Odometry based on Gaussian Modeling and Multi-Hypothesis Scan Matching
4D millimeter-wave (mmWave) radars are sensors that provide robustness against adverse weather conditions (rain, snow, fog, etc.), and as such they are increasingly used for odometry and SLAM (Simultaneous Location and Mapping). However, the noisy and sparse nature of the returned scan data proves to be a challenging obstacle for existing registration algorithms, especially those originally intended for more accurate sensors such as LiDAR. Following the success of 3D Gaussian Splatting for vision, in this paper we propose a summarized representation for radar scenes based on global simultaneous optimization of 3D Gaussians as opposed to voxel-based approaches, and leveraging its inherent Probability Density Function (PDF) for registration. Moreover, we propose tackling the problem of radar noise entirely within the scan matching process by optimizing multiple registration hypotheses for better protection against local optima of the PDF. Finally, following existing practice we implement an Extended Kalman Filter-based Radar-Inertial Odometry pipeline in order to evaluate the effectiveness of our system. Experiments using publicly available 4D radar datasets show that our Gaussian approach is comparable to existing registration algorithms, outperforming them in several sequences.
comment: Our code and results can be publicly accessed at: https://github.com/robotics-upo/gaussian-rio-cpp
Gaussian-Process-based Adaptive Tracking Control with Dynamic Active Learning for Autonomous Ground Vehicles
This article proposes an active-learning-based adaptive trajectory tracking control method for autonomous ground vehicles to compensate for modeling errors and unmodeled dynamics. The nominal vehicle model is decoupled into lateral and longitudinal subsystems, which are augmented with online Gaussian Processes (GPs), using measurement data. The estimated mean functions of the GPs are used to construct a feedback compensator, which, together with an LPV state feedback controller designed for the nominal system, gives the adaptive control structure. To assist exploration of the dynamics, the paper proposes a new, dynamic active learning method to collect the most informative samples to accelerate the training process. To analyze the performance of the overall learning tool-chain provided controller, a novel iterative, counterexample-based algorithm is proposed for calculating the induced L2 gain between the reference trajectory and the tracking error. The analysis can be executed for a set of possible realizations of the to-be-controlled system, giving robust performance certificate of the learning method under variation of the vehicle dynamics. The efficiency of the proposed control approach is shown on a high-fidelity physics simulator and in real experiments using a 1/10 scale F1TENTH electric car.
comment: Submitted to IEEE Transactions on Control Systems Technology (revised)
MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm
Whole-body loco-manipulation for quadruped robots with arms remains a challenging problem, particularly in achieving multi-task control. To address this, we propose MLM, a reinforcement learning framework driven by both real-world and simulation data. It enables a six-DoF robotic arm-equipped quadruped robot to perform whole-body loco-manipulation for multiple tasks autonomously or under human teleoperation. To address the problem of balancing multiple tasks during the learning of loco-manipulation, we introduce a trajectory library with an adaptive, curriculum-based sampling mechanism. This approach allows the policy to efficiently leverage real-world collected trajectories for learning multi-task loco-manipulation. To address deployment scenarios with only historical observations and to enhance the performance of policy execution across tasks with different spatial ranges, we propose a Trajectory-Velocity Prediction policy network. It predicts unobservable future trajectories and velocities. By leveraging extensive simulation data and curriculum-based rewards, our controller achieves whole-body behaviors in simulation and zero-shot transfer to real-world deployment. Ablation studies in simulation verify the necessity and effectiveness of our approach, while real-world experiments on a Go2 robot with an Airbot robotic arm demonstrate the policy's good performance in multi-task execution.
Evolutionary Policy Optimization
On-policy reinforcement learning (RL) algorithms are widely used for their strong asymptotic performance and training stability, but they struggle to scale with larger batch sizes, as additional parallel environments yield redundant data due to limited policy-induced diversity. In contrast, Evolutionary Algorithms (EAs) scale naturally and encourage exploration via randomized population-based search, but are often sample-inefficient. We propose Evolutionary Policy Optimization (EPO), a hybrid algorithm that combines the scalability and diversity of EAs with the performance and stability of policy gradients. EPO maintains a population of agents conditioned on latent variables, shares actor-critic network parameters for coherence and memory efficiency, and aggregates diverse experiences into a master agent. Across tasks in dexterous manipulation, legged locomotion, and classic control, EPO outperforms state-of-the-art baselines in sample efficiency, asymptotic performance, and scalability.
comment: Website at https://yifansu1301.github.io/EPO/
Touch in the Wild: Learning Fine-Grained Manipulation with a Portable Visuo-Tactile Gripper
Handheld grippers are increasingly used to collect human demonstrations due to their ease of deployment and versatility. However, most existing designs lack tactile sensing, despite the critical role of tactile feedback in precise manipulation. We present a portable, lightweight gripper with integrated tactile sensors that enables synchronized collection of visual and tactile data in diverse, real-world, and in-the-wild settings. Building on this hardware, we propose a cross-modal representation learning framework that integrates visual and tactile signals while preserving their distinct characteristics. The learning procedure allows the emergence of interpretable representations that consistently focus on contacting regions relevant for physical interactions. When used for downstream manipulation tasks, these representations enable more efficient and effective policy learning, supporting precise robotic manipulation based on multimodal feedback. We validate our approach on fine-grained tasks such as test tube insertion and pipette-based fluid transfer, demonstrating improved accuracy and robustness under external disturbances. Our project page is available at https://binghao-huang.github.io/touch_in_the_wild/ .
comment: More videos can be found on our website:https://binghao-huang.github.io/touch_in_the_wild/
Survey of Vision-Language-Action Models for Embodied Manipulation
Embodied intelligence systems, which enhance agent capabilities through continuous environment interactions, have garnered significant attention from both academia and industry. Vision-Language-Action models, inspired by advancements in large foundation models, serve as universal robotic control frameworks that substantially improve agent-environment interaction capabilities in embodied intelligence systems. This expansion has broadened application scenarios for embodied AI robots. This survey comprehensively reviews VLA models for embodied manipulation. Firstly, it chronicles the developmental trajectory of VLA architectures. Subsequently, we conduct a detailed analysis of current research across 5 critical dimensions: VLA model structures, training datasets, pre-training methods, post-training methods, and model evaluation. Finally, we synthesize key challenges in VLA development and real-world deployment, while outlining promising future research directions.
comment: in Chinese language
LLM4AD: Large Language Models for Autonomous Driving -- Concept, Review, Benchmark, Experiments, and Future Trends
With the broader adoption and highly successful development of Large Language Models (LLMs), there has been growing interest and demand for applying LLMs to autonomous driving technology. Driven by their natural language understanding and reasoning capabilities, LLMs have the potential to enhance various aspects of autonomous driving systems, from perception and scene understanding to interactive decision-making. In this paper, we first introduce the novel concept of designing Large Language Models for Autonomous Driving (LLM4AD), followed by a review of existing LLM4AD studies. Then, we propose a comprehensive benchmark for evaluating the instruction-following and reasoning abilities of LLM4AD systems, which includes LaMPilot-Bench, CARLA Leaderboard 1.0 Benchmark in simulation and NuPlanQA for multi-view visual question answering. Furthermore, we conduct extensive real-world experiments on autonomous vehicle platforms, examining both on-cloud and on-edge LLM deployment for personalized decision-making and motion control. Next, we explore the future trends of integrating language diffusion models into autonomous driving, exemplified by the proposed ViLaD (Vision-Language Diffusion) framework. Finally, we discuss the main challenges of LLM4AD, including latency, deployment, security and privacy, safety, trust and transparency, and personalization.
Robust Bayesian Scene Reconstruction with Retrieval-Augmented Priors for Precise Grasping and Planning
Constructing 3D representations of object geometry is critical for many robotics tasks, particularly manipulation problems. These representations must be built from potentially noisy partial observations. In this work, we focus on the problem of reconstructing a multi-object scene from a single RGBD image using a fixed camera. Traditional scene representation methods generally cannot infer the geometry of unobserved regions of the objects in the image. Attempts have been made to leverage deep learning to train on a dataset of known objects and representations, and then generalize to new observations. However, this can be brittle to noisy real-world observations and objects not contained in the dataset, and do not provide well-calibrated reconstruction confidences. We propose BRRP, a reconstruction method that leverages preexisting mesh datasets to build an informative prior during robust probabilistic reconstruction. We introduce the concept of a retrieval-augmented prior, where we retrieve relevant components of our prior distribution from a database of objects during inference. The resulting prior enables estimation of the geometry of occluded portions of the in-scene objects. Our method produces a distribution over object shape that can be used for reconstruction and measuring uncertainty. We evaluate our method in both simulated scenes and in the real world. We demonstrate the robustness of our method against deep learning-only approaches while being more accurate than a method without an informative prior. Through real-world experiments, we particularly highlight the capability of BRRP to enable successful dexterous manipulation in clutter.
Multiagent Systems
Beyond Monotonicity: Revisiting Factorization Principles in Multi-Agent Q-Learning AAAI 2026
Value decomposition is a central approach in multi-agent reinforcement learning (MARL), enabling centralized training with decentralized execution by factorizing the global value function into local values. To ensure individual-global-max (IGM) consistency, existing methods either enforce monotonicity constraints, which limit expressive power, or adopt softer surrogates at the cost of algorithmic complexity. In this work, we present a dynamical systems analysis of non-monotonic value decomposition, modeling learning dynamics as continuous-time gradient flow. We prove that, under approximately greedy exploration, all zero-loss equilibria violating IGM consistency are unstable saddle points, while only IGM-consistent solutions are stable attractors of the learning dynamics. Extensive experiments on both synthetic matrix games and challenging MARL benchmarks demonstrate that unconstrained, non-monotonic factorization reliably recovers IGM-optimal solutions and consistently outperforms monotonic baselines. Additionally, we investigate the influence of temporal-difference targets and exploration strategies, providing actionable insights for the design of future value-based MARL algorithms.
comment: Accepted at AAAI 2026
Steering Noncooperative Games Through Conjecture Design
In dynamic noncooperative games, each player makes conjectures about other players' reactions before choosing a strategy. However, resulting equilibria may be multiple and do not always lead to desirable outcomes. These issues are typically addressed separately, for example, through opponent modelling and incentive design. Drawing inspiration from conjectural variations games, we propose an incentive design framework in which a coordinator first computes an equilibrium by optimizing a predefined objective function, then communicates this equilibrium as a target for the players to reach. In a centralized setting, the coordinator also optimizes the conjectures to steer the players towards the target. In decentralized settings, players independently compute conjectures and update their strategies based on individual targets. We provide a guarantee of equilibrium existence in both cases. This framework uses conjectures not only to guide the system towards desirable outcomes but also to decouple the game into independent optimization problems, enabling efficient computation and parallelization in large-scale settings. We illustrate our theoretical results on classical representative noncooperative games, demonstrating its application potential.
CoRL-MPPI: Enhancing MPPI With Learnable Behaviours For Efficient And Provably-Safe Multi-Robot Collision Avoidance
Decentralized collision avoidance remains a core challenge for scalable multi-robot systems. One of the promising approaches to tackle this problem is Model Predictive Path Integral (MPPI) -- a framework that is naturally suited to handle any robot motion model and provides strong theoretical guarantees. Still, in practice MPPI-based controller may provide suboptimal trajectories as its performance relies heavily on uninformed random sampling. In this work, we introduce CoRL-MPPI, a novel fusion of Cooperative Reinforcement Learning and MPPI to address this limitation. We train an action policy (approximated as deep neural network) in simulation that learns local cooperative collision avoidance behaviors. This learned policy is then embedded into the MPPI framework to guide its sampling distribution, biasing it towards more intelligent and cooperative actions. Notably, CoRL-MPPI preserves all the theoretical guarantees of regular MPPI. We evaluate our approach in dense, dynamic simulation environments against state-of-the-art baselines, including ORCA, BVC, and a multi-agent MPPI implementation. Our results demonstrate that CoRL-MPPI significantly improves navigation efficiency (measured by success rate and makespan) and safety, enabling agile and robust multi-robot navigation.
comment: The manuscript includes 9 pages, 4 figures, and 1 table
Learning Efficient Communication Protocols for Multi-Agent Reinforcement Learning
Multi-Agent Systems (MAS) have emerged as a powerful paradigm for modeling complex interactions among autonomous entities in distributed environments. In Multi-Agent Reinforcement Learning (MARL), communication enables coordination but can lead to inefficient information exchange, since agents may generate redundant or non-essential messages. While prior work has focused on boosting task performance with information exchange, the existing research lacks a thorough investigation of both the appropriate definition and the optimization of communication protocols (communication topology and message). To fill this gap, we introduce a generalized framework for learning multi-round communication protocols that are both effective and efficient. Within this framework, we propose three novel Communication Efficiency Metrics (CEMs) to guide and evaluate the learning process: the Information Entropy Efficiency Index (IEI) and Specialization Efficiency Index (SEI) for efficiency-augmented optimization, and the Topology Efficiency Index (TEI) for explicit evaluation. We integrate IEI and SEI as the adjusted loss functions to promote informative messaging and role specialization, while using TEI to quantify the trade-off between communication volume and task performance. Through comprehensive experiments, we demonstrate that our learned communication protocol can significantly enhance communication efficiency and achieves better cooperation performance with improved success rates.
Steering Opinion Dynamics in Signed Time-Varying Networks via External Control Input
This paper studies targeted opinion formation in multi-agent systems evolving over signed, time-varying directed graphs. The dynamics of each agent's state follow a Laplacian-based update rule driven by both cooperative and antagonistic interactions in the presence of exogenous factors. We formulate these exogenous factors as external control inputs and establish a suitable controller design methodology enabling collective opinion to converge to any desired steady-state configuration, superseding the natural emergent clustering or polarization behavior imposed by persistently structurally balanced influential root nodes. Our approach leverages upper Dini derivative analysis and Grönwall-type inequalities to establish exponential convergence for opinion magnitude towards the desired steady state configuration on networks with uniform quasi-strong $δ$-connectivity. Finally, the theoretical results are validated through extensive numerical simulations.
comment: 7 pages, 3 figures, Submitted to European Control Conference (ECC) 2026
Enabling Agents to Communicate Entirely in Latent Space
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by human mind-reading, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the last hidden states of an LLM as a representation of its mind for direct transmission (termed latent communication). An additional compression process further compresses latent communication via entirely latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
comment: Work in progess
Solving a Million-Step LLM Task with Zero Errors
LLMs have achieved remarkable breakthroughs in reasoning, insights, and tool use, but chaining these abilities into extended processes at the scale of those routinely executed by humans, organizations, and societies has remained out of reach. The models have a persistent error rate that prevents scale-up: for instance, recent experiments in the Towers of Hanoi benchmark domain showed that the process inevitably becomes derailed after at most a few hundred steps. Thus, although LLM research is often still benchmarked on tasks with relatively few dependent logical steps, there is increasing attention on the ability (or inability) of LLMs to perform long range tasks. This paper describes MAKER, the first system that successfully solves a task with over one million LLM steps with zero errors, and, in principle, scales far beyond this level. The approach relies on an extreme decomposition of a task into subtasks, each of which can be tackled by focused microagents. The high level of modularity resulting from the decomposition allows error correction to be applied at each step through an efficient multi-agent voting scheme. This combination of extreme decomposition and error correction makes scaling possible. Thus, the results suggest that instead of relying on continual improvement of current LLMs, massively decomposed agentic processes (MDAPs) may provide a way to efficiently solve problems at the level of organizations and societies.
comment: Main paper: 14 pages, 29 pages with references and appendix
AI Founding Fathers: A Case Study of GIS Search in Multi-Agent Pipelines
Although Large Language Models (LLMs) show exceptional fluency, efforts persist to extract stronger reasoning capabilities from them. Drawing on search-based interpretations of LLM computation, this paper advances a systematic framework for understanding LLM reasoning and optimization. Namely, that enhancing reasoning is best achieved by structuring a multi-agent pipeline to ensure a traversal of the search space in a gradual, incremental, and sequential (GIS) manner. Stated succinctly, high-quality reasoning is a controlled, incremental search. To test this framework, we investigate the efficacy of recursive refinement (RR)--an iterative process of self-criticism, adversarial stress-testing, and integrating critical feedback--as a practical method for implementing GIS search. We designed an experiment comparing a simple, linear pipeline against a complex, explicitly structured pipeline leveraging a recursive refinement layer. The multi-agent models were constructed to reflect the historical personas of three US Founding Fathers (Hamilton, Jefferson, and Madison) using RAG-powered corpora and were prompted to generate responses to three contemporary political issues. Model performance was evaluated using a two-tiered approach: a quantitative score from an LLM arbiter agent and qualitative human judgment. Our results revealed that the complex model consistently outperformed the simple model across all nine test cases with an average arbiter-outputted score of 88.3 versus 71.7. The complex model's arguments were superior in analytical depth, structural nuance, and strategic framing. We conclude that recursive refinement is a robust architectural feature for enhancing LLM reasoning via GIS search.
comment: 9 pages, 3 figures. Code and data available at https://github.com/alvco/Founding_Fathers_AI
Achieving Equilibrium under Utility Heterogeneity: An Agent-Attention Framework for Multi-Agent Multi-Objective Reinforcement Learning
Multi-agent multi-objective systems (MAMOS) have emerged as powerful frameworks for modelling complex decision-making problems across various real-world domains, such as robotic exploration, autonomous traffic management, and sensor network optimisation. MAMOS offers enhanced scalability and robustness through decentralised control and more accurately reflects inherent trade-offs between conflicting objectives. In MAMOS, each agent uses utility functions that map return vectors to scalar values. Existing MAMOS optimisation methods face challenges in handling heterogeneous objective and utility function settings, where training non-stationarity is intensified due to private utility functions and the associated policies. In this paper, we first theoretically prove that direct access to, or structured modeling of, global utility functions is necessary for the Bayesian Nash Equilibrium under decentralised execution constraints. To access the global utility functions while preserving the decentralised execution, we propose an Agent-Attention Multi-Agent Multi-Objective Reinforcement Learning (AA-MAMORL) framework. Our approach implicitly learns a joint belief over other agents' utility functions and their associated policies during centralised training, effectively mapping global states and utilities to each agent's policy. In execution, each agent independently selects actions based on local observations and its private utility function to approximate a BNE, without relying on inter-agent communication. We conduct comprehensive experiments in both a custom-designed MAMO Particle environment and the standard MOMALand benchmark. The results demonstrate that access to global preferences and our proposed AA-MAMORL significantly improve performance and consistently outperform state-of-the-art methods.
Steve: LLM Powered ChatBot for Career Progression
The advancements in systems deploying large language models (LLMs), as well as improvements in their ability to act as agents with predefined templates, provide an opportunity to conduct qualitative, individualized assessments, creating a bridge between qualitative and quantitative methods for candidates seeking career progression. In this paper, we develop a platform that allows candidates to run AI-led interviews to assess their current career stage and curate coursework to enable progression to the next level. Our approach incorporates predefined career trajectories, associated skills, and a method to recommend the best resources for gaining the necessary skills for advancement. We employ OpenAI API calls along with expertly compiled chat templates to assess candidate competence. Our platform is highly configurable due to the modularity of the development, is easy to deploy and use, and available as a web interface where the only requirement is candidate resumes in PDF format. We demonstrate a use-case centered on software engineering and intend to extend this platform to be domain-agnostic, requiring only regular updates to chat templates as industries evolve.
Causal Graph Dynamics and Kan Extensions
On the one side, the formalism of Global Transformations comes with the claim of capturing any transformation of space that is local, synchronous and deterministic. The claim has been proven for different classes of models such as mesh refinements from computer graphics, Lindenmayer systems from morphogenesis modeling and cellular automata from biological, physical and parallel computation modeling. The Global Transformation formalism achieves this by using category theory for its genericity, and more precisely the notion of Kan extension to determine the global behaviors based on the local ones. On the other side, Causal Graph Dynamics describe the transformation of port graphs in a synchronous and deterministic way and has not yet being tackled. In this paper, we show the precise sense in which the claim of Global Transformations holds for them as well. This is done by showing different ways in which they can be expressed as Kan extensions, each of them highlighting different features of Causal Graph Dynamics. Along the way, this work uncovers the interesting class of Monotonic Causal Graph Dynamics and their universality among General Causal Graph Dynamics.
Game Theory and Multi-Agent Reinforcement Learning for Zonal Ancillary Markets
We characterize zonal ancillary market coupling relying on noncooperative game theory. To that purpose, we formulate the ancillary market as a multi-leader single follower bilevel problem, that we subsequently cast as a generalized Nash game with side constraints and nonconvex feasibility sets. We determine conditions for equilibrium existence and show that the game has a generalized potential game structure. To compute market equilibrium, we rely on two exact approaches: an integrated optimization approach and Gauss-Seidel best-response, that we compare against multi-agent deep reinforcement learning. On real data from Germany and Austria, simulations indicate that multi-agent deep reinforcement learning achieves the smallest convergence rate but requires pretraining, while best-response is the slowest. On the economics side, multi-agent deep reinforcement learning results in smaller market costs compared to the exact methods, but at the cost of higher variability in the profit allocation among stakeholders. Further, stronger coupling between zones tends to reduce costs for larger zones.
Strategic Coordination of Drones via Short-term Distributed Optimization and Long-term Reinforcement Learning
This paper addresses the problem of autonomous task allocation by a swarm of autonomous, interactive drones in large-scale, dynamic spatio-temporal environments. When each drone independently determines navigation, sensing, and recharging options to choose from such that system-wide sensing requirements are met, the collective decision-making becomes an NP-hard decentralized combinatorial optimization problem. Existing solutions face significant limitations: distributed optimization methods such as collective learning often lack long-term adaptability, while centralized deep reinforcement learning (DRL) suffers from high computational complexity, scalability and privacy concerns. To overcome these challenges, we propose a novel hybrid optimization approach that combines long-term DRL with short-term collective learning. In this approach, each drone uses DRL methods to proactively determine high-level strategies, such as flight direction and recharging behavior, while leveraging collective learning to coordinate short-term sensing and navigation tasks with other drones in a decentralized manner. Extensive experiments using datasets derived from realistic urban mobility demonstrate that the proposed solution outperforms standalone state-of-the-art collective learning and DRL approaches by $27.83\%$ and $23.17\%$ respectively. Our findings highlight the complementary strengths of short-term and long-term decision-making, enabling energy-efficient, accurate, and sustainable traffic monitoring through swarms of drones.
comment: 23 pages, 16 figures, accepted by Applied Soft Computing
Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation
In real-world multi-agent systems (MASs), observation delays are ubiquitous, preventing agents from making decisions based on the environment's true state. An individual agent's local observation typically comprises multiple components from other agents or dynamic entities within the environment. These discrete observation components with varying delay characteristics pose significant challenges for multi-agent reinforcement learning (MARL). In this paper, we first formulate the decentralized stochastic individual delay partially observable Markov decision process (DSID-POMDP) by extending the standard Dec-POMDP. We then propose the Rainbow Delay Compensation (RDC), a MARL training framework for addressing stochastic individual delays, along with recommended implementations for its constituent modules. We implement the DSID-POMDP's observation generation pattern using standard MARL benchmarks, including MPE and SMAC. Experiments demonstrate that baseline MARL methods suffer severe performance degradation under fixed and unfixed delays. The RDC-enhanced approach mitigates this issue, remarkably achieving ideal delay-free performance in certain delay scenarios while maintaining generalizability. Our work provides a novel perspective on multi-agent delayed observation problems and offers an effective solution framework. The source code is available at https://github.com/linkjoker1006/RDC-pymarl.
comment: The code has been open-sourced in the RDC-pymarl project under https://github.com/linkjoker1006
Systems and Control (EESS)
On the Convergence of Overparameterized Problems: Inherent Properties of the Compositional Structure of Neural Networks
This paper investigates how the compositional structure of neural networks shapes their optimization landscape and training dynamics. We analyze the gradient flow associated with overparameterized optimization problems, which can be interpreted as training a neural network with linear activations. Remarkably, we show that the global convergence properties can be derived for any cost function that is proper and real analytic. We then specialize the analysis to scalar-valued cost functions, where the geometry of the landscape can be fully characterized. In this setting, we demonstrate that key structural features -- such as the location and stability of saddle points -- are universal across all admissible costs, depending solely on the overparameterized representation rather than on problem-specific details. Moreover, we show that convergence can be arbitrarily accelerated depending on the initialization, as measured by an imbalance metric introduced in this work. Finally, we discuss how these insights may generalize to neural networks with sigmoidal activations, showing through a simple example which geometric and dynamical properties persist beyond the linear case.
A Smooth Penalty-Based Feedback Law for Reactive Obstacle Avoidance with Convergence Guarantees
This paper addresses the problem of safe autonomous navigation in unknown obstacle-filled environments using only local sensory information. We propose a smooth feedback controller derived from an unconstrained penalty-based formulation that guarantees safety by construction. The controller modifies an arbitrary nominal input through a closed-form expression. The resulting closed-form feedback has a projection structure that interpolates between the nominal control and its orthogonal projection onto the obstacle boundary, ensuring forward invariance of a user-defined safety margin. The control law depends only on the distance and bearing to obstacles and requires no map, switching, or set construction. When the nominal input is a gradient descent of a navigation potential, we prove that the closed-loop system achieves almost global asymptotic stability (AGAS) to the goal. Undesired equilibria are shown to be unstable under a mild geometric curvature condition, which compares the normal curvature of the obstacle boundary with that of the potential level sets. We refer to the proposed method as SPF (Safe Penalty-based Feedback), which ensures safe and smooth navigation with minimal computational overhead, as demonstrated through simulations in complex 2D and 3D environments.
A Robust Task-Level Control Architecture for Learned Dynamical Systems
Dynamical system (DS)-based learning from demonstration (LfD) is a powerful tool for generating motion plans in the operation (`task') space of robotic systems. However, the realization of the generated motion plans is often compromised by a ''task-execution mismatch'', where unmodeled dynamics, persistent disturbances, and system latency cause the robot's actual task-space state to diverge from the desired motion trajectory. We propose a novel task-level robust control architecture, L1-augmented Dynamical Systems (L1-DS), that explicitly handles the task-execution mismatch in tracking a nominal motion plan generated by any DS-based LfD scheme. Our framework augments any DS-based LfD model with a nominal stabilizing controller and an L1 adaptive controller. Furthermore, we introduce a windowed Dynamic Time Warping (DTW)-based target selector, which enables the nominal stabilizing controller to handle temporal misalignment for improved phase-consistent tracking. We demonstrate the efficacy of our architecture on the LASA and IROS handwriting datasets.
Robust Time-Varying Control Barrier Functions with Sector-Bounded Nonlinearities
This paper presents a novel approach for ensuring safe operation of systems subject to input nonlinearities and time-varying safety constraints. We formulate robust time-varying control barrier functions by combining two ingredients: (i) time-varying control barrier functions which capture the time-varying safety constraints, and (ii) pointwise-in-time quadratic constraints that bound the nonlinearity. These ingredients are used to design a safety filter. This filter ensures safety while minimally altering the command from a given baseline controller. The safety filter is implemented as the solution of a second-order cone program, which can be efficiently computed online. The approach is demonstrated on a simple car obstacle avoidance scenario.
comment: Submitted to the 2026 American Control Conference
Modelos Empiricos de Pos-Dupla Selecao por LASSO: Discussoes para Estudos do Transporte Aereo
This paper presents and discusses forms of estimation by regularized regression and model selection using the LASSO method - Least Absolute Shrinkage and Selection Operator. LASSO is recognized as one of the main supervised learning methods applied to high-dimensional econometrics, allowing work with large volumes of data and multiple correlated controls. Conceptual issues related to the consequences of high dimensionality in modern econometrics and the principle of sparsity, which underpins regularization procedures, are addressed. The study examines the main post-double selection and post-regularization models, including variations applied to instrumental variable models. A brief description of the lassopack routine package, its syntaxes, and examples of HD, HDS (High-Dimension Sparse), and IV-HDS models, with combinations involving fixed effects estimators, is also presented. Finally, the potential application of the approach in research focused on air transport is discussed, with emphasis on an empirical study on the operational efficiency of airlines and aircraft fuel consumption.
comment: Article in Portuguese
A Shared-Autonomy Construction Robotic System for Overhead Works ICRA
We present the ongoing development of a robotic system for overhead work such as ceiling drilling. The hardware platform comprises a mobile base with a two-stage lift, on which a bimanual torso is mounted with a custom-designed drilling end effector and RGB-D cameras. To support teleoperation in dynamic environments with limited visibility, we use Gaussian splatting for online 3D reconstruction and introduce motion parameters to model moving objects. For safe operation around dynamic obstacles, we developed a neural configuration-space barrier approach for planning and control. Initial feasibility studies demonstrate the capability of the hardware in drilling, bolting, and anchoring, and the software in safe teleoperation in a dynamic environment.
comment: 4pages, 8 figures, ICRA construction workshop
Statistically Consistent Approximate Model Predictive Control
Model Predictive Control (MPC) offers rigorous safety and performance guarantees but is computationally intensive. Approximate MPC (AMPC) aims to circumvent this drawback by learning a computationally cheaper surrogate policy. Common approaches focus on imitation learning (IL) via behavioral cloning (BC), minimizing a mean-squared-error loss on a collection of state-input pairs. However, BC fundamentally fails to provide accurate approximations when MPC solutions are set-valued due to non-convex constraints or local minima. We propose a two-stage IL procedure to accurately approximate nonlinear, potentially set-valued MPC policies. The method integrates an approximation of the MPC's optimal value function into a one-step look-ahead loss function, and thereby embeds the MPC's constraint and performance objectives into the IL objective.This is achieved by adopting a stabilizing soft constrained MPC formulation, which reflects constraint violations in the optimal value function by combining a constraint tightening with slack penalties. We prove statistical consistency for policies that exactly minimize our IL objective, implying convergence to a safe and stabilizing control law, and establish input-to-state stability guarantees for approximate minimizers. Simulations demonstrate improved performance compared to BC.
Security Index from Input/Output Data: Theory and Computation
The concept of a security index quantifies the minimum number of components that must be compromised to carry out an undetectable attack. This metric enables system operators to quantify each component's security risk and implement countermeasures. In this paper, we introduce a data-driven security index that can be computed solely from input/output data when the system model is unknown. We show a sufficient condition under which the data-driven security index coincides with the model-based security index, which implies that the exact risk level of each component can be identified solely from the data. We provide an algorithm for computing the data-driven security index. Although computing this index is NP-hard, we derive a polynomial-time computable upper bound. Numerical examples on vehicle platooning illustrate the efficacy and limitations of the proposed index and algorithms.
Quasi-Newton Compatible Actor-Critic for Deterministic Policies
In this paper, we propose a second-order deterministic actor-critic framework in reinforcement learning that extends the classical deterministic policy gradient method to exploit curvature information of the performance function. Building on the concept of compatible function approximation for the critic, we introduce a quadratic critic that simultaneously preserves the true policy gradient and an approximation of the performance Hessian. A least-squares temporal difference learning scheme is then developed to estimate the quadratic critic parameters efficiently. This construction enables a quasi-Newton actor update using information learned by the critic, yielding faster convergence compared to first-order methods. The proposed approach is general and applicable to any differentiable policy class. Numerical examples demonstrate that the method achieves improved convergence and performance over standard deterministic actor-critic baselines.
comment: 8 pages, 9 figs
Adversarially and Distributionally Robust Virtual Energy Storage Systems via the Scenario Approach
We propose an optimization model where a parking lot manager (PLM) can aggregate parked EV batteries to provide virtual energy storage services that are provably robust under uncertain EV departures and state-of-charge caps. Our formulation yields a data-driven convex optimization problem where a prosumer community agrees on a contract with the PLM for the provision of storage services over a finite horizon. Leveraging recent results in the scenario approach, we certify out-of-sample constraint safety. Furthermore, we enable a tunable profit-risk trade-off through scenario relaxation and extend our model to account for robustness to adversarial perturbations and distributional shifts over Wasserstein-based ambiguity sets. All the approaches are accompanied by tight finite-sample certificates. Numerical studies demonstrate the out-of-sample and out-of-distribution constraint satisfaction of our proposed model compared to the developed theoretical guarantees, showing their effectiveness and potential in robust and efficient virtual energy services.
BarrierBench : Evaluating Large Language Models for Safety Verification in Dynamical Systems
Safety verification of dynamical systems via barrier certificates is essential for ensuring correctness in autonomous applications. Synthesizing these certificates involves discovering mathematical functions with current methods suffering from poor scalability, dependence on carefully designed templates, and exhaustive or incremental function-space searches. They also demand substantial manual expertise--selecting templates, solvers, and hyperparameters, and designing sampling strategies--requiring both theoretical and practical knowledge traditionally shared through linguistic reasoning rather than formalized methods. This motivates a key question: can such expert reasoning be captured and operationalized by language models? We address this by introducing an LLM-based agentic framework for barrier certificate synthesis. The framework uses natural language reasoning to propose, refine, and validate candidate certificates, integrating LLM-driven template discovery with SMT-based verification, and supporting barrier-controller co-synthesis to ensure consistency between safety certificates and controllers. To evaluate this capability, we introduce BarrierBench, a benchmark of 100 dynamical systems spanning linear, nonlinear, discrete-time, and continuous-time settings. Our experiments assess not only the effectiveness of LLM-guided barrier synthesis but also the utility of retrieval-augmented generation and agentic coordination strategies in improving its reliability and performance. Across these tasks, the framework achieves more than 90% success in generating valid certificates. By releasing BarrierBench and the accompanying toolchain, we aim to establish a community testbed for advancing the integration of language-based reasoning with formal verification in dynamical systems. The benchmark is publicly available at https://hycodev.com/dataset/barrierbench
Robust Estimation and Control for Heterogeneous Multi-agent Systems Based on Decentralized k-hop Prescribed Performance Observers
We propose decentralized k-hop Prescribed Performance State and Input Observers for heterogeneous multi-agent systems subject to bounded external disturbances. In the proposed input/state observer, each agent estimates the state and input of agents located two or more hops away using only local information exchanged with 1-hop neighbors, while guaranteeing that transient estimation errors satisfy predefined performance bounds. Conditions are established under which the input observer can be omitted, allowing the state observer convergence to be independent of the input estimates. Theoretical analysis demonstrates that if a closed-loop controller with full state knowledge achieves the control objective and the estimation-based closed-loop system is set-Input to State Stable (set-ISS) with respect to the goal set, then the estimated states can be used to achieve the system objective with an arbitrarily small worst-case error governed by the accuracy of the states estimates. Simulation results are provided to validate the proposed approach.
comment: This paper has been submitted for consideration to the 24th European Control Conference (ECC)
Investigation of resonance between HVDC-MMC link and AC network
HVDC networks offer several advantages over traditional HVAC systems, particularly for long-distance power transmission and integration of renewable energy sources, such as reduced losses and enhanced stability and control, but also increase the risk of oscillations. This study investigates electrical resonant phenomena associated with HVDC stations through numerical EMT simulations. The findings indicate that electrical resonance is primarily pronounced in weak networks with long cables, as confirmed by the Nyquist criterion applied to frequency responses. Two real cases were successfully simulated in the time domain by introducing network changes, such as temporary faults and alterations in network's power strength, to activate the identified resonances. Notably, in a strong network with short cables, electrical resonance occurred alongside interactions between the network and the converter's protection system. The analysis of voltage waveforms revealed that the amplitude of the induced resonant harmonic dissipates quickly, indicating sufficient damping in the network configuration. Furthermore, the study confirmed the network's sensitivity to changes in converter parameters modeled using available MMC model.
comment: 11 pages
Runtime Safety and Reach-avoid Prediction of Stochastic Systems via Observation-aware Barrier Functions
Stochastic dynamical systems have emerged as fundamental models across numerous application domains, providing powerful mathematical representations for capturing uncertain system behavior. In this paper, we address the problem of runtime safety and reach-avoid probability prediction for discrete-time stochastic systems with online observations, i.e., estimating the probability that the system satisfies a given safety or reach-avoid specification. Unlike traditional approaches that rely solely on offline models, we propose a framework that incorporates real-time observations to dynamically refine probability estimates for safety and reach-avoid events. By introducing observation-aware barrier functions, our method adaptively updates probability bounds as new observations are collected, combining efficient offline computation with online backward iteration. This approach enables rigorous and responsive prediction of safety and reach-avoid probabilities under uncertainty. In addition to the theoretical guarantees, experimental results on benchmark systems demonstrate the practical effectiveness of the proposed method.
Perspectives on a Reliability Monitoring Framework for Agentic AI Systems
The implementation of agentic AI systems has the potential of providing more helpful AI systems in a variety of applications. These systems work autonomously towards a defined goal with reduced external control. Despite their potential, one of their flaws is the insufficient reliability which makes them especially unsuitable for high-risk domains such as healthcare or process industry. Unreliable systems pose a risk in terms of unexpected behavior during operation and mitigation techniques are needed. In this work, we derive the main reliability challenges of agentic AI systems during operation based on their characteristics. We draw the connection to traditional AI systems and formulate a fundamental reliability challenge during operation which is inherent to traditional and agentic AI systems. As our main contribution, we propose a two-layered reliability monitoring framework for agentic AI systems which consists of a out-of-distribution detection layer for novel inputs and AI transparency layer to reveal internal operations. This two-layered monitoring approach gives a human operator the decision support which is needed to decide whether an output is potential unreliable or not and intervene. This framework provides a foundation for developing mitigation techniques to reduce risk stemming from uncertain reliability during operation.
Steering Opinion Dynamics in Signed Time-Varying Networks via External Control Input
This paper studies targeted opinion formation in multi-agent systems evolving over signed, time-varying directed graphs. The dynamics of each agent's state follow a Laplacian-based update rule driven by both cooperative and antagonistic interactions in the presence of exogenous factors. We formulate these exogenous factors as external control inputs and establish a suitable controller design methodology enabling collective opinion to converge to any desired steady-state configuration, superseding the natural emergent clustering or polarization behavior imposed by persistently structurally balanced influential root nodes. Our approach leverages upper Dini derivative analysis and Grönwall-type inequalities to establish exponential convergence for opinion magnitude towards the desired steady state configuration on networks with uniform quasi-strong $δ$-connectivity. Finally, the theoretical results are validated through extensive numerical simulations.
comment: 7 pages, 3 figures, Submitted to European Control Conference (ECC) 2026
Modeling Closed-loop Analog Matrix Computing Circuits with Interconnect Resistance
Analog matrix computing (AMC) circuits based on resistive random-access memory (RRAM) have shown strong potential for accelerating matrix operations. However, as matrix size grows, interconnect resistance increasingly degrades computational accuracy and limits circuit scalability. Modeling and evaluating these effects are therefore critical for developing effective mitigation strategies. Traditional SPICE (Simulation Program with Integrated Circuit Emphasis) simulators, which rely on modified nodal analysis, become prohibitively slow for large-scale AMC circuits due to the quadratic growth of nodes and feedback connections. In this work, we model AMC circuits with interconnect resistance for two key operations-matrix inversion (INV) and eigenvector computation (EGV), and propose fast solving algorithms tailored for each case. The algorithms exploit the sparsity of the Jacobian matrix, enabling rapid and accurate solutions. Compared to SPICE, they achieve several orders of magnitude acceleration while maintaining high accuracy. We further extend the approach to open-loop matrix-vector multiplication (MVM) circuits, demonstrating similar efficiency gains. Finally, leveraging these fast solvers, we develop a bias-based compensation strategy that reduces interconnect-induced errors by over 50% for INV and 70% for EGV circuits. It also reveals the scaling behavior of the optimal bias with respect to matrix size and interconnect resistance.
Context-Aware Management of IoT Nodes: Balancing Informational Value with Energy Usage
The operational lifetime of energy-harvesting wireless sensor nodes is limited by availability of the energy source and the capacity of the installed energy buffer. When a sensor node depletes its energy reserves, manual intervention is often required to resume node operation. While lowering the duty cycle would help extend the network lifetime, this is often undesirable, especially in time-critical applications, where rapid collection and dissemination of information is vital. In this paper, we propose a context-aware energy management policy that helps balance the two opposing objectives of timely data collection and dissemination with energy conservation. We capture these objectives through the Value of Information (VoI) of observations made by a sensor node and the State of Energy (SoE) of the energy buffer. We formulate the energy management policy as a Model Predictive Control (MPC) problem which computes device sampling and transmission frequencies to maximize a defined utility criterion over a finite, receding, time-horizon. In the process, we also develop a unique mathematical representation for VoI, that adequately captures aspects related to continuity in monitoring, urgency of dissemination, and representation of the phenomena being observed. In the end, we use data collected from a real-world flash flood event, to evaluate our decision framework across multiple scenarios of energy availability.
comment: IEEE World Forum on Internet of Things
Unifying Sequential Quadratic Programming and Linear-Parameter-Varying Algorithms for Real-Time Model Predictive Control
This paper presents a unified framework that connects sequential quadratic programming (SQP) and the iterative linear-parameter-varying model predictive control (LPV-MPC) technique. Using the differential formulation of the LPV-MPC, we demonstrate how SQP and LPV-MPC can be unified through a specific choice of scheduling variable and the 2nd Fundamental Theorem of Calculus (FTC) embedding technique and compare their convergence properties. This enables the unification of the zero-order approach of SQP with the LPV-MPC scheduling technique to enhance the computational efficiency of stochastic and robust MPC problems. To demonstrate our findings, we compare the two schemes in a simulation example. Finally, we present real-time feasibility and performance of the zeroorder LPV-MPC approach by applying it to Gaussian process (GP)-based MPC for autonomous racing with real-world experiments.
RIS-based Communication Enhancement and Location Privacy Protection in UAV Networks
With the explosive advancement of unmanned aerial vehicles (UAVs), the security of efficient UAV networks has become increasingly critical. Owing to the open nature of its communication environment, illegitimate malicious UAVs (MUs) can infer the position of the source UAV (SU) by analyzing received signals, thus compromising the SU location privacy. To protect the SU location privacy while ensuring efficient communication with legitimate receiving UAVs (RUs), we propose an Active Reconfigurable Intelligent Surface (ARIS)-assisted covert communication scheme based on virtual partitioning and artificial noise (AN). Specifically, we design a novel ARIS architecture integrated with an AN module. This architecture dynamically partitions its reflecting elements into multiple sub-regions: one subset is optimized to enhance the communication rate between the SU and RUs, while the other subset generates AN to interfere with the localization of the SU by MUs. We first derive the Cramér-Rao Lower Bound (CRLB) for the localization with received signal strength (RSS), based on which, we establish a joint optimization framework for communication enhancement and localization interference. Subsequently, we derive and validate the optimal ARIS partitioning and power allocation under average channel conditions. Finally, tailored optimization methods are proposed for the reflection precoding and AN design of the two partitions. Simulation results validate that, compared to baseline schemes, the proposed scheme significantly increases the localization error of the SU by MUs while maintaining efficient communication between the SU and RUs, thereby effectively protecting the SU location privacy.
Assumed Density Filtering and Smoothing with Neural Network Surrogate Models
The Kalman filter and Rauch-Tung-Striebel (RTS) smoother are optimal for state estimation in linear dynamic systems. With nonlinear systems, the challenge consists in how to propagate uncertainty through the state transitions and output function. For the case of a neural network model, we enable accurate uncertainty propagation using a recent state-of-the-art analytic formula for computing the mean and covariance of a deep neural network with Gaussian input. We argue that cross entropy is a more appropriate performance metric than RMSE for evaluating the accuracy of filters and smoothers. We demonstrate the superiority of our method for state estimation on a stochastic Lorenz system and a Wiener system, and find that our method enables more optimal linear quadratic regulation when the state estimate is used for feedback.
Distribution and Management of Datacenter Load Decoupling
The exploding power consumption of AI and cloud datacenters (DCs) intensifies the long-standing concerns about their carbon footprint, especially because DCs' need for constant power clashes with volatile renewable generation needed for grid decarbonization. DC flexibility (a.k.a. load adaptation) is a key to reducing DC carbon emissions by improving grid renewable absorption. DC flexibility can be created, without disturbing datacenter capacity by decoupling a datacenter's power capacity and grid load with a collection of energy resources. Because decoupling can be costly, we study how to best distribute and manage decoupling to maximize benefits for all. Key considerations include site variation and datacenter-grid cooperation. We first define and compute the power and energy needs of datacenter load decoupling, and then we evaluate designed distribution and management approaches. Evaluation shows that optimized distribution can deliver >98% of the potential grid carbon reduction with 70% of the total decoupling need. For management, DC-grid cooperation (2-way sharing and control vs. 1-way info sharing) enables 1.4x grid carbon reduction. Finally, we show that decoupling may be economically viable, as on average datacenters can get power cost and carbon emissions benefits greater than their local costs of decoupling. However, skew across sites suggests grid intervention may be required.
Validating Warehouse Picking Strategies Using Simulation: Case Study of a Plumbing Equipment Firm
In today competitive business environment, efficient logistics are essential, especially in industries where timely delivery matters. This research aims to improve warehouse picking cycle time through simulation-based analysis, using a leading plumbing equipment distributor in Thailand as a case study. The study identifies inefficiencies such as disorganized storage and poor placement of high-frequency items that slow down picking. To address this, an optimized storage approach using ABC analysis is proposed, prioritizing high-demand items near the entrance. Three storage policies-Fixed, Random, and Combination (Fixed Zone)-are tested with a Zone Picking strategy through simulation to identify the most efficient picking routes. The findings provide insights for improving warehouse layout and inventory placement to enhance overall performance.
comment: Part of the Proceedings of the 11th International Conference on Control Engineering & Information Technology (CEIT-BKK'2025)
An Improved Dual-Attention Transformer-LSTM for Small-Sample Prediction of Modal Frequency and Actual Anchor Radius in Micro Hemispherical Resonator Design
The high-temperature glassblowing-fabricated micro hemispherical resonator (MHR) exhibits high symmetry and high Q-value for precision inertial navigation. However, MHR design entails a comprehensive evaluation of multiple possible configurations and demands extremely time-consuming simulation of key parameters combination. To address this problem, this paper proposed a rapid prediction method of modal frequency and actual anchor radius of designed MHR using an improved Transformer-LSTM (Long Short-Term Memory) model for rapid design sizing. High-temperature-induced softening deformation at the anchor point reduces the actual anchor radius below the designed value. By varying key parameters such as resonator height, anchor radius and edge thickness, finite element glassblowing simulation and modal analyse were conducted to obtain the first six modal frequencies and actual anchor radius. To address regression prediction challenges with limited data, dual multi-head self-attention (MHSA) mechanisms replaced the transformer's standard Feed Forward Network, to improve hidden information capture for high-accuracy predictions of modal frequencies and anchor radius. By checking fabricating feasibility of anchor radius and allowing rapid modal characteristics evaluation without interference, ablation and comparative experiments validated the method's superiority, as an effective support of MHR design. Design optimization experiments demonstrate a prediction accuracy of 96.35%, with computational time reduced to 1/48,000 of traditional finite element methods, significantly improving design efficiency. This study offers a new paradigm for intelligent Micro-Electro-Mechanical System (MEMS) device design under complex process conditions.
Automated algorithm design via Nevanlinna-Pick interpolation NeurIPS 2025
The synthesis of optimization algorithms typically follows a design-first-analyze-later approach, which often obscures fundamental performance limitations and hinders the systematic design of algorithms operating at the achievable theoretical boundaries. Recently, a framework based on frequency-domain techniques from robust control theory has emerged as a powerful tool for automating algorithm synthesis. By integrating the design and analysis stages, this framework enables the identification of fundamental performance limits. In this paper, we build on this framework and extend it to address algorithms for solving strongly convex problems with equality constraints. As a result, we obtain a new class of algorithms that offers sharp trade-off between number of matrix multiplication per iteration and convergence rate.
comment: Accepted to DynaFront Workshop at NeurIPS 2025
When the Correct Model Fails: The Optimality of Stackelberg Equilibria with Follower Intention Updates
We study a two-player dynamic Stackelberg game between a leader and a follower whose intention is unknown to the leader. Classical formulations of the Stackelberg equilibrium (SE) assume that the follower's best response (BR) function is known to the leader. However, this is not always true in practice. We study a setting in which the leader receives updated beliefs about the follower BR before the end of the game, such that the update prompts the leader and subsequently the follower to re-optimize their strategies. We characterize the optimality guarantees of the SE solutions under this belief update for both open loop and feedback information structures. Interestingly, we prove that in general, assuming an incorrect follower's BR can lead to more optimal leader costs over the entire game than knowing the true follower's BR. We support these results with numerical examples in a linear quadratic (LQ) Stackelberg game, and use Monte Carlo simulations to show that the instances of incorrect BR achieving lower leader costs are non-trivial in collision avoidance LQ Stackelberg games.
comment: 9 pages, 6 figures, submitted to European Control Conference (ECC26)
Control-affine Schrödinger Bridge and Generalized Bohm Potential
The control-affine Schrödinger bridge concerns with a stochastic optimal control problem. Its solution is a controlled evolution of joint state probability density subject to a control-affine Itô diffusion with a given deadline connecting a given pair of initial and terminal densities. In this work, we recast the necessary conditions of optimality for the control-affine Schrödinger bridge problem as a two point boundary value problem for a quantum mechanical Schrödinger PDE with complex potential. This complex-valued potential is a generalization of the real-valued Bohm potential in quantum mechanics. Our derived potential is akin to the optical potential in nuclear physics where the real part of the potential encodes elastic scattering (transmission of wave function), and the imaginary part encodes inelastic scattering (absorption of wave function). The key takeaway is that the process noise that drives the evolution of probability densities induces an absorbing medium in the evolution of wave function. These results make new connections between control theory and non-equilibrium statistical mechanics through the lens of quantum mechanics.
comment: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Partial funding for this work was provided by LLNL Laboratory Directed Research and Development grant GS 25-ERD-044. Document release number: LLNL-JRNL-2008865
Nash-equilibrium Seeking Algorithm for Power-Allocation Games on Networks of International Relations
In the field of international security, understanding the strategic interactions between countries within a networked context is crucial. Our previous research has introduced a ``games-on-signed graphs'' framework~\cite{LiMorse2022} to analyze these interactions. While the framework is intended to be basic and general, there is much left to be explored, particularly in capturing the complexity of strategic scenarios in international relations. Our paper aims to fill this gap in two key ways. First, we modify the existing preference axioms to allow for a more nuanced understanding of how countries pursue self-survival, defense of allies, and offense toward adversaries. Second, we introduce a novel algorithm that proves the existence of a pure-strategy Nash equilibrium for these revised games. To validate our model, we employ historical data from the year 1940 as the game input and predict countries' survivability. Our contributions thus extend the real-world applicability of the original framework, offering a more comprehensive view of strategic interactions in a networked security environment.
Prescribed-Time Newton Extremum Seeking using Delays and Time-Periodic Gains
We study prescribed-time extremum seeking (PT-ES) for scalar maps in the presence of time delays. The PT-ES problem has been studied by Yilmaz and Krstic in 2023 using chirpy probing and time-varying gains that grow unbounded. To alleviate the gain singularity, in this paper we present an alternative approach, employing delays with bounded time-periodic gains, for achieving prescribed-time convergence to the extremum. Our results are not extensions or refinements of earlier works, but a new methodological direction --applicable even when the map has no delay. The main PT-ES algorithm compensates the map's delay and uses perturbation-based and the Newton (rather than gradient) approaches. With the help of averaging theorems in infinite dimension, specifically Retarded Functional Differential Equations (RFDEs), we conduct a prescribed-time convergence analysis on a suitable averaged target ES system, which contains the time-periodic gains of the map and feedback delays. We further extend our method to multivariable static maps and illustrate our results through numerical simulations.
comment: 17 pages, 9 figures
Game Theory in Formula 1: From Physical to Strategic Interactions
This paper presents an optimization framework to model Formula 1 racing dynamics, where multiple cars interact physically and strategically. Aerodynamic wake effects, trajectory optimization, and energy management are integrated by means of physical models. We describe the minimum lap time problem with two agents as either a Nash or a Stackelberg game, and by employing the Karush-Kuhn-Tucker conditions during the problem formulation, we recover the structure of a nonlinear program. In addition, we introduce an algorithm to refine local Stackelberg solutions, using the Nash costs as upper bounds. The resulting strategies are analyzed through case studies. We examine the impact of slipstreaming on trajectory selection in corners, straights, and high-speed sections, while also identifying optimal overtaking locations based on energy allocation strategies. Exploiting the structural similarities of the game formulations, we are able to compare symmetric and hierarchical strategies to analyze competitive racing dynamics. By incorporating a physically accurate interaction model and accounting for the optimal responses of competing agents, our approach reveals typical Formula 1 strategic behaviors. The proposed methodology closes the gap between theoretical game theory and real-world racing, with potential applications in motorsport engineering and autonomous racing.
A Matlab-based Toolbox for Automatic EMT Modeling and Small-Signal Stability Analysis of Modern Power Systems
The intensive integration of power converters is changing the way that power systems operate, leading to the emergence of new types of dynamic phenomena and instabilities. At the same time, converters act as an interface between traditional AC grids and their more recent DC counterparts, giving rise to hybrid AC/DC networks. These conditions increase the necessity for stability analysis tools that can simultaneously account for the newly-introduced dynamic phenomena and can also be applied for the stability study of hybrid networks. This paper presents a Matlab-based toolbox for small-signal analysis of hybrid AC/DC power systems considering electromagnetic-transient (EMT) models. The toolbox allows the automatized modeling of the system from the input data and offers options for modal, impedance and passivity analyses. In the paper, the structure and internal processes of the toolbox are duly discussed, together with all its features, both main and complementary. Its capabilities for stability analysis are demonstrated via comprehensive case studies of converter-based system of various size and topology.
comment: 12 pages, 11 figures
PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data. Furthermore, results show that the threshold used can have a large influence on detection performance, hence more work needs to be invested in methods to find a suitable threshold without the need for labelled data.
SafeFlow: Safe Robot Motion Planning with Flow Matching via Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow matching (FM)-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with new environments with constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, safe flow matching (SafeFlow), a motion planning framework, is proposed for trajectory generation that integrates flow matching with safety guarantees. SafeFlow leverages our proposed flow matching barrier functions (FMBF) to ensure the planned trajectories remain within safe regions across the entire planning horizon. Crucially, our approach enables training-free, real-time safety enforcement at test time, eliminating the need for retraining. We evaluate SafeFlow on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io.
Gaussian-Process-based Adaptive Tracking Control with Dynamic Active Learning for Autonomous Ground Vehicles
This article proposes an active-learning-based adaptive trajectory tracking control method for autonomous ground vehicles to compensate for modeling errors and unmodeled dynamics. The nominal vehicle model is decoupled into lateral and longitudinal subsystems, which are augmented with online Gaussian Processes (GPs), using measurement data. The estimated mean functions of the GPs are used to construct a feedback compensator, which, together with an LPV state feedback controller designed for the nominal system, gives the adaptive control structure. To assist exploration of the dynamics, the paper proposes a new, dynamic active learning method to collect the most informative samples to accelerate the training process. To analyze the performance of the overall learning tool-chain provided controller, a novel iterative, counterexample-based algorithm is proposed for calculating the induced L2 gain between the reference trajectory and the tracking error. The analysis can be executed for a set of possible realizations of the to-be-controlled system, giving robust performance certificate of the learning method under variation of the vehicle dynamics. The efficiency of the proposed control approach is shown on a high-fidelity physics simulator and in real experiments using a 1/10 scale F1TENTH electric car.
comment: Submitted to IEEE Transactions on Control Systems Technology (revised)
Global Convergence of Policy Gradient for Entropy Regularized Linear-Quadratic Control with multiplicative noise
Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision-making in dynamic environments, particularly when system parameters are unknown. This paper investigates RL-based control for entropy-regularized Linear Quadratic control (LQC) problems with multiplicative noises over an infinite time horizon. First, we adapt the Regularized Policy Gradient (RPG) algorithm to stochastic optimal control settings, proving that despite the non-convexity of the problem, RPG converges globally under conditions of gradient domination and near-smoothness. Second, based on zero-order optimization approach, we introduce a novel model free RL algorithm: Sample-Based Regularized Policy Gradient (SB-RPG). SB-RPG operates without knowledge of system parameters yet still retains strong theoretical guarantees of global convergence. Our model leverages entropy regularization to accelerate convergence and address the exploration versus exploitation trade-off inherent in RL. Numerical simulations validate the theoretical results and demonstrate the efficacy of SB-RPG in unknown-parameters environments.
comment: The authors found that article contains some theoretical errors and decided to withdraw from arxiv
Resilience-oriented Planning and Cost Allocation of Energy Storage Integrated with Soft Open Point Based on Resilience Insurance
In recent years, frequent extreme events have put forward higher requirements for improving the resilience of distribution networks (DNs). Introducing energy storage integrated with soft open point (E-SOP) is one of the effective ways to improve resilience. However, the widespread application of E-SOP is limited by its high investment cost. Based on this, we propose a cost allocation framework and optimal planning method of E-SOP in resilient DN. Firstly, a cost allocation mechanism for E-SOP based on resilience insurance service is designed; the probability of power users purchasing resilience insurance service is determined based on the expected utility theory. Then, a four-layer stochastic distributionally robust optimization (SDRO) model is developed for E-SOP planning and insurance pricing strategy, where the uncertainty in the intensity of contingent extreme events is addressed by a stochastic optimization approach, while the uncertainty in the occurrence of outages and resilience insurance purchases resulting from a specific extreme event is addressed via a distributionally robust optimization approach. Finally, the effectiveness of the proposed model is verified on the modified IEEE 33-bus DN.
comment: Personal use permitted. For other uses, permission required. This paper has been accepted and published in 2025 IEEE PESGM. This is author's accepted manuscript, which may differ from final version. Final version available at IEEE Xplore: https://ieeexplore.ieee.org/document/11225605, DOI: 10.1109/PESGM52009.2025.11225605
Wide Tuning Range and Low Noise Voltage Control Oscillators for 5G Technology
This paper presents the analytical design of a new wide tuning range and low-noise millimeter-wave voltage control oscillators (VCO) for 5G technology. The small signal model analysis and phase noise of the VCOs will be presented to evaluate the start-up oscillation condition, oscillation frequency, and phase noise affecting factors. Theoretical analysis and simulation results show the outperformance of the proposed cascode cross-couple LC VCO topology compared to the conventional cross-coupled LC VCO in terms of frequency tuning range, VCO gain and phase noise level.
Identifying the Smallest Adversarial Load Perturbation that Renders DC-OPF Infeasible
What is the globally smallest load perturbation that renders DC-OPF infeasible? Reliably identifying such "adversarial attack" perturbations has useful applications in a variety of emerging grid-related contexts, including machine learning performance verification, cybersecurity, and operational robustness of power systems dominated by stochastic renewable energy resources. In this paper, we formulate the inherently nonconvex adversarial attack problem by applying a parameterized version of Farkas' lemma to a perturbed set of DC-OPF equations. Since the resulting formulation is very hard to globally optimize, we also propose a parameterized generation control policy which, when applied to the primal DC-OPF problem, provides solvability guarantees. Together, these nonconvex problems provide guaranteed upper and lower bounds on adversarial attack size; by combining them into a single optimization problem, we can efficiently "squeeze" these bounds towards a common global solution. We apply these methods on a range of small- to medium-sized test cases from PGLib, benchmarking our results against the best adversarial attack lower bounds provided by Gurobi 12.0's spatial Branch and Bound solver.
Stochastic Data-Driven Predictive Control with Equivalence to Stochastic MPC
We propose a data-driven receding-horizon control method dealing with the chance-constrained output-tracking problem of unknown stochastic linear time-invariant (LTI) systems with partial state observation. The proposed method takes into account the statistics of the process noise, the measurement noise and the uncertain initial condition, following an analogous framework to Stochastic Model Predictive Control (SMPC), but does not rely on the use of a parametric system model. As such, our receding-horizon algorithm produces a sequence of closed-loop control policies for predicted time steps, as opposed to a sequence of open-loop control actions. Under certain conditions, we establish that our proposed data-driven control method produces identical control inputs as that produced by the associated model-based SMPC. Simulation results on a grid-connected power converter are provided to illustrate the performance benefits of our methodology.
comment: 20 pages, 4 figures. The extended version of an accepted paper by IEEE Transactions on Automatic Control
Robotics
Low-cost Multi-agent Fleet for Acoustic Cooperative Localization Research
Real-world underwater testing for multi-agent autonomy presents substantial financial and engineering challenges. In this work, we introduce the Configurable Underwater Group of Autonomous Robots (CoUGARs) as a low-cost, configurable autonomous-underwater-vehicle (AUV) platform for multi-agent autonomy research. The base design costs less than $3,000 USD (as of May 2025) and is based on commercially-available and 3D-printed parts, enabling quick customization for various sensor payloads and configurations. Our current expanded model is equipped with a doppler velocity log (DVL) and ultra-short-baseline (USBL) acoustic array/transducer to support research on acoustic-based cooperative localization. State estimation, navigation, and acoustic communications software has been developed and deployed using a containerized software stack and is tightly integrated with the HoloOcean simulator. The system was tested both in simulation and via in-situ field trials in Utah lakes and reservoirs.
Dual-Arm Whole-Body Motion Planning: Leveraging Overlapping Kinematic Chains
High degree-of-freedom dual-arm robots are becoming increasingly common due to their morphology enabling them to operate effectively in human environments. However, motion planning in real-time within unknown, changing environments remains a challenge for such robots due to the high dimensionality of the configuration space and the complex collision-avoidance constraints that must be obeyed. In this work, we propose a novel way to alleviate the curse of dimensionality by leveraging the structure imposed by shared joints (e.g. torso joints) in a dual-arm robot. First, we build two dynamic roadmaps (DRM) for each kinematic chain (i.e. left arm + torso, right arm + torso) with specific structure induced by the shared joints. Then, we show that we can leverage this structure to efficiently search through the composition of the two roadmaps and largely sidestep the curse of dimensionality. Finally, we run several experiments in a real-world grocery store with this motion planner on a 19 DoF mobile manipulation robot executing a grocery fulfillment task, achieving 0.4s average planning times with 99.9% success rate across more than 2000 motion plans.
comment: Published in Humanoids 2025
CENIC: Convex Error-controlled Numerical Integration for Contact
State-of-the-art robotics simulators operate in discrete time. This requires users to choose a time step, which is both critical and challenging: large steps can produce non-physical artifacts, while small steps force the simulation to run slowly. Continuous-time error-controlled integration avoids such issues by automatically adjusting the time step to achieve a desired accuracy. But existing error-controlled integrators struggle with the stiff dynamics of contact, and cannot meet the speed and scalability requirements of modern robotics workflows. We introduce CENIC, a new continuous-time integrator that brings together recent advances in convex time-stepping and error-controlled integration, inheriting benefits from both continuous integration and discrete time-stepping. CENIC runs at fast real-time rates comparable to discrete-time robotics simulators like MuJoCo, Drake and Isaac Sim, while also providing guarantees on accuracy and convergence.
comment: 18 pages with 19 figures. Submitted to IEEE Transactions on Robotics (T-RO). The supplemental video is available publicly at https://www.youtube.com/watch?v=9ZZ15MfCgtI
Information-Driven Fault Detection and Identification for Multi-Agent Spacecraft Systems: Collaborative On-Orbit Inspection Mission
This work presents a global-to-local, task-aware fault detection and identification (FDI) framework for multi-spacecraft systems conducting collaborative inspection missions in low Earth orbit. The inspection task is represented by a global information-driven cost functional that integrates the sensor model, spacecraft poses, and mission-level information-gain objectives. This formulation links guidance, control, and FDI by using the same cost function to drive both global task allocation and local sensing or motion decisions. Fault detection is achieved through comparisons between expected and observed task metrics, while higher-order cost-gradient measures enable the identification of faults among sensors, actuators, and state estimators. An adaptive thresholding mechanism captures the time-varying inspection geometry and dynamic mission conditions. Simulation results for representative multi-spacecraft inspection scenarios demonstrate the reliability of fault localization and classification under uncertainty, providing a unified, information-driven foundation for resilient autonomous inspection architectures.
comment: AIAA Book Chapter (accepted)
Intuitive Programming, Adaptive Task Planning, and Dynamic Role Allocation in Human-Robot Collaboration
Remarkable capabilities have been achieved by robotics and AI, mastering complex tasks and environments. Yet, humans often remain passive observers, fascinated but uncertain how to engage. Robots, in turn, cannot reach their full potential in human-populated environments without effectively modeling human states and intentions and adapting their behavior. To achieve a synergistic human-robot collaboration (HRC), a continuous information flow should be established: humans must intuitively communicate instructions, share expertise, and express needs. In parallel, robots must clearly convey their internal state and forthcoming actions to keep users informed, comfortable, and in control. This review identifies and connects key components enabling intuitive information exchange and skill transfer between humans and robots. We examine the full interaction pipeline: from the human-to-robot communication bridge translating multimodal inputs into robot-understandable representations, through adaptive planning and role allocation, to the control layer and feedback mechanisms to close the loop. Finally, we highlight trends and promising directions toward more adaptive, accessible HRC.
comment: Published in the Annual Review of Control, Robotics, and Autonomous Systems, Volume 9; copyright 2026 the author(s), CC BY 4.0, https://www.annualreviews.org
Practical and Performant Enhancements for Maximization of Algebraic Connectivity ICRA 2026
Long-term state estimation over graphs remains challenging as current graph estimation methods scale poorly on large, long-term graphs. To address this, our work advances a current state-of-the-art graph sparsification algorithm, maximizing algebraic connectivity (MAC). MAC is a sparsification method that preserves estimation performance by maximizing the algebraic connectivity, a spectral graph property that is directly connected to the estimation error. Unfortunately, MAC remains computationally prohibitive for online use and requires users to manually pre-specify a connectivity-preserving edge set. Our contributions close these gaps along three complementary fronts: we develop a specialized solver for algebraic connectivity that yields an average 2x runtime speedup; we investigate advanced step size strategies for MAC's optimization procedure to enhance both convergence speed and solution quality; and we propose automatic schemes that guarantee graph connectivity without requiring manual specification of edges. Together, these contributions make MAC more scalable, reliable, and suitable for real-time estimation applications.
comment: Submitted to ICRA 2026
SeFA-Policy: Fast and Accurate Visuomotor Policy Learning with Selective Flow Alignment
Developing efficient and accurate visuomotor policies poses a central challenge in robotic imitation learning. While recent rectified flow approaches have advanced visuomotor policy learning, they suffer from a key limitation: After iterative distillation, generated actions may deviate from the ground-truth actions corresponding to the current visual observation, leading to accumulated error as the reflow process repeats and unstable task execution. We present Selective Flow Alignment (SeFA), an efficient and accurate visuomotor policy learning framework. SeFA resolves this challenge by a selective flow alignment strategy, which leverages expert demonstrations to selectively correct generated actions and restore consistency with observations, while preserving multimodality. This design introduces a consistency correction mechanism that ensures generated actions remain observation-aligned without sacrificing the efficiency of one-step flow inference. Extensive experiments across both simulated and real-world manipulation tasks show that SeFA Policy surpasses state-of-the-art diffusion-based and flow-based policies, achieving superior accuracy and robustness while reducing inference latency by over 98%. By unifying rectified flow efficiency with observation-consistent action generation, SeFA provides a scalable and dependable solution for real-time visuomotor policy learning. Code is available on https://github.com/RongXueZoe/SeFA.
Safe and Optimal Learning from Preferences via Weighted Temporal Logic with Applications in Robotics and Formula 1
Autonomous systems increasingly rely on human feedback to align their behavior, expressed as pairwise comparisons, rankings, or demonstrations. While existing methods can adapt behaviors, they often fail to guarantee safety in safety-critical domains. We propose a safety-guaranteed, optimal, and efficient approach to solve the learning problem from preferences, rankings, or demonstrations using Weighted Signal Temporal Logic (WSTL). WSTL learning problems, when implemented naively, lead to multi-linear constraints in the weights to be learned. By introducing structural pruning and log-transform procedures, we reduce the problem size and recast the problem as a Mixed-Integer Linear Program while preserving safety guarantees. Experiments on robotic navigation and real-world Formula 1 data demonstrate that the method effectively captures nuanced preferences and models complex task objectives.
comment: 8 pages, 2 figures
A Supervised Autonomous Resection and Retraction Framework for Transurethral Enucleation of the Prostatic Median Lobe
Concentric tube robots (CTRs) offer dexterous motion at millimeter scales, enabling minimally invasive procedures through natural orifices. This work presents a coordinated model-based resection planner and learning-based retraction network that work together to enable semi-autonomous tissue resection using a dual-arm transurethral concentric tube robot (the Virtuoso). The resection planner operates directly on segmented CT volumes of prostate phantoms, automatically generating tool trajectories for a three-phase median lobe resection workflow: left/median trough resection, right/median trough resection, and median blunt dissection. The retraction network, PushCVAE, trained on surgeon demonstrations, generates retractions according to the procedural phase. The procedure is executed under Level-3 (supervised) autonomy on a prostate phantom composed of hydrogel materials that replicate the mechanical and cutting properties of tissue. As a feasibility study, we demonstrate that our combined autonomous system achieves a 97.1% resection of the targeted volume of the median lobe. Our study establishes a foundation for image-guided autonomy in transurethral robotic surgery and represents a first step toward fully automated minimally-invasive prostate enucleation.
comment: Submitted to International Symposium on Medial Robotics (ISMR) 2026. 7 pages, 8 figures
Intuitive control of supernumerary robotic limbs through a tactile-encoded neural interface
Brain-computer interfaces (BCIs) promise to extend human movement capabilities by enabling direct neural control of supernumerary effectors, yet integrating augmented commands with multiple degrees of freedom without disrupting natural movement remains a key challenge. Here, we propose a tactile-encoded BCI that leverages sensory afferents through a novel tactile-evoked P300 paradigm, allowing intuitive and reliable decoding of supernumerary motor intentions even when superimposed with voluntary actions. The interface was evaluated in a multi-day experiment comprising of a single motor recognition task to validate baseline BCI performance and a dual task paradigm to assess the potential influence between the BCI and natural human movement. The brain interface achieved real-time and reliable decoding of four supernumerary degrees of freedom, with significant performance improvements after only three days of training. Importantly, after training, performance did not differ significantly between the single- and dual-BCI task conditions, and natural movement remained unimpaired during concurrent supernumerary control. Lastly, the interface was deployed in a movement augmentation task, demonstrating its ability to command two supernumerary robotic arms for functional assistance during bimanual tasks. These results establish a new neural interface paradigm for movement augmentation through stimulation of sensory afferents, expanding motor degrees of freedom without impairing natural movement.
Probabilistic Safety Guarantee for Stochastic Control Systems Using Average Reward MDPs
Safety in stochastic control systems, which are subject to random noise with a known probability distribution, aims to compute policies that satisfy predefined operational constraints with high confidence throughout the uncertain evolution of the state variables. The unpredictable evolution of state variables poses a significant challenge for meeting predefined constraints using various control methods. To address this, we present a new algorithm that computes safe policies to determine the safety level across a finite state set. This algorithm reduces the safety objective to the standard average reward Markov Decision Process (MDP) objective. This reduction enables us to use standard techniques, such as linear programs, to compute and analyze safe policies. We validate the proposed method numerically on the Double Integrator and the Inverted Pendulum systems. Results indicate that the average-reward MDPs solution is more comprehensive, converges faster, and offers higher quality compared to the minimum discounted-reward solution.
comment: Submitted to the Learning for Dynamics & Control (L4DC) 2026 conference
Human Motion Intent Inferencing in Teleoperation Through a SINDy Paradigm
Intent inferencing in teleoperation has been instrumental in aligning operator goals and coordinating actions with robotic partners. However, current intent inference methods often ignore subtle motion that can be strong indicators for a sudden change in intent. Specifically, we aim to tackle 1) if we can detect sudden jumps in operator trajectories, 2) how we appropriately use these sudden jump motions to infer an operator's goal state, and 3) how to incorporate these discontinuous and continuous dynamics to infer operator motion. Our framework, called Psychic, models these small indicative motions through a jump-drift-diffusion stochastic differential equation to cover discontinuous and continuous dynamics. Kramers-Moyal (KM) coefficients allow us to detect jumps with a trajectory which we pair with a statistical outlier detection algorithm to nominate goal transitions. Through identifying jumps, we can perform early detection of existing goals and discover undefined goals in unstructured scenarios. Our framework then applies a Sparse Identification of Nonlinear Dynamics (SINDy) model using KM coefficients with the goal transitions as a control input to infer an operator's motion behavior in unstructured scenarios. We demonstrate Psychic can produce probabilistic reachability sets and compare our strategy to a negative log-likelihood model fit. We perform a retrospective study on 600 operator trajectories in a hands-free teleoperation task to evaluate the efficacy of our opensource package, Psychic, in both offline and online learning.
comment: Open source software and video examples here: https://github.com/namwob44/Psychic
A CODECO Case Study and Initial Validation for Edge Orchestration of Autonomous Mobile Robots
Autonomous Mobile Robots (AMRs) increasingly adopt containerized micro-services across the Edge-Cloud continuum. While Kubernetes is the de-facto orchestrator for such systems, its assumptions of stable networks, homogeneous resources, and ample compute capacity do not fully hold in mobile, resource-constrained robotic environments. This paper describes a case study on smart-manufacturing AMRs and performs an initial comparison between CODECO orchestration and standard Kubernetes using a controlled KinD environment. Metrics include pod deployment and deletion times, CPU and memory usage, and inter-pod data rates. The observed results indicate that CODECO offers reduced CPU consumption and more stable communication patterns, at the cost of modest memory overhead (10-15%) and slightly increased pod lifecycle latency due to secure overlay initialization.
Learning Omnidirectional Locomotion for a Salamander-Like Quadruped Robot
Salamander-like quadruped robots are designed inspired by the skeletal structure of their biological counterparts. However, existing controllers cannot fully exploit these morphological features and largely rely on predefined gait patterns or joint trajectories, which prevents the generation of diverse and flexible locomotion and limits their applicability in real-world scenarios. In this paper, we propose a learning framework that enables the robot to acquire a diverse repertoire of omnidirectional gaits without reference motions. Each body part is controlled by a phase variable capable of forward and backward evolution, with a phase coverage reward to promote the exploration of the leg phase space. Additionally, morphological symmetry of the robot is incorporated via data augmentation, improving sample efficiency and enforcing both motion-level and task-level symmetry in learned behaviors. Extensive experiments show that the robot successfully acquires 22 omnidirectional gaits exhibiting both dynamic and symmetric movements, demonstrating the effectiveness of the proposed learning framework.
Work-in-Progress: Function-as-Subtask API Replacing Publish/Subscribe for OS-Native DAG Scheduling
The Directed Acyclic Graph (DAG) task model for real-time scheduling finds its primary practical target in Robot Operating System 2 (ROS 2). However, ROS 2's publish/subscribe API leaves DAG precedence constraints unenforced: a callback may publish mid-execution, and multi-input callbacks let developers choose topic-matching policies. Thus preserving DAG semantics relies on conventions; once violated, the model collapses. We propose the Function-as-Subtask (FasS) API, which expresses each subtask as a function whose arguments/return values are the subtask's incoming/outgoing edges. By minimizing description freedom, DAG semantics is guaranteed at the API rather than by programmer discipline. We implement a DAG-native scheduler using FasS on a Rust-based experimental kernel and evaluate its semantic fidelity, and we outline design guidelines for applying FasS to Linux Linux sched_ext.
comment: 4 pages, 6 figures. Accepted for IEEE RTSS 2025; this is the author-accepted manuscript
X-IONet: Cross-Platform Inertial Odometry Network with Dual-Stage Attention
Learning-based inertial odometry has achieved remarkable progress in pedestrian navigation. However, extending these methods to quadruped robots remains challenging due to their distinct and highly dynamic motion patterns. Models that perform well on pedestrian data often experience severe degradation when deployed on legged platforms. To tackle this challenge, we introduce X-IONet, a cross-platform inertial odometry framework that operates solely using a single Inertial Measurement Unit (IMU). X-IONet incorporates a rule-based expert selection module to classify motion platforms and route IMU sequences to platform-specific expert networks. The displacement prediction network features a dual-stage attention architecture that jointly models long-range temporal dependencies and inter-axis correlations, enabling accurate motion representation. It outputs both displacement and associated uncertainty, which are further fused through an Extended Kalman Filter (EKF) for robust state estimation. Extensive experiments on public pedestrian datasets and a self-collected quadruped robot dataset demonstrate that X-IONet achieves state-of-the-art performance, reducing Absolute Trajectory Error (ATE) by 14.3% and Relative Trajectory Error (RTE) by 11.4% on pedestrian data, and by 52.8% and 41.3% on quadruped robot data. These results highlight the effectiveness of X-IONet in advancing accurate and robust inertial navigation across both human and legged robot platforms.
Real-Time Performance Analysis of Multi-Fidelity Residual Physics-Informed Neural Process-Based State Estimation for Robotic Systems
Various neural network architectures are used in many of the state-of-the-art approaches for real-time nonlinear state estimation. With the ever-increasing incorporation of these data-driven models into the estimation domain, model predictions with reliable margins of error are a requirement -- especially for safety-critical applications. This paper discusses the application of a novel real-time, data-driven estimation approach based on the multi-fidelity residual physics-informed neural process (MFR-PINP) toward the real-time state estimation of a robotic system. Specifically, we address the model-mismatch issue of selecting an accurate kinematic model by tasking the MFR-PINP to also learn the residuals between simple, low-fidelity predictions and complex, high-fidelity ground-truth dynamics. To account for model uncertainty present in a physical implementation, robust uncertainty guarantees from the split conformal (SC) prediction framework are modeled in the training and inference paradigms. We provide implementation details of our MFR-PINP-based estimator for a hybrid online learning setting to validate our model's usage in real-time applications. Experimental results of our approach's performance in comparison to the state-of-the-art variants of the Kalman filter (i.e. unscented Kalman filter and deep Kalman filter) in estimation scenarios showed promising results for the MFR-PINP model as a viable option in real-time estimation tasks.
comment: 8 pages, 5 figures
Prioritizing Perception-Guided Self-Supervision: A New Paradigm for Causal Modeling in End-to-End Autonomous Driving NeurIPS 2025
End-to-end autonomous driving systems, predominantly trained through imitation learning, have demonstrated considerable effectiveness in leveraging large-scale expert driving data. Despite their success in open-loop evaluations, these systems often exhibit significant performance degradation in closed-loop scenarios due to causal confusion. This confusion is fundamentally exacerbated by the overreliance of the imitation learning paradigm on expert trajectories, which often contain unattributable noise and interfere with the modeling of causal relationships between environmental contexts and appropriate driving actions. To address this fundamental limitation, we propose Perception-Guided Self-Supervision (PGS) - a simple yet effective training paradigm that leverages perception outputs as the primary supervisory signals, explicitly modeling causal relationships in decision-making. The proposed framework aligns both the inputs and outputs of the decision-making module with perception results, such as lane centerlines and the predicted motions of surrounding agents, by introducing positive and negative self-supervision for the ego trajectory. This alignment is specifically designed to mitigate causal confusion arising from the inherent noise in expert trajectories. Equipped with perception-driven supervision, our method, built on a standard end-to-end architecture, achieves a Driving Score of 78.08 and a mean success rate of 48.64% on the challenging closed-loop Bench2Drive benchmark, significantly outperforming existing state-of-the-art methods, including those employing more complex network architectures and inference pipelines. These results underscore the effectiveness and robustness of the proposed PGS framework and point to a promising direction for addressing causal confusion and enhancing real-world generalization in autonomous driving.
comment: Accepted at NeurIPS 2025
PerspAct: Enhancing LLM Situated Collaboration Skills through Perspective Taking and Active Vision
Recent advances in Large Language Models (LLMs) and multimodal foundation models have significantly broadened their application in robotics and collaborative systems. However, effective multi-agent interaction necessitates robust perspective-taking capabilities, enabling models to interpret both physical and epistemic viewpoints. Current training paradigms often neglect these interactive contexts, resulting in challenges when models must reason about the subjectivity of individual perspectives or navigate environments with multiple observers. This study evaluates whether explicitly incorporating diverse points of view using the ReAct framework, an approach that integrates reasoning and acting, can enhance an LLM's ability to understand and ground the demands of other agents. We extend the classic Director task by introducing active visual exploration across a suite of seven scenarios of increasing perspective-taking complexity. These scenarios are designed to challenge the agent's capacity to resolve referential ambiguity based on visual access and interaction, under varying state representations and prompting strategies, including ReAct-style reasoning. Our results demonstrate that explicit perspective cues, combined with active exploration strategies, significantly improve the model's interpretative accuracy and collaborative effectiveness. These findings highlight the potential of integrating active perception with perspective-taking mechanisms in advancing LLMs' application in robotics and multi-agent systems, setting a foundation for future research into adaptive and context-aware AI systems.
comment: Accepted at IAS19
Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
Model Predictive Control via Probabilistic Inference: A Tutorial
Model Predictive Control (MPC) is a fundamental framework for optimizing robot behavior over a finite future horizon. While conventional numerical optimization methods can efficiently handle simple dynamics and cost structures, they often become intractable for the nonlinear or non-differentiable systems commonly encountered in robotics. This article provides a tutorial on probabilistic inference-based MPC, presenting a unified theoretical foundation and a comprehensive overview of representative methods. Probabilistic inference-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have gained significant attention by reinterpreting optimal control as a problem of probabilistic inference. Rather than relying on gradient-based numerical optimization, these methods estimate optimal control distributions through sampling-based techniques, accommodating arbitrary cost functions and dynamics. We first derive the optimal control distribution from the standard optimal control problem, elucidating its probabilistic interpretation and key characteristics. The widely used MPPI algorithm is then derived as a practical example, followed by discussions on prior and variational distribution design, tuning principles, and theoretical aspects. This article aims to serve as a systematic guide for researchers and practitioners seeking to understand, implement, and extend these methods in robotics and beyond.
comment: 15 pages, 7 figures
AVOID-JACK: Avoidance of Jackknifing for Swarms of Long Heavy Articulated Vehicles
This paper presents a novel approach to avoiding jackknifing and mutual collisions in Heavy Articulated Vehicles (HAVs) by leveraging decentralized swarm intelligence. In contrast to typical swarm robotics research, our robots are elongated and exhibit complex kinematics, introducing unique challenges. Despite its relevance to real-world applications such as logistics automation, remote mining, airport baggage transport, and agricultural operations, this problem has not been addressed in the existing literature. To tackle this new class of swarm robotics problems, we propose a purely reaction-based, decentralized swarm intelligence strategy tailored to automate elongated, articulated vehicles. The method presented in this paper prioritizes jackknifing avoidance and establishes a foundation for mutual collision avoidance. We validate our approach through extensive simulation experiments and provide a comprehensive analysis of its performance. For the experiments with a single HAV, we observe that for 99.8% jackknifing was successfully avoided and that 86.7% and 83.4% reach their first and second goals, respectively. With two HAVs interacting, we observe 98.9%, 79.4%, and 65.1%, respectively, while 99.7% of the HAVs do not experience mutual collisions.
comment: 6+1 pages, 9 figures, accepted for publication in IEEE MRS 2025
A Two-Layer Electrostatic Film Actuator with High Actuation Stress and Integrated Brake
Robotic systems driven by conventional motors often suffer from challenges such as large mass, complex control algorithms, and the need for additional braking mechanisms, which limit their applications in lightweight and compact robotic platforms. Electrostatic film actuators offer several advantages, including thinness, flexibility, lightweight construction, and high open-loop positioning accuracy. However, the actuation stress exhibited by conventional actuators in air still needs improvement, particularly for the widely used three-phase electrode design. To enhance the output performance of actuators, this paper presents a two-layer electrostatic film actuator with an integrated brake. By alternately distributing electrodes on both the top and bottom layers, a smaller effective electrode pitch is achieved under the same fabrication constraints, resulting in an actuation stress of approximately 241~N/m$^2$, representing a 90.5\% improvement over previous three-phase actuators operating in air. Furthermore, its integrated electrostatic adhesion mechanism enables load retention under braking mode. Several demonstrations, including a tug-of-war between a conventional single-layer actuator and the proposed two-layer actuator, a payload operation, a one-degree-of-freedom robotic arm, and a dual-mode gripper, were conducted to validate the actuator's advantageous capabilities in both actuation and braking modes.
Effective Game-Theoretic Motion Planning via Nested Search
To facilitate effective, safe deployment in the real world, individual robots must reason about interactions with other agents, which often occur without explicit communication. Recent work has identified game theory, particularly the concept of Nash Equilibrium (NE), as a key enabler for behavior-aware decision-making. Yet, existing work falls short of fully unleashing the power of game-theoretic reasoning. Specifically, popular optimization-based methods require simplified robot dynamics and tend to get trapped in local minima due to convexification. Other works that rely on payoff matrices suffer from poor scalability due to the explicit enumeration of all possible trajectories. To bridge this gap, we introduce Game-Theoretic Nested Search (GTNS), a novel, scalable, and provably correct approach for computing NEs in general dynamical systems. GTNS efficiently searches the action space of all agents involved, while discarding trajectories that violate the NE constraint (no unilateral deviation) through an inner search over a lower-dimensional space. Our algorithm enables explicit selection among equilibria by utilizing a user-specified global objective, thereby capturing a rich set of realistic interactions. We demonstrate the approach on a variety of autonomous driving and racing scenarios where we achieve solutions in mere seconds on commodity hardware.
USV Obstacles Detection and Tracking in Marine Environments
Developing a robust and effective obstacle detection and tracking system for Unmanned Surface Vehicle (USV) at marine environments is a challenging task. Research efforts have been made in this area during the past years by GRAAL lab at the university of Genova that resulted in a methodology for detecting and tracking obstacles on the image plane and, then, locating them in the 3D LiDAR point cloud. In this work, we continue on the developed system by, firstly, evaluating its performance on recently published marine datasets. Then, we integrate the different blocks of the system on ROS platform where we could test it in real-time on synchronized LiDAR and camera data collected in various marine conditions available in the MIT marine datasets. We present a thorough experimental analysis of the results obtained using two approaches; one that uses sensor fusion between the camera and LiDAR to detect and track the obstacles and the other uses only the LiDAR point cloud for the detection and tracking. In the end, we propose a hybrid approach that merges the advantages of both approaches to build an informative obstacles map of the surrounding environment to the USV.
An Image-Based Path Planning Algorithm Using a UAV Equipped with Stereo Vision
This paper presents a novel image-based path planning algorithm that was developed using computer vision techniques, as well as its comparative analysis with well-known deterministic and probabilistic algorithms, namely A* and Probabilistic Road Map algorithm (PRM). The terrain depth has a significant impact on the calculated path safety. The craters and hills on the surface cannot be distinguished in a two-dimensional image. The proposed method uses a disparity map of the terrain that is generated by using a UAV. Several computer vision techniques, including edge, line and corner detection methods, as well as the stereo depth reconstruction technique, are applied to the captured images and the found disparity map is used to define candidate way-points of the trajectory. The initial and desired points are detected automatically using ArUco marker pose estimation and circle detection techniques. After presenting the mathematical model and vision techniques, the developed algorithm is compared with well-known algorithms on different virtual scenes created in the V-REP simulation program and a physical setup created in a laboratory environment. Results are promising and demonstrate effectiveness of the proposed algorithm.
Local Path Planning with Dynamic Obstacle Avoidance in Unstructured Environments
Obstacle avoidance and path planning are essential for guiding unmanned ground vehicles (UGVs) through environments that are densely populated with dynamic obstacles. This paper develops a novel approach that combines tangentbased path planning and extrapolation methods to create a new decision-making algorithm for local path planning. In the assumed scenario, a UGV has a prior knowledge of its initial and target points within the dynamic environment. A global path has already been computed, and the robot is provided with waypoints along this path. As the UGV travels between these waypoints, the algorithm aims to avoid collisions with dynamic obstacles. These obstacles follow polynomial trajectories, with their initial positions randomized in the local map and velocities randomized between O and the allowable physical velocity limit of the robot, along with some random accelerations. The developed algorithm is tested in several scenarios where many dynamic obstacles move randomly in the environment. Simulation results show the effectiveness of the proposed local path planning strategy by gradually generating a collision free path which allows the robot to navigate safely between initial and the target locations.
Dual-MPC Footstep Planning for Robust Quadruped Locomotion
In this paper, we propose a footstep planning strategy based on model predictive control (MPC) that enables robust regulation of body orientation against undesired body rotations by optimizing footstep placement. Model-based locomotion approaches typically adopt heuristic methods or planning based on the linear inverted pendulum model. These methods account for linear velocity in footstep planning, while excluding angular velocity, which leads to angular momentum being handled exclusively via ground reaction force (GRF). Footstep planning based on MPC that takes angular velocity into account recasts the angular momentum control problem as a dual-input approach that coordinates GRFs and footstep placement, instead of optimizing GRFs alone, thereby improving tracking performance. A mutual-feedback loop couples the footstep planner and the GRF MPC, with each using the other's solution to iteratively update footsteps and GRFs. The use of optimal solutions reduces body oscillation and enables extended stance and swing phases. The method is validated on a quadruped robot, demonstrating robust locomotion with reduced oscillations, longer stance and swing phases across various terrains.
comment: 9 pages, 9 figures
Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
EquiMus: Energy-Equivalent Dynamic Modeling and Simulation of Musculoskeletal Robots Driven by Linear Elastic Actuators
Dynamic modeling and control are critical for unleashing soft robots' potential, yet remain challenging due to their complex constitutive behaviors and real-world operating conditions. Bio-inspired musculoskeletal robots, which integrate rigid skeletons with soft actuators, combine high load-bearing capacity with inherent flexibility. Although actuation dynamics have been studied through experimental methods and surrogate models, accurate and effective modeling and simulation remain a significant challenge, especially for large-scale hybrid rigid--soft robots with continuously distributed mass, kinematic loops, and diverse motion modes. To address these challenges, we propose EquiMus, an energy-equivalent dynamic modeling framework and MuJoCo-based simulation for musculoskeletal rigid--soft hybrid robots with linear elastic actuators. The equivalence and effectiveness of the proposed approach are validated and examined through both simulations and real-world experiments on a bionic robotic leg. EquiMus further demonstrates its utility for downstream tasks, including controller design and learning-based control strategies.
A Comprehensive Experimental Characterization of Mechanical Layer Jamming Systems
Organisms in nature, such as Cephalopods and Pachyderms, exploit stiffness modulation to achieve amazing dexterity in the control of their appendages. In this paper, we explore the phenomenon of layer jamming, which is a popular stiffness modulation mechanism that provides an equivalent capability for soft robots. More specifically, we focus on mechanical layer jamming, which we realise through two-layer multi material structure with tooth-like protrusions. We identify key design parameters for mechanical layer jamming systems, including the ability to modulate stiffness, and perform a variety of comprehensive tests placing the specimens under bending and torsional loads to understand the influence of our selected design parameters (mainly tooth geometry) on the performance of the jammed structures. We note the ability of these structures to produce a peak change in stiffness of 5 times in bending and 3.2 times in torsion. We also measure the force required to separate the two jammed layers, an often ignored parameter in the study of jamming-induced stiffness change. This study aims to shed light on the principled design of mechanical layer jammed systems and guide researchers in the selection of appropriate designs for their specific application domains.
comment: 6 pages, 9 figures, RoboSoft 2026
Occlusion-Aware Ground Target Search by a UAV in an Urban Environment
This paper considers the problem of searching for a point of interest (POI) moving along an urban road network with an uncrewed aerial vehicle (UAV). The UAV is modeled as a variable-speed Dubins vehicle with a line-of-sight sensor in an urban environment that may occlude the sensor's view of the POI. A search strategy is proposed that exploits a probabilistic visibility volume (VV) to plan its future motion with iterative deepening $A^\ast$. The probabilistic VV is a time-varying three-dimensional representation of the sensing constraints for a particular distribution of the POI's state. To find the path most likely to view the POI, the planner uses a heuristic to optimistically estimate the probability of viewing the POI over a time horizon. The probabilistic VV is max-pooled to create a variable-timestep planner that reduces the search space and balances long-term and short-term planning. The proposed path planning method is compared to prior work with a Monte-Carlo simulation and is shown to outperform the baseline methods in cluttered environments when the UAV's sensor has a higher false alarm probability.
comment: 18 pages, 18 figures, 5 tables
SONIC: Supersizing Motion Tracking for Natural Humanoid Whole-Body Control
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.
comment: Project page: https://nvlabs.github.io/SONIC/
Virtual Traffic Lights for Multi-Robot Navigation: Decentralized Planning with Centralized Conflict Resolution
We present a hybrid multi-robot coordination framework that combines decentralized path planning with centralized conflict resolution. In our approach, each robot autonomously plans its path and shares this information with a centralized node. The centralized system detects potential conflicts and allows only one of the conflicting robots to proceed at a time, instructing others to stop outside the conflicting area to avoid deadlocks. Unlike traditional centralized planning methods, our system does not dictate robot paths but instead provides stop commands, functioning as a virtual traffic light. In simulation experiments with multiple robots, our approach increased the success rate of robots reaching their goals while reducing deadlocks. Furthermore, we successfully validated the system in real-world experiments with two quadruped robots and separately with wheeled Duckiebots.
Benchmarking Resilience and Sensitivity of Polyurethane-Based Vision-Based Tactile Sensors
Vision-based tactile sensors (VBTSs) are a promising technology for robots, providing them with dense signals that can be translated into an understanding of normal and shear load, contact region, texture classification, and more. However, existing VBTS tactile surfaces make use of silicone gels, which provide high sensitivity but easily deteriorate from loading and surface wear. We propose that polyurethane rubber, used for high-load applications like shoe soles, rubber wheels, and industrial gaskets, may provide improved physical gel resilience, potentially at the cost of sensitivity. To compare the resilience and sensitivity of silicone and polyurethane VBTS gels, we propose a series of standard evaluation benchmarking protocols. Our resilience tests assess sensor durability across normal loading, shear loading, and abrasion. For sensitivity, we introduce model-free assessments of force and spatial sensitivity to directly measure the physical capabilities of each gel without effects introduced from data and model quality. Finally, we include a bottle cap loosening and tightening demonstration as an example where polyurethane gels provide an advantage over their silicone counterparts.
High-Altitude Balloon Station-Keeping with First Order Model Predictive Control
High-altitude balloons (HABs) are common in scientific research due to their wide range of applications and low cost. Because of their nonlinear, underactuated dynamics and the partial observability of wind fields, prior work has largely relied on model-free reinforcement learning (RL) methods to design near-optimal control schemes for station-keeping. These methods often compare only against hand-crafted heuristics, dismissing model-based approaches as impractical given the system complexity and uncertain wind forecasts. We revisit this assumption about the efficacy of model-based control for station-keeping by developing First-Order Model Predictive Control (FOMPC). By implementing the wind and balloon dynamics as differentiable functions in JAX, we enable gradient-based trajectory optimization for online planning. FOMPC outperforms a state-of-the-art RL policy, achieving a 24% improvement in time-within-radius (TWR) without requiring offline training, though at the cost of greater online computation per control step. Through systematic ablations of modeling assumptions and control factors, we show that online planning is effective across many configurations, including under simplified wind and dynamics models.
Navigating the Wild: Pareto-Optimal Visual Decision-Making in Image Space
Navigating complex real-world environments requires semantic understanding and adaptive decision-making. Traditional reactive methods without maps often fail in cluttered settings, map-based approaches demand heavy mapping effort, and learning-based solutions rely on large datasets with limited generalization. To address these challenges, we present Pareto-Optimal Visual Navigation, a lightweight image-space framework that combines data-driven semantics, Pareto-optimal decision-making, and visual servoing for real-time navigation.
ViPRA: Video Prediction for Robot Actions
Can we turn a video prediction model into a robot policy? Videos, including those of humans or teleoperated robots, capture rich physical interactions. However, most of them lack labeled actions, which limits their use in robot learning. We present Video Prediction for Robot Actions (ViPRA), a simple pretraining-finetuning framework that learns continuous robot control from these actionless videos. Instead of directly predicting actions, we train a video-language model to predict both future visual observations and motion-centric latent actions, which serve as intermediate representations of scene dynamics. We train these latent actions using perceptual losses and optical flow consistency to ensure they reflect physically grounded behavior. For downstream control, we introduce a chunked flow matching decoder that maps latent actions to robot-specific continuous action sequences, using only 100 to 200 teleoperated demonstrations. This approach avoids expensive action annotation, supports generalization across embodiments, and enables smooth, high-frequency continuous control upto 22 Hz via chunked action decoding. Unlike prior latent action works that treat pretraining as autoregressive policy learning, explicitly models both what changes and how. Our method outperforms strong baselines, with a 16% gain on the SIMPLER benchmark and a 13% improvement across real world manipulation tasks. We will release models and code at https://vipra-project.github.io
comment: Website: https://vipra-project.github.io
Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
Learning how to reach goals in an environment is a longstanding challenge in AI, yet reasoning over long horizons remains a challenge for modern methods. The key question is how to estimate the temporal distance between pairs of observations. While temporal difference methods leverage local updates to provide optimality guarantees, they often perform worse than Monte Carlo methods that perform global updates (e.g., with multi-step returns), which lack such guarantees. We show how these approaches can be integrated into a practical GCRL method that fits a quasimetric distance using a multistep Monte-Carlo return. We show our method outperforms existing GCRL methods on long-horizon simulated tasks with up to 4000 steps, even with visual observations. We also demonstrate that our method can enable stitching in the real-world robotic manipulation domain (Bridge setup). Our approach is the first end-to-end GCRL method that enables multistep stitching in this real-world manipulation domain from an unlabeled offline dataset of visual observations.
LLM-GROP: Visually Grounded Robot Task and Motion Planning with Large Language Models
Task planning and motion planning are two of the most important problems in robotics, where task planning methods help robots achieve high-level goals and motion planning methods maintain low-level feasibility. Task and motion planning (TAMP) methods interleave the two processes of task planning and motion planning to ensure goal achievement and motion feasibility. Within the TAMP context, we are concerned with the mobile manipulation (MoMa) of multiple objects, where it is necessary to interleave actions for navigation and manipulation. In particular, we aim to compute where and how each object should be placed given underspecified goals, such as ``set up dinner table with a fork, knife and plate.'' We leverage the rich common sense knowledge from large language models (LLMs), e.g., about how tableware is organized, to facilitate both task-level and motion-level planning. In addition, we use computer vision methods to learn a strategy for selecting base positions to facilitate MoMa behaviors, where the base position corresponds to the robot's ``footprint'' and orientation in its operating space. Altogether, this article provides a principled TAMP framework for MoMa tasks that accounts for common sense about object rearrangement and is adaptive to novel situations that include many objects that need to be moved. We performed quantitative experiments in both real-world settings and simulated environments. We evaluated the success rate and efficiency in completing long-horizon object rearrangement tasks. While the robot completed 84.4\% real-world object rearrangement trials, subjective human evaluations indicated that the robot's performance is still lower than experienced human waiters.
A QP Framework for Improving Data Collection: Quantifying Device-Controller Performance in Robot Teleoperation
Robot learning empowers the robot system with human brain-like intelligence to autonomously acquire and adapt skills through experience, enhancing flexibility and adaptability in various environments. Aimed at achieving a similar level of capability in large language models (LLMs) for embodied intelligence, data quality plays a crucial role in training a foundational model with diverse robot skills. In this study, we investigate the collection of data for manipulation tasks using teleoperation devices. Different devices yield varying effects when paired with corresponding controller strategies, including position-based inverse kinematics (IK) control, torque-based inverse dynamics (ID) control, and optimization-based compliance control. In this paper, we develop a teleoperation pipeline that is compatible with different teleoperation devices and manipulator controllers. Within the pipeline, we construct the optimal QP formulation with the dynamic nullspace and the impedance tracking as the novel optimal controller to achieve compliant pose tracking and singularity avoidance. Regarding the optimal controller, it adaptively adjusts the weights assignment depending on the robot joint manipulability that reflects the state of joint configuration for the pose tracking in the form of impedance control and singularity avoidance with nullspace tracking. Analysis of quantitative experimental results suggests the quality of the teleoperated trajectory data, including tracking error, occurrence of singularity, and the smoothness of the joints' trajectory, with different combinations of teleoperation interface and the motion controller.
RoboTAG: End-to-end Robot Configuration Estimation via Topological Alignment Graph
Estimating robot pose from a monocular RGB image is a challenge in robotics and computer vision. Existing methods typically build networks on top of 2D visual backbones and depend heavily on labeled data for training, which is often scarce in real-world scenarios, causing a sim-to-real gap. Moreover, these approaches reduce the 3D-based problem to 2D domain, neglecting the 3D priors. To address these, we propose Robot Topological Alignment Graph (RoboTAG), which incorporates a 3D branch to inject 3D priors while enabling co-evolution of the 2D and 3D representations, alleviating the reliance on labels. Specifically, the RoboTAG consists of a 3D branch and a 2D branch, where nodes represent the states of the camera and robot system, and edges capture the dependencies between these variables or denote alignments between them. Closed loops are then defined in the graph, on which a consistency supervision across branches can be applied. This design allows us to utilize in-the-wild images as training data without annotations. Experimental results demonstrate that our method is effective across robot types, highlighting its potential to alleviate the data bottleneck in robotics.
Act to See, See to Act: Diffusion-Driven Perception-Action Interplay for Adaptive Policies NeurIPS 2025
Existing imitation learning methods decouple perception and action, which overlooks the causal reciprocity between sensory representations and action execution that humans naturally leverage for adaptive behaviors. To bridge this gap, we introduce Action-Guided Diffusion Policy (DP-AG), a unified representation learning that explicitly models a dynamic interplay between perception and action through probabilistic latent dynamics. DP-AG encodes latent observations into a Gaussian posterior via variational inference and evolves them using an action-guided SDE, where the Vector-Jacobian Product (VJP) of the diffusion policy's noise predictions serves as a structured stochastic force driving latent updates. To promote bidirectional learning between perception and action, we introduce a cycle-consistent contrastive loss that organizes the gradient flow of the noise predictor into a coherent perception-action loop, enforcing mutually consistent transitions in both latent updates and action refinements. Theoretically, we derive a variational lower bound for the action-guided SDE, and prove that the contrastive objective enhances continuity in both latent and action trajectories. Empirically, DP-AG significantly outperforms state-of-the-art methods across simulation benchmarks and real-world UR5 manipulation tasks. As a result, our DP-AG offers a promising step toward bridging biological adaptability and artificial policy learning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Trends in Motion Prediction Toward Deployable and Generalizable Autonomy: A Revisit and Perspectives
Motion prediction, recently popularized as world models, refers to the anticipation of future agent states or scene evolution, which is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity. To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input localization and perception, and informs downstream planning and control. 2) How to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage can be found here https://trends-in-motion-prediction-2025.github.io/.
comment: (Book) To Appear in Foundation and Trends in Robotics. 163 pages, 40 figures, 13 tables
Mixed-Density Diffuser: Efficient Planning with Non-Uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional or memory computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a temporal horizon and that certain parts of a planned trajectory should be more densely planned. We propose Mixed-Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. We show that MDD achieves a new SOTA across the Maze2D, Franka Kitchen, and Antmaze D4RL task domains.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (under review)
Certified Training with Branch-and-Bound for Lyapunov-stable Neural Control
We study the problem of learning verifiably Lyapunov-stable neural controllers that provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction (ROA). Unlike previous works that adopted counterexample-guided training without considering the computation of verification in training, we introduce Certified Training with Branch-and-Bound (CT-BaB), a new certified training framework that optimizes certified bounds, thereby reducing the discrepancy between training and test-time verification that also computes certified bounds. To achieve a relatively global guarantee on an entire input region-of-interest, we propose a training-time BaB technique that maintains a dynamic training dataset and adaptively splits hard input subregions into smaller ones, to tighten certified bounds and ease the training. Meanwhile, subregions created by the training-time BaB also inform test-time verification, for a more efficient training-aware verification. We demonstrate that CT-BaB yields verification-friendly models that can be more efficiently verified at test time while achieving stronger verifiable guarantees with larger ROA. On the largest output-feedback 2D Quadrotor system experimented, CT-BaB reduces verification time by over 11X relative to the previous state-of-the-art baseline while achieving 164X larger ROA.
comment: Preprint
MOSAIC: A Skill-Centric Algorithmic Framework for Long-Horizon Manipulation Planning
Planning long-horizon manipulation motions using a set of predefined skills is a central challenge in robotics; solving it efficiently could enable general-purpose robots to tackle novel tasks by flexibly composing generic skills. Solutions to this problem lie in an infinitely vast space of parameterized skill sequences -- a space where common incremental methods struggle to find sequences that have non-obvious intermediate steps. Some approaches reason over lower-dimensional, symbolic spaces, which are more tractable to explore but may be brittle and are laborious to construct. In this work, we introduce MOSAIC, a skill-centric, multi-directional planning approach that targets these challenges by reasoning about which skills to employ and where they are most likely to succeed, by utilizing physics simulation to estimate skill execution outcomes. Specifically, MOSAIC employs two complementary skill families: Generators, which identify ``islands of competence'' where skills are demonstrably effective, and Connectors, which link these skill-trajectories by solving boundary value problems. By focusing planning efforts on regions of high competence, MOSAIC efficiently discovers physically-grounded solutions. We demonstrate its efficacy on complex long-horizon problems in both simulation and the real world, using a diverse set of skills including generative diffusion models, motion planning algorithms, and manipulation-specific models. Visit skill-mosaic.github.io for demonstrations and examples.
comment: Under review. Project page: https://skill-mosaic.github.io
Military AI Needs Technically-Informed Regulation to Safeguard AI Research and its Applications NeurIPS 2025
Military weapon systems and command-and-control infrastructure augmented by artificial intelligence (AI) have seen rapid development and deployment in recent years. However, the sociotechnical impacts of AI on combat systems, military decision-making, and the norms of warfare have been understudied. We focus on a specific subset of lethal autonomous weapon systems (LAWS) that use AI for targeting or battlefield decisions. We refer to this subset as AI-powered lethal autonomous weapon systems (AI-LAWS) and argue that they introduce novel risks -- including unanticipated escalation, poor reliability in unfamiliar environments, and erosion of human oversight -- all of which threaten both military effectiveness and the openness of AI research. These risks cannot be addressed by high-level policy alone; effective regulation must be grounded in the technical behavior of AI models. We argue that AI researchers must be involved throughout the regulatory lifecycle. Thus, we propose a clear, behavior-based definition of AI-LAWS -- systems that introduce unique risks through their use of modern AI -- as a foundation for technically grounded regulation, given that existing frameworks do not distinguish them from conventional LAWS. Using this definition, we propose several technically-informed policy directions and invite greater participation from the AI research community in military AI policy discussions.
comment: Published at NeurIPS 2025, 10 pages, 2 tables, 1 figure
Residual Rotation Correction using Tactile Equivariance
Visuotactile policy learning augments vision-only policies with tactile input, facilitating contact-rich manipulation. However, the high cost of tactile data collection makes sample efficiency the key requirement for developing visuotactile policies. We present EquiTac, a framework that exploits the inherent SO(2) symmetry of in-hand object rotation to improve sample efficiency and generalization for visuotactile policy learning. EquiTac first reconstructs surface normals from raw RGB inputs of vision-based tactile sensors, so rotations of the normal vector field correspond to in-hand object rotations. An SO(2)-equivariant network then predicts a residual rotation action that augments a base visuomotor policy at test time, enabling real-time rotation correction without additional reorientation demonstrations. On a real robot, EquiTac accurately achieves robust zero-shot generalization to unseen in-hand orientations with very few training samples, where baselines fail even with more training data. To our knowledge, this is the first tactile learning method to explicitly encode tactile equivariance for policy learning, yielding a lightweight, symmetry-aware module that improves reliability in contact-rich tasks.
comment: 8 pages
Token Is All You Need: Cognitive Planning through Belief-Intent Co-Evolution
We challenge the long-standing assumption that exhaustive scene modeling is required for high-performance end-to-end autonomous driving (E2EAD). Inspired by cognitive science, we propose that effective planning arises not from reconstructing the world, but from the co-evolution of belief and intent within a minimal set of semantically rich tokens. Experiments on the nuPlan benchmark (720 scenarios, 11k+ samples) reveal three principles: (1) sparse intent tokens alone achieve 0.487 m ADE, demonstrating strong performance without future prediction; (2) conditioning trajectory decoding on predicted future tokens reduces ADE to 0.382 m, a 21.6% improvement, showing that performance emerges from cognitive planning; and (3) explicit reconstruction loss degrades performance, confirming that task-driven belief-intent co-evolution suffices under reliable perception inputs. Crucially, we observe the emergence of cognitive consistency: through prolonged training, the model spontaneously develops stable token dynamics that balance current perception (belief) and future goals (intent). This process, accompanied by "temporal fuzziness," enables robustness under uncertainty and continuous self-optimization. Our work establishes a new paradigm: intelligence lies not in pixel fidelity, but in the tokenized duality of belief and intent. By reframing planning as understanding rather than reaction, TIWM bridges the gap between world models and VLA systems, paving the way for foresightful agents that plan through imagination. Note: Numerical comparisons with methods reporting results on nuScenes are indicative only, as nuPlan presents a more challenging planning-focused evaluation.
comment: 7 pages, 3 figures. A paradigm shift from reconstructing the world to understanding it: planning through belief-intent co-evolution
On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
Learning Vision-Based Neural Network Controllers with Semi-Probabilistic Safety Guarantees
Ensuring safety in autonomous systems with vision-based control remains a critical challenge due to the high dimensionality of image inputs and the fact that the relationship between true system state and its visual manifestation is unknown. Existing methods for learning-based control in such settings typically lack formal safety guarantees. To address this challenge, we introduce a novel semi-probabilistic verification framework that integrates reachability analysis with conditional generative networks and distribution-free tail bounds to enable efficient and scalable verification of vision-based neural network controllers. Next, we develop a gradient-based training approach that employs a novel safety loss function, safety-aware data-sampling strategy to efficiently select and store critical training examples, and curriculum learning, to efficiently synthesize safe controllers in the semi-probabilistic framework. Empirical evaluations in X-Plane 11 airplane landing simulation, CARLA-simulated autonomous lane following, F1Tenth vehicle lane following in a physical visually-rich miniature environment, and Airsim-simulated drone navigation and obstacle avoidance demonstrate the effectiveness of our method in achieving formal safety guarantees while maintaining strong nominal performance.
Heuristic Adaptation of Potentially Misspecified Domain Support for Likelihood-Free Inference in Stochastic Dynamical Systems
In robotics, likelihood-free inference (LFI) can provide the domain distribution that adapts a learnt agent in a parametric set of deployment conditions. LFI assumes an arbitrary support for sampling, which remains constant as the initial generic prior is iteratively refined to more descriptive posteriors. However, a potentially misspecified support can lead to suboptimal, yet falsely certain, posteriors. To address this issue, we propose three heuristic LFI variants: EDGE, MODE, and CENTRE. Each interprets the posterior mode shift over inference steps in its own way and, when integrated into an LFI step, adapts the support alongside posterior inference. We first expose the support misspecification issue and evaluate our heuristics using stochastic dynamical benchmarks. We then evaluate the impact of heuristic support adaptation on parameter inference and policy learning for a dynamic deformable linear object (DLO) manipulation task. Inference results in a finer length and stiffness classification for a parametric set of DLOs. When the resulting posteriors are used as domain distributions for sim-based policy learning, they lead to more robust object-centric agent performance.
comment: 20 pages, 18 figures, algorithm lines cleveref fixed for pdflatex 2025
Towards Adaptive Humanoid Control via Multi-Behavior Distillation and Reinforced Fine-Tuning
Humanoid robots are promising to learn a diverse set of human-like locomotion behaviors, including standing up, walking, running, and jumping. However, existing methods predominantly require training independent policies for each skill, yielding behavior-specific controllers that exhibit limited generalization and brittle performance when deployed on irregular terrains and in diverse situations. To address this challenge, we propose Adaptive Humanoid Control (AHC) that adopts a two-stage framework to learn an adaptive humanoid locomotion controller across different skills and terrains. Specifically, we first train several primary locomotion policies and perform a multi-behavior distillation process to obtain a basic multi-behavior controller, facilitating adaptive behavior switching based on the environment. Then, we perform reinforced fine-tuning by collecting online feedback in performing adaptive behaviors on more diverse terrains, enhancing terrain adaptability for the controller. We conduct experiments in both simulation and real-world experiments in Unitree G1 robots. The results show that our method exhibits strong adaptability across various situations and terrains. Project website: https://ahc-humanoid.github.io.
Hestia: Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction
Advances in 3D reconstruction and novel view synthesis have enabled efficient and photorealistic rendering. However, images for reconstruction are still either largely manual or constrained by simple preplanned trajectories. To address this issue, recent works propose generalizable next-best-view planners that do not require online learning. Nevertheless, robustness and performance remain limited across various shapes. Hence, this study introduces Voxel-Face-Aware Hierarchical Next-Best-View Acquisition for Efficient 3D Reconstruction (Hestia), which addresses the shortcomings of the reinforcement learning-based generalizable approaches for five-degree-of-freedom viewpoint prediction. Hestia systematically improves the planners through four components: a more diverse dataset to promote robustness, a hierarchical structure to manage the high-dimensional continuous action search space, a close-greedy strategy to mitigate spurious correlations, and a face-aware design to avoid overlooking geometry. Experimental results show that Hestia achieves non-marginal improvements, with at least a 4% gain in coverage ratio, while reducing Chamfer Distance by 50% and maintaining real-time inference. In addition, Hestia outperforms prior methods by at least 12% in coverage ratio with a 5-image budget and remains robust to object placement variations. Finally, we demonstrate that Hestia, as a next-best-view planner, is feasible for the real-world application. Our project page is https://johnnylu305.github.io/hestia web.
Tackling the Kidnapped Robot Problem via Sparse Feasible Hypothesis Sampling and Reliable Batched Multi-Stage Inference
This paper addresses the Kidnapped Robot Problem (KRP), a core localization challenge of relocalizing a robot in a known map without prior pose estimate when localization loss or at SLAM initialization. For this purpose, a passive 2-D global relocalization framework is proposed. It estimates the global pose efficiently and reliably from a single LiDAR scan and an occupancy grid map while the robot remains stationary, thereby enhancing the long-term autonomy of mobile robots. The proposed framework casts global relocalization as a non-convex problem and solves it via the multi-hypothesis scheme with batched multi-stage inference and early termination, balancing completeness and efficiency. The Rapidly-exploring Random Tree (RRT), under traversability constraints, asymptotically covers the reachable space to generate sparse, uniformly distributed feasible positional hypotheses, fundamentally reducing the sampling space. The hypotheses are preliminarily ordered by the proposed Scan Mean Absolute Difference (SMAD), a coarse beam-error level metric that facilitates the early termination by prioritizing high-likelihood candidates. The SMAD computation is optimized for non-panoramic scans. The Translation-Affinity Scan-to-Map Alignment Metric (TAM) is proposed for reliable orientation selection at hypothesized positions and accurate final pose evaluation to mitigate degradation in conventional likelihood-field metrics under translational uncertainty induced by sparse hypotheses, as well as non-panoramic LiDAR scan and environmental changes. Real-world experiments on a resource-constrained mobile robot with non-panoramic LiDAR scans show that the proposed framework achieves competitive performance in both global relocalization success rate and computational efficiency.
comment: 10 pages, 8 figures. This work has been submitted to the IEEE for possible publication
Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors AAAI 2026
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
comment: AAAI 2026
SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
When To Seek Help: Trust-Aware Assistance Seeking in Human-Supervised Autonomy
Our goal is to model and experimentally assess trust evolution to predict future beliefs and behaviors of human-robot teams in dynamic environments. Research suggests that maintaining trust among team members in a human-robot team is vital for successful team performance. Research suggests that trust is a multi-dimensional and latent entity that relates to past experiences and future actions in a complex manner. Employing a human-robot collaborative task, we design an optimal assistance-seeking strategy for the robot using a POMDP framework. In the task, the human supervises an autonomous mobile manipulator collecting objects in an environment. The supervisor's task is to ensure that the robot safely executes its task. The robot can either choose to attempt to collect the object or seek human assistance. The human supervisor actively monitors the robot's activities, offering assistance upon request, and intervening if they perceive the robot may fail. In this setting, human trust is the hidden state, and the primary objective is to optimize team performance. We execute two sets of human-robot interaction experiments. The data from the first experiment are used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy evaluated in the second experiment. The estimated POMDP parameters reveal that, for most participants, human intervention is more probable when trust is low, particularly in high-complexity tasks. Our estimates suggest that the robot's action of asking for assistance in high-complexity tasks can positively impact human trust. Our experimental results show that the proposed trust-aware policy is better than an optimal trust-agnostic policy. By comparing model estimates of human trust, obtained using only behavioral data, with the collected self-reported trust values, we show that model estimates are isomorphic to self-reported responses.
EndoIR: Degradation-Agnostic All-in-One Endoscopic Image Restoration via Noise-Aware Routing Diffusion
Endoscopic images often suffer from diverse and co-occurring degradations such as low lighting, smoke, and bleeding, which obscure critical clinical details. Existing restoration methods are typically task-specific and often require prior knowledge of the degradation type, limiting their robustness in real-world clinical use. We propose EndoIR, an all-in-one, degradation-agnostic diffusion-based framework that restores multiple degradation types using a single model. EndoIR introduces a Dual-Domain Prompter that extracts joint spatial-frequency features, coupled with an adaptive embedding that encodes both shared and task-specific cues as conditioning for denoising. To mitigate feature confusion in conventional concatenation-based conditioning, we design a Dual-Stream Diffusion architecture that processes clean and degraded inputs separately, with a Rectified Fusion Block integrating them in a structured, degradation-aware manner. Furthermore, Noise-Aware Routing Block improves efficiency by dynamically selecting only noise-relevant features during denoising. Experiments on SegSTRONG-C and CEC datasets demonstrate that EndoIR achieves state-of-the-art performance across multiple degradation scenarios while using fewer parameters than strong baselines, and downstream segmentation experiments confirm its clinical utility.
Multiagent Systems
Low-cost Multi-agent Fleet for Acoustic Cooperative Localization Research
Real-world underwater testing for multi-agent autonomy presents substantial financial and engineering challenges. In this work, we introduce the Configurable Underwater Group of Autonomous Robots (CoUGARs) as a low-cost, configurable autonomous-underwater-vehicle (AUV) platform for multi-agent autonomy research. The base design costs less than $3,000 USD (as of May 2025) and is based on commercially-available and 3D-printed parts, enabling quick customization for various sensor payloads and configurations. Our current expanded model is equipped with a doppler velocity log (DVL) and ultra-short-baseline (USBL) acoustic array/transducer to support research on acoustic-based cooperative localization. State estimation, navigation, and acoustic communications software has been developed and deployed using a containerized software stack and is tightly integrated with the HoloOcean simulator. The system was tested both in simulation and via in-situ field trials in Utah lakes and reservoirs.
Modeling multi-agent motion dynamics in immersive rooms
Immersive rooms are increasingly popular augmented reality systems that support multi-agent interactions within a virtual world. However, despite extensive content creation and technological developments, insights about perceptually-driven social dynamics, such as the complex movement patterns during virtual world navigation, remain largely underexplored. Computational models of motion dynamics can help us understand the underlying mechanism of human interaction in immersive rooms and develop applications that better support spatially distributed interaction. In this work, we propose a new agent-based model of emergent human motion dynamics. The model represents human agents as simple spatial geometries in the room that relocate and reorient themselves based on the salient virtual spatial objects they approach. Agent motion is modeled as an interactive process combining external diffusion-driven influences from the environment with internal self-propelling interactions among agents. Further, we leverage simulation-based inference (SBI) to show that the governing parameters of motion patterns can be estimated from simple observables. Our results indicate that the model successfully captures action-related agent properties but exposes local non-identifiability linked to environmental awareness. We argue that our simulation-based approach paves the way for creating adaptive, responsive immersive rooms -- spaces that adjust their interfaces and interactions based on human collective movement patterns and spatial attention.
Information-Driven Fault Detection and Identification for Multi-Agent Spacecraft Systems: Collaborative On-Orbit Inspection Mission
This work presents a global-to-local, task-aware fault detection and identification (FDI) framework for multi-spacecraft systems conducting collaborative inspection missions in low Earth orbit. The inspection task is represented by a global information-driven cost functional that integrates the sensor model, spacecraft poses, and mission-level information-gain objectives. This formulation links guidance, control, and FDI by using the same cost function to drive both global task allocation and local sensing or motion decisions. Fault detection is achieved through comparisons between expected and observed task metrics, while higher-order cost-gradient measures enable the identification of faults among sensors, actuators, and state estimators. An adaptive thresholding mechanism captures the time-varying inspection geometry and dynamic mission conditions. Simulation results for representative multi-spacecraft inspection scenarios demonstrate the reliability of fault localization and classification under uncertainty, providing a unified, information-driven foundation for resilient autonomous inspection architectures.
comment: AIAA Book Chapter (accepted)
Convergence dynamics of Agent-to-Agent Interactions with Misaligned objectives
We develop a theoretical framework for agent-to-agent interactions in multi-agent scenarios. We consider the setup in which two language model based agents perform iterative gradient updates toward their respective objectives in-context, using the output of the other agent as input. We characterize the generation dynamics associated with the interaction when the agents have misaligned objectives, and show that this results in a biased equilibrium where neither agent reaches its target - with the residual errors predictable from the objective gap and the geometry induced by the prompt of each agent. We establish the conditions for asymmetric convergence and provide an algorithm that provably achieves an adversarial result, producing one-sided success. Experiments with trained transformer models as well as GPT$5$ for the task of in-context linear regression validate the theory. Our framework presents a setup to study, predict, and defend multi-agent systems; explicitly linking prompt design and interaction setup to stability, bias, and robustness.
Climate Driven Interactions Between Malaria Transmission and Diabetes Prevalence
Climate change is intensifying infectious and chronic diseases like malaria and diabetes, respectively, especially among the vulnerable populations. Global temperatures have risen by approximately $0.6^\circ$C since 1950, extending the window of transmission for mosquito-borne infections and worsening outcomes in diabetes due to metabolic stress caused by heat. People living with diabetes have already weakened immune defenses and, therefore, are at an alarmingly increased risk of contraction of malaria. However, most models rarely include both ways of interaction in changing climate conditions. In the paper, we introduce a new compartmental epidemiological model based on synthetic data fitted to disease patterns of India from 2019 to 2021. The framework captures temperature-dependent transmission parameters, seasonal variability, and different disease dynamics between diabetic and non-diabetic groups within the three-compartment system. Model calibration using Multi-Start optimization combined with Sequential Quadratic Programming allows us to find outstanding differences between populations. The odds of malaria infection in diabetic individuals were found to be 1.8--4.0 times higher, with peak infection levels in 35--36\%, as compared to 20--21\% in the non-diabetic ones. The fitted model was able to capture well the epidemiological patterns observed, while the basic reproduction number averaged around 2.3, ranging from 0.31 to 2.75 in different seasons. Given that India's diabetic population is set to rise to about 157 million people by 2050, these findings point to a pressing need for concerted efforts toward climate-informed health strategies and monitoring systems that address both malaria and diabetes jointly.
comment: 21 pages, 6 figures
How Brittle is Agent Safety? Rethinking Agent Risk under Intent Concealment and Task Complexity
Current safety evaluations for LLM-driven agents primarily focus on atomic harms, failing to address sophisticated threats where malicious intent is concealed or diluted within complex tasks. We address this gap with a two-dimensional analysis of agent safety brittleness under the orthogonal pressures of intent concealment and task complexity. To enable this, we introduce OASIS (Orthogonal Agent Safety Inquiry Suite), a hierarchical benchmark with fine-grained annotations and a high-fidelity simulation sandbox. Our findings reveal two critical phenomena: safety alignment degrades sharply and predictably as intent becomes obscured, and a "Complexity Paradox" emerges, where agents seem safer on harder tasks only due to capability limitations. By releasing OASIS and its simulation environment, we provide a principled foundation for probing and strengthening agent safety in these overlooked dimensions.
Understanding Electro-communication and Electro-sensing in Weakly Electric Fish using Multi-Agent Deep Reinforcement Learning
Weakly electric fish, like Gnathonemus petersii, use a remarkable electrical modality for active sensing and communication, but studying their rich electrosensing and electrocommunication behavior and associated neural activity in naturalistic settings remains experimentally challenging. Here, we present a novel biologically-inspired computational framework to study these behaviors, where recurrent neural network (RNN) based artificial agents trained via multi-agent reinforcement learning (MARL) learn to modulate their electric organ discharges (EODs) and movement patterns to collectively forage in virtual environments. Trained agents demonstrate several emergent features consistent with real fish collectives, including heavy tailed EOD interval distributions, environmental context dependent shifts in EOD interval distributions, and social interaction patterns like freeloading, where agents reduce their EOD rates while benefiting from neighboring agents' active sensing. A minimal two-fish assay further isolates the role of electro-communication, showing that access to conspecific EODs and relative dominance jointly shape foraging success. Notably, these behaviors emerge through evolution-inspired rewards for individual fitness and emergent inter-agent interactions, rather than through rewarding agents explicitly for social interactions. Our work has broad implications for the neuroethology of weakly electric fish, as well as other social, communicating animals in which extensive recordings from multiple individuals, and thus traditional data-driven modeling, are infeasible.
Introduction to Automated Negotiation
This book is an introductory textbook targeted towards computer science students who are completely new to the topic of automated negotiation. It does not require any prerequisite knowledge, except for elementary mathematics and basic programming skills. This book comes with an simple toy-world negotiation framework implemented in Python that can be used by the readers to implement their own negotiation algorithms and perform experiments with them. This framework is small and simple enough that any reader who does not like to work in Python should be able to re-implement it very quickly in any other programming language of their choice.
Adaptive Multi-Agent Response Refinement in Conversational Systems AAAI 2026
Large Language Models (LLMs) have demonstrated remarkable success in conversational systems by generating human-like responses. However, they can fall short, especially when required to account for personalization or specific knowledge. In real-life settings, it is impractical to rely on users to detect these errors and request a new response. One way to address this problem is to refine the response before returning it to the user. While existing approaches focus on refining responses within a single LLM, this method struggles to consider diverse aspects needed for effective conversations. In this work, we propose refining responses through a multi-agent framework, where each agent is assigned a specific role for each aspect. We focus on three key aspects crucial to conversational quality: factuality, personalization, and coherence. Each agent is responsible for reviewing and refining one of these aspects, and their feedback is then merged to improve the overall response. To enhance collaboration among them, we introduce a dynamic communication strategy. Instead of following a fixed sequence of agents, our approach adaptively selects and coordinates the most relevant agents based on the specific requirements of each query. We validate our framework on challenging conversational datasets, demonstrating that ours significantly outperforms relevant baselines, particularly in tasks involving knowledge or user's persona, or both.
comment: LaCATODA Workshop @ AAAI 2026
SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: Technique Report
BIPPO: Budget-Aware Independent PPO for Energy-Efficient Federated Learning Services
Federated Learning (FL) is a promising machine learning solution in large-scale IoT systems, guaranteeing load distribution and privacy. However, FL does not natively consider infrastructure efficiency, a critical concern for systems operating in resource-constrained environments. Several Reinforcement Learning (RL) based solutions offer improved client selection for FL; however, they do not consider infrastructure challenges, such as resource limitations and device churn. Furthermore, the training of RL methods is often not designed for practical application, as these approaches frequently do not consider generalizability and are not optimized for energy efficiency. To fill this gap, we propose BIPPO (Budget-aware Independent Proximal Policy Optimization), which is an energy-efficient multi-agent RL solution that improves performance. We evaluate BIPPO on two image classification tasks run in a highly budget-constrained setting, with FL clients training on non-IID data, a challenging context for vanilla FL. The improved sampler of BIPPO enables it to increase the mean accuracy compared to non-RL mechanisms, traditional PPO, and IPPO. In addition, BIPPO only consumes a negligible proportion of the budget, which stays consistent even if the number of clients increases. Overall, BIPPO delivers a performant, stable, scalable, and sustainable solution for client selection in IoT-FL.
comment: This work has been submitted to the IEEE for possible publication
AVOID-JACK: Avoidance of Jackknifing for Swarms of Long Heavy Articulated Vehicles
This paper presents a novel approach to avoiding jackknifing and mutual collisions in Heavy Articulated Vehicles (HAVs) by leveraging decentralized swarm intelligence. In contrast to typical swarm robotics research, our robots are elongated and exhibit complex kinematics, introducing unique challenges. Despite its relevance to real-world applications such as logistics automation, remote mining, airport baggage transport, and agricultural operations, this problem has not been addressed in the existing literature. To tackle this new class of swarm robotics problems, we propose a purely reaction-based, decentralized swarm intelligence strategy tailored to automate elongated, articulated vehicles. The method presented in this paper prioritizes jackknifing avoidance and establishes a foundation for mutual collision avoidance. We validate our approach through extensive simulation experiments and provide a comprehensive analysis of its performance. For the experiments with a single HAV, we observe that for 99.8% jackknifing was successfully avoided and that 86.7% and 83.4% reach their first and second goals, respectively. With two HAVs interacting, we observe 98.9%, 79.4%, and 65.1%, respectively, while 99.7% of the HAVs do not experience mutual collisions.
comment: 6+1 pages, 9 figures, accepted for publication in IEEE MRS 2025
Effective Game-Theoretic Motion Planning via Nested Search
To facilitate effective, safe deployment in the real world, individual robots must reason about interactions with other agents, which often occur without explicit communication. Recent work has identified game theory, particularly the concept of Nash Equilibrium (NE), as a key enabler for behavior-aware decision-making. Yet, existing work falls short of fully unleashing the power of game-theoretic reasoning. Specifically, popular optimization-based methods require simplified robot dynamics and tend to get trapped in local minima due to convexification. Other works that rely on payoff matrices suffer from poor scalability due to the explicit enumeration of all possible trajectories. To bridge this gap, we introduce Game-Theoretic Nested Search (GTNS), a novel, scalable, and provably correct approach for computing NEs in general dynamical systems. GTNS efficiently searches the action space of all agents involved, while discarding trajectories that violate the NE constraint (no unilateral deviation) through an inner search over a lower-dimensional space. Our algorithm enables explicit selection among equilibria by utilizing a user-specified global objective, thereby capturing a rich set of realistic interactions. We demonstrate the approach on a variety of autonomous driving and racing scenarios where we achieve solutions in mere seconds on commodity hardware.
LLM-Powered Fully Automated Chaos Engineering: Towards Enabling Anyone to Build Resilient Software Systems at Low Cost
Chaos Engineering (CE) is an engineering technique aimed at improving the resilience of distributed systems. It involves intentionally injecting faults into a system to test its resilience, uncover weaknesses, and address them before they cause failures in production. Recent CE tools automate the execution of predefined CE experiments. However, planning such experiments and improving the system based on the experimental results still remain manual. These processes are labor-intensive and require multi-domain expertise. To address these challenges and enable anyone to build resilient systems at low cost, this paper proposes ChaosEater, a system that automates the entire CE cycle with Large Language Models (LLMs). It predefines an agentic workflow according to a systematic CE cycle and assigns subdivided processes within the workflow to LLMs. ChaosEater targets CE for software systems built on Kubernetes. Therefore, the LLMs in ChaosEater complete CE cycles through software engineering tasks, including requirement definition, code generation, testing, and debugging. We evaluate ChaosEater through case studies on small- and large-scale Kubernetes systems. The results demonstrate that it consistently completes reasonable CE cycles with significantly low time and monetary costs. Its cycles are also qualitatively validated by human engineers and LLMs.
comment: Accepted at ASE 2025 NIER Track. The code is available at https://github.com/ntt-dkiku/chaos-eater
Can LLM Agents Really Debate? A Controlled Study of Multi-Agent Debate in Logical Reasoning
Multi-agent debate (MAD) has recently emerged as a promising framework for improving the reasoning performance of large language models (LLMs). Yet, whether LLM agents can genuinely engage in deliberative reasoning, beyond simple ensembling or majority voting, remains unclear. We address this question through a controlled study using the Knight--Knave--Spy logic puzzle, which enables precise, step-wise evaluation of debate outcomes and processes under verifiable ground truth. We systematically set up six structural and cognitive factors, including agent team size, composition, confidence visibility, debate order, debate depth, and task difficulty, to disentangle their respective effects on collective reasoning. Our results show that intrinsic reasoning strength and group diversity are the dominant drivers of debate success, while structural parameters such as order or confidence visibility offer limited gains. Beyond outcomes, process-level analyses identify key behavioral patterns: majority pressure suppresses independent correction, effective teams overturn incorrect consensus, and rational, validity-aligned reasoning most strongly predicts improvement. These findings provide valuable insights into how and why LLM debates succeed or fail, offering guidance for designing interpretable and truth-seeking multi-agent reasoning systems.
comment: 20 pages, 6 figures
A Historical Interaction-Enhanced Shapley Policy Gradient Algorithm for Multi-Agent Credit Assignment
Multi-agent reinforcement learning (MARL) has demonstrated remarkable performance in multi-agent collaboration problems and has become a prominent topic in artificial intelligence research in recent years. However, traditional credit assignment schemes in MARL cannot reliably capture individual contributions in strongly coupled tasks while maintaining training stability, which leads to limited generalization capabilities and hinders algorithm performance. To address these challenges, we propose a Historical Interaction-Enhanced Shapley Policy Gradient Algorithm (HIS) for Multi-Agent Credit Assignment, which employs a hybrid credit assignment mechanism to balance base rewards with individual contribution incentives. By utilizing historical interaction data to calculate the Shapley value in a sample-efficient manner, HIS enhances the agent's ability to perceive its own contribution, while retaining the global reward to maintain training stability. Additionally, we provide theoretical guarantees for the hybrid credit assignment mechanism, ensuring that the assignment results it generates are both efficient and stable. We evaluate the proposed algorithm in three widely used continuous-action benchmark environments: Multi-Agent Particle Environment, Multi-Agent MuJoCo, and Bi-DexHands. Experimental results demonstrate that HIS outperforms state-of-the-art methods, particularly excelling in strongly coupled, complex collaborative tasks.
A Negotiation-Based Multi-Agent Reinforcement Learning Approach for Dynamic Scheduling of Reconfigurable Manufacturing Systems
Reconfigurable manufacturing systems (RMS) are critical for future market adjustment given their rapid adaptation to fluctuations in consumer demands, the introduction of new technological advances, and disruptions in linked supply chain sections. The adjustable hard settings of such systems require a flexible soft planning mechanism that enables realtime production planning and scheduling amid the existing complexity and variability in their configuration settings. This study explores the application of multi agent reinforcement learning (MARL) for dynamic scheduling in soft planning of the RMS settings. In the proposed framework, deep Qnetwork (DQN) agents trained in centralized training learn optimal job machine assignments in real time while adapting to stochastic events such as machine breakdowns and reconfiguration delays. The model also incorporates a negotiation with an attention mechanism to enhance state representation and improve decision focus on critical system features. Key DQN enhancements including prioritized experience replay, nstep returns, double DQN and soft target update are used to stabilize and accelerate learning. Experiments conducted in a simulated RMS environment demonstrate that the proposed approach outperforms baseline heuristics in reducing makespan and tardiness while improving machine utilization. The reconfigurable manufacturing environment was extended to simulate realistic challenges, including machine failures and reconfiguration times. Experimental results show that while the enhanced DQN agent is effective in adapting to dynamic conditions, machine breakdowns increase variability in key performance metrics such as makespan, throughput, and total tardiness. The results confirm the advantages of applying the MARL mechanism for intelligent and adaptive scheduling in dynamic reconfigurable manufacturing environments.
Who Gets the Reward, Who Gets the Blame? Evaluation-Aligned Training Signals for Multi-LLM Agents
Large Language Models (LLMs) in multi-agent systems (MAS) have shown promise for complex tasks, yet current training methods lack principled ways to connect system-level evaluation with agent-level and message-level learning. We propose a theoretical framework that unifies cooperative game-theoretic attribution with process reward modeling to transform system evaluation into agent credit and then into response-level signals. Unlike prior approaches that rely only on attribution (e.g., Shapley) or step-level labels (e.g., PRM), our method produces local, signed, and credit-conserving signals. In success cases, Shapley-based credit assignment fairly allocates outcomes across agents and is refined into per-message rewards that promote cooperation while discouraging redundancy or sabotage. In failure cases, first-error localization yields repair-aware preferences that penalize harmful steps while rewarding corrective attempts. The resulting signals are bounded, cooperative, and directly compatible with reinforcement-based or preference-based post-training, providing a unified and auditable pathway from global evaluation to local supervision in LLM multi-agent training. Our contribution is conceptual: we present a theoretical foundation and training signals, leaving empirical validation for future work.
How Modality Shapes Perception and Reasoning: A Study of Error Propagation in ARC-AGI
ARC-AGI and ARC-AGI-2 measure generalization-through-composition on small color-quantized grids, and their prize competitions make progress on these harder held-out tasks a meaningful proxy for systematic generalization. Recent instruction-first systems translate grids into concise natural-language or DSL rules executed in generate-execute-select loops, yet we lack a principled account of how encodings shape model perception and how to separate instruction errors from execution errors. We hypothesize that modality imposes perceptual bottlenecks -- text flattens 2D structure into 1D tokens while images preserve layout but can introduce patch-size aliasing -- thereby shaping which grid features are reliably perceived. To test this, we isolate perception from reasoning across nine text and image modalities using a weighted set-disagreement metric and a two-stage reasoning pipeline, finding that structured text yields precise coordinates on sparse features, images capture 2D shapes yet are resolution-sensitive, and combining them improves execution (about 8 perception points; about 0.20 median similarity). Overall, aligning representations with transformer inductive biases and enabling cross-validation between text and image yields more accurate instructions and more reliable execution without changing the underlying model.
Distributionally Robust Markov Games with Average Reward
We study distributionally robust Markov games (DR-MGs) with the average-reward criterion, a crucial framework for multi-agent decision-making under uncertainty over extended horizons. We first establish a connection between the best-response policies and the optimal policies for the induced single-agent problems. Under a standard irreducible assumption, we derive a correspondence between the optimal policies and the solutions of the robust Bellman equation, and derive the existence of stationary Nash Equilibrium (NE) based on these results. We also study a more general weakly communicating setting. We construct a set-valued map and show its value is a subset of the best-response policies, convex and upper hemi-continuous, which imply the existence of NE. We then introduce Robust Nash-Iteration, and provide convergence guarantees. Finally, we connect average-reward NE to discounted robust equilibria, showing approximation as the discount factor approaches one. Our studies provide comprehensive theoretical and algorithmic foundation for decision-making in complex, uncertain, and long-running multi-player environments.
comment: Preprint, work in progress
Search versus Search for Collapsing Electoral Control Types
Electoral control types are ways of trying to change the outcome of elections by altering aspects of their composition and structure [BTT92]. We say two compatible (i.e., having the same input types) control types that are about the same election system E form a collapsing pair if for every possible input (which typically consists of a candidate set, a vote set, a focus candidate, and sometimes other parameters related to the nature of the attempted alteration), either both or neither of the attempted attacks can be successfully carried out. For each of the seven general (i.e., holding for all election systems) electoral control type collapsing pairs found by Hemaspaandra, Hemaspaandra, and Menton [HHM20] and for each of the additional electoral control type collapsing pairs of Carleton et al. [CCH+24] for veto and approval (and many other election systems in light of that paper's Theorems 3.6 and 3.9), both members of the collapsing pair have the same complexity since as sets they are the same set. However, having the same complexity (as sets) is not enough to guarantee that as search problems they have the same complexity. In this paper, we explore the relationships between the search versions of collapsing pairs. For each of the collapsing pairs of Hemaspaandra, Hemaspaandra, and Menton [HHM20] and Carleton et al. [CCH+24], we prove that the pair's members' search-version complexities are polynomially related (given access, for cases when the winner problem itself is not in polynomial time, to an oracle for the winner problem). Beyond that, we give efficient reductions that from a solution to one compute a solution to the other. For the concrete systems plurality, veto, and approval, we completely determine which of their (due to our results) polynomially-related collapsing search-problem pairs are polynomial-time computable and which are NP-hard.
comment: The metadata's abstract is abridged due to arXiv.org's abstract-length limit. The paper itself has the unabridged (i.e., full) abstract
Question-to-Knowledge (Q2K): Multi-Agent Generation of Inspectable Facts for Product Mapping
Identifying whether two product listings refer to the same Stock Keeping Unit (SKU) is a persistent challenge in ecommerce, especially when explicit identifiers are missing and product names vary widely across platforms. Rule based heuristics and keyword similarity often misclassify products by overlooking subtle distinctions in brand, specification, or bundle configuration. To overcome these limitations, we propose Question to Knowledge (Q2K), a multi agent framework that leverages Large Language Models (LLMs) for reliable SKU mapping. Q2K integrates: (1) a Reasoning Agent that generates targeted disambiguation questions, (2) a Knowledge Agent that resolves them via focused web searches, and (3) a Deduplication Agent that reuses validated reasoning traces to reduce redundancy and ensure consistency. A human in the loop mechanism further refines uncertain cases. Experiments on real world consumer goods datasets show that Q2K surpasses strong baselines, achieving higher accuracy and robustness in difficult scenarios such as bundle identification and brand origin disambiguation. By reusing retrieved reasoning instead of issuing repeated searches, Q2K balances accuracy with efficiency, offering a scalable and interpretable solution for product integration.
comment: Accepted by IEEE BigData 2025 Industry Track
The Curse of Shared Knowledge: Recursive Belief Reasoning in a Coordination Game with Imperfect Information
Common knowledge is crucial for safe group coordination. In its absence, humans must rely on shared knowledge, which is inherently limited in depth and therefore prone to coordination failures, because any finite-order knowledge attribution allows for an even higher order attribution that may change what is known by whom. In three separate experiments involving 802 participants, we investigate the extent to which humans can differentiate between common knowledge and nth-order shared knowledge. We designed a two-person coordination game with imperfect information to simplify the recursive game structure and higher-order uncertainties into a relatable everyday scenario. In this game, coordination for the highest payoff requires a specific fact to be common knowledge between players. However, this fact cannot become common knowledge in the game. The fact can at most be nth-order shared knowledge for some n. Our findings reveal that even at quite shallow depths of shared knowledge (low values of n), players behave as though they possess common knowledge, and claim similar levels of certainty in their actions, despite incurring significant penalties when falsely assuming guaranteed coordination. We term this phenomenon 'the curse of shared knowledge'. It arises either from the players' inability to distinguish between higher-order shared knowledge and common knowledge, or from their implicit assumption that their co-player cannot make this distinction.
TrustResearcher: Automating Knowledge-Grounded and Transparent Research Ideation with Multi-Agent Collaboration
Effective research relies on organizing extensive information and stimulating novel solutions. Agentic systems have recently emerged as a promising tool to automate literature-based ideation. However, current systems often remain black-box. Their outputs may appear plausible but weakly grounded, with limited transparency or control for researchers. Our work introduces TrustResearcher, a multi-agent demo system for knowledge-grounded and transparent ideation. Specifically, TrustResearcher integrates meticulously designed four stages into a unified framework: (A) Structured Knowledge Curation, (B) Diversified Idea Generation, (C) Multi-stage Idea Selection, and (D) Expert Panel Review & Synthesis. Different from prior pipelines, our system not only exposes intermediate reasoning states, execution logs, and tunable agents for inspections, but also enables the generation of hypotheses that are both diverse and evidence-aligned. Our design is also domain-agnostic: as long as literature sources exist, the same pipeline can be instantiated in any scientific field. As an illustrative case, we demonstrate TrustResearcher on a graph-mining case study (k-truss breaking problem), where it generates distinct, plausible hypotheses with evidence and critiques. A live demo and source code are available at https://github.com/valleysprings/TrustResearcher.
Large-scale distributed synchronization systems, using a cancel-on-completion redundancy mechanism
We consider a class of multi-agent distributed synchronization systems, which are modeled as $n$ particles moving on the real line. This class generalizes the model of a multi-server queueing system, considered in [15], employing so-called cancel-on-completion (c.o.c.) redundancy mechanism, but is motivated by other applications as well. The model in [15] is a particle system, regulated at the left boundary point. The more general model of this paper is such that we allow regulation boundaries on either side, or both sides, or no regulation at all. We consider the mean-field asymptotic regime, when the number of particles $n$ and the job arrival rates go to infinity, while the job arrival rates per particle remain constant. The system state for a given $n$ is the empirical distribution of the particles' locations. The results include: the existence/uniqueness of fixed points of mean-field limits (ML), which describe the limiting dynamics of the system; conditions for the steady-state asymptotic independence (concentration of the stationary distribution on a single ML fixed point); the limits of the average velocity at which unregulated (free) particle system advances. In particular, our results for the left-regulated system unify and generalize the corresponding results in [15]. Our technical approach is such that the systems with different types of regulation are analyzed within a unified framework.
comment: Revision. 35 pages
MA-GTS: A Multi-Agent Framework for Solving Complex Graph Problems in Real-World Applications
Graph-theoretic problems arise in real-world applications like logistics, communication networks, and traffic optimization. These problems are often complex, noisy, and irregular, posing challenges for traditional algorithms. Large language models (LLMs) offer potential solutions but face challenges, including limited accuracy and input length constraints. To address these challenges, we propose MA-GTS (Multi-Agent Graph Theory Solver), a multi-agent framework that decomposes these complex problems through agent collaboration. MA-GTS maps the implicitly expressed text-based graph data into clear, structured graph representations and dynamically selects the most suitable algorithm based on problem constraints and graph structure scale. This approach ensures that the solution process remains efficient and the resulting reasoning path is interpretable. We validate MA-GTS using the G-REAL dataset, a real-world-inspired graph theory dataset we created. Experimental results show that MA-GTS outperforms state-of-the-art approaches in terms of efficiency, accuracy, and scalability, with strong results across multiple benchmarks (G-REAL 94.2%, GraCoRe 96.9%, NLGraph 98.4%).MA-GTS is open-sourced at https://github.com/ZIKEYUAN/MA-GTS.git.
Human Machine Social Hybrid Intelligence:A Collaborative Decision Making Framework for Large Model Agent Groups and Human Experts
The rapid advancements in large foundation models and multi-agent systems offer unprecedented capabilities, yet current Human-in-the-Loop (HiTL) paradigms inadequately integrate human expertise, often leading to cognitive overload and decision-making bottlenecks in complex, high-stakes environments. We propose the "Human-Machine Social Hybrid Intelligence" (HMS-HI) framework, a novel architecture designed for deep, collaborative decision-making between groups of human experts and LLM-powered AI agents. HMS-HI is built upon three core pillars: (1) a \textbf{Shared Cognitive Space (SCS)} for unified, multi-modal situational awareness and structured world modeling; (2) a \textbf{Dynamic Role and Task Allocation (DRTA)} module that adaptively assigns tasks to the most suitable agent (human or AI) based on capabilities and workload; and (3) a \textbf{Cross-Species Trust Calibration (CSTC)} protocol that fosters transparency, accountability, and mutual adaptation through explainable declarations and structured feedback. Validated in a high-fidelity urban emergency response simulation, HMS-HI significantly reduced civilian casualties by 72\% and cognitive load by 70\% compared to traditional HiTL approaches, demonstrating superior decision quality, efficiency, and human-AI trust. An ablation study confirms the critical contribution of each module, highlighting that engineered trust and shared context are foundational for scalable, synergistic human-AI collaboration.
comment: We have identified critical issues in the code implementation that severely deviate from Algorithm 1, invalidating all experimental results and conclusions. Despite exhaustive efforts to correct these issues, we find they fundamentally undermine the paper's core claims. To uphold academic integrity and prevent misinformation, we are withdrawing this manuscript
From Pixels to Cooperation Multi Agent Reinforcement Learning based on Multimodal World Models
Learning cooperative multi-agent policies directly from high-dimensional, multimodal sensory inputs like pixels and audio (from pixels) is notoriously sample-inefficient. Model-free Multi-Agent Reinforcement Learning (MARL) algorithms struggle with the joint challenge of representation learning, partial observability, and credit assignment. To address this, we propose a novel framework based on a shared, generative Multimodal World Model (MWM). Our MWM is trained to learn a compressed latent representation of the environment's dynamics by fusing distributed, multimodal observations from all agents using a scalable attention-based mechanism. Subsequently, we leverage this learned MWM as a fast, "imagined" simulator to train cooperative MARL policies (e.g., MAPPO) entirely within its latent space, decoupling representation learning from policy learning. We introduce a new set of challenging multimodal, multi-agent benchmarks built on a 3D physics simulator. Our experiments demonstrate that our MWM-MARL framework achieves orders-of-magnitude greater sample efficiency compared to state-of-the-art model-free MARL baselines. We further show that our proposed multimodal fusion is essential for task success in environments with sensory asymmetry and that our architecture provides superior robustness to sensor-dropout, a critical feature for real-world deployment.
comment: We have identified critical issues in the code implementation that severely deviate from Algorithm 1, invalidating all experimental results and conclusions. Despite exhaustive efforts to correct these issues, we find they fundamentally undermine the paper's core claims. To uphold academic integrity and prevent misinformation, we are withdrawing this manuscript
Socialized Learning and Emergent Behaviors in Multi-Agent Systems based on Multimodal Large Language Models
This search introduces the Multimodal Socialized Learning Framework (M-S2L), designed to foster emergent social intelligence in AI agents by integrating Multimodal Large Language Models (M-LLMs) with social learning mechanisms. The framework equips agents with multimodal perception (vision and text) and structured action capabilities, enabling physical manipulation and grounded multimodal communication (e.g., text with visual pointers). M-S2L combines direct reinforcement learning with two novel social learning pathways: multimodal observational learning and communication-driven learning from feedback, augmented by an episodic memory system for long-term social context. We evaluate M-S2L in a Collaborative Assembly Environment (CAE), where agent teams must construct complex devices from ambiguous blueprints under informational asymmetry. Across tasks of increasing complexity, M-S2L agents consistently outperform Text-Only and No-Social-Learning baselines in Task Completion Rate and Time to Completion, particularly in dynamic problem-solving scenarios. Ablation studies confirm the necessity of both multimodality and socialized learning. Our analysis reveals the emergence of efficient communication protocols integrating visual pointers with concise text, alongside rapid role specialization leading to stable labor division. Qualitative case studies demonstrate agents' abilities for shared awareness, dynamic re-planning, and adaptive problem-solving, suggesting a nascent form of machine social cognition. These findings indicate that integrating multimodal perception with explicit social learning is critical for developing human-like collaborative intelligence in multi-agent systems.
comment: We have identified critical issues in the code implementation that severely deviate from Algorithm 1, invalidating all experimental results and conclusions. Despite exhaustive efforts to correct these issues, we find they fundamentally undermine the paper's core claims. To uphold academic integrity and prevent misinformation, we are withdrawing this manuscript
Systems and Control (EESS)
Incorporating the nonlinearity index into adaptive-mesh sequential convex optimization for minimum-fuel low-thrust trajectory design
Successive convex programming (SCP) is a powerful class of direct optimization methods, known for its polynomial complexity and computational efficiency, making it particularly suitable for autonomous applications. Direct methods are also referred to as ``discretize-then-optimize'' with discretization being a fundamental solution step. A key step in all practical direct methods is mesh refinement, which aims to refine the solution resolution by enhancing the precision and quality of discretization techniques through strategic distribution and placement of mesh/grid points. We propose a novel method to enhance adaptive mesh refinement stability by integrating it with a nonlinearity-index-based trust-region strategy within the SCP framework for spacecraft trajectory design. The effectiveness of the proposed method is demonstrated through solving minimum-fuel, low-thrust missions, including a benchmark Earth-to-Asteroid rendezvous and an Earth-Moon L2 Halo-to-Halo transfer using the Circular Restricted Three-Body (CR3BP) model.
comment: 2025 AAS/AIAA Astrodynamics Specialist Conference
Physics-Informed Machine Learning for Characterizing System Stability
In the design and operation of complex dynamical systems, it is essential to ensure that all state trajectories of the dynamical system converge to a desired equilibrium within a guaranteed stability region. Yet, for many practical systems -- especially in aerospace -- this region cannot be determined a priori and is often challenging to compute. One of the most common methods for computing the stability region is to identify a Lyapunov function. A Lyapunov function is a positive function whose time derivative along system trajectories is non-positive, which provides a sufficient condition for stability and characterizes an estimated stability region. However, existing methods of characterizing a stability region via a Lyapunov function often rely on explicit knowledge of the system governing equations. In this work, we present a new physics-informed machine learning method of characterizing an estimated stability region by inferring a Lyapunov function from system trajectory data that treats the dynamical system as a black box and does not require explicit knowledge of the system governing equations. In our presented Lyapunov function Inference method (LyapInf), we propose a quadratic form for the unknown Lyapunov function and fit the unknown quadratic operator to system trajectory data by minimizing the average residual of the Zubov equation, a first-order partial differential equation whose solution yields a Lyapunov function. The inferred quadratic Lyapunov function can then characterize an ellipsoidal estimate of the stability region. Numerical results on benchmark examples demonstrate that our physics-informed stability analysis method successfully characterizes a near-maximal ellipsoid of the system stability region associated with the inferred Lyapunov function without requiring knowledge of the system governing equations.
Enabling Integrated AI Control on DIII-D: A Control System Design with State-of-the-art Experiments
We present the design and application of a general algorithm for Prediction And Control using MAchiNe learning (PACMAN) in DIII-D. Machine learing (ML)-based predictors and controllers have shown great promise in achieving regimes in which traditional controllers fail, such as tearing mode free scenarios, ELM-free scenarios and stable advanced tokamak conditions. The architecture presented here was deployed on DIII-D to facilitate the end-to-end implementation of advanced control experiments, from diagnostic processing to final actuation commands. This paper describes the detailed design of the algorithm and explains the motivation behind each design point. We also describe several successful ML control experiments in DIII-D using this algorithm, including a reinforcement learning controller targeting advanced non-inductive plasmas, a wide-pedestal quiescent H-mode ELM predictor, an Alfvén Eigenmode controller, a Model Predictive Control plasma profile controller and a state-machine Tearing Mode predictor-controller. There is also discussion on guiding principles for real-time machine learning controller design and implementation.
comment: 15 pages, 5 figures
Discovering and exploiting active sensing motifs for estimation
From organisms to machines, autonomous systems rely on measured sensory cues to estimate unknown information about themselves or their environment. For nonlinear systems, carefully selected sensor motion can be exploited to extract information that is otherwise unavailable, i.e. active sensing. Empirical, yet mathematically rigorous, tools are needed to (1) quantify how sensor movement can contribute to estimation performance, and (2) leverage this knowledge to improve state estimates. Here, we introduce "BOUNDS: Bounding Observability for Uncertain Nonlinear Dynamic Systems", and Python package pybounds, which can discover patterns of sensor motion that increase information for individual state variables. Crucially, it is suitable for partially observable nonlinear systems, accounts for sensor noise, and can be applied to either simulated or observed trajectories. We demonstrate BOUNDS through a case study on a flying agent with limited sensors, showing how active sensing can be leveraged to estimate key variables such as ground speed, altitude, and ambient wind direction. Finally, we present a framework to refine sporadic estimates from bouts of active sensing that combines data-driven state and observability estimation from artificial neural networks with model-based estimation, which we call the Augmented Information Kalman Filter (AI-KF). We validate our framework using altitude estimation given GPS-denied data from an outdoor quadcopter flight. Collectively, our work will help decode active sensing strategies and inform the design of estimation algorithms in sensorimotor systems.
comment: 24 pages, 11 figures
Grid Operational Benefit Analysis of Data Center Spatial Flexibility: Congestion Relief, Renewable Energy Curtailment Reduction, and Cost Saving
Data centers are facilities housing computing infrastructure for processing and storing digital information. The rapid expansion of artificial intelligence is driving unprecedented growth in data center capacity, with global electricity demand from data centers projected to double by 2026. This growth creates substantial challenges for power transmission networks, as large concentrated loads can cause congestion and threaten grid reliability. Meanwhile, the intermittent nature of solar and wind generation requires flexible resources to maintain grid reliability and minimize curtailment. This paper assesses whether data center spatial flexibility-the ability to migrate computational workloads geographically-can serve as a grid resource to address these challenges. An optimal power flow model is developed to co-optimize generation dispatch, security reserves, and flexible data center loads. Case studies on a modified IEEE 73-bus system show that inflexible data center placement can lead to severe transmission violations, with line overloads reaching 30.1%. Enabling spatial flexibility mitigates these violations in the studied scenarios and restores system feasibility. This flexibility also reduces solar curtailment by up to 61.0% by strategically reallocating load to solar-rich areas. The results suggest that spatial flexibility offers a viable approach to defer transmission upgrades and enhance renewable utilization.
comment: 5 pages, 3 figures, submitted to IEEE PES General Meeting (PESGM) 2026
Information-Driven Fault Detection and Identification for Multi-Agent Spacecraft Systems: Collaborative On-Orbit Inspection Mission
This work presents a global-to-local, task-aware fault detection and identification (FDI) framework for multi-spacecraft systems conducting collaborative inspection missions in low Earth orbit. The inspection task is represented by a global information-driven cost functional that integrates the sensor model, spacecraft poses, and mission-level information-gain objectives. This formulation links guidance, control, and FDI by using the same cost function to drive both global task allocation and local sensing or motion decisions. Fault detection is achieved through comparisons between expected and observed task metrics, while higher-order cost-gradient measures enable the identification of faults among sensors, actuators, and state estimators. An adaptive thresholding mechanism captures the time-varying inspection geometry and dynamic mission conditions. Simulation results for representative multi-spacecraft inspection scenarios demonstrate the reliability of fault localization and classification under uncertainty, providing a unified, information-driven foundation for resilient autonomous inspection architectures.
comment: AIAA Book Chapter (accepted)
ADMM Penalty Parameter Evaluation for Networked Microgrid Energy Management
The alternating direction method of multipliers (ADMM) is a powerful algorithm for solving decentralized optimization problems including networked microgrid energy management (NetMEM). However, its performance is highly sensitive to the selection of its penalty parameter \r{ho}, which can lead to slow convergence, suboptimal solutions, or even algorithm divergence. This paper evaluates and compares three district ADMM formulations to solve the NetMEM problem, which explore different methods to determine appropriate stopping points, aiming to yield high-quality solutions. Furthermore, an adaptive penalty heuristic is also incorporated into each method to analyze its potential impact on ADMM performance. Different case studies on networks of varying sizes demonstrate that an objective-based ADMM approach, denominated as OB-ADMM, is significantly more robust to the choice of \r{ho}, consistently yielding solutions closer to the centralized optimal benchmark by preventing premature algorithm stopping.
comment: Index Terms: Alternating Direction Method of Multipliers, Decentralized Optimization, Energy Management, Networked Microgrids
Hierarchical Strategic Decision-Making in Layered Mobility Systems
Mobility systems are complex socio-technical environments influenced by multiple stakeholders with hierarchically interdependent decisions, rendering effective control and policy design inherently challenging. We bridge hierarchical game-theoretic modeling with online feedback optimization by casting urban mobility as a tri-level Stackelberg game (travelers, operators, municipality) closed in a feedback loop. The municipality iteratively updates taxes, subsidies, and operational constraints using a projected two-point (gradient-free) scheme, while lower levels respond through equilibrium computations (Frank-Wolfe for traveler equilibrium; operator best responses). This model-free pipeline enforces constraints, accommodates heterogeneous users and modes, and scales to higher-dimensional policy vectors without differentiating through equilibrium maps. On a real multimodal network for Zurich, Switzerland, our method attains substantially better municipal objectives than Bayesian optimization and Genetic algorithms, and identifies integration incentives that increase multimodal usage while improving both operator objectives. The results show that feedback-based regulation can steer competition toward cooperative outcomes and deliver tangible welfare gains in complex, data-rich mobility ecosystems.
The curse of dimensionality: what lies beyond the capabilities of physics-informed neural networks
Physics-Informed Neural Networks (PINNs) have emerged as a promising framework for solving forward and inverse problems governed by differential equations. However, their reliability when used in ill-posed inverse problems remains poorly understood. In this study, we explore the fundamental limitations of PINNs using a simple illustrative case: RC low-pass filters. Showing that while PINNs can accurately predict system dynamics in forward problems, they fail to recover unique physical parameters when solving inverse problems when more than two parameters are approximated. Our findings provide grounds to understand the boundaries of PINNs applicability for parameter discovery in physical systems.
comment: Work presented at the International Conference on Computer Science and Artificial Intelligence Applications -- CSAIA 2025
A bioreactor-based architecture for in vivo model-based and sim-to-real learning control of microbial consortium composition
Microbial consortia offer significant biotechnological advantages over monocultures for bioproduction. However, industrial deployment is hampered by the lack of scalable architectures to ensure stable coexistence between populations. Existing strategies rely on genetic modifications, which impose metabolic load, or environmental changes, which can reduce production. We present a versatile control architecture to regulate density and composition of a two-strain consortium without genetic engineering or drastic environmental changes. Our bioreactor-based control architecture comprises a mixing chamber where both strains are co-cultured and a reservoir sustaining the slower-growing strain. For both chambers we develop model-based and sim-to-real learning controllers. The control architecture is then validated in vivo on a two-strain Escherichia coli consortium, achieving precise and robust regulation of consortium density and composition, including tracking of time-varying references and recovery from perturbations.
MIMO Communications with 1-bit RIS: Asymptotic Analysis and Over-the-Air Channel Diagonalization
This paper presents an asymptotic analysis of Multiple-Input Multiple-Output (MIMO) systems assisted by a 1-bit Reconfigurable Intelligent Surface (RIS) under Ricean fading conditions. Using random matrix theory, we show that, in the asymptotic regime, the dominant singular values and vectors of the transmitter-RIS and RIS-receiver channels converge to their deterministic Line-of-Sight (LoS) components, almost irrespective of the Ricean factors. This enables RIS phase configuration using only LoS information through a closed-form Sign Alignment (SA) rule that maximizes the channel gain. Furthermore, when the RIS is asymptotically larger than the transceiver arrays, proper RIS configuration can render the end-to-end MIMO channel in the capacity formula asymptotically diagonal, thereby eliminating inter-stream interference and enabling Over-The-Air (OTA) spatial multiplexing without channel knowledge at the transmitter. Building on this result, a waterfilling-inspired SA algorithm that allocates RIS elements to spatial streams, based on the asymptotic singular values and statistical channel parameters, is proposed. Simulation results validate the theoretical analyses, demonstrating that the proposed schemes achieve performance comparable to conventional Riemannian manifold optimization, but with orders of magnitude lower runtime.
comment: 8 pages, 6 figures, IEEE Conference
Safe and Optimal Learning from Preferences via Weighted Temporal Logic with Applications in Robotics and Formula 1
Autonomous systems increasingly rely on human feedback to align their behavior, expressed as pairwise comparisons, rankings, or demonstrations. While existing methods can adapt behaviors, they often fail to guarantee safety in safety-critical domains. We propose a safety-guaranteed, optimal, and efficient approach to solve the learning problem from preferences, rankings, or demonstrations using Weighted Signal Temporal Logic (WSTL). WSTL learning problems, when implemented naively, lead to multi-linear constraints in the weights to be learned. By introducing structural pruning and log-transform procedures, we reduce the problem size and recast the problem as a Mixed-Integer Linear Program while preserving safety guarantees. Experiments on robotic navigation and real-world Formula 1 data demonstrate that the method effectively captures nuanced preferences and models complex task objectives.
comment: 8 pages, 2 figures
Toward a Safety Argumentation Lifecycle for Automated Vehicles: Promoting Communication and Interdependency with System Lifecycle Processes
Despite the growing number of automated vehicles on public roads, operating such systems in open contexts will inevitably involve incidents. This results from an inherent risk in road traffic, which arises from multiple sources of complexity and can never be fully eliminated. One central challenge lies in developing a defensible case that the residual risk has been reduced to a reasonable level. While a safety argumentation is a common means to represent this case, there is a need to guide its creation and maintenance by adequate processes. In this paper, we derive requirements for a safety argumentation lifecycle based on examining the current state of the art. In particular, the requirement-driven process design accounts for both identified limitations of current process specifications and implicit knowledge contained in related work. Subsequently, we reflect on interdependencies between the resulting safety argumentation lifecycle and the system lifecycle. Moreover, we discuss a gap in literature regarding transparent ex ante risk communication. Correspondingly, we introduce the concept of representation-supported communication that is based on deriving representations from the argumentation with respect to target stakeholders and communication purposes. Finally, we demonstrate how this approach can be integrated into the system lifecycle to facilitate stakeholder communication.
Solving Quadratic Programs with Slack Variables via ADMM without Increasing the Problem Size
Proximal methods such as the Alternating Direction Method of Multipliers (ADMM) are effective at solving constrained quadratic programs (QPs). To tackle infeasible QPs, slack variables are often introduced to ensure feasibility, which changes the structure of the problem, increases its size, and slows down numerical resolution. In this letter, we propose a simple ADMM scheme to tackle QPs with slack variables without increasing the size of the original problem. The only modification is a slightly different projection in the z-update, while the rest of the algorithm remains standard. We prove that the method is equivalent to applying ADMM to the QP with additional slack variables, even though slack variables are not added. Numerical experiments show speedups of the approach.
Understanding Electro-communication and Electro-sensing in Weakly Electric Fish using Multi-Agent Deep Reinforcement Learning
Weakly electric fish, like Gnathonemus petersii, use a remarkable electrical modality for active sensing and communication, but studying their rich electrosensing and electrocommunication behavior and associated neural activity in naturalistic settings remains experimentally challenging. Here, we present a novel biologically-inspired computational framework to study these behaviors, where recurrent neural network (RNN) based artificial agents trained via multi-agent reinforcement learning (MARL) learn to modulate their electric organ discharges (EODs) and movement patterns to collectively forage in virtual environments. Trained agents demonstrate several emergent features consistent with real fish collectives, including heavy tailed EOD interval distributions, environmental context dependent shifts in EOD interval distributions, and social interaction patterns like freeloading, where agents reduce their EOD rates while benefiting from neighboring agents' active sensing. A minimal two-fish assay further isolates the role of electro-communication, showing that access to conspecific EODs and relative dominance jointly shape foraging success. Notably, these behaviors emerge through evolution-inspired rewards for individual fitness and emergent inter-agent interactions, rather than through rewarding agents explicitly for social interactions. Our work has broad implications for the neuroethology of weakly electric fish, as well as other social, communicating animals in which extensive recordings from multiple individuals, and thus traditional data-driven modeling, are infeasible.
HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
Diffusion and flow-matching have emerged as powerful methodologies for generative modeling, with remarkable success in capturing complex data distributions and enabling flexible guidance at inference time. Many downstream applications, however, demand enforcing hard constraints on generated samples (for example, robot trajectories must avoid obstacles), a requirement that goes beyond simple guidance. Prevailing projection-based approaches constrain the entire sampling path to the constraint manifold, which is overly restrictive and degrades sample quality. In this paper, we introduce a novel framework that reformulates hard-constrained sampling as a trajectory optimization problem. Our key insight is to leverage numerical optimal control to steer the sampling trajectory so that constraints are satisfied precisely at the terminal time. By exploiting the underlying structure of flow-matching models and adopting techniques from model predictive control, we transform this otherwise complex constrained optimization problem into a tractable surrogate that can be solved efficiently and effectively. Furthermore, this trajectory optimization perspective offers significant flexibility beyond mere constraint satisfaction, allowing for the inclusion of integral costs to minimize distribution shift and terminal objectives to further enhance sample quality, all within a unified framework. We provide a control-theoretic analysis of our method, establishing bounds on the approximation error between our tractable surrogate and the ideal formulation. Extensive experiments across diverse domains, including robotics (planning), partial differential equations (boundary control), and vision (text-guided image editing), demonstrate that our algorithm, which we name $\textit{HardFlow}$, substantially outperforms existing methods in both constraint satisfaction and sample quality.
Computable Characterisations of Scaled Relative Graphs of Closed Operators
Scaled Relative Graphs (SRGs) provide a promising tool for stability and robustness analysis of multi-input-multi-output systems. In this paper, we provide tools for exact and computable constructions of the SRG for closed linear operators, based on maximum and minimum gain computations. The results are suitable for bounded and unbounded operators, and we specify how they can be used to draw SRGs for the typical operators that are used to model linear-time-invariant dynamical systems. Furthermore, for the special case of state-space models, we show how the Bounded Real Lemma can be used to construct the SRG.
comment: 12 pages, 5 figures, submitted to the 2026 European Control Conference (ECC)
Probabilistic Safety Guarantee for Stochastic Control Systems Using Average Reward MDPs
Safety in stochastic control systems, which are subject to random noise with a known probability distribution, aims to compute policies that satisfy predefined operational constraints with high confidence throughout the uncertain evolution of the state variables. The unpredictable evolution of state variables poses a significant challenge for meeting predefined constraints using various control methods. To address this, we present a new algorithm that computes safe policies to determine the safety level across a finite state set. This algorithm reduces the safety objective to the standard average reward Markov Decision Process (MDP) objective. This reduction enables us to use standard techniques, such as linear programs, to compute and analyze safe policies. We validate the proposed method numerically on the Double Integrator and the Inverted Pendulum systems. Results indicate that the average-reward MDPs solution is more comprehensive, converges faster, and offers higher quality compared to the minimum discounted-reward solution.
comment: Submitted to the Learning for Dynamics & Control (L4DC) 2026 conference
Active Short Circuit and Safe Discharge Mechanisms in Multi-Phase Inverters During Critical Failures
The multi-phase inverter has become more complicated, particularly in an Electric Vehicle (EV)'s power train, which requires a robust fault protection system. The proposed active short circuit and safe discharge mechanisms are also included in this work, dedicated to multi-phase converters in failure conditions. With silicon carbide (SiC) power modules increasingly used in high efficiency and high-power applications, the reliability under fault conditions is an extremely important factor. Cascading failures and permanent damage will occur in multi phase inverter systems if short circuit faults are not prevented. The proposed method combines one centralized short circuit detection, active phase shorting and controlled discharge to make these structures more robust. The on chip active short circuit mechanism isolates the affected phases quickly preventing faults from spreading to other areas of the inverter and the safe discharge mechanism controls energy discharged in fault scenarios, which reduces the thermal stress placed on essential components. The experimental results show that the proposed mechanisms can effectively enhance a fault detection performance, system response during faults, and the operation as whole at faults over the several existing methods. These mechanisms are demonstrated to be very important for enhancing the safety and reliability of multiphase inverters, especially for critical applications of such inverters as EV where high operational security is required.
comment: 17 pages, 8 figures
Power Hardware-in-the-loop Interfacing via $\mathcal{H}_\infty$ Model Matching
This paper presents an $\mathcal{H}_\infty$ model matching control-based approach to the problem of power hardware-in-the-loop (PHIL) interfacing. The objective is to interconnect a grid simulation and a physical device via an interface in a way that is stable and accurate. Conventional approaches include the ideal transformer method (ITM) and its impedance-based variants, which trade accuracy for stability, as well as some $\mathcal{H}_\infty$ control-based approaches, which do not make use of all the available information in their optimization for accuracy. Designing for transparency, as opposed to accuracy as existing approaches do, would achieve both accuracy and stability, while making use of all the dynamical information present in the idealized interconnection of the grid and device. The approach proposed in this paper employs model matching to formulate the PHIL problem as an $\mathcal{H}_\infty$ control problem using transparency as the explicit frequency-domain control objective. The approach is experimentally validated in a real-time resistive-load PHIL setup, and is found to achieve accuracy levels that are comparable or superior to those of an ITM-based interface.
comment: 6 pages, 6 figures
Extended Time Varying Multi-Cluster Fluctuating Two-Ray Fading Model for Maritime Environment
The recent advancements in autonomous and remote operation of maritime vessels necessitates the development of robust and reliable communication systems to support high-bandwidth applications such as real-time monitoring, navigation, and control. Existing communication channel models, including Rayleigh and Rician fading, are inadequate to accurately describe the dynamic and complex nature of maritime communication, particularly for high-speed vessels in coastal environments. This paper proposes an extension to the Multi-Cluster Fluctuating Two-Ray Fading (MFTR) model that also accounts for key phenomena such as large-scale fading, time-varying parameters and Doppler shifts. The extended MFTR model integrates Stochastic Differential Equations (SDEs) to capture the time-varying characteristics of the channel, such as phase shifts and delays, while considering physical factors like delay-induced power loss and path loss. The accuracy of the proposed model is assessed in simulation.
PE-TSFM: Self-Supervised Time-Series Learning for Generalizable Power Converter Health Monitoring under Unseen Conditions
Data-driven health monitoring of power converters remains limited by poor generalization to unseen operating conditions. This work addresses this out-of-distribution (OOD) challenge by building a domain-specific time-series foundation model (PE-TSFM) that learns representations directly from large-scale unlabeled converter data. Unlike generic TSFMs trained on broad time-series datasets, the proposed PE-TSFM is pre-trained entirely on domain data, enabling it to learn the physical relationships unique to power electronics. To further tailor the model to this domain, we introduce a dual-attention mechanism that captures both temporal patterns and inter-channel dependencies. While generic TSFMs primarily model temporal dependencies, the added channel attention captures inter-sensor physical relationships essential for converter degradation analysis. A dataset containing 141 million unlabeled timestamps from an operating power converter is used for pre-training. Experiments show that PE-TSFM achieves 92% accuracy under unseen operating conditions. In contrast, generic TSFMs achieve around 60% and conventional time-series models achieve around 40% accuracy. This result confirms the strong OOD generalization of the proposed PE-TSFM. Ablation studies further verify that the introduced channel attention mechanism significantly improves model performance. In addition, we conduct detailed studies on model scalability, hyperparameter sensitivity, and interpretability to provide a comprehensive understanding of the proposed approach.
Stability of Certainty-Equivalent Adaptive LQR for Linear Systems with Unknown Time-Varying Parameters
Standard model-based control design deteriorates when the system dynamics change during operation. To overcome this challenge, online and adaptive methods have been proposed in the literature. In this work, we consider the class of discrete-time linear systems with unknown time-varying parameters. We propose a simple, modular, and computationally tractable approach by combining two classical and well-known building blocks from estimation and control: the least mean square filter and the certainty-equivalent linear quadratic regulator. Despite both building blocks being simple and off-the-shelf, our analysis shows that they can be seamlessly combined to a powerful pipeline with stability guarantees. Namely, finite-gain $\ell^2$-stability of the closed-loop interconnection of the unknown system, the parameter estimator, and the controller is proven, despite the presence of unknown disturbances and time-varying parametric uncertainties. Real-world applicability of the proposed algorithm is showcased by simulations carried out on a nonlinear planar quadrotor.
A Unified Theory for Transient Synchronization Stability Analysis of Renewable Dominated Power Systems
The change of electric power generation - from synchronous generator (SG) to converter - is generally regarded as the second revolution of power system. Different from rotor swing of SG in traditional grids mainly described by the swing equation (SE), the converter dynamics plays an indispensable role in modern renewable dominated power systems (RDPS). The high complexity of the RDPS, including spatial large-scale, nonlinearity, multi-time-scale, and even sequential switching, prevents us from fully understanding its dynamics and assessing its transient stability under large disturbance. Here, a variety of transient switching mechanism models of renewable devices relying on wind or solar energies under low-voltage ride-through are established and unified, which can be perfectly described by a generalized swing equation (GSE) under parameter changes for switching dynamics. The GSE focusing on the dominant phase-locking loop dynamics is similar to the SE. Mainly relying on the mechanical equivalence and the energy conservative principle, a substantially improved equal-area criterion method is proposed. Based on this method, even for large-scale renewable fields, the calculation errors for the critical clearing time are only about 1%. This elegant nonlinear-dynamics-based approach establishes a unified theory including modelling and analysis for the RDPS transient dynamics.
Filtering Jump Markov Systems with Partially Known Dynamics: A Model-Based Deep Learning Approach
This paper presents the Jump Markov Filtering Network (JMFNet), a novel model-based deep learning framework for real-time state-state estimation in jump Markov systems with unknown noise statistics and mode transition dynamics. A hybrid architecture comprising two Recurrent Neural Networks (RNNs) is proposed: one for mode prediction and another for filtering that is based on a mode-augmented version of the recently presented KalmanNet architecture. The proposed RNNs are trained jointly using an alternating least squares strategy that enables mutual adaptation without supervision of the latent modes. Extensive numerical experiments on linear and nonlinear systems, including target tracking, pendulum angle tracking, Lorenz attractor dynamics, and a real-life dataset demonstrate that the proposed JMFNet framework outperforms classical model-based filters (e.g., interacting multiple models and particle filters) as well as model-free deep learning baselines, particularly in non-stationary and high-noise regimes. It is also showcased that JMFNet achieves a small yet meaningful improvement over the KalmanNet framework, which becomes much more pronounced in complicated systems or long trajectories. Finally, the method's performance is empirically validated to be consistent and reliable, exhibiting low sensitivity to initial conditions, hyperparameter selection, as well as to incorrect model knowledge
comment: Submitted to an IEEE transactions journal, copyright may be transfered upon acceptance
Multi-layer barrier function-based adaptive super-twisting controller
This article presents an adaptive Super-Twisting Sliding Mode Control framework for uncertain first-order systems, with rate-bounded perturbations, where the bound is constant but unknown. Positive definite barrier functions, when used in self-tuning super-twisting controllers may introduce some conservatism in relation to initial estimations of the perturbation rate bound. Moreover, discrete time implementation of the algorithm does not necessarily guarantee the boundedness of the closed-loop trajectories when sudden changes in the perturbation occur in between two time samples. The salient features of the proposed methodology pertain to extending the use of positive semidefinite barrier functions to Super-Twisting controller adaptation and the employment of a "nested barriers" scheme that ensures boundedness of the solutions even for "unfavourable" perturbations-to-sampling time ratios. The stability of the closed-loop system is assessed via Lyapunov analysis and simulations demonstrate the efficacy of the proposed framework.
Re$^{\text{2}}$MaP: Macro Placement by Recursively Prototyping and Packing Tree-based Relocating
This work introduces the Re$^{\text{2}}$MaP method, which generates expert-quality macro placements through recursively prototyping and packing tree-based relocating. We first perform multi-level macro grouping and PPA-aware cell clustering to produce a unified connection matrix that captures both wirelength and dataflow among macros and clusters. Next, we use DREAMPlace to build a mixed-size placement prototype and obtain reference positions for each macro and cluster. Based on this prototype, we introduce ABPlace, an angle-based analytical method that optimizes macro positions on an ellipse to distribute macros uniformly near chip periphery, while optimizing wirelength and dataflow. A packing tree-based relocating procedure is then designed to jointly adjust the locations of macro groups and the macros within each group, by optimizing an expertise-inspired cost function that captures various design constraints through evolutionary search. Re$^{\text{2}}$MaP repeats the above process: Only a subset of macro groups are positioned in each iteration, and the remaining macros are deferred to the next iteration to improve the prototype's accuracy. Using a well-established backend flow with sufficient timing optimizations, Re$^{\text{2}}$MaP achieves up to 22.22% (average 10.26%) improvement in worst negative slack (WNS) and up to 97.91% (average 33.97%) improvement in total negative slack (TNS) compared to the state-of-the-art academic placer Hier-RTLMP. It also ranks higher on WNS, TNS, power, design rule check (DRC) violations, and runtime than the conference version ReMaP, across seven tested cases. Our code is available at https://github.com/lamda-bbo/Re2MaP.
comment: IEEE Transactions on Comupter-Aided Design under review
Spacecraft Angular Rate Estimation via Event-Based Camera Sensing
This paper presents a method for determining spacecraft angular rates using event-based camera sensing. This is achieved by analyzing the temporal distribution of brightness events triggered by the apparent motion of stars. The location and polarity of the events are used to infer the apparent motion field of the stars, which is, in turn, employed to estimate the observer angular velocity in the camera frame. This can be converted to the spacecraft angular rates provided an attitude reference. The method is validated through numerical simulation for a synthetic dataset of event streams generated on random spacecraft pointing and rates conditions. The accuracy of the method is assessed, demonstrating its potential to complement or replace conventional rate sensors in spacecraft systems using event camera sensing.
Sufficient Conditions for String Stability
Zhong-Ping Jiang devoted a large part of his work to the study of the stability properties of interconnected systems. In this short paper we celebrate Zhong-Ping Jiang's 60th birthday by studying a special class of families of interconnected systems: the so-called strings. We develop trajectory-based and Lyapunov-based tools that allow the verification of string stability to homogeneous bidirectional strings. The obtained results are applied to the problem of cruise controller design for a string of vehicles.
comment: 27 pages
Model Predictive Control via Probabilistic Inference: A Tutorial
Model Predictive Control (MPC) is a fundamental framework for optimizing robot behavior over a finite future horizon. While conventional numerical optimization methods can efficiently handle simple dynamics and cost structures, they often become intractable for the nonlinear or non-differentiable systems commonly encountered in robotics. This article provides a tutorial on probabilistic inference-based MPC, presenting a unified theoretical foundation and a comprehensive overview of representative methods. Probabilistic inference-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have gained significant attention by reinterpreting optimal control as a problem of probabilistic inference. Rather than relying on gradient-based numerical optimization, these methods estimate optimal control distributions through sampling-based techniques, accommodating arbitrary cost functions and dynamics. We first derive the optimal control distribution from the standard optimal control problem, elucidating its probabilistic interpretation and key characteristics. The widely used MPPI algorithm is then derived as a practical example, followed by discussions on prior and variational distribution design, tuning principles, and theoretical aspects. This article aims to serve as a systematic guide for researchers and practitioners seeking to understand, implement, and extend these methods in robotics and beyond.
comment: 15 pages, 7 figures
A Two-Layer Electrostatic Film Actuator with High Actuation Stress and Integrated Brake
Robotic systems driven by conventional motors often suffer from challenges such as large mass, complex control algorithms, and the need for additional braking mechanisms, which limit their applications in lightweight and compact robotic platforms. Electrostatic film actuators offer several advantages, including thinness, flexibility, lightweight construction, and high open-loop positioning accuracy. However, the actuation stress exhibited by conventional actuators in air still needs improvement, particularly for the widely used three-phase electrode design. To enhance the output performance of actuators, this paper presents a two-layer electrostatic film actuator with an integrated brake. By alternately distributing electrodes on both the top and bottom layers, a smaller effective electrode pitch is achieved under the same fabrication constraints, resulting in an actuation stress of approximately 241~N/m$^2$, representing a 90.5\% improvement over previous three-phase actuators operating in air. Furthermore, its integrated electrostatic adhesion mechanism enables load retention under braking mode. Several demonstrations, including a tug-of-war between a conventional single-layer actuator and the proposed two-layer actuator, a payload operation, a one-degree-of-freedom robotic arm, and a dual-mode gripper, were conducted to validate the actuator's advantageous capabilities in both actuation and braking modes.
An Innovations-Based Data-Driven Kalman Predictor for Predictive Control
A recently developed data-driven Kalman filter requires offline measurement of the process disturbance; a requirement that is often unmet for many practical applications. We propose a solution that parametrizes the Kalman filter exclusively using measured input and output data. The key idea is to use the innovations form which naturally accounts for the process disturbance and measurement noise into a single orthogonal stochastic process. Unlike process disturbances, the innovations process can be estimated directly from input-output data via a numerically efficient projection step. The performance of the method is demonstrated using a benchmark simulation.
Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
Safety assurance is a fundamental requirement for deploying learning-enabled autonomous systems. Hamilton-Jacobi (HJ) reachability analysis is a fundamental method for formally verifying safety and generating safe controllers. However, computing the HJ value function that characterizes the backward reachable set (BRS) of a set of user-defined failure states is computationally expensive, especially for high-dimensional systems, motivating the use of reinforcement learning approaches to approximate the value function. Unfortunately, a learned value function and its corresponding safe policy are not guaranteed to be correct. The learned value function evaluated at a given state may not be equal to the actual safety return achieved by following the learned safe policy. To address this challenge, we introduce a conformal prediction-based (CP) framework that bounds such uncertainty. We leverage CP to provide probabilistic safety guarantees when using learned HJ value functions and policies to prevent control systems from reaching failure states. Specifically, we use CP to calibrate the switching between the unsafe nominal controller and the learned HJ-based safe policy and to derive safety guarantees under this switched policy. We also investigate using an ensemble of independently trained HJ value functions as a safety filter and compare this ensemble approach to using individual value functions alone.
From Natural Language to Certified H-infinity Controllers: Integrating LLM Agents with LMI-Based Synthesis
We present \textsc{S2C} (Specification-to-Certified-Controller), a multi-agent framework that maps natural-language requirements to certified $\mathcal{H}_\infty$ state-feedback controllers via LMI synthesis. \textsc{S2C} coordinates five roles -- \textit{SpecInt} (spec extraction), \textit{Solv} (bounded-real lemma (BRL) LMI), \textit{Tester} (Monte Carlo and frequency-domain checks), \textit{Adapt} (spec refinement), and \textit{CodeGen} (deployable code). The loop is stabilized by a severity- and iteration-aware $γ$-floor guardrail and a decay-rate region constraint enforcing $\Reλ(A{+}BK)<-α$ with $α=3.9/T_s$ derived from settling-time targets. For state feedback, verification reports disturbance rejection $\big\|C\,(sI-(A{+}BK))^{-1}E\big\|_\infty$ alongside time-domain statistics; discrete benchmarks are converted to continuous time via a Tustin (bilinear) transform when needed. On 14 COMPleib problems, \textsc{S2C} attains \textbf{100\%} synthesis success and \textbf{100\%} convergence within six iterations, with strong decay-rate satisfaction and near-target certified $\mathcal{H}_\infty$ levels; it improves robustness metrics relative to single-shot BRL and BRL+$α$ baselines. An ablation over LLM backbones (GPT-5, GPT-5 mini, DeepSeek-V3, Qwen-2.5-72B, Llama-4 Maverick) shows the pipeline is robust across models, while stronger models yield the highest effectiveness. These results indicate that LLM agents can integrate certificate-bearing control synthesis from high-level intent, enabling rapid end-to-end prototyping without sacrificing formal guarantees.
Optimisation of Power Modulation for Hall-Héroult Cells: Process Operability and Constraints as Virtual Energy Storage
Aluminium is manufactured through the Hall-Héroult process, which is very energy intensive. Power modulation, as an industrial-scale demand-side power management approach, allows aluminium smelters to operate with variable power consumption rates and as such be powered by renewable energy sources. In this way, aluminium smelting cells can be used as a large virtual energy storage to balance power demand-supply and stabilise electrical grids. This paper studies the potential optimal power modulation operating conditions, including time-varying line current and anode-cathode distance (ACD) profiles to maximise the aluminium reduction cell profitability subject to constraints on the cell thermal balance. To deal with the complex cell dynamics which are spatially distributed and multi-timescale, a novel optimisation approach that utilises both reduced-order and detailed models is developed. The results yield insight into the optimal line current and ACD profiles for different power modulation scenarios including the time of use electricity tariff and spot price. These results can form the foundation for further studies into online control policies of aluminium reduction cells.
comment: 25 pages, 19 figures, this manuscript has been submitted to Journal of Energy Storage
Algorithm-Relative Trajectory Valuation in Policy Gradient Control
We study how trajectory value depends on the learning algorithm in policy-gradient control. Using Trajectory Shapley in an uncertain LQR, we find a negative correlation between Persistence of Excitation (PE) and marginal value under vanilla REINFORCE ($r\approx-0.38$). We prove a variance-mediated mechanism: (i) for fixed energy, higher PE yields lower gradient variance; (ii) near saddles, higher variance increases escape probability, raising marginal contribution. When stabilized (state whitening or Fisher preconditioning), this variance channel is neutralized and information content dominates, flipping the correlation positive ($r\approx+0.29$). Hence, trajectory value is algorithm-relative. Experiments validate the mechanism and show decision-aligned scores (Leave-One-Out) complement Shapley for pruning, while Shapley identifies toxic subsets.
Comparative Study of Q-Learning for State-Feedback LQG Control with an Unknown Model
We study the problem of designing a state feedback linear quadratic Gaussian (LQG) controller for a system in which the system matrices as well as the process noise covariance are unknown. We do a rigorous comparison between two approaches. The first is the classic one in which a system identification stage is used to estimate the unknown parameters, which are then used in a state-feedback LQG (SF-LQG) controller design. The second approach is a recently proposed one using a reinforcement learning paradigm called Q-learning. We do the comparison in terms of complexity and accuracy of the resulting controller. We show that the classic approach asymptotically efficient, giving virtually no room for improvement in terms of accuracy. We also propose a novel Q-learning-based method which we show asymptotically achieves the optimal controller design. We complement our proposed method with a numerically efficient algorithmic implementation aiming at making it competitive in terms of computations. Nevertheless, our complexity analysis shows that the classic approach is still numerically more efficient than this Q-learning-based alternative. We then conclude that the classic approach remains being the best choice for addressing the SF-LQG design in the case of unknown parameters.
A Dual-Memory Ferroelectric Transistor Emulating Synaptic Metaplasticity for High-Speed Reservoir Computing
The exponential growth of edge artificial intelligence demands material-focused solutions to overcome energy consumption and latency limitations when processing real-time temporal data. Physical reservoir computing (PRC) offers an energy-efficient paradigm but faces challenges due to limited device scalability and reconfigurability. Additionally, reservoir and readout layers require memory of different timescales, short-term and long-term respectively - a material challenge hindering CMOS-compatible implementations. This work demonstrates a CMOS-compatible ferroelectric transistor using hafnium-zirconium-oxide (HZO) and silicon, enabling dual-memory operation. This system exhibits non-volatile long-term memory (LTM) from ferroelectric HZO polarization and volatile short-term memory (STM) from engineered non-quasi-static (NQS) channel-charge relaxation driven by gate-source/drain overlap capacitance. Ferroelectric polarization acts as non-volatile programming of volatile dynamics: by modulating threshold voltage, the ferroelectric state deterministically switches the NQS time constant and computational behavior between paired-pulse facilitation (PPF) and depression (PPD). This establishes a generalizable material-design principle applicable to diverse ferroelectric-semiconductor heterostructures, extending beyond silicon to oxide semiconductors and heterogeneously-integrated systems. The device solves second-order nonlinear tasks with 3.69 x 10^-3 normalized error using only 16 reservoir states - ~5x reduction - achieving 20 us response time (~1000x faster) and 1.5 x 10^-7 J energy consumption, providing an immediately manufacturable pathway for neuromorphic hardware and energy-efficient edge intelligence.
Occlusion-Aware Ground Target Search by a UAV in an Urban Environment
This paper considers the problem of searching for a point of interest (POI) moving along an urban road network with an uncrewed aerial vehicle (UAV). The UAV is modeled as a variable-speed Dubins vehicle with a line-of-sight sensor in an urban environment that may occlude the sensor's view of the POI. A search strategy is proposed that exploits a probabilistic visibility volume (VV) to plan its future motion with iterative deepening $A^\ast$. The probabilistic VV is a time-varying three-dimensional representation of the sensing constraints for a particular distribution of the POI's state. To find the path most likely to view the POI, the planner uses a heuristic to optimistically estimate the probability of viewing the POI over a time horizon. The probabilistic VV is max-pooled to create a variable-timestep planner that reduces the search space and balances long-term and short-term planning. The proposed path planning method is compared to prior work with a Monte-Carlo simulation and is shown to outperform the baseline methods in cluttered environments when the UAV's sensor has a higher false alarm probability.
comment: 18 pages, 18 figures, 5 tables
SONIC: Supersizing Motion Tracking for Natural Humanoid Whole-Body Control
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.
comment: Project page: https://nvlabs.github.io/SONIC/
Experimental Evaluation of Fuzzy-Integral and Classical controls for Power Management in a 24 GHz mmWave 5G Transceiver
The deployment of 5G millimeter-wave (mmWave) systems poses significant challenges in maintaining power amplifier linearity and efficiency under varying conditions, such as temperature-induced gain variations that degrade error vector magnitude (EVM). This paper presents a comparative study of three control strategies-PID, pure integral, and fuzzy-integral (FI)-for adaptive power management in a 24 GHz mmWave transceiver. The FI controller integrates fuzzy logic for handling nonlinearities with integral action for zero steady-state error. Experimental results show the FI controller outperforms others in settling time, stability, and EVM minimization.
comment: 5 pages, 6 figures
Beyond Carleman Linearization of Nonlinear Dynamical System: Insights from a Case Study
Nonlinear dynamical systems are widely encountered in various scientific and engineering fields. Despite significant advances in theoretical understanding, developing complete and integrated frameworks for analyzing and designing these systems remains challenging, which underscores the importance of efficient linearization methods. In this paper, we introduce a general linearization framework with emphasis on Carleman linearization and Carleman-Fourier linearization. A detailed case study on finite-section approximation to the lifted infinite-dimensional dynamical system is provided for the dynamical system with its governing function being a trigonometric polynomial of degree one.
AURORA: Autonomous Updating of ROM and Controller via Recursive Adaptation
Real-time model-based control of high-dimensional nonlinear systems faces computational intractability, while traditional reduced-order model (ROM) control requires manual expert tuning without online adaptation. We propose AURORA (\textbf{A}utonomous \textbf{U}pdating of \textbf{RO}M and Controller via \textbf{R}ecursive \textbf{A}daptation), a multi-agent LLM framework automating ROM-based controller design with online adaptation. AURORA employs five specialized agents collaborating through iterative generation-judge-revision cycles, with an Evaluation Agent diagnosing degradation sources and routing corrections appropriately. Validated on eight benchmark systems spanning mechanical assemblies, thermal PDEs, and robots. Comparative evaluation across five state-of-the-art LLMs demonstrates high autonomy with minimal intervention, establishing practical viability for autonomous control design.
Synergistic Development of Cybersecurity and Functional Safety for Smart Electric Vehicles
The introduction of Smart Electric Vehicles (SEVs) represents an increasingly disruption on automotive area, once integrates advanced computer and communication technologies to highly electrical cars, which come with high performances, environment friendly and user friendly characteristics . But the increasing complexity of SEVs prompted by greater dependence on interconnected systems, autonomous capabilities and electrification, presents new challenges in cybersecurity as well as functional safety. The safety and reliability of such vehicles is paramount, as unsafe or unreliable operation in either case represents an unacceptable risk in terms of the performance of the vehicle and safety of the passenger. This paper investigates the integrated development of cybersecurity and functional safety for SEVs, emphasizing the requirement for the parallel development of these domains as components that are not treated separately. In SEVs, cybersecurity is quite crucial in order to prevent the threats of hacking, data breaches and unauthorized access to vehicle systems. Functional safety ensures that important vehicle functions (braking, steering, battery control, etc.) keep working even if some part fails. This convergence of functional safety issues with cybersecurity issues is becoming more crucial, since a security incident can result in a failure of catastrophic consequences for a functional safety system and, conversely. This paper reports the current state of cybersecurity and functional safety standards for SEVs, highlighting challenges that include the weaknesses of communication networks, the potential security threats of over-the-air updates, and the demand for real-time responsive systems for failure.
comment: 11 pages, 8 figures, Synergistic Development of Cybersecurity and Functional Safety for Smart Electric Vehicles. Synergistic Development of Cybersecurity and Functional Safety for Smart Electric Vehicles, Volume 12 issue 21s
Geometric Conditions for Lossless Convexification in Fuel-Optimal Control of Linear Systems with Discrete-Valued Inputs
Trajectory generation for autonomous systems with discrete-valued actuators is challenging due to the mixed-integer nature of the resulting optimization problems, which are generally intractable for real-time, safety-critical applications. Lossless convexification offers an alternative by reformulating mixed-integer programs as equivalent convex programs that can be solved efficiently with guaranteed convergence. This paper develops a lossless convexification framework for the fuel-optimal control of linear systems with discrete-valued inputs. We extend existing Mayer-form results by showing that, under simple geometric conditions, system normality is preserved when reformulating Lagrange-form problems into Mayer-form. Furthermore, we derive explicit algebraic conditions for normality in systems with cross-polytopic input sets. Leveraging these results and an extreme-point relaxation, we demonstrate that the fuel-optimal control problem admits a lossless convexification, enabling real-time, discrete-valued solutions without resorting to mixed-integer optimization. Numerical results from Monte Carlo simulations confirm that the proposed approach consistently yields discrete-valued control inputs with computation times compatible with real-time implementation.
Certified Training with Branch-and-Bound for Lyapunov-stable Neural Control
We study the problem of learning verifiably Lyapunov-stable neural controllers that provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction (ROA). Unlike previous works that adopted counterexample-guided training without considering the computation of verification in training, we introduce Certified Training with Branch-and-Bound (CT-BaB), a new certified training framework that optimizes certified bounds, thereby reducing the discrepancy between training and test-time verification that also computes certified bounds. To achieve a relatively global guarantee on an entire input region-of-interest, we propose a training-time BaB technique that maintains a dynamic training dataset and adaptively splits hard input subregions into smaller ones, to tighten certified bounds and ease the training. Meanwhile, subregions created by the training-time BaB also inform test-time verification, for a more efficient training-aware verification. We demonstrate that CT-BaB yields verification-friendly models that can be more efficiently verified at test time while achieving stronger verifiable guarantees with larger ROA. On the largest output-feedback 2D Quadrotor system experimented, CT-BaB reduces verification time by over 11X relative to the previous state-of-the-art baseline while achieving 164X larger ROA.
comment: Preprint
Integration Matters for Learning PDEs with Backwards SDEs NeurIPS 2025
Backward stochastic differential equation (BSDE)-based deep learning methods provide an alternative to Physics-Informed Neural Networks (PINNs) for solving high-dimensional partial differential equations (PDEs), offering potential algorithmic advantages in settings such as stochastic optimal control, where the PDEs of interest are tied to an underlying dynamical system. However, standard BSDE-based solvers have empirically been shown to underperform relative to PINNs in the literature. In this paper, we identify the root cause of this performance gap as a discretization bias introduced by the standard Euler-Maruyama (EM) integration scheme applied to one-step self-consistency BSDE losses, which shifts the optimization landscape off target. We find that this bias cannot be satisfactorily addressed through finer step-sizes or multi-step self-consistency losses. To properly handle this issue, we propose a Stratonovich-based BSDE formulation, which we implement with stochastic Heun integration. We show that our proposed approach completely eliminates the bias issues faced by EM integration. Furthermore, our empirical results show that our Heun-based BSDE method consistently outperforms EM-based variants and achieves competitive results with PINNs across multiple high-dimensional benchmarks. Our findings highlight the critical role of integration schemes in BSDE-based PDE solvers, an algorithmic detail that has received little attention thus far in the literature.
comment: To appear in NeurIPS 2025
Optimising Communication Control Factors for Energy Consumption in Rural V2X
Connected braking can reduce fatal collisions in connected and autonomous vehicles (CAVs) by using reliable, low-latency 5G New Radio (NR) links, especially NR Sidelink Vehicle-to-Everything (V2X). In rural areas, road side units are sparse and power-constrained or off-grid, so energy efficiency must be considered alongside safety. This paper studies how three communication control factors including subcarrier spacing ($\mathrm{SCS}$), modulation and coding scheme ($\mathrm{MCS}$), and transmit power ($P_{\mathrm{t}}$) should be configured to balance safety and energy consumption in rural scenarios in light and heavy traffic scenarios. Safety is quantified by the packet receive ratio ($\mathrm{PRR}$) against the minimum communication distance $D_{\mathrm{comm}}$, defined as the distance that the vehicle travels during the transmission of the safety message. Results show that, under heavy traffic, increasing $P_{\mathrm{t}}$ and selecting a low-rate $\mathrm{MCS}$ at $\mathrm{SCS} = 30$ kHz sustains high $\mathrm{PRR}$ at $D_{\mathrm{comm}}$, albeit with higher energy cost. In light traffic, maintaining lower $P_\mathrm{t}$ with low $\mathrm{MCS}$ levels achieves a favorable reliability-energy trade-off while preserving acceptable $\mathrm{PRR}$ at $D_{\mathrm{comm}}$. These findings demonstrate the necessity of adaptive, energy-aware strategy to guarantee both safety and energy efficiency in rural V2X systems.
On the Surprising Effectiveness of Spectral Clipping in Learning Stable Linear and Latent-Linear Dynamical Systems
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.
Lyapunov-Krasovskii Functionals of Robust Type for the Stability Analysis in Time-Delay Systems
Inspired by the widespread concept of Lyapunov-Krasovskii functionals of complete type, this article proposes an alternative class of functionals, termed Lyapunov-Krasovskii functionals of robust type. Their construction aims at improving deducible robustness bounds of linear systems with a constant delay. These refer to bounds on nonlinear or uncertain terms that can be added to the system without compromising the proof of stability. The defining equation of complete-type functionals relies on the template of a Lyapunov equation. In contrast, the proposed functionals are related to an algebraic Riccati equation. The article proves properties that make these functionals suitable tools for the stability analysis via Lyapunov arguments. The derived linear bounds on the norm of admissible perturbations mirror bounds from the small gain theorem or the complex stability radius. More general sector-based absolute stability bounds can also be addressed. Existence of the functionals is proven via the Kalman-Yakubovich-Popov lemma combined with a splitting approach. In particular, for any asymptotically stable nominal system, there exists a Lyapunov-Krasovskii functional of robust type that proves a nonzero bound on admissible perturbations. This robustness bound significantly improves results from complete-type functionals.
comment: 16 pages
Sparse Representations of Dynamical Networks: A Coprime Factorization Approach
We study a class of dynamical networks modeled by linear and time-invariant systems which are described by state-space realizations. For these networks, we investigate the relations between various types of factorizations which preserve the structure of their component subsystems' interconnection. In doing so, we provide tractable means of shifting between different types of sparsity-preserving representations and we show how to employ these factorizations to obtain distributed implementations for stabilizing and possibly stable controllers. By formulating all these results for both discrete- and continuous-time systems, we develop specialized distributed implementations that, up to this point, were only available for networks modeled as discrete-time systems.
comment: 35 pages, 5 figures
On the Convergence and Stability of Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning, and Online Decision Transformers
This article provides a rigorous analysis of convergence and stability of Episodic Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning and Online Decision Transformers. These algorithms performed competitively across various benchmarks, from games to robotic tasks, but their theoretical understanding is limited to specific environmental conditions. This work initiates a theoretical foundation for algorithms that build on the broad paradigm of approaching reinforcement learning through supervised learning or sequence modeling. At the core of this investigation lies the analysis of conditions on the underlying environment, under which the algorithms can identify optimal solutions. We also assess whether emerging solutions remain stable in situations where the environment is subject to tiny levels of noise. Specifically, we study the continuity and asymptotic convergence of command-conditioned policies, values and the goal-reaching objective depending on the transition kernel of the underlying Markov Decision Process. We demonstrate that near-optimal behavior is achieved if the transition kernel is located in a sufficiently small neighborhood of a deterministic kernel. The mentioned quantities are continuous (with respect to a specific topology) at deterministic kernels, both asymptotically and after a finite number of learning cycles. The developed methods allow us to present the first explicit estimates on the convergence and stability of policies and values in terms of the underlying transition kernels. On the theoretical side we introduce a number of new concepts to reinforcement learning, like working in segment spaces, studying continuity in quotient topologies and the application of the fixed-point theory of dynamical systems. The theoretical study is accompanied by a detailed investigation of example environments and numerical experiments.
comment: 85 pages in main text + 4 pages of references + 26 pages of appendices, 12 figures in main text + 2 figures in appendices; source code available at https://github.com/struplm/eUDRL-GCSL-ODT-Convergence-public
Path planning with moving obstacles using stochastic optimal control
Navigating a collision-free, optimal path for a robot poses a perpetual challenge, particularly in the presence of moving objects such as humans. In this study, we formulate the problem of finding an optimal path as a stochastic optimal control problem. However, obtaining a solution to this problem is nontrivial. Therefore, we consider a simplified problem, which is more tractable. For this simplified formulation, we are able to solve the corresponding Bellman equation. However, the solution obtained from the simplified problem does not sufficiently address the original problem of interest. To address the full problem, we propose a numerical procedure where we solve an optimization problem at each sampling instant. The solution to the simplified problem is integrated into the online formulation as a final-state penalty. We illustrate the efficiency of the proposed method using a numerical example.
comment: 10 pages, 6 figures. Submitted to the 24th European Control Conference (ECC) 2026
Correct-by-Design Control Synthesis of Stochastic Multi-agent Systems: a Robust Tensor-based Solution
Discrete-time stochastic systems with continuous spaces are hard to verify and control, even with MDP abstractions due to the curse of dimensionality. We propose an abstraction-based framework with robust dynamic programming mappings that deliver control strategies with provable lower bounds on temporal-logic satisfaction, quantified via approximate stochastic simulation relations. Exploiting decoupled dynamics, we reveal a Canonical Polyadic Decomposition tensor structure in value functions that makes dynamic programming scalable. The proposed method provides correct-by-design probabilistic guarantees for temporal logic specifications. We validate our results on continuous-state linear stochastic systems.
Disturbance-Adaptive Data-Driven Predictive Control: Trading Comfort Violations for Savings in Building Climate Control
Model Predictive Control (MPC) has demonstrated significant potential in improving energy efficiency in building climate control, outperforming traditional controllers commonly used in modern building management systems. Among MPC variants, Data-driven Predictive Control (DPC) offers the advantage of modeling building dynamics directly from data, thereby substantially reducing commissioning efforts. However, inevitable model uncertainties and measurement noise can result in comfort violations, even with dedicated MPC setups. This paper introduces a Disturbance-Adaptive DPC (DAD-DPC) framework that ensures asymptotic satisfaction of predefined violation bounds without knowing the uncertainty and noise distributions. The framework employs a data-driven pipeline based on Willems' Fundamental Lemma and conformal prediction for application in building climate control. The proposed DAD-DPC framework was validated through four building cases using the high-fidelity BOPTEST simulation platform and an occupied campus building, Polydome. DAD-DPC successfully regulated the average comfort violations to meet pre-defined bounds. Notably, the 5%-violation DAD-DPC setup achieved 30.1%/11.2%/27.1%/20.5% energy savings compared to default controllers across four cases. These results demonstrate the framework's effectiveness in balancing energy consumption and comfort violations, offering a practical solution for building climate control applications.
SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
Certified Robust Invariant Polytope Training in Neural Controlled ODEs
We consider a nonlinear control system modeled as an ordinary differential equation subject to disturbance, with a state feedback controller parameterized as a feedforward neural network. We propose a framework for training controllers with certified robust forward invariant polytopes, where any trajectory initialized inside the polytope remains within the polytope, regardless of the disturbance. First, we parameterize a family of lifted control systems in a higher dimensional space, where the original neural controlled system evolves on an invariant subspace of each lifted system. We use interval analysis and neural network verifiers to further construct a family of lifted embedding systems, carefully capturing the knowledge of this invariant subspace. If the vector field of any lifted embedding system satisfies a sign constraint at a single point, then a certain convex polytope of the original system is robustly forward invariant. Treating the neural network controller and the lifted system parameters as variables, we propose an algorithm to train controllers with certified forward invariant polytopes in the closed-loop control system. Through two examples, we demonstrate how the simplicity of the sign constraint allows our approach to scale with system dimension to over $50$ states, and outperform state-of-the-art Lyapunov-based sampling approaches in runtime.
Zero-Shot Function Encoder-Based Differentiable Predictive Control
We introduce a differentiable framework for zero-shot adaptive control over parametric families of nonlinear dynamical systems. Our approach integrates a function encoder-based neural ODE (FE-NODE) for modeling system dynamics with a differentiable predictive control (DPC) for offline self-supervised learning of explicit control policies. The FE-NODE captures nonlinear behaviors in state transitions and enables zero-shot adaptation to new systems without retraining, while the DPC efficiently learns control policies across system parameterizations, thus eliminating costly online optimization common in classical model predictive control. We demonstrate the efficiency, accuracy, and online adaptability of the proposed method across a range of nonlinear systems with varying parametric scenarios, highlighting its potential as a general-purpose tool for fast zero-shot adaptive control.
A Novel Online Pseudospectral Method for Approximation of Nonlinear Systems Dynamics
This note presents an online pseudospectral method for system identification using Chebyshev polynomial basis under aperiodic sampling. The system dynamics are approximated piecewise by introducing a sliding time window. The number of sampling instants (Chebyshev nodes) within each sliding window is selected dynamically based on a proposed node-selection criterion that guarantees desired approximation accuracy. The system states are measured at these aperiodic instants and used to estimate the coefficients of the basis polynomials using least squares. An adaptive state estimator is also proposed to reconstruct the continuous states using the approximated dynamics. The boundedness of the parameter and state estimation errors is proven analytically and validated numerically.
comment: 8 pages, 5 figures, Substantially extends our earlier paper accepted for ACC 2025 (Denver, 8 Jul 2025). Submitted to IEEE Transactions on Automatic Control; under review
Optimism as Risk-Seeking in Multi-Agent Reinforcement Learning
Risk sensitivity has become a central theme in reinforcement learning (RL), where convex risk measures and robust formulations provide principled ways to model preferences beyond expected return. Recent extensions to multi-agent RL (MARL) have largely emphasized the risk-averse setting, prioritizing robustness to uncertainty. In cooperative MARL, however, such conservatism often leads to suboptimal equilibria, and a parallel line of work has shown that optimism can promote cooperation. Existing optimistic methods, though effective in practice, are typically heuristic and lack theoretical grounding. Building on the dual representation for convex risk measures, we propose a principled framework that interprets risk-seeking objectives as optimism. We introduce optimistic value functions, which formalize optimism as divergence-penalized risk-seeking evaluations. Building on this foundation, we derive a policy-gradient theorem for optimistic value functions, including explicit formulas for the entropic risk/KL-penalty setting, and develop decentralized optimistic actor-critic algorithms that implement these updates. Empirical results on cooperative benchmarks demonstrate that risk-seeking optimism consistently improves coordination over both risk-neutral baselines and heuristic optimistic methods. Our framework thus unifies risk-sensitive learning and optimism, offering a theoretically grounded and practically effective approach to cooperation in MARL.
Robotics
Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
Using Vision Language Models as Closed-Loop Symbolic Planners for Robotic Applications: A Control-Theoretic Perspective
Large Language Models (LLMs) and Vision Language Models (VLMs) have been widely used for embodied symbolic planning. Yet, how to effectively use these models for closed-loop symbolic planning remains largely unexplored. Because they operate as black boxes, LLMs and VLMs can produce unpredictable or costly errors, making their use in high-level robotic planning especially challenging. In this work, we investigate how to use VLMs as closed-loop symbolic planners for robotic applications from a control-theoretic perspective. Concretely, we study how the control horizon and warm-starting impact the performance of VLM symbolic planners. We design and conduct controlled experiments to gain insights that are broadly applicable to utilizing VLMs as closed-loop symbolic planners, and we discuss recommendations that can help improve the performance of VLM symbolic planners.
Unified Humanoid Fall-Safety Policy from a Few Demonstrations
Falling is an inherent risk of humanoid mobility. Maintaining stability is thus a primary safety focus in robot control and learning, yet no existing approach fully averts loss of balance. When instability does occur, prior work addresses only isolated aspects of falling: avoiding falls, choreographing a controlled descent, or standing up afterward. Consequently, humanoid robots lack integrated strategies for impact mitigation and prompt recovery when real falls defy these scripts. We aim to go beyond keeping balance to make the entire fall-and-recovery process safe and autonomous: prevent falls when possible, reduce impact when unavoidable, and stand up when fallen. By fusing sparse human demonstrations with reinforcement learning and an adaptive diffusion-based memory of safe reactions, we learn adaptive whole-body behaviors that unify fall prevention, impact mitigation, and rapid recovery in one policy. Experiments in simulation and on a Unitree G1 demonstrate robust sim-to-real transfer, lower impact forces, and consistently fast recovery across diverse disturbances, pointing towards safer, more resilient humanoids in real environments. Videos are available at https://firm2025.github.io/.
Residual Rotation Correction using Tactile Equivariance
Visuotactile policy learning augments vision-only policies with tactile input, facilitating contact-rich manipulation. However, the high cost of tactile data collection makes sample efficiency the key requirement for developing visuotactile policies. We present EquiTac, a framework that exploits the inherent SO(2) symmetry of in-hand object rotation to improve sample efficiency and generalization for visuotactile policy learning. EquiTac first reconstructs surface normals from raw RGB inputs of vision-based tactile sensors, so rotations of the normal vector field correspond to in-hand object rotations. An SO(2)-equivariant network then predicts a residual rotation action that augments a base visuomotor policy at test time, enabling real-time rotation correction without additional reorientation demonstrations. On a real robot, EquiTac accurately achieves robust zero-shot generalization to unseen in-hand orientations with very few training samples, where baselines fail even with more training data. To our knowledge, this is the first tactile learning method to explicitly encode tactile equivariance for policy learning, yielding a lightweight, symmetry-aware module that improves reliability in contact-rich tasks.
comment: 8 pages
Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
Exact Smooth Reformulations for Trajectory Optimization Under Signal Temporal Logic Specifications
We study motion planning under Signal Temporal Logic (STL), a useful formalism for specifying spatial-temporal requirements. We pose STL synthesis as a trajectory optimization problem leveraging the STL robustness semantics. To obtain a differentiable problem without approximation error, we introduce an exact reformulation of the max and min operators. The resulting method is exact, smooth, and sound. We validate it in numerical simulations, demonstrating its practical performance.
PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.
Robotic versus Human Teleoperation for Remote Ultrasound
Diagnostic medical ultrasound is widely used, safe, and relatively low cost but requires a high degree of expertise to acquire and interpret the images. Personnel with this expertise are often not available outside of larger cities, leading to difficult, costly travel and long wait times for rural populations. To address this issue, tele-ultrasound techniques are being developed, including robotic teleoperation and recently human teleoperation, in which a novice user is remotely guided in a hand-over-hand manner through mixed reality to perform an ultrasound exam. These methods have not been compared, and their relative strengths are unknown. Human teleoperation may be more practical than robotics for small communities due to its lower cost and complexity, but this is only relevant if the performance is comparable. This paper therefore evaluates the differences between human and robotic teleoperation, examining practical aspects such as setup time and flexibility and experimentally comparing performance metrics such as completion time, position tracking, and force consistency. It is found that human teleoperation does not lead to statistically significant differences in completion time or position accuracy, with mean differences of 1.8% and 0.5%, respectively, and provides more consistent force application despite being substantially more practical and accessible.
comment: Under review at IEEE TMRB. Extended version of a paper presented at the Hamlyn Symposium for Medical Robotics, 2025
Automated Generation of Continuous-Space Roadmaps for Routing Mobile Robot Fleets
Efficient routing of mobile robot fleets is crucial in intralogistics, where delays and deadlocks can substantially reduce system throughput. Roadmap design, specifying feasible transport routes, directly affects fleet coordination and computational performance. Existing approaches are either grid-based, compromising geometric precision, or continuous-space approaches that disregard practical constraints. This paper presents an automated roadmap generation approach that bridges this gap by operating in continuous-space, integrating station-to-station transport demand and enforcing minimum distance constraints for nodes and edges. By combining free space discretization, transport demand-driven $K$-shortest-path optimization, and path smoothing, the approach produces roadmaps tailored to intralogistics applications. Evaluation across multiple intralogistics use cases demonstrates that the proposed approach consistently outperforms established baselines (4-connected grid, 8-connected grid, and random sampling), achieving lower structural complexity, higher redundancy, and near-optimal path lengths, enabling efficient and robust routing of mobile robot fleets.
comment: submitted to the IEEE for possible publication; 8 pages, 6 figures, 2 tables
Dynamics-Decoupled Trajectory Alignment for Sim-to-Real Transfer in Reinforcement Learning for Autonomous Driving
Reinforcement learning (RL) has shown promise in robotics, but deploying RL on real vehicles remains challenging due to the complexity of vehicle dynamics and the mismatch between simulation and reality. Factors such as tire characteristics, road surface conditions, aerodynamic disturbances, and vehicle load make it infeasible to model real-world dynamics accurately, which hinders direct transfer of RL agents trained in simulation. In this paper, we present a framework that decouples motion planning from vehicle control through a spatial and temporal alignment strategy between a virtual vehicle and the real system. An RL agent is first trained in simulation using a kinematic bicycle model to output continuous control actions. Its behavior is then distilled into a trajectory-predicting agent that generates finite-horizon ego-vehicle trajectories, enabling synchronization between virtual and real vehicles. At deployment, a Stanley controller governs lateral dynamics, while longitudinal alignment is maintained through adaptive update mechanisms that compensate for deviations between virtual and real trajectories. We validate our approach on a real vehicle and demonstrate that the proposed alignment strategy enables robust zero-shot transfer of RL-based motion planning from simulation to reality, successfully decoupling high-level trajectory generation from low-level vehicle control.
HDCNet: A Hybrid Depth Completion Network for Grasping Transparent and Reflective Objects
Depth perception of transparent and reflective objects has long been a critical challenge in robotic manipulation.Conventional depth sensors often fail to provide reliable measurements on such surfaces, limiting the performance of robots in perception and grasping tasks. To address this issue, we propose a novel depth completion network,HDCNet,which integrates the complementary strengths of Transformer,CNN and Mamba architectures.Specifically,the encoder is designed as a dual-branch Transformer-CNN framework to extract modality-specific features. At the shallow layers of the encoder, we introduce a lightweight multimodal fusion module to effectively integrate low-level features. At the network bottleneck,a Transformer-Mamba hybrid fusion module is developed to achieve deep integration of high-level semantic and global contextual information, significantly enhancing depth completion accuracy and robustness. Extensive evaluations on multiple public datasets demonstrate that HDCNet achieves state-of-the-art(SOTA) performance in depth completion tasks.Furthermore,robotic grasping experiments show that HDCNet substantially improves grasp success rates for transparent and reflective objects,achieving up to a 60% increase.
Multi-Agent Reinforcement Learning for Deadlock Handling among Autonomous Mobile Robots
This dissertation explores the application of multi-agent reinforcement learning (MARL) for handling deadlocks in intralogistics systems that rely on autonomous mobile robots (AMRs). AMRs enhance operational flexibility but also increase the risk of deadlocks, which degrade system throughput and reliability. Existing approaches often neglect deadlock handling in the planning phase and rely on rigid control rules that cannot adapt to dynamic operational conditions. To address these shortcomings, this work develops a structured methodology for integrating MARL into logistics planning and operational control. It introduces reference models that explicitly consider deadlock-capable multi-agent pathfinding (MAPF) problems, enabling systematic evaluation of MARL strategies. Using grid-based environments and an external simulation software, the study compares traditional deadlock handling strategies with MARL-based solutions, focusing on PPO and IMPALA algorithms under different training and execution modes. Findings reveal that MARL-based strategies, particularly when combined with centralized training and decentralized execution (CTDE), outperform rule-based methods in complex, congested environments. In simpler environments or those with ample spatial freedom, rule-based methods remain competitive due to their lower computational demands. These results highlight that MARL provides a flexible and scalable solution for deadlock handling in dynamic intralogistics scenarios, but requires careful tailoring to the operational context.
comment: for associated repositories, see https://github.com/Nerozud/dl_reference_models and https://github.com/Nerozud/FTS_simpel
Raspi$^2$USBL: An open-source Raspberry Pi-Based Passive Inverted Ultra-Short Baseline Positioning System for Underwater Robotics
Precise underwater positioning remains a fundamental challenge for underwater robotics since global navigation satellite system (GNSS) signals cannot penetrate the sea surface. This paper presents Raspi$^2$USBL, an open-source, Raspberry Pi-based passive inverted ultra-short baseline (piUSBL) positioning system designed to provide a low-cost and accessible solution for underwater robotic research. The system comprises a passive acoustic receiver and an active beacon. The receiver adopts a modular hardware architecture that integrates a hydrophone array, a multichannel preamplifier, an oven-controlled crystal oscillator (OCXO), a Raspberry Pi 5, and an MCC-series data acquisition (DAQ) board. Apart from the Pi 5, OCXO, and MCC board, the beacon comprises an impedance-matching network, a power amplifier, and a transmitting transducer. An open-source C++ software framework provides high-precision clock synchronization and triggering for one-way travel-time (OWTT) messaging, while performing real-time signal processing, including matched filtering, array beamforming, and adaptive gain control, to estimate the time of flight (TOF) and direction of arrival (DOA) of received signals. The Raspi$^2$USBL system was experimentally validated in an anechoic tank, freshwater lake, and open-sea trials. Results demonstrate a slant-range accuracy better than 0.1%, a bearing accuracy within 0.1$^\circ$, and stable performance over operational distances up to 1.3 km. These findings confirm that low-cost, reproducible hardware can deliver research-grade underwater positioning accuracy. By releasing both the hardware and software as open-source, Raspi$^2$USBL provides a unified reference platform that lowers the entry barrier for underwater robotics laboratories, fosters reproducibility, and promotes collaborative innovation in underwater acoustic navigation and swarm robotics.
Integration of Visual SLAM into Consumer-Grade Automotive Localization
Accurate ego-motion estimation in consumer-grade vehicles currently relies on proprioceptive sensors, i.e. wheel odometry and IMUs, whose performance is limited by systematic errors and calibration. While visual-inertial SLAM has become a standard in robotics, its integration into automotive ego-motion estimation remains largely unexplored. This paper investigates how visual SLAM can be integrated into consumer-grade vehicle localization systems to improve performance. We propose a framework that fuses visual SLAM with a lateral vehicle dynamics model to achieve online gyroscope calibration under realistic driving conditions. Experimental results demonstrate that vision-based integration significantly improves gyroscope calibration accuracy and thus enhances overall localization performance, highlighting a promising path toward higher automotive localization accuracy. We provide results on both proprietary and public datasets, showing improved performance and superior localization accuracy on a public benchmark compared to state-of-the-art methods.
comment: This manuscript has been submitted to the IEEE for possible publication
Multi-Agent AI Framework for Road Situation Detection and C-ITS Message Generation
Conventional road-situation detection methods achieve strong performance in predefined scenarios but fail in unseen cases and lack semantic interpretation, which is crucial for reliable traffic recommendations. This work introduces a multi-agent AI framework that combines multimodal large language models (MLLMs) with vision-based perception for road-situation monitoring. The framework processes camera feeds and coordinates dedicated agents for situation detection, distance estimation, decision-making, and Cooperative Intelligent Transport System (C-ITS) message generation. Evaluation is conducted on a custom dataset of 103 images extracted from 20 videos of the TAD dataset. Both Gemini-2.0-Flash and Gemini-2.5-Flash were evaluated. The results show 100\% recall in situation detection and perfect message schema correctness; however, both models suffer from false-positive detections and have reduced performance in terms of number of lanes, driving lane status and cause code. Surprisingly, Gemini-2.5-Flash, though more capable in general tasks, underperforms Gemini-2.0-Flash in detection accuracy and semantic understanding and incurs higher latency (Table II). These findings motivate further work on fine-tuning specialized LLMs or MLLMs tailored for intelligent transportation applications.
comment: submitted to TRA 2026
Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
PanoNav: Mapless Zero-Shot Object Navigation with Panoramic Scene Parsing and Dynamic Memory AAAI 2026
Zero-shot object navigation (ZSON) in unseen environments remains a challenging problem for household robots, requiring strong perceptual understanding and decision-making capabilities. While recent methods leverage metric maps and Large Language Models (LLMs), they often depend on depth sensors or prebuilt maps, limiting the spatial reasoning ability of Multimodal Large Language Models (MLLMs). Mapless ZSON approaches have emerged to address this, but they typically make short-sighted decisions, leading to local deadlocks due to a lack of historical context. We propose PanoNav, a fully RGB-only, mapless ZSON framework that integrates a Panoramic Scene Parsing module to unlock the spatial parsing potential of MLLMs from panoramic RGB inputs, and a Memory-guided Decision-Making mechanism enhanced by a Dynamic Bounded Memory Queue to incorporate exploration history and avoid local deadlocks. Experiments on the public navigation benchmark show that PanoNav significantly outperforms representative baselines in both SR and SPL metrics.
comment: Accepted as a poster in AAAI 2026
Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
Vision-Aided Online A* Path Planning for Efficient and Safe Navigation of Service Robots
The deployment of autonomous service robots in human-centric environments is hindered by a critical gap in perception and planning. Traditional navigation systems rely on expensive LiDARs that, while geometrically precise, are seman- tically unaware, they cannot distinguish a important document on an office floor from a harmless piece of litter, treating both as physically traversable. While advanced semantic segmentation exists, no prior work has successfully integrated this visual intelligence into a real-time path planner that is efficient enough for low-cost, embedded hardware. This paper presents a frame- work to bridge this gap, delivering context-aware navigation on an affordable robotic platform. Our approach centers on a novel, tight integration of a lightweight perception module with an online A* planner. The perception system employs a semantic segmentation model to identify user-defined visual constraints, enabling the robot to navigate based on contextual importance rather than physical size alone. This adaptability allows an operator to define what is critical for a given task, be it sensitive papers in an office or safety lines in a factory, thus resolving the ambiguity of what to avoid. This semantic perception is seamlessly fused with geometric data. The identified visual constraints are projected as non-geometric obstacles onto a global map that is continuously updated from sensor data, enabling robust navigation through both partially known and unknown environments. We validate our framework through extensive experiments in high-fidelity simulations and on a real-world robotic platform. The results demonstrate robust, real-time performance, proving that a cost- effective robot can safely navigate complex environments while respecting critical visual cues invisible to traditional planners.
comment: 10 pages
Human-Level Actuation for Humanoids
Claims that humanoid robots achieve ``human-level'' actuation are common but rarely quantified. Peak torque or speed specifications tell us little about whether a joint can deliver the right combination of torque, power, and endurance at task-relevant postures and rates. We introduce a comprehensive framework that makes ``human-level'' measurable and comparable across systems. Our approach has three components. First, a kinematic \emph{DoF atlas} standardizes joint coordinate systems and ranges of motion using ISB-based conventions, ensuring that human and robot joints are compared in the same reference frames. Second, \emph{Human-Equivalence Envelopes (HEE)} define per-joint requirements by measuring whether a robot meets human torque \emph{and} power simultaneously at the same joint angle and rate $(q,\omega)$, weighted by positive mechanical work in task-specific bands (walking, stairs, lifting, reaching, and hand actions). Third, the \emph{Human-Level Actuation Score (HLAS)} aggregates six physically grounded factors: workspace coverage (ROM and DoF), HEE coverage, torque-mode bandwidth, efficiency, and thermal sustainability. We provide detailed measurement protocols using dynamometry, electrical power monitoring, and thermal testing that yield every HLAS input from reproducible experiments. A worked example demonstrates HLAS computation for a multi-joint humanoid, showing how the score exposes actuator trade-offs (gearing ratio versus bandwidth and efficiency) that peak-torque specifications obscure. The framework serves as both a design specification for humanoid development and a benchmarking standard for comparing actuation systems, with all components grounded in published human biomechanics data.
comment: 61 pages, 8 figures, 7 tables, and 12 numbered equations
SlotVLA: Towards Modeling of Object-Relation Representations in Robotic Manipulation
Inspired by how humans reason over discrete objects and their relationships, we explore whether compact object-centric and object-relation representations can form a foundation for multitask robotic manipulation. Most existing robotic multitask models rely on dense embeddings that entangle both object and background cues, raising concerns about both efficiency and interpretability. In contrast, we study object-relation-centric representations as a pathway to more structured, efficient, and explainable visuomotor control. Our contributions are two-fold. First, we introduce LIBERO+, a fine-grained benchmark dataset designed to enable and evaluate object-relation reasoning in robotic manipulation. Unlike prior datasets, LIBERO+ provides object-centric annotations that enrich demonstrations with box- and mask-level labels as well as instance-level temporal tracking, supporting compact and interpretable visuomotor representations. Second, we propose SlotVLA, a slot-attention-based framework that captures both objects and their relations for action decoding. It uses a slot-based visual tokenizer to maintain consistent temporal object representations, a relation-centric decoder to produce task-relevant embeddings, and an LLM-driven module that translates these embeddings into executable actions. Experiments on LIBERO+ demonstrate that object-centric slot and object-relation slot representations drastically reduce the number of required visual tokens, while providing competitive generalization. Together, LIBERO+ and SlotVLA provide a compact, interpretable, and effective foundation for advancing object-relation-centric robotic manipulation.
comment: under review
Semi-distributed Cross-modal Air-Ground Relative Localization IROS 2025
Efficient, accurate, and flexible relative localization is crucial in air-ground collaborative tasks. However, current approaches for robot relative localization are primarily realized in the form of distributed multi-robot SLAM systems with the same sensor configuration, which are tightly coupled with the state estimation of all robots, limiting both flexibility and accuracy. To this end, we fully leverage the high capacity of Unmanned Ground Vehicle (UGV) to integrate multiple sensors, enabling a semi-distributed cross-modal air-ground relative localization framework. In this work, both the UGV and the Unmanned Aerial Vehicle (UAV) independently perform SLAM while extracting deep learning-based keypoints and global descriptors, which decouples the relative localization from the state estimation of all agents. The UGV employs a local Bundle Adjustment (BA) with LiDAR, camera, and an IMU to rapidly obtain accurate relative pose estimates. The BA process adopts sparse keypoint optimization and is divided into two stages: First, optimizing camera poses interpolated from LiDAR-Inertial Odometry (LIO), followed by estimating the relative camera poses between the UGV and UAV. Additionally, we implement an incremental loop closure detection algorithm using deep learning-based descriptors to maintain and retrieve keyframes efficiently. Experimental results demonstrate that our method achieves outstanding performance in both accuracy and efficiency. Unlike traditional multi-robot SLAM approaches that transmit images or point clouds, our method only transmits keypoint pixels and their descriptors, effectively constraining the communication bandwidth under 0.3 Mbps. Codes and data will be publicly available on https://github.com/Ascbpiac/cross-model-relative-localization.git.
comment: 7 pages, 3 figures. Accepted by IROS 2025
Physically-Grounded Goal Imagination: Physics-Informed Variational Autoencoder for Self-Supervised Reinforcement Learning
Self-supervised goal-conditioned reinforcement learning enables robots to autonomously acquire diverse skills without human supervision. However, a central challenge is the goal setting problem: robots must propose feasible and diverse goals that are achievable in their current environment. Existing methods like RIG (Visual Reinforcement Learning with Imagined Goals) use variational autoencoder (VAE) to generate goals in a learned latent space but have the limitation of producing physically implausible goals that hinder learning efficiency. We propose Physics-Informed RIG (PI-RIG), which integrates physical constraints directly into the VAE training process through a novel Enhanced Physics-Informed Variational Autoencoder (Enhanced p3-VAE), enabling the generation of physically consistent and achievable goals. Our key innovation is the explicit separation of the latent space into physics variables governing object dynamics and environmental factors capturing visual appearance, while enforcing physical consistency through differential equation constraints and conservation laws. This enables the generation of physically consistent and achievable goals that respect fundamental physical principles such as object permanence, collision constraints, and dynamic feasibility. Through extensive experiments, we demonstrate that this physics-informed goal generation significantly improves the quality of proposed goals, leading to more effective exploration and better skill acquisition in visual robotic manipulation tasks including reaching, pushing, and pick-and-place scenarios.
Programmable Telescopic Soft Pneumatic Actuators for Deployable and Shape Morphing Soft Robots
Soft Robotics presents a rich canvas for free-form and continuum devices capable of exerting forces in any direction and transforming between arbitrary configurations. However, there is no current way to tractably and directly exploit the design freedom due to the curse of dimensionality. Parameterisable sets of designs offer a pathway towards tractable, modular soft robotics that appropriately harness the behavioural freeform of soft structures to create rich embodied behaviours. In this work, we present a parametrised class of soft actuators, Programmable Telescopic Soft Pneumatic Actuators (PTSPAs). PTSPAs expand axially on inflation for deployable structures and manipulation in challenging confined spaces. We introduce a parametric geometry generator to customise actuator models from high-level inputs, and explore the new design space through semi-automated experimentation and systematic exploration of key parameters. Using it we characterise the actuators' extension/bending, expansion, and stiffness and reveal clear relationships between key design parameters and performance. Finally we demonstrate the application of the actuators in a deployable soft quadruped whose legs deploy to walk, enabling automatic adaptation to confined spaces. PTSPAs present new design paradigm for deployable and shape morphing structures and wherever large length changes are required.
comment: 8 pages, 10 figures, Submitted to Robosoft 2026
Rapidly Learning Soft Robot Control via Implicit Time-Stepping
With the explosive growth of rigid-body simulators, policy learning in simulation has become the de facto standard for most rigid morphologies. In contrast, soft robotic simulation frameworks remain scarce and are seldom adopted by the soft robotics community. This gap stems partly from the lack of easy-to-use, general-purpose frameworks and partly from the high computational cost of accurately simulating continuum mechanics, which often renders policy learning infeasible. In this work, we demonstrate that rapid soft robot policy learning is indeed achievable via implicit time-stepping. Our simulator of choice, DisMech, is a general-purpose, fully implicit soft-body simulator capable of handling both soft dynamics and frictional contact. We further introduce delta natural curvature control, a method analogous to delta joint position control in rigid manipulators, providing an intuitive and effective means of enacting control for soft robot learning. To highlight the benefits of implicit time-stepping and delta curvature control, we conduct extensive comparisons across four diverse soft manipulator tasks against one of the most widely used soft-body frameworks, Elastica. With implicit time-stepping, parallel stepping of 500 environments achieves up to 6x faster speeds for non-contact cases and up to 40x faster for contact-rich scenarios. Finally, a comprehensive sim-to-sim gap evaluation--training policies in one simulator and evaluating them in another--demonstrates that implicit time-stepping provides a rare free lunch: dramatic speedups achieved without sacrificing accuracy.
comment: Code: https://github.com/QuantuMope/dismech-rl
How Do VLAs Effectively Inherit from VLMs?
Vision-language-action (VLA) models hold the promise to attain generalizable embodied control. To achieve this, a pervasive paradigm is to leverage the rich vision-semantic priors of large vision-language models (VLMs). However, the fundamental question persists: How do VLAs effectively inherit the prior knowledge from VLMs? To address this critical question, we introduce a diagnostic benchmark, GrinningFace, an emoji tabletop manipulation task where the robot arm is asked to place objects onto printed emojis corresponding to language instructions. This task design is particularly revealing -- knowledge associated with emojis is ubiquitous in Internet-scale datasets used for VLM pre-training, yet emojis themselves are largely absent from standard robotics datasets. Consequently, they provide a clean proxy: successful task completion indicates effective transfer of VLM priors to embodied control. We implement this diagnostic task in both simulated environment and a real robot, and compare various promising techniques for knowledge transfer. Specifically, we investigate the effects of parameter-efficient fine-tuning, VLM freezing, co-training, predicting discretized actions, and predicting latent actions. Through systematic evaluation, our work not only demonstrates the critical importance of preserving VLM priors for the generalization of VLA but also establishes guidelines for future research in developing truly generalizable embodied AI systems.
On Accurate and Robust Estimation of 3D and 2D Circular Center: Method and Application to Camera-Lidar Calibration
Circular targets are widely used in LiDAR-camera extrinsic calibration due to their geometric consistency and ease of detection. However, achieving accurate 3D-2D circular center correspondence remains challenging. Existing methods often fail due to decoupled 3D fitting and erroneous 2D ellipse-center estimation. To address this, we propose a geometrically principled framework featuring two innovations: (i) a robust 3D circle center estimator based on conformal geometric algebra and RANSAC; and (ii) a chord-length variance minimization method to recover the true 2D projected center, resolving its dual-minima ambi- guity via homography validation or a quasi-RANSAC fallback. Evaluated on synthetic and real-world datasets, our framework significantly outperforms state-of-the-art approaches. It reduces extrinsic estimation error and enables robust calibration across diverse sensors and target types, including natural circular objects. Our code will be publicly released for reproducibility.
Testing and Evaluation of Underwater Vehicle Using Hardware-In-The-Loop Simulation with HoloOcean
Testing marine robotics systems in controlled environments before field tests is challenging, especially when acoustic-based sensors and control surfaces only function properly underwater. Deploying robots in indoor tanks and pools often faces space constraints that complicate testing of control, navigation, and perception algorithms at scale. Recent developments of high-fidelity underwater simulation tools have the potential to address these problems. We demonstrate the utility of the recently released HoloOcean 2.0 simulator with improved dynamics for torpedo AUV vehicles and a new ROS 2 interface. We have successfully demonstrated a Hardware-in-the-Loop (HIL) and Software-in-the-Loop (SIL) setup for testing and evaluating a CougUV torpedo autonomous underwater vehicle (AUV) that was built and developed in our lab. With this HIL and SIL setup, simulations are run in HoloOcean using a ROS 2 bridge such that simulated sensor data is sent to the CougUV (mimicking sensor drivers) and control surface commands are sent back to the simulation, where vehicle dynamics and sensor data are calculated. We compare our simulated results to real-world field trial results.
comment: Published in IEEE/MTS OCEANS Conference proceedings 2025 Great Lakes
Time-Aware Policy Learning for Adaptive and Punctual Robot Control
Temporal awareness underlies intelligent behavior in both animals and humans, guiding how actions are sequenced, paced, and adapted to changing goals and environments. Yet most robot learning algorithms remain blind to time. We introduce time-aware policy learning, a reinforcement learning framework that enables robots to explicitly perceive and reason with time as a first-class variable. The framework augments conventional reinforcement policies with two complementary temporal signals, the remaining time and a time ratio, which allow a single policy to modulate its behavior continuously from rapid and dynamic to cautious and precise execution. By jointly optimizing punctuality and stability, the robot learns to balance efficiency, robustness, resiliency, and punctuality without re-training or reward adjustment. Across diverse manipulation domains from long-horizon pick and place, to granular-media pouring, articulated-object handling, and multi-agent object delivery, the time-aware policy produces adaptive behaviors that outperform standard reinforcement learning baselines by up to 48% in efficiency, 8 times more robust in sim-to-real transfer, and 90% in acoustic quietness while maintaining near-perfect success rates. Explicit temporal reasoning further enables real-time human-in-the-loop control and multi-agent coordination, allowing robots to recover from disturbances, re-synchronize after delays, and align motion tempo with human intent. By treating time not as a constraint but as a controllable dimension of behavior, time-aware policy learning provides a unified foundation for efficient, robust, resilient, and human-aligned robot autonomy.
CAVER: Curious Audiovisual Exploring Robot
Multimodal audiovisual perception can enable new avenues for robotic manipulation, from better material classification to the imitation of demonstrations for which only audio signals are available (e.g., playing a tune by ear). However, to unlock such multimodal potential, robots need to learn the correlations between an object's visual appearance and the sound it generates when they interact with it. Such an active sensorimotor experience requires new interaction capabilities, representations, and exploration methods to guide the robot in efficiently building increasingly rich audiovisual knowledge. In this work, we present CAVER, a novel robot that builds and utilizes rich audiovisual representations of objects. CAVER includes three novel contributions: 1) a novel 3D printed end-effector, attachable to parallel grippers, that excites objects' audio responses, 2) an audiovisual representation that combines local and global appearance information with sound features, and 3) an exploration algorithm that uses and builds the audiovisual representation in a curiosity-driven manner that prioritizes interacting with high uncertainty objects to obtain good coverage of surprising audio with fewer interactions. We demonstrate that CAVER builds rich representations in different scenarios more efficiently than several exploration baselines, and that the learned audiovisual representation leads to significant improvements in material classification and the imitation of audio-only human demonstrations. https://caver-bot.github.io/
comment: 9 pages, 6 figures
Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
IMPACT: Behavioral Intention-aware Multimodal Trajectory Prediction with Adaptive Context Trimming
While most prior research has focused on improving the precision of multimodal trajectory predictions, the explicit modeling of multimodal behavioral intentions (e.g., yielding, overtaking) remains relatively underexplored. This paper proposes a unified framework that jointly predicts both behavioral intentions and trajectories to enhance prediction accuracy, interpretability, and efficiency. Specifically, we employ a shared context encoder for both intention and trajectory predictions, thereby reducing structural redundancy and information loss. Moreover, we address the lack of ground-truth behavioral intention labels in mainstream datasets (Waymo, Argoverse) by auto-labeling these datasets, thus advancing the community's efforts in this direction. We further introduce a vectorized occupancy prediction module that infers the probability of each map polyline being occupied by the target vehicle's future trajectory. By leveraging these intention and occupancy prediction priors, our method conducts dynamic, modality-dependent pruning of irrelevant agents and map polylines in the decoding stage, effectively reducing computational overhead and mitigating noise from non-critical elements. Our approach ranks first among LiDAR-free methods on the Waymo Motion Dataset and achieves first place on the Waymo Interactive Prediction Dataset. Remarkably, even without model ensembling, our single-model framework improves the soft mean average precision (softmAP) by 10 percent compared to the second-best method in the Waymo Interactive Prediction Leaderboard. Furthermore, the proposed framework has been successfully deployed on real vehicles, demonstrating its practical effectiveness in real-world applications.
comment: accepted by IEEE Robotics and Automation Letters
A High-Speed Time-Optimal Trajectory Generation Strategy via a Two-layer Planning Model
MPC (Model predictive control)-based motion planning and trajectory generation are essential in applications such as unmanned aerial vehicles, robotic manipulators, and rocket control. However, the real-time implementation of such optimization-based planning faces significant challenges arising from non-convex problem structures and inherent limitations of nonlinear programming -- notably the difficulty in guaranteeing solution quality and the unpredictability of computation time. To improve robustness and computational efficiency, this paper introduces a two-layer motion planning algorithm for intelligent ground vehicles based on convex optimization. The proposed algorithm iteratively constructs discrete optimal control subproblems with small, fixed terminal times, referred to as planning cycles. Each planning cycle is further solved within progressively constructed convex sets generated by utilizing customized search algorithms. The entire solution to the original problem is obtained by incrementally composing the solutions of these subproblems. The proposed algorithm demonstrates enhanced reliability and significantly reduced computation time. We support our approach with theoretical analysis under practical assumptions and numerical experiments. Comparative results with standard sequential convex programming (SCP) methods demonstrate the superiority of our method -- include a significant improved computational speed under dynamic environments while maintain a near optimal final time.
Pure Vision Language Action (VLA) Models: A Comprehensive Survey
The emergence of Vision Language Action (VLA) models marks a paradigm shift from traditional policy-based control to generalized robotics, reframing Vision Language Models (VLMs) from passive sequence generators into active agents for manipulation and decision-making in complex, dynamic environments. This survey delves into advanced VLA methods, aiming to provide a clear taxonomy and a systematic, comprehensive review of existing research. It presents a comprehensive analysis of VLA applications across different scenarios and classifies VLA approaches into several paradigms: autoregression-based, diffusion-based, reinforcement-based, hybrid, and specialized methods; while examining their motivations, core strategies, and implementations in detail. In addition, foundational datasets, benchmarks, and simulation platforms are introduced. Building on the current VLA landscape, the review further proposes perspectives on key challenges and future directions to advance research in VLA models and generalizable robotics. By synthesizing insights from over three hundred recent studies, this survey maps the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose VLA methods.
Whole-body motion planning and safety-critical control for aerial manipulation
Aerial manipulation combines the maneuverability of multirotors with the dexterity of robotic arms to perform complex tasks in cluttered spaces. Yet planning safe, dynamically feasible trajectories remains difficult due to whole-body collision avoidance and the conservativeness of common geometric abstractions such as bounding boxes or ellipsoids. We present a whole-body motion planning and safety-critical control framework for aerial manipulators built on superquadrics (SQs). Using an SQ-plus-proxy representation, we model both the vehicle and obstacles with differentiable, geometry-accurate surfaces. Leveraging this representation, we introduce a maximum-clearance planner that fuses Voronoi diagrams with an equilibrium-manifold formulation to generate smooth, collision-aware trajectories. We further design a safety-critical controller that jointly enforces thrust limits and collision avoidance via high-order control barrier functions. In simulation, our approach outperforms sampling-based planners in cluttered environments, producing faster, safer, and smoother trajectories and exceeding ellipsoid-based baselines in geometric fidelity. Actual experiments on a physical aerial-manipulation platform confirm feasibility and robustness, demonstrating consistent performance across simulation and hardware settings. The video can be found at https://youtu.be/hQYKwrWf1Ak.
comment: Submitted to 2026 IFAC World Congress with the Journal option (MECHATRONICS)
A Step Toward World Models: A Survey on Robotic Manipulation
Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and support prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, we go beyond prescribing a fixed definition and limiting our scope to methods explicitly labeled as world models. Instead, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a fully realized world model should possess. Building on this analysis, we aim to motivate further development toward generalizable and practical world models for robotics.
comment: 24 pages, 5 figures
Scalable Offline Metrics for Autonomous Driving IROS 2025
Real-world evaluation of perception-based planning models for robotic systems, such as autonomous vehicles, can be safely and inexpensively conducted offline, i.e. by computing model prediction error over a pre-collected validation dataset with ground-truth annotations. However, extrapolating from offline model performance to online settings remains a challenge. In these settings, seemingly minor errors can compound and result in test-time infractions or collisions. This relationship is understudied, particularly across diverse closed-loop metrics and complex urban maneuvers. In this work, we revisit this undervalued question in policy evaluation through an extensive set of experiments across diverse conditions and metrics. Based on analysis in simulation, we find an even worse correlation between offline and online settings than reported by prior studies, casting doubts on the validity of current evaluation practices and metrics for driving policies. Next, we bridge the gap between offline and online evaluation. We investigate an offline metric based on epistemic uncertainty, which aims to capture events that are likely to cause errors in closed-loop settings. The resulting metric achieves over 13% improvement in correlation compared to previous offline metrics. We further validate the generalization of our findings beyond the simulation environment in real-world settings, where even greater gains are observed.
comment: Accepted at IROS 2025 (IEEE/RSJ International Conference on Intelligent Robots and Systems); typos corrected
MiniBEE: A New Form Factor for Compact Bimanual Dexterity
Bimanual robot manipulators can achieve impressive dexterity, but typically rely on two full six- or seven- degree-of-freedom arms so that paired grippers can coordinate effectively. This traditional framework increases system complexity while only exploiting a fraction of the overall workspace for dexterous interaction. We introduce the MiniBEE (Miniature Bimanual End-effector), a compact system in which two reduced-mobility arms (3+ DOF each) are coupled into a kinematic chain that preserves full relative positioning between grippers. To guide our design, we formulate a kinematic dexterity metric that enlarges the dexterous workspace while keeping the mechanism lightweight and wearable. The resulting system supports two complementary modes: (i) wearable kinesthetic data collection with self-tracked gripper poses, and (ii) deployment on a standard robot arm, extending dexterity across its entire workspace. We present kinematic analysis and design optimization methods for maximizing dexterous range, and demonstrate an end-to-end pipeline in which wearable demonstrations train imitation learning policies that perform robust, real-world bimanual manipulation.
Uncertainty-Aware Active Source Tracking of Marine Pollution using Unmanned Surface Vehicles
This paper proposes an uncertainty-aware marine pollution source tracking framework for unmanned surface vehicles (USVs). By integrating high-fidelity marine pollution dispersion simulation with informative path planning techniques, we demonstrate effective identification of pollution sources in marine environments. The proposed approach is implemented based on Robot Operating System (ROS), processing real-time sensor data to update probabilistic source location estimates. The system progressively refines the estimation of source location while quantifying uncertainty levels in its predictions. Experiments conducted in simulated environments with varying source locations, wave conditions, and starting positions demonstrate the framework's ability to localise pollution sources with high accuracy. Results show that the proposed approach achieves reliable source localisation efficiently and outperforms the existing baseline. This work contributes to the development of full autonomous environmental monitoring capabilities essential for rapid response to marine pollution incidents.
Multiagent Systems
Bridging the Prototype-Production Gap: A Multi-Agent System for Notebooks Transformation
The increasing adoption of Jupyter notebooks in data science and machine learning workflows has created a gap between exploratory code development and production-ready software systems. While notebooks excel at iterative development and visualization, they often lack proper software engineering principles, making their transition to production environments challenging. This paper presents Codelevate, a novel multi-agent system that automatically transforms Jupyter notebooks into well-structured, maintainable Python code repositories. Our system employs three specialized agents - Architect, Developer, and Structure - working in concert through a shared dependency tree to ensure architectural coherence and code quality. Our experimental results validate Codelevate's capability to bridge the prototype-to-production gap through autonomous code transformation, yielding quantifiable improvements in code quality metrics while preserving computational semantics.
Evaluating Online Moderation Via LLM-Powered Counterfactual Simulations AAAI
Online Social Networks (OSNs) widely adopt content moderation to mitigate the spread of abusive and toxic discourse. Nonetheless, the real effectiveness of moderation interventions remains unclear due to the high cost of data collection and limited experimental control. The latest developments in Natural Language Processing pave the way for a new evaluation approach. Large Language Models (LLMs) can be successfully leveraged to enhance Agent-Based Modeling and simulate human-like social behavior with unprecedented degree of believability. Yet, existing tools do not support simulation-based evaluation of moderation strategies. We fill this gap by designing a LLM-powered simulator of OSN conversations enabling a parallel, counterfactual simulation where toxic behavior is influenced by moderation interventions, keeping all else equal. We conduct extensive experiments, unveiling the psychological realism of OSN agents, the emergence of social contagion phenomena and the superior effectiveness of personalized moderation strategies.
comment: Accepted for publication at AAAI Conference on Artificial Intelligence 2026
Resilient by Design - Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free-energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
Agentic AI Sustainability Assessment for Supply Chain Document Insights
This paper presents a comprehensive sustainability assessment framework for document intelligence within supply chain operations, centered on agentic artificial intelligence (AI). We address the dual objective of improving automation efficiency while providing measurable environmental performance in document-intensive workflows. The research compares three scenarios: fully manual (human-only), AI-assisted (human-in-the-loop, HITL), and an advanced multi-agent agentic AI workflow leveraging parsers and verifiers. Empirical results show that AI-assisted HITL and agentic AI scenarios achieve reductions of up to 70-90% in energy consumption, 90-97% in carbon dioxide emissions, and 89-98% in water usage compared to manual processes. Notably, full agentic configurations, combining advanced reasoning (thinking mode) and multi-agent validation, achieve substantial sustainability gains over human-only approaches, even when resource usage increases slightly versus simpler AI-assisted solutions. The framework integrates performance, energy, and emission indicators into a unified ESG-oriented methodology for assessing and governing AI-enabled supply chain solutions. The paper includes a complete replicability use case demonstrating the methodology's application to real-world document extraction tasks.
comment: 17 pages, 4 figures
Multi-Agent Reinforcement Learning for Deadlock Handling among Autonomous Mobile Robots
This dissertation explores the application of multi-agent reinforcement learning (MARL) for handling deadlocks in intralogistics systems that rely on autonomous mobile robots (AMRs). AMRs enhance operational flexibility but also increase the risk of deadlocks, which degrade system throughput and reliability. Existing approaches often neglect deadlock handling in the planning phase and rely on rigid control rules that cannot adapt to dynamic operational conditions. To address these shortcomings, this work develops a structured methodology for integrating MARL into logistics planning and operational control. It introduces reference models that explicitly consider deadlock-capable multi-agent pathfinding (MAPF) problems, enabling systematic evaluation of MARL strategies. Using grid-based environments and an external simulation software, the study compares traditional deadlock handling strategies with MARL-based solutions, focusing on PPO and IMPALA algorithms under different training and execution modes. Findings reveal that MARL-based strategies, particularly when combined with centralized training and decentralized execution (CTDE), outperform rule-based methods in complex, congested environments. In simpler environments or those with ample spatial freedom, rule-based methods remain competitive due to their lower computational demands. These results highlight that MARL provides a flexible and scalable solution for deadlock handling in dynamic intralogistics scenarios, but requires careful tailoring to the operational context.
comment: for associated repositories, see https://github.com/Nerozud/dl_reference_models and https://github.com/Nerozud/FTS_simpel
On the Redundant Distributed Observability of Mixed Traffic Transportation Systems
In this paper, the problem of distributed state estimation of human-driven vehicles (HDVs) by connected autonomous vehicles (CAVs) is investigated in mixed traffic transportation systems. Toward this, a distributed observable state-space model is derived, which paves the way for estimation and observability analysis of HDVs in mixed traffic scenarios. In this direction, first, we obtain the condition on the network topology to satisfy the distributed observability, i.e., the condition such that each HDV state is observable to every CAV via information-exchange over the network. It is shown that strong connectivity of the network, along with the proper design of the observer gain, is sufficient for this. A distributed observer is then designed by locally sharing estimates/observations of each CAV with its neighborhood. Second, in case there exist faulty sensors or unreliable observation data, we derive the condition for redundant distributed observability as a $q$-node/link-connected network design. This redundancy is achieved by extra information-sharing over the network and implies that a certain number of faulty sensors and unreliable links can be isolated/removed without losing the observability. Simulation results are provided to illustrate the effectiveness of the proposed approach.
comment: EURASIP journal on advances in signal processing
Sequential Causal Normal Form Games: Theory, Computation, and Strategic Signaling AAAI 2026
Can classical game-theoretic frameworks be extended to capture the bounded rationality and causal reasoning of AI agents? We investigate this question by extending Causal Normal Form Games (CNFGs) to sequential settings, introducing Sequential Causal Multi-Agent Systems (S-CMAS) that incorporate Pearl's Causal Hierarchy across leader-follower interactions. While theoretically elegant -- we prove PSPACE-completeness, develop equilibrium refinements, and establish connections to signaling theory -- our comprehensive empirical investigation reveals a critical limitation: S-CNE provides zero welfare improvement over classical Stackelberg equilibrium across all tested scenarios. Through 50+ Monte Carlo simulations and hand-crafted synthetic examples, we demonstrate that backward induction with rational best-response eliminates any strategic advantage from causal layer distinctions. We construct a theoretical example illustrating conditions where benefits could emerge ($\epsilon$-rational satisficing followers), though implementation confirms that even relaxed rationality assumptions prove insufficient when good instincts align with optimal play. This negative result provides valuable insight: classical game-theoretic extensions grounded in rational choice are fundamentally incompatible with causal reasoning advantages, motivating new theoretical frameworks beyond standard Nash equilibrium for agentic AI.
comment: AAAI 2026 Workshop on Foundations of Agentic Systems Theory
Coupling Agent-based Modeling and Life Cycle Assessment to Analyze Trade-offs in Resilient Energy Transitions NeurIPS
Transitioning to sustainable and resilient energy systems requires navigating complex and interdependent trade-offs across environmental, social, and resource dimensions. Neglecting these trade-offs can lead to unintended consequences across sectors. However, existing assessments often evaluate emerging energy pathways and their impacts in silos, overlooking critical interactions such as regional resource competition and cumulative impacts. We present an integrated modeling framework that couples agent-based modeling and Life Cycle Assessment (LCA) to simulate how energy transition pathways interact with regional resource competition, ecological constraints, and community-level burdens. We apply the model to a case study in Southern California. The results demonstrate how integrated and multiscale decision making can shape energy pathway deployment and reveal spatially explicit trade-offs under scenario-driven constraints. This modeling framework can further support more adaptive and resilient energy transition planning on spatial and institutional scales.
comment: 4 pages (+4 pages in appendix), 3 figures (+ 2 figures in appendix), 8 tables in appendix, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2025
S-DAG: A Subject-Based Directed Acyclic Graph for Multi-Agent Heterogeneous Reasoning
Large Language Models (LLMs) have achieved impressive performance in complex reasoning problems. Their effectiveness highly depends on the specific nature of the task, especially the required domain knowledge. Existing approaches, such as mixture-of-experts, typically operate at the task level; they are too coarse to effectively solve the heterogeneous problems involving multiple subjects. This work proposes a novel framework that performs fine-grained analysis at subject level equipped with a designated multi-agent collaboration strategy for addressing heterogeneous problem reasoning. Specifically, given an input query, we first employ a Graph Neural Network to identify the relevant subjects and infer their interdependencies to generate an \textit{Subject-based Directed Acyclic Graph} (S-DAG), where nodes represent subjects and edges encode information flow. Then we profile the LLM models by assigning each model a subject-specific expertise score, and select the top-performing one for matching corresponding subject of the S-DAG. Such subject-model matching enables graph-structured multi-agent collaboration where information flows from the starting model to the ending model over S-DAG. We curate and release multi-subject subsets of standard benchmarks (MMLU-Pro, GPQA, MedMCQA) to better reflect complex, real-world reasoning tasks. Extensive experiments show that our approach significantly outperforms existing task-level model selection and multi-agent collaboration baselines in accuracy and efficiency. These results highlight the effectiveness of subject-aware reasoning and structured collaboration in addressing complex and multi-subject problems.
Distributed Adaptive Estimation over Sensor Networks with Partially Unknown Source Dynamics
This paper studies distributed adaptive estimation over sensor networks with partially known source dynamics. We present parallel continuous-time and discrete-time designs in which each node runs a local adaptive observer and exchanges information over a directed graph. For both time scales, we establish stability of the network coupling operators, prove boundedness of all internal signals, and show convergence of each node estimate to the source despite model uncertainty and disturbances. We further derive input-to-state stability (ISS) bounds that quantify robustness to bounded process noise. A key distinction is that the discrete-time design uses constant adaptive gains and per-step regressor normalization to handle sampling effects, whereas the continuous-time design does not. A unified Lyapunov framework links local observer dynamics with graph topology. Simulations on star, cyclic, and path networks corroborate the analysis, demonstrating accurate tracking, robustness, and scalability with the number of sensing nodes.
comment: This version is currently under review for the 2026 IFAC World Conference (OIT)
Partial Action Replacement: Tackling Distribution Shift in Offline MARL AAAI 2026
Offline multi-agent reinforcement learning (MARL) is severely hampered by the challenge of evaluating out-of-distribution (OOD) joint actions. Our core finding is that when the behavior policy is factorized - a common scenario where agents act fully or partially independently during data collection - a strategy of partial action replacement (PAR) can significantly mitigate this challenge. PAR updates a single or part of agents' actions while the others remain fixed to the behavioral data, reducing distribution shift compared to full joint-action updates. Based on this insight, we develop Soft-Partial Conservative Q-Learning (SPaCQL), using PAR to mitigate OOD issue and dynamically weighting different PAR strategies based on the uncertainty of value estimation. We provide a rigorous theoretical foundation for this approach, proving that under factorized behavior policies, the induced distribution shift scales linearly with the number of deviating agents rather than exponentially with the joint-action space. This yields a provably tighter value error bound for this important class of offline MARL problems. Our theoretical results also indicate that SPaCQL adaptively addresses distribution shift using uncertainty-informed weights. Our empirical results demonstrate SPaCQL enables more effective policy learning, and manifest its remarkable superiority over baseline algorithms when the offline dataset exhibits the independence structure.
comment: Accepted by AAAI 2026
Bridging the Prototype-Production Gap: A Multi-Agent System for Notebooks Transformation
The increasing adoption of Jupyter notebooks in data science and machine learning workflows has created a gap between exploratory code development and production-ready software systems. While notebooks excel at iterative development and visualization, they often lack proper software engineering principles, making their transition to production environments challenging. This paper presents Codelevate, a novel multi-agent system that automatically transforms Jupyter notebooks into well-structured, maintainable Python code repositories. Our system employs three specialized agents - Architect, Developer, and Structure - working in concert through a shared dependency tree to ensure architectural coherence and code quality. Our experimental results validate Codelevate's capability to bridge the prototype-to-production gap through autonomous code transformation, yielding quantifiable improvements in code quality metrics while preserving computational semantics.
Evaluating Online Moderation Via LLM-Powered Counterfactual Simulations AAAI
Online Social Networks (OSNs) widely adopt content moderation to mitigate the spread of abusive and toxic discourse. Nonetheless, the real effectiveness of moderation interventions remains unclear due to the high cost of data collection and limited experimental control. The latest developments in Natural Language Processing pave the way for a new evaluation approach. Large Language Models (LLMs) can be successfully leveraged to enhance Agent-Based Modeling and simulate human-like social behavior with unprecedented degree of believability. Yet, existing tools do not support simulation-based evaluation of moderation strategies. We fill this gap by designing a LLM-powered simulator of OSN conversations enabling a parallel, counterfactual simulation where toxic behavior is influenced by moderation interventions, keeping all else equal. We conduct extensive experiments, unveiling the psychological realism of OSN agents, the emergence of social contagion phenomena and the superior effectiveness of personalized moderation strategies.
comment: Accepted for publication at AAAI Conference on Artificial Intelligence 2026
Resilient by Design -- Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free-energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
Agentic AI Sustainability Assessment for Supply Chain Document Insights
This paper presents a comprehensive sustainability assessment framework for document intelligence within supply chain operations, centered on agentic artificial intelligence (AI). We address the dual objective of improving automation efficiency while providing measurable environmental performance in document-intensive workflows. The research compares three scenarios: fully manual (human-only), AI-assisted (human-in-the-loop, HITL), and an advanced multi-agent agentic AI workflow leveraging parsers and verifiers. Empirical results show that AI-assisted HITL and agentic AI scenarios achieve reductions of up to 70-90% in energy consumption, 90-97% in carbon dioxide emissions, and 89-98% in water usage compared to manual processes. Notably, full agentic configurations, combining advanced reasoning (thinking mode) and multi-agent validation, achieve substantial sustainability gains over human-only approaches, even when resource usage increases slightly versus simpler AI-assisted solutions. The framework integrates performance, energy, and emission indicators into a unified ESG-oriented methodology for assessing and governing AI-enabled supply chain solutions. The paper includes a complete replicability use case demonstrating the methodology's application to real-world document extraction tasks.
comment: 17 pages, 4 figures
Multi-Agent Reinforcement Learning for Deadlock Handling among Autonomous Mobile Robots
This dissertation explores the application of multi-agent reinforcement learning (MARL) for handling deadlocks in intralogistics systems that rely on autonomous mobile robots (AMRs). AMRs enhance operational flexibility but also increase the risk of deadlocks, which degrade system throughput and reliability. Existing approaches often neglect deadlock handling in the planning phase and rely on rigid control rules that cannot adapt to dynamic operational conditions. To address these shortcomings, this work develops a structured methodology for integrating MARL into logistics planning and operational control. It introduces reference models that explicitly consider deadlock-capable multi-agent pathfinding (MAPF) problems, enabling systematic evaluation of MARL strategies. Using grid-based environments and an external simulation software, the study compares traditional deadlock handling strategies with MARL-based solutions, focusing on PPO and IMPALA algorithms under different training and execution modes. Findings reveal that MARL-based strategies, particularly when combined with centralized training and decentralized execution (CTDE), outperform rule-based methods in complex, congested environments. In simpler environments or those with ample spatial freedom, rule-based methods remain competitive due to their lower computational demands. These results highlight that MARL provides a flexible and scalable solution for deadlock handling in dynamic intralogistics scenarios, but requires careful tailoring to the operational context.
comment: for associated repositories, see https://github.com/Nerozud/dl_reference_models and https://github.com/Nerozud/FTS_simpel
QOC DAO -- Stepwise Development Towards an AI Driven Decentralized Autonomous Organization
This paper introduces a structured approach to improving decision making in Decentralized Autonomous Organizations (DAO) through the integration of the Question-Option-Criteria (QOC) model and AI agents. We outline a stepwise governance framework that evolves from human led evaluations to fully autonomous, AI-driven processes. By decomposing decisions into weighted, criterion based evaluations, the QOC model enhances transparency, fairness, and explainability in DAO voting. We demonstrate how large language models (LLMs) and stakeholder aligned AI agents can support or automate evaluations, while statistical safeguards help detect manipulation. The proposed framework lays the foundation for scalable and trustworthy governance in the Web3 ecosystem.
On the Redundant Distributed Observability of Mixed Traffic Transportation Systems
In this paper, the problem of distributed state estimation of human-driven vehicles (HDVs) by connected autonomous vehicles (CAVs) is investigated in mixed traffic transportation systems. Toward this, a distributed observable state-space model is derived, which paves the way for estimation and observability analysis of HDVs in mixed traffic scenarios. In this direction, first, we obtain the condition on the network topology to satisfy the distributed observability, i.e., the condition such that each HDV state is observable to every CAV via information-exchange over the network. It is shown that strong connectivity of the network, along with the proper design of the observer gain, is sufficient for this. A distributed observer is then designed by locally sharing estimates/observations of each CAV with its neighborhood. Second, in case there exist faulty sensors or unreliable observation data, we derive the condition for redundant distributed observability as a $q$-node/link-connected network design. This redundancy is achieved by extra information-sharing over the network and implies that a certain number of faulty sensors and unreliable links can be isolated/removed without losing the observability. Simulation results are provided to illustrate the effectiveness of the proposed approach.
comment: EURASIP journal on advances in signal processing
Sequential Causal Normal Form Games: Theory, Computation, and Strategic Signaling AAAI 2026
Can classical game-theoretic frameworks be extended to capture the bounded rationality and causal reasoning of AI agents? We investigate this question by extending Causal Normal Form Games (CNFGs) to sequential settings, introducing Sequential Causal Multi-Agent Systems (S-CMAS) that incorporate Pearl's Causal Hierarchy across leader-follower interactions. While theoretically elegant -- we prove PSPACE-completeness, develop equilibrium refinements, and establish connections to signaling theory -- our comprehensive empirical investigation reveals a critical limitation: S-CNE provides zero welfare improvement over classical Stackelberg equilibrium across all tested scenarios. Through 50+ Monte Carlo simulations and hand-crafted synthetic examples, we demonstrate that backward induction with rational best-response eliminates any strategic advantage from causal layer distinctions. We construct a theoretical example illustrating conditions where benefits could emerge ($ε$-rational satisficing followers), though implementation confirms that even relaxed rationality assumptions prove insufficient when good instincts align with optimal play. This negative result provides valuable insight: classical game-theoretic extensions grounded in rational choice are fundamentally incompatible with causal reasoning advantages, motivating new theoretical frameworks beyond standard Nash equilibrium for agentic AI.
comment: AAAI 2026 Workshop on Foundations of Agentic Systems Theory
Coupling Agent-based Modeling and Life Cycle Assessment to Analyze Trade-offs in Resilient Energy Transitions NeurIPS
Transitioning to sustainable and resilient energy systems requires navigating complex and interdependent trade-offs across environmental, social, and resource dimensions. Neglecting these trade-offs can lead to unintended consequences across sectors. However, existing assessments often evaluate emerging energy pathways and their impacts in silos, overlooking critical interactions such as regional resource competition and cumulative impacts. We present an integrated modeling framework that couples agent-based modeling and Life Cycle Assessment (LCA) to simulate how energy transition pathways interact with regional resource competition, ecological constraints, and community-level burdens. We apply the model to a case study in Southern California. The results demonstrate how integrated and multiscale decision making can shape energy pathway deployment and reveal spatially explicit trade-offs under scenario-driven constraints. This modeling framework can further support more adaptive and resilient energy transition planning on spatial and institutional scales.
comment: 4 pages (+4 pages in appendix), 3 figures (+ 2 figures in appendix), 8 tables in appendix, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2025
S-DAG: A Subject-Based Directed Acyclic Graph for Multi-Agent Heterogeneous Reasoning
Large Language Models (LLMs) have achieved impressive performance in complex reasoning problems. Their effectiveness highly depends on the specific nature of the task, especially the required domain knowledge. Existing approaches, such as mixture-of-experts, typically operate at the task level; they are too coarse to effectively solve the heterogeneous problems involving multiple subjects. This work proposes a novel framework that performs fine-grained analysis at subject level equipped with a designated multi-agent collaboration strategy for addressing heterogeneous problem reasoning. Specifically, given an input query, we first employ a Graph Neural Network to identify the relevant subjects and infer their interdependencies to generate an \textit{Subject-based Directed Acyclic Graph} (S-DAG), where nodes represent subjects and edges encode information flow. Then we profile the LLM models by assigning each model a subject-specific expertise score, and select the top-performing one for matching corresponding subject of the S-DAG. Such subject-model matching enables graph-structured multi-agent collaboration where information flows from the starting model to the ending model over S-DAG. We curate and release multi-subject subsets of standard benchmarks (MMLU-Pro, GPQA, MedMCQA) to better reflect complex, real-world reasoning tasks. Extensive experiments show that our approach significantly outperforms existing task-level model selection and multi-agent collaboration baselines in accuracy and efficiency. These results highlight the effectiveness of subject-aware reasoning and structured collaboration in addressing complex and multi-subject problems.
Convergence of Multiagent Learning Systems for Traffic control
Rapid urbanization in cities like Bangalore has led to severe traffic congestion, making efficient Traffic Signal Control (TSC) essential. Multi-Agent Reinforcement Learning (MARL), often modeling each traffic signal as an independent agent using Q-learning, has emerged as a promising strategy to reduce average commuter delays. While prior work Prashant L A et. al has empirically demonstrated the effectiveness of this approach, a rigorous theoretical analysis of its stability and convergence properties in the context of traffic control has not been explored. This paper bridges that gap by focusing squarely on the theoretical basis of this multi-agent algorithm. We investigate the convergence problem inherent in using independent learners for the cooperative TSC task. Utilizing stochastic approximation methods, we formally analyze the learning dynamics. The primary contribution of this work is the proof that the specific multi-agent reinforcement learning algorithm for traffic control is proven to converge under the given conditions extending it from single agent convergence proofs for asynchronous value iteration.
comment: 14 pages 2 figures
Properties of zero-determinant strategies in multichannel games
Controlling payoffs in repeated games is one of the important topics in control theory of multi-agent systems. Recently proposed zero-determinant strategies enable players to unilaterally enforce linear relations between payoffs. Furthermore, based on the mathematics of zero-determinant strategies, regional payoff control, in which payoffs are enforced into some feasible regions, has been discovered in social dilemma situations. More recently, theory of payoff control was extended to multichannel games, where players parallelly interact with each other in multiple channels. However, the existence of payoff-controlling strategies in multichannel games seems to require the existence of payoff-controlling strategies in some channels, and properties of zero-determinant strategies specific to multichannel games are still not clear. In this paper, we elucidate properties of zero-determinant strategies in multichannel games. First, we relate the existence condition of zero-determinant strategies in multichannel games to that of zero-determinant strategies in each channel. We then show that the existence of zero-determinant strategies in multichannel games requires the existence of zero-determinant strategies in some channels. This result implies that the existence of zero-determinant strategies in multichannel games is tightly restricted by structure of games played in each channel.
comment: 18 pages, 1 figure
JaxRobotarium: Training and Deploying Multi-Robot Policies in 10 Minutes
Multi-agent reinforcement learning (MARL) has emerged as a promising solution for learning complex and scalable coordination behaviors in multi-robot systems. However, established MARL platforms (e.g., SMAC and MPE) lack robotics relevance and hardware deployment, leaving multi-robot learning researchers to develop bespoke environments and hardware testbeds dedicated to the development and evaluation of their individual contributions. The Multi-Agent RL Benchmark and Learning Environment for the Robotarium (MARBLER) is an exciting recent step in providing a standardized robotics-relevant platform for MARL, by bridging the Robotarium testbed with existing MARL software infrastructure. However, MARBLER lacks support for parallelization and GPU/TPU execution, making the platform prohibitively slow compared to modern MARL environments and hindering adoption. We contribute JaxRobotarium, a Jax-powered end-to-end simulation, learning, deployment, and benchmarking platform for the Robotarium. JaxRobotarium enables rapid training and deployment of multi-robot RL (MRRL) policies with realistic robot dynamics and safety constraints, supporting parallelization and hardware acceleration. Our generalizable learning interface integrates easily with SOTA MARL libraries (e.g., JaxMARL). In addition, JaxRobotarium includes eight standardized coordination scenarios, including four novel scenarios that bring established MARL benchmark tasks (e.g., RWARE and Level-Based Foraging) to a robotics setting. We demonstrate that JaxRobotarium retains high simulation fidelity while achieving dramatic speedups over baseline (20x in training and 150x in simulation), and provides an open-access sim-to-real evaluation pipeline through the Robotarium testbed, accelerating and democratizing access to multi-robot learning research and evaluation. Our code is available at https://github.com/GT-STAR-Lab/JaxRobotarium.
comment: 22 pages, 14 figures, 10 tables. https://github.com/GT-STAR-Lab/JaxRobotarium. Manuscript accepted for publication at the 9th Conference on Robot Learning (CoRL 2025), Seoul, Korea
Properties of zero-determinant strategies in multichannel games
Controlling payoffs in repeated games is one of the important topics in control theory of multi-agent systems. Recently proposed zero-determinant strategies enable players to unilaterally enforce linear relations between payoffs. Furthermore, based on the mathematics of zero-determinant strategies, regional payoff control, in which payoffs are enforced into some feasible regions, has been discovered in social dilemma situations. More recently, theory of payoff control was extended to multichannel games, where players parallelly interact with each other in multiple channels. However, the existence of payoff-controlling strategies in multichannel games seems to require the existence of payoff-controlling strategies in some channels, and properties of zero-determinant strategies specific to multichannel games are still not clear. In this paper, we elucidate properties of zero-determinant strategies in multichannel games. First, we relate the existence condition of zero-determinant strategies in multichannel games to that of zero-determinant strategies in each channel. We then show that the existence of zero-determinant strategies in multichannel games requires the existence of zero-determinant strategies in some channels. This result implies that the existence of zero-determinant strategies in multichannel games is tightly restricted by structure of games played in each channel.
comment: 18 pages, 1 figure
Systems and Control (CS)
When the Correct Model Fails: The Optimality of Stackelberg Equilibria with Follower Intention Updates
We study a two-player dynamic Stackelberg game between a leader and a follower. Classical formulations of the Stackelberg equilibrium (SE) assume that the follower's best response (BR) mapping is known to the leader. However, this is not always true in practice. In those cases the leader needs to simultaneously infer this BR function while fulfilling an internal objective. We study a setting in which the leader selects a control strategy that optimizes an objective given an initial belief about the follower's best response. This belief is updated during the finite decision horizon, prompting the leader to reoptimize its control. We characterize the optimality guarantees of the SE solutions under this belief update for both open loop (OL) and feedback (FB) information structures. In particular, we show that it is possible that assuming an incorrect follower BR map obtains a lower cost over the game horizon than knowing the true BR. We support these claims with numerical examples in a linear quadratic (LQ) Stackelberg game.
comment: 9 pages, 6 figures, conference submission
Modeling Unsteady Aircraft Aerodynamics Using Lorenz Attractor: A Reduced-Order Approach for Wing Rock
This paper presents a novel modeling approach for unsteady aircraft airflow, leveraging the Lorenz attractor framework. The proposed model is based on the force distribution exerted by a lift-generating wing on the surrounding fluid. It distinguishes between turbulent and nominal components of the force distribution, with the nominal force distribution modeled to peak at the wing and decay linearly into the free stream. This separation allows the turbulent component to be represented by a transport equation that is influenced by flight conditions, specifically dynamic pressure and angle of attack. Consequently, the Navier-Stokes equations, along with the turbulence transport equation, can be transformed into a reduced-order model characterized by three scalar ordinary differential equations - similar to the Lorenz attractor. This resulting system effectively captures chaotic behavior, facilitating the exploration of complex dynamics without the computational demands of solving the full Navier-Stokes equations. A simulation trade study is conducted that models wing rock phenomena at high angles of attack, demonstrating the effectiveness of the proposed approach in capturing the intricate dynamics of unsteady aircraft aerodynamics.
Robust Linear Design for Flight Control Systems with Operational Constraints
This paper presents a systematic approach for designing robust linear proportional-integral (PI) servo-controllers that effectively manage control input and output constraints in flight control systems. The control design leverages the Nagumo Theorem and the Comparison Lemma to prove constraint satisfaction, while employing min-norm optimal controllers in a manner akin to Control Barrier Functions. This results in a continuous piecewise-linear state feedback policy that maintains the analyzability of the closed-loop system through the principles of linear systems theory. Additionally, we derive multi-input multi-output (MIMO) robustness margins, demonstrating that our approach enables robust tracking of external commands even in the presence of operational constraints. Moreover, the proposed control design offers a systematic approach for anti-windup protection. Through flight control trade studies, we illustrate the applicability of the proposed framework to real-world safety-critical aircraft control scenarios. Notably, MIMO margin analysis with active constraints reveals that our method preserves gain and phase margins comparable to those of the unconstrained case, in contrast to controllers that rely on hard saturation heuristics, which suffer significant performance degradation under active constraints. Simulation results using a nonlinear six-degree-of-freedom rigid body aircraft model further validate the effectiveness of our method in achieving constraint satisfaction, robustness, and effective anti-windup protection.
Roundabout Constrained Convex Generators: A Unified Framework for Multiply-Connected Reachable Sets
This paper introduces Roundabout Constrained Convex Generators (RCGs), a set representation framework for modeling multiply connected regions in control and verification applications. The RCG representation extends the constrained convex generators framework by incorporating an inner exclusion zone, creating sets with topological holes that naturally arise in collision avoidance and safety-critical control problems. We present two equivalent formulations: a set difference representation that provides geometric intuition and a unified parametric representation that facilitates computational implementation. The paper establishes closure properties under fundamental operations, including linear transformations, Minkowski sums, and intersections with convex generator sets. We derive special cases, including roundabout zonotopes and roundabout ellipsotopes, which offer computational advantages for specific norm selections. The framework maintains compatibility with existing optimization solvers while enabling the representation of non-convex feasible regions that were previously challenging to model efficiently.
Beyond Prime Farmland: Solar Siting Tradeoffs for Cost-Effective Decarbonization
The feasibility and cost-effectiveness of continued growth in solar photovoltaics are closely tied to siting decisions. But trade-offs between costs and technical potential between land categories, especially brownfields and rooftop sites, have not been quantified, despite increasing resistance to and policy interest in reducing use of greenfield sites (e.g., prime agricultural lands). We examine the effect of siting decisions across land types for utility-scale and rooftop PV on the feasibility and cost of meeting solar deployment targets across the Eastern U.S. We build a database of solar PV supply curves by land type for each county in the Eastern Interconnect (EI) region (~2,400 counties). Our supply curves quantify technical potential versus levelized cost across greenfield, brownfield, and rooftop land types. With these supply curves and a 2035 solar deployment target (435 GW) aligned with a decarbonized power system, we quantify cost and capacity trade-offs using scenarios that prioritize solar PV deployment on different land types. We find greenfield, particularly prime agriculture, sites offer the lowest levelized costs for meeting capacity targets, of 39 to 57 $/MWh. Contaminated lands, often prioritized in policy to reduce land use conflict, have limited technical potential and impose a cost premium of 14-33% relative to greenfield sites. Rooftop PV provides enough technical potential for meeting capacity targets but comes at consistently higher costs, with minimum LCOEs of roughly 70 $/MWh or well above the highest-cost greenfield sites. Our results detail heterogeneous siting trade-offs across the Eastern United States, enabling targeted policy design to meet deployment targets while balancing costs and land use conflicts.
comment: 16 pages, 4 figures
Fair and Efficient allocation of Mobility-on-Demand resources through a Karma Economy
Mobility-on-demand systems like ride-hailing have transformed urban transportation, but they have also exacerbated socio-economic inequalities in access to these services, also due to surge pricing strategies. Although several fairness-aware frameworks have been proposed in smart mobility, they often overlook the temporal and situational variability of user urgency that shapes real-world transportation demands. This paper introduces a non-monetary, Karma-based mechanism that models endogenous urgency, allowing user time-sensitivity to evolve in response to system conditions as well as external factors. We develop a theoretical framework maintaining the efficiency and fairness guarantees of classical Karma economies, while accommodating this realistic user behavior modeling. Applied to a simulated mobility-on-demand scenario we show that our framework is able to achieve high levels of system efficiency, guaranteeing at the same time equitable resource allocation for the users.
comment: 6 pages, 3 figures. Under review at the 2026 European Control Conference (ECC)
Beyond Gaussian Assumptions: A General Fractional HJB Control Framework for Lévy-Driven Heavy-Tailed Channels in 6G
Emerging 6G wireless systems suffer severe performance degradation in challenging environments like high-speed trains traversing dense urban corridors and Unmanned Aerial Vehicles (UAVs) links over mountainous terrain. These scenarios exhibit non-Gaussian, non-stationary channels with heavy-tailed fading and abrupt signal fluctuations. To address these challenges, this paper proposes a novel wireless channel model based on symmetric $\alpha$-stable L\'evy processes, thereby enabling continuous-time state-space characterization of both long-term and short-term fading. Building on this model, a generalized optimal control framework is developed via a fractional Hamilton-Jacobi-Bellman (HJB) equation that incorporates the Riesz fractional operator to capture non-local spatial effects and memory-dependent dynamics. The existence and uniqueness of viscosity solutions to the fractional HJB equation are rigorously established, thus ensuring the theoretical validity of the proposed control formulation. Numerical simulations conducted in a multi-cell, multi-user downlink setting demonstrate the effectiveness of the fractional HJB-based strategy in optimizing transmission power under heavy-tailed co-channel and multi-user interference.
Characterisation and Quantification of Data Centre Flexibility for Power System Support
The rapid growth of data centres poses an evolving challenge for power systems with high variable renewable energy. Traditionally operated as passive electrical loads, data centres, have the potential to become active participants that provide flexibility to the grid. However, quantifying and utilising this flexibility have not yet been fully explored. This paper presents an integrated, whole facility optimisation model to investigate the least cost operating schedule of data centres and characterise the aggregate flexibility available from data centres to the power system. The model accounts for IT workload shifting, UPS energy storage, and cooling system. Motivated by the need to alleviate the increasing strain on power systems while leveraging their untapped flexibility potential, this study makes two primary contributions: (i) an operational optimisation model that integrates IT scheduling, UPS operation, and cooling dynamics to establish a cost optimal baseline operation, and (ii) a duration-aware flexibility assessment that, for any given start time and power deviation, computes the maximum feasible duration from this baseline while respecting all operational, thermal, and recovery constraints. This method characterises the aggregate flexibility envelope. Results reveal a clear temporal structure and a notable asymmetry in flexibility provision: upward flexibility (electricity load reduction) is driven by deferring IT workload, which allows for a secondary reduction in cooling power. Downward flexibility (electricity load increase) relies on increasing power consumption of the cooling system, supported by the TES buffer, and charging the UPS. This framework translates abstract flexibility potential into quantified flexibility magnitude and duration that system operators could investigate for use in services such as reserve, frequency response, and price responsive demand.
Structural sign herdability of linear time-invariant systems:theory and design for arbitrary network structures
The objective of this paper is to investigate graph-theoretic conditions for structural herdability of an LTI system. In particular, we are interested in the structural sign (SS) herdability of a system wherein the underlying digraph representing it is signed. Structural herdability finds applications in various domains like power networks, biological networks, opinion dynamics, multi-robot shepherding, etc. We begin the analysis by introducing a layered graph representation Gs of the signed digraph G; such a representation allows us to capture the signed distances between the nodes with ease. We construct a subgraph of G_s that characterizes paths of identical signs between layers and uniform path lengths, referred to as a layer-wise unisigned graph LUG(G_s). A special subgraph of an LUG(G_s), denoted as an LUG^H(G_s), is key to achieving SS herdability. This is because we prove that an LTI system is SS herdable if and only if there exists an LUG^H(G_s) which covers all the nodes of the given digraph. To the best of our knowledge, such a graphical test is one of the first methods which allows us to check SS herdability for arbitrary digraph topologies. Interestingly, the analysis also reveals that a system can be SS herdable even in the presence of (signed and layer) dilation in the associated digraph (note that such a behaviour has been shown to be impossible in directed trees). Additionally, we also extend these results to digraphs with multiple leader and driver nodes. In order to illustrate all the results, we present numerous examples throughout the paper.
Real-Time Co-Simulation for DC Microgrid Energy Management with Communication Delays
The growing integration of renewable energy sources (RESs) in modern power systems has intensified the need for resilient and efficient microgrid solutions. DC microgrids have gained prominence due to their reduced conversion losses, simplified interfacing with DC-based RESs, and improved reliability. To manage the inherent variability of RESs and ensure stable operation, energy management systems (EMS) have become essential. While various EMS algorithms have been proposed and validated using real-time simulation platforms, most assume ideal communication conditions or rely on simplified network models, overlooking the impact of realistic communication delays on EMS performance. This paper presents a novel real-time cyber-physical system (CPS) testbed for evaluating EMS performance in DC microgrids under realistic communication delays. The proposed testbed integrates a DC microgrid modeled in OPAL-RT with an EMS controller implemented on a Raspberry Pi (RPi). The communication network is emulated using EXataCPS, enabling the exchange of actual power system traffic and the replication of realistic latency conditions. This comprehensive setup captures the interplay between power system dynamics, EMS control, and communication network behavior.
Beyond Phasors: Solving Non-Sinusoidal Electrical Circuits using Geometry
Classical phasor analysis is fundamentally limited to sinusoidal single-frequency conditions, which poses challenges when working in the presence of harmonics. Furthermore, the conventional solution, which consists of decomposing signals using Fourier series and applying superposition, is a fragmented process that does not provide a unified solution in the frequency domain. This paper overcomes this limitation by introducing a complete and direct approach for multi-harmonic AC circuits using Geometric Algebra (GA). In this way, all non-sinusoidal voltage and current waveforms are represented as simple vectors in a $2N$-dimensional Euclidean space. The relationship between these vectors is characterized by a single and unified geometric transformation termed the \textit{rotoflex}. This operator elevates the concept of impedance from a set of complex numbers per frequency to a single multivector that holistically captures the circuit response, while unifying the magnitude scale (flextance) and phase rotation (rotance) across all harmonics. Thus, this work establishes GA as a structurally unified and efficient alternative to phasor analysis, providing a more rigorous foundation for electrical circuit analysis. The methodology is validated through case studies that demonstrate perfect numerical consistency with traditional methods and superior performance.
Koopman-Based Dynamic Environment Prediction for Safe UAV Navigation
This paper presents a Koopman-based model predictive control (MPC) framework for safe UAV navigation in dynamic environments using real-time LiDAR data. By leveraging the Koopman operator to linearly approximate the dynamics of surrounding objets, we enable efficient and accurate prediction of the position of moving obstacles. Embedding this into an MPC formulation ensures robust, collision-free trajectory planning suitable for real-time execution. The method is validated through simulation and ROS2-Gazebo implementation, demonstrating reliable performance under sensor noise, actuation delays, and environmental uncertainty.
Capacity Estimation of Lithium-ion Batteries Using Invariance Property in Open Circuit Voltage Relationship
Lithium-ion (Li-ion) batteries are ubiquitous in electric vehicles (EVs) as efficient energy storage devices. The reliable operation of Li-ion batteries depends critically on the accurate estimation of battery capacity. However, conventional estimation methods require extensive training datasets from costly battery tests for modeling, and a full cycle of charge and discharge is often needed to estimate the capacity. To overcome these limitations, we propose a novel capacity estimation method that leverages only one cycle of the open-circuit voltage (OCV) test in modeling and allows for estimating the capacity from partial charge or discharge data. Moreover, by applying it with OCV identification algorithms, we can estimate the capacity from dynamic discharge data without requiring dedicated data collection tests. We observed an invariance property in the OCV versus state of charge relationship across aging cycles. Leveraging this invariance, the proposed method estimates the capacity by solving an OCV alignment problem using only the OCV and the discharge capacity data from the battery. Simulation results demonstrate the method's efficacy, achieving a mean absolute relative error of 0.85\% in capacity estimation across 12 samples from 344 aging cycles.
On the Redundant Distributed Observability of Mixed Traffic Transportation Systems
In this paper, the problem of distributed state estimation of human-driven vehicles (HDVs) by connected autonomous vehicles (CAVs) is investigated in mixed traffic transportation systems. Toward this, a distributed observable state-space model is derived, which paves the way for estimation and observability analysis of HDVs in mixed traffic scenarios. In this direction, first, we obtain the condition on the network topology to satisfy the distributed observability, i.e., the condition such that each HDV state is observable to every CAV via information-exchange over the network. It is shown that strong connectivity of the network, along with the proper design of the observer gain, is sufficient for this. A distributed observer is then designed by locally sharing estimates/observations of each CAV with its neighborhood. Second, in case there exist faulty sensors or unreliable observation data, we derive the condition for redundant distributed observability as a $q$-node/link-connected network design. This redundancy is achieved by extra information-sharing over the network and implies that a certain number of faulty sensors and unreliable links can be isolated/removed without losing the observability. Simulation results are provided to illustrate the effectiveness of the proposed approach.
comment: EURASIP journal on advances in signal processing
Analysis of Traffic Congestion in North Campus, Delhi University Using Continuous Time Models
This project investigates traffic congestion within North Campus, Delhi University (DU), using continuous time simulations implemented in UXSim to model vehicle movement and interaction. The study focuses on several key intersections, identifies recurring congestion points, and evaluates the effectiveness of conventional traffic management measures. Implementing signal timing optimization and modest intersection reconfiguration resulted in measurable improvements in simulated traffic flow. The results provide practical insights for local traffic management and illustrate the value of continuous time simulation methods for informing short-term interventions and longer-term planning.
Radio-Coverage-Aware Path Planning for Cooperative Autonomous Vehicles
Fleets of autonomous vehicles (AV) often are at the core of intelligent transportation scenarios for smart cities, and may require a wireless Internet connection to offload computer vision tasks to data centers located either in the edge or the cloud section of the network. Cooperation among AVs is successful when the environment is unknown, or changes dynamically, so as to improve coverage and trip time, and minimize the traveled distance. The AVs, while mapping the environment with range-based sensors, move across the wireless coverage areas, with consequences on the achieved access bit rate, latency, and handover rate. In this paper, we propose to modify the cost of path planning algorithms such as Dijkstra and A*, so that not only the traveled distance is considered in the best path solution, but also the radio coverage experience. To this aim, several radio-related cost-weighting functions are introduced and tested, to assess the performance of the proposed techniques with extensive simulations. The proposed mapping algorithm can achieve a mapping error probability below 2%, while the proposed path-planning algorithms extend the experienced radio coverage of the AVs, with limited distance increase with respect to shortest-path existing methods, such as conventional Dijkstra and A* algorithms.
comment: 11 pages, 19 figures
Correct-by-Design Control Synthesis of Stochastic Multi-agent Systems: a Robust Tensor-based Solution
Discrete-time stochastic systems with continuous spaces are hard to verify and control, even with MDP abstractions due to the curse of dimensionality. We propose an abstraction-based framework with robust dynamic programming mappings that deliver control strategies with provable lower bounds on temporal-logic satisfaction, quantified via approximate stochastic simulation relations. Exploiting decoupled dynamics, we reveal a Canonical Polyadic Decomposition tensor structure in value functions that makes dynamic programming scalable. The proposed method provides correct-by-design probabilistic guarantees for temporal logic specifications. We validate our results on continuous-state linear stochastic systems.
Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
Learning stabilising policies for constrained nonlinear systems
This work proposes a two-layered control scheme for constrained nonlinear systems represented by a class of recurrent neural networks and affected by additive disturbances. In particular, a base controller ensures global or regional closed-loop l_p-stability of the error in tracking a desired equilibrium and the satisfaction of input and output constraints within a robustly positive invariant set. An additional control contribution, derived by combining the internal model control principle with a stable operator, is introduced to improve system performance. This operator, implemented as a stable neural network, can be trained via unconstrained optimisation on a chosen performance metric, without compromising closed-loop equilibrium tracking or constraint satisfaction, even if the optimisation is stopped prematurely. In addition, we characterise the class of closed-loop stable behaviours that can be achieved with the proposed architecture. Simulation results on a pH-neutralisation benchmark demonstrate the effectiveness of the proposed approach.
comment: 4 figures, under review
The Wisdom of the Crowd: High-Fidelity Classification of Cyber-Attacks and Faults in Power Systems Using Ensemble and Machine Learning
This paper presents a high-fidelity evaluation framework for machine learning (ML)-based classification of cyber-attacks and physical faults using electromagnetic transient simulations with digital substation emulation at 4.8 kHz. Twelve ML models, including ensemble algorithms and a multi-layer perceptron (MLP), were trained on labeled time-domain measurements and evaluated in a real-time streaming environment designed for sub-cycle responsiveness. The architecture incorporates a cycle-length smoothing filter and confidence threshold to stabilize decisions. Results show that while several models achieved near-perfect offline accuracies (up to 99.9%), only the MLP sustained robust coverage (98-99%) under streaming, whereas ensembles preserved perfect anomaly precision but abstained frequently (10-49% coverage). These findings demonstrate that offline accuracy alone is an unreliable indicator of field readiness and underscore the need for realistic testing and inference pipelines to ensure dependable classification in inverter-based resources (IBR)-rich networks.
Pareto-Improvement-Driven Opinion Dynamics Explaining the Emergence of Pluralistic Ignorance
Opinion dynamics has recently been modeled from a game-theoretic perspective, where opinion updates are captured by individuals' cost functions representing their motivations. Conventional formulations aggregate multiple motivations into a single objective, implicitly assuming that these motivations are interchangeable. This paper challenges that assumption and proposes an opinion dynamics model grounded in a multi-objective game framework. In the proposed model, each individual experiences two distinct costs: social pressure from disagreement with others and cognitive dissonance from deviation from the perceived truth. Opinion updates are modeled as Pareto improvements between these two costs. This fwork provides a parsimonious explanation for the emergence of pluralistic ignorance, where individuals may agree on something untrue even though they all know the underlying truth. We analytically characterize the model, derive conditions for the emrameergence and prevalence of the truth, and propose an initial-seeding strategy that ensures consensus on truth. Numerical simulations are conducted on how network density and clustering affect the expression of truth. Both theoretical and numerical results lead to clear and non-trivial sociological insights. For example, no network structure guarantees truthful consensus if no one initially express the truth; moderately sparse but well-mixed networks best mitigate pluralistic ignorance.
F2GAN: A Feature-Feedback Generative Framework for Reliable AI-Based Fault Diagnosis in Inverter-Dominated Microgrids
Enhancing the reliability of AI based fault diagnosis in inverter dominated microgrids requires diverse and statistically balanced datasets. However, the scarcity and imbalance of high fidelity fault data, especially for rare inverter malfunctions and extreme external line faults, limit dependable model training and validation. This paper introduces a unified framework that models a detailed inverter dominated microgrid and systematically generates multiple internal and external fault scenarios to mitigate data scarcity and class imbalance. An enhanced generative model called F2GAN (Feature Feedback GAN) is developed to synthesize high dimensional tabular fault data with improved realism and statistical alignment. Unlike conventional GANs, F2GAN integrates multi level feedback based on mean variance, correlation, and feature matching losses, enabling the generator to refine output distributions toward real fault feature spaces. The generated datasets are evaluated through quantitative and qualitative analyses. Train on Synthetic, Test on Real (TSTR) experiments demonstrate strong generalization of machine learning classifiers trained exclusively on F2GAN samples. The framework is validated on a hardware-in-the-loop (HIL) fault diagnosis platform integrated with a real time simulator and graphical interface, achieving 100 % diagnostic accuracy under real-time testing. Results confirm that F2GAN effectively bridges the gap between simulated and real world microgrid fault datasets
GNN-Enabled Robust Hybrid Beamforming with Score-Based CSI Generation and Denoising
Accurate Channel State Information (CSI) is critical for Hybrid Beamforming (HBF) tasks. However, obtaining high-resolution CSI remains challenging in practical wireless communication systems. To address this issue, we propose to utilize Graph Neural Networks (GNNs) and score-based generative models to enable robust HBF under imperfect CSI conditions. Firstly, we develop the Hybrid Message Graph Attention Network (HMGAT) which updates both node and edge features through node-level and edge-level message passing. Secondly, we design a Bidirectional Encoder Representations from Transformers (BERT)-based Noise Conditional Score Network (NCSN) to learn the distribution of high-resolution CSI, facilitating CSI generation and data augmentation to further improve HMGAT's performance. Finally, we present a Denoising Score Network (DSN) framework and its instantiation, termed DeBERT, which can denoise imperfect CSI under arbitrary channel error levels, thereby facilitating robust HBF. Experiments on DeepMIMO urban datasets demonstrate the proposed models' superior generalization, scalability, and robustness across various HBF tasks with perfect and imperfect CSI.
On the Potential of Digital Twins for Distribution System State Estimation with Randomly Missing Data in Heterogeneous Measurements
Traditional statistical optimization-based state estimation (DSSE) algorithms rely on detailed grid parameters and mathematical assumptions of all possible uncertainties. Furthermore, random data missing due to communication failures, congestion, and cyberattacks, makes these methods easily infeasible. Inspired by recent advances in digital twins (DTs), this paper proposes an interactive attention-based DSSE model for robust grid monitoring by integrating three core components: physical entities, virtual modeling, and data fusion. To enable robustness against various data missing in heterogeneous measurements, we first propose physics-informed data augmentation and transfer. Moreover, a state-of-the-art attention-based spatiotemporal feature learning is proposed, followed by a novel cross-interaction feature fusion for robust voltage estimation. A case study in a real-world unbalanced 84-bus distribution system with raw data validates the accuracy and robustness of the proposed DT model in estimating voltage states, with random locational, arbitrary ratios (up to 40% of total measurements) of data missing.
comment: Accepted by the 2025 IEEE Power and Energy Society General Meeting
A Data-Driven Approach for Topology Correction in Low Voltage Distribution Networks with PVs
To correct the outdated and incomplete topology of low voltage distribution networks (LVDNs) solely based on voltage magnitudes, a data driven approach is developed based on machine learning algorithms and correlation analysis. Meanwhile, to address the similarity among smart meter (SM) data induced by distributed photovoltaic (PV) systems, a time based SM data selection strategy is combined with the proposed correlation analysis. Unlike offline approaches, the proposed approach uses up to date voltage magnitudes to help distribution system operators determine switch states via supervised learning and refine user feeder connections and customer phase labels through a modified hierarchical clustering algorithm. The feasibility and robustness of the proposed approach are validated using modified real world LVDNs and multiple incomplete SM datasets collected from customers in the Netherlands. The results demonstrate that the time-based SM data selection strategy effectively mitigates its impact on phase identification, and the corrected topology not only improves network observability but also supports network operators in load balancing and PV consumption.
Data-assimilated model-informed reinforcement learning
The control of spatio-temporally chaos is challenging because of high dimensionality and unpredictability. Model-free reinforcement learning (RL) discovers optimal control policies by interacting with the system, typically requiring observations of the full physical state. In practice, sensors often provide only partial and noisy measurements (observations) of the system. The objective of this paper is to develop a framework that enables the control of chaotic systems with partial and noisy observability. The proposed method, data-assimilated model-informed reinforcement learning (DA-MIRL), integrates (i) low-order models to approximate high-dimensional dynamics; (ii) sequential data assimilation to correct the model prediction when observations become available; and (iii) an off-policy actor-critic RL algorithm to adaptively learn an optimal control strategy based on the corrected state estimates. We test DA-MIRL on the spatiotemporally chaotic solutions of the Kuramoto-Sivashinsky equation. We estimate the full state of the environment with (i) a physics-based model, here, a coarse-grained model; and (ii) a data-driven model, here, the control-aware echo state network, which is proposed in this paper. We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models. This work opens opportunities for the control of partially observable chaotic systems.
An Alternative Derivation and Optimal Design Method of the Generalized Bilinear Transformation for Discretizing Analog Systems
A common approach to digital system design involves transforming a continuous-time (s-domain) transfer function into the discrete-time (z-domain) using methods such as Euler or Tustin. These transformations are shown to be specific cases of the Generalized Bilinear Transformation (GBT), characterized by a design parameter, $\alpha$, whose physical interpretation and optimal selection remain inadequately explored. In this paper, we propose an alternative derivation of the GBT derived by employing a new hexagonal shape to approximate the enclosed area of the error function, and we define the parameter $\alpha$ as a shape factor. We reveal, for the first time, the physical meaning of $\alpha$ as the backward rectangular ratio of the proposed hexagonal shape. Through domain mapping, the stable range of is rigorously established to be [0.5, 1]. Depending on the operating frequency and the chosen $\alpha$, we observe two distinct distortion modes, i.e., the magnitude and phase distortion. We further develop an optimal design method for $\alpha$ by minimizing a normalized magnitude or phase error objective function. The effectiveness of the proposed method is validated through the design and testing of a low-pass filter (LPF), demonstrating strong agreement between theoretical predictions and experimental results.
Bidding in Ancillary Service Markets: An Analytical Approach Using Extreme Value Theory
To enable the participation of stochastic distributed energy resources in ancillary service markets, the Danish transmission system operator, Energinet, mandates that flexibility providers satisfy a minimum 90% reliability requirement for reserve bids. This paper examines the bidding strategy of an electric vehicle aggregator under this regulation and develops a chance-constrained optimization model. In contrast to conventional sample-based approaches that demand large datasets to capture uncertainty, we propose an analytical reformulation that leverages extreme value theory to characterize the tail behavior of flexibility distributions. A case study with real-world charging data from 1400 residential electric vehicles in Denmark demonstrates that the analytical solution improves out-of-sample reliability, reducing bid violation rates by up to 8% relative to a sample-based benchmark. The method is also computationally more efficient, solving optimization problems up to 4.8 times faster while requiring substantially fewer samples to ensure compliance. Moreover, the proposed approach enables the construction of feasible bids with reliability levels as high as 99.95%, which would otherwise require prohibitively large scenario sets under the sample-based method. Beyond its computational and reliability advantages, the framework also provides actionable insights into how reliability thresholds influence aggregator bidding behavior and market participation. This study establishes a regulation-compliant, tractable, and risk-aware bidding methodology for stochastic flexibility aggregators, enhancing both market efficiency and power system security.
System Identification Under Multi-rate Sensing Environment
This paper proposes a system identification algorithm for systems with multi-rate sensors in a discrete-time framework. It is challenging to obtain an accurate mathematical model when the ratios of inputs and outputs are different in the system. A cyclic reformulation-based model for multi-rate systems is formulated, and the multi-rate system can be reduced to a linear time-invariant system to derive the model under the multi-rate sensing environment. The proposed algorithm integrates a cyclic reformulation with a state coordinate transformation of the cycled system to enable precise identification of systems under the multi-rate sensing environment. The effectiveness of the proposed system identification method is demonstrated using numerical simulations.
Properties of zero-determinant strategies in multichannel games
Controlling payoffs in repeated games is one of the important topics in control theory of multi-agent systems. Recently proposed zero-determinant strategies enable players to unilaterally enforce linear relations between payoffs. Furthermore, based on the mathematics of zero-determinant strategies, regional payoff control, in which payoffs are enforced into some feasible regions, has been discovered in social dilemma situations. More recently, theory of payoff control was extended to multichannel games, where players parallelly interact with each other in multiple channels. However, the existence of payoff-controlling strategies in multichannel games seems to require the existence of payoff-controlling strategies in some channels, and properties of zero-determinant strategies specific to multichannel games are still not clear. In this paper, we elucidate properties of zero-determinant strategies in multichannel games. First, we relate the existence condition of zero-determinant strategies in multichannel games to that of zero-determinant strategies in each channel. We then show that the existence of zero-determinant strategies in multichannel games requires the existence of zero-determinant strategies in some channels. This result implies that the existence of zero-determinant strategies in multichannel games is tightly restricted by structure of games played in each channel.
comment: 18 pages, 1 figure
Inverted Gaussian Process Optimization for Probabilistic Koopman Operator Discovery
Koopman Operator Theory has opened the doors to data-driven learning of globally linear representations of complex nonlinear systems. However, current methodologies for Koopman Operator discovery struggle with uncertainty quantification and the dependency on a finite dictionary of heuristically chosen observable functions. We leverage Gaussian Process Regression (GPR) to learn a probabilistic Koopman linear model from data, while removing the need for heuristic observable specification. We present inverted Gaussian Process optimization based Koopman operator learning (iGPK), an automatic differentiation-based approach to simultaneously learn the observable-operator combination. Our numerical results show that the iGPK method is able to learn complex nonlinearities from simulation data while being resilient to measurement noise in the training data and consistently encapsulating the ground truth in the predictive distribution.
Systems and Control (EESS)
When the Correct Model Fails: The Optimality of Stackelberg Equilibria with Follower Intention Updates
We study a two-player dynamic Stackelberg game between a leader and a follower. Classical formulations of the Stackelberg equilibrium (SE) assume that the follower's best response (BR) mapping is known to the leader. However, this is not always true in practice. In those cases the leader needs to simultaneously infer this BR function while fulfilling an internal objective. We study a setting in which the leader selects a control strategy that optimizes an objective given an initial belief about the follower's best response. This belief is updated during the finite decision horizon, prompting the leader to reoptimize its control. We characterize the optimality guarantees of the SE solutions under this belief update for both open loop (OL) and feedback (FB) information structures. In particular, we show that it is possible that assuming an incorrect follower BR map obtains a lower cost over the game horizon than knowing the true BR. We support these claims with numerical examples in a linear quadratic (LQ) Stackelberg game.
comment: 9 pages, 6 figures, conference submission
Modeling Unsteady Aircraft Aerodynamics Using Lorenz Attractor: A Reduced-Order Approach for Wing Rock
This paper presents a novel modeling approach for unsteady aircraft airflow, leveraging the Lorenz attractor framework. The proposed model is based on the force distribution exerted by a lift-generating wing on the surrounding fluid. It distinguishes between turbulent and nominal components of the force distribution, with the nominal force distribution modeled to peak at the wing and decay linearly into the free stream. This separation allows the turbulent component to be represented by a transport equation that is influenced by flight conditions, specifically dynamic pressure and angle of attack. Consequently, the Navier-Stokes equations, along with the turbulence transport equation, can be transformed into a reduced-order model characterized by three scalar ordinary differential equations - similar to the Lorenz attractor. This resulting system effectively captures chaotic behavior, facilitating the exploration of complex dynamics without the computational demands of solving the full Navier-Stokes equations. A simulation trade study is conducted that models wing rock phenomena at high angles of attack, demonstrating the effectiveness of the proposed approach in capturing the intricate dynamics of unsteady aircraft aerodynamics.
Robust Linear Design for Flight Control Systems with Operational Constraints
This paper presents a systematic approach for designing robust linear proportional-integral (PI) servo-controllers that effectively manage control input and output constraints in flight control systems. The control design leverages the Nagumo Theorem and the Comparison Lemma to prove constraint satisfaction, while employing min-norm optimal controllers in a manner akin to Control Barrier Functions. This results in a continuous piecewise-linear state feedback policy that maintains the analyzability of the closed-loop system through the principles of linear systems theory. Additionally, we derive multi-input multi-output (MIMO) robustness margins, demonstrating that our approach enables robust tracking of external commands even in the presence of operational constraints. Moreover, the proposed control design offers a systematic approach for anti-windup protection. Through flight control trade studies, we illustrate the applicability of the proposed framework to real-world safety-critical aircraft control scenarios. Notably, MIMO margin analysis with active constraints reveals that our method preserves gain and phase margins comparable to those of the unconstrained case, in contrast to controllers that rely on hard saturation heuristics, which suffer significant performance degradation under active constraints. Simulation results using a nonlinear six-degree-of-freedom rigid body aircraft model further validate the effectiveness of our method in achieving constraint satisfaction, robustness, and effective anti-windup protection.
Roundabout Constrained Convex Generators: A Unified Framework for Multiply-Connected Reachable Sets
This paper introduces Roundabout Constrained Convex Generators (RCGs), a set representation framework for modeling multiply connected regions in control and verification applications. The RCG representation extends the constrained convex generators framework by incorporating an inner exclusion zone, creating sets with topological holes that naturally arise in collision avoidance and safety-critical control problems. We present two equivalent formulations: a set difference representation that provides geometric intuition and a unified parametric representation that facilitates computational implementation. The paper establishes closure properties under fundamental operations, including linear transformations, Minkowski sums, and intersections with convex generator sets. We derive special cases, including roundabout zonotopes and roundabout ellipsotopes, which offer computational advantages for specific norm selections. The framework maintains compatibility with existing optimization solvers while enabling the representation of non-convex feasible regions that were previously challenging to model efficiently.
Beyond Prime Farmland: Solar Siting Tradeoffs for Cost-Effective Decarbonization
The feasibility and cost-effectiveness of continued growth in solar photovoltaics are closely tied to siting decisions. But trade-offs between costs and technical potential between land categories, especially brownfields and rooftop sites, have not been quantified, despite increasing resistance to and policy interest in reducing use of greenfield sites (e.g., prime agricultural lands). We examine the effect of siting decisions across land types for utility-scale and rooftop PV on the feasibility and cost of meeting solar deployment targets across the Eastern U.S. We build a database of solar PV supply curves by land type for each county in the Eastern Interconnect (EI) region (~2,400 counties). Our supply curves quantify technical potential versus levelized cost across greenfield, brownfield, and rooftop land types. With these supply curves and a 2035 solar deployment target (435 GW) aligned with a decarbonized power system, we quantify cost and capacity trade-offs using scenarios that prioritize solar PV deployment on different land types. We find greenfield, particularly prime agriculture, sites offer the lowest levelized costs for meeting capacity targets, of 39 to 57 $/MWh. Contaminated lands, often prioritized in policy to reduce land use conflict, have limited technical potential and impose a cost premium of 14-33% relative to greenfield sites. Rooftop PV provides enough technical potential for meeting capacity targets but comes at consistently higher costs, with minimum LCOEs of roughly 70 $/MWh or well above the highest-cost greenfield sites. Our results detail heterogeneous siting trade-offs across the Eastern United States, enabling targeted policy design to meet deployment targets while balancing costs and land use conflicts.
comment: 16 pages, 4 figures
Fair and Efficient allocation of Mobility-on-Demand resources through a Karma Economy
Mobility-on-demand systems like ride-hailing have transformed urban transportation, but they have also exacerbated socio-economic inequalities in access to these services, also due to surge pricing strategies. Although several fairness-aware frameworks have been proposed in smart mobility, they often overlook the temporal and situational variability of user urgency that shapes real-world transportation demands. This paper introduces a non-monetary, Karma-based mechanism that models endogenous urgency, allowing user time-sensitivity to evolve in response to system conditions as well as external factors. We develop a theoretical framework maintaining the efficiency and fairness guarantees of classical Karma economies, while accommodating this realistic user behavior modeling. Applied to a simulated mobility-on-demand scenario we show that our framework is able to achieve high levels of system efficiency, guaranteeing at the same time equitable resource allocation for the users.
comment: 6 pages, 3 figures. Under review at the 2026 European Control Conference (ECC)
Beyond Gaussian Assumptions: A General Fractional HJB Control Framework for Lévy-Driven Heavy-Tailed Channels in 6G
Emerging 6G wireless systems suffer severe performance degradation in challenging environments like high-speed trains traversing dense urban corridors and Unmanned Aerial Vehicles (UAVs) links over mountainous terrain. These scenarios exhibit non-Gaussian, non-stationary channels with heavy-tailed fading and abrupt signal fluctuations. To address these challenges, this paper proposes a novel wireless channel model based on symmetric $\alpha$-stable L\'evy processes, thereby enabling continuous-time state-space characterization of both long-term and short-term fading. Building on this model, a generalized optimal control framework is developed via a fractional Hamilton-Jacobi-Bellman (HJB) equation that incorporates the Riesz fractional operator to capture non-local spatial effects and memory-dependent dynamics. The existence and uniqueness of viscosity solutions to the fractional HJB equation are rigorously established, thus ensuring the theoretical validity of the proposed control formulation. Numerical simulations conducted in a multi-cell, multi-user downlink setting demonstrate the effectiveness of the fractional HJB-based strategy in optimizing transmission power under heavy-tailed co-channel and multi-user interference.
Characterisation and Quantification of Data Centre Flexibility for Power System Support
The rapid growth of data centres poses an evolving challenge for power systems with high variable renewable energy. Traditionally operated as passive electrical loads, data centres, have the potential to become active participants that provide flexibility to the grid. However, quantifying and utilising this flexibility have not yet been fully explored. This paper presents an integrated, whole facility optimisation model to investigate the least cost operating schedule of data centres and characterise the aggregate flexibility available from data centres to the power system. The model accounts for IT workload shifting, UPS energy storage, and cooling system. Motivated by the need to alleviate the increasing strain on power systems while leveraging their untapped flexibility potential, this study makes two primary contributions: (i) an operational optimisation model that integrates IT scheduling, UPS operation, and cooling dynamics to establish a cost optimal baseline operation, and (ii) a duration-aware flexibility assessment that, for any given start time and power deviation, computes the maximum feasible duration from this baseline while respecting all operational, thermal, and recovery constraints. This method characterises the aggregate flexibility envelope. Results reveal a clear temporal structure and a notable asymmetry in flexibility provision: upward flexibility (electricity load reduction) is driven by deferring IT workload, which allows for a secondary reduction in cooling power. Downward flexibility (electricity load increase) relies on increasing power consumption of the cooling system, supported by the TES buffer, and charging the UPS. This framework translates abstract flexibility potential into quantified flexibility magnitude and duration that system operators could investigate for use in services such as reserve, frequency response, and price responsive demand.
Structural sign herdability of linear time-invariant systems:theory and design for arbitrary network structures
The objective of this paper is to investigate graph-theoretic conditions for structural herdability of an LTI system. In particular, we are interested in the structural sign (SS) herdability of a system wherein the underlying digraph representing it is signed. Structural herdability finds applications in various domains like power networks, biological networks, opinion dynamics, multi-robot shepherding, etc. We begin the analysis by introducing a layered graph representation Gs of the signed digraph G; such a representation allows us to capture the signed distances between the nodes with ease. We construct a subgraph of G_s that characterizes paths of identical signs between layers and uniform path lengths, referred to as a layer-wise unisigned graph LUG(G_s). A special subgraph of an LUG(G_s), denoted as an LUG^H(G_s), is key to achieving SS herdability. This is because we prove that an LTI system is SS herdable if and only if there exists an LUG^H(G_s) which covers all the nodes of the given digraph. To the best of our knowledge, such a graphical test is one of the first methods which allows us to check SS herdability for arbitrary digraph topologies. Interestingly, the analysis also reveals that a system can be SS herdable even in the presence of (signed and layer) dilation in the associated digraph (note that such a behaviour has been shown to be impossible in directed trees). Additionally, we also extend these results to digraphs with multiple leader and driver nodes. In order to illustrate all the results, we present numerous examples throughout the paper.
Real-Time Co-Simulation for DC Microgrid Energy Management with Communication Delays
The growing integration of renewable energy sources (RESs) in modern power systems has intensified the need for resilient and efficient microgrid solutions. DC microgrids have gained prominence due to their reduced conversion losses, simplified interfacing with DC-based RESs, and improved reliability. To manage the inherent variability of RESs and ensure stable operation, energy management systems (EMS) have become essential. While various EMS algorithms have been proposed and validated using real-time simulation platforms, most assume ideal communication conditions or rely on simplified network models, overlooking the impact of realistic communication delays on EMS performance. This paper presents a novel real-time cyber-physical system (CPS) testbed for evaluating EMS performance in DC microgrids under realistic communication delays. The proposed testbed integrates a DC microgrid modeled in OPAL-RT with an EMS controller implemented on a Raspberry Pi (RPi). The communication network is emulated using EXataCPS, enabling the exchange of actual power system traffic and the replication of realistic latency conditions. This comprehensive setup captures the interplay between power system dynamics, EMS control, and communication network behavior.
Beyond Phasors: Solving Non-Sinusoidal Electrical Circuits using Geometry
Classical phasor analysis is fundamentally limited to sinusoidal single-frequency conditions, which poses challenges when working in the presence of harmonics. Furthermore, the conventional solution, which consists of decomposing signals using Fourier series and applying superposition, is a fragmented process that does not provide a unified solution in the frequency domain. This paper overcomes this limitation by introducing a complete and direct approach for multi-harmonic AC circuits using Geometric Algebra (GA). In this way, all non-sinusoidal voltage and current waveforms are represented as simple vectors in a $2N$-dimensional Euclidean space. The relationship between these vectors is characterized by a single and unified geometric transformation termed the \textit{rotoflex}. This operator elevates the concept of impedance from a set of complex numbers per frequency to a single multivector that holistically captures the circuit response, while unifying the magnitude scale (flextance) and phase rotation (rotance) across all harmonics. Thus, this work establishes GA as a structurally unified and efficient alternative to phasor analysis, providing a more rigorous foundation for electrical circuit analysis. The methodology is validated through case studies that demonstrate perfect numerical consistency with traditional methods and superior performance.
Koopman-Based Dynamic Environment Prediction for Safe UAV Navigation
This paper presents a Koopman-based model predictive control (MPC) framework for safe UAV navigation in dynamic environments using real-time LiDAR data. By leveraging the Koopman operator to linearly approximate the dynamics of surrounding objets, we enable efficient and accurate prediction of the position of moving obstacles. Embedding this into an MPC formulation ensures robust, collision-free trajectory planning suitable for real-time execution. The method is validated through simulation and ROS2-Gazebo implementation, demonstrating reliable performance under sensor noise, actuation delays, and environmental uncertainty.
Capacity Estimation of Lithium-ion Batteries Using Invariance Property in Open Circuit Voltage Relationship
Lithium-ion (Li-ion) batteries are ubiquitous in electric vehicles (EVs) as efficient energy storage devices. The reliable operation of Li-ion batteries depends critically on the accurate estimation of battery capacity. However, conventional estimation methods require extensive training datasets from costly battery tests for modeling, and a full cycle of charge and discharge is often needed to estimate the capacity. To overcome these limitations, we propose a novel capacity estimation method that leverages only one cycle of the open-circuit voltage (OCV) test in modeling and allows for estimating the capacity from partial charge or discharge data. Moreover, by applying it with OCV identification algorithms, we can estimate the capacity from dynamic discharge data without requiring dedicated data collection tests. We observed an invariance property in the OCV versus state of charge relationship across aging cycles. Leveraging this invariance, the proposed method estimates the capacity by solving an OCV alignment problem using only the OCV and the discharge capacity data from the battery. Simulation results demonstrate the method's efficacy, achieving a mean absolute relative error of 0.85\% in capacity estimation across 12 samples from 344 aging cycles.
On the Redundant Distributed Observability of Mixed Traffic Transportation Systems
In this paper, the problem of distributed state estimation of human-driven vehicles (HDVs) by connected autonomous vehicles (CAVs) is investigated in mixed traffic transportation systems. Toward this, a distributed observable state-space model is derived, which paves the way for estimation and observability analysis of HDVs in mixed traffic scenarios. In this direction, first, we obtain the condition on the network topology to satisfy the distributed observability, i.e., the condition such that each HDV state is observable to every CAV via information-exchange over the network. It is shown that strong connectivity of the network, along with the proper design of the observer gain, is sufficient for this. A distributed observer is then designed by locally sharing estimates/observations of each CAV with its neighborhood. Second, in case there exist faulty sensors or unreliable observation data, we derive the condition for redundant distributed observability as a $q$-node/link-connected network design. This redundancy is achieved by extra information-sharing over the network and implies that a certain number of faulty sensors and unreliable links can be isolated/removed without losing the observability. Simulation results are provided to illustrate the effectiveness of the proposed approach.
comment: EURASIP journal on advances in signal processing
Analysis of Traffic Congestion in North Campus, Delhi University Using Continuous Time Models
This project investigates traffic congestion within North Campus, Delhi University (DU), using continuous time simulations implemented in UXSim to model vehicle movement and interaction. The study focuses on several key intersections, identifies recurring congestion points, and evaluates the effectiveness of conventional traffic management measures. Implementing signal timing optimization and modest intersection reconfiguration resulted in measurable improvements in simulated traffic flow. The results provide practical insights for local traffic management and illustrate the value of continuous time simulation methods for informing short-term interventions and longer-term planning.
Radio-Coverage-Aware Path Planning for Cooperative Autonomous Vehicles
Fleets of autonomous vehicles (AV) often are at the core of intelligent transportation scenarios for smart cities, and may require a wireless Internet connection to offload computer vision tasks to data centers located either in the edge or the cloud section of the network. Cooperation among AVs is successful when the environment is unknown, or changes dynamically, so as to improve coverage and trip time, and minimize the traveled distance. The AVs, while mapping the environment with range-based sensors, move across the wireless coverage areas, with consequences on the achieved access bit rate, latency, and handover rate. In this paper, we propose to modify the cost of path planning algorithms such as Dijkstra and A*, so that not only the traveled distance is considered in the best path solution, but also the radio coverage experience. To this aim, several radio-related cost-weighting functions are introduced and tested, to assess the performance of the proposed techniques with extensive simulations. The proposed mapping algorithm can achieve a mapping error probability below 2%, while the proposed path-planning algorithms extend the experienced radio coverage of the AVs, with limited distance increase with respect to shortest-path existing methods, such as conventional Dijkstra and A* algorithms.
comment: 11 pages, 19 figures
Correct-by-Design Control Synthesis of Stochastic Multi-agent Systems: a Robust Tensor-based Solution
Discrete-time stochastic systems with continuous spaces are hard to verify and control, even with MDP abstractions due to the curse of dimensionality. We propose an abstraction-based framework with robust dynamic programming mappings that deliver control strategies with provable lower bounds on temporal-logic satisfaction, quantified via approximate stochastic simulation relations. Exploiting decoupled dynamics, we reveal a Canonical Polyadic Decomposition tensor structure in value functions that makes dynamic programming scalable. The proposed method provides correct-by-design probabilistic guarantees for temporal logic specifications. We validate our results on continuous-state linear stochastic systems.
Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
Vision-Based System Identification of a Quadrotor
This paper explores the application of vision-based system identification techniques in quadrotor modeling and control. Through experiments and analysis, we address the complexities and limitations of quadrotor modeling, particularly in relation to thrust and drag coefficients. Grey-box modeling is employed to mitigate uncertainties, and the effectiveness of an onboard vision system is evaluated. An LQR controller is designed based on a system identification model using data from the onboard vision system. The results demonstrate consistent performance between the models, validating the efficacy of vision based system identification. This study highlights the potential of vision-based techniques in enhancing quadrotor modeling and control, contributing to improved performance and operational capabilities. Our findings provide insights into the usability and consistency of these techniques, paving the way for future research in quadrotor performance enhancement, fault detection, and decision-making processes.
Learning stabilising policies for constrained nonlinear systems
This work proposes a two-layered control scheme for constrained nonlinear systems represented by a class of recurrent neural networks and affected by additive disturbances. In particular, a base controller ensures global or regional closed-loop l_p-stability of the error in tracking a desired equilibrium and the satisfaction of input and output constraints within a robustly positive invariant set. An additional control contribution, derived by combining the internal model control principle with a stable operator, is introduced to improve system performance. This operator, implemented as a stable neural network, can be trained via unconstrained optimisation on a chosen performance metric, without compromising closed-loop equilibrium tracking or constraint satisfaction, even if the optimisation is stopped prematurely. In addition, we characterise the class of closed-loop stable behaviours that can be achieved with the proposed architecture. Simulation results on a pH-neutralisation benchmark demonstrate the effectiveness of the proposed approach.
comment: 4 figures, under review
The Wisdom of the Crowd: High-Fidelity Classification of Cyber-Attacks and Faults in Power Systems Using Ensemble and Machine Learning
This paper presents a high-fidelity evaluation framework for machine learning (ML)-based classification of cyber-attacks and physical faults using electromagnetic transient simulations with digital substation emulation at 4.8 kHz. Twelve ML models, including ensemble algorithms and a multi-layer perceptron (MLP), were trained on labeled time-domain measurements and evaluated in a real-time streaming environment designed for sub-cycle responsiveness. The architecture incorporates a cycle-length smoothing filter and confidence threshold to stabilize decisions. Results show that while several models achieved near-perfect offline accuracies (up to 99.9%), only the MLP sustained robust coverage (98-99%) under streaming, whereas ensembles preserved perfect anomaly precision but abstained frequently (10-49% coverage). These findings demonstrate that offline accuracy alone is an unreliable indicator of field readiness and underscore the need for realistic testing and inference pipelines to ensure dependable classification in inverter-based resources (IBR)-rich networks.
Pareto-Improvement-Driven Opinion Dynamics Explaining the Emergence of Pluralistic Ignorance
Opinion dynamics has recently been modeled from a game-theoretic perspective, where opinion updates are captured by individuals' cost functions representing their motivations. Conventional formulations aggregate multiple motivations into a single objective, implicitly assuming that these motivations are interchangeable. This paper challenges that assumption and proposes an opinion dynamics model grounded in a multi-objective game framework. In the proposed model, each individual experiences two distinct costs: social pressure from disagreement with others and cognitive dissonance from deviation from the perceived truth. Opinion updates are modeled as Pareto improvements between these two costs. This fwork provides a parsimonious explanation for the emergence of pluralistic ignorance, where individuals may agree on something untrue even though they all know the underlying truth. We analytically characterize the model, derive conditions for the emrameergence and prevalence of the truth, and propose an initial-seeding strategy that ensures consensus on truth. Numerical simulations are conducted on how network density and clustering affect the expression of truth. Both theoretical and numerical results lead to clear and non-trivial sociological insights. For example, no network structure guarantees truthful consensus if no one initially express the truth; moderately sparse but well-mixed networks best mitigate pluralistic ignorance.
F2GAN: A Feature-Feedback Generative Framework for Reliable AI-Based Fault Diagnosis in Inverter-Dominated Microgrids
Enhancing the reliability of AI based fault diagnosis in inverter dominated microgrids requires diverse and statistically balanced datasets. However, the scarcity and imbalance of high fidelity fault data, especially for rare inverter malfunctions and extreme external line faults, limit dependable model training and validation. This paper introduces a unified framework that models a detailed inverter dominated microgrid and systematically generates multiple internal and external fault scenarios to mitigate data scarcity and class imbalance. An enhanced generative model called F2GAN (Feature Feedback GAN) is developed to synthesize high dimensional tabular fault data with improved realism and statistical alignment. Unlike conventional GANs, F2GAN integrates multi level feedback based on mean variance, correlation, and feature matching losses, enabling the generator to refine output distributions toward real fault feature spaces. The generated datasets are evaluated through quantitative and qualitative analyses. Train on Synthetic, Test on Real (TSTR) experiments demonstrate strong generalization of machine learning classifiers trained exclusively on F2GAN samples. The framework is validated on a hardware-in-the-loop (HIL) fault diagnosis platform integrated with a real time simulator and graphical interface, achieving 100 % diagnostic accuracy under real-time testing. Results confirm that F2GAN effectively bridges the gap between simulated and real world microgrid fault datasets
GNN-Enabled Robust Hybrid Beamforming with Score-Based CSI Generation and Denoising
Accurate Channel State Information (CSI) is critical for Hybrid Beamforming (HBF) tasks. However, obtaining high-resolution CSI remains challenging in practical wireless communication systems. To address this issue, we propose to utilize Graph Neural Networks (GNNs) and score-based generative models to enable robust HBF under imperfect CSI conditions. Firstly, we develop the Hybrid Message Graph Attention Network (HMGAT) which updates both node and edge features through node-level and edge-level message passing. Secondly, we design a Bidirectional Encoder Representations from Transformers (BERT)-based Noise Conditional Score Network (NCSN) to learn the distribution of high-resolution CSI, facilitating CSI generation and data augmentation to further improve HMGAT's performance. Finally, we present a Denoising Score Network (DSN) framework and its instantiation, termed DeBERT, which can denoise imperfect CSI under arbitrary channel error levels, thereby facilitating robust HBF. Experiments on DeepMIMO urban datasets demonstrate the proposed models' superior generalization, scalability, and robustness across various HBF tasks with perfect and imperfect CSI.
On the Potential of Digital Twins for Distribution System State Estimation with Randomly Missing Data in Heterogeneous Measurements
Traditional statistical optimization-based state estimation (DSSE) algorithms rely on detailed grid parameters and mathematical assumptions of all possible uncertainties. Furthermore, random data missing due to communication failures, congestion, and cyberattacks, makes these methods easily infeasible. Inspired by recent advances in digital twins (DTs), this paper proposes an interactive attention-based DSSE model for robust grid monitoring by integrating three core components: physical entities, virtual modeling, and data fusion. To enable robustness against various data missing in heterogeneous measurements, we first propose physics-informed data augmentation and transfer. Moreover, a state-of-the-art attention-based spatiotemporal feature learning is proposed, followed by a novel cross-interaction feature fusion for robust voltage estimation. A case study in a real-world unbalanced 84-bus distribution system with raw data validates the accuracy and robustness of the proposed DT model in estimating voltage states, with random locational, arbitrary ratios (up to 40% of total measurements) of data missing.
comment: Accepted by the 2025 IEEE Power and Energy Society General Meeting
Evolutionary Analysis of Continuous-time Finite-state Mean Field Games with Discounted Payoffs
We consider a class of continuous-time dynamic games involving a large number of players. Each player selects actions from a finite set and evolves through a finite set of states. State transitions occur stochastically and depend on the player's chosen action. A player's single-stage reward depends on their state, action, and the population-wide distribution of states and actions, capturing aggregate effects such as congestion in traffic networks. Each player seeks to maximize a discounted infinite-horizon reward. Existing evolutionary game-theoretic approaches introduce a model for the way individual players update their decisions in static environments without individual state dynamics. In contrast, this work develops an evolutionary framework for dynamic games with explicit state evolution, which is necessary to model many applications. We introduce a mean field approximation of the finite-population game and establish approximation guarantees. Since state-of-the-art solution concepts for dynamic games lack an evolutionary interpretation, we propose a new concept - the Mixed Stationary Nash Equilibrium (MSNE) - which admits one. We characterize an equivalence between MSNE and the rest points of the proposed mean field evolutionary model and we give conditions for the evolutionary stability of MSNE.
Distributed Adaptive Estimation over Sensor Networks with Partially Unknown Source Dynamics
This paper studies distributed adaptive estimation over sensor networks with partially known source dynamics. We present parallel continuous-time and discrete-time designs in which each node runs a local adaptive observer and exchanges information over a directed graph. For both time scales, we establish stability of the network coupling operators, prove boundedness of all internal signals, and show convergence of each node estimate to the source despite model uncertainty and disturbances. We further derive input-to-state stability (ISS) bounds that quantify robustness to bounded process noise. A key distinction is that the discrete-time design uses constant adaptive gains and per-step regressor normalization to handle sampling effects, whereas the continuous-time design does not. A unified Lyapunov framework links local observer dynamics with graph topology. Simulations on star, cyclic, and path networks corroborate the analysis, demonstrating accurate tracking, robustness, and scalability with the number of sensing nodes.
comment: This version is currently under review for the 2026 IFAC World Conference (OIT)
Data-driven Control of Hypergraphs: Leveraging THIS to Damp Noise in Diffusive Hypergraphs
Controllability determines whether a system's state can be guided toward any desired configuration, making it a fundamental prerequisite for designing effective control strategies. In the context of networked systems, controllability is a well-established concept. However, many real-world systems, from biological collectives to engineered infrastructures, exhibit higher-order interactions that cannot be captured by simple graphs. Moreover, the way in which agents interact and influence one another is often unknown and must be inferred from partial observations of the system. Here, we close the loop between a hypergraph representation and our recently developed hypergraph inference algorithm, THIS, to infer the underlying multibody couplings. Building on the inferred structure, we design a parsimonious controller that, given a minimal set of controllable nodes, steers the system toward a desired configuration. We validate the proposed system identification and control framework on a network of Kuramoto oscillators evolving over a hypergraph.
comment: 5 pages, 3 figures
ARGUS: A Framework for Risk-Aware Path Planning in Tactical UGV Operations
This thesis presents the development of ARGUS, a framework for mission planning for Unmanned Ground Vehicles (UGVs) in tactical environments. The system is designed to translate battlefield complexity and the commander's intent into executable action plans. To this end, ARGUS employs a processing pipeline that takes as input geospatial terrain data, military intelligence on existing threats and their probable locations, and mission priorities defined by the commander. Through a set of integrated modules, the framework processes this information to generate optimized trajectories that balance mission objectives against the risks posed by threats and terrain characteristics. A fundamental capability of ARGUS is its dynamic nature, which allows it to adapt plans in real-time in response to unforeseen events, reflecting the fluid nature of the modern battlefield. The system's interoperability were validated in a practical exercise with the Portuguese Army, where it was successfully demonstrated that the routes generated by the model can be integrated and utilized by UGV control systems. The result is a decision support tool that not only produces an optimal trajectory but also provides the necessary insights for its execution, thereby contributing to greater effectiveness and safety in the employment of autonomous ground systems.
Frequency-Aware Sparse Optimization for Diagnosing Grid Instabilities and Collapses
This paper aims to proactively diagnose and manage frequency instability risks from a steady-state perspective, without the need for derivative-dependent transient modeling. Specifically, we jointly address two questions (Q1) Survivability: following a disturbance and the subsequent primary frequency response, can the system settle into a healthy steady state (feasible with an acceptable frequency deviation $Δf$)? (Q2) Dominant Vulnerability: if found unstable, what critical vulnerabilities create instability and/or full collapse? To address these questions, we first augment steady-state power flow states to include frequency-dependent governor relationships (i.e., governor power flow). Afterwards, we propose a frequency-aware sparse optimization that finds the minimal set of bus locations with measurable compensations (corrective actions) to enforce power balance and maintain frequency within predefined/acceptable bounds. We evaluate our method on standard transmission systems to empirically validate its ability to localize dominant sources of vulnerabilities. For a 1354-bus large system, our method detects compensations to only four buses under N-1 generation outage (3424.8 MW) while enforcing a maximum allowable steady-state frequency drop of 0.06 Hz (otherwise, frequency drops by nearly 0.08 Hz). We further validate the scalability of our method, requiring less than four minutes to obtain sparse solutions for the 1354-bus system.
comment: 5 pages, 7 figures, this manuscript is under review at IEEE PEGSM 2026
Bus Type Switching to Reduce Bound Violations in AC Power Flow
Wholesale power markets often use linear approximations of power system constraints. Because it does not consider inequality constraints, using AC power flow for feasibility post-processing can violate bounds on reactive power, voltage magnitudes, or thermal limits. There remains a need for a streamlined analytical approach that can guarantee AC feasibility while adhering to variable bounds. This paper suggests an augmented implementation of AC power flow that uses an additional two bus types (PQV and P) to help resolve voltage bound violations present in the traditional approach. The proposed method sacrifices the voltage setpoint at a generator in exchange for fixing the voltage at a load bus, thereby moving a degree of freedom around the network. Results on the IEEE 14-bus, 57-bus, and 300-bus test cases demonstrate how switching bus types can reduce overall network violations and help find feasible power system setpoints.
Modeling Unsteady Aircraft Aerodynamics Using Lorenz Attractor: A Reduced-Order Approach for Wing Rock
This paper presents a novel modeling approach for unsteady aircraft airflow, leveraging the Lorenz attractor framework. The proposed model is based on the force distribution exerted by a lift-generating wing on the surrounding fluid. It distinguishes between turbulent and nominal components of the force distribution, with the nominal force distribution modeled to peak at the wing and decay linearly into the free stream. This separation allows the turbulent component to be represented by a transport equation that is influenced by flight conditions, specifically dynamic pressure and angle of attack. Consequently, the Navier-Stokes equations, along with the turbulence transport equation, can be transformed into a reduced-order model characterized by three scalar ordinary differential equations - similar to the Lorenz attractor. This resulting system effectively captures chaotic behavior, facilitating the exploration of complex dynamics without the computational demands of solving the full Navier-Stokes equations. A simulation trade study is conducted that models wing rock phenomena at high angles of attack, demonstrating the effectiveness of the proposed approach in capturing the intricate dynamics of unsteady aircraft aerodynamics.
Robust Linear Design for Flight Control Systems with Operational Constraints
This paper presents a systematic approach for designing robust linear proportional-integral (PI) servo-controllers that effectively manage control input and output constraints in flight control systems. The control design leverages the Nagumo Theorem and the Comparison Lemma to prove constraint satisfaction, while employing min-norm optimal controllers in a manner akin to Control Barrier Functions. This results in a continuous piecewise-linear state feedback policy that maintains the analyzability of the closed-loop system through the principles of linear systems theory. Additionally, we derive multi-input multi-output (MIMO) robustness margins, demonstrating that our approach enables robust tracking of external commands even in the presence of operational constraints. Moreover, the proposed control design offers a systematic approach for anti-windup protection. Through flight control trade studies, we illustrate the applicability of the proposed framework to real-world safety-critical aircraft control scenarios. Notably, MIMO margin analysis with active constraints reveals that our method preserves gain and phase margins comparable to those of the unconstrained case, in contrast to controllers that rely on hard saturation heuristics, which suffer significant performance degradation under active constraints. Simulation results using a nonlinear six-degree-of-freedom rigid body aircraft model further validate the effectiveness of our method in achieving constraint satisfaction, robustness, and effective anti-windup protection.
Roundabout Constrained Convex Generators: A Unified Framework for Multiply-Connected Reachable Sets
This paper introduces Roundabout Constrained Convex Generators (RCGs), a set representation framework for modeling multiply connected regions in control and verification applications. The RCG representation extends the constrained convex generators framework by incorporating an inner exclusion zone, creating sets with topological holes that naturally arise in collision avoidance and safety-critical control problems. We present two equivalent formulations: a set difference representation that provides geometric intuition and a unified parametric representation that facilitates computational implementation. The paper establishes closure properties under fundamental operations, including linear transformations, Minkowski sums, and intersections with convex generator sets. We derive special cases, including roundabout zonotopes and roundabout ellipsotopes, which offer computational advantages for specific norm selections. The framework maintains compatibility with existing optimization solvers while enabling the representation of non-convex feasible regions that were previously challenging to model efficiently.
Beyond Prime Farmland: Solar Siting Tradeoffs for Cost-Effective Decarbonization
The feasibility and cost-effectiveness of continued growth in solar photovoltaics are closely tied to siting decisions. But trade-offs between costs and technical potential between land categories, especially brownfields and rooftop sites, have not been quantified, despite increasing resistance to and policy interest in reducing use of greenfield sites (e.g., prime agricultural lands). We examine the effect of siting decisions across land types for utility-scale and rooftop PV on the feasibility and cost of meeting solar deployment targets across the Eastern U.S. We build a database of solar PV supply curves by land type for each county in the Eastern Interconnect (EI) region (~2,400 counties). Our supply curves quantify technical potential versus levelized cost across greenfield, brownfield, and rooftop land types. With these supply curves and a 2035 solar deployment target (435 GW) aligned with a decarbonized power system, we quantify cost and capacity trade-offs using scenarios that prioritize solar PV deployment on different land types. We find greenfield, particularly prime agriculture, sites offer the lowest levelized costs for meeting capacity targets, of 39 to 57 $/MWh. Contaminated lands, often prioritized in policy to reduce land use conflict, have limited technical potential and impose a cost premium of 14-33% relative to greenfield sites. Rooftop PV provides enough technical potential for meeting capacity targets but comes at consistently higher costs, with minimum LCOEs of roughly 70 $/MWh or well above the highest-cost greenfield sites. Our results detail heterogeneous siting trade-offs across the Eastern United States, enabling targeted policy design to meet deployment targets while balancing costs and land use conflicts.
comment: 16 pages, 4 figures
Fair and Efficient allocation of Mobility-on-Demand resources through a Karma Economy
Mobility-on-demand systems like ride-hailing have transformed urban transportation, but they have also exacerbated socio-economic inequalities in access to these services, also due to surge pricing strategies. Although several fairness-aware frameworks have been proposed in smart mobility, they often overlook the temporal and situational variability of user urgency that shapes real-world transportation demands. This paper introduces a non-monetary, Karma-based mechanism that models endogenous urgency, allowing user time-sensitivity to evolve in response to system conditions as well as external factors. We develop a theoretical framework maintaining the efficiency and fairness guarantees of classical Karma economies, while accommodating this realistic user behavior modeling. Applied to a simulated mobility-on-demand scenario we show that our framework is able to achieve high levels of system efficiency, guaranteeing at the same time equitable resource allocation for the users.
comment: 6 pages, 3 figures. Under review at the 2026 European Control Conference (ECC)
Beyond Gaussian Assumptions: A General Fractional HJB Control Framework for Lévy-Driven Heavy-Tailed Channels in 6G
Emerging 6G wireless systems suffer severe performance degradation in challenging environments like high-speed trains traversing dense urban corridors and Unmanned Aerial Vehicles (UAVs) links over mountainous terrain. These scenarios exhibit non-Gaussian, non-stationary channels with heavy-tailed fading and abrupt signal fluctuations. To address these challenges, this paper proposes a novel wireless channel model based on symmetric $α$-stable Lévy processes, thereby enabling continuous-time state-space characterization of both long-term and short-term fading. Building on this model, a generalized optimal control framework is developed via a fractional Hamilton-Jacobi-Bellman (HJB) equation that incorporates the Riesz fractional operator to capture non-local spatial effects and memory-dependent dynamics. The existence and uniqueness of viscosity solutions to the fractional HJB equation are rigorously established, thus ensuring the theoretical validity of the proposed control formulation. Numerical simulations conducted in a multi-cell, multi-user downlink setting demonstrate the effectiveness of the fractional HJB-based strategy in optimizing transmission power under heavy-tailed co-channel and multi-user interference.
Characterisation and Quantification of Data Centre Flexibility for Power System Support
The rapid growth of data centres poses an evolving challenge for power systems with high variable renewable energy. Traditionally operated as passive electrical loads, data centres, have the potential to become active participants that provide flexibility to the grid. However, quantifying and utilising this flexibility have not yet been fully explored. This paper presents an integrated, whole facility optimisation model to investigate the least cost operating schedule of data centres and characterise the aggregate flexibility available from data centres to the power system. The model accounts for IT workload shifting, UPS energy storage, and cooling system. Motivated by the need to alleviate the increasing strain on power systems while leveraging their untapped flexibility potential, this study makes two primary contributions: (i) an operational optimisation model that integrates IT scheduling, UPS operation, and cooling dynamics to establish a cost optimal baseline operation, and (ii) a duration-aware flexibility assessment that, for any given start time and power deviation, computes the maximum feasible duration from this baseline while respecting all operational, thermal, and recovery constraints. This method characterises the aggregate flexibility envelope. Results reveal a clear temporal structure and a notable asymmetry in flexibility provision: upward flexibility (electricity load reduction) is driven by deferring IT workload, which allows for a secondary reduction in cooling power. Downward flexibility (electricity load increase) relies on increasing power consumption of the cooling system, supported by the TES buffer, and charging the UPS. This framework translates abstract flexibility potential into quantified flexibility magnitude and duration that system operators could investigate for use in services such as reserve, frequency response, and price responsive demand.
A Data-Driven Approach for Topology Correction in Low Voltage Distribution Networks with PVs
To correct the outdated and incomplete topology of low voltage distribution networks (LVDNs) solely based on voltage magnitudes, a data driven approach is developed based on machine learning algorithms and correlation analysis. Meanwhile, to address the similarity among smart meter (SM) data induced by distributed photovoltaic (PV) systems, a time based SM data selection strategy is combined with the proposed correlation analysis. Unlike offline approaches, the proposed approach uses up to date voltage magnitudes to help distribution system operators determine switch states via supervised learning and refine user feeder connections and customer phase labels through a modified hierarchical clustering algorithm. The feasibility and robustness of the proposed approach are validated using modified real world LVDNs and multiple incomplete SM datasets collected from customers in the Netherlands. The results demonstrate that the time-based SM data selection strategy effectively mitigates its impact on phase identification, and the corrected topology not only improves network observability but also supports network operators in load balancing and PV consumption.
Data-assimilated model-informed reinforcement learning
The control of spatio-temporally chaos is challenging because of high dimensionality and unpredictability. Model-free reinforcement learning (RL) discovers optimal control policies by interacting with the system, typically requiring observations of the full physical state. In practice, sensors often provide only partial and noisy measurements (observations) of the system. The objective of this paper is to develop a framework that enables the control of chaotic systems with partial and noisy observability. The proposed method, data-assimilated model-informed reinforcement learning (DA-MIRL), integrates (i) low-order models to approximate high-dimensional dynamics; (ii) sequential data assimilation to correct the model prediction when observations become available; and (iii) an off-policy actor-critic RL algorithm to adaptively learn an optimal control strategy based on the corrected state estimates. We test DA-MIRL on the spatiotemporally chaotic solutions of the Kuramoto-Sivashinsky equation. We estimate the full state of the environment with (i) a physics-based model, here, a coarse-grained model; and (ii) a data-driven model, here, the control-aware echo state network, which is proposed in this paper. We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models. This work opens opportunities for the control of partially observable chaotic systems.
An Alternative Derivation and Optimal Design Method of the Generalized Bilinear Transformation for Discretizing Analog Systems
A common approach to digital system design involves transforming a continuous-time (s-domain) transfer function into the discrete-time (z-domain) using methods such as Euler or Tustin. These transformations are shown to be specific cases of the Generalized Bilinear Transformation (GBT), characterized by a design parameter, $\alpha$, whose physical interpretation and optimal selection remain inadequately explored. In this paper, we propose an alternative derivation of the GBT derived by employing a new hexagonal shape to approximate the enclosed area of the error function, and we define the parameter $\alpha$ as a shape factor. We reveal, for the first time, the physical meaning of $\alpha$ as the backward rectangular ratio of the proposed hexagonal shape. Through domain mapping, the stable range of is rigorously established to be [0.5, 1]. Depending on the operating frequency and the chosen $\alpha$, we observe two distinct distortion modes, i.e., the magnitude and phase distortion. We further develop an optimal design method for $\alpha$ by minimizing a normalized magnitude or phase error objective function. The effectiveness of the proposed method is validated through the design and testing of a low-pass filter (LPF), demonstrating strong agreement between theoretical predictions and experimental results.
Bidding in Ancillary Service Markets: An Analytical Approach Using Extreme Value Theory
To enable the participation of stochastic distributed energy resources in ancillary service markets, the Danish transmission system operator, Energinet, mandates that flexibility providers satisfy a minimum 90% reliability requirement for reserve bids. This paper examines the bidding strategy of an electric vehicle aggregator under this regulation and develops a chance-constrained optimization model. In contrast to conventional sample-based approaches that demand large datasets to capture uncertainty, we propose an analytical reformulation that leverages extreme value theory to characterize the tail behavior of flexibility distributions. A case study with real-world charging data from 1400 residential electric vehicles in Denmark demonstrates that the analytical solution improves out-of-sample reliability, reducing bid violation rates by up to 8% relative to a sample-based benchmark. The method is also computationally more efficient, solving optimization problems up to 4.8 times faster while requiring substantially fewer samples to ensure compliance. Moreover, the proposed approach enables the construction of feasible bids with reliability levels as high as 99.95%, which would otherwise require prohibitively large scenario sets under the sample-based method. Beyond its computational and reliability advantages, the framework also provides actionable insights into how reliability thresholds influence aggregator bidding behavior and market participation. This study establishes a regulation-compliant, tractable, and risk-aware bidding methodology for stochastic flexibility aggregators, enhancing both market efficiency and power system security.
System Identification Under Multi-rate Sensing Environment
This paper proposes a system identification algorithm for systems with multi-rate sensors in a discrete-time framework. It is challenging to obtain an accurate mathematical model when the ratios of inputs and outputs are different in the system. A cyclic reformulation-based model for multi-rate systems is formulated, and the multi-rate system can be reduced to a linear time-invariant system to derive the model under the multi-rate sensing environment. The proposed algorithm integrates a cyclic reformulation with a state coordinate transformation of the cycled system to enable precise identification of systems under the multi-rate sensing environment. The effectiveness of the proposed system identification method is demonstrated using numerical simulations.
Properties of zero-determinant strategies in multichannel games
Controlling payoffs in repeated games is one of the important topics in control theory of multi-agent systems. Recently proposed zero-determinant strategies enable players to unilaterally enforce linear relations between payoffs. Furthermore, based on the mathematics of zero-determinant strategies, regional payoff control, in which payoffs are enforced into some feasible regions, has been discovered in social dilemma situations. More recently, theory of payoff control was extended to multichannel games, where players parallelly interact with each other in multiple channels. However, the existence of payoff-controlling strategies in multichannel games seems to require the existence of payoff-controlling strategies in some channels, and properties of zero-determinant strategies specific to multichannel games are still not clear. In this paper, we elucidate properties of zero-determinant strategies in multichannel games. First, we relate the existence condition of zero-determinant strategies in multichannel games to that of zero-determinant strategies in each channel. We then show that the existence of zero-determinant strategies in multichannel games requires the existence of zero-determinant strategies in some channels. This result implies that the existence of zero-determinant strategies in multichannel games is tightly restricted by structure of games played in each channel.
comment: 18 pages, 1 figure
Inverted Gaussian Process Optimization for Probabilistic Koopman Operator Discovery
Koopman Operator Theory has opened the doors to data-driven learning of globally linear representations of complex nonlinear systems. However, current methodologies for Koopman Operator discovery struggle with uncertainty quantification and the dependency on a finite dictionary of heuristically chosen observable functions. We leverage Gaussian Process Regression (GPR) to learn a probabilistic Koopman linear model from data, while removing the need for heuristic observable specification. We present inverted Gaussian Process optimization based Koopman operator learning (iGPK), an automatic differentiation-based approach to simultaneously learn the observable-operator combination. Our numerical results show that the iGPK method is able to learn complex nonlinearities from simulation data while being resilient to measurement noise in the training data and consistently encapsulating the ground truth in the predictive distribution.
QP Chaser: Polynomial Trajectory Generation for Autonomous Aerial Tracking
Maintaining the visibility of the target is one of the major objectives of aerial tracking missions. This paper proposes a target-visible trajectory planning pipeline using quadratic programming. Our approach can handle various tracking settings, including single and dual target following and both static and dynamic environments, unlike other works that focus on a single specific setup. In contrast to other studies that fully trust the predicted trajectory of the target and consider only the visibility of the center of the target, our pipeline considers error in target path prediction and the entire body of the target to maintain the target visibility robustly. First, a prediction module uses a sample-check strategy to quickly calculate the reachable areas of moving objects, which represent the areas their bodies can reach, considering obstacles. Subsequently, the planning module formulates a single QP problem, considering path homotopy, to generate a tracking trajectory that maximizes the visibility of the target's reachable area among obstacles. The performance of the planner is validated in multiple scenarios, through high-fidelity simulations and real-world experiments.
comment: 18 pages, 16 figures
A Data-Driven Approach for Topology Correction in Low Voltage Distribution Networks with PVs
To correct the outdated and incomplete topology of low voltage distribution networks (LVDNs) solely based on voltage magnitudes, a data driven approach is developed based on machine learning algorithms and correlation analysis. Meanwhile, to address the similarity among smart meter (SM) data induced by distributed photovoltaic (PV) systems, a time based SM data selection strategy is combined with the proposed correlation analysis. Unlike offline approaches, the proposed approach uses up to date voltage magnitudes to help distribution system operators determine switch states via supervised learning and refine user feeder connections and customer phase labels through a modified hierarchical clustering algorithm. The feasibility and robustness of the proposed approach are validated using modified real world LVDNs and multiple incomplete SM datasets collected from customers in the Netherlands. The results demonstrate that the time-based SM data selection strategy effectively mitigates its impact on phase identification, and the corrected topology not only improves network observability but also supports network operators in load balancing and PV consumption.
Robotics
Underactuated Biomimetic Autonomous Underwater Vehicle for Ecosystem Monitoring ICRA
In this paper, we present an underactuated biomimetic underwater robot that is suitable for ecosystem monitoring in both marine and freshwater environments. We present an updated mechanical design for a fish-like robot and propose minimal actuation behaviors learned using reinforcement learning techniques. We present our preliminary mechanical design of the tail oscillation mechanism and illustrate the swimming behaviors on FishGym simulator, where the reinforcement learning techniques will be tested on
comment: ICRA RUNE 2024 Workshop Paper
CoFineLLM: Conformal Finetuning of LLMs for Language-Instructed Robot Planning
Large Language Models (LLMs) have recently emerged as planners for language-instructed agents, generating sequences of actions to accomplish natural language tasks. However, their reliability remains a challenge, especially in long-horizon tasks, since they often produce overconfident yet wrong outputs. Conformal Prediction (CP) has been leveraged to address this issue by wrapping LLM outputs into prediction sets that contain the correct action with a user-defined confidence. When the prediction set is a singleton, the planner executes that action; otherwise, it requests help from a user. This has led to LLM-based planners that can ensure plan correctness with a user-defined probability. However, as LLMs are trained in an uncertainty-agnostic manner, without awareness of prediction sets, they tend to produce unnecessarily large sets, particularly at higher confidence levels, resulting in frequent human interventions limiting autonomous deployment. To address this, we introduce CoFineLLM (Conformal Finetuning for LLMs), the first CP-aware finetuning framework for LLM-based planners that explicitly reduces prediction-set size and, in turn, the need for user interventions. We evaluate our approach on multiple language-instructed robot planning problems and show consistent improvements over uncertainty-aware and uncertainty-agnostic finetuning baselines in terms of prediction-set size, and help rates. Finally, we demonstrate robustness of our method to out-of-distribution scenarios in hardware experiments.
Koopman global linearization of contact dynamics for robot locomotion and manipulation enables elaborate control
Controlling robots that dynamically engage in contact with their environment is a pressing challenge. Whether a legged robot making-and-breaking contact with a floor, or a manipulator grasping objects, contact is everywhere. Unfortunately, the switching of dynamics at contact boundaries makes control difficult. Predictive controllers face non-convex optimization problems when contact is involved. Here, we overcome this difficulty by applying Koopman operators to subsume the segmented dynamics due to contact changes into a unified, globally-linear model in an embedding space. We show that viscoelastic contact at robot-environment interactions underpins the use of Koopman operators without approximation to control inputs. This methodology enables the convex Model Predictive Control of a legged robot, and the real-time control of a manipulator engaged in dynamic pushing. In this work, we show that our method allows robots to discover elaborate control strategies in real-time over time horizons with multiple contact changes, and the method is applicable to broad fields beyond robotics.
Adaptive PID Control for Robotic Systems via Hierarchical Meta-Learning and Reinforcement Learning with Physics-Based Data Augmentation
Proportional-Integral-Derivative (PID) controllers remain the predominant choice in industrial robotics due to their simplicity and reliability. However, manual tuning of PID parameters for diverse robotic platforms is time-consuming and requires extensive domain expertise. This paper presents a novel hierarchical control framework that combines meta-learning for PID initialization and reinforcement learning (RL) for online adaptation. To address the sample efficiency challenge, a \textit{physics-based data augmentation} strategy is introduced that generates virtual robot configurations by systematically perturbing physical parameters, enabling effective meta-learning with limited real robot data. The proposed approach is evaluated on two heterogeneous platforms: a 9-DOF Franka Panda manipulator and a 12-DOF Laikago quadruped robot. Experimental results demonstrate that the proposed method achieves 16.6\% average improvement on Franka Panda (6.26{\deg} MAE), with exceptional gains in high-load joints (J2: 80.4\% improvement from 12.36{\deg} to 2.42{\deg}). Critically, this work discovers the \textit{optimization ceiling effect}: RL achieves dramatic improvements when meta-learning exhibits localized high-error joints, but provides no benefit (0.0\%) when baseline performance is uniformly strong, as observed in Laikago. The method demonstrates robust performance under disturbances (parameter uncertainty: +19.2\%, no disturbance: +16.6\%, average: +10.0\%) with only 10 minutes of training time. Multi-seed analysis across 100 random initializations confirms stable performance (4.81+/-1.64\% average). These results establish that RL effectiveness is highly dependent on meta-learning baseline quality and error distribution, providing important design guidance for hierarchical control systems.
comment: 21 pages,12 tables, 6 figures
A Low-Rank Method for Vision Language Model Hallucination Mitigation in Autonomous Driving
Vision Language Models (VLMs) are increasingly used in autonomous driving to help understand traffic scenes, but they sometimes produce hallucinations, which are false details not grounded in the visual input. Detecting and mitigating hallucinations is challenging when ground-truth references are unavailable and model internals are inaccessible. This paper proposes a novel self-contained low-rank approach to automatically rank multiple candidate captions generated by multiple VLMs based on their hallucination levels, using only the captions themselves without requiring external references or model access. By constructing a sentence-embedding matrix and decomposing it into a low-rank consensus component and a sparse residual, we use the residual magnitude to rank captions: selecting the one with the smallest residual as the most hallucination-free. Experiments on the NuScenes dataset demonstrate that our approach achieves 87% selection accuracy in identifying hallucination-free captions, representing a 19% improvement over the unfiltered baseline and a 6-10% improvement over multi-agent debate method. The sorting produced by sparse error magnitudes shows strong correlation with human judgments of hallucinations, validating our scoring mechanism. Additionally, our method, which can be easily parallelized, reduces inference time by 51-67% compared to debate approaches, making it practical for real-time autonomous driving applications.
GHOST: Solving the Traveling Salesman Problem on Graphs of Convex Sets AAAI-2026
We study GCS-TSP, a new variant of the Traveling Salesman Problem (TSP) defined over a Graph of Convex Sets (GCS) -- a powerful representation for trajectory planning that decomposes the configuration space into convex regions connected by a sparse graph. In this setting, edge costs are not fixed but depend on the specific trajectory selected through each convex region, making classical TSP methods inapplicable. We introduce GHOST, a hierarchical framework that optimally solves the GCS-TSP by combining combinatorial tour search with convex trajectory optimization. GHOST systematically explores tours on a complete graph induced by the GCS, using a novel abstract-path-unfolding algorithm to compute admissible lower bounds that guide best-first search at both the high level (over tours) and the low level (over feasible GCS paths realizing the tour). These bounds provide strong pruning power, enabling efficient search while avoiding unnecessary convex optimization calls. We prove that GHOST guarantees optimality and present a bounded-suboptimal variant for time-critical scenarios. Experiments show that GHOST is orders-of-magnitude faster than unified mixed-integer convex programming baselines for simple cases and uniquely handles complex trajectory planning problems involving high-order continuity constraints and an incomplete GCS.
comment: Accepted to AAAI-2026
Sim-to-Real Transfer in Deep Reinforcement Learning for Bipedal Locomotion
This chapter addresses the critical challenge of simulation-to-reality (sim-to-real) transfer for deep reinforcement learning (DRL) in bipedal locomotion. After contextualizing the problem within various control architectures, we dissect the ``curse of simulation'' by analyzing the primary sources of sim-to-real gap: robot dynamics, contact modeling, state estimation, and numerical solvers. Building on this diagnosis, we structure the solutions around two complementary philosophies. The first is to shrink the gap through model-centric strategies that systematically improve the simulator's physical fidelity. The second is to harden the policy, a complementary approach that uses in-simulation robustness training and post-deployment adaptation to make the policy inherently resilient to model inaccuracies. The chapter concludes by synthesizing these philosophies into a strategic framework, providing a clear roadmap for developing and evaluating robust sim-to-real solutions.
comment: Sim-to-real for bipedal locomotion chapter
Real Garment Benchmark (RGBench): A Comprehensive Benchmark for Robotic Garment Manipulation featuring a High-Fidelity Scalable Simulator AAAI
While there has been significant progress to use simulated data to learn robotic manipulation of rigid objects, applying its success to deformable objects has been hindered by the lack of both deformable object models and realistic non-rigid body simulators. In this paper, we present Real Garment Benchmark (RGBench), a comprehensive benchmark for robotic manipulation of garments. It features a diverse set of over 6000 garment mesh models, a new high-performance simulator, and a comprehensive protocol to evaluate garment simulation quality with carefully measured real garment dynamics. Our experiments demonstrate that our simulator outperforms currently available cloth simulators by a large margin, reducing simulation error by 20% while maintaining a speed of 3 times faster. We will publicly release RGBench to accelerate future research in robotic garment manipulation. Website: https://rgbench.github.io/
comment: 2026 AAAI Accept
Whole-Body Control With Terrain Estimation of A 6-DoF Wheeled Bipedal Robot
Wheeled bipedal robots have garnered increasing attention in exploration and inspection. However, most research simplifies calculations by ignoring leg dynamics, thereby restricting the robot's full motion potential. Additionally, robots face challenges when traversing uneven terrain. To address the aforementioned issue, we develop a complete dynamics model and design a whole-body control framework with terrain estimation for a novel 6 degrees of freedom wheeled bipedal robot. This model incorporates the closed-loop dynamics of the robot and a ground contact model based on the estimated ground normal vector. We use a LiDAR inertial odometry framework and improved Principal Component Analysis for terrain estimation. Task controllers, including PD control law and LQR, are employed for pose control and centroidal dynamics-based balance control, respectively. Furthermore, a hierarchical optimization approach is used to solve the whole-body control problem. We validate the performance of the terrain estimation algorithm and demonstrate the algorithm's robustness and ability to traverse uneven terrain through both simulation and real-world experiments.
comment: 8 pages, 8 figures
From Demonstrations to Safe Deployment: Path-Consistent Safety Filtering for Diffusion Policies
Diffusion policies (DPs) achieve state-of-the-art performance on complex manipulation tasks by learning from large-scale demonstration datasets, often spanning multiple embodiments and environments. However, they cannot guarantee safe behavior, so external safety mechanisms are needed. These, however, alter actions in ways unseen during training, causing unpredictable behavior and performance degradation. To address these problems, we propose path-consistent safety filtering (PACS) for DPs. Our approach performs path-consistent braking on a trajectory computed from the sequence of generated actions. In this way, we keep execution consistent with the policy's training distribution, maintaining the learned, task-completing behavior. To enable a real-time deployment and handle uncertainties, we verify safety using set-based reachability analysis. Our experimental evaluation in simulation and on three challenging real-world human-robot interaction tasks shows that PACS (a) provides formal safety guarantees in dynamic environments, (b) preserves task success rates, and (c) outperforms reactive safety approaches, such as control barrier functions, by up to 68% in terms of task success. Videos are available at our project website: https://tum-lsy.github.io/pacs/.
comment: Project page: https://tum-lsy.github.io/pacs/. 8 pages, 4 figures
ArtReg: Visuo-Tactile based Pose Tracking and Manipulation of Unseen Articulated Objects
Robots operating in real-world environments frequently encounter unknown objects with complex structures and articulated components, such as doors, drawers, cabinets, and tools. The ability to perceive, track, and manipulate these objects without prior knowledge of their geometry or kinematic properties remains a fundamental challenge in robotics. In this work, we present a novel method for visuo-tactile-based tracking of unseen objects (single, multiple, or articulated) during robotic interaction without assuming any prior knowledge regarding object shape or dynamics. Our novel pose tracking approach termed ArtReg (stands for Articulated Registration) integrates visuo-tactile point clouds in an unscented Kalman Filter formulation in the SE(3) Lie Group for point cloud registration. ArtReg is used to detect possible articulated joints in objects using purposeful manipulation maneuvers such as pushing or hold-pulling with a two-robot team. Furthermore, we leverage ArtReg to develop a closed-loop controller for goal-driven manipulation of articulated objects to move the object into the desired pose configuration. We have extensively evaluated our approach on various types of unknown objects through real robot experiments. We also demonstrate the robustness of our method by evaluating objects with varying center of mass, low-light conditions, and with challenging visual backgrounds. Furthermore, we benchmarked our approach on a standard dataset of articulated objects and demonstrated improved performance in terms of pose accuracy compared to state-of-the-art methods. Our experiments indicate that robust and accurate pose tracking leveraging visuo-tactile information enables robots to perceive and interact with unseen complex articulated objects (with revolute or prismatic joints).
comment: Under review
Towards Adaptive Humanoid Control via Multi-Behavior Distillation and Reinforced Fine-Tuning
Humanoid robots are promising to learn a diverse set of human-like locomotion behaviors, including standing up, walking, running, and jumping. However, existing methods predominantly require training independent policies for each skill, yielding behavior-specific controllers that exhibit limited generalization and brittle performance when deployed on irregular terrains and in diverse situations. To address this challenge, we propose Adaptive Humanoid Control (AHC) that adopts a two-stage framework to learn an adaptive humanoid locomotion controller across different skills and terrains. Specifically, we first train several primary locomotion policies and perform a multi-behavior distillation process to obtain a basic multi-behavior controller, facilitating adaptive behavior switching based on the environment. Then, we perform reinforced fine-tuning by collecting online feedback in performing adaptive behaviors on more diverse terrains, enhancing terrain adaptability for the controller. We conduct experiments in both simulation and real-world experiments in Unitree G1 robots. The results show that our method exhibits strong adaptability across various situations and terrains. Project website: https://ahc-humanoid.github.io.
Scalable Verification of Neural Control Barrier Functions Using Linear Bound Propagation
Control barrier functions (CBFs) are a popular tool for safety certification of nonlinear dynamical control systems. Recently, CBFs represented as neural networks have shown great promise due to their expressiveness and applicability to a broad class of dynamics and safety constraints. However, verifying that a trained neural network is indeed a valid CBF is a computational bottleneck that limits the size of the networks that can be used. To overcome this limitation, we present a novel framework for verifying neural CBFs based on piecewise linear upper and lower bounds on the conditions required for a neural network to be a CBF. Our approach is rooted in linear bound propagation (LBP) for neural networks, which we extend to compute bounds on the gradients of the network. Combined with McCormick relaxation, we derive linear upper and lower bounds on the CBF conditions, thereby eliminating the need for computationally expensive verification procedures. Our approach applies to arbitrary control-affine systems and a broad range of nonlinear activation functions. To reduce conservatism, we develop a parallelizable refinement strategy that adaptively refines the regions over which these bounds are computed. Our approach scales to larger neural networks than state-of-the-art verification procedures for CBFs, as demonstrated by our numerical experiments.
External Photoreflective Tactile Sensing Based on Surface Deformation Measurement
We present a tactile sensing method enabled by the mechanical compliance of soft robots; an externally attachable photoreflective module reads surface deformation of silicone skin to estimate contact force without embedding tactile transducers. Locating the sensor off the contact interface reduces damage risk, preserves softness, and simplifies fabrication and maintenance. We first characterize the optical sensing element and the compliant skin, thendetermine the design of a prototype tactile sensor. Compression experiments validate the approach, exhibiting a monotonic force output relationship consistent with theory, low hysteresis, high repeatability over repeated cycles, and small response indentation speeds. We further demonstrate integration on a soft robotic gripper, where the module reliably detects grasp events. Compared with liquid filled or wireembedded tactile skins, the proposed modular add on architecture enhances durability, reduces wiring complexity, and supports straightforward deployment across diverse robot geometries. Because the sensing principle reads skin strain patterns, it also suggests extensions to other somatosensory cues such as joint angle or actuator state estimation from surface deformation. Overall, leveraging surface compliance with an external optical module provides a practical and robust route to equip soft robots with force perception while preserving structural flexibility and manufacturability, paving the way for robotic applications and safe human robot collaboration.
comment: This work has been submitted to the IEEE for possible publication
Robust Differentiable Collision Detection for General Objects
Collision detection is a core component of robotics applications such as simulation, control, and planning. Traditional algorithms like GJK+EPA compute witness points (i.e., the closest or deepest-penetration pairs between two objects) but are inherently non-differentiable, preventing gradient flow and limiting gradient-based optimization in contact-rich tasks such as grasping and manipulation. Recent work introduced efficient first-order randomized smoothing to make witness points differentiable; however, their direction-based formulation is restricted to convex objects and lacks robustness for complex geometries. In this work, we propose a robust and efficient differentiable collision detection framework that supports both convex and concave objects across diverse scales and configurations. Our method introduces distance-based first-order randomized smoothing, adaptive sampling, and equivalent gradient transport for robust and informative gradient computation. Experiments on complex meshes from DexGraspNet and Objaverse show significant improvements over existing baselines. Finally, we demonstrate a direct application of our method for dexterous grasp synthesis to refine the grasp quality. The code is available at https://github.com/JYChen18/DiffCollision.
Affordance-Guided Coarse-to-Fine Exploration for Base Placement in Open-Vocabulary Mobile Manipulation AAAI 2026
In open-vocabulary mobile manipulation (OVMM), task success often hinges on the selection of an appropriate base placement for the robot. Existing approaches typically navigate to proximity-based regions without considering affordances, resulting in frequent manipulation failures. We propose Affordance-Guided Coarse-to-Fine Exploration, a zero-shot framework for base placement that integrates semantic understanding from vision-language models (VLMs) with geometric feasibility through an iterative optimization process. Our method constructs cross-modal representations, namely Affordance RGB and Obstacle Map+, to align semantics with spatial context. This enables reasoning that extends beyond the egocentric limitations of RGB perception. To ensure interaction is guided by task-relevant affordances, we leverage coarse semantic priors from VLMs to guide the search toward task-relevant regions and refine placements with geometric constraints, thereby reducing the risk of convergence to local optima. Evaluated on five diverse open-vocabulary mobile manipulation tasks, our system achieves an 85% success rate, significantly outperforming classical geometric planners and VLM-based methods. This demonstrates the promise of affordance-aware and multimodal reasoning for generalizable, instruction-conditioned planning in OVMM.
comment: Accepted to AAAI 2026
ExpReS-VLA: Specializing Vision-Language-Action Models Through Experience Replay and Retrieval ICRA 2026
Vision-Language-Action models such as OpenVLA show impressive zero-shot generalization across robotic manipulation tasks but often fail to adapt efficiently to new deployment environments. In many real-world applications, consistent high performance on a limited set of tasks is more important than broad generalization. We propose ExpReS-VLA, a method for specializing pre-trained VLA models through experience replay and retrieval while preventing catastrophic forgetting. ExpReS-VLA stores compact feature representations from the frozen vision backbone instead of raw image-action pairs, reducing memory usage by approximately 97 percent. During deployment, relevant past experiences are retrieved using cosine similarity and used to guide adaptation, while prioritized experience replay emphasizes successful trajectories. We also introduce Thresholded Hybrid Contrastive Loss, which enables learning from both successful and failed attempts. On the LIBERO simulation benchmark, ExpReS-VLA improves success rates from 82.6 to 93.1 percent on spatial reasoning tasks and from 61 to 72.3 percent on long-horizon tasks. On physical robot experiments with five manipulation tasks, it reaches 98 percent success on both seen and unseen settings, compared to 84.7 and 32 percent for naive fine-tuning. Adaptation takes 31 seconds using 12 demonstrations on a single RTX 5090 GPU, making the approach practical for real robot deployment.
comment: 10 pages, 5 figures, submitted to ICRA 2026. Equal contribution by first two authors
OpenVLN: Open-world aerial Vision-Language Navigation
Vision-language models (VLMs) have been widely-applied in ground-based vision-language navigation (VLN). However, the vast complexity of outdoor aerial environments compounds data acquisition challenges and imposes long-horizon trajectory planning requirements on Unmanned Aerial Vehicles (UAVs), introducing novel complexities for aerial VLN. To address these challenges, we propose a data-efficient Open-world aerial Vision-Language Navigation (i.e., OpenVLN) framework, which could execute language-guided flight with limited data constraints and enhance long-horizon trajectory planning capabilities in complex aerial environments. Specifically, we reconfigure a reinforcement learning framework to optimize the VLM for UAV navigation tasks, which can efficiently fine-tune VLM by using rule-based policies under limited training data. Concurrently, we introduce a long-horizon planner for trajectory synthesis that dynamically generates precise UAV actions via value-based rewards. To the end, we conduct sufficient navigation experiments on the TravelUAV benchmark with dataset scaling across diverse reward settings. Our method demonstrates consistent performance gains of up to 4.34% in Success Rate, 6.19% in Oracle Success Rate, and 4.07% in Success weighted by Path Length over baseline methods, validating its deployment efficacy for long-horizon UAV navigation in complex aerial environments.
comment: Content: 8 pages 4 figures, conference under review
A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
Online Learning and Coverage of Unknown Fields Using Random-Feature Gaussian Processes
This paper proposes a framework for multi-robot systems to perform simultaneous learning and coverage of a domain of interest characterized by an unknown and potentially time-varying density function. To overcome the limitations of Gaussian Process (GP) regression, we employ Random Feature GP (RFGP) and its online variant (O-RFGP) which enables online and incremental inference. By integrating these with Voronoi-based coverage control and Upper Confidence Bound (UCB) sampling strategy, a team of robots can adaptively focus on important regions while refining the learned spatial field for efficient coverage. The incremental update mechanism of O-RFGP naturally supports time-varying environments, allowing efficient adaptation without retaining historical data. Furthermore, to the best of our knowledge, we provide the first theoretical analysis of online learning and coverage through a regret-based formulation, establishing asymptotic no-regret guarantees in the time-invariant setting. The effectiveness of the proposed framework is demonstrated through simulations with both time-invariant and time-varying density functions, along with a physical experiment with a time-varying density function.
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We study orbit dislodging where a servicing spacecraft uses a robotic arm to free a jammed and unactuated solar panel mounted on a hybrid hinge that acts as a time-varying client on a space station. Our method couples online set-membership identification with a robust adaptive MPC to enforce safety under bounded disturbances. The controller explicitly balances exploration to excite the system and shrink uncertainty and exploitation to improve control performance through a dual-mode cost. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in freefall and terrestrial laboratory environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been resubmitted to IEEE Transactions on Control Systems Technology and is currently under review
Simulator Ensembles for Trustworthy Autonomous Driving Testing
Scenario-based testing with driving simulators is extensively used to identify failing conditions of automated driving assistance systems (ADAS). However, existing studies have shown that repeated test execution in the same as well as in distinct simulators can yield different outcomes, which can be attributed to sources of flakiness or different implementations of the physics. In this paper, we present MultiSim, a novel approach to multi-simulation ADAS testing based on a search-based testing approach that leverages an ensemble of simulators to identify failure-inducing, simulator-agnostic test scenarios. During the search, each scenario is evaluated jointly on multiple simulators. Scenarios that produce consistent results across simulators are prioritized for further exploration, while those that fail on only a subset of simulators are given less priority, as they may reflect simulator-specific issues rather than generalizable failures. Our empirical study, which involves testing three lane-keeping ADAS on different pairs of three widely used simulators, demonstrates that MultiSim outperforms single-simulator testing by achieving, on average, a higher rate of simulator-agnostic failures by 66%. Compared to a state-of-the-art multi-simulator approach that combines the outcome of independent test generation campaigns obtained in different simulators, MultiSim identifies, on average, up to 3.4X more simulator-agnostic failing tests and higher failure rates. To avoid the costly execution of test inputs on which simulators disagree, we propose to predict simulator disagreements and bypass test executions. Our results show that utilizing a surrogate model during the search retains the average number of valid failures and also improves efficiency. Our findings indicate that combining an ensemble of simulators is a promising approach for the automated cross-replication in ADAS testing.
Real-time Multi-view Omnidirectional Depth Estimation for Real Scenarios based on Teacher-Student Learning with Unlabeled Data
Omnidirectional depth estimation enables efficient 3D perception over a full 360-degree range. However, in real-world applications such as autonomous driving and robotics, achieving real-time performance and robust cross-scene generalization remains a significant challenge for existing algorithms. In this paper, we propose a real-time omnidirectional depth estimation method for edge computing platforms named Rt-OmniMVS, which introduces the Combined Spherical Sweeping method and implements the lightweight network structure to achieve real-time performance on edge computing platforms. To achieve high accuracy, robustness, and generalization in real-world environments, we introduce a teacher-student learning strategy. We leverage the high-precision stereo matching method as the teacher model to predict pseudo labels for unlabeled real-world data, and utilize data and model augmentation techniques for training to enhance performance of the student model Rt-OmniMVS. We also propose HexaMODE, an omnidirectional depth sensing system based on multi-view fisheye cameras and edge computation device. A large-scale hybrid dataset contains both unlabeled real-world data and synthetic data is collected for model training. Experiments on public datasets demonstrate that proposed method achieves results comparable to state-of-the-art approaches while consuming significantly less resource. The proposed system and algorithm also demonstrate high accuracy in various complex real-world scenarios, both indoors and outdoors, achieving an inference speed of 15 frames per second on edge computing platforms.
DynaGuide: Steering Diffusion Polices with Active Dynamic Guidance
Deploying large, complex policies in the real world requires the ability to steer them to fit the needs of a situation. Most common steering approaches, like goal-conditioning, require training the robot policy with a distribution of test-time objectives in mind. To overcome this limitation, we present DynaGuide, a steering method for diffusion policies using guidance from an external dynamics model during the diffusion denoising process. DynaGuide separates the dynamics model from the base policy, which gives it multiple advantages, including the ability to steer towards multiple objectives, enhance underrepresented base policy behaviors, and maintain robustness on low-quality objectives. The separate guidance signal also allows DynaGuide to work with off-the-shelf pretrained diffusion policies. We demonstrate the performance and features of DynaGuide against other steering approaches in a series of simulated and real experiments, showing an average steering success of 70% on a set of articulated CALVIN tasks and outperforming goal-conditioning by 5.4x when steered with low-quality objectives. We also successfully steer an off-the-shelf real robot policy to express preference for particular objects and even create novel behavior. Videos and more can be found on the project website: https://dynaguide.github.io
comment: 9 pages main, 21 pages with appendix and citations. 9 figures. Presented at Neurips 2025
Environment-Driven Online LiDAR-Camera Extrinsic Calibration
LiDAR-camera extrinsic calibration (LCEC) is crucial for multi-modal data fusion in autonomous robotic systems. Existing methods, whether target-based or target-free, typically rely on customized calibration targets or fixed scene types, which limit their applicability in real-world scenarios. To address these challenges, we present EdO-LCEC, the first environment-driven online calibration approach. Unlike traditional target-free methods, EdO-LCEC employs a generalizable scene discriminator to estimate the feature density of the application environment. Guided by this feature density, EdO-LCEC extracts LiDAR intensity and depth features from varying perspectives to achieve higher calibration accuracy. To overcome the challenges of cross-modal feature matching between LiDAR and camera, we introduce dual-path correspondence matching (DPCM), which leverages both structural and textural consistency for reliable 3D-2D correspondences. Furthermore, we formulate the calibration process as a joint optimization problem that integrates global constraints across multiple views and scenes, thereby enhancing overall accuracy. Extensive experiments on real-world datasets demonstrate that EdO-LCEC outperforms state-of-the-art methods, particularly in scenarios involving sparse point clouds or partially overlapping sensor views.
Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed Human and Automated Traffic
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency. However, understanding the interactions between AVs and human-driven vehicles (HVs) at intersections remains an open research question. This study aims to bridge this gap by examining behavioral differences and adaptations of AVs and HVs at unsignalized intersections by utilizing two large-scale AV datasets from Waymo and Lyft. By using a systematic methodology, the research identifies and analyzes merging and crossing conflicts by calculating key safety and efficiency metrics, including time to collision (TTC), post-encroachment time (PET), maximum required deceleration (MRD), time advantage (TA), and speed and acceleration profiles. Through this approach, the study assesses the safety and efficiency implications of these behavioral differences and adaptations for mixed-autonomy traffic. The findings reveal a paradox: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers, potentially causing unsafe conditions. From a performance point of view, human drivers tend to exhibit more consistent behavior when interacting with AVs versus other HVs, suggesting AVs may contribute to harmonizing traffic flow patterns. Moreover, notable differences were observed between Waymo and Lyft vehicles, which highlights the importance of considering manufacturer-specific AV behaviors in traffic modeling and management strategies for the safe integration of AVs. The processed dataset, as well as the developed algorithms and scripts, are openly published to foster research on AV-HV interactions.
comment: Published OnlineFirst in Transportation Research Record (TRR), DOI: 10.1177/03611981251370343
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
Deep Reinforcement Learning for Bipedal Locomotion: A Brief Survey
Bipedal robots are gaining global recognition due to their potential applications and advancements in artificial intelligence, particularly through Deep Reinforcement Learning (DRL). While DRL has significantly advanced bipedal locomotion, the development of a unified framework capable of handling a wide range of tasks remains an ongoing challenge. This survey systematically categorises, compares, and analyses existing DRL frameworks for bipedal locomotion, organising them into end-to-end and hierarchical control schemes. End-to-end frameworks are evaluated based on their learning approaches, while hierarchical frameworks are examined in terms of layered structures that integrate learning-based or traditional model-based methods. We provide a detailed evaluation of the composition, strengths, limitations, and capabilities of each framework. Additionally, this survey identifies key research gaps and proposes future directions aimed at creating a more integrated and efficient framework for bipedal locomotion, with wide-ranging applications in real-world environments.
comment: Under review at Artificial Intelligence Review
Scaling Cross-Embodiment World Models for Dexterous Manipulation
Cross-embodiment learning seeks to build generalist robots that operate across diverse morphologies, but differences in action spaces and kinematics hinder data sharing and policy transfer. This raises a central question: Is there any invariance that allows actions to transfer across embodiments? We conjecture that environment dynamics are embodiment-invariant, and that world models capturing these dynamics can provide a unified interface across embodiments. To learn such a unified world model, the crucial step is to design state and action representations that abstract away embodiment-specific details while preserving control relevance. To this end, we represent different embodiments (e.g., human hands and robot hands) as sets of 3D particles and define actions as particle displacements, creating a shared representation for heterogeneous data and control problems. A graph-based world model is then trained on exploration data from diverse simulated robot hands and real human hands, and integrated with model-based planning for deployment on novel hardware. Experiments on rigid and deformable manipulation tasks reveal three findings: (i) scaling to more training embodiments improves generalization to unseen ones, (ii) co-training on both simulated and real data outperforms training on either alone, and (iii) the learned models enable effective control on robots with varied degrees of freedom. These results establish world models as a promising interface for cross-embodiment dexterous manipulation.
J-PARSE: Jacobian-based Projection Algorithm for Resolving Singularities Effectively in Inverse Kinematic Control of Serial Manipulators
J-PARSE is an algorithm for smooth first-order inverse kinematic control of a serial manipulator near kinematic singularities. The commanded end-effector velocity is interpreted component-wise, according to the available mobility in each dimension of the task space. First, a substitute "Safety" Jacobian matrix is created, keeping the aspect ratio of the manipulability ellipsoid above a threshold value. The desired motion is then projected onto non-singular and singular directions, and the latter projection scaled down by a factor informed by the threshold value. A right-inverse of the non-singular Safety Jacobian is applied to the modified command. In the absence of joint limits and collisions, this ensures safe transition into and out of low-rank configurations, guaranteeing asymptotic stability for reaching target poses within the workspace, and stability for those outside. Velocity control with J-PARSE is benchmarked against approaches from the literature, and shows high accuracy in reaching and leaving singular target poses. By expanding the available workspace of manipulators, the algorithm finds applications in teleoperation, servoing, and learning. Videos and code are available at https://jparse-manip.github.io/.
comment: 18 pages, 25 figures. v1: Fig. 1 replaced with faster-loading version. v2: Website at https://jparse-manip.github.io/. v3: Proofs revised and new material added
Development of the Bioinspired Tendon-Driven DexHand 021 with Proprioceptive Compliance Control
The human hand plays a vital role in daily life and industrial applications, yet replicating its multifunctional capabilities-including motion, sensing, and coordinated manipulation with robotic systems remains a formidable challenge. Developing a dexterous robotic hand requires balancing human-like agility with engineering constraints such as complexity, size-to-weight ratio, durability, and force-sensing performance. This letter presents Dex-Hand 021, a high-performance, cable-driven five-finger robotic hand with 12 active and 7 passive degrees of freedom (DoFs), achieving 19 DoFs dexterity in a lightweight 1 kg design. We propose a proprioceptive force-sensing-based admittance control method to enhance manipulation. Experimental results demonstrate its superior performance: a single-finger load capacity exceeding 10 N, fingertip repeatability under 0.001 m, and force estimation errors below 0.2 N. Compared to PID control, joint torques in multi-object grasping are reduced by 31.19%, significantly improves force-sensing capability while preventing overload during collisions. The hand excels in both power and precision grasps, successfully executing 33 GRASP taxonomy motions and complex manipulation tasks. This work advances the design of lightweight, industrial-grade dexterous hands and enhances proprioceptive control, contributing to robotic manipulation and intelligent manufacturing.
comment: 8 pages 18 fogures, IEEE RAL accept
Tree-Guided Diffusion Planner NeurIPS 2025
Planning with pretrained diffusion models has emerged as a promising approach for solving test-time guided control problems. Standard gradient guidance typically performs optimally under convex, differentiable reward landscapes. However, it shows substantially reduced effectiveness in real-world scenarios with non-convex objectives, non-differentiable constraints, and multi-reward structures. Furthermore, recent supervised planning approaches require task-specific training or value estimators, which limits test-time flexibility and zero-shot generalization. We propose a Tree-guided Diffusion Planner (TDP), a zero-shot test-time planning framework that balances exploration and exploitation through structured trajectory generation. We frame test-time planning as a tree search problem using a bi-level sampling process: (1) diverse parent trajectories are produced via training-free particle guidance to encourage broad exploration, and (2) sub-trajectories are refined through fast conditional denoising guided by task objectives. TDP addresses the limitations of gradient guidance by exploring diverse trajectory regions and harnessing gradient information across this expanded solution space using only pretrained models and test-time reward signals. We evaluate TDP on three diverse tasks: maze gold-picking, robot arm block manipulation, and AntMaze multi-goal exploration. TDP consistently outperforms state-of-the-art approaches on all tasks. The project page can be found at: https://tree-diffusion-planner.github.io.
comment: NeurIPS 2025
X-Sim: Cross-Embodiment Learning via Real-to-Sim-to-Real
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
comment: Accepted for publication in International Journal of Control, Automation, and Systems (IJCAS). The Version of Record is available via the publisher
Multiagent Systems
When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.
comment: Code is available at https://github.com/zheng977/MutiAgent4Fraud
A Graph-Theoretical Perspective on Law Design for Multiagent Systems AAAI
A law in a multiagent system is a set of constraints imposed on agents' behaviours to avoid undesirable outcomes. The paper considers two types of laws: useful laws that, if followed, completely eliminate the undesirable outcomes and gap-free laws that guarantee that at least one agent can be held responsible each time an undesirable outcome occurs. In both cases, we study the problem of finding a law that achieves the desired result by imposing the minimum restrictions. We prove that, for both types of laws, the minimisation problem is NP-hard even in the simple case of one-shot concurrent interactions. We also show that the approximation algorithm for the vertex cover problem in hypergraphs could be used to efficiently approximate the minimum laws in both cases.
comment: The 40th AAAI Conference on Artificial Intelligence (AAAI-26)
The Station: An Open-World Environment for AI-Driven Discovery
We introduce the STATION, an open-world multi-agent environment that models a miniature scientific ecosystem. Leveraging their extended context windows, agents in the Station can engage in long scientific journeys that include reading papers from peers, formulating hypotheses, submitting code, performing analyses, and publishing results. Importantly, there is no centralized system coordinating their activities - agents are free to choose their own actions and develop their own narratives within the Station. Experiments demonstrate that AI agents in the Station achieve new state-of-the-art performance on a wide range of benchmarks, spanning from mathematics to computational biology to machine learning, notably surpassing AlphaEvolve in circle packing. A rich tapestry of narratives emerges as agents pursue independent research, interact with peers, and build upon a cumulative history. From these emergent narratives, novel methods arise organically, such as a new density-adaptive algorithm for scRNA-seq batch integration. The Station marks a first step towards autonomous scientific discovery driven by emergent behavior in an open-world environment, representing a new paradigm that moves beyond rigid optimization.
comment: 54 pages
When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.
comment: Code is available at https://github.com/zheng977/MutiAgent4Fraud
A Graph-Theoretical Perspective on Law Design for Multiagent Systems AAAI
A law in a multiagent system is a set of constraints imposed on agents' behaviours to avoid undesirable outcomes. The paper considers two types of laws: useful laws that, if followed, completely eliminate the undesirable outcomes and gap-free laws that guarantee that at least one agent can be held responsible each time an undesirable outcome occurs. In both cases, we study the problem of finding a law that achieves the desired result by imposing the minimum restrictions. We prove that, for both types of laws, the minimisation problem is NP-hard even in the simple case of one-shot concurrent interactions. We also show that the approximation algorithm for the vertex cover problem in hypergraphs could be used to efficiently approximate the minimum laws in both cases.
comment: The 40th AAAI Conference on Artificial Intelligence (AAAI-26)
The Station: An Open-World Environment for AI-Driven Discovery
We introduce the STATION, an open-world multi-agent environment that models a miniature scientific ecosystem. Leveraging their extended context windows, agents in the Station can engage in long scientific journeys that include reading papers from peers, formulating hypotheses, submitting code, performing analyses, and publishing results. Importantly, there is no centralized system coordinating their activities - agents are free to choose their own actions and develop their own narratives within the Station. Experiments demonstrate that AI agents in the Station achieve new state-of-the-art performance on a wide range of benchmarks, spanning from mathematics to computational biology to machine learning, notably surpassing AlphaEvolve in circle packing. A rich tapestry of narratives emerges as agents pursue independent research, interact with peers, and build upon a cumulative history. From these emergent narratives, novel methods arise organically, such as a new density-adaptive algorithm for scRNA-seq batch integration. The Station marks a first step towards autonomous scientific discovery driven by emergent behavior in an open-world environment, representing a new paradigm that moves beyond rigid optimization.
comment: 54 pages
A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
Systems and Control (CS)
Underactuated Biomimetic Autonomous Underwater Vehicle for Ecosystem Monitoring ICRA
In this paper, we present an underactuated biomimetic underwater robot that is suitable for ecosystem monitoring in both marine and freshwater environments. We present an updated mechanical design for a fish-like robot and propose minimal actuation behaviors learned using reinforcement learning techniques. We present our preliminary mechanical design of the tail oscillation mechanism and illustrate the swimming behaviors on FishGym simulator, where the reinforcement learning techniques will be tested on
comment: ICRA RUNE 2024 Workshop Paper
Dissipativity-Based Synthesis of Distributed Control and Communication Topology Co-Design for AC Microgrids
This paper presents a novel dissipativity-based framework for co-designing distributed controllers and communication topologies in AC microgrids (MGs). Unlike existing methods that treat control synthesis and topology design separately, we propose a unified approach that simultaneously optimizes both aspects to achieve voltage and frequency regulation and proportional power sharing among distributed generators (DGs). We formulate the closed-loop AC MG as a networked system where DGs, distribution lines, and loads are interconnected subsystems characterized by their dissipative properties. Each DG employs a hierarchical architecture combining local controllers for voltage regulation and distributed controllers for droop-free power sharing through normalized power consensus. By leveraging dissipativity theory, we establish necessary and sufficient conditions for subsystem passivity and cast the co-design problem as a convex linear matrix inequality (LMI) optimization, enabling efficient computation and guaranteed stability. Our framework systematically synthesizes sparse communication topologies while handling the coupled dq-frame dynamics and dual power flow objectives inherent to AC MGs. Simulation results on a representative AC MG demonstrate the effectiveness of the proposed approach in achieving accurate voltage regulation, frequency synchronization, and proportional power sharing.
Voltage-Regulated Sparse Optimization for Proactive Diagnosis of Voltage Collapses
This paper aims to proactively diagnose and manage the voltage collapse risks, i.e., the risk of bus voltages violating the safe operational bounds, which can be caused by extreme events and contingencies. We jointly answer two resilience-related research questions: (Q1) Survivability: Upon having an extreme event/contingency, will the system remain feasible with voltage staying within a (preferred) safe range? (Q2) Dominant Vulnerability: If voltage collapses, what are the dominant sources of system vulnerabilities responsible for the failure? This highlights some key locations worth paying attention to in the planning or decision-making process. To address these questions, we propose a voltage-regulated sparse optimization that finds a minimal set of bus locations along with quantified compensations (corrective actions) that can simultaneously enforce AC network balance and voltage bounds. Results on transmission systems of varying sizes (30-bus to 2383-bus) demonstrate that the proposed method effectively mitigates voltage collapses by compensating at only a few strategically identified nodes, while scaling efficiently to large systems, taking on average less than 4 min for 2000+ bus cases. This work can further serve as a backbone for more comprehensive and actionable decision-making, such as reactive power planning to fix voltage issues.
Efficient Approximation of Volterra Series for High-Dimensional Systems
The identification of high-dimensional nonlinear dynamical systems via the Volterra series has significant potential, but has been severely hindered by the curse of dimensionality. Tensor Network (TN) methods such as the Modified Alternating Linear Scheme (MVMALS) have been a breakthrough for the field, offering a tractable approach by exploiting the low-rank structure in Volterra kernels. However, these techniques still encounter prohibitive computational and memory bottlenecks due to high-order polynomial scaling with respect to input dimension. To overcome this barrier, we introduce the Tensor Head Averaging (THA) algorithm, which significantly reduces complexity by constructing an ensemble of localized MVMALS models trained on small subsets of the input space. In this paper, we present a theoretical foundation for the THA algorithm. We establish observable, finite-sample bounds on the error between the THA ensemble and a full MVMALS model, and we derive an exact decomposition of the squared error. This decomposition is used to analyze the manner in which subset models implicitly compensate for omitted dynamics. We quantify this effect, and prove that correlation between the included and omitted dynamics creates an optimization incentive which drives THA's performance toward accuracy superior to a simple truncation of a full MVMALS model. THA thus offers a scalable and theoretically grounded approach for identifying previously intractable high-dimensional systems.
Input-Output Data-Driven Stabilization of Continuous-Time Linear MIMO Systems
In this paper, we address the problem of data-driven stabilization of continuous-time multi-input multi-output (MIMO) linear time-invariant systems using the input-output data collected from an experiment. Building on recent results for data-driven output-feedback control based on non-minimal realizations, we propose an approach that can be applied to a broad class of continuous-time MIMO systems without requiring a uniform observability index. The key idea is to show that Kreisselmeier's adaptive filter can be interpreted as an observer of a stabilizable non-minimal realization of the plant. Then, by postprocessing the input-output data with such a filter, we derive a linear matrix inequality that yields the feedback gain of a dynamic output-feedback stabilizer.
Investigation of lightning effects on solar power plants connected to transmission networks
The increasing integration of solar power plants into transmission grids has raised concerns about their vulnerability to disturbances, particularly lightning strokes. Solar energy, while offering significant environmental and economic benefits, faces challenges when connected to transmission lines that are prone to lightning discharges. This paper investigates the impact of lightning events on solar power plants, focusing on overvoltage effects. Lightning stroke simulations were conducted at various distances from the solar power plant along the transmission line, considering scenarios with and without surge arrester. Key lightning parameters such as peak current, front time, and tail time were varied to simulate different lightning strokes. The study also includes a Fourier transform analysis of the resulting overvoltages with and without a surge arrester, along with the Hilbert marginal spectrum of these overvoltages. The results provide insights into the effectiveness of surge arresters in mitigating lightning overvoltages and highlight the importance of proper protective measures for enhancing the reliability and safety of solar power plants connected to transmission networks.
comment: 8 pages
Verification of low-frequency signal injection method for earth-fault detection
Unearthed neutral is commonly used in networks which require continuous power supply. This is common in MV circuits of industrial and power plants. Unearthed networks can remain in operation during an earth-fault, but fast determination of the faulty line is key for prevention of further fault escalation. Signal injection is one of the fault location methods often used in LV unearthed networks. The possibility of applying this method in MV networks depends on how to inject the signal into unearthed phases. In such networks, it is possible to use a group of three inductive voltage transformers (IVTs) for signal injection. After the simulations have shown promising results of signal injection and earth-fault detection in MV network, an experimental test was performed. This paper describes the experimental setup and shows the measurement results of signal injection method at MV level supported by EMT simulations.
comment: 10 pages
On Driftless Systems with m controls and 2m or 2m-1 states that are Flat by Pure Prolongation
It is widely recognized that no tractable necessary and sufficient conditions exist for determining whether a system is, in general, differentially flat. However, specific cases do provide such conditions. For instance, driftless systems with two inputs have known necessary and sufficient conditions. For driftless systems with three or more inputs, the available conditions are only sufficient. This paper presents new findings on determining whether a system with m inputs and $2m$ or $2m-1$ states is flat by pure prolongation, a specific subclass of differential flatness. While this condition is more restrictive than general differential flatness, the algorithm for computing flat outputs remains remarkably simple, and the verification requirements are relatively lenient. Moreover, the conditions proposed in this work broaden the class of systems recognized as differentially flat, as our sufficient condition differs from existing criteria.
comment: 26 pages
Optimal Rank-1 Directional State Transition Tensors
An optimal rank-1 approximation of state transition tensors was developed as an efficient alternative to state transition tensors for nonlinear uncertainty quantification. While previous directional state transition tensors used the dominant right singular subspace of the state transition matrix to construct a reduced-dimension representation of the state transition tensors, optimal directional state transition tensors are constructed to maximize the information retained in a rank-1 approximation of the state transition tensors in the Frobenius-norm sense. The optimal rank-1 directional state transition tensor is found by solving a tensor z-eigenpair problem of the "square" of the state transition tensor. This construct leads to increased approximation accuracy of the state transition tensors and improved Gaussian moment propagation for nonlinear flight scenarios like aerocapture.
comment: Submitted to AIAA Journal of Guidance, Control, and Dynamics
Sensor Importance towards Observability Degree via Shapley Values
Sensor selection is an often under-appreciated aspect of state estimator or Kalman filter design. The basic minimum requirement for the choice of a sensor set while designing Kalman filters is that all states are observable. In addition, the sensors should be chosen with a view towards estimating the states with a desired accuracy. Often observability is treated as true/false check during filter design. Beyond observability -- the observability degree -- which measures \emph{how observable} the states are, has been used as the metric of choice to for sensor selection or placement applications. The higher the degree of observability, the better the possibility of designing Kalman filters that achieve the desired state estimation accuracy and consistency requirements. When a wide variety of sensors are available, sometimes with cost and physical constraints involved, sensor selection plays a crucial role in filter design. In such situations it is important to know the expected contribution of each sensor towards observability degree. Shapley values, developed in cooperative game theory for fair allocation of the payout of a multi-player game to individual players, are widely used in machine learning to assess feature importance. This paper shows that Shapley values can indeed be leveraged to quantify the expected marginal contribution of each sensor in any given sensor set towards the observability degree. This quantification of the fair contribution of each sensor towards the observability degree can be leveraged by filter designers for sensor selection, placement and filter (state estimator) design.
Dynamic Electric Vehicle Charging Pricing for Load Balancing in Power Distribution Networks based on Collaborative DDPG Agents
The transition from the Internal Combustion Engine Vehicles (ICEVs) to the Electric Vehicles (EVs) is globally recommended to combat the unfavourable environmental conditions caused by reliance on fossil fuels. However, it has been established that the charging of EVs can destabilize the grid when they penetrate the market in large numbers, especially in grids that were not initially built to handle the load from the charging of EVs. In this work, we present a dynamic EV charging pricing strategy that fulfills the following three objectives: distribution network-level load peak-shaving, valley-filling, and load balancing across distribution networks. Based on historical environmental variables such as temperature, humidity, wind speed, EV charging prices and distribution of vehicles in different areas in different times of the day, we first forecast the distribution network load demand, and then use deep reinforcement learning approach to set the optimal dynamic EV charging price. While most research seeks to achieve load peak-shaving and valley-filling to stabilize the grid, our work goes further into exploring the load-balancing between the distribution networks in the close vicinity to each other. We compare the performance of Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) algorithms for this purpose. The best algorithm is used for dymamic EV pricing. Simulation results show an improved utilization of the grid at the distribution network level, leading to the optimal usage of the grid on a larger scale.
comment: 12 pages, In the second round of review at IEEE Transactions on Smart Grid
From Demonstrations to Safe Deployment: Path-Consistent Safety Filtering for Diffusion Policies
Diffusion policies (DPs) achieve state-of-the-art performance on complex manipulation tasks by learning from large-scale demonstration datasets, often spanning multiple embodiments and environments. However, they cannot guarantee safe behavior, so external safety mechanisms are needed. These, however, alter actions in ways unseen during training, causing unpredictable behavior and performance degradation. To address these problems, we propose path-consistent safety filtering (PACS) for DPs. Our approach performs path-consistent braking on a trajectory computed from the sequence of generated actions. In this way, we keep execution consistent with the policy's training distribution, maintaining the learned, task-completing behavior. To enable a real-time deployment and handle uncertainties, we verify safety using set-based reachability analysis. Our experimental evaluation in simulation and on three challenging real-world human-robot interaction tasks shows that PACS (a) provides formal safety guarantees in dynamic environments, (b) preserves task success rates, and (c) outperforms reactive safety approaches, such as control barrier functions, by up to 68% in terms of task success. Videos are available at our project website: https://tum-lsy.github.io/pacs/.
comment: Project page: https://tum-lsy.github.io/pacs/. 8 pages, 4 figures
Public Transport Under Epidemic Conditions: Nonlinear Trade-Offs Between Risk and Accessibility
Epidemics expose critical tensions between protecting public health and maintaining essential urban mobility. Public transport systems face this dilemma most acutely: they enable access to jobs, education, and services, yet also facilitate close contact among travelers. We develop an integrated modeling framework that couples agent-based epidemic simulation (EpiSim) with an optimization-based public transport flow model under capacity constraints. Using Munich as a case study, we analyze how combinations of facility closures and transport restrictions shape epidemic outcomes and accessibility. The results reveal three key insights. First, epidemic interventions redistribute rather than simply reduce infection risks, shifting transmission to households. Second, epidemic and transport policies interact nonlinearly - moderate demand suppression can offset large capacity cuts. Third, epidemic pressures amplify temporal and spatial inequalities, disproportionately affecting peripheral and peak-hour travelers. These findings highlight that blanket restrictions are both inefficient and inequitable, calling for targeted, time- and space-differentiated measures to build epidemic-resilient and socially fair transport systems.
Optical Network Digital Twin - Commercialization Barriers, Value Proposition, Early Use Cases, and Challenges
With the widespread adoption of AI, machine-to-machine communications are rapidly increasing, reshaping the requirements for optical networks. Recent advances in Gaussian noise modeling for digital coherent transmission have raised expectations for digital-twin-based operation. However, unlike digital twins in wireless communication, which are already well established, significant barriers remain for commercialization in optical networks. This paper discusses the evolving requirements of optical networks in the AI era and proposes an Optical Network Digital Twin architecture that enables flexible end-to-end light path operation beyond conventional management. The value propositions of the proposed architecture, its evolutionary steps toward commercialization, and key research challenges for practical deployment are presented.
comment: 7 pages, 5 figures
Privacy-Preserving Federated Learning for Fair and Efficient Urban Traffic Optimization
The optimization of urban traffic is threatened by the complexity of achieving a balance between transport efficiency and the maintenance of privacy, as well as the equitable distribution of traffic based on socioeconomically diverse neighborhoods. Current centralized traffic management schemes invade user location privacy and further entrench traffic disparity by offering disadvantaged route suggestions, whereas current federated learning frameworks do not consider fairness constraints in multi-objective traffic settings. This study presents a privacy-preserving federated learning framework, termed FedFair-Traffic, that jointly and simultaneously optimizes travel efficiency, traffic fairness, and differential privacy protection. This is the first attempt to integrate three conflicting objectives to improve urban transportation systems. The proposed methodology enables collaborative learning between related vehicles with data locality by integrating Graph Neural Networks with differential privacy mechanisms ($\epsilon$-privacy guarantees) and Gini coefficient-based fair constraints using multi-objective optimization. The framework uses federated aggregation methods of gradient clipping and noise injection to provide differential privacy and optimize Pareto-efficient solutions for the efficiency-fairness tradeoff. Real-world comprehensive experiments on the METR-LA traffic dataset showed that FedFair-Traffic can reduce the average travel time by 7\% (14.2 minutes) compared with their centralized baselines, promote traffic fairness by 73\% (Gini coefficient, 0.78), and offer high privacy protection (privacy score, 0.8) with an 89\% reduction in communication overhead. These outcomes demonstrate that FedFair-Traffic is a scalable privacy-aware smart city infrastructure with possible use-cases in metropolitan traffic flow control and federated transportation networks.
comment: Under review at IEEE journal
Scalable Verification of Neural Control Barrier Functions Using Linear Bound Propagation
Control barrier functions (CBFs) are a popular tool for safety certification of nonlinear dynamical control systems. Recently, CBFs represented as neural networks have shown great promise due to their expressiveness and applicability to a broad class of dynamics and safety constraints. However, verifying that a trained neural network is indeed a valid CBF is a computational bottleneck that limits the size of the networks that can be used. To overcome this limitation, we present a novel framework for verifying neural CBFs based on piecewise linear upper and lower bounds on the conditions required for a neural network to be a CBF. Our approach is rooted in linear bound propagation (LBP) for neural networks, which we extend to compute bounds on the gradients of the network. Combined with McCormick relaxation, we derive linear upper and lower bounds on the CBF conditions, thereby eliminating the need for computationally expensive verification procedures. Our approach applies to arbitrary control-affine systems and a broad range of nonlinear activation functions. To reduce conservatism, we develop a parallelizable refinement strategy that adaptively refines the regions over which these bounds are computed. Our approach scales to larger neural networks than state-of-the-art verification procedures for CBFs, as demonstrated by our numerical experiments.
Partial-Power Flow Controller, Voltage Regulator, and Energy Router for Hybrid AC-DC Grids
The share of electronically converted power from renewable sources, loads, and storage is continuously growing in the low- and medium-voltage grids. These sources and loads typically rectify the grid AC to DC, e.g., for a DC link, so that a DC grid could eliminate hardware and losses of these conversion stages. However, extended DC grids lack the stabilizing nature of AC impedances so that the voltage is more fragile and power flows may need active control, particularly if redundancy as known from AC, such as rings and meshing, is desired. Furthermore, a DC infrastructure will not replace but will need to interface with the existing AC grid. This paper presents a partial-power energy router architecture that can interface multiple AC and DC lines to enable precise control of voltages and both active as well as reactive power flows. The proposed system uses modular low-voltage high-current series modules supplied through dual active bridges. These modules only need to process a small share of the voltage to control large power flows. The topology reduces component size, cost, energy losses, and reliability more than three times compared to conventional technology. The optional integration of battery energy storage can furthermore eliminate the need for the sum of the power flows of all inputs to be zero at all times. Through dynamic voltage injection relative to the line voltage, the modules effectively balance feeder currents, regulate reactive power, and improve the power factor in AC grids. Real-time hardware-in-the-loop and prototype measurements validate the proposed energy router's performance under diverse operating conditions. Experimental results confirm the series module's functionality in both AC and DC grids as an effective solution for controlling extended grids, including power sharing, voltage, and power quality.
comment: 10 pages, 42 figures
Coherency Analysis in Nonlinear Heterogeneous Power Networks: A Blended Dynamics Approach
Power system coherency refers to the phenomenon that machines in a power network exhibit similar frequency responses after disturbances, and is foundational for model reduction and control design. Despite abundant empirical observations, the understanding of coherence in complex power networks remains incomplete where the dynamics could be highly heterogeneous, nonlinear, and increasingly affected by persistent disturbances such as renewable energy fluctuations. To bridge this gap, this paper extends the blended dynamics approach, originally rooted in consensus analysis of multi-agent systems, to develop a novel coherency analysis in power networks. We show that the frequency responses of coherent machines coupled by nonlinear power flow can be approximately represented by the blended dynamics, which is a weighted average of nonlinear heterogeneous nodal dynamics, even under time-varying disturbances. Specifically, by developing novel bounds on the difference between the trajectories of nodal dynamics and the blended dynamics, we identify two key factors -- either high network connectivity or small time-variation rate of disturbances -- that contribute to coherence. They enable the nodal frequencies to rapidly approach the blended-dynamics trajectory from arbitrary initial state. Furthermore, they ensure the frequencies closely follow this trajectory in the long term, even when the system does not settle to an equilibrium. These insights contribute to the understanding of power system coherency and are further supported by simulation results.
LLM-Guided Reinforcement Learning with Representative Agents for Traffic Modeling
Large language models (LLMs) are increasingly used as behavioral proxies for self-interested travelers in agent-based traffic models. Although more flexible and generalizable than conventional models, the practical use of these approaches remains limited by scalability due to the cost of calling one LLM for every traveler. Moreover, it has been found that LLM agents often make opaque choices and produce unstable day-to-day dynamics. To address these challenges, we propose to model each homogeneous traveler group facing the same decision context with a single representative LLM agent who behaves like the population's average, maintaining and updating a mixed strategy over routes that coincides with the group's aggregate flow proportions. Each day, the LLM reviews the travel experience and flags routes with positive reinforcement that they hope to use more often, and an interpretable update rule then converts this judgment into strategy adjustments using a tunable (progressively decaying) step size. The representative-agent design improves scalability, while the separation of reasoning from updating clarifies the decision logic while stabilizing learning. In classic traffic assignment settings, we find that the proposed approach converges rapidly to the user equilibrium. In richer settings with income heterogeneity, multi-criteria costs, and multi-modal choices, the generated dynamics remain stable and interpretable, reproducing plausible behavioral patterns well-documented in psychology and economics, for example, the decoy effect in toll versus non-toll road selection, and higher willingness-to-pay for convenience among higher-income travelers when choosing between driving, transit, and park-and-ride options.
Learning-Based Robust Bayesian Persuasion with Conformal Prediction Guarantees
Classical Bayesian persuasion assumes that senders fully understand how receivers form beliefs and make decisions--an assumption that rarely holds when receivers possess private information or exhibit non-Bayesian behavior. In this paper, we develop a learning-based framework that integrates neural networks with conformal prediction to achieve robust persuasion under uncertainty about receiver belief formation. The proposed neural architecture learns end-to-end mappings from receiver observations and sender signals to action predictions, eliminating the need to identify belief mechanisms explicitly. Conformal prediction constructs finite-sample valid prediction sets with provable marginal coverage, enabling principled, distribution-free robust optimization. We establish exact coverage guarantees for the data-generating policy and derive bounds on coverage degradation under policy shifts. Furthermore, we provide neural network approximation and estimation error bounds, with sample complexity $O(d \log(|\mathcal{U}||\mathcal{Y}||\mathcal{S}|)/\varepsilon^2)$, where $d$ denotes the effective network dimension, and finite-sample lower bounds on the sender's expected utility. Numerical experiments on smart-grid energy management illustrate the framework's robustness.
comment: 8 pages
A Passive Software-Defined Radio-based mmWave Sensing System for Blind Integrated Communication and Sensing
Integrated Sensing and Communication (ISAC) is considered as a key component of future 6G technologies, especially in the millimeter-wave (mmWave) bands. Recently, the performances of ISAC were experimentally evaluated and demonstrated in various scenarios by developing ISAC systems. These systems generally consist of coherent transmitting (Tx) and receiving (Rx) modules. However, actively transmitting radio waves for experiments is not easy due to regulatory restrictions of radio. Meanwhile, the Tx/Rx should be synchronized and Rx need the information of Tx. In this paper, a fully passive mmWave sensing system is developed with software-defined radio for blind ISAC. It only consists of a passive Rx module which does not depend on the Tx. Since the proposed system is not synchronized with Tx and has no knowledge of the transmitted signals, a differential structure with two oppositely-oriented receivers is introduced to realize the sensing function. This structure can mitigate the influences of unknown source signals and other distortions. With the proposed sensing system, the ambient mmWave communication signals are leveraged for sensing without interrupting the existing systems. It can be deployed for field applications such as signal detection and dynamic human activity recognition since it does not emit signals. The efficacy of the developed system is first verified with a metallic plate with known motion pattern. The measured Doppler spectrogram shows good agreement with the simulation results, demonstrating the correctness of the sensing results. Further, the system is evaluated in complex scenarios, including handwaving, single- and multi-person motion detection. The sensing results successfully reflect the corresponding motions, demonstrating that the proposed sensing system can be utilized for blind ISAC in various applications.
A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
Online Learning and Coverage of Unknown Fields Using Random-Feature Gaussian Processes
This paper proposes a framework for multi-robot systems to perform simultaneous learning and coverage of a domain of interest characterized by an unknown and potentially time-varying density function. To overcome the limitations of Gaussian Process (GP) regression, we employ Random Feature GP (RFGP) and its online variant (O-RFGP) which enables online and incremental inference. By integrating these with Voronoi-based coverage control and Upper Confidence Bound (UCB) sampling strategy, a team of robots can adaptively focus on important regions while refining the learned spatial field for efficient coverage. The incremental update mechanism of O-RFGP naturally supports time-varying environments, allowing efficient adaptation without retaining historical data. Furthermore, to the best of our knowledge, we provide the first theoretical analysis of online learning and coverage through a regret-based formulation, establishing asymptotic no-regret guarantees in the time-invariant setting. The effectiveness of the proposed framework is demonstrated through simulations with both time-invariant and time-varying density functions, along with a physical experiment with a time-varying density function.
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We study orbit dislodging where a servicing spacecraft uses a robotic arm to free a jammed and unactuated solar panel mounted on a hybrid hinge that acts as a time-varying client on a space station. Our method couples online set-membership identification with a robust adaptive MPC to enforce safety under bounded disturbances. The controller explicitly balances exploration to excite the system and shrink uncertainty and exploitation to improve control performance through a dual-mode cost. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in freefall and terrestrial laboratory environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been resubmitted to IEEE Transactions on Control Systems Technology and is currently under review
Distributed Coordination for Heterogeneous Non-Terrestrial Networks
To achieve global coverage and ubiquitous connectivity, the non-terrestrial network (NTN) has been regarded as a key enabler in the sixth generation (6G) network, which includes uncrewed aerial vehicles (UAVs), high-altitude platforms (HAPs), and satellites. Since the unique characteristics of various NTN platforms strongly affect their implementation and lead to a highly dynamic and heterogeneous NTN scenario, achieving distributed coordination remains an important research direction. However, the explicit and systematic analysis of the individual layers' challenges and corresponding distributed coordination solutions in heterogeneous NTNs has not been proposed yet. Therefore, in this paper, we summarize the unique characteristics of each NTN platform, identify communication challenges within individual layers, and propose potential delay-tolerant or delay-sensitive coordinated solutions accordingly. We further analyse the feasibility of leveraging multi-agent deep reinforcement learning (MADRL) algorithms to achieve the proposed coordinated solutions. Finally, we present a case study of the joint scheduling and trajectory optimization problem in heterogeneous NTN, where a two-timescale multi-agent deep deterministic policy gradient (TTS-MADDPG) algorithm is developed to validate the effectiveness of distributed coordination.
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
Network-Realised Model Predictive Control Part II: Distributed Constraint Management
A two-layer control architecture is proposed, which promotes scalable implementations for model predictive controllers. The top layer acts as both reference governor for the bottom layer, and as a feedback controller for the regulated network. By employing set-based methods, global theoretical guarantees are obtained by enforcing local constraints upon the network's variables and upon those of the first layer's implementation. The proposed technique offers recursive feasibility guarantees as one of its central features, and the expressions of the resulting predictive strategies bear a striking resemblance to classical formulations from model predictive control literature, allowing for flexible and easily customizable implementations.
comment: 20 pages, 9 figures, 4 tables
Network-Realised Model Predictive Control Part I: NRF-Enabled Closed-loop Decomposition
A two-layer control architecture is proposed, which promotes scalable implementations for constraint-based decision strategies, such as model predictive controllers. The bottom layer is based upon a distributed feedback-feedforward scheme, which directs the controlled network's information flow according to a pre-specified communication infrastructure. Explicit expressions for the resulting closed-loop maps are obtained, and an offline model-matching procedure is proposed for designing the first layer. The obtained control laws are deployed via distributed state-space-based implementations, and the resulting closed-loop models enable predictive control design for the constraint management procedure described in our companion paper.
comment: 20 pages, 5 figures
A Dynamic Recurrent Adjacency Memory Network for Mixed-Generation Power System Stability Forecasting
Modern power systems with high penetration of inverter-based resources exhibit complex dynamic behaviors that challenge the scalability and generalizability of traditional stability assessment methods. This paper presents a dynamic recurrent adjacency memory network (DRAMN) that combines physics-informed analysis with deep learning for real-time power system stability forecasting. The framework employs sliding-window dynamic mode decomposition to construct time-varying, multi-layer adjacency matrices from phasor measurement unit and sensor data to capture system dynamics such as modal participation factors, coupling strengths, phase relationships, and spectral energy distributions. As opposed to processing spatial and temporal dependencies separately, DRAMN integrates graph convolution operations directly within recurrent gating mechanisms, enabling simultaneous modeling of evolving dynamics and temporal dependencies. Extensive validations on modified IEEE 9-bus, 39-bus, and a multi-terminal HVDC network demonstrate high performance, achieving 99.85%, 99.90%, and 99.69% average accuracies, respectively, surpassing all tested benchmarks, including classical machine learning algorithms and recent graph-based models. The framework identifies optimal combinations of measurements that reduce feature dimensionality by 82% without performance degradation. Correlation analysis between dominant measurements for small-signal and transient stability events validates generalizability across different stability phenomena. DRAMN achieves state-of-the-art accuracy while providing enhanced interpretability for power system operators, making it suitable for real-time deployment in modern control centers.
comment: Submitted to IEEE Transactions on Power Systems
Intent Demonstration in General-Sum Dynamic Games via Iterative Linear-Quadratic Approximations
Autonomous agents should coordinate effectively without prior knowledge of others' intents. While prior work has focused on intent inference, we address the inverse problem: how agents can strategically demonstrate their intents within general-sum dynamic games. We model this problem and propose an algorithm that balances intent demonstration with task performance. To handle nonlinear dynamic games with continuous state-action spaces, our method leverages iterative linear-quadratic game approximations and provides efficient intent-teaching guarantees: the uncertain agent's belief can be driven rapidly to the ground truth, while the demonstrating agent avoids expending effort on unnecessary belief alignment when it does not improve task performance. Theoretical analysis and hardware experiments confirm that our approach enables the demonstrating agent to reconcile task execution with belief alignment and strategically manage the information asymmetry among agents, even as its intent evolves during deployment.
Systems and Control (EESS)
Underactuated Biomimetic Autonomous Underwater Vehicle for Ecosystem Monitoring ICRA
In this paper, we present an underactuated biomimetic underwater robot that is suitable for ecosystem monitoring in both marine and freshwater environments. We present an updated mechanical design for a fish-like robot and propose minimal actuation behaviors learned using reinforcement learning techniques. We present our preliminary mechanical design of the tail oscillation mechanism and illustrate the swimming behaviors on FishGym simulator, where the reinforcement learning techniques will be tested on
comment: ICRA RUNE 2024 Workshop Paper
Dissipativity-Based Synthesis of Distributed Control and Communication Topology Co-Design for AC Microgrids
This paper presents a novel dissipativity-based framework for co-designing distributed controllers and communication topologies in AC microgrids (MGs). Unlike existing methods that treat control synthesis and topology design separately, we propose a unified approach that simultaneously optimizes both aspects to achieve voltage and frequency regulation and proportional power sharing among distributed generators (DGs). We formulate the closed-loop AC MG as a networked system where DGs, distribution lines, and loads are interconnected subsystems characterized by their dissipative properties. Each DG employs a hierarchical architecture combining local controllers for voltage regulation and distributed controllers for droop-free power sharing through normalized power consensus. By leveraging dissipativity theory, we establish necessary and sufficient conditions for subsystem passivity and cast the co-design problem as a convex linear matrix inequality (LMI) optimization, enabling efficient computation and guaranteed stability. Our framework systematically synthesizes sparse communication topologies while handling the coupled dq-frame dynamics and dual power flow objectives inherent to AC MGs. Simulation results on a representative AC MG demonstrate the effectiveness of the proposed approach in achieving accurate voltage regulation, frequency synchronization, and proportional power sharing.
Voltage-Regulated Sparse Optimization for Proactive Diagnosis of Voltage Collapses
This paper aims to proactively diagnose and manage the voltage collapse risks, i.e., the risk of bus voltages violating the safe operational bounds, which can be caused by extreme events and contingencies. We jointly answer two resilience-related research questions: (Q1) Survivability: Upon having an extreme event/contingency, will the system remain feasible with voltage staying within a (preferred) safe range? (Q2) Dominant Vulnerability: If voltage collapses, what are the dominant sources of system vulnerabilities responsible for the failure? This highlights some key locations worth paying attention to in the planning or decision-making process. To address these questions, we propose a voltage-regulated sparse optimization that finds a minimal set of bus locations along with quantified compensations (corrective actions) that can simultaneously enforce AC network balance and voltage bounds. Results on transmission systems of varying sizes (30-bus to 2383-bus) demonstrate that the proposed method effectively mitigates voltage collapses by compensating at only a few strategically identified nodes, while scaling efficiently to large systems, taking on average less than 4 min for 2000+ bus cases. This work can further serve as a backbone for more comprehensive and actionable decision-making, such as reactive power planning to fix voltage issues.
Efficient Approximation of Volterra Series for High-Dimensional Systems
The identification of high-dimensional nonlinear dynamical systems via the Volterra series has significant potential, but has been severely hindered by the curse of dimensionality. Tensor Network (TN) methods such as the Modified Alternating Linear Scheme (MVMALS) have been a breakthrough for the field, offering a tractable approach by exploiting the low-rank structure in Volterra kernels. However, these techniques still encounter prohibitive computational and memory bottlenecks due to high-order polynomial scaling with respect to input dimension. To overcome this barrier, we introduce the Tensor Head Averaging (THA) algorithm, which significantly reduces complexity by constructing an ensemble of localized MVMALS models trained on small subsets of the input space. In this paper, we present a theoretical foundation for the THA algorithm. We establish observable, finite-sample bounds on the error between the THA ensemble and a full MVMALS model, and we derive an exact decomposition of the squared error. This decomposition is used to analyze the manner in which subset models implicitly compensate for omitted dynamics. We quantify this effect, and prove that correlation between the included and omitted dynamics creates an optimization incentive which drives THA's performance toward accuracy superior to a simple truncation of a full MVMALS model. THA thus offers a scalable and theoretically grounded approach for identifying previously intractable high-dimensional systems.
Input-Output Data-Driven Stabilization of Continuous-Time Linear MIMO Systems
In this paper, we address the problem of data-driven stabilization of continuous-time multi-input multi-output (MIMO) linear time-invariant systems using the input-output data collected from an experiment. Building on recent results for data-driven output-feedback control based on non-minimal realizations, we propose an approach that can be applied to a broad class of continuous-time MIMO systems without requiring a uniform observability index. The key idea is to show that Kreisselmeier's adaptive filter can be interpreted as an observer of a stabilizable non-minimal realization of the plant. Then, by postprocessing the input-output data with such a filter, we derive a linear matrix inequality that yields the feedback gain of a dynamic output-feedback stabilizer.
Investigation of lightning effects on solar power plants connected to transmission networks
The increasing integration of solar power plants into transmission grids has raised concerns about their vulnerability to disturbances, particularly lightning strokes. Solar energy, while offering significant environmental and economic benefits, faces challenges when connected to transmission lines that are prone to lightning discharges. This paper investigates the impact of lightning events on solar power plants, focusing on overvoltage effects. Lightning stroke simulations were conducted at various distances from the solar power plant along the transmission line, considering scenarios with and without surge arrester. Key lightning parameters such as peak current, front time, and tail time were varied to simulate different lightning strokes. The study also includes a Fourier transform analysis of the resulting overvoltages with and without a surge arrester, along with the Hilbert marginal spectrum of these overvoltages. The results provide insights into the effectiveness of surge arresters in mitigating lightning overvoltages and highlight the importance of proper protective measures for enhancing the reliability and safety of solar power plants connected to transmission networks.
comment: 8 pages
Verification of low-frequency signal injection method for earth-fault detection
Unearthed neutral is commonly used in networks which require continuous power supply. This is common in MV circuits of industrial and power plants. Unearthed networks can remain in operation during an earth-fault, but fast determination of the faulty line is key for prevention of further fault escalation. Signal injection is one of the fault location methods often used in LV unearthed networks. The possibility of applying this method in MV networks depends on how to inject the signal into unearthed phases. In such networks, it is possible to use a group of three inductive voltage transformers (IVTs) for signal injection. After the simulations have shown promising results of signal injection and earth-fault detection in MV network, an experimental test was performed. This paper describes the experimental setup and shows the measurement results of signal injection method at MV level supported by EMT simulations.
comment: 10 pages
On Driftless Systems with m controls and 2m or 2m-1 states that are Flat by Pure Prolongation
It is widely recognized that no tractable necessary and sufficient conditions exist for determining whether a system is, in general, differentially flat. However, specific cases do provide such conditions. For instance, driftless systems with two inputs have known necessary and sufficient conditions. For driftless systems with three or more inputs, the available conditions are only sufficient. This paper presents new findings on determining whether a system with m inputs and $2m$ or $2m-1$ states is flat by pure prolongation, a specific subclass of differential flatness. While this condition is more restrictive than general differential flatness, the algorithm for computing flat outputs remains remarkably simple, and the verification requirements are relatively lenient. Moreover, the conditions proposed in this work broaden the class of systems recognized as differentially flat, as our sufficient condition differs from existing criteria.
comment: 26 pages
Optimal Rank-1 Directional State Transition Tensors
An optimal rank-1 approximation of state transition tensors was developed as an efficient alternative to state transition tensors for nonlinear uncertainty quantification. While previous directional state transition tensors used the dominant right singular subspace of the state transition matrix to construct a reduced-dimension representation of the state transition tensors, optimal directional state transition tensors are constructed to maximize the information retained in a rank-1 approximation of the state transition tensors in the Frobenius-norm sense. The optimal rank-1 directional state transition tensor is found by solving a tensor z-eigenpair problem of the "square" of the state transition tensor. This construct leads to increased approximation accuracy of the state transition tensors and improved Gaussian moment propagation for nonlinear flight scenarios like aerocapture.
comment: Submitted to AIAA Journal of Guidance, Control, and Dynamics
Sensor Importance towards Observability Degree via Shapley Values
Sensor selection is an often under-appreciated aspect of state estimator or Kalman filter design. The basic minimum requirement for the choice of a sensor set while designing Kalman filters is that all states are observable. In addition, the sensors should be chosen with a view towards estimating the states with a desired accuracy. Often observability is treated as true/false check during filter design. Beyond observability -- the observability degree -- which measures \emph{how observable} the states are, has been used as the metric of choice to for sensor selection or placement applications. The higher the degree of observability, the better the possibility of designing Kalman filters that achieve the desired state estimation accuracy and consistency requirements. When a wide variety of sensors are available, sometimes with cost and physical constraints involved, sensor selection plays a crucial role in filter design. In such situations it is important to know the expected contribution of each sensor towards observability degree. Shapley values, developed in cooperative game theory for fair allocation of the payout of a multi-player game to individual players, are widely used in machine learning to assess feature importance. This paper shows that Shapley values can indeed be leveraged to quantify the expected marginal contribution of each sensor in any given sensor set towards the observability degree. This quantification of the fair contribution of each sensor towards the observability degree can be leveraged by filter designers for sensor selection, placement and filter (state estimator) design.
Dynamic Electric Vehicle Charging Pricing for Load Balancing in Power Distribution Networks based on Collaborative DDPG Agents
The transition from the Internal Combustion Engine Vehicles (ICEVs) to the Electric Vehicles (EVs) is globally recommended to combat the unfavourable environmental conditions caused by reliance on fossil fuels. However, it has been established that the charging of EVs can destabilize the grid when they penetrate the market in large numbers, especially in grids that were not initially built to handle the load from the charging of EVs. In this work, we present a dynamic EV charging pricing strategy that fulfills the following three objectives: distribution network-level load peak-shaving, valley-filling, and load balancing across distribution networks. Based on historical environmental variables such as temperature, humidity, wind speed, EV charging prices and distribution of vehicles in different areas in different times of the day, we first forecast the distribution network load demand, and then use deep reinforcement learning approach to set the optimal dynamic EV charging price. While most research seeks to achieve load peak-shaving and valley-filling to stabilize the grid, our work goes further into exploring the load-balancing between the distribution networks in the close vicinity to each other. We compare the performance of Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) algorithms for this purpose. The best algorithm is used for dymamic EV pricing. Simulation results show an improved utilization of the grid at the distribution network level, leading to the optimal usage of the grid on a larger scale.
comment: 12 pages, In the second round of review at IEEE Transactions on Smart Grid
From Demonstrations to Safe Deployment: Path-Consistent Safety Filtering for Diffusion Policies
Diffusion policies (DPs) achieve state-of-the-art performance on complex manipulation tasks by learning from large-scale demonstration datasets, often spanning multiple embodiments and environments. However, they cannot guarantee safe behavior, so external safety mechanisms are needed. These, however, alter actions in ways unseen during training, causing unpredictable behavior and performance degradation. To address these problems, we propose path-consistent safety filtering (PACS) for DPs. Our approach performs path-consistent braking on a trajectory computed from the sequence of generated actions. In this way, we keep execution consistent with the policy's training distribution, maintaining the learned, task-completing behavior. To enable a real-time deployment and handle uncertainties, we verify safety using set-based reachability analysis. Our experimental evaluation in simulation and on three challenging real-world human-robot interaction tasks shows that PACS (a) provides formal safety guarantees in dynamic environments, (b) preserves task success rates, and (c) outperforms reactive safety approaches, such as control barrier functions, by up to 68% in terms of task success. Videos are available at our project website: https://tum-lsy.github.io/pacs/.
comment: Project page: https://tum-lsy.github.io/pacs/. 8 pages, 4 figures
Public Transport Under Epidemic Conditions: Nonlinear Trade-Offs Between Risk and Accessibility
Epidemics expose critical tensions between protecting public health and maintaining essential urban mobility. Public transport systems face this dilemma most acutely: they enable access to jobs, education, and services, yet also facilitate close contact among travelers. We develop an integrated modeling framework that couples agent-based epidemic simulation (EpiSim) with an optimization-based public transport flow model under capacity constraints. Using Munich as a case study, we analyze how combinations of facility closures and transport restrictions shape epidemic outcomes and accessibility. The results reveal three key insights. First, epidemic interventions redistribute rather than simply reduce infection risks, shifting transmission to households. Second, epidemic and transport policies interact nonlinearly - moderate demand suppression can offset large capacity cuts. Third, epidemic pressures amplify temporal and spatial inequalities, disproportionately affecting peripheral and peak-hour travelers. These findings highlight that blanket restrictions are both inefficient and inequitable, calling for targeted, time- and space-differentiated measures to build epidemic-resilient and socially fair transport systems.
Optical Network Digital Twin - Commercialization Barriers, Value Proposition, Early Use Cases, and Challenges
With the widespread adoption of AI, machine-to-machine communications are rapidly increasing, reshaping the requirements for optical networks. Recent advances in Gaussian noise modeling for digital coherent transmission have raised expectations for digital-twin-based operation. However, unlike digital twins in wireless communication, which are already well established, significant barriers remain for commercialization in optical networks. This paper discusses the evolving requirements of optical networks in the AI era and proposes an Optical Network Digital Twin architecture that enables flexible end-to-end light path operation beyond conventional management. The value propositions of the proposed architecture, its evolutionary steps toward commercialization, and key research challenges for practical deployment are presented.
comment: 7 pages, 5 figures
Privacy-Preserving Federated Learning for Fair and Efficient Urban Traffic Optimization
The optimization of urban traffic is threatened by the complexity of achieving a balance between transport efficiency and the maintenance of privacy, as well as the equitable distribution of traffic based on socioeconomically diverse neighborhoods. Current centralized traffic management schemes invade user location privacy and further entrench traffic disparity by offering disadvantaged route suggestions, whereas current federated learning frameworks do not consider fairness constraints in multi-objective traffic settings. This study presents a privacy-preserving federated learning framework, termed FedFair-Traffic, that jointly and simultaneously optimizes travel efficiency, traffic fairness, and differential privacy protection. This is the first attempt to integrate three conflicting objectives to improve urban transportation systems. The proposed methodology enables collaborative learning between related vehicles with data locality by integrating Graph Neural Networks with differential privacy mechanisms ($\epsilon$-privacy guarantees) and Gini coefficient-based fair constraints using multi-objective optimization. The framework uses federated aggregation methods of gradient clipping and noise injection to provide differential privacy and optimize Pareto-efficient solutions for the efficiency-fairness tradeoff. Real-world comprehensive experiments on the METR-LA traffic dataset showed that FedFair-Traffic can reduce the average travel time by 7\% (14.2 minutes) compared with their centralized baselines, promote traffic fairness by 73\% (Gini coefficient, 0.78), and offer high privacy protection (privacy score, 0.8) with an 89\% reduction in communication overhead. These outcomes demonstrate that FedFair-Traffic is a scalable privacy-aware smart city infrastructure with possible use-cases in metropolitan traffic flow control and federated transportation networks.
comment: Under review at IEEE journal
Scalable Verification of Neural Control Barrier Functions Using Linear Bound Propagation
Control barrier functions (CBFs) are a popular tool for safety certification of nonlinear dynamical control systems. Recently, CBFs represented as neural networks have shown great promise due to their expressiveness and applicability to a broad class of dynamics and safety constraints. However, verifying that a trained neural network is indeed a valid CBF is a computational bottleneck that limits the size of the networks that can be used. To overcome this limitation, we present a novel framework for verifying neural CBFs based on piecewise linear upper and lower bounds on the conditions required for a neural network to be a CBF. Our approach is rooted in linear bound propagation (LBP) for neural networks, which we extend to compute bounds on the gradients of the network. Combined with McCormick relaxation, we derive linear upper and lower bounds on the CBF conditions, thereby eliminating the need for computationally expensive verification procedures. Our approach applies to arbitrary control-affine systems and a broad range of nonlinear activation functions. To reduce conservatism, we develop a parallelizable refinement strategy that adaptively refines the regions over which these bounds are computed. Our approach scales to larger neural networks than state-of-the-art verification procedures for CBFs, as demonstrated by our numerical experiments.
Partial-Power Flow Controller, Voltage Regulator, and Energy Router for Hybrid AC-DC Grids
The share of electronically converted power from renewable sources, loads, and storage is continuously growing in the low- and medium-voltage grids. These sources and loads typically rectify the grid AC to DC, e.g., for a DC link, so that a DC grid could eliminate hardware and losses of these conversion stages. However, extended DC grids lack the stabilizing nature of AC impedances so that the voltage is more fragile and power flows may need active control, particularly if redundancy as known from AC, such as rings and meshing, is desired. Furthermore, a DC infrastructure will not replace but will need to interface with the existing AC grid. This paper presents a partial-power energy router architecture that can interface multiple AC and DC lines to enable precise control of voltages and both active as well as reactive power flows. The proposed system uses modular low-voltage high-current series modules supplied through dual active bridges. These modules only need to process a small share of the voltage to control large power flows. The topology reduces component size, cost, energy losses, and reliability more than three times compared to conventional technology. The optional integration of battery energy storage can furthermore eliminate the need for the sum of the power flows of all inputs to be zero at all times. Through dynamic voltage injection relative to the line voltage, the modules effectively balance feeder currents, regulate reactive power, and improve the power factor in AC grids. Real-time hardware-in-the-loop and prototype measurements validate the proposed energy router's performance under diverse operating conditions. Experimental results confirm the series module's functionality in both AC and DC grids as an effective solution for controlling extended grids, including power sharing, voltage, and power quality.
comment: 10 pages, 42 figures
Coherency Analysis in Nonlinear Heterogeneous Power Networks: A Blended Dynamics Approach
Power system coherency refers to the phenomenon that machines in a power network exhibit similar frequency responses after disturbances, and is foundational for model reduction and control design. Despite abundant empirical observations, the understanding of coherence in complex power networks remains incomplete where the dynamics could be highly heterogeneous, nonlinear, and increasingly affected by persistent disturbances such as renewable energy fluctuations. To bridge this gap, this paper extends the blended dynamics approach, originally rooted in consensus analysis of multi-agent systems, to develop a novel coherency analysis in power networks. We show that the frequency responses of coherent machines coupled by nonlinear power flow can be approximately represented by the blended dynamics, which is a weighted average of nonlinear heterogeneous nodal dynamics, even under time-varying disturbances. Specifically, by developing novel bounds on the difference between the trajectories of nodal dynamics and the blended dynamics, we identify two key factors -- either high network connectivity or small time-variation rate of disturbances -- that contribute to coherence. They enable the nodal frequencies to rapidly approach the blended-dynamics trajectory from arbitrary initial state. Furthermore, they ensure the frequencies closely follow this trajectory in the long term, even when the system does not settle to an equilibrium. These insights contribute to the understanding of power system coherency and are further supported by simulation results.
LLM-Guided Reinforcement Learning with Representative Agents for Traffic Modeling
Large language models (LLMs) are increasingly used as behavioral proxies for self-interested travelers in agent-based traffic models. Although more flexible and generalizable than conventional models, the practical use of these approaches remains limited by scalability due to the cost of calling one LLM for every traveler. Moreover, it has been found that LLM agents often make opaque choices and produce unstable day-to-day dynamics. To address these challenges, we propose to model each homogeneous traveler group facing the same decision context with a single representative LLM agent who behaves like the population's average, maintaining and updating a mixed strategy over routes that coincides with the group's aggregate flow proportions. Each day, the LLM reviews the travel experience and flags routes with positive reinforcement that they hope to use more often, and an interpretable update rule then converts this judgment into strategy adjustments using a tunable (progressively decaying) step size. The representative-agent design improves scalability, while the separation of reasoning from updating clarifies the decision logic while stabilizing learning. In classic traffic assignment settings, we find that the proposed approach converges rapidly to the user equilibrium. In richer settings with income heterogeneity, multi-criteria costs, and multi-modal choices, the generated dynamics remain stable and interpretable, reproducing plausible behavioral patterns well-documented in psychology and economics, for example, the decoy effect in toll versus non-toll road selection, and higher willingness-to-pay for convenience among higher-income travelers when choosing between driving, transit, and park-and-ride options.
Learning-Based Robust Bayesian Persuasion with Conformal Prediction Guarantees
Classical Bayesian persuasion assumes that senders fully understand how receivers form beliefs and make decisions--an assumption that rarely holds when receivers possess private information or exhibit non-Bayesian behavior. In this paper, we develop a learning-based framework that integrates neural networks with conformal prediction to achieve robust persuasion under uncertainty about receiver belief formation. The proposed neural architecture learns end-to-end mappings from receiver observations and sender signals to action predictions, eliminating the need to identify belief mechanisms explicitly. Conformal prediction constructs finite-sample valid prediction sets with provable marginal coverage, enabling principled, distribution-free robust optimization. We establish exact coverage guarantees for the data-generating policy and derive bounds on coverage degradation under policy shifts. Furthermore, we provide neural network approximation and estimation error bounds, with sample complexity $O(d \log(|\mathcal{U}||\mathcal{Y}||\mathcal{S}|)/\varepsilon^2)$, where $d$ denotes the effective network dimension, and finite-sample lower bounds on the sender's expected utility. Numerical experiments on smart-grid energy management illustrate the framework's robustness.
comment: 8 pages
A Passive Software-Defined Radio-based mmWave Sensing System for Blind Integrated Communication and Sensing
Integrated Sensing and Communication (ISAC) is considered as a key component of future 6G technologies, especially in the millimeter-wave (mmWave) bands. Recently, the performances of ISAC were experimentally evaluated and demonstrated in various scenarios by developing ISAC systems. These systems generally consist of coherent transmitting (Tx) and receiving (Rx) modules. However, actively transmitting radio waves for experiments is not easy due to regulatory restrictions of radio. Meanwhile, the Tx/Rx should be synchronized and Rx need the information of Tx. In this paper, a fully passive mmWave sensing system is developed with software-defined radio for blind ISAC. It only consists of a passive Rx module which does not depend on the Tx. Since the proposed system is not synchronized with Tx and has no knowledge of the transmitted signals, a differential structure with two oppositely-oriented receivers is introduced to realize the sensing function. This structure can mitigate the influences of unknown source signals and other distortions. With the proposed sensing system, the ambient mmWave communication signals are leveraged for sensing without interrupting the existing systems. It can be deployed for field applications such as signal detection and dynamic human activity recognition since it does not emit signals. The efficacy of the developed system is first verified with a metallic plate with known motion pattern. The measured Doppler spectrogram shows good agreement with the simulation results, demonstrating the correctness of the sensing results. Further, the system is evaluated in complex scenarios, including handwaving, single- and multi-person motion detection. The sensing results successfully reflect the corresponding motions, demonstrating that the proposed sensing system can be utilized for blind ISAC in various applications.
A Learning-Based Control Barrier Function for Car-Like Robots: Toward Less Conservative Collision Avoidance
We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance for car-like robots. Traditional CBFs often use the Euclidean distance between robots' centers as a safety margin, which neglects their headings and approximates their geometries as circles. Although this simplification meets the smoothness and differentiability requirements of CBFs, it may result in overly conservative behavior in dense environments. We address this by designing a safety margin that considers both the robot's heading and actual shape, thereby enabling a more precise estimation of safe regions. Because this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability. In addition, we propose a notion of relative dynamics that makes the learning process tractable. In a case study, we establish the theoretical foundation for applying this notion to a nonlinear kinematic bicycle model. Numerical experiments in overtaking and bypassing scenarios show that our approach reduces conservatism (e.g., requiring 33.5% less lateral space for bypassing) without incurring significant extra computation time. Code: https://github.com/bassamlab/sigmarl
comment: 8 pages, 8 figures
Online Learning and Coverage of Unknown Fields Using Random-Feature Gaussian Processes
This paper proposes a framework for multi-robot systems to perform simultaneous learning and coverage of a domain of interest characterized by an unknown and potentially time-varying density function. To overcome the limitations of Gaussian Process (GP) regression, we employ Random Feature GP (RFGP) and its online variant (O-RFGP) which enables online and incremental inference. By integrating these with Voronoi-based coverage control and Upper Confidence Bound (UCB) sampling strategy, a team of robots can adaptively focus on important regions while refining the learned spatial field for efficient coverage. The incremental update mechanism of O-RFGP naturally supports time-varying environments, allowing efficient adaptation without retaining historical data. Furthermore, to the best of our knowledge, we provide the first theoretical analysis of online learning and coverage through a regret-based formulation, establishing asymptotic no-regret guarantees in the time-invariant setting. The effectiveness of the proposed framework is demonstrated through simulations with both time-invariant and time-varying density functions, along with a physical experiment with a time-varying density function.
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We study orbit dislodging where a servicing spacecraft uses a robotic arm to free a jammed and unactuated solar panel mounted on a hybrid hinge that acts as a time-varying client on a space station. Our method couples online set-membership identification with a robust adaptive MPC to enforce safety under bounded disturbances. The controller explicitly balances exploration to excite the system and shrink uncertainty and exploitation to improve control performance through a dual-mode cost. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in freefall and terrestrial laboratory environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been resubmitted to IEEE Transactions on Control Systems Technology and is currently under review
Distributed Coordination for Heterogeneous Non-Terrestrial Networks
To achieve global coverage and ubiquitous connectivity, the non-terrestrial network (NTN) has been regarded as a key enabler in the sixth generation (6G) network, which includes uncrewed aerial vehicles (UAVs), high-altitude platforms (HAPs), and satellites. Since the unique characteristics of various NTN platforms strongly affect their implementation and lead to a highly dynamic and heterogeneous NTN scenario, achieving distributed coordination remains an important research direction. However, the explicit and systematic analysis of the individual layers' challenges and corresponding distributed coordination solutions in heterogeneous NTNs has not been proposed yet. Therefore, in this paper, we summarize the unique characteristics of each NTN platform, identify communication challenges within individual layers, and propose potential delay-tolerant or delay-sensitive coordinated solutions accordingly. We further analyse the feasibility of leveraging multi-agent deep reinforcement learning (MADRL) algorithms to achieve the proposed coordinated solutions. Finally, we present a case study of the joint scheduling and trajectory optimization problem in heterogeneous NTN, where a two-timescale multi-agent deep deterministic policy gradient (TTS-MADDPG) algorithm is developed to validate the effectiveness of distributed coordination.
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
Network-Realised Model Predictive Control Part II: Distributed Constraint Management
A two-layer control architecture is proposed, which promotes scalable implementations for model predictive controllers. The top layer acts as both reference governor for the bottom layer, and as a feedback controller for the regulated network. By employing set-based methods, global theoretical guarantees are obtained by enforcing local constraints upon the network's variables and upon those of the first layer's implementation. The proposed technique offers recursive feasibility guarantees as one of its central features, and the expressions of the resulting predictive strategies bear a striking resemblance to classical formulations from model predictive control literature, allowing for flexible and easily customizable implementations.
comment: 20 pages, 9 figures, 4 tables
Network-Realised Model Predictive Control Part I: NRF-Enabled Closed-loop Decomposition
A two-layer control architecture is proposed, which promotes scalable implementations for constraint-based decision strategies, such as model predictive controllers. The bottom layer is based upon a distributed feedback-feedforward scheme, which directs the controlled network's information flow according to a pre-specified communication infrastructure. Explicit expressions for the resulting closed-loop maps are obtained, and an offline model-matching procedure is proposed for designing the first layer. The obtained control laws are deployed via distributed state-space-based implementations, and the resulting closed-loop models enable predictive control design for the constraint management procedure described in our companion paper.
comment: 20 pages, 5 figures
A Dynamic Recurrent Adjacency Memory Network for Mixed-Generation Power System Stability Forecasting
Modern power systems with high penetration of inverter-based resources exhibit complex dynamic behaviors that challenge the scalability and generalizability of traditional stability assessment methods. This paper presents a dynamic recurrent adjacency memory network (DRAMN) that combines physics-informed analysis with deep learning for real-time power system stability forecasting. The framework employs sliding-window dynamic mode decomposition to construct time-varying, multi-layer adjacency matrices from phasor measurement unit and sensor data to capture system dynamics such as modal participation factors, coupling strengths, phase relationships, and spectral energy distributions. As opposed to processing spatial and temporal dependencies separately, DRAMN integrates graph convolution operations directly within recurrent gating mechanisms, enabling simultaneous modeling of evolving dynamics and temporal dependencies. Extensive validations on modified IEEE 9-bus, 39-bus, and a multi-terminal HVDC network demonstrate high performance, achieving 99.85%, 99.90%, and 99.69% average accuracies, respectively, surpassing all tested benchmarks, including classical machine learning algorithms and recent graph-based models. The framework identifies optimal combinations of measurements that reduce feature dimensionality by 82% without performance degradation. Correlation analysis between dominant measurements for small-signal and transient stability events validates generalizability across different stability phenomena. DRAMN achieves state-of-the-art accuracy while providing enhanced interpretability for power system operators, making it suitable for real-time deployment in modern control centers.
comment: Submitted to IEEE Transactions on Power Systems
Intent Demonstration in General-Sum Dynamic Games via Iterative Linear-Quadratic Approximations
Autonomous agents should coordinate effectively without prior knowledge of others' intents. While prior work has focused on intent inference, we address the inverse problem: how agents can strategically demonstrate their intents within general-sum dynamic games. We model this problem and propose an algorithm that balances intent demonstration with task performance. To handle nonlinear dynamic games with continuous state-action spaces, our method leverages iterative linear-quadratic game approximations and provides efficient intent-teaching guarantees: the uncertain agent's belief can be driven rapidly to the ground truth, while the demonstrating agent avoids expending effort on unnecessary belief alignment when it does not improve task performance. Theoretical analysis and hardware experiments confirm that our approach enables the demonstrating agent to reconcile task execution with belief alignment and strategically manage the information asymmetry among agents, even as its intent evolves during deployment.
Robotics
PlaCo: a QP-based robot planning and control framework
This article introduces PlaCo, a software framework designed to simplify the formulation and solution of Quadratic Programming (QP)-based planning and control problems for robotic systems. PlaCo provides a high-level interface that abstracts away the low-level mathematical formulation of QP problems, allowing users to specify tasks and constraints in a modular and intuitive manner. The framework supports both Python bindings for rapid prototyping and a C++ implementation for real-time performance.
Development and testing of novel soft sleeve actuators
Aging populations and the rising prevalence of neurological and musculoskeletal disorders increase the demand for wearable mobility assistive devices that are effective, comfortable, and anatomically compatible. Many existing systems use rigid mechanisms and bulky interfaces that impede force transmission and reduce wearability. This study introduces a soft sleeve actuation architecture that conforms to the limb while transmitting forces and moments efficiently. We develop three soft sleeve actuators that produce linear, bending, and twisting motion, and an omnidirectional design that combines these motions in one device. Actuators are fabricated from thermoplastic elastomers using a customized fused filament fabrication process that produces airtight and compliant structures and resolves leakage observed with conventional methods. A dedicated experimental platform quantifies kinematic outputs such as displacement, angle, and twist, and kinetic outputs such as force and torque under low pneumatic pressures. A parametric study varies geometric features and material properties to determine their influence on performance. Results show reproducible multi axis motion with improved transfer of force to the limb and reduced need for complex attachment hardware. The work establishes a unified and manufacturable framework for soft sleeve actuation that enables compact and user centered assistive technologies with enhanced kinematic and kinetic performance.
comment: PhD thesis
Model-free Adaptive Output Feedback Vibration Suppression in a Cantilever Beam
This paper presents a model-free adaptive control approach to suppress vibrations in a cantilevered beam excited by an unknown disturbance. The cantilevered beam under harmonic excitation is modeled using a lumped parameter approach. Based on retrospective cost optimization, a sampled-data adaptive controller is developed to suppress vibrations caused by external disturbances. Both displacement and acceleration measurements are considered for feedback. Since acceleration measurements are more sensitive to spillover, which excites higher frequency modes, a filter is developed to extract key displacement information from the acceleration data and enhance suppression performance. The vibration suppression performance is compared using both displacement and acceleration measurements.
comment: 16 pages, 14 figures, to be presented at Scitech 2026
Towards Human-AI-Robot Collaboration and AI-Agent based Digital Twins for Parkinson's Disease Management: Review and Outlook
The current body of research on Parkinson's disease (PD) screening, monitoring, and management has evolved along two largely independent trajectories. The first research community focuses on multimodal sensing of PD-related biomarkers using noninvasive technologies such as inertial measurement units (IMUs), force/pressure insoles, electromyography (EMG), electroencephalography (EEG), speech and acoustic analysis, and RGB/RGB-D motion capture systems. These studies emphasize data acquisition, feature extraction, and machine learning-based classification for PD screening, diagnosis, and disease progression modeling. In parallel, a second research community has concentrated on robotic intervention and rehabilitation, employing socially assistive robots (SARs), robot-assisted rehabilitation (RAR) systems, and virtual reality (VR)-integrated robotic platforms for improving motor and cognitive function, enhancing social engagement, and supporting caregivers. Despite the complementary goals of these two domains, their methodological and technological integration remains limited, with minimal data- level or decision-level coupling between the two. With the advent of advanced artificial intelligence (AI), including large language models (LLMs), agentic AI systems, a unique opportunity now exists to unify these research streams. We envision a closed-loop sensor-AI-robot framework in which multimodal sensing continuously guides the interaction between the patient, caregiver, humanoid robot (and physician) through AI agents that are powered by a multitude of AI models such as robotic and wearables foundation models, LLM-based reasoning, reinforcement learning, and continual learning. Such closed-loop system enables personalized, explainable, and context-aware intervention, forming the basis for digital twin of the PD patient that can adapt over time to deliver intelligent, patient-centered PD care.
comment: 20 pages, 5 figures, 4 tables, under review with a journal
Robustness study of the bio-inspired musculoskeletal arm robot based on the data-driven iterative learning algorithm
The human arm exhibits remarkable capabilities, including both explosive power and precision, which demonstrate dexterity, compliance, and robustness in unstructured environments. Developing robotic systems that emulate human-like operational characteristics through musculoskeletal structures has long been a research focus. In this study, we designed a novel lightweight tendon-driven musculoskeletal arm (LTDM-Arm), featuring a seven degree-of-freedom (DOF) skeletal joint system and a modularized artificial muscular system (MAMS) with 15 actuators. Additionally, we employed a Hilly-type muscle model and data-driven iterative learning control (DDILC) to learn and refine activation signals for repetitive tasks within a finite time frame. We validated the anti-interference capabilities of the musculoskeletal system through both simulations and experiments. The results show that the LTDM-Arm system can effectively achieve desired trajectory tracking tasks, even under load disturbances of 20 % in simulation and 15 % in experiments. This research lays the foundation for developing advanced robotic systems with human-like operational performance.
comment: 20 pages, 13 figures
Runtime Safety Monitoring of Deep Neural Networks for Perception: A Survey
Deep neural networks (DNNs) are widely used in perception systems for safety-critical applications, such as autonomous driving and robotics. However, DNNs remain vulnerable to various safety concerns, including generalization errors, out-of-distribution (OOD) inputs, and adversarial attacks, which can lead to hazardous failures. This survey provides a comprehensive overview of runtime safety monitoring approaches, which operate in parallel to DNNs during inference to detect these safety concerns without modifying the DNN itself. We categorize existing methods into three main groups: Monitoring inputs, internal representations, and outputs. We analyze the state-of-the-art for each category, identify strengths and limitations, and map methods to the safety concerns they address. In addition, we highlight open challenges and future research directions.
comment: 6 pages, 1 figure, 2 tables, accepted at IEEE SMC 2025 in Vienna, presented on 8th October 2025
10 Open Challenges Steering the Future of Vision-Language-Action Models AAAI 2026
Due to their ability of follow natural language instructions, vision-language-action (VLA) models are increasingly prevalent in the embodied AI arena, following the widespread success of their precursors -- LLMs and VLMs. In this paper, we discuss 10 principal milestones in the ongoing development of VLA models -- multimodality, reasoning, data, evaluation, cross-robot action generalization, efficiency, whole-body coordination, safety, agents, and coordination with humans. Furthermore, we discuss the emerging trends of using spatial understanding, modeling world dynamics, post training, and data synthesis -- all aiming to reach these milestones. Through these discussions, we hope to bring attention to the research avenues that may accelerate the development of VLA models into wider acceptability.
comment: AAAI 2026 (Senior Track)
Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
comment: This work has been submitted to IEEE Transactions on Control of Network Systems for possible publication
From Words to Safety: Language-Conditioned Safety Filtering for Robot Navigation
As robots become increasingly integrated into open-world, human-centered environments, their ability to interpret natural language instructions and adhere to safety constraints is critical for effective and trustworthy interaction. Existing approaches often focus on mapping language to reward functions instead of safety specifications or address only narrow constraint classes (e.g., obstacle avoidance), limiting their robustness and applicability. We propose a modular framework for language-conditioned safety in robot navigation. Our framework is composed of three core components: (1) a large language model (LLM)-based module that translates free-form instructions into structured safety specifications, (2) a perception module that grounds these specifications by maintaining object-level 3D representations of the environment, and (3) a model predictive control (MPC)-based safety filter that enforces both semantic and geometric constraints in real time. We evaluate the effectiveness of the proposed framework through both simulation studies and hardware experiments, demonstrating that it robustly interprets and enforces diverse language-specified constraints across a wide range of environments and scenarios.
Fair and Safe: A Real-Time Hierarchical Control Framework for Intersections
Ensuring fairness in the coordination of connected and automated vehicles at intersections is essential for equitable access, social acceptance, and long-term system efficiency, yet it remains underexplored in safety-critical, real-time traffic control. This paper proposes a fairness-aware hierarchical control framework that explicitly integrates inequity aversion into intersection management. At the top layer, a centralized allocation module assigns control authority (i.e., selects a single vehicle to execute its trajectory) by maximizing a utility that accounts for waiting time, urgency, control history, and velocity deviation. At the bottom layer, the authorized vehicle executes a precomputed trajectory using a Linear Quadratic Regulator (LQR) and applies a high-order Control Barrier Function (HOCBF)-based safety filter for real-time collision avoidance. Simulation results across varying traffic demands and demand distributions demonstrate that the proposed framework achieves near-perfect fairness, eliminates collisions, reduces average delay, and maintains real-time feasibility. These results highlight that fairness can be systematically incorporated without sacrificing safety or performance, enabling scalable and equitable coordination for future autonomous traffic systems.
EndoIR: Degradation-Agnostic All-in-One Endoscopic Image Restoration via Noise-Aware Routing Diffusion
Endoscopic images often suffer from diverse and co-occurring degradations such as low lighting, smoke, and bleeding, which obscure critical clinical details. Existing restoration methods are typically task-specific and often require prior knowledge of the degradation type, limiting their robustness in real-world clinical use. We propose EndoIR, an all-in-one, degradation-agnostic diffusion-based framework that restores multiple degradation types using a single model. EndoIR introduces a Dual-Domain Prompter that extracts joint spatial-frequency features, coupled with an adaptive embedding that encodes both shared and task-specific cues as conditioning for denoising. To mitigate feature confusion in conventional concatenation-based conditioning, we design a Dual-Stream Diffusion architecture that processes clean and degraded inputs separately, with a Rectified Fusion Block integrating them in a structured, degradation-aware manner. Furthermore, Noise-Aware Routing Block improves efficiency by dynamically selecting only noise-relevant features during denoising. Experiments on SegSTRONG-C and CEC datasets demonstrate that EndoIR achieves state-of-the-art performance across multiple degradation scenarios while using fewer parameters than strong baselines, and downstream segmentation experiments confirm its clinical utility.
ViTaMIn-B: A Reliable and Efficient Visuo-Tactile Bimanual Manipulation Interface
Handheld devices have opened up unprecedented opportunities to collect large-scale, high-quality demonstrations efficiently. However, existing systems often lack robust tactile sensing or reliable pose tracking to handle complex interaction scenarios, especially for bimanual and contact-rich tasks. In this work, we propose ViTaMIn-B, a more capable and efficient handheld data collection system for such tasks. We first design DuoTact, a novel compliant visuo-tactile sensor built with a flexible frame to withstand large contact forces during manipulation while capturing high-resolution contact geometry. To enhance the cross-sensor generalizability, we propose reconstructing the sensor's global deformation as a 3D point cloud and using it as the policy input. We further develop a robust, unified 6-DoF bimanual pose acquisition process using Meta Quest controllers, which eliminates the trajectory drift issue in common SLAM-based methods. Comprehensive user studies confirm the efficiency and high usability of ViTaMIn-B among novice and expert operators. Furthermore, experiments on four bimanual manipulation tasks demonstrate its superior task performance relative to existing systems.
Gentle Manipulation Policy Learning via Demonstrations from VLM Planned Atomic Skills AAAI
Autonomous execution of long-horizon, contact-rich manipulation tasks traditionally requires extensive real-world data and expert engineering, posing significant cost and scalability challenges. This paper proposes a novel framework integrating hierarchical semantic decomposition, reinforcement learning (RL), visual language models (VLMs), and knowledge distillation to overcome these limitations. Complex tasks are decomposed into atomic skills, with RL-trained policies for each primitive exclusively in simulation. Crucially, our RL formulation incorporates explicit force constraints to prevent object damage during delicate interactions. VLMs perform high-level task decomposition and skill planning, generating diverse expert demonstrations. These are distilled into a unified policy via Visual-Tactile Diffusion Policy for end-to-end execution. We conduct comprehensive ablation studies exploring different VLM-based task planners to identify optimal demonstration generation pipelines, and systematically compare imitation learning algorithms for skill distillation. Extensive simulation experiments and physical deployment validate that our approach achieves policy learning for long-horizon manipulation without costly human demonstrations, while the VLM-guided atomic skill framework enables scalable generalization to diverse tasks.
comment: Accepted for the 40th Annual AAAI Conference on Artificial Intelligence (2026)
3D Mapping Using a Lightweight and Low-Power Monocular Camera Embedded inside a Gripper of Limbed Climbing Robots
Limbed climbing robots are designed to explore challenging vertical walls, such as the skylights of the Moon and Mars. In such robots, the primary role of a hand-eye camera is to accurately estimate 3D positions of graspable points (i.e., convex terrain surfaces) thanks to its close-up views. While conventional climbing robots often employ RGB-D cameras as hand-eye cameras to facilitate straightforward 3D terrain mapping and graspable point detection, RGB-D cameras are large and consume considerable power. This work presents a 3D terrain mapping system designed for space exploration using limbed climbing robots equipped with a monocular hand-eye camera. Compared to RGB-D cameras, monocular cameras are more lightweight, compact structures, and have lower power consumption. Although monocular SLAM can be used to construct 3D maps, it suffers from scale ambiguity. To address this limitation, we propose a SLAM method that fuses monocular visual constraints with limb forward kinematics. The proposed method jointly estimates time-series gripper poses and the global metric scale of the 3D map based on factor graph optimization. We validate the proposed framework through both physics-based simulations and real-world experiments. The results demonstrate that our framework constructs a metrically scaled 3D terrain map in real-time and enables autonomous grasping of convex terrain surfaces using a monocular hand-eye camera, without relying on RGB-D cameras. Our method contributes to scalable and energy-efficient perception for future space missions involving limbed climbing robots. See the video summary here: https://youtu.be/fMBrrVNKJfc
comment: International Conference on Space Robotics (iSpaRo)
Adversarial Game-Theoretic Algorithm for Dexterous Grasp Synthesis ICRA 2026
For many complex tasks, multi-finger robot hands are poised to revolutionize how we interact with the world, but reliably grasping objects remains a significant challenge. We focus on the problem of synthesizing grasps for multi-finger robot hands that, given a target object's geometry and pose, computes a hand configuration. Existing approaches often struggle to produce reliable grasps that sufficiently constrain object motion, leading to instability under disturbances and failed grasps. A key reason is that during grasp generation, they typically focus on resisting a single wrench, while ignoring the object's potential for adversarial movements, such as escaping. We propose a new grasp-synthesis approach that explicitly captures and leverages the adversarial object motion in grasp generation by formulating the problem as a two-player game. One player controls the robot to generate feasible grasp configurations, while the other adversarially controls the object to seek motions that attempt to escape from the grasp. Simulation experiments on various robot platforms and target objects show that our approach achieves a success rate of 75.78%, up to 19.61% higher than the state-of-the-art baseline. The two-player game mechanism improves the grasping success rate by 27.40% over the method without the game formulation. Our approach requires only 0.28-1.04 seconds on average to generate a grasp configuration, depending on the robot platform, making it suitable for real-world deployment. In real-world experiments, our approach achieves an average success rate of 85.0% on ShadowHand and 87.5% on LeapHand, which confirms its feasibility and effectiveness in real robot setups.
comment: Submitted to ICRA 2026
An Open-Source, Reproducible Tensegrity Robot that can Navigate Among Obstacles
Tensegrity robots, composed of rigid struts and elastic tendons, provide impact resistance, low mass, and adaptability to unstructured terrain. Their compliance and complex, coupled dynamics, however, present modeling and control challenges, hindering path planning and obstacle avoidance. This paper presents a complete, open-source, and reproducible system that enables navigation for a 3-bar tensegrity robot. The system comprises: (i) an inexpensive, open-source hardware design, and (ii) an integrated, open-source software stack for physics-based modeling, system identification, state estimation, path planning, and control. All hardware and software are publicly available at https://sites.google.com/view/tensegrity-navigation/. The proposed system tracks the robot's pose and executes collision-free paths to a specified goal among known obstacle locations. System robustness is demonstrated through experiments involving unmodeled environmental challenges, including a vertical drop, an incline, and granular media, culminating in an outdoor field demonstration. To validate reproducibility, experiments were conducted using robot instances at two different laboratories. This work provides the robotics community with a complete navigation system for a compliant, impact-resistant, and shape-morphing robot. This system is intended to serve as a springboard for advancing the navigation capabilities of other unconventional robotic platforms.
VLAD-Grasp: Zero-shot Grasp Detection via Vision-Language Models
Robotic grasping is a fundamental capability for autonomous manipulation; however, most existing methods rely on large-scale expert annotations and necessitate retraining to handle new objects. We present VLAD-Grasp, a Vision-Language model Assisted zero-shot approach for Detecting grasps. From a single RGB-D image, our method (1) prompts a large vision-language model to generate a goal image where a straight rod "impales" the object, representing an antipodal grasp, (2) predicts depth and segmentation to lift this generated image into 3D, and (3) aligns generated and observed object point clouds via principal component analysis and correspondence-free optimization to recover an executable grasp pose. Unlike prior work, our approach is training-free and does not rely on curated grasp datasets. Despite this, VLAD-Grasp achieves performance that is competitive with or superior to that of state-of-the-art supervised models on the Cornell and Jacquard datasets. We further demonstrate zero-shot generalization to novel real-world objects on a Franka Research 3 robot, highlighting vision-language foundation models as powerful priors for robotic manipulation.
comment: 8 pages, 4 figures, under review
A Unified Stochastic Mechanism Underlying Collective Behavior in Ants, Physical Systems, and Robotic Swarms
Biological swarms, such as ant colonies, achieve collective goals through decentralized and stochastic individual behaviors. Similarly, physical systems composed of gases, liquids, and solids exhibit random particle motion governed by entropy maximization, yet do not achieve collective objectives. Despite this analogy, no unified framework exists to explain the stochastic behavior in both biological and physical systems. Here, we present empirical evidence from \textit{Formica polyctena} ants that reveals a shared statistical mechanism underlying both systems: maximization under different energy function constraints. We further demonstrate that robotic swarms governed by this principle can exhibit scalable, decentralized cooperation, mimicking physical phase-like behaviors with minimal individual computation. These findings established a unified stochastic model linking biological, physical, and robotic swarms, offering a scalable principle for designing robust and intelligent swarm robotics.
MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting ICRA 2025
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
comment: This is the pre-print version of a work that has been published in ICRA 2025 with doi: 10.1109/ICRA55743.2025.11127380. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. Please cite the official version
Verti-Arena: A Controllable and Standardized Indoor Testbed for Multi-Terrain Off-Road Autonomy
Off-road navigation is an important capability for mobile robots deployed in environments that are inaccessible or dangerous to humans, such as disaster response or planetary exploration. Progress is limited due to the lack of a controllable and standardized real-world testbed for systematic data collection and validation. To fill this gap, we introduce Verti-Arena, a reconfigurable indoor facility designed specifically for off-road autonomy. By providing a repeatable benchmark environment, Verti-Arena supports reproducible experiments across a variety of vertically challenging terrains and provides precise ground truth measurements through onboard sensors and a motion capture system. Verti-Arena also supports consistent data collection and comparative evaluation of algorithms in off-road autonomy research. We also develop a web-based interface that enables research groups worldwide to remotely conduct standardized off-road autonomy experiments on Verti-Arena.
comment: 6 pages, accepted by the 2025 IEEE International Symposium on Safety, Security, and Rescue Robotics
ILCL: Inverse Logic-Constraint Learning from Temporally Constrained Demonstrations
We aim to solve the problem of temporal-constraint learning from demonstrations to reproduce demonstration-like logic-constrained behaviors. Learning logic constraints is challenging due to the combinatorially large space of possible specifications and the ill-posed nature of non-Markovian constraints. To figure it out, we introduce a novel temporal-constraint learning method, which we call inverse logic-constraint learning (ILCL). Our method frames ICL as a two-player zero-sum game between 1) a genetic algorithm-based temporal-logic mining (GA-TL-Mining) and 2) logic-constrained reinforcement learning (Logic-CRL). GA-TL-Mining efficiently constructs syntax trees for parameterized truncated linear temporal logic (TLTL) without predefined templates. Subsequently, Logic-CRL finds a policy that maximizes task rewards under the constructed TLTL constraints via a novel constraint redistribution scheme. Our evaluations show ILCL outperforms state-of-the-art baselines in learning and transferring TL constraints on four temporally constrained tasks. We also demonstrate successful transfer to real-world peg-in-shallow-hole tasks.
comment: 8 pages, 6 figures, IEEE Robotics and Automation Letters (RA-L)
SIG-Chat: Spatial Intent-Guided Conversational Gesture Generation Involving How, When and Where
The accompanying actions and gestures in dialogue are often closely linked to interactions with the environment, such as looking toward the interlocutor or using gestures to point to the described target at appropriate moments. Speech and semantics guide the production of gestures by determining their timing (WHEN) and style (HOW), while the spatial locations of interactive objects dictate their directional execution (WHERE). Existing approaches either rely solely on descriptive language to generate motions or utilize audio to produce non-interactive gestures, thereby lacking the characterization of interactive timing and spatial intent. This significantly limits the applicability of conversational gesture generation, whether in robotics or in the fields of game and animation production. To address this gap, we present a full-stack solution. We first established a unique data collection method to simultaneously capture high-precision human motion and spatial intent. We then developed a generation model driven by audio, language, and spatial data, alongside dedicated metrics for evaluating interaction timing and spatial accuracy. Finally, we deployed the solution on a humanoid robot, enabling rich, context-aware physical interactions.
What Foundation Models can Bring for Robot Learning in Manipulation : A Survey
The realization of universal robots is an ultimate goal of researchers. However, a key hurdle in achieving this goal lies in the robots' ability to manipulate objects in their unstructured surrounding environments according to different tasks. The learning-based approach is considered an effective way to address generalization. The impressive performance of foundation models in the fields of computer vision and natural language suggests the potential of embedding foundation models into manipulation tasks as a viable path toward achieving general manipulation capability. However, we believe achieving general manipulation capability requires an overarching framework akin to auto driving. This framework should encompass multiple functional modules, with different foundation models assuming distinct roles in facilitating general manipulation capability. This survey focuses on the contributions of foundation models to robot learning for manipulation. We propose a comprehensive framework and detail how foundation models can address challenges in each module of the framework. What's more, we examine current approaches, outline challenges, suggest future research directions, and identify potential risks associated with integrating foundation models into this domain.
Multi-cam Multi-map Visual Inertial Localization: System, Validation and Dataset
Robot control loops require causal pose estimates that depend only on past and present measurements. At each timestep, controllers compute commands using the current pose without waiting for future refinements. While traditional visual SLAM systems achieve high accuracy through retrospective loop closures, these corrections arrive after control decisions were already executed, violating causality. Visual-inertial odometry maintains causality but accumulates unbounded drift over time. To address the distinct requirements of robot control, we propose a multi-camera multi-map visual-inertial localization system providing real-time, causal pose estimation with bounded localization error through continuous map constraints. Since standard trajectory metrics evaluate post-processed trajectories, we analyze the error composition of map-based localization systems and propose a set of evaluation metrics suitable for measuring causal localization performance. To validate our system, we design a multi-camera IMU hardware setup and collect a challenging long-term campus dataset featuring diverse illumination and seasonal conditions. Experimental results on public benchmarks and on our own collected dataset demonstrate that our system provides significantly higher real-time localization accuracy compared to other methods. To benefit the community, we have made both the system and the dataset open source at https://anonymous.4open.science/r/Multi-cam-Multi-map-VILO-7993.
DNOI-4DRO: Deep 4D Radar Odometry with Differentiable Neural-Optimization Iterations
A novel learning-optimization-combined 4D radar odometry model, named DNOI-4DRO, is proposed in this paper. The proposed model seamlessly integrates traditional geometric optimization with end-to-end neural network training, leveraging an innovative differentiable neural-optimization iteration operator. In this framework, point-wise motion flow is first estimated using a neural network, followed by the construction of a cost function based on the relationship between point motion and pose in 3D space. The radar pose is then refined using Gauss-Newton updates. Additionally, we design a dual-stream 4D radar backbone that integrates multi-scale geometric features and clustering-based class-aware features to enhance the representation of sparse 4D radar point clouds. Extensive experiments on the VoD and Snail-Radar datasets demonstrate the superior performance of our model, which outperforms recent classical and learning-based approaches. Notably, our method even achieves results comparable to A-LOAM with mapping optimization using LiDAR point clouds as input. Our models and code will be publicly released.
comment: 9 pages,5 figures
ImitDiff: Transferring Foundation-Model Priors for Distraction Robust Visuomotor Policy
Visuomotor imitation learning policies enable robots to efficiently acquire manipulation skills from visual demonstrations. However, as scene complexity and visual distractions increase, policies that perform well in simple settings often experience substantial performance degradation. To address this challenge, we propose ImitDiff, a diffusion-based imitation learning policy guided by fine-grained semantics within a dual-resolution workflow. Leveraging pretrained priors of vision-language foundation models, our method transforms high-level instructions into pixel-level visual semantic masks. These masks guide a dual-resolution perception pipeline that captures both global context (e.g., overall layout) from low-resolution observation and fine-grained local features (e.g., geometric details) from high-resolution observation, enabling the policy to focus on task-relevant regions. Additionally, we introduce a consistency-driven diffusion transformer action head that bridges visual semantic conditions and real-time action generation. Extensive experiments demonstrate that ImitDiff outperforms state-of-the-art vision-language manipulation frameworks, as well as visuomotor imitation learning policies, particularly under increased scene complexity and visual distractions. Notably, ImitDiff exhibits strong generalization in zero-shot settings involving novel objects and visual distractions. Furthermore, our consistency-driven action head achieves an order-of-magnitude improvement in inference speed while maintaining competitive success rates.
LOG-Nav: Efficient Layout-Aware Object-Goal Navigation with Hierarchical Planning
We introduce LOG-Nav, an efficient layout-aware object-goal navigation approach designed for complex multi-room indoor environments. By planning hierarchically leveraging a global topologigal map with layout information and local imperative approach with detailed scene representation memory, LOG-Nav achieves both efficient and effective navigation. The process is managed by an LLM-powered agent, ensuring seamless effective planning and navigation, without the need for human interaction, complex rewards, or costly training. Our experimental results on the MP3D benchmark achieves 85\% object navigation success rate (SR) and 79\% success rate weighted by path length (SPL) (over 40\% point improvement in SR and 60\% improvement in SPL compared to exsisting methods). Furthermore, we validate the robustness of our approach through virtual agent and real-world robotic deployment, showcasing its capability in practical scenarios.
DiffOG: Differentiable Policy Trajectory Optimization with Generalizability
Imitation learning-based visuomotor policies excel at manipulation tasks but often produce suboptimal action trajectories compared to model-based methods. Directly mapping camera data to actions via neural networks can result in jerky motions and difficulties in meeting critical constraints, compromising safety and robustness in real-world deployment. For tasks that require high robustness or strict adherence to constraints, ensuring trajectory quality is crucial. However, the lack of interpretability in neural networks makes it challenging to generate constraint-compliant actions in a controlled manner. This paper introduces differentiable policy trajectory optimization with generalizability (DiffOG), a learning-based trajectory optimization framework designed to enhance visuomotor policies. By leveraging the proposed differentiable formulation of trajectory optimization with transformer, DiffOG seamlessly integrates policies with a generalizable optimization layer. DiffOG refines action trajectories to be smoother and more constraint-compliant while maintaining alignment with the original demonstration distribution, thus avoiding degradation in policy performance. We evaluated DiffOG across 11 simulated tasks and 2 real-world tasks. The results demonstrate that DiffOG significantly enhances the trajectory quality of visuomotor policies while having minimal impact on policy performance, outperforming trajectory processing baselines such as greedy constraint clipping and penalty-based trajectory optimization. Furthermore, DiffOG achieves superior performance compared to existing constrained visuomotor policy. For more details, please visit the project website: https://zhengtongxu.github.io/diffog-website/.
The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards ICAPS 2025
While Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents to follow instructions, our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic (exploration-driven) rewards, contradicting expectations set by recent work. We hypothesize that false positive rewards -- instances where unintended trajectories are incorrectly rewarded -- are more detrimental than false negatives. Our analysis confirms this hypothesis, revealing that the widely used cosine similarity metric is prone to false positive reward estimates. To address this, we introduce BiMI ({Bi}nary {M}utual {I}nformation), a novel reward function designed to mitigate noise. BiMI significantly enhances learning efficiency across diverse and challenging embodied navigation environments. Our findings offer a nuanced understanding of how different types of reward noise impact agent learning and highlight the importance of addressing multimodal reward signal noise when training embodied agents
comment: accepted by PRL Workshop Series @ ICAPS 2025. 11 main body pages, 21 appendix pages
Canonical Policy: Learning Canonical 3D Representation for SE(3)-Equivariant Policy
Visual Imitation learning has achieved remarkable progress in robotic manipulation, yet generalization to unseen objects, scene layouts, and camera viewpoints remains a key challenge. Recent advances address this by using 3D point clouds, which provide geometry-aware, appearance-invariant representations, and by incorporating equivariance into policy architectures to exploit spatial symmetries. However, existing equivariant approaches often lack interpretability and rigor due to unstructured integration of equivariant components. We introduce canonical policy, a principled framework for 3D equivariant imitation learning that unifies 3D point cloud observations under a canonical representation. We first establish a theory of 3D canonical representations, enabling equivariant observation-to-action mappings by grouping both seen and novel point clouds to a canonical representation. We then propose a flexible policy learning pipeline that leverages geometric symmetries from canonical representation and the expressiveness of modern generative models. We validate canonical policy on 12 diverse simulated tasks and 4 real-world manipulation tasks across 16 configurations, involving variations in object color, shape, camera viewpoint, and robot platform. Compared to state-of-the-art imitation learning policies, canonical policy achieves an average improvement of 18.0% in simulation and 39.7% in real-world experiments, demonstrating superior generalization capability and sample efficiency. For more details, please refer to the project website: https://zhangzhiyuanzhang.github.io/cp-website/.
Multiagent Systems
The Lifecycle Workbench - A Configurable Framework for Digitized Product Maintenance Services
The global production of electric goods is at an all-time high, causing negative environmental and health impacts as well as a continuing depletion of natural resources. Considering the worsening global climate change, a transition of current industrial processes is necessary to tackle the above-mentioned factors. To address this urgent issue, socio-economic systems like the Circular Economy (CE) provide options to reallocate the use of resources and products on a global scale. Especially in terms of product lifecycle-prolonging, this system provides suitable approaches to alter the current modes of product handling by society and industry alike, based on the condition of the products. Although the importance and benefits of sustainable services enabling these options are widely known, users tend to shy away from using them. One of the reasons is the missing reliability in terms of the knowledge of the costs associated with a particular service. This uncertainty in expected pricing can, therefore, lower the willingness of potential clients. However, not only clients struggle with the boundary conditions of such services. On the part of the potential providers of services, the monetary risk is often caused by the incapability to detect the condition of a product in advance. This can result on the provider side in a severe economic loss if this possibility is not covered by the service price or through the mass of items, which could allow equalization of serval service operations. To address these weak points in current service execution, the authors propose the \textit{Lifecycle Workbench (LCW)}-ecosystem, which features digital representations to enhance the reliability of service pricing as well as the assessment of the condition of items, assemblies, and parts in the Circular Economy domain.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. Published at ECSA 2025 Tracks and Workshops
Maestro: Learning to Collaborate via Conditional Listwise Policy Optimization for Multi-Agent LLMs
Multi-agent systems (MAS) built on Large Language Models (LLMs) are being used to approach complex problems and can surpass single model inference. However, their success hinges on navigating a fundamental cognitive tension: the need to balance broad, divergent exploration of the solution space with a principled, convergent synthesis to the optimal solution. Existing paradigms often struggle to manage this duality, leading to premature consensus, error propagation, and a critical credit assignment problem that fails to distinguish between genuine reasoning and superficially plausible arguments. To resolve this core challenge, we propose the Multi-Agent Exploration-Synthesis framework Through Role Orchestration (Maestro), a principled paradigm for collaboration that structurally decouples these cognitive modes. Maestro uses a collective of parallel Execution Agents for diverse exploration and a specialized Central Agent for convergent, evaluative synthesis. To operationalize this critical synthesis phase, we introduce Conditional Listwise Policy Optimization (CLPO), a reinforcement learning objective that disentangles signals for strategic decisions and tactical rationales. By combining decision-focused policy gradients with a list-wise ranking loss over justifications, CLPO achieves clean credit assignment and stronger comparative supervision. Experiments on mathematical reasoning and general problem-solving benchmarks demonstrate that Maestro, coupled with CLPO, consistently outperforms existing state-of-the-art multi-agent approaches, delivering absolute accuracy gains of 6% on average and up to 10% at best.
An Epistemic Perspective on Agent Awareness AAAI
The paper proposes to treat agent awareness as a form of knowledge, breaking the tradition in the existing literature on awareness. It distinguishes the de re and de dicto forms of such knowledge. The work introduces two modalities capturing these forms and formally specifies their meaning using a version of 2D-semantics. The main technical result is a sound and complete logical system describing the interplay between the two proposed modalities and the standard "knowledge of the fact" modality.
comment: Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
Evader-Agnostic Team-Based Pursuit Strategies in Partially-Observable Environments
We consider a scenario where a team of two unmanned aerial vehicles (UAVs) pursue an evader UAV within an urban environment. Each agent has a limited view of their environment where buildings can occlude their field-of-view. Additionally, the pursuer team is agnostic about the evader in terms of its initial and final location, and the behavior of the evader. Consequently, the team needs to gather information by searching the environment and then track it to eventually intercept. To solve this multi-player, partially-observable, pursuit-evasion game, we develop a two-phase neuro-symbolic algorithm centered around the principle of bounded rationality. First, we devise an offline approach using deep reinforcement learning to progressively train adversarial policies for the pursuer team against fictitious evaders. This creates $k$-levels of rationality for each agent in preparation for the online phase. Then, we employ an online classification algorithm to determine a "best guess" of our current opponent from the set of iteratively-trained strategic agents and apply the best player response. Using this schema, we improved average performance when facing a random evader in our environment.
The Lifecycle Workbench -- A Configurable Framework for Digitized Product Maintenance Services
The global production of electric goods is at an all-time high, causing negative environmental and health impacts as well as a continuing depletion of natural resources. Considering the worsening global climate change, a transition of current industrial processes is necessary to tackle the above-mentioned factors. To address this urgent issue, socio-economic systems like the Circular Economy (CE) provide options to reallocate the use of resources and products on a global scale. Especially in terms of product lifecycle-prolonging, this system provides suitable approaches to alter the current modes of product handling by society and industry alike, based on the condition of the products. Although the importance and benefits of sustainable services enabling these options are widely known, users tend to shy away from using them. One of the reasons is the missing reliability in terms of the knowledge of the costs associated with a particular service. This uncertainty in expected pricing can, therefore, lower the willingness of potential clients. However, not only clients struggle with the boundary conditions of such services. On the part of the potential providers of services, the monetary risk is often caused by the incapability to detect the condition of a product in advance. This can result on the provider side in a severe economic loss if this possibility is not covered by the service price or through the mass of items, which could allow equalization of serval service operations. To address these weak points in current service execution, the authors propose the \textit{Lifecycle Workbench (LCW)}-ecosystem, which features digital representations to enhance the reliability of service pricing as well as the assessment of the condition of items, assemblies, and parts in the Circular Economy domain.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. Published at ECSA 2025 Tracks and Workshops
Maestro: Learning to Collaborate via Conditional Listwise Policy Optimization for Multi-Agent LLMs
Multi-agent systems (MAS) built on Large Language Models (LLMs) are being used to approach complex problems and can surpass single model inference. However, their success hinges on navigating a fundamental cognitive tension: the need to balance broad, divergent exploration of the solution space with a principled, convergent synthesis to the optimal solution. Existing paradigms often struggle to manage this duality, leading to premature consensus, error propagation, and a critical credit assignment problem that fails to distinguish between genuine reasoning and superficially plausible arguments. To resolve this core challenge, we propose the Multi-Agent Exploration-Synthesis framework Through Role Orchestration (Maestro), a principled paradigm for collaboration that structurally decouples these cognitive modes. Maestro uses a collective of parallel Execution Agents for diverse exploration and a specialized Central Agent for convergent, evaluative synthesis. To operationalize this critical synthesis phase, we introduce Conditional Listwise Policy Optimization (CLPO), a reinforcement learning objective that disentangles signals for strategic decisions and tactical rationales. By combining decision-focused policy gradients with a list-wise ranking loss over justifications, CLPO achieves clean credit assignment and stronger comparative supervision. Experiments on mathematical reasoning and general problem-solving benchmarks demonstrate that Maestro, coupled with CLPO, consistently outperforms existing state-of-the-art multi-agent approaches, delivering absolute accuracy gains of 6% on average and up to 10% at best.
An Epistemic Perspective on Agent Awareness AAAI
The paper proposes to treat agent awareness as a form of knowledge, breaking the tradition in the existing literature on awareness. It distinguishes the de re and de dicto forms of such knowledge. The work introduces two modalities capturing these forms and formally specifies their meaning using a version of 2D-semantics. The main technical result is a sound and complete logical system describing the interplay between the two proposed modalities and the standard "knowledge of the fact" modality.
comment: Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
Evader-Agnostic Team-Based Pursuit Strategies in Partially-Observable Environments
We consider a scenario where a team of two unmanned aerial vehicles (UAVs) pursue an evader UAV within an urban environment. Each agent has a limited view of their environment where buildings can occlude their field-of-view. Additionally, the pursuer team is agnostic about the evader in terms of its initial and final location, and the behavior of the evader. Consequently, the team needs to gather information by searching the environment and then track it to eventually intercept. To solve this multi-player, partially-observable, pursuit-evasion game, we develop a two-phase neuro-symbolic algorithm centered around the principle of bounded rationality. First, we devise an offline approach using deep reinforcement learning to progressively train adversarial policies for the pursuer team against fictitious evaders. This creates $k$-levels of rationality for each agent in preparation for the online phase. Then, we employ an online classification algorithm to determine a "best guess" of our current opponent from the set of iteratively-trained strategic agents and apply the best player response. Using this schema, we improved average performance when facing a random evader in our environment.
Optimal Strategy Revision in Population Games: A Mean Field Game Theory Perspective
This paper investigates the design of optimal strategy revision in Population Games (PG) by establishing its connection to finite-state Mean Field Games (MFG). Specifically, by linking Evolutionary Dynamics (ED) -- which models agent decision-making in PG -- to the MFG framework, we demonstrate that optimal strategy revision can be derived by solving the forward Fokker-Planck (FP) equation and the backward Hamilton-Jacobi (HJ) equation, both central components of the MFG framework. Furthermore, we show that the resulting optimal strategy revision, which maximizes each agent's payoffs over a finite time horizon, satisfies two key properties: positive correlation and Nash stationarity, which are essential for ensuring convergence to the Nash equilibrium. This convergence is then rigorously analyzed and established. Additionally, we discuss how different design objectives for the optimal strategy revision can recover existing ED models previously reported in the PG literature. Numerical examples are provided to illustrate the effectiveness and improved convergence properties of the optimal strategy revision design.
From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
Optimal Strategy Revision in Population Games: A Mean Field Game Theory Perspective
This paper investigates the design of optimal strategy revision in Population Games (PG) by establishing its connection to finite-state Mean Field Games (MFG). Specifically, by linking Evolutionary Dynamics (ED) -- which models agent decision-making in PG -- to the MFG framework, we demonstrate that optimal strategy revision can be derived by solving the forward Fokker-Planck (FP) equation and the backward Hamilton-Jacobi (HJ) equation, both central components of the MFG framework. Furthermore, we show that the resulting optimal strategy revision, which maximizes each agent's payoffs over a finite time horizon, satisfies two key properties: positive correlation and Nash stationarity, which are essential for ensuring convergence to the Nash equilibrium. This convergence is then rigorously analyzed and established. Additionally, we discuss how different design objectives for the optimal strategy revision can recover existing ED models previously reported in the PG literature. Numerical examples are provided to illustrate the effectiveness and improved convergence properties of the optimal strategy revision design.
From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
Systems and Control (CS)
Secret Protection in Labeled Petri Nets
We study the secret protection problem (SPP), where the objective is to find a policy of minimal cost ensuring that every execution path from an initial state to a secret state contains a sufficient number of protected events. The problem was originally introduced and studied in the setting of finite automata. In this paper, we extend the framework to labeled Petri nets. We consider two variants of the problem: the Parikh variant, where all occurrences of protected events along an execution path contribute to the security requirement, and the indicator variant, where each protected event is counted only once per execution path. We show that both variants can be solved in exponential space for labeled Petri nets, and that their decision versions are ExpSpace-complete. As a consequence, there is no polynomial-time or polynomial-space algorithm for these problems.
A Multi-Criterion Approach to Smart EV Charging with CO2 Emissions and Cost Minimization
In this work, we propose a novel three-step framework for smart electric vehicle (EV) charging that jointly minimizes charging costs and CO2 emissions. Drawing inspiration from the classical Unit Commitment Problem (UCP), we first design a linear model to determine the optimal power generation mix over a 24-hour horizon, using real-world data from Vietnam, a country with a highly carbon intensive energy system. This allows us to estimate time-varying CO2 emissions and translate them into an emission cost signal. We then incorporate this environmental cost into a smart charging optimization model, formulated as a linear program (LP). Numerical simulations confirm that the proposed strategy significantly outperforms a baseline First-In-First-Served (FIFS) approach, achieving notable reductions in both CO2 emissions and charging costs also compared to another optimization approach. The results demonstrate the potential of this multiobjective optimization framework to support more sustainable and cost-efficient EV charging strategies.
comment: Paper submitted to the 24th European Control Conference (ECC2026) in Reykjav\'ik, Iceland
Model-free Adaptive Output Feedback Vibration Suppression in a Cantilever Beam
This paper presents a model-free adaptive control approach to suppress vibrations in a cantilevered beam excited by an unknown disturbance. The cantilevered beam under harmonic excitation is modeled using a lumped parameter approach. Based on retrospective cost optimization, a sampled-data adaptive controller is developed to suppress vibrations caused by external disturbances. Both displacement and acceleration measurements are considered for feedback. Since acceleration measurements are more sensitive to spillover, which excites higher frequency modes, a filter is developed to extract key displacement information from the acceleration data and enhance suppression performance. The vibration suppression performance is compared using both displacement and acceleration measurements.
comment: 16 pages, 14 figures, to be presented at Scitech 2026
Koopman Operator for Stability Analysis: Theory with a Linear--Radial Product Reproducing Kernel
Koopman operator, as a fully linear representation of nonlinear dynamical systems, if well-defined on a reproducing kernel Hilbert space (RKHS), can be efficiently learned from data. For stability analysis and control-related problems, it is desired that the defining RKHS of the Koopman operator should account for both the stability of an equilibrium point (as a local property) and the regularity of the dynamics on the state space (as a global property). To this end, we show that by using the product kernel formed by the linear kernel and a Wendland radial kernel, the resulting RKHS is invariant under the action of Koopman operator (under certain smoothness conditions). Furthermore, when the equilibrium is asymptotically stable, the spectrum of Koopman operator is provably confined inside the unit circle, and escapes therefrom upon bifurcation. Thus, the learned Koopman operator with provable probabilistic error bound provides a stability certificate. In addition to numerical verification, we further discuss how such a fundamental spectrum--stability relation would be useful for Koopman-based control.
comment: 17 pages, 10 figures, submitted to L4DC 2026
Probe-and-Release Coordination of Platoons at Highway Bottlenecks with Unknown Parameters
This paper considers coordination of platoons of connected and autonomous vehicles (CAVs) at mixed-autonomy bottlenecks in the face of three practically important factors, viz. time-varying traffic demand, random CAV platoon sizes, and capacity breakdowns. Platoon coordination is essential to smoothen the interaction between CAV platoons and non-CAV traffic. Based on a fluid queuing model, we develop a "probe-and-release" algorithm that simultaneously estimates environmental parameters and coordinates CAV platoons for traffic stabilization. We show that this algorithm ensures bounded estimation errors and bounded traffic queues. The proof builds on a Lyapunov function that jointly penalizes estimation errors and traffic queues and a drift argument for an embedded Markov process. We validate the proposed algorithm in a standard micro-simulation environment and compare against a representative deep reinforcement learning method in terms of control performance and computational efficiency.
comment: 15 pages, 12 figures
Parameter Recovery from Tangential Interpolations for Systems with an LFT Structure
This paper investigates how to recover parameters of a linear time invariant system from values and derivatives of its transfer function matrix, along several particular directions at a prescribed set of points in the complex plane, in which system matrices depend on these parameters through a linear fractional transformation. A necessary and sufficient condition is derived for a unique determination of these system parameters, which is expressed by a vector inequality. Under some particular situations, this condition reduces to a full column rank requirement on a constant matrix. Moreover, a method is given to recover system parameters from these values and derivatives, which is expressed by a vector linear equation with some rank constraints, for which various methods exist for finding its solutions. Robustness of the suggested recovery method is also clarified. A numerical example is given to illustrate characteristics of the suggested method, as well as effectiveness of derivative information introduction in parameter recovery, in which natural frequency and damping ratio are to be recovered for a transfer function.
comment: 15 pages, 3 figures, 1 table
Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
comment: This work has been submitted to IEEE Transactions on Control of Network Systems for possible publication
Learning-Based Multi-Stage Strategy for a Fixed-Wing Aircraft to Evade a Missile Detected at a Short Distance
Missiles pose a major threat to aircraft in modern air combat. Advances in technology make them increasingly difficult to detect until they are close to the target and highly resistant to jamming. The evasion maneuver is the last line of defense for an aircraft. However, conventional rule-based evasion strategies are limited by computational demands and aerodynamic constraints, and existing learning-based approaches remain unconvincing for manned aircraft against modern missiles. To enhance aircraft survivability, this study investigates missile evasion inspired by the pursuit-evasion game between a gazelle and a cheetah and proposes a multi-stage reinforcement learning-based evasion strategy. The strategy learns a large azimuth policy to turn to evade, a small azimuth policy to keep moving away, and a short distance policy to perform agile aggressive maneuvers to avoid. One of the three policies is activated at each stage based on distance and azimuth. To evaluate performance, a high-fidelity simulation environment modeling an F-16 aircraft and missile under various conditions is used to compare the proposed approach with baseline strategies. Experimental results show that the proposed method achieves superior performance, enabling the F-16 aircraft to successfully avoid missiles with a probability of 80.89 percent for velocities ranging from 800 m/s to 1400 m/s, maximum overloads from 40 g to 50 g, detection distances from 5000 m to 15000 m, and random azimuths. When the missile is detected beyond 8000 m, the success ratio increases to 85.06 percent.
Policy Gradient-Based EMT-in-the-Loop Learning to Mitigate Sub-Synchronous Control Interactions
This paper explores the development of learning-based tunable control gains using EMT-in-the-loop simulation framework (e.g., PSCAD interfaced with Python-based learning modules) to address critical sub-synchronous oscillations. Since sub-synchronous control interactions (SSCI) arise from the mis-tuning of control gains under specific grid configurations, effective mitigation strategies require adaptive re-tuning of these gains. Such adaptiveness can be achieved by employing a closed-loop, learning-based framework that considers the grid conditions responsible for such sub-synchronous oscillations. This paper addresses this need by adopting methodologies inspired by Markov decision process (MDP) based reinforcement learning (RL), with a particular emphasis on simpler deep policy gradient methods with additional SSCI-specific signal processing modules such as down-sampling, bandpass filtering, and oscillation energy dependent reward computations. Our experimentation in a real-world event setting demonstrates that the deep policy gradient based trained policy can adaptively compute gain settings in response to varying grid conditions and optimally suppress control interaction-induced oscillations.
comment: 10 pages, 7 figures
Catching Contamination Before Generation: Spectral Kill Switches for Agents
Agentic language models compose multi step reasoning chains, yet intermediate steps can be corrupted by inconsistent context, retrieval errors, or adversarial inputs, which makes post hoc evaluation too late because errors propagate before detection. We introduce a diagnostic that requires no additional training and uses only the forward pass to emit a binary accept or reject signal during agent execution. The method analyzes token graphs induced by attention and computes two spectral statistics in early layers, namely the high frequency energy ratio and spectral entropy. We formalize these signals, establish invariances, and provide finite sample estimators with uncertainty quantification. Under a two regime mixture assumption with a monotone likelihood ratio property, we show that a single threshold on the high frequency energy ratio is optimal in the Bayes sense for detecting context inconsistency. Empirically, the high frequency energy ratio exhibits robust bimodality during context verification across multiple model families, which enables gating decisions with overhead below one millisecond on our hardware and configurations. We demonstrate integration into retrieval augmented agent pipelines and discuss deployment as an inline safety monitor. The approach detects contamination while the model is still processing the text, before errors commit to the reasoning chain.
comment: Preprint under review (2025). 9 pages, 2 figures. Code and scripts: to be released
Autonomous and Distributed Synchronization and Restoration of an Islanded Network of Microgrids
The transition towards clean energy and the introduction of Inverter-Based Resources (IBRs) are leading to the formation of Microgrids (MGs) and Network of MGs (NMGs). MGs and NMGs can operate autonomously in islanded mode, which requires Grid-Forming (GFM) IBRs that can perform black start, synchronization, restoration and regulation. However, such IBRs face synchronization instability issues, which might be worsened by inadequate secondary level frequency and voltage regulation. Accordingly, we propose an autonomous and distributed synchronization and restoration scheme using Distributed-Averaging Proportional-Integral (DAPI) control. To validate the proposed method, we model and simulate a high-fidelity islanded and modified IEEE 123 bus system, modeled as an NMG consisting of 7 MGs. The simulation results demonstrate an effective autonomous soft-start, synchronization, connection and regulation procedure using DAPI control and distributed breaker operation logic.
Log-linear Backstepping control on $SE_2(3)$
Most of the rigid-body systems which evolve on nonlinear Lie groups where Euclidean control designs lose geometric meaning. In this paper, we introduce a log-linear backstepping control law on SE2(3) that preserves full rotational-translational coupling. Leveraging a class of mixed-invariant system, which is a group-affine dynamic model, we derive exact logarithmic error dynamics that are linear in the Lie algebra. The closed-form expressions for the left- and right-Jacobian inverses of SE2(3) are expressed in the paper, which provides us the exact error dynamics without local approximations. A log-linear backstepping control design ensures exponential stability for our error dynamics; since our error dynamics is a block-triangular structure, this allows us to use Linear Matrix Inequality (LMI) formulation or $H_\infty$ gain performance design. This work establishes the exact backstepping framework for a class of mixed-invariant system, providing a geometrically consistent foundation for future Unmanned Aerial Vehicle (UAV) and spacecraft control design.
comment: 4 pages, preliminary version, to be updated with full Lyapunov proof and extended results
Fixed-Time Input-to-State Stability for Singularly Perturbed Systems via Composite Lyapunov Functions
We study singularly perturbed systems that exhibit input-to-state stability (ISS) with fixed-time properties in the presence of bounded disturbances. In these systems, solutions converge to the origin within a time frame independent of initial conditions when undisturbed, and to a vicinity of the origin when subjected to bounded disturbances. First, we extend the traditional composite Lyapunov method, commonly applied in singular perturbation theory to analyze asymptotic stability, to include fixed-time ISS. We demonstrate that if both the reduced system and the boundary layer system exhibit fixed-time ISS, and if certain interconnection conditions are met, the entire multi-time scale system retains this fixed-time ISS characteristic, provided the separation of time scales is sufficiently pronounced. Next, we illustrate our findings via analytical and numerical examples, including a novel application in fixed-time feedback optimization for dynamic plants with slowly varying cost functions.
On the Deployment of RIS-mounted UAV Networks
Reconfigurable intelligent surfaces (RIS) enable smart wireless environments by dynamically controlling signal propagation to enhance communication and localization. Unmanned aerial vehicles (UAVs) can act as flying base stations and thus, improve system performance by avoiding signal blockages. In this paper, we propose a gradient ascent and coordinate search based method to determine the optimal location for a system that consists of a UAV and a RIS, where the UAV serves cellular users (CUs) and the RIS serves device-to-device (D2D) pairs. In particular, by optimizing the net throughput for both the D2D pairs and the CUs, the suggested method establishes the ideal location for the RIS-mounted UAV. We consider both line of sight (LoS) and non-LoS paths for the RIS and UAV to calculate the throughput while accounting for blockages in the system. The numerical results show that the proposed method performs better than the existing approaches in terms of both the net throughput and the user fairness.
comment: Submitted for a possible publication
From Discrete to Continuous Binary Best-Response Dynamics: Discrete Fluctuations Almost Surely Vanish with Population Size
In binary decision-making, individuals often choose either the rare or the common action. In the framework of evolutionary game theory, the best-response update rule can be used to model this dichotomy. Those who prefer the common action are called \emph{coordinators}, and those who prefer the rare one are called \emph{anticoordinators}. A finite mixed population of the two types may undergo perpetual fluctuations, the characterization of which appears to be challenging. It is particularly unknown whether the fluctuations persist as population size grows. To fill this gap, we approximate the discrete finite population dynamics of coordinators and anticoordinators with the associated mean dynamics in the form of differential inclusions. We show that the family of the state sequences of the discrete dynamics for increasing population sizes forms a generalized stochastic approximation process for the differential inclusion. On the other hand, we show that the differential inclusions always converge to an equilibrium. This implies that the reported perpetual fluctuations in the finite discrete dynamics of coordinators and anticoordinators almost surely vanish with population size. The results encourage to first analyze the often simpler {continuous-time} mean dynamics of the discrete population dynamics as the continuous-time dynamics partly reveal the asymptotic behavior of the discrete dynamics.
comment: proofread
Systems and Control (EESS)
Secret Protection in Labeled Petri Nets
We study the secret protection problem (SPP), where the objective is to find a policy of minimal cost ensuring that every execution path from an initial state to a secret state contains a sufficient number of protected events. The problem was originally introduced and studied in the setting of finite automata. In this paper, we extend the framework to labeled Petri nets. We consider two variants of the problem: the Parikh variant, where all occurrences of protected events along an execution path contribute to the security requirement, and the indicator variant, where each protected event is counted only once per execution path. We show that both variants can be solved in exponential space for labeled Petri nets, and that their decision versions are ExpSpace-complete. As a consequence, there is no polynomial-time or polynomial-space algorithm for these problems.
A Multi-Criterion Approach to Smart EV Charging with CO2 Emissions and Cost Minimization
In this work, we propose a novel three-step framework for smart electric vehicle (EV) charging that jointly minimizes charging costs and CO2 emissions. Drawing inspiration from the classical Unit Commitment Problem (UCP), we first design a linear model to determine the optimal power generation mix over a 24-hour horizon, using real-world data from Vietnam, a country with a highly carbon intensive energy system. This allows us to estimate time-varying CO2 emissions and translate them into an emission cost signal. We then incorporate this environmental cost into a smart charging optimization model, formulated as a linear program (LP). Numerical simulations confirm that the proposed strategy significantly outperforms a baseline First-In-First-Served (FIFS) approach, achieving notable reductions in both CO2 emissions and charging costs also compared to another optimization approach. The results demonstrate the potential of this multiobjective optimization framework to support more sustainable and cost-efficient EV charging strategies.
comment: Paper submitted to the 24th European Control Conference (ECC2026) in Reykjav\'ik, Iceland
Model-free Adaptive Output Feedback Vibration Suppression in a Cantilever Beam
This paper presents a model-free adaptive control approach to suppress vibrations in a cantilevered beam excited by an unknown disturbance. The cantilevered beam under harmonic excitation is modeled using a lumped parameter approach. Based on retrospective cost optimization, a sampled-data adaptive controller is developed to suppress vibrations caused by external disturbances. Both displacement and acceleration measurements are considered for feedback. Since acceleration measurements are more sensitive to spillover, which excites higher frequency modes, a filter is developed to extract key displacement information from the acceleration data and enhance suppression performance. The vibration suppression performance is compared using both displacement and acceleration measurements.
comment: 16 pages, 14 figures, to be presented at Scitech 2026
Koopman Operator for Stability Analysis: Theory with a Linear--Radial Product Reproducing Kernel
Koopman operator, as a fully linear representation of nonlinear dynamical systems, if well-defined on a reproducing kernel Hilbert space (RKHS), can be efficiently learned from data. For stability analysis and control-related problems, it is desired that the defining RKHS of the Koopman operator should account for both the stability of an equilibrium point (as a local property) and the regularity of the dynamics on the state space (as a global property). To this end, we show that by using the product kernel formed by the linear kernel and a Wendland radial kernel, the resulting RKHS is invariant under the action of Koopman operator (under certain smoothness conditions). Furthermore, when the equilibrium is asymptotically stable, the spectrum of Koopman operator is provably confined inside the unit circle, and escapes therefrom upon bifurcation. Thus, the learned Koopman operator with provable probabilistic error bound provides a stability certificate. In addition to numerical verification, we further discuss how such a fundamental spectrum--stability relation would be useful for Koopman-based control.
comment: 17 pages, 10 figures, submitted to L4DC 2026
Probe-and-Release Coordination of Platoons at Highway Bottlenecks with Unknown Parameters
This paper considers coordination of platoons of connected and autonomous vehicles (CAVs) at mixed-autonomy bottlenecks in the face of three practically important factors, viz. time-varying traffic demand, random CAV platoon sizes, and capacity breakdowns. Platoon coordination is essential to smoothen the interaction between CAV platoons and non-CAV traffic. Based on a fluid queuing model, we develop a "probe-and-release" algorithm that simultaneously estimates environmental parameters and coordinates CAV platoons for traffic stabilization. We show that this algorithm ensures bounded estimation errors and bounded traffic queues. The proof builds on a Lyapunov function that jointly penalizes estimation errors and traffic queues and a drift argument for an embedded Markov process. We validate the proposed algorithm in a standard micro-simulation environment and compare against a representative deep reinforcement learning method in terms of control performance and computational efficiency.
comment: 15 pages, 12 figures
Parameter Recovery from Tangential Interpolations for Systems with an LFT Structure
This paper investigates how to recover parameters of a linear time invariant system from values and derivatives of its transfer function matrix, along several particular directions at a prescribed set of points in the complex plane, in which system matrices depend on these parameters through a linear fractional transformation. A necessary and sufficient condition is derived for a unique determination of these system parameters, which is expressed by a vector inequality. Under some particular situations, this condition reduces to a full column rank requirement on a constant matrix. Moreover, a method is given to recover system parameters from these values and derivatives, which is expressed by a vector linear equation with some rank constraints, for which various methods exist for finding its solutions. Robustness of the suggested recovery method is also clarified. A numerical example is given to illustrate characteristics of the suggested method, as well as effectiveness of derivative information introduction in parameter recovery, in which natural frequency and damping ratio are to be recovered for a transfer function.
comment: 15 pages, 3 figures, 1 table
Disentangled Control of Multi-Agent Systems
This paper develops a general framework for multi-agent control synthesis, which applies to a wide range of problems with convergence guarantees, regardless of the complexity of the underlying graph topology and the explicit time dependence of the objective function. The proposed framework systematically addresses a particularly challenging problem in multi-agent systems, i.e., decentralization of entangled dynamics among different agents, and it naturally supports multi-objective robotics and real-time implementations. To demonstrate its generality and effectiveness, the framework is implemented across three experiments, namely time-varying leader-follower formation control, decentralized coverage control for time-varying density functions without any approximations, which is a long-standing open problem, and safe formation navigation in dense environments.
comment: This work has been submitted to IEEE Transactions on Control of Network Systems for possible publication
Learning-Based Multi-Stage Strategy for a Fixed-Wing Aircraft to Evade a Missile Detected at a Short Distance
Missiles pose a major threat to aircraft in modern air combat. Advances in technology make them increasingly difficult to detect until they are close to the target and highly resistant to jamming. The evasion maneuver is the last line of defense for an aircraft. However, conventional rule-based evasion strategies are limited by computational demands and aerodynamic constraints, and existing learning-based approaches remain unconvincing for manned aircraft against modern missiles. To enhance aircraft survivability, this study investigates missile evasion inspired by the pursuit-evasion game between a gazelle and a cheetah and proposes a multi-stage reinforcement learning-based evasion strategy. The strategy learns a large azimuth policy to turn to evade, a small azimuth policy to keep moving away, and a short distance policy to perform agile aggressive maneuvers to avoid. One of the three policies is activated at each stage based on distance and azimuth. To evaluate performance, a high-fidelity simulation environment modeling an F-16 aircraft and missile under various conditions is used to compare the proposed approach with baseline strategies. Experimental results show that the proposed method achieves superior performance, enabling the F-16 aircraft to successfully avoid missiles with a probability of 80.89 percent for velocities ranging from 800 m/s to 1400 m/s, maximum overloads from 40 g to 50 g, detection distances from 5000 m to 15000 m, and random azimuths. When the missile is detected beyond 8000 m, the success ratio increases to 85.06 percent.
Policy Gradient-Based EMT-in-the-Loop Learning to Mitigate Sub-Synchronous Control Interactions
This paper explores the development of learning-based tunable control gains using EMT-in-the-loop simulation framework (e.g., PSCAD interfaced with Python-based learning modules) to address critical sub-synchronous oscillations. Since sub-synchronous control interactions (SSCI) arise from the mis-tuning of control gains under specific grid configurations, effective mitigation strategies require adaptive re-tuning of these gains. Such adaptiveness can be achieved by employing a closed-loop, learning-based framework that considers the grid conditions responsible for such sub-synchronous oscillations. This paper addresses this need by adopting methodologies inspired by Markov decision process (MDP) based reinforcement learning (RL), with a particular emphasis on simpler deep policy gradient methods with additional SSCI-specific signal processing modules such as down-sampling, bandpass filtering, and oscillation energy dependent reward computations. Our experimentation in a real-world event setting demonstrates that the deep policy gradient based trained policy can adaptively compute gain settings in response to varying grid conditions and optimally suppress control interaction-induced oscillations.
comment: 10 pages, 7 figures
Catching Contamination Before Generation: Spectral Kill Switches for Agents
Agentic language models compose multi step reasoning chains, yet intermediate steps can be corrupted by inconsistent context, retrieval errors, or adversarial inputs, which makes post hoc evaluation too late because errors propagate before detection. We introduce a diagnostic that requires no additional training and uses only the forward pass to emit a binary accept or reject signal during agent execution. The method analyzes token graphs induced by attention and computes two spectral statistics in early layers, namely the high frequency energy ratio and spectral entropy. We formalize these signals, establish invariances, and provide finite sample estimators with uncertainty quantification. Under a two regime mixture assumption with a monotone likelihood ratio property, we show that a single threshold on the high frequency energy ratio is optimal in the Bayes sense for detecting context inconsistency. Empirically, the high frequency energy ratio exhibits robust bimodality during context verification across multiple model families, which enables gating decisions with overhead below one millisecond on our hardware and configurations. We demonstrate integration into retrieval augmented agent pipelines and discuss deployment as an inline safety monitor. The approach detects contamination while the model is still processing the text, before errors commit to the reasoning chain.
comment: Preprint under review (2025). 9 pages, 2 figures. Code and scripts: to be released
Autonomous and Distributed Synchronization and Restoration of an Islanded Network of Microgrids
The transition towards clean energy and the introduction of Inverter-Based Resources (IBRs) are leading to the formation of Microgrids (MGs) and Network of MGs (NMGs). MGs and NMGs can operate autonomously in islanded mode, which requires Grid-Forming (GFM) IBRs that can perform black start, synchronization, restoration and regulation. However, such IBRs face synchronization instability issues, which might be worsened by inadequate secondary level frequency and voltage regulation. Accordingly, we propose an autonomous and distributed synchronization and restoration scheme using Distributed-Averaging Proportional-Integral (DAPI) control. To validate the proposed method, we model and simulate a high-fidelity islanded and modified IEEE 123 bus system, modeled as an NMG consisting of 7 MGs. The simulation results demonstrate an effective autonomous soft-start, synchronization, connection and regulation procedure using DAPI control and distributed breaker operation logic.
Log-linear Backstepping control on $SE_2(3)$
Most of the rigid-body systems which evolve on nonlinear Lie groups where Euclidean control designs lose geometric meaning. In this paper, we introduce a log-linear backstepping control law on SE2(3) that preserves full rotational-translational coupling. Leveraging a class of mixed-invariant system, which is a group-affine dynamic model, we derive exact logarithmic error dynamics that are linear in the Lie algebra. The closed-form expressions for the left- and right-Jacobian inverses of SE2(3) are expressed in the paper, which provides us the exact error dynamics without local approximations. A log-linear backstepping control design ensures exponential stability for our error dynamics; since our error dynamics is a block-triangular structure, this allows us to use Linear Matrix Inequality (LMI) formulation or $H_\infty$ gain performance design. This work establishes the exact backstepping framework for a class of mixed-invariant system, providing a geometrically consistent foundation for future Unmanned Aerial Vehicle (UAV) and spacecraft control design.
comment: 4 pages, preliminary version, to be updated with full Lyapunov proof and extended results
Fixed-Time Input-to-State Stability for Singularly Perturbed Systems via Composite Lyapunov Functions
We study singularly perturbed systems that exhibit input-to-state stability (ISS) with fixed-time properties in the presence of bounded disturbances. In these systems, solutions converge to the origin within a time frame independent of initial conditions when undisturbed, and to a vicinity of the origin when subjected to bounded disturbances. First, we extend the traditional composite Lyapunov method, commonly applied in singular perturbation theory to analyze asymptotic stability, to include fixed-time ISS. We demonstrate that if both the reduced system and the boundary layer system exhibit fixed-time ISS, and if certain interconnection conditions are met, the entire multi-time scale system retains this fixed-time ISS characteristic, provided the separation of time scales is sufficiently pronounced. Next, we illustrate our findings via analytical and numerical examples, including a novel application in fixed-time feedback optimization for dynamic plants with slowly varying cost functions.
On the Deployment of RIS-mounted UAV Networks
Reconfigurable intelligent surfaces (RIS) enable smart wireless environments by dynamically controlling signal propagation to enhance communication and localization. Unmanned aerial vehicles (UAVs) can act as flying base stations and thus, improve system performance by avoiding signal blockages. In this paper, we propose a gradient ascent and coordinate search based method to determine the optimal location for a system that consists of a UAV and a RIS, where the UAV serves cellular users (CUs) and the RIS serves device-to-device (D2D) pairs. In particular, by optimizing the net throughput for both the D2D pairs and the CUs, the suggested method establishes the ideal location for the RIS-mounted UAV. We consider both line of sight (LoS) and non-LoS paths for the RIS and UAV to calculate the throughput while accounting for blockages in the system. The numerical results show that the proposed method performs better than the existing approaches in terms of both the net throughput and the user fairness.
comment: Submitted for a possible publication
From Discrete to Continuous Binary Best-Response Dynamics: Discrete Fluctuations Almost Surely Vanish with Population Size
In binary decision-making, individuals often choose either the rare or the common action. In the framework of evolutionary game theory, the best-response update rule can be used to model this dichotomy. Those who prefer the common action are called \emph{coordinators}, and those who prefer the rare one are called \emph{anticoordinators}. A finite mixed population of the two types may undergo perpetual fluctuations, the characterization of which appears to be challenging. It is particularly unknown whether the fluctuations persist as population size grows. To fill this gap, we approximate the discrete finite population dynamics of coordinators and anticoordinators with the associated mean dynamics in the form of differential inclusions. We show that the family of the state sequences of the discrete dynamics for increasing population sizes forms a generalized stochastic approximation process for the differential inclusion. On the other hand, we show that the differential inclusions always converge to an equilibrium. This implies that the reported perpetual fluctuations in the finite discrete dynamics of coordinators and anticoordinators almost surely vanish with population size. The results encourage to first analyze the often simpler {continuous-time} mean dynamics of the discrete population dynamics as the continuous-time dynamics partly reveal the asymptotic behavior of the discrete dynamics.
comment: proofread
Robotics
Bioinspired Soft Quadrotors Jointly Unlock Agility, Squeezability, and Collision Resilience
Natural flyers use soft wings to seamlessly enable a wide range of flight behaviours, including agile manoeuvres, squeezing through narrow passageways, and withstanding collisions. In contrast, conventional quadrotor designs rely on rigid frames that support agile flight but inherently limit collision resilience and squeezability, thereby constraining flight capabilities in cluttered environments. Inspired by the anisotropic stiffness and distributed mass-energy structures observed in biological organisms, we introduce FlexiQuad, a soft-frame quadrotor design approach that limits this trade-off. We demonstrate a 405-gram FlexiQuad prototype, three orders of magnitude more compliant than conventional quadrotors, yet capable of acrobatic manoeuvres with peak speeds above 80 km/h and linear and angular accelerations exceeding 3 g and 300 rad/s$^2$, respectively. Analysis demonstrates it can replicate accelerations of rigid counterparts up to a thrust-to-weight ratio of 8. Simultaneously, FlexiQuad exhibits fourfold higher collision resilience, surviving frontal impacts at 5 m/s without damage and reducing destabilising forces in glancing collisions by a factor of 39. Its frame can fully compress, enabling flight through gaps as narrow as 70% of its nominal width. Our analysis identifies an optimal structural softness range, from 0.006 to 0.77 N/mm, comparable to that of natural flyers' wings, whereby agility, squeezability, and collision resilience are jointly achieved for FlexiQuad models from 20 to 3000 grams. FlexiQuad expands hovering drone capabilities in complex environments, enabling robust physical interactions without compromising flight performance.
comment: 26 pages, 12 figures, 2 tables, 9 videos (not yet disclosed, awaiting peer review)
Stable and Robust SLIP Model Control via Energy Conservation-Based Feedback Cancellation for Quadrupedal Applications
In this paper, we present an energy-conservation based control architecture for stable dynamic motion in quadruped robots. We model the robot as a Spring-loaded Inverted Pendulum (SLIP), a model well-suited to represent the bouncing motion characteristic of running gaits observed in various biological quadrupeds and bio-inspired robotic systems. The model permits leg-orientation control during flight and leg-length control during stance, a design choice inspired by natural quadruped behaviors and prevalent in robotic quadruped systems. Our control algorithm uses the reduced-order SLIP dynamics of the quadruped to track a stable parabolic spline during stance, which is calculated using the principle of energy conservation. Through simulations based on the design specifications of an actual quadruped robot, Ghost Robotics Minitaur, we demonstrate that our control algorithm generates stable bouncing gaits. Additionally, we illustrate the robustness of our controller by showcasing its ability to maintain stable bouncing even when faced with up to a 10% error in sensor measurements.
EveryDayVLA: A Vision-Language-Action Model for Affordable Robotic Manipulation ICRA 2026
While Vision-Language-Action (VLA) models map visual inputs and language instructions directly to robot actions, they often rely on costly hardware and struggle in novel or cluttered scenes. We introduce EverydayVLA, a 6-DOF manipulator that can be assembled for under $300, capable of modest payloads and workspace. A single unified model jointly outputs discrete and continuous actions, and our adaptive-horizon ensemble monitors motion uncertainty to trigger on-the-fly re-planning for safe, reliable operation. On LIBERO, EverydayVLA matches state-of-the-art success rates, and in real-world tests it outperforms prior methods by 49% in-distribution and 34.9% out-of-distribution. By combining a state-of-the-art VLA with cost-effective hardware, EverydayVLA democratizes access to a robotic foundation model and paves the way for economical use in homes and research labs alike. Experiment videos and details: https://everydayvla.github.io/
comment: Submitted to ICRA 2026
Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
ETHOS: A Robotic Encountered-Type Haptic Display for Social Interaction in Virtual Reality
We present ETHOS (Encountered-Type Haptics for On-demand Social Interaction), a dynamic encountered-type haptic display (ETHD) that enables natural physical contact in virtual reality (VR) during social interactions such as handovers, fist bumps, and high-fives. The system integrates a torque-controlled robotic manipulator with interchangeable passive props (silicone hand replicas and a baton), marker-based physical-virtual registration via a ChArUco board, and a safety monitor that gates motion based on the user's head and hand pose. We introduce two control strategies: (i) a static mode that presents a stationary prop aligned with its virtual counterpart, consistent with prior ETHD baselines, and (ii) a dynamic mode that continuously updates prop position by exponentially blending an initial mid-point trajectory with real-time hand tracking, generating a unique contact point for each interaction. Bench tests show static colocation accuracy of 5.09 +/- 0.94 mm, while user interactions achieved temporal alignment with an average contact latency of 28.53 +/- 31.21 ms across all interaction and control conditions. These results demonstrate the feasibility of recreating socially meaningful haptics in VR. By incorporating essential safety and control mechanisms, ETHOS establishes a practical foundation for high-fidelity, dynamic interpersonal interactions in virtual environments.
comment: 8 pages
SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
Force-Safe Environment Maps and Real-Time Detection for Soft Robot Manipulators
Soft robot manipulators have the potential for deployment in delicate environments to perform complex manipulation tasks. However, existing obstacle detection and avoidance methods do not consider limits on the forces that manipulators may exert upon contact with delicate obstacles. This work introduces a framework that maps force safety criteria from task space (i.e. positions along the robot's body) to configuration space (i.e. the robot's joint angles) and enables real-time force safety detection. We incorporate limits on allowable environmental contact forces for given task-space obstacles, and map them into configuration space (C-space) through the manipulator's forward kinematics. This formulation ensures that configurations classified as safe are provably below the maximum force thresholds, thereby allowing us to determine force-safe configurations of the soft robot manipulator in real-time. We validate our approach in simulation and hardware experiments on a two-segment pneumatic soft robot manipulator. Results demonstrate that the proposed method accurately detects force safety during interactions with deformable obstacles, thereby laying the foundation for real-time safe planning of soft manipulators in delicate, cluttered environments.
TwinVLA: Data-Efficient Bimanual Manipulation with Twin Single-Arm Vision-Language-Action Models
Vision-language-action models (VLAs) trained on large-scale robotic datasets have demonstrated strong performance on manipulation tasks, including bimanual tasks. However, because most public datasets focus on single-arm demonstrations, adapting VLAs for bimanual tasks typically requires substantial additional bimanual data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular framework that composes two copies of a pretrained single-arm VLA into a coordinated bimanual VLA. Unlike monolithic cross-embodiment models trained on mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency and performance by composing pretrained single-arm policies. Across diverse bimanual tasks in real-world and simulation settings, TwinVLA outperforms a comparably-sized monolithic RDT-1B model without requiring any bimanual pretraining. Furthermore, it narrows the gap to state-of-the-art model, $\pi_0$ which rely on extensive proprietary bimanual data and compute cost. These results establish our modular composition approach as a data-efficient and scalable path toward high-performance bimanual manipulation, leveraging public single-arm data.
comment: Project webpage : https://jellyho.github.io/TwinVLA/
Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
Beyond Master and Apprentice: Grounding Foundation Models for Symbiotic Interactive Learning in a Shared Latent Space
Today's autonomous agents can understand free-form natural language instructions and execute long-horizon tasks in a manner akin to human-level reasoning. These capabilities are mostly driven by large-scale pre-trained foundation models (FMs). However, the approaches with which these models are grounded for human-robot interaction (HRI) perpetuate a master-apprentice model, where the apprentice (embodied agent) passively receives and executes the master's (human's) commands without reciprocal learning. This reactive interaction approach does not capture the co-adaptive dynamics inherent in everyday multi-turn human-human interactions. To address this, we propose a Symbiotic Interactive Learning (SIL) approach that enables both the master and the apprentice to co-adapt through mutual, bidirectional interactions. We formalised SIL as a co-adaptation process within a shared latent task space, where the agent and human maintain joint belief states that evolve based on interaction history. This enables the agent to move beyond reactive execution to proactive clarification, adaptive suggestions, and shared plan refinement. To realise these novel behaviours, we leveraged pre-trained FMs for spatial perception and reasoning, alongside a lightweight latent encoder that grounds the models' outputs into task-specific representations. Furthermore, to ensure stability as the tasks evolve, we augment SIL with a memory architecture that prevents the forgetting of learned task-space representations. We validate SIL on both simulated and real-world embodied tasks, including instruction following, information retrieval, query-oriented reasoning, and interactive dialogues. Demos and resources are public at:~\href{https://linusnep.github.io/SIL/}{https://linusnep.github.io/SIL/}.
Let Me Show You: Learning by Retrieving from Egocentric Video for Robotic Manipulation IROS 2025
Robots operating in complex and uncertain environments face considerable challenges. Advanced robotic systems often rely on extensive datasets to learn manipulation tasks. In contrast, when humans are faced with unfamiliar tasks, such as assembling a chair, a common approach is to learn by watching video demonstrations. In this paper, we propose a novel method for learning robot policies by Retrieving-from-Video (RfV), using analogies from human demonstrations to address manipulation tasks. Our system constructs a video bank comprising recordings of humans performing diverse daily tasks. To enrich the knowledge from these videos, we extract mid-level information, such as object affordance masks and hand motion trajectories, which serve as additional inputs to enhance the robot model's learning and generalization capabilities. We further feature a dual-component system: a video retriever that taps into an external video bank to fetch task-relevant video based on task specification, and a policy generator that integrates this retrieved knowledge into the learning cycle. This approach enables robots to craft adaptive responses to various scenarios and generalize to tasks beyond those in the training data. Through rigorous testing in multiple simulated and real-world settings, our system demonstrates a marked improvement in performance over conventional robotic systems, showcasing a significant breakthrough in the field of robotics.
comment: Accepted by IROS 2025
Procedimiento de auditoría de ciberseguridad para sistemas autónomos: metodología, amenazas y mitigaciones SC
The deployment of autonomous systems has experienced remarkable growth in recent years, driven by their integration into sectors such as industry, medicine, logistics, and domestic environments. This expansion is accompanied by a series of security issues that entail significant risks due to the critical nature of autonomous systems, especially those operating in human-interaction environments. Furthermore, technological advancement and the high operational and architectural complexity of autonomous systems have resulted in an increased attack surface. This article presents a specific security auditing procedure for autonomous systems, based on a layer-structured methodology, a threat taxonomy adapted to the robotic context, and a set of concrete mitigation measures. The validity of the proposed approach is demonstrated through four practical case studies applied to representative robotic platforms: the Vision 60 military quadruped from Ghost Robotics, the A1 robot from Unitree Robotics, the UR3 collaborative arm from Universal Robots, and the Pepper social robot from Aldebaran Robotics.
comment: 32 pages, in Spanish language, 7 tables, 12 Figures. White paper under the TESCAC project
Follow-Me in Micro-Mobility with End-to-End Imitation Learning
Autonomous micro-mobility platforms face challenges from the perspective of the typical deployment environment: large indoor spaces or urban areas that are potentially crowded and highly dynamic. While social navigation algorithms have progressed significantly, optimizing user comfort and overall user experience over other typical metrics in robotics (e.g., time or distance traveled) is understudied. Specifically, these metrics are critical in commercial applications. In this paper, we show how imitation learning delivers smoother and overall better controllers, versus previously used manually-tuned controllers. We demonstrate how DAAV's autonomous wheelchair achieves state-of-the-art comfort in follow-me mode, in which it follows a human operator assisting persons with reduced mobility (PRM). This paper analyzes different neural network architectures for end-to-end control and demonstrates their usability in real-world production-level deployments.
Decomposed Object Manipulation via Dual-Actor Policy
Object manipulation, which focuses on learning to perform tasks on similar parts across different types of objects, can be divided into an approaching stage and a manipulation stage. However, previous works often ignore this characteristic of the task and rely on a single policy to directly learn the whole process of object manipulation. To address this problem, we propose a novel Dual-Actor Policy, termed DAP, which explicitly considers different stages and leverages heterogeneous visual priors to enhance each stage. Specifically, we introduce an affordance-based actor to locate the functional part in the manipulation task, thereby improving the approaching process. Following this, we propose a motion flow-based actor to capture the movement of the component, facilitating the manipulation process. Finally, we introduce a decision maker to determine the current stage of DAP and select the corresponding actor. Moreover, existing object manipulation datasets contain few objects and lack the visual priors needed to support training. To address this, we construct a simulated dataset, the Dual-Prior Object Manipulation Dataset, which combines the two visual priors and includes seven tasks, including two challenging long-term, multi-stage tasks. Experimental results on our dataset, the RoboTwin benchmark and real-world scenarios illustrate that our method consistently outperforms the SOTA method by 5.55%, 14.7% and 10.4% on average respectively.
comment: 9 pages, 7 figures, 5 tables
TAPOM: Task-Space Topology-Guided Motion Planning for Manipulating Elongated Object in Cluttered Environments
Robotic manipulation in complex, constrained spaces is vital for widespread applications but challenging, particularly when navigating narrow passages with elongated objects. Existing planning methods often fail in these low-clearance scenarios due to the sampling difficulties or the local minima. This work proposes Topology-Aware Planning for Object Manipulation (TAPOM), which explicitly incorporates task-space topological analysis to enable efficient planning. TAPOM uses a high-level analysis to identify critical pathways and generate guiding keyframes, which are utilized in a low-level planner to find feasible configuration space trajectories. Experimental validation demonstrates significantly high success rates and improved efficiency over state-of-the-art methods on low-clearance manipulation tasks. This approach offers broad implications for enhancing manipulation capabilities of robots in complex real-world environments.
Epically Powerful: An open-source software and mechatronics infrastructure for wearable robotic systems
Epically Powerful is an open-source robotics infrastructure that streamlines the underlying framework of wearable robotic systems - managing communication protocols, clocking, actuator commands, visualization, sensor data acquisition, data logging, and more - while also providing comprehensive guides for hardware selection, system assembly, and controller implementation. Epically Powerful contains a code base enabling simplified user implementation via Python that seamlessly interfaces with various commercial state-of-the-art quasi-direct drive (QDD) actuators, single-board computers, and common sensors, provides example controllers, and enables real-time visualization. To further support device development, the package also includes a recommended parts list and compatibility guide and detailed documentation on hardware and software implementation. The goal of Epically Powerful is to lower the barrier to developing and deploying custom wearable robotic systems without a pre-specified form factor, enabling researchers to go from raw hardware to modular, robust devices quickly and effectively. Though originally designed with wearable robotics in mind, Epically Powerful is broadly applicable to other robotic domains that utilize QDD actuators, single-board computers, and sensors for closed-loop control.
comment: 11 pages, 5 figures. This work has been submitted to the IEEE for possible publication
Tunable Passivity Control for Centralized Multiport Networked Systems
Centralized Multiport Networked Dynamic (CMND) systems have emerged as a key architecture with applications in several complex network systems, such as multilateral telerobotics and multi-agent control. These systems consist of a hub node/subsystem connecting with multiple remote nodes/subsystems via a networked architecture. One challenge for this system is stability, which can be affected by non-ideal network artifacts. Conventional passivity-based approaches can stabilize the system under specialized applications like small-scale networked systems. However, those conventional passive stabilizers have several restrictions, such as distributing compensation across subsystems in a decentralized manner, limiting flexibility, and, at the same time, relying on the restrictive assumptions of node passivity. This paper synthesizes a centralized optimal passivity-based stabilization framework for CMND systems. It consists of a centralized passivity observer monitoring overall energy flow and an optimal passivity controller that distributes the just-needed dissipation among various nodes, guaranteeing strict passivity and, thus, L2 stability. The proposed data-driven model-free approach, i.e., Tunable Centralized Optimal Passivity Control (TCoPC), optimizes total performance based on the prescribed dissipation distribution strategy while ensuring stability. The controller can put high dissipation loads on some sub-networks while relaxing the dissipation on other nodes. Simulation results demonstrate the proposed frameworks performance in a complex task under different time-varying delay scenarios while relaxing the remote nodes minimum phase and passivity assumption, enhancing the scalability and generalizability.
MoE-DP: An MoE-Enhanced Diffusion Policy for Robust Long-Horizon Robotic Manipulation with Skill Decomposition and Failure Recovery
Diffusion policies have emerged as a powerful framework for robotic visuomotor control, yet they often lack the robustness to recover from subtask failures in long-horizon, multi-stage tasks and their learned representations of observations are often difficult to interpret. In this work, we propose the Mixture of Experts-Enhanced Diffusion Policy (MoE-DP), where the core idea is to insert a Mixture of Experts (MoE) layer between the visual encoder and the diffusion model. This layer decomposes the policy's knowledge into a set of specialized experts, which are dynamically activated to handle different phases of a task. We demonstrate through extensive experiments that MoE-DP exhibits a strong capability to recover from disturbances, significantly outperforming standard baselines in robustness. On a suite of 6 long-horizon simulation tasks, this leads to a 36% average relative improvement in success rate under disturbed conditions. This enhanced robustness is further validated in the real world, where MoE-DP also shows significant performance gains. We further show that MoE-DP learns an interpretable skill decomposition, where distinct experts correspond to semantic task primitives (e.g., approaching, grasping). This learned structure can be leveraged for inference-time control, allowing for the rearrangement of subtasks without any re-training.Our video and code are available at the https://moe-dp-website.github.io/MoE-DP-Website/.
Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
Encoding Biomechanical Energy Margin into Passivity-based Synchronization for Networked Telerobotic Systems
Maintaining system stability and accurate position tracking is imperative in networked robotic systems, particularly for haptics-enabled human-robot interaction. Recent literature has integrated human biomechanics into the stabilizers implemented for teleoperation, enhancing force preservation while guaranteeing convergence and safety. However, position desynchronization due to imperfect communication and non-passive behaviors remains a challenge. This paper proposes a two-port biomechanics-aware passivity-based synchronizer and stabilizer, referred to as TBPS2. This stabilizer optimizes position synchronization by leveraging human biomechanics while reducing the stabilizer's conservatism in its activation. We provide the mathematical design synthesis of the stabilizer and the proof of stability. We also conducted a series of grid simulations and systematic experiments, comparing their performance with that of state-of-the-art solutions under varying time delays and environmental conditions.
A semi-analytical approach for computing the largest singularity-free spheres of a class of 6-6 Stewart-Gough platforms for specified orientation workspaces
This article presents a method for computing the largest singularity-free sphere (SFS) of a 6-6 Stewart-Gough platform manipulator (SGPM) over a specified orientation workspace. For a fixed orientation of the moving platform, the SFS is computed analytically. This process is repeated over a set of samples generated within the orientation workspace, and the smallest among them is designated as the desired SFS for the given orientation workspace. Numerical experiments are performed on four distinct architectures of the SGPM to understand their relative performances w.r.t. SFS volumes over the same orientation workspace. This study demonstrates the potential utility of the proposed computational method both in analysis and design of SGPMs.
iFlyBot-VLM Technical Report
We introduce iFlyBot-VLM, a general-purpose Vision-Language Model (VLM) used to improve the domain of Embodied Intelligence. The central objective of iFlyBot-VLM is to bridge the cross-modal semantic gap between high-dimensional environmental perception and low-level robotic motion control. To this end, the model abstracts complex visual and spatial information into a body-agnostic and transferable Operational Language, thereby enabling seamless perception-action closed-loop coordination across diverse robotic platforms. The architecture of iFlyBot-VLM is systematically designed to realize four key functional capabilities essential for embodied intelligence: 1) Spatial Understanding and Metric Reasoning; 2) Interactive Target Grounding; 3) Action Abstraction and Control Parameter Generation; 4) Task Planning and Skill Sequencing. We envision iFlyBot-VLM as a scalable and generalizable foundation model for embodied AI, facilitating the progression from specialized task-oriented systems toward generalist, cognitively capable agents. We conducted evaluations on 10 current mainstream embodied intelligence-related VLM benchmark datasets, such as Blink and Where2Place, and achieved optimal performance while preserving the model's general capabilities. We will publicly release both the training data and model weights to foster further research and development in the field of Embodied Intelligence.
TumorMap: A Laser-based Surgical Platform for 3D Tumor Mapping and Fully-Automated Tumor Resection
Surgical resection of malignant solid tumors is critically dependent on the surgeon's ability to accurately identify pathological tissue and remove the tumor while preserving surrounding healthy structures. However, building an intraoperative 3D tumor model for subsequent removal faces major challenges due to the lack of high-fidelity tumor reconstruction, difficulties in developing generalized tissue models to handle the inherent complexities of tumor diagnosis, and the natural physical limitations of bimanual operation, physiologic tremor, and fatigue creep during surgery. To overcome these challenges, we introduce "TumorMap", a surgical robotic platform to formulate intraoperative 3D tumor boundaries and achieve autonomous tissue resection using a set of multifunctional lasers. TumorMap integrates a three-laser mechanism (optical coherence tomography, laser-induced endogenous fluorescence, and cutting laser scalpel) combined with deep learning models to achieve fully-automated and noncontact tumor resection. We validated TumorMap in murine osteoscarcoma and soft-tissue sarcoma tumor models, and established a novel histopathological workflow to estimate sensor performance. With submillimeter laser resection accuracy, we demonstrated multimodal sensor-guided autonomous tumor surgery without any human intervention.
comment: 41 pages, 25 figures
Social-Physical Interactions with Virtual Characters: Evaluating the Impact of Physicality through Encountered-Type Haptics
This work investigates how robot-mediated physicality influences the perception of social-physical interactions with virtual characters. ETHOS (Encountered-Type Haptics for On-demand Social interaction) is an encountered-type haptic display that integrates a torque-controlled manipulator and interchangeable props with a VR headset to enable three gestures: object handovers, fist bumps, and high fives. We conducted a user study to examine how ETHOS adds physicality to virtual character interactions and how this affects presence, realism, enjoyment, and connection metrics. Each participant experienced one interaction under three conditions: no physicality (NP), static physicality (SP), and dynamic physicality (DP). SP extended the purely virtual baseline (NP) by introducing tangible props for direct contact, while DP further incorporated motion and impact forces to emulate natural touch. Results show presence increased stepwise from NP to SP to DP. Realism, enjoyment, and connection also improved with added physicality, though differences between SP and DP were not significant. Comfort remained consistent across conditions, indicating no added psychological friction. These findings demonstrate the experiential value of ETHOS and motivate the integration of encountered-type haptics into socially meaningful VR experiences.
comment: 9 pages
VLM-driven Skill Selection for Robotic Assembly Tasks
This paper presents a robotic assembly framework that combines Vision-Language Models (VLMs) with imitation learning for assembly manipulation tasks. Our system employs a gripper-equipped robot that moves in 3D space to perform assembly operations. The framework integrates visual perception, natural language understanding, and learned primitive skills to enable flexible and adaptive robotic manipulation. Experimental results demonstrate the effectiveness of our approach in assembly scenarios, achieving high success rates while maintaining interpretability through the structured primitive skill decomposition.
Lite VLA: Efficient Vision-Language-Action Control on CPU-Bound Edge Robots
The deployment of artificial intelligence models at the edge is increasingly critical for autonomous robots operating in GPS-denied environments where local, resource-efficient reasoning is essential. This work demonstrates the feasibility of deploying small Vision-Language Models (VLMs) on mobile robots to achieve real-time scene understanding and reasoning under strict computational constraints. Unlike prior approaches that separate perception from mobility, the proposed framework enables simultaneous movement and reasoning in dynamic environments using only on-board hardware. The system integrates a compact VLM with multimodal perception to perform contextual interpretation directly on embedded hardware, eliminating reliance on cloud connectivity. Experimental validation highlights the balance between computational efficiency, task accuracy, and system responsiveness. Implementation on a mobile robot confirms one of the first successful deployments of small VLMs for concurrent reasoning and mobility at the edge. This work establishes a foundation for scalable, assured autonomy in applications such as service robotics, disaster response, and defense operations.
Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
Mean-Shift Theory and Its Applications in Swarm Robotics: A New Way to Enhance the Efficiency of Multi-Robot Collaboration
Swarms evolving from collective behaviors among multiple individuals are commonly seen in nature, which enables biological systems to exhibit more efficient and robust collaboration. Creating similar swarm intelligence in engineered robots poses challenges to the design of collaborative algorithms that can be programmed at large scales. The assignment-based method has played an eminent role for a very long time in solving collaboration problems of robot swarms. However, it faces fundamental limitations in terms of efficiency and robustness due to its unscalability to swarm variants. This article presents a tutorial review on recent advances in assignment-free collaboration of robot swarms, focusing on the problem of shape formation. A key theoretical component is the recently developed \emph{mean-shift exploration} strategy, which improves the collaboration efficiency of large-scale swarms by dozens of times. Further, the efficiency improvement is more significant as the swarm scale increases. Finally, this article discusses three important applications of the mean-shift exploration strategy, including precise shape formation, area coverage formation, and maneuvering formation, as well as their corresponding industrial scenarios in smart warehousing, area exploration, and cargo transportation.
Affordance-based Robot Manipulation with Flow Matching
We present a framework for assistive robot manipulation, which focuses on two fundamental challenges: first, efficiently adapting large-scale models to downstream scene affordance understanding tasks, especially in daily living scenarios where gathering multi-task data involving humans requires strenuous effort; second, effectively learning robot action trajectories by grounding the visual affordance model. We tackle the first challenge by employing a parameter-efficient prompt tuning method that prepends learnable text prompts to the frozen vision model to predict manipulation affordances in multi-task scenarios. Then we propose to learn robot action trajectories guided by affordances in a supervised flow matching method. Flow matching represents a robot visuomotor policy as a conditional process of flowing random waypoints to desired robot action trajectories. Finally, we introduce a real-world dataset with 10 tasks across Activities of Daily Living to test our framework. Our extensive evaluation highlights that the proposed prompt tuning method for learning manipulation affordance achieves competitive performance and even outperforms some other finetuning protocols across data scales, while satisfying parameter efficiency. Learning multi-task robot action trajectories with flow matching leads to consistently favorable results in several robot manipulation benchmarks than some alternative behavior cloning methods. This includes more stable training and evaluation, and noticeably faster inference, while maintaining comparable generalization performance to diffusion policy, where flow matching performs marginally better in most cases. Our framework seamlessly unifies affordance learning and action generation with flow matching for robot manipulation.
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
GeoAware-VLA: Implicit Geometry Aware Vision-Language-Action Model
Vision-Language-Action (VLA) models often fail to generalize to novel camera viewpoints, a limitation stemming from their difficulty in inferring robust 3D geometry from 2D images. We introduce GeoAware-VLA, a simple yet effective approach that enhances viewpoint invariance by integrating strong geometric priors into the vision backbone. Instead of training a visual encoder or relying on explicit 3D data, we leverage a frozen, pretrained geometric vision model as a feature extractor. A trainable projection layer then adapts these geometrically-rich features for the policy decoder, relieving it of the burden of learning 3D consistency from scratch. Through extensive evaluations on LIBERO benchmark subsets, we show GeoAware-VLA achieves substantial improvements in zero-shot generalization to novel camera poses, boosting success rates by over 2x in simulation. Crucially, these benefits translate to the physical world; our model shows a significant performance gain on a real robot, especially when evaluated from unseen camera angles. Our approach proves effective across both continuous and discrete action spaces, highlighting that robust geometric grounding is a key component for creating more generalizable robotic agents.
comment: Under Review, Project Page https://alisharey.github.io/GeoAware-VLA/
Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild
To perform outdoor visual navigation and search, a robot may leverage satellite imagery to generate visual priors. This can help inform high-level search strategies, even when such images lack sufficient resolution for target recognition. However, many existing informative path planning or search-based approaches either assume no prior information, or use priors without accounting for how they were obtained. Recent work instead utilizes large Vision Language Models (VLMs) for generalizable priors, but their outputs can be inaccurate due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework with a flexible plug-and-play interface compatible with various input modalities (e.g., image, text, sound) and planning methods (e.g., RL-based). First, we pretrain a satellite image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our TTA framework dynamically refines CLIP's predictions during search using uncertainty-weighted gradient updates inspired by Spatial Poisson Point Processes. To train and evaluate Search-TTA, we curate AVS-Bench, a visual search dataset based on internet-scale ecological data containing 380k images and taxonomy data. We find that Search-TTA improves planner performance by up to 30.0%, particularly in cases with poor initial CLIP predictions due to domain mismatch and limited training data. It also performs comparably with significantly larger VLMs, and achieves zero-shot generalization via emergent alignment to unseen modalities. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing.
comment: Accepted for presentation at CORL 2025. Code, models, and data are available at https://search-tta.github.io/
Octopus-like Reaching Motion: A Perspective Inspired by Whipping
The stereotypical reaching motion of the octopus arm has drawn growing attention for its efficient control of a highly deformable body. Previous studies suggest that its characteristic bend propagation may share underlying principles with the dynamics of a whip. This work investigates whether whip-like passive dynamics in water can reproduce the kinematic features observed in biological reaching and their similarities and differences. Platform-based whipping tests were performed in water and air while systematically varying material stiffness and driving speed. Image-based quantification revealed that the Ecoflex Gel 2 arm driven at 150 rpm (motor speed) reproduced curvature propagation similar to that observed in octopus reaching. However, its bend-point velocity decreased monotonically rather than exhibiting the biological bell-shaped profile, confirming that the octopus reaching movement is not merely a passive whipping behavior. The absence of propagation in air further highlights the critical role of the surrounding medium in forming octopus-like reaching motion. This study provides a new perspective for understand biological reaching movement, and offers a potential platform for future hydrodynamic research.
comment: The first two listed authors contributed equally. Yiyuan Zhang is the corresponding author
ReNiL: Event-Driven Pedestrian Bayesian Localization Using IMU for Real-World Applications
Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
comment: This work has been submitted to the ACM for possible publication
Generalizing Robot Trajectories from Single-Context Human Demonstrations: A Probabilistic Approach
Generalizing robot trajectories from human demonstrations to new contexts remains a key challenge in Learning from Demonstration (LfD), particularly when only single-context demonstrations are available. We present a novel Gaussian Mixture Model (GMM)-based approach that enables systematic generalization from single-context demonstrations to a wide range of unseen start and goal configurations. Our method performs component-level reparameterization of the GMM, adapting both mean vectors and covariance matrices, followed by Gaussian Mixture Regression (GMR) to generate smooth trajectories. We evaluate the approach on a dual-arm pick-and-place task with varying box placements, comparing against several baselines. Results show that our method significantly outperforms baselines in trajectory success and fidelity, maintaining accuracy even under combined translational and rotational variations of task configurations. These results demonstrate that our method generalizes effectively while ensuring boundary convergence and preserving the intrinsic structure of demonstrated motions.
Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
SceneComplete: Open-World 3D Scene Completion in Cluttered Real World Environments for Robot Manipulation
Careful robot manipulation in every-day cluttered environments requires an accurate understanding of the 3D scene, in order to grasp and place objects stably and reliably and to avoid colliding with other objects. In general, we must construct such a 3D interpretation of a complex scene based on limited input, such as a single RGB-D image. We describe SceneComplete, a system for constructing a complete, segmented, 3D model of a scene from a single view. SceneComplete is a novel pipeline for composing general-purpose pretrained perception modules (vision-language, segmentation, image-inpainting, image-to-3D, visual-descriptors and pose-estimation) to obtain highly accurate results. We demonstrate its accuracy and effectiveness with respect to ground-truth models in a large benchmark dataset and show that its accurate whole-object reconstruction enables robust grasp proposal generation, including for a dexterous hand. We release the code and additional results on our website.
Multiagent Systems
Cooperation Under Network-Constrained Communication
In this paper, we study cooperation in distributed games under network-constrained communication. Building on the framework of Monderer and Tennenholtz (1999), we derive a sufficient condition for cooperative equilibrium in settings where communication between agents is delayed by the underlying network topology. Each player deploys an agent at every location, and local interactions follow a Prisoner's Dilemma structure. We derive a sufficient condition that depends on the network diameter and the number of locations, and analyze extreme cases of instantaneous, delayed, and proportionally delayed communication. We also discuss the asymptotic case of scale-free communication networks, in which the network diameter grows sub-linearly in the number of locations. These insights clarify how communication latency and network design jointly determine the emergence of distributed cooperation.
TAMAS: Benchmarking Adversarial Risks in Multi-Agent LLM Systems ICML 2025
Large Language Models (LLMs) have demonstrated strong capabilities as autonomous agents through tool use, planning, and decision-making abilities, leading to their widespread adoption across diverse tasks. As task complexity grows, multi-agent LLM systems are increasingly used to solve problems collaboratively. However, safety and security of these systems remains largely under-explored. Existing benchmarks and datasets predominantly focus on single-agent settings, failing to capture the unique vulnerabilities of multi-agent dynamics and co-ordination. To address this gap, we introduce $\textbf{T}$hreats and $\textbf{A}$ttacks in $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{S}$ystems ($\textbf{TAMAS}$), a benchmark designed to evaluate the robustness and safety of multi-agent LLM systems. TAMAS includes five distinct scenarios comprising 300 adversarial instances across six attack types and 211 tools, along with 100 harmless tasks. We assess system performance across ten backbone LLMs and three agent interaction configurations from Autogen and CrewAI frameworks, highlighting critical challenges and failure modes in current multi-agent deployments. Furthermore, we introduce Effective Robustness Score (ERS) to assess the tradeoff between safety and task effectiveness of these frameworks. Our findings show that multi-agent systems are highly vulnerable to adversarial attacks, underscoring the urgent need for stronger defenses. TAMAS provides a foundation for systematically studying and improving the safety of multi-agent LLM systems.
comment: Accepted at ICML 2025 MAS Workshop. This version includes additional experiments and analysis
A differentiable model of supply-chain shocks NeurIPS 2025
Modelling how shocks propagate in supply chains is an increasingly important challenge in economics. Its relevance has been highlighted in recent years by events such as Covid-19 and the Russian invasion of Ukraine. Agent-based models (ABMs) are a promising approach for this problem. However, calibrating them is hard. We show empirically that it is possible to achieve speed ups of over 3 orders of magnitude when calibrating ABMs of supply networks by running them on GPUs and using automatic differentiation, compared to non-differentiable baselines. This opens the door to scaling ABMs to model the whole global supply network.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Systems and Scientific Machine Learning (EurIPS)
Multi-Agent Craftax: Benchmarking Open-Ended Multi-Agent Reinforcement Learning at the Hyperscale
Progress in multi-agent reinforcement learning (MARL) requires challenging benchmarks that assess the limits of current methods. However, existing benchmarks often target narrow short-horizon challenges that do not adequately stress the long-term dependencies and generalization capabilities inherent in many multi-agent systems. To address this, we first present \textit{Craftax-MA}: an extension of the popular open-ended RL environment, Craftax, that supports multiple agents and evaluates a wide range of general abilities within a single environment. Written in JAX, \textit{Craftax-MA} is exceptionally fast with a training run using 250 million environment interactions completing in under an hour. To provide a more compelling challenge for MARL, we also present \textit{Craftax-Coop}, an extension introducing heterogeneous agents, trading and more mechanics that require complex cooperation among agents for success. We provide analysis demonstrating that existing algorithms struggle with key challenges in this benchmark, including long-horizon credit assignment, exploration and cooperation, and argue for its potential to drive long-term research in MARL.
STAIR: Stability criterion for Time-windowed Assignment and Internal adversarial influence in Routing and decision-making
A major limitation of existing routing algorithms for multi-agent systems is that they are designed without considering the potential presence of adversarial agents in the decision-making loop, which could lead to severe performance degradation in real-life applications where adversarial agents may be present. We study autonomous pickup-and-delivery routing problems in which adversarial agents launch coordinated denial-of-service attacks by spoofing their locations. This deception causes the central scheduler to assign pickup requests to adversarial agents instead of cooperative agents. Adversarial agents then choose not to service the requests with the goal of disrupting the operation of the system, leading to delays, cancellations, and potential instability in the routing policy. Policy stability in routing problems is typically defined as the cost of the policy being uniformly bounded over time, and it has been studied through two different lenses: queuing theory and reinforcement learning (RL), which are not well suited for routing with adversaries. In this paper, we propose a new stability criterion, STAIR, which is easier to analyze than queuing-theory-based stability in adversarial settings. Furthermore, STAIR does not depend on a chosen discount factor as is the case in discounted RL stability. STAIR directly links stability to desired operational metrics, like a finite number of rejected requests. This characterization is particularly useful in adversarial settings as it provides a metric for monitoring the effect of adversaries in the operation of the system. Furthermore, we demonstrate STAIR's practical relevance through simulations on real-world San Francisco mobility-on-demand data. We also identify a phenomenon of degenerate stability that arises in the adversarial routing problem, and we introduce time-window constraints in the decision-making algorithm to mitigate it.
comment: 9 pages, 2 figures
Novel Concepts for Agent-Based Population Modelling and Simulation: Updates from GEPOC ABM
In recent years, dynamic agent-based population models, which model every inhabitant of a country as a statistically representative agent, have been gaining in popularity for decision support. This is mainly due to their high degree of flexibility with respect to their area of application. GEPOC ABM is one of these models. Developed in 2015, it is now a well-established decision support tool and has been successfully applied for a wide range of population-level research questions ranging from health-care to logistics. At least in part, this success is attributable to continuous improvement and development of new methods. While some of these are very application- or implementation-specific, others can be well transferred to other population models. The focus of the present work lies on the presentation of three selected transferable innovations. We illustrate an innovative time-update concept for the individual agents, a co-simulation-inspired simulation strategy, and a strategy for accurate model parametrisation. We describe these methods in a reproducible manner, explain their advantages and provide ideas on how they can be transferred to other population models.
comment: 20 pages, 6 figures, 1 table
STAIR: Stability criterion for Time-windowed Assignment and Internal adversarial influence in Routing and decision-making
A major limitation of existing routing algorithms for multi-agent systems is that they are designed without considering the potential presence of adversarial agents in the decision-making loop, which could lead to severe performance degradation in real-life applications where adversarial agents may be present. We study autonomous pickup-and-delivery routing problems in which adversarial agents launch coordinated denial-of-service attacks by spoofing their locations. This deception causes the central scheduler to assign pickup requests to adversarial agents instead of cooperative agents. Adversarial agents then choose not to service the requests with the goal of disrupting the operation of the system, leading to delays, cancellations, and potential instability in the routing policy. Policy stability in routing problems is typically defined as the cost of the policy being uniformly bounded over time, and it has been studied through two different lenses: queuing theory and reinforcement learning (RL), which are not well suited for routing with adversaries. In this paper, we propose a new stability criterion, STAIR, which is easier to analyze than queuing-theory-based stability in adversarial settings. Furthermore, STAIR does not depend on a chosen discount factor as is the case in discounted RL stability. STAIR directly links stability to desired operational metrics, like a finite number of rejected requests. This characterization is particularly useful in adversarial settings as it provides a metric for monitoring the effect of adversaries in the operation of the system. Furthermore, we demonstrate STAIR's practical relevance through simulations on real-world San Francisco mobility-on-demand data. We also identify a phenomenon of degenerate stability that arises in the adversarial routing problem, and we introduce time-window constraints in the decision-making algorithm to mitigate it.
comment: 9 pages, 2 figures
Cooperation Under Network-Constrained Communication
In this paper, we study cooperation in distributed games under network-constrained communication. Building on the framework of Monderer and Tennenholtz (1999), we derive a sufficient condition for cooperative equilibrium in settings where communication between agents is delayed by the underlying network topology. Each player deploys an agent at every location, and local interactions follow a Prisoner's Dilemma structure. We derive a sufficient condition that depends on the network diameter and the number of locations, and analyze extreme cases of instantaneous, delayed, and proportionally delayed communication. We also discuss the asymptotic case of scale-free communication networks, in which the network diameter grows sub-linearly in the number of locations. These insights clarify how communication latency and network design jointly determine the emergence of distributed cooperation.
TAMAS: Benchmarking Adversarial Risks in Multi-Agent LLM Systems ICML 2025
Large Language Models (LLMs) have demonstrated strong capabilities as autonomous agents through tool use, planning, and decision-making abilities, leading to their widespread adoption across diverse tasks. As task complexity grows, multi-agent LLM systems are increasingly used to solve problems collaboratively. However, safety and security of these systems remains largely under-explored. Existing benchmarks and datasets predominantly focus on single-agent settings, failing to capture the unique vulnerabilities of multi-agent dynamics and co-ordination. To address this gap, we introduce $\textbf{T}$hreats and $\textbf{A}$ttacks in $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{S}$ystems ($\textbf{TAMAS}$), a benchmark designed to evaluate the robustness and safety of multi-agent LLM systems. TAMAS includes five distinct scenarios comprising 300 adversarial instances across six attack types and 211 tools, along with 100 harmless tasks. We assess system performance across ten backbone LLMs and three agent interaction configurations from Autogen and CrewAI frameworks, highlighting critical challenges and failure modes in current multi-agent deployments. Furthermore, we introduce Effective Robustness Score (ERS) to assess the tradeoff between safety and task effectiveness of these frameworks. Our findings show that multi-agent systems are highly vulnerable to adversarial attacks, underscoring the urgent need for stronger defenses. TAMAS provides a foundation for systematically studying and improving the safety of multi-agent LLM systems.
comment: Accepted at ICML 2025 MAS Workshop. This version includes additional experiments and analysis
Novel Concepts for Agent-Based Population Modelling and Simulation: Updates from GEPOC ABM
In recent years, dynamic agent-based population models, which model every inhabitant of a country as a statistically representative agent, have been gaining in popularity for decision support. This is mainly due to their high degree of flexibility with respect to their area of application. GEPOC ABM is one of these models. Developed in 2015, it is now a well-established decision support tool and has been successfully applied for a wide range of population-level research questions ranging from health-care to logistics. At least in part, this success is attributable to continuous improvement and development of new methods. While some of these are very application- or implementation-specific, others can be well transferred to other population models. The focus of the present work lies on the presentation of three selected transferable innovations. We illustrate an innovative time-update concept for the individual agents, a co-simulation-inspired simulation strategy, and a strategy for accurate model parametrisation. We describe these methods in a reproducible manner, explain their advantages and provide ideas on how they can be transferred to other population models.
comment: 20 pages, 6 figures, 1 table
A differentiable model of supply-chain shocks NeurIPS 2025
Modelling how shocks propagate in supply chains is an increasingly important challenge in economics. Its relevance has been highlighted in recent years by events such as Covid-19 and the Russian invasion of Ukraine. Agent-based models (ABMs) are a promising approach for this problem. However, calibrating them is hard. We show empirically that it is possible to achieve speed ups of over 3 orders of magnitude when calibrating ABMs of supply networks by running them on GPUs and using automatic differentiation, compared to non-differentiable baselines. This opens the door to scaling ABMs to model the whole global supply network.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Systems and Scientific Machine Learning (EurIPS)
Multi-Agent Craftax: Benchmarking Open-Ended Multi-Agent Reinforcement Learning at the Hyperscale
Progress in multi-agent reinforcement learning (MARL) requires challenging benchmarks that assess the limits of current methods. However, existing benchmarks often target narrow short-horizon challenges that do not adequately stress the long-term dependencies and generalization capabilities inherent in many multi-agent systems. To address this, we first present \textit{Craftax-MA}: an extension of the popular open-ended RL environment, Craftax, that supports multiple agents and evaluates a wide range of general abilities within a single environment. Written in JAX, \textit{Craftax-MA} is exceptionally fast with a training run using 250 million environment interactions completing in under an hour. To provide a more compelling challenge for MARL, we also present \textit{Craftax-Coop}, an extension introducing heterogeneous agents, trading and more mechanics that require complex cooperation among agents for success. We provide analysis demonstrating that existing algorithms struggle with key challenges in this benchmark, including long-horizon credit assignment, exploration and cooperation, and argue for its potential to drive long-term research in MARL.
Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
Learning from Delayed Feedback in Games via Extra Prediction
This study raises and addresses the problem of time-delayed feedback in learning in games. Because learning in games assumes that multiple agents independently learn their strategies, a discrepancy in optimization often emerges among the agents. To overcome this discrepancy, the prediction of the future reward is incorporated into algorithms, typically known as Optimistic Follow-the-Regularized-Leader (OFTRL). However, the time delay in observing the past rewards hinders the prediction. Indeed, this study firstly proves that even a single-step delay worsens the performance of OFTRL from the aspects of social regret and convergence. This study proposes the weighted OFTRL (WOFTRL), where the prediction vector of the next reward in OFTRL is weighted $n$ times. We further capture an intuition that the optimistic weight cancels out this time delay. We prove that when the optimistic weight exceeds the time delay, our WOFTRL recovers the good performances that social regret is constant in general-sum normal-form games, and the strategies last-iterate converge to the Nash equilibrium in poly-matrix zero-sum games. The theoretical results are supported and strengthened by our experiments.
comment: 11 pages, 3 figures (main); 11 pages (appendix)
Centralized Reduction of Decentralized Stochastic Control Models and their weak-Feller Regularity
Decentralized stochastic control problems involving general state/measurement/action spaces are intrinsically difficult to study because of the inapplicability of standard tools from centralized (single-agent) stochastic control. In this paper, we address some of these challenges for decentralized stochastic control with standard Borel spaces under two different but tightly related information structures: the one-step delayed information sharing pattern (OSDISP), and the $K$-step periodic information sharing pattern (KSPISP). We will show that the one-step delayed and $K$-step periodic problems can be reduced to a centralized Markov Decision Process (MDP), generalizing prior results which considered finite, linear, or static models, by addressing several measurability and topological questions. We then provide sufficient conditions for the transition kernels of both centralized reductions to be weak-Feller. The existence and separated nature of optimal policies under both information structures are then established. The weak Feller regularity also facilitates rigorous approximation and learning theoretic results, as shown in the paper.
comment: A summary of the results was presented in CDC'24
Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation AAAI 2026
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.
comment: Accepted by AAAI 2026
Hybrid Training for Enhanced Multi-task Generalization in Multi-agent Reinforcement Learning NeurIPS 2025
In multi-agent reinforcement learning (MARL), achieving multi-task generalization to diverse agents and objectives presents significant challenges. Existing online MARL algorithms primarily focus on single-task performance, but their lack of multi-task generalization capabilities typically results in substantial computational waste and limited real-life applicability. Meanwhile, existing offline multi-task MARL approaches are heavily dependent on data quality, often resulting in poor performance on unseen tasks. In this paper, we introduce HyGen, a novel hybrid MARL framework, Hybrid Training for Enhanced Multi-Task Generalization, which integrates online and offline learning to ensure both multi-task generalization and training efficiency. Specifically, our framework extracts potential general skills from offline multi-task datasets. We then train policies to select the optimal skills under the centralized training and decentralized execution paradigm (CTDE). During this stage, we utilize a replay buffer that integrates both offline data and online interactions. We empirically demonstrate that our framework effectively extracts and refines general skills, yielding impressive generalization to unseen tasks. Comparative analyses on the StarCraft multi-agent challenge show that HyGen outperforms a wide range of existing solely online and offline methods.
comment: NeurIPS 2025 ARLET Workshop
Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation AAAI 2026
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.
comment: Accepted by AAAI 2026
Hybrid Training for Enhanced Multi-task Generalization in Multi-agent Reinforcement Learning NeurIPS 2025
In multi-agent reinforcement learning (MARL), achieving multi-task generalization to diverse agents and objectives presents significant challenges. Existing online MARL algorithms primarily focus on single-task performance, but their lack of multi-task generalization capabilities typically results in substantial computational waste and limited real-life applicability. Meanwhile, existing offline multi-task MARL approaches are heavily dependent on data quality, often resulting in poor performance on unseen tasks. In this paper, we introduce HyGen, a novel hybrid MARL framework, Hybrid Training for Enhanced Multi-Task Generalization, which integrates online and offline learning to ensure both multi-task generalization and training efficiency. Specifically, our framework extracts potential general skills from offline multi-task datasets. We then train policies to select the optimal skills under the centralized training and decentralized execution paradigm (CTDE). During this stage, we utilize a replay buffer that integrates both offline data and online interactions. We empirically demonstrate that our framework effectively extracts and refines general skills, yielding impressive generalization to unseen tasks. Comparative analyses on the StarCraft multi-agent challenge show that HyGen outperforms a wide range of existing solely online and offline methods.
comment: NeurIPS 2025 ARLET Workshop
Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
Learning from Delayed Feedback in Games via Extra Prediction
This study raises and addresses the problem of time-delayed feedback in learning in games. Because learning in games assumes that multiple agents independently learn their strategies, a discrepancy in optimization often emerges among the agents. To overcome this discrepancy, the prediction of the future reward is incorporated into algorithms, typically known as Optimistic Follow-the-Regularized-Leader (OFTRL). However, the time delay in observing the past rewards hinders the prediction. Indeed, this study firstly proves that even a single-step delay worsens the performance of OFTRL from the aspects of social regret and convergence. This study proposes the weighted OFTRL (WOFTRL), where the prediction vector of the next reward in OFTRL is weighted $n$ times. We further capture an intuition that the optimistic weight cancels out this time delay. We prove that when the optimistic weight exceeds the time delay, our WOFTRL recovers the good performances that social regret is constant in general-sum normal-form games, and the strategies last-iterate converge to the Nash equilibrium in poly-matrix zero-sum games. The theoretical results are supported and strengthened by our experiments.
comment: 11 pages, 3 figures (main); 11 pages (appendix)
Centralized Reduction of Decentralized Stochastic Control Models and their weak-Feller Regularity
Decentralized stochastic control problems involving general state/measurement/action spaces are intrinsically difficult to study because of the inapplicability of standard tools from centralized (single-agent) stochastic control. In this paper, we address some of these challenges for decentralized stochastic control with standard Borel spaces under two different but tightly related information structures: the one-step delayed information sharing pattern (OSDISP), and the $K$-step periodic information sharing pattern (KSPISP). We will show that the one-step delayed and $K$-step periodic problems can be reduced to a centralized Markov Decision Process (MDP), generalizing prior results which considered finite, linear, or static models, by addressing several measurability and topological questions. We then provide sufficient conditions for the transition kernels of both centralized reductions to be weak-Feller. The existence and separated nature of optimal policies under both information structures are then established. The weak Feller regularity also facilitates rigorous approximation and learning theoretic results, as shown in the paper.
comment: A summary of the results was presented in CDC'24
Systems and Control (CS)
A Tilting-Rotor Enhanced Quadcopter Fault-Tolerant Control Based on Non-Linear Model Predictive Control
This paper proposes a fault-tolerant control strategy based on a tilt-rotor quadcopter prototype, utilizing nonlinear model predictive control to maintain both attitude and position stability in the event of rotor failure. The control strategy employs an extended state observer to predict model deviations following a fault and adjusts the original model in the subsequent time step, thereby achieving active fault-tolerant control. The proposed method is evaluated through simulations and compared to both traditional quadcopter and tilt-rotor quadcopter without observer under identical conditions. The results demonstrate that the tilt-rotor quadcopter can maintain position control without sacrificing yaw stability, unlike traditional quadcopters.
Adversarially Robust Multitask Adaptive Control
We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
Coherency Control in Power Systems
This paper proposes a coherency control strategy for Inverter-Based Resources (IBRs) to establish coherence among power system devices. Using the equivalence of the Complex Frequency (CF) of the injected currents as the definition for coherency among devices, the control enforces an output current with a proportional magnitude and a constant phase shift relative to a reference. This formulation makes the control technology-agnostic, enabling coherency with any type of resource. Case studies based on the two-area and IEEE 39-bus systems demonstrate the controller's potential to improve damping and overall dynamic behavior. The paper further evaluates practical implementation aspects including delay/noise sensitivity and the trade-off between oscillation mitigation and disturbance propagation. This work establishes coherency as a viable direct control objective for IBRs in modern power systems.
ETHOS: A Robotic Encountered-Type Haptic Display for Social Interaction in Virtual Reality
We present ETHOS (Encountered-Type Haptics for On-demand Social Interaction), a dynamic encountered-type haptic display (ETHD) that enables natural physical contact in virtual reality (VR) during social interactions such as handovers, fist bumps, and high-fives. The system integrates a torque-controlled robotic manipulator with interchangeable passive props (silicone hand replicas and a baton), marker-based physical-virtual registration via a ChArUco board, and a safety monitor that gates motion based on the user's head and hand pose. We introduce two control strategies: (i) a static mode that presents a stationary prop aligned with its virtual counterpart, consistent with prior ETHD baselines, and (ii) a dynamic mode that continuously updates prop position by exponentially blending an initial mid-point trajectory with real-time hand tracking, generating a unique contact point for each interaction. Bench tests show static colocation accuracy of 5.09 +/- 0.94 mm, while user interactions achieved temporal alignment with an average contact latency of 28.53 +/- 31.21 ms across all interaction and control conditions. These results demonstrate the feasibility of recreating socially meaningful haptics in VR. By incorporating essential safety and control mechanisms, ETHOS establishes a practical foundation for high-fidelity, dynamic interpersonal interactions in virtual environments.
comment: 8 pages
SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
Efficient CNN Inference on Ultra-Low-Power MCUs via Saturation-Aware Convolution
Deploying lightweight CNN inference tasks on ultra-low-power MCUs is often not limited by space constraint, thanks to the compact size of models, yet inference latency is crucial for preserving energy. We reveal that quantized CNN inference on ultra-low-power MCUs executes unnecessary computations in neurons that produce saturated output values: often times, these neurons still produce the correct output value without fully completing the computation, since the neuron value is too extreme and is eventually systematically clamped at the boundaries allowed by the neuron. We show that with carefully designed condition checks, it is possible to identify and skip these unnecessary computations without impacting the neuron output. Based on this, we present saturation-aware convolution: an inference technique whereby computations in convolution kernels are executed in an altered order to induce earlier saturation, and saturation checks are inserted to omit unnecessary computations. We integrate our implementation into MCUNet's TinyEngine, the state-of-the-art neural network code generation and inference framework, and conduct experiments on a Cortex-M0+ MCU. The result based on 7 open-source CNN models displays up to 24% inference time saving, with strictly zero impact on neural network accuracy.
Learning Dynamics from Input-Output Data with Hamiltonian Gaussian Processes
Embedding non-restrictive prior knowledge, such as energy conservation laws, in learning-based approaches is a key motive to construct physically consistent models from limited data, relevant for, e.g., model-based control. Recent work incorporates Hamiltonian dynamics into Gaussian Process (GP) regression to obtain uncertainty-quantifying models that adhere to the underlying physical principles. However, these works rely on velocity or momentum data, which is rarely available in practice. In this paper, we consider dynamics learning with non-conservative Hamiltonian GPs, and address the more realistic problem setting of learning from input-output data. We provide a fully Bayesian scheme for estimating probability densities of unknown hidden states, of GP hyperparameters, as well as of structural hyperparameters, such as damping coefficients. Considering the computational complexity of GPs, we take advantage of a reduced-rank GP approximation and leverage its properties for computationally efficient prediction and training. The proposed method is evaluated in a nonlinear simulation case study and compared to a state-of-the-art approach that relies on momentum measurements.
comment: 17 pages, 5 figures
Privacy-Preserving Cramér-Rao Lower Bound
This paper establishes the privacy-preserving Cram\'er-Rao (CR) lower bound theory, characterizing the fundamental limit of identification accuracy under privacy constraint. An identifiability criterion under privacy constraint is derived by using Fisher information matrix as the privacy metric. In the identifiable case, the privacy-preserving CR lower bound is established and its attainability is demonstrated, thereby ensuring the existence of the privacy-preserving Fisher information matrix with explicit expression. Then, the privacy-preserving CR lower bound theory is extended to the multi-sensor multi-measurement system. Specifically, the additivity principle of privacy-preserving Fisher information matrices across both spatial and temporal dimensions is established, building a relationship between privacy-preserving CR lower bounds for the multi-sensor multi-measurement system and its subsystems. Using this additivity principle, distributed identification algorithms capable of achieving the privacy-preserving CR lower bound are further proposed. Numerical examples are provided to demonstrate the privacy-preserving CR lower bound and show the effectiveness of the proposed algorithms.
Force-Safe Environment Maps and Real-Time Detection for Soft Robot Manipulators
Soft robot manipulators have the potential for deployment in delicate environments to perform complex manipulation tasks. However, existing obstacle detection and avoidance methods do not consider limits on the forces that manipulators may exert upon contact with delicate obstacles. This work introduces a framework that maps force safety criteria from task space (i.e. positions along the robot's body) to configuration space (i.e. the robot's joint angles) and enables real-time force safety detection. We incorporate limits on allowable environmental contact forces for given task-space obstacles, and map them into configuration space (C-space) through the manipulator's forward kinematics. This formulation ensures that configurations classified as safe are provably below the maximum force thresholds, thereby allowing us to determine force-safe configurations of the soft robot manipulator in real-time. We validate our approach in simulation and hardware experiments on a two-segment pneumatic soft robot manipulator. Results demonstrate that the proposed method accurately detects force safety during interactions with deformable obstacles, thereby laying the foundation for real-time safe planning of soft manipulators in delicate, cluttered environments.
Voltage-Independent Active-Power Droop Coefficient for Enhanced Andronov-Hopf Oscillator Grid-Forming Inverters
In recent years, virtual oscillator control, particularly the Andronov-Hopf oscillator (AHO), has received widespread attention for controlling grid-forming (GFM) inverters due to their superior dynamic response. However, traditional AHO systems feature droop coefficients that are dependent on the oscillator voltage amplitude, limiting their ability to maintain consistent grid support during disturbances and resulting in power-sharing inaccuracies. This paper presents an enhanced AHO (EAHO) strategy, where the active power droop coefficient is no longer a function of the voltage amplitude and retains the key dynamic benefits of the original AHO. The EAHO improves both frequency and voltage support and ensures accurate power sharing with other GFM inverters in grid-connected and stand-alone modes. Extensive comparative and small-signal analyses, alongside experimental validation on 2.5 kVA single-phase inverters, confirm the EAHO's improved steady-state performance, enhanced active and reactive power support, and stable operation under varying grid conditions.
comment: 10 pages
Neural Operators for Power Systems: A Physics-Informed Framework for Modeling Power System Components SC
Modern power systems require fast and accurate dynamic simulations for stability assessment, digital twins, and real-time control, but classical ODE solvers are often too slow for large-scale or online applications. We propose a neural-operator framework for surrogate modeling of power system components, using Deep Operator Networks (DeepONets) to learn mappings from system states and time-varying inputs to full trajectories without step-by-step integration. To enhance generalization and data efficiency, we introduce Physics-Informed DeepONets (PI-DeepONets), which embed the residuals of governing equations into the training loss. Our results show that DeepONets, and especially PI-DeepONets, achieve accurate predictions under diverse scenarios, providing over 30 times speedup compared to high-order ODE solvers. Benchmarking against Physics-Informed Neural Networks (PINNs) highlights superior stability and scalability. Our results demonstrate neural operators as a promising path toward real-time, physics-aware simulation of power system dynamics.
comment: Submitted to PSCC 2026 (under review)
Predicting and forecasting reactivity and flux using long short-term memory models in pebble bed reactors during run-in
Pebble bed reactor (PBR) operation presents unique advantages and challenges due to the ability to continuously change the fuel mixture and excess reactivity. Each operation parameter affects reactivity on a different timescale. For example, fuel insertion changes may take months to fully propagate, whereas control rod movements have immediate effects. In-core measurements are further limited by the high temperatures, intense neutron flux, and dynamic motion of the fuel bed. In this study, long short-term memory (LSTM) networks are trained to predict reactivity, flux profiles, and power profiles as functions of operating history and synthetic batch-level pebble measurements, such as discharge burnup distributions. The model's performance is evaluated using unseen temporal data, achieving an $R^2$ of 0.9914 on the testing set. The capability of the network to forecast reactivity responses to future operational changes is also examined, and its application for optimizing reactor running-in procedures is explored.
comment: 13 pages
Evaluating the Impact of a Load Admittance Approximation in Transient Stability-Constrained Optimal Power Flow
The Transient Stability-Constrained Optimal Power Flow (TSC-OPF) incorporates dynamic stability constraints into the OPF formulation to ensure secure and economical operation under disturbances. While discretizing system dynamics enables the use of nonlinear programming techniques, it significantly increases computational burden. To enhance scalability, many studies simplify the network by representing loads as constant admittances, allowing the use of Kron reduction. However, computing the Kron reduction outside the optimization requires a voltage-based assumption to convert loads from constant power to constant admittance. This paper proposes a practical voltage-based load admittance approximation and evaluates the errors it may introduce in rotor angle and speed deviation trajectories. Case studies on the WECC 9-bus system show that the proposed approach reproduces rotor dynamics consistent with time-domain simulations during the first few seconds while considerably reducing implementation effort and mitigating convergence issues. The proposed framework thus offers a simple and effective strategy for scalable TSC-OPF implementations.
comment: 1-5 pages. submitted to PESGM 2026, Canada
TAPOM: Task-Space Topology-Guided Motion Planning for Manipulating Elongated Object in Cluttered Environments
Robotic manipulation in complex, constrained spaces is vital for widespread applications but challenging, particularly when navigating narrow passages with elongated objects. Existing planning methods often fail in these low-clearance scenarios due to the sampling difficulties or the local minima. This work proposes Topology-Aware Planning for Object Manipulation (TAPOM), which explicitly incorporates task-space topological analysis to enable efficient planning. TAPOM uses a high-level analysis to identify critical pathways and generate guiding keyframes, which are utilized in a low-level planner to find feasible configuration space trajectories. Experimental validation demonstrates significantly high success rates and improved efficiency over state-of-the-art methods on low-clearance manipulation tasks. This approach offers broad implications for enhancing manipulation capabilities of robots in complex real-world environments.
Design and Implementation of a Cloud Computing Security Assessment Model Based on Hierarchical Analysis and Fuzzy Comprehensive Evaluation
At the rapid pace of technological evolution, the emerging cloud computing technology has promoted the digitalization and business innovation of the enterprise in all industries due to its advantages of data storage and service mode. Nevertheless, given the swift progress in cloud computing services, the security problems have gradually appeared. The data breach and cyber attack happen frequently, which cause huge losses to enterprises and individuals. These issues have gradually become important constraints for the popularization of cloud computingTo tackle the problems outlined above, this paper constructs a security evaluation framework for cloud computing services, integrating the Analytic Hierarchy Process (AHP) with the Fuzzy Comprehensive Evaluation method. By applying this scientific and systematic methodology, the framework enables enterprises and individuals to better apprehend the security posture of cloud services, thereby fostering the healthy evolution of the entire industry.
Strategic Decision-Making Under Uncertainty through Bi-Level Game Theory and Distributionally Robust Optimization
In strategic scenarios where decision-makers operate at different hierarchical levels, traditional optimization methods are often inadequate for handling uncertainties from incomplete information or unpredictable external factors. To fill this gap, we introduce a mathematical framework that integrates bi-level game theory with distributionally robust optimization (DRO), particularly suited for complex network systems. Our approach leverages the hierarchical structure of bi-level games to model leader-follower interactions while incorporating distributional robustness to guard against worst-case probability distributions. To ensure computational tractability, the Karush-Kuhn-Tucker (KKT) conditions are used to transform the bi-level challenge into a more manageable single-level model, and the infinite-dimensional DRO problem is reformulated into a finite equivalent. We propose a generalized algorithm to solve this integrated model. Simulation results validate our framework's efficacy, demonstrating that under high uncertainty, the proposed model achieves up to a 22\% cost reduction compared to traditional stochastic methods while maintaining a service level of over 90\%. This highlights its potential to significantly improve decision quality and robustness in networked systems such as transportation and communication networks.
IoT and Predictive Maintenance in Industrial Engineering: A Data-Driven Approach
Fourth Industrial Revolution has brought in a new era of smart manufacturing, wherein, application of Internet of Things , and data-driven methodologies is revolutionizing the conventional maintenance. With the help of real-time data from the IoT and machine learning algorithms, predictive maintenance allows industrial systems to predict failures and optimize machines life. This paper presents the synergy between the Internet of Things and predictive maintenance in industrial engineering with an emphasis on the technologies, methodologies, as well as data analytics techniques, that constitute the integration. A systematic collection, processing, and predictive modeling of data is discussed. The outcomes emphasize greater operational efficiency, decreased downtime, and cost-saving, which makes a good argument as to why predictive maintenance should be implemented in contemporary industries.
comment: 9 Pages, 4 figures
Computationally Efficient Spline-Based Modeling of DER Dynamics for Voltage Stability in Active Distribution Networks
The increasing integration of Distributed Energy Resources (DERs) into power systems necessitates the accurate representation of their dynamic behavior at the transmission level. Traditional electromagnetic transient models (EMT), while effective, face scalability challenges due to their reliance on detailed system information. Data-driven approaches, such as System Identification (SysID), offer a promising alternative by modeling system dynamics without detailed system knowledge. However, SysID and similar methods are computationally intensive, requiring the computation of complex ordinary differential equations (ODEs) or transfer functions estimation. This makes them less effective for real-time operation. We therefore propose a novel data-driven approach that simplifies the modeling of DERs dynamics by leveraging B-splines to transform discrete system data into continuous differentiable functions. This enables the estimation of lower order linear ordinary differential equations with simple linear regression to represent the underlying dynamics at a very low computational cost. Furthermore, the extracted dynamic equations are discretized by the backward Euler method for potential integration into discrete-time power dispatch models. Validation results indicate a goodness-of-fit (GoF) of 98.74%, comparable to the 99.03% GoF of the SysID method, yet, 4.8 times faster. Our proposed model's execution time of less than one minute makes it more suitable for real-time applications in power system operations.
Zero-Shot Function Encoder-Based Differentiable Predictive Control
We introduce a differentiable framework for zero-shot adaptive control over parametric families of nonlinear dynamical systems. Our approach integrates a function encoder-based neural ODE (FE-NODE) for modeling system dynamics with a differentiable predictive control (DPC) for offline self-supervised learning of explicit control policies. The FE-NODE captures nonlinear behaviors in state transitions and enables zero-shot adaptation to new systems without retraining, while the DPC efficiently learns control policies across system parameterizations, thus eliminating costly online optimization common in classical model predictive control. We demonstrate the efficiency, accuracy, and online adaptability of the proposed method across a range of nonlinear systems with varying parametric scenarios, highlighting its potential as a general-purpose tool for fast zero-shot adaptive control.
Adaptive Time Budgets for Safe and Comfortable Vehicle Control Transition in Conditionally Automated Driving
Conditionally automated driving requires drivers to resume vehicle control promptly when automation reaches its operational limits. Ensuring smooth vehicle control transitions is critical for the safety and efficiency of mixed-traffic transportation systems, where complex interactions and variable traffic behaviors pose additional challenges. This study addresses this challenge by introducing an adaptive time budget framework that provides drivers with sufficient time to complete takeovers both safely and comfortably across diverse scenarios. We focus in particular on the takeover buffer, that is, the extra time available after drivers consciously resume control to complete evasive maneuvers. A driving simulator experiment is conducted to evaluate the influence of different takeover buffer lengths on safety-related indicators (minimum time-to-collision, maximum deceleration, and steering wheel angle) and subjective assessments (perceived time sufficiency, perceived risk, and performance satisfaction). Results show that (i) takeover buffers of about 5-6 seconds consistently lead to optimal safety and comfort; and (ii) drivers prefer relatively stable takeover buffers across varying traffic densities and n-back tasks. This study introduces an adaptive time budget framework that dynamically allocates transition time by incorporating a predicted takeover time and a preferred takeover buffer (piecewise function). This can serve as an important first step toward providing drivers with sufficient time to resume vehicle control across diverse scenarios, which needs to be validated in more diverse and real-world driving contexts. By aligning the provided time budget with driver needs under specific circumstances, the adaptive framework can improve reliability of control transitions, facilitate human-centered automated driving, reduce crash risk, and maintain overall traffic efficiency.
comment: 10 pages, 6 figures
Controller-Light CI/CD with Jenkins: Remote Container Builds and Automated Artifact Delivery
Traditional Jenkins installations often perform resource-intensive builds directly on the controller, which can overload system resources and decrease reliability. This paper presents a controller-light CI/CD framework in which Jenkins runs as a containerized controller with persistent volumes, delegating heavy build and packaging operations to a remote Docker host. The controller container maintains secure SSH connections to remote compute nodes and focuses solely on orchestration and reporting. Atomic deployments with time-stamped backups, containerized build environments, immutable artifact packaging, and automatic notifications are all integrated into the system. Experimental evaluation shows reduced CPU and RAM usage on the controller, faster build throughput, and lower artifact delivery latency. For small and medium-sized DevOps organizations looking for scalable automation without adding orchestration complexity, this method offers a repeatable, low-maintenance CI/CD pipeline.
STAIR: Stability criterion for Time-windowed Assignment and Internal adversarial influence in Routing and decision-making
A major limitation of existing routing algorithms for multi-agent systems is that they are designed without considering the potential presence of adversarial agents in the decision-making loop, which could lead to severe performance degradation in real-life applications where adversarial agents may be present. We study autonomous pickup-and-delivery routing problems in which adversarial agents launch coordinated denial-of-service attacks by spoofing their locations. This deception causes the central scheduler to assign pickup requests to adversarial agents instead of cooperative agents. Adversarial agents then choose not to service the requests with the goal of disrupting the operation of the system, leading to delays, cancellations, and potential instability in the routing policy. Policy stability in routing problems is typically defined as the cost of the policy being uniformly bounded over time, and it has been studied through two different lenses: queuing theory and reinforcement learning (RL), which are not well suited for routing with adversaries. In this paper, we propose a new stability criterion, STAIR, which is easier to analyze than queuing-theory-based stability in adversarial settings. Furthermore, STAIR does not depend on a chosen discount factor as is the case in discounted RL stability. STAIR directly links stability to desired operational metrics, like a finite number of rejected requests. This characterization is particularly useful in adversarial settings as it provides a metric for monitoring the effect of adversaries in the operation of the system. Furthermore, we demonstrate STAIR's practical relevance through simulations on real-world San Francisco mobility-on-demand data. We also identify a phenomenon of degenerate stability that arises in the adversarial routing problem, and we introduce time-window constraints in the decision-making algorithm to mitigate it.
comment: 9 pages, 2 figures
Lite VLA: Efficient Vision-Language-Action Control on CPU-Bound Edge Robots
The deployment of artificial intelligence models at the edge is increasingly critical for autonomous robots operating in GPS-denied environments where local, resource-efficient reasoning is essential. This work demonstrates the feasibility of deploying small Vision-Language Models (VLMs) on mobile robots to achieve real-time scene understanding and reasoning under strict computational constraints. Unlike prior approaches that separate perception from mobility, the proposed framework enables simultaneous movement and reasoning in dynamic environments using only on-board hardware. The system integrates a compact VLM with multimodal perception to perform contextual interpretation directly on embedded hardware, eliminating reliance on cloud connectivity. Experimental validation highlights the balance between computational efficiency, task accuracy, and system responsiveness. Implementation on a mobile robot confirms one of the first successful deployments of small VLMs for concurrent reasoning and mobility at the edge. This work establishes a foundation for scalable, assured autonomy in applications such as service robotics, disaster response, and defense operations.
Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
Reconfigurable Earth Observation Satellite Scheduling Problem
Earth observation satellites (EOSs) play a pivotal role in capturing and analyzing planetary phenomena, ranging from natural disasters to societal development. The EOS scheduling problem (EOSSP), which optimizes the schedule of EOSs, is often solved with respect to nadir-directional EOS systems, thus restricting the observation time of targets and, consequently, the effectiveness of each EOS. This paper leverages state-of-the-art constellation reconfigurability to develop the reconfigurable EOS scheduling problem (REOSSP), wherein EOSs are assumed to be maneuverable, forming a more optimal constellation configuration at multiple opportunities during a schedule. This paper develops a novel mixed-integer linear programming formulation for the REOSSP to optimally solve the scheduling problem for given parameters. Additionally, since the REOSSP can be computationally expensive for large-scale problems, a rolling horizon procedure (RHP) solution method is developed. The performance of the REOSSP is benchmarked against the EOSSP, which serves as a baseline, through a set of random instances where problem characteristics are varied and a case study in which Hurricane Sandy is used to demonstrate realistic performance. These experiments demonstrate the value of constellation reconfigurability in its application to the EOSSP, yielding solutions that improve performance, while the RHP enhances computational runtime for large-scale REOSSP instances.
comment: 43 pages, Journal of Aerospace Information Systems (Published)
Coordinated Control of Autonomous Vehicles for Traffic Density Reduction at a Signalized Junction: An MPC Approach
The effective and safe management of traffic is a key issue due to the rapid advancement of the urban transportation system. Connected autonomous vehicles (CAVs) possess the capability to connect with each other and adjacent infrastructure, presenting novel opportunities for enhancing traffic flow and coordination. This work proposes a dual-mode model predictive control (MPC) architecture that tackles two interrelated issues: mitigating traffic density at signalized junctions and facilitating seamless, cooperative lane changes in high-density traffic conditions. The objective of this work is to facilitate responsive decision-making for CAVs, thereby enhancing the efficiency and safety of urban mobility. Moreover, we ensure recursive feasibility and convergence of the proposed MPC scheme by the integration of an online-calculated maximal control invariant terminal set. Finally, the efficacy of the proposed approach is validated through numerical simulation.
Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem
Motivated by engineering applications such as resource allocation in networks and inventory systems, we consider average-reward Reinforcement Learning with unbounded state space and reward function. Recent works studied this problem in the actor-critic framework and established finite sample bounds assuming access to a critic with certain error guarantees. We complement their work by studying Temporal Difference (TD) learning with linear function approximation and establishing finite-time bounds with the optimal $\mathcal{O}\left(1/\epsilon^2\right)$ sample complexity. These results are obtained using the following general-purpose theorem for non-linear Stochastic Approximation (SA). Suppose that one constructs a Lyapunov function for a non-linear SA with certain drift condition. Then, our theorem establishes finite-time bounds when this SA is driven by unbounded Markovian noise under suitable conditions. It serves as a black box tool to generalize sample guarantees on SA from i.i.d. or martingale difference case to potentially unbounded Markovian noise. The generality and the mild assumption of the setup enables broad applicability of our theorem. We illustrate its power by studying two more systems: (i) We improve upon the finite-time bounds of $Q$-learning by tightening the error bounds and also allowing for a larger class of behavior policies. (ii) We establish the first ever finite-time bounds for distributed stochastic optimization of high-dimensional smooth strongly convex function using cyclic block coordinate descent.
Online Learning of Nonlinear Parametric Models under Non-smooth Regularization using EKF and ADMM
This paper proposes a novel combination of extended Kalman filtering (EKF) with the alternating direction method of multipliers (ADMM) for learning parametric nonlinear models online under non-smooth regularization terms, including l1 and l0 penalties and bound constraints on model parameters. For the case of linear time-varying models and non-smoothconvex regularization terms, we provide a sublinear regret bound that ensures the proper behavior of the online learning strategy. The approach is computationally efficient for a wide range of regularization terms, which makes it appealing for its use in embedded control applications for online model adaptation. We show the performance of the proposed method in three simulation examples, highlighting its effectiveness compared to other batch and online algorithms.
comment: 8 pages, 5 figures
An overview of Koopman-based control: From error bounds to closed-loop guarantees
Controlling nonlinear dynamical systems remains a central challenge in a wide range of applications, particularly when accurate first-principle models are unavailable. Data-driven approaches offer a promising alternative by designing controllers directly from observed trajectories. A wide range of data-driven methods relies on the Koopman-operator framework that enables linear representations of nonlinear dynamics via lifting into higher-dimensional observable spaces. Finite-dimensional approximations, such as extended dynamic mode decomposition (EDMD) and its controlled variants, make prediction and feedback control tractable but introduce approximation errors that must be accounted for to provide rigorous closed-loop guarantees. This survey provides a systematic overview of Koopman-based control, emphasizing the connection between data-driven surrogate models, approximation errors, controller design, and closed-loop guarantees. We review theoretical foundations, error bounds, and both linear and bilinear EDMD-based control schemes, highlighting robust strategies that ensure stability and performance. Finally, we discuss open challenges and future directions at the interface of operator theory, approximation theory, and nonlinear control.
comment: Accepted for publication in Annual Reviews in Control
Robust targeted exploration for systems with non-stochastic disturbances
In this paper, we introduce a novel targeted exploration strategy designed specifically for uncertain linear time-invariant systems with energy-bounded disturbances, i.e., without making any assumptions on the distribution of the disturbances. We use classical results characterizing the set of non-falsified parameters consistent with energy-bounded disturbances. We derive a semidefinite program which computes an exploration strategy that guarantees a desired accuracy of the parameter estimate. This design is based on sufficient conditions on the spectral content of the exploration data that robustly account for initial parametric uncertainty. Finally, we highlight the applicability of the exploration strategy through a numerical example involving a nonlinear system.
comment: Submitted to Automatica
Predictive Compensation in Finite-Horizon LQ Games under Gauss-Markov Deviations
This paper develops a predictive compensation framework for finite-horizon, discrete-time linear quadratic dynamic games subject to Gauss-Markov execution deviations from feedback Nash strategies. One player's control is corrupted by temporally correlated stochastic perturbations modeled as a first-order autoregressive (AR(1)) process, while the opposing player has causal access to past deviations and employs a predictive feedforward strategy that anticipates their future effect. We derive closed-form recursions for mean and covariance propagation under the resulting perturbed closed loop, establish boundedness and sensitivity properties of the equilibrium trajectory, and characterize the reduction in expected cost achieved by optimal predictive compensation. Numerical experiments corroborate the theoretical results and demonstrate performance gains relative to nominal Nash feedback across a range of disturbance persistence levels.
comment: 11 pages, 4 Figures, 1 Table, 1 Algorithm. This work has been submitted to Automatica for possible publication
Joint Bundle Design and Pricing for Extended Warranty Providers Servicing Multi-Tier Products
Extended warranties (EWs) constitute a significant source of revenue for capital-intensive products. Such products comprise multiple subsystems, enabling flexible EW design. For example, providers can bundle tailored sets of subsystems within different EW contracts, facilitating the creation of a service menu with differentiated warranty options. From the perspective of a third-party EW provider servicing multi-tier products, we develop a novel model to jointly optimize bundle design and pricing for EW options in order to maximize the expected total profit. Specifically, the problem involves determining which contracts-each containing a differentiated bundle of subsystems-to recommend for the multi-tier products and identifying the appropriate price for each contract. As the complexity of the joint optimization problem increases exponentially with the number of subsystems, we devise two solution approaches. The first approach leverages a mixed-integer second-order cone programming reformulation, which guarantees optimality but is applicable only for a small number of subsystems. The second approach utilizes an iterative two-step process, offering enhanced computational efficiency for scenarios involving a large number of subsystems. Numerical experiments validate the effectiveness of our model, particularly in scenarios characterized by high failure probabilities and a large number of subsystems.
comment: 50 pages, 3 figures, and 12 tables
Soft Switching Expert Policies for Controlling Systems with Uncertain Parameters
This paper proposes a simulation-based reinforcement learning algorithm for controlling systems with uncertain and varying system parameters. While simulators are useful for safely learning control policies for physical systems, mitigating the reality gap remains a major challenge. To address the challenge, we propose a two-stage algorithm. In the first stage, multiple control policies are learned for systems with different parameters in a simulator. In the second stage, for a real system, the control policies learned in the first stage are smoothly switched using an online convex optimization algorithm based on observations. Our proposed algorithm is demonstrated through numerical experiments.
comment: 6 pages, 8 figures. Submitted to an International Conference
Analytical Models of Frequency and Voltage in Large-Scale All-Inverter Power Systems
Low-order frequency response models for power systems have a decades-long history in optimization and control problems such as unit commitment, economic dispatch, and wide-area control. With a few exceptions, these models are built upon the Newtonian mechanics of synchronous generators, assuming that the frequency dynamics across a system are approximately homogeneous, and assume the dynamics of nodal voltages for most operating conditions are negligible, and thus are not directly computed at all buses. As a result, the use of system frequency models results in the systematic underestimation of frequency minimum nadir and maximum RoCoF, and provides no insight into the reactive power-voltage dynamics. This paper proposes a low-order model of both frequency and voltage response in grid-forming inverter-dominated power systems. The proposed model accounts for spatial-temporal variations in frequency and voltage behavior across a system and as a result, demonstrates the heterogeneity of frequency response in future renewable power systems. Electromagnetic transient (EMT) simulations are used to validate the utility, accuracy, and computational efficiency of these models, setting the basis for them to serve as fast, scalable alternatives to EMT simulation, especially when dealing with very large-scale systems, for both planning and operational studies.
A Unified Approach to Enforce Non-Negativity Constraint in Neural Network Approximation for Optimal Voltage Regulation
Power system voltage regulation is crucial to maintain power quality while integrating intermittent renewable resources in distribution grids. However, the system model on the grid edge is often unknown, making it difficult to model physical equations for optimal control. Therefore, previous work proposes structured data-driven methods like input convex neural networks (ICNN) for "optimal" control without relying on a physical model. While ICNNs offer theoretical guarantees based on restrictive assumptions of non-negative neural network parameters, can one improve the approximation power with an extra step on negative duplication of inputs? We show that such added mirroring step fails to improve accuracy, as a linear combination of the original input and duplicated input is equivalent to a linear operation of ICNN's input without duplication. While this design can not improve performance, we propose a unified approach to embed the non-negativity constraint as a regularized optimization of the neural network, contrary to the existing methods, which added a loosely integrated second step for post-processing on parameter negation. Our integration directly ties back-propagation to simultaneously minimizing the approximation error while enforcing the convexity constraints. Numerical experiments validate the issues of the mirroring method and show that our integrated objective can avoid problems such as unstable training and non-convergence existing in other methods for optimal control. (preprint)
comment: Submitted to the 58th Hawaii International Conference on System Sciences (HICSS-58)
TIMESAFE: Timing Interruption Monitoring and Security Assessment for Fronthaul Environments
5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthaul (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Opinion Clustering under the Friedkin-Johnsen Model: Agreement in Disagreement
The convergence of opinions in the Friedkin-Johnsen (FJ) framework is well studied, but the topological conditions leading to opinion clustering remain less explored. To bridge this gap, we examine the role of topology in the emergence of opinion clusters within the network. The key contribution of the paper lies in the introduction of the notion of topologically prominent agents, referred to as Locally Topologically Persuasive (LTP) agents. Interestingly, each LTP agent is associated with a unique set of (non-influential) agents in its vicinity. Using them, we present conditions to obtain opinion clusters in the FJ framework in any arbitrarily connected digraph. A key advantage of the proposed result is that the resulting opinion clusters are independent of the edge weights and the stubbornness of the agents. Finally, we demonstrate using simulation results that, by suitably placing LTP agents, one can design networks that achieve any desired opinion clustering.
Systems and Control (EESS)
A Tilting-Rotor Enhanced Quadcopter Fault-Tolerant Control Based on Non-Linear Model Predictive Control
This paper proposes a fault-tolerant control strategy based on a tilt-rotor quadcopter prototype, utilizing nonlinear model predictive control to maintain both attitude and position stability in the event of rotor failure. The control strategy employs an extended state observer to predict model deviations following a fault and adjusts the original model in the subsequent time step, thereby achieving active fault-tolerant control. The proposed method is evaluated through simulations and compared to both traditional quadcopter and tilt-rotor quadcopter without observer under identical conditions. The results demonstrate that the tilt-rotor quadcopter can maintain position control without sacrificing yaw stability, unlike traditional quadcopters.
Adversarially Robust Multitask Adaptive Control
We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
Coherency Control in Power Systems
This paper proposes a coherency control strategy for Inverter-Based Resources (IBRs) to establish coherence among power system devices. Using the equivalence of the Complex Frequency (CF) of the injected currents as the definition for coherency among devices, the control enforces an output current with a proportional magnitude and a constant phase shift relative to a reference. This formulation makes the control technology-agnostic, enabling coherency with any type of resource. Case studies based on the two-area and IEEE 39-bus systems demonstrate the controller's potential to improve damping and overall dynamic behavior. The paper further evaluates practical implementation aspects including delay/noise sensitivity and the trade-off between oscillation mitigation and disturbance propagation. This work establishes coherency as a viable direct control objective for IBRs in modern power systems.
ETHOS: A Robotic Encountered-Type Haptic Display for Social Interaction in Virtual Reality
We present ETHOS (Encountered-Type Haptics for On-demand Social Interaction), a dynamic encountered-type haptic display (ETHD) that enables natural physical contact in virtual reality (VR) during social interactions such as handovers, fist bumps, and high-fives. The system integrates a torque-controlled robotic manipulator with interchangeable passive props (silicone hand replicas and a baton), marker-based physical-virtual registration via a ChArUco board, and a safety monitor that gates motion based on the user's head and hand pose. We introduce two control strategies: (i) a static mode that presents a stationary prop aligned with its virtual counterpart, consistent with prior ETHD baselines, and (ii) a dynamic mode that continuously updates prop position by exponentially blending an initial mid-point trajectory with real-time hand tracking, generating a unique contact point for each interaction. Bench tests show static colocation accuracy of 5.09 +/- 0.94 mm, while user interactions achieved temporal alignment with an average contact latency of 28.53 +/- 31.21 ms across all interaction and control conditions. These results demonstrate the feasibility of recreating socially meaningful haptics in VR. By incorporating essential safety and control mechanisms, ETHOS establishes a practical foundation for high-fidelity, dynamic interpersonal interactions in virtual environments.
comment: 8 pages
SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
Efficient CNN Inference on Ultra-Low-Power MCUs via Saturation-Aware Convolution
Deploying lightweight CNN inference tasks on ultra-low-power MCUs is often not limited by space constraint, thanks to the compact size of models, yet inference latency is crucial for preserving energy. We reveal that quantized CNN inference on ultra-low-power MCUs executes unnecessary computations in neurons that produce saturated output values: often times, these neurons still produce the correct output value without fully completing the computation, since the neuron value is too extreme and is eventually systematically clamped at the boundaries allowed by the neuron. We show that with carefully designed condition checks, it is possible to identify and skip these unnecessary computations without impacting the neuron output. Based on this, we present saturation-aware convolution: an inference technique whereby computations in convolution kernels are executed in an altered order to induce earlier saturation, and saturation checks are inserted to omit unnecessary computations. We integrate our implementation into MCUNet's TinyEngine, the state-of-the-art neural network code generation and inference framework, and conduct experiments on a Cortex-M0+ MCU. The result based on 7 open-source CNN models displays up to 24% inference time saving, with strictly zero impact on neural network accuracy.
Learning Dynamics from Input-Output Data with Hamiltonian Gaussian Processes
Embedding non-restrictive prior knowledge, such as energy conservation laws, in learning-based approaches is a key motive to construct physically consistent models from limited data, relevant for, e.g., model-based control. Recent work incorporates Hamiltonian dynamics into Gaussian Process (GP) regression to obtain uncertainty-quantifying models that adhere to the underlying physical principles. However, these works rely on velocity or momentum data, which is rarely available in practice. In this paper, we consider dynamics learning with non-conservative Hamiltonian GPs, and address the more realistic problem setting of learning from input-output data. We provide a fully Bayesian scheme for estimating probability densities of unknown hidden states, of GP hyperparameters, as well as of structural hyperparameters, such as damping coefficients. Considering the computational complexity of GPs, we take advantage of a reduced-rank GP approximation and leverage its properties for computationally efficient prediction and training. The proposed method is evaluated in a nonlinear simulation case study and compared to a state-of-the-art approach that relies on momentum measurements.
comment: 17 pages, 5 figures
Privacy-Preserving Cramér-Rao Lower Bound
This paper establishes the privacy-preserving Cram\'er-Rao (CR) lower bound theory, characterizing the fundamental limit of identification accuracy under privacy constraint. An identifiability criterion under privacy constraint is derived by using Fisher information matrix as the privacy metric. In the identifiable case, the privacy-preserving CR lower bound is established and its attainability is demonstrated, thereby ensuring the existence of the privacy-preserving Fisher information matrix with explicit expression. Then, the privacy-preserving CR lower bound theory is extended to the multi-sensor multi-measurement system. Specifically, the additivity principle of privacy-preserving Fisher information matrices across both spatial and temporal dimensions is established, building a relationship between privacy-preserving CR lower bounds for the multi-sensor multi-measurement system and its subsystems. Using this additivity principle, distributed identification algorithms capable of achieving the privacy-preserving CR lower bound are further proposed. Numerical examples are provided to demonstrate the privacy-preserving CR lower bound and show the effectiveness of the proposed algorithms.
Force-Safe Environment Maps and Real-Time Detection for Soft Robot Manipulators
Soft robot manipulators have the potential for deployment in delicate environments to perform complex manipulation tasks. However, existing obstacle detection and avoidance methods do not consider limits on the forces that manipulators may exert upon contact with delicate obstacles. This work introduces a framework that maps force safety criteria from task space (i.e. positions along the robot's body) to configuration space (i.e. the robot's joint angles) and enables real-time force safety detection. We incorporate limits on allowable environmental contact forces for given task-space obstacles, and map them into configuration space (C-space) through the manipulator's forward kinematics. This formulation ensures that configurations classified as safe are provably below the maximum force thresholds, thereby allowing us to determine force-safe configurations of the soft robot manipulator in real-time. We validate our approach in simulation and hardware experiments on a two-segment pneumatic soft robot manipulator. Results demonstrate that the proposed method accurately detects force safety during interactions with deformable obstacles, thereby laying the foundation for real-time safe planning of soft manipulators in delicate, cluttered environments.
Voltage-Independent Active-Power Droop Coefficient for Enhanced Andronov-Hopf Oscillator Grid-Forming Inverters
In recent years, virtual oscillator control, particularly the Andronov-Hopf oscillator (AHO), has received widespread attention for controlling grid-forming (GFM) inverters due to their superior dynamic response. However, traditional AHO systems feature droop coefficients that are dependent on the oscillator voltage amplitude, limiting their ability to maintain consistent grid support during disturbances and resulting in power-sharing inaccuracies. This paper presents an enhanced AHO (EAHO) strategy, where the active power droop coefficient is no longer a function of the voltage amplitude and retains the key dynamic benefits of the original AHO. The EAHO improves both frequency and voltage support and ensures accurate power sharing with other GFM inverters in grid-connected and stand-alone modes. Extensive comparative and small-signal analyses, alongside experimental validation on 2.5 kVA single-phase inverters, confirm the EAHO's improved steady-state performance, enhanced active and reactive power support, and stable operation under varying grid conditions.
comment: 10 pages
Neural Operators for Power Systems: A Physics-Informed Framework for Modeling Power System Components SC
Modern power systems require fast and accurate dynamic simulations for stability assessment, digital twins, and real-time control, but classical ODE solvers are often too slow for large-scale or online applications. We propose a neural-operator framework for surrogate modeling of power system components, using Deep Operator Networks (DeepONets) to learn mappings from system states and time-varying inputs to full trajectories without step-by-step integration. To enhance generalization and data efficiency, we introduce Physics-Informed DeepONets (PI-DeepONets), which embed the residuals of governing equations into the training loss. Our results show that DeepONets, and especially PI-DeepONets, achieve accurate predictions under diverse scenarios, providing over 30 times speedup compared to high-order ODE solvers. Benchmarking against Physics-Informed Neural Networks (PINNs) highlights superior stability and scalability. Our results demonstrate neural operators as a promising path toward real-time, physics-aware simulation of power system dynamics.
comment: Submitted to PSCC 2026 (under review)
Predicting and forecasting reactivity and flux using long short-term memory models in pebble bed reactors during run-in
Pebble bed reactor (PBR) operation presents unique advantages and challenges due to the ability to continuously change the fuel mixture and excess reactivity. Each operation parameter affects reactivity on a different timescale. For example, fuel insertion changes may take months to fully propagate, whereas control rod movements have immediate effects. In-core measurements are further limited by the high temperatures, intense neutron flux, and dynamic motion of the fuel bed. In this study, long short-term memory (LSTM) networks are trained to predict reactivity, flux profiles, and power profiles as functions of operating history and synthetic batch-level pebble measurements, such as discharge burnup distributions. The model's performance is evaluated using unseen temporal data, achieving an $R^2$ of 0.9914 on the testing set. The capability of the network to forecast reactivity responses to future operational changes is also examined, and its application for optimizing reactor running-in procedures is explored.
comment: 13 pages
Evaluating the Impact of a Load Admittance Approximation in Transient Stability-Constrained Optimal Power Flow
The Transient Stability-Constrained Optimal Power Flow (TSC-OPF) incorporates dynamic stability constraints into the OPF formulation to ensure secure and economical operation under disturbances. While discretizing system dynamics enables the use of nonlinear programming techniques, it significantly increases computational burden. To enhance scalability, many studies simplify the network by representing loads as constant admittances, allowing the use of Kron reduction. However, computing the Kron reduction outside the optimization requires a voltage-based assumption to convert loads from constant power to constant admittance. This paper proposes a practical voltage-based load admittance approximation and evaluates the errors it may introduce in rotor angle and speed deviation trajectories. Case studies on the WECC 9-bus system show that the proposed approach reproduces rotor dynamics consistent with time-domain simulations during the first few seconds while considerably reducing implementation effort and mitigating convergence issues. The proposed framework thus offers a simple and effective strategy for scalable TSC-OPF implementations.
comment: 1-5 pages. submitted to PESGM 2026, Canada
TAPOM: Task-Space Topology-Guided Motion Planning for Manipulating Elongated Object in Cluttered Environments
Robotic manipulation in complex, constrained spaces is vital for widespread applications but challenging, particularly when navigating narrow passages with elongated objects. Existing planning methods often fail in these low-clearance scenarios due to the sampling difficulties or the local minima. This work proposes Topology-Aware Planning for Object Manipulation (TAPOM), which explicitly incorporates task-space topological analysis to enable efficient planning. TAPOM uses a high-level analysis to identify critical pathways and generate guiding keyframes, which are utilized in a low-level planner to find feasible configuration space trajectories. Experimental validation demonstrates significantly high success rates and improved efficiency over state-of-the-art methods on low-clearance manipulation tasks. This approach offers broad implications for enhancing manipulation capabilities of robots in complex real-world environments.
Design and Implementation of a Cloud Computing Security Assessment Model Based on Hierarchical Analysis and Fuzzy Comprehensive Evaluation
At the rapid pace of technological evolution, the emerging cloud computing technology has promoted the digitalization and business innovation of the enterprise in all industries due to its advantages of data storage and service mode. Nevertheless, given the swift progress in cloud computing services, the security problems have gradually appeared. The data breach and cyber attack happen frequently, which cause huge losses to enterprises and individuals. These issues have gradually become important constraints for the popularization of cloud computingTo tackle the problems outlined above, this paper constructs a security evaluation framework for cloud computing services, integrating the Analytic Hierarchy Process (AHP) with the Fuzzy Comprehensive Evaluation method. By applying this scientific and systematic methodology, the framework enables enterprises and individuals to better apprehend the security posture of cloud services, thereby fostering the healthy evolution of the entire industry.
Strategic Decision-Making Under Uncertainty through Bi-Level Game Theory and Distributionally Robust Optimization
In strategic scenarios where decision-makers operate at different hierarchical levels, traditional optimization methods are often inadequate for handling uncertainties from incomplete information or unpredictable external factors. To fill this gap, we introduce a mathematical framework that integrates bi-level game theory with distributionally robust optimization (DRO), particularly suited for complex network systems. Our approach leverages the hierarchical structure of bi-level games to model leader-follower interactions while incorporating distributional robustness to guard against worst-case probability distributions. To ensure computational tractability, the Karush-Kuhn-Tucker (KKT) conditions are used to transform the bi-level challenge into a more manageable single-level model, and the infinite-dimensional DRO problem is reformulated into a finite equivalent. We propose a generalized algorithm to solve this integrated model. Simulation results validate our framework's efficacy, demonstrating that under high uncertainty, the proposed model achieves up to a 22\% cost reduction compared to traditional stochastic methods while maintaining a service level of over 90\%. This highlights its potential to significantly improve decision quality and robustness in networked systems such as transportation and communication networks.
IoT and Predictive Maintenance in Industrial Engineering: A Data-Driven Approach
Fourth Industrial Revolution has brought in a new era of smart manufacturing, wherein, application of Internet of Things , and data-driven methodologies is revolutionizing the conventional maintenance. With the help of real-time data from the IoT and machine learning algorithms, predictive maintenance allows industrial systems to predict failures and optimize machines life. This paper presents the synergy between the Internet of Things and predictive maintenance in industrial engineering with an emphasis on the technologies, methodologies, as well as data analytics techniques, that constitute the integration. A systematic collection, processing, and predictive modeling of data is discussed. The outcomes emphasize greater operational efficiency, decreased downtime, and cost-saving, which makes a good argument as to why predictive maintenance should be implemented in contemporary industries.
comment: 9 Pages, 4 figures
Computationally Efficient Spline-Based Modeling of DER Dynamics for Voltage Stability in Active Distribution Networks
The increasing integration of Distributed Energy Resources (DERs) into power systems necessitates the accurate representation of their dynamic behavior at the transmission level. Traditional electromagnetic transient models (EMT), while effective, face scalability challenges due to their reliance on detailed system information. Data-driven approaches, such as System Identification (SysID), offer a promising alternative by modeling system dynamics without detailed system knowledge. However, SysID and similar methods are computationally intensive, requiring the computation of complex ordinary differential equations (ODEs) or transfer functions estimation. This makes them less effective for real-time operation. We therefore propose a novel data-driven approach that simplifies the modeling of DERs dynamics by leveraging B-splines to transform discrete system data into continuous differentiable functions. This enables the estimation of lower order linear ordinary differential equations with simple linear regression to represent the underlying dynamics at a very low computational cost. Furthermore, the extracted dynamic equations are discretized by the backward Euler method for potential integration into discrete-time power dispatch models. Validation results indicate a goodness-of-fit (GoF) of 98.74%, comparable to the 99.03% GoF of the SysID method, yet, 4.8 times faster. Our proposed model's execution time of less than one minute makes it more suitable for real-time applications in power system operations.
Zero-Shot Function Encoder-Based Differentiable Predictive Control
We introduce a differentiable framework for zero-shot adaptive control over parametric families of nonlinear dynamical systems. Our approach integrates a function encoder-based neural ODE (FE-NODE) for modeling system dynamics with a differentiable predictive control (DPC) for offline self-supervised learning of explicit control policies. The FE-NODE captures nonlinear behaviors in state transitions and enables zero-shot adaptation to new systems without retraining, while the DPC efficiently learns control policies across system parameterizations, thus eliminating costly online optimization common in classical model predictive control. We demonstrate the efficiency, accuracy, and online adaptability of the proposed method across a range of nonlinear systems with varying parametric scenarios, highlighting its potential as a general-purpose tool for fast zero-shot adaptive control.
Adaptive Time Budgets for Safe and Comfortable Vehicle Control Transition in Conditionally Automated Driving
Conditionally automated driving requires drivers to resume vehicle control promptly when automation reaches its operational limits. Ensuring smooth vehicle control transitions is critical for the safety and efficiency of mixed-traffic transportation systems, where complex interactions and variable traffic behaviors pose additional challenges. This study addresses this challenge by introducing an adaptive time budget framework that provides drivers with sufficient time to complete takeovers both safely and comfortably across diverse scenarios. We focus in particular on the takeover buffer, that is, the extra time available after drivers consciously resume control to complete evasive maneuvers. A driving simulator experiment is conducted to evaluate the influence of different takeover buffer lengths on safety-related indicators (minimum time-to-collision, maximum deceleration, and steering wheel angle) and subjective assessments (perceived time sufficiency, perceived risk, and performance satisfaction). Results show that (i) takeover buffers of about 5-6 seconds consistently lead to optimal safety and comfort; and (ii) drivers prefer relatively stable takeover buffers across varying traffic densities and n-back tasks. This study introduces an adaptive time budget framework that dynamically allocates transition time by incorporating a predicted takeover time and a preferred takeover buffer (piecewise function). This can serve as an important first step toward providing drivers with sufficient time to resume vehicle control across diverse scenarios, which needs to be validated in more diverse and real-world driving contexts. By aligning the provided time budget with driver needs under specific circumstances, the adaptive framework can improve reliability of control transitions, facilitate human-centered automated driving, reduce crash risk, and maintain overall traffic efficiency.
comment: 10 pages, 6 figures
Controller-Light CI/CD with Jenkins: Remote Container Builds and Automated Artifact Delivery
Traditional Jenkins installations often perform resource-intensive builds directly on the controller, which can overload system resources and decrease reliability. This paper presents a controller-light CI/CD framework in which Jenkins runs as a containerized controller with persistent volumes, delegating heavy build and packaging operations to a remote Docker host. The controller container maintains secure SSH connections to remote compute nodes and focuses solely on orchestration and reporting. Atomic deployments with time-stamped backups, containerized build environments, immutable artifact packaging, and automatic notifications are all integrated into the system. Experimental evaluation shows reduced CPU and RAM usage on the controller, faster build throughput, and lower artifact delivery latency. For small and medium-sized DevOps organizations looking for scalable automation without adding orchestration complexity, this method offers a repeatable, low-maintenance CI/CD pipeline.
STAIR: Stability criterion for Time-windowed Assignment and Internal adversarial influence in Routing and decision-making
A major limitation of existing routing algorithms for multi-agent systems is that they are designed without considering the potential presence of adversarial agents in the decision-making loop, which could lead to severe performance degradation in real-life applications where adversarial agents may be present. We study autonomous pickup-and-delivery routing problems in which adversarial agents launch coordinated denial-of-service attacks by spoofing their locations. This deception causes the central scheduler to assign pickup requests to adversarial agents instead of cooperative agents. Adversarial agents then choose not to service the requests with the goal of disrupting the operation of the system, leading to delays, cancellations, and potential instability in the routing policy. Policy stability in routing problems is typically defined as the cost of the policy being uniformly bounded over time, and it has been studied through two different lenses: queuing theory and reinforcement learning (RL), which are not well suited for routing with adversaries. In this paper, we propose a new stability criterion, STAIR, which is easier to analyze than queuing-theory-based stability in adversarial settings. Furthermore, STAIR does not depend on a chosen discount factor as is the case in discounted RL stability. STAIR directly links stability to desired operational metrics, like a finite number of rejected requests. This characterization is particularly useful in adversarial settings as it provides a metric for monitoring the effect of adversaries in the operation of the system. Furthermore, we demonstrate STAIR's practical relevance through simulations on real-world San Francisco mobility-on-demand data. We also identify a phenomenon of degenerate stability that arises in the adversarial routing problem, and we introduce time-window constraints in the decision-making algorithm to mitigate it.
comment: 9 pages, 2 figures
Lite VLA: Efficient Vision-Language-Action Control on CPU-Bound Edge Robots
The deployment of artificial intelligence models at the edge is increasingly critical for autonomous robots operating in GPS-denied environments where local, resource-efficient reasoning is essential. This work demonstrates the feasibility of deploying small Vision-Language Models (VLMs) on mobile robots to achieve real-time scene understanding and reasoning under strict computational constraints. Unlike prior approaches that separate perception from mobility, the proposed framework enables simultaneous movement and reasoning in dynamic environments using only on-board hardware. The system integrates a compact VLM with multimodal perception to perform contextual interpretation directly on embedded hardware, eliminating reliance on cloud connectivity. Experimental validation highlights the balance between computational efficiency, task accuracy, and system responsiveness. Implementation on a mobile robot confirms one of the first successful deployments of small VLMs for concurrent reasoning and mobility at the edge. This work establishes a foundation for scalable, assured autonomy in applications such as service robotics, disaster response, and defense operations.
Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
Reconfigurable Earth Observation Satellite Scheduling Problem
Earth observation satellites (EOSs) play a pivotal role in capturing and analyzing planetary phenomena, ranging from natural disasters to societal development. The EOS scheduling problem (EOSSP), which optimizes the schedule of EOSs, is often solved with respect to nadir-directional EOS systems, thus restricting the observation time of targets and, consequently, the effectiveness of each EOS. This paper leverages state-of-the-art constellation reconfigurability to develop the reconfigurable EOS scheduling problem (REOSSP), wherein EOSs are assumed to be maneuverable, forming a more optimal constellation configuration at multiple opportunities during a schedule. This paper develops a novel mixed-integer linear programming formulation for the REOSSP to optimally solve the scheduling problem for given parameters. Additionally, since the REOSSP can be computationally expensive for large-scale problems, a rolling horizon procedure (RHP) solution method is developed. The performance of the REOSSP is benchmarked against the EOSSP, which serves as a baseline, through a set of random instances where problem characteristics are varied and a case study in which Hurricane Sandy is used to demonstrate realistic performance. These experiments demonstrate the value of constellation reconfigurability in its application to the EOSSP, yielding solutions that improve performance, while the RHP enhances computational runtime for large-scale REOSSP instances.
comment: 43 pages, Journal of Aerospace Information Systems (Published)
Coordinated Control of Autonomous Vehicles for Traffic Density Reduction at a Signalized Junction: An MPC Approach
The effective and safe management of traffic is a key issue due to the rapid advancement of the urban transportation system. Connected autonomous vehicles (CAVs) possess the capability to connect with each other and adjacent infrastructure, presenting novel opportunities for enhancing traffic flow and coordination. This work proposes a dual-mode model predictive control (MPC) architecture that tackles two interrelated issues: mitigating traffic density at signalized junctions and facilitating seamless, cooperative lane changes in high-density traffic conditions. The objective of this work is to facilitate responsive decision-making for CAVs, thereby enhancing the efficiency and safety of urban mobility. Moreover, we ensure recursive feasibility and convergence of the proposed MPC scheme by the integration of an online-calculated maximal control invariant terminal set. Finally, the efficacy of the proposed approach is validated through numerical simulation.
Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem
Motivated by engineering applications such as resource allocation in networks and inventory systems, we consider average-reward Reinforcement Learning with unbounded state space and reward function. Recent works studied this problem in the actor-critic framework and established finite sample bounds assuming access to a critic with certain error guarantees. We complement their work by studying Temporal Difference (TD) learning with linear function approximation and establishing finite-time bounds with the optimal $\mathcal{O}\left(1/\epsilon^2\right)$ sample complexity. These results are obtained using the following general-purpose theorem for non-linear Stochastic Approximation (SA). Suppose that one constructs a Lyapunov function for a non-linear SA with certain drift condition. Then, our theorem establishes finite-time bounds when this SA is driven by unbounded Markovian noise under suitable conditions. It serves as a black box tool to generalize sample guarantees on SA from i.i.d. or martingale difference case to potentially unbounded Markovian noise. The generality and the mild assumption of the setup enables broad applicability of our theorem. We illustrate its power by studying two more systems: (i) We improve upon the finite-time bounds of $Q$-learning by tightening the error bounds and also allowing for a larger class of behavior policies. (ii) We establish the first ever finite-time bounds for distributed stochastic optimization of high-dimensional smooth strongly convex function using cyclic block coordinate descent.
Online Learning of Nonlinear Parametric Models under Non-smooth Regularization using EKF and ADMM
This paper proposes a novel combination of extended Kalman filtering (EKF) with the alternating direction method of multipliers (ADMM) for learning parametric nonlinear models online under non-smooth regularization terms, including l1 and l0 penalties and bound constraints on model parameters. For the case of linear time-varying models and non-smoothconvex regularization terms, we provide a sublinear regret bound that ensures the proper behavior of the online learning strategy. The approach is computationally efficient for a wide range of regularization terms, which makes it appealing for its use in embedded control applications for online model adaptation. We show the performance of the proposed method in three simulation examples, highlighting its effectiveness compared to other batch and online algorithms.
comment: 8 pages, 5 figures
An overview of Koopman-based control: From error bounds to closed-loop guarantees
Controlling nonlinear dynamical systems remains a central challenge in a wide range of applications, particularly when accurate first-principle models are unavailable. Data-driven approaches offer a promising alternative by designing controllers directly from observed trajectories. A wide range of data-driven methods relies on the Koopman-operator framework that enables linear representations of nonlinear dynamics via lifting into higher-dimensional observable spaces. Finite-dimensional approximations, such as extended dynamic mode decomposition (EDMD) and its controlled variants, make prediction and feedback control tractable but introduce approximation errors that must be accounted for to provide rigorous closed-loop guarantees. This survey provides a systematic overview of Koopman-based control, emphasizing the connection between data-driven surrogate models, approximation errors, controller design, and closed-loop guarantees. We review theoretical foundations, error bounds, and both linear and bilinear EDMD-based control schemes, highlighting robust strategies that ensure stability and performance. Finally, we discuss open challenges and future directions at the interface of operator theory, approximation theory, and nonlinear control.
comment: Accepted for publication in Annual Reviews in Control
Robust targeted exploration for systems with non-stochastic disturbances
In this paper, we introduce a novel targeted exploration strategy designed specifically for uncertain linear time-invariant systems with energy-bounded disturbances, i.e., without making any assumptions on the distribution of the disturbances. We use classical results characterizing the set of non-falsified parameters consistent with energy-bounded disturbances. We derive a semidefinite program which computes an exploration strategy that guarantees a desired accuracy of the parameter estimate. This design is based on sufficient conditions on the spectral content of the exploration data that robustly account for initial parametric uncertainty. Finally, we highlight the applicability of the exploration strategy through a numerical example involving a nonlinear system.
comment: Submitted to Automatica
Predictive Compensation in Finite-Horizon LQ Games under Gauss-Markov Deviations
This paper develops a predictive compensation framework for finite-horizon, discrete-time linear quadratic dynamic games subject to Gauss-Markov execution deviations from feedback Nash strategies. One player's control is corrupted by temporally correlated stochastic perturbations modeled as a first-order autoregressive (AR(1)) process, while the opposing player has causal access to past deviations and employs a predictive feedforward strategy that anticipates their future effect. We derive closed-form recursions for mean and covariance propagation under the resulting perturbed closed loop, establish boundedness and sensitivity properties of the equilibrium trajectory, and characterize the reduction in expected cost achieved by optimal predictive compensation. Numerical experiments corroborate the theoretical results and demonstrate performance gains relative to nominal Nash feedback across a range of disturbance persistence levels.
comment: 11 pages, 4 Figures, 1 Table, 1 Algorithm. This work has been submitted to Automatica for possible publication
Joint Bundle Design and Pricing for Extended Warranty Providers Servicing Multi-Tier Products
Extended warranties (EWs) constitute a significant source of revenue for capital-intensive products. Such products comprise multiple subsystems, enabling flexible EW design. For example, providers can bundle tailored sets of subsystems within different EW contracts, facilitating the creation of a service menu with differentiated warranty options. From the perspective of a third-party EW provider servicing multi-tier products, we develop a novel model to jointly optimize bundle design and pricing for EW options in order to maximize the expected total profit. Specifically, the problem involves determining which contracts-each containing a differentiated bundle of subsystems-to recommend for the multi-tier products and identifying the appropriate price for each contract. As the complexity of the joint optimization problem increases exponentially with the number of subsystems, we devise two solution approaches. The first approach leverages a mixed-integer second-order cone programming reformulation, which guarantees optimality but is applicable only for a small number of subsystems. The second approach utilizes an iterative two-step process, offering enhanced computational efficiency for scenarios involving a large number of subsystems. Numerical experiments validate the effectiveness of our model, particularly in scenarios characterized by high failure probabilities and a large number of subsystems.
comment: 50 pages, 3 figures, and 12 tables
Soft Switching Expert Policies for Controlling Systems with Uncertain Parameters
This paper proposes a simulation-based reinforcement learning algorithm for controlling systems with uncertain and varying system parameters. While simulators are useful for safely learning control policies for physical systems, mitigating the reality gap remains a major challenge. To address the challenge, we propose a two-stage algorithm. In the first stage, multiple control policies are learned for systems with different parameters in a simulator. In the second stage, for a real system, the control policies learned in the first stage are smoothly switched using an online convex optimization algorithm based on observations. Our proposed algorithm is demonstrated through numerical experiments.
comment: 6 pages, 8 figures. Submitted to an International Conference
Analytical Models of Frequency and Voltage in Large-Scale All-Inverter Power Systems
Low-order frequency response models for power systems have a decades-long history in optimization and control problems such as unit commitment, economic dispatch, and wide-area control. With a few exceptions, these models are built upon the Newtonian mechanics of synchronous generators, assuming that the frequency dynamics across a system are approximately homogeneous, and assume the dynamics of nodal voltages for most operating conditions are negligible, and thus are not directly computed at all buses. As a result, the use of system frequency models results in the systematic underestimation of frequency minimum nadir and maximum RoCoF, and provides no insight into the reactive power-voltage dynamics. This paper proposes a low-order model of both frequency and voltage response in grid-forming inverter-dominated power systems. The proposed model accounts for spatial-temporal variations in frequency and voltage behavior across a system and as a result, demonstrates the heterogeneity of frequency response in future renewable power systems. Electromagnetic transient (EMT) simulations are used to validate the utility, accuracy, and computational efficiency of these models, setting the basis for them to serve as fast, scalable alternatives to EMT simulation, especially when dealing with very large-scale systems, for both planning and operational studies.
A Unified Approach to Enforce Non-Negativity Constraint in Neural Network Approximation for Optimal Voltage Regulation
Power system voltage regulation is crucial to maintain power quality while integrating intermittent renewable resources in distribution grids. However, the system model on the grid edge is often unknown, making it difficult to model physical equations for optimal control. Therefore, previous work proposes structured data-driven methods like input convex neural networks (ICNN) for "optimal" control without relying on a physical model. While ICNNs offer theoretical guarantees based on restrictive assumptions of non-negative neural network parameters, can one improve the approximation power with an extra step on negative duplication of inputs? We show that such added mirroring step fails to improve accuracy, as a linear combination of the original input and duplicated input is equivalent to a linear operation of ICNN's input without duplication. While this design can not improve performance, we propose a unified approach to embed the non-negativity constraint as a regularized optimization of the neural network, contrary to the existing methods, which added a loosely integrated second step for post-processing on parameter negation. Our integration directly ties back-propagation to simultaneously minimizing the approximation error while enforcing the convexity constraints. Numerical experiments validate the issues of the mirroring method and show that our integrated objective can avoid problems such as unstable training and non-convergence existing in other methods for optimal control. (preprint)
comment: Submitted to the 58th Hawaii International Conference on System Sciences (HICSS-58)
TIMESAFE: Timing Interruption Monitoring and Security Assessment for Fronthaul Environments
5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthaul (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Opinion Clustering under the Friedkin-Johnsen Model: Agreement in Disagreement
The convergence of opinions in the Friedkin-Johnsen (FJ) framework is well studied, but the topological conditions leading to opinion clustering remain less explored. To bridge this gap, we examine the role of topology in the emergence of opinion clusters within the network. The key contribution of the paper lies in the introduction of the notion of topologically prominent agents, referred to as Locally Topologically Persuasive (LTP) agents. Interestingly, each LTP agent is associated with a unique set of (non-influential) agents in its vicinity. Using them, we present conditions to obtain opinion clusters in the FJ framework in any arbitrarily connected digraph. A key advantage of the proposed result is that the resulting opinion clusters are independent of the edge weights and the stubbornness of the agents. Finally, we demonstrate using simulation results that, by suitably placing LTP agents, one can design networks that achieve any desired opinion clustering.
Robotics
GentleHumanoid: Learning Upper-body Compliance for Contact-rich Human and Object Interaction
Humanoid robots are expected to operate in human-centered environments where safe and natural physical interaction is essential. However, most recent reinforcement learning (RL) policies emphasize rigid tracking and suppress external forces. Existing impedance-augmented approaches are typically restricted to base or end-effector control and focus on resisting extreme forces rather than enabling compliance. We introduce GentleHumanoid, a framework that integrates impedance control into a whole-body motion tracking policy to achieve upper-body compliance. At its core is a unified spring-based formulation that models both resistive contacts (restoring forces when pressing against surfaces) and guiding contacts (pushes or pulls sampled from human motion data). This formulation ensures kinematically consistent forces across the shoulder, elbow, and wrist, while exposing the policy to diverse interaction scenarios. Safety is further supported through task-adjustable force thresholds. We evaluate our approach in both simulation and on the Unitree G1 humanoid across tasks requiring different levels of compliance, including gentle hugging, sit-to-stand assistance, and safe object manipulation. Compared to baselines, our policy consistently reduces peak contact forces while maintaining task success, resulting in smoother and more natural interactions. These results highlight a step toward humanoid robots that can safely and effectively collaborate with humans and handle objects in real-world environments.
comment: Home page: https://gentle-humanoid.axell.top
X-Diffusion: Training Diffusion Policies on Cross-Embodiment Human Demonstrations
Human videos can be recorded quickly and at scale, making them an appealing source of training data for robot learning. However, humans and robots differ fundamentally in embodiment, resulting in mismatched action execution. Direct kinematic retargeting of human hand motion can therefore produce actions that are physically infeasible for robots. Despite these low-level differences, human demonstrations provide valuable motion cues about how to manipulate and interact with objects. Our key idea is to exploit the forward diffusion process: as noise is added to actions, low-level execution differences fade while high-level task guidance is preserved. We present X-Diffusion, a principled framework for training diffusion policies that maximally leverages human data without learning dynamically infeasible motions. X-Diffusion first trains a classifier to predict whether a noisy action is executed by a human or robot. Then, a human action is incorporated into policy training only after adding sufficient noise such that the classifier cannot discern its embodiment. Actions consistent with robot execution supervise fine-grained denoising at low noise levels, while mismatched human actions provide only coarse guidance at higher noise levels. Our experiments show that naive co-training under execution mismatches degrades policy performance, while X-Diffusion consistently improves it. Across five manipulation tasks, X-Diffusion achieves a 16% higher average success rate than the best baseline. The project website is available at https://portal-cornell.github.io/X-Diffusion/.
Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: Website: https://real2sim-eval.github.io/
SAFe-Copilot: Unified Shared Autonomy Framework
Autonomous driving systems remain brittle in rare, ambiguous, and out-of-distribution scenarios, where human driver succeed through contextual reasoning. Shared autonomy has emerged as a promising approach to mitigate such failures by incorporating human input when autonomy is uncertain. However, most existing methods restrict arbitration to low-level trajectories, which represent only geometric paths and therefore fail to preserve the underlying driving intent. We propose a unified shared autonomy framework that integrates human input and autonomous planners at a higher level of abstraction. Our method leverages Vision Language Models (VLMs) to infer driver intent from multi-modal cues -- such as driver actions and environmental context -- and to synthesize coherent strategies that mediate between human and autonomous control. We first study the framework in a mock-human setting, where it achieves perfect recall alongside high accuracy and precision. A human-subject survey further shows strong alignment, with participants agreeing with arbitration outcomes in 92% of cases. Finally, evaluation on the Bench2Drive benchmark demonstrates a substantial reduction in collision rate and improvement in overall performance compared to pure autonomy. Arbitration at the level of semantic, language-based representations emerges as a design principle for shared autonomy, enabling systems to exercise common-sense reasoning and maintain continuity with human intent.
Evo-1: Lightweight Vision-Language-Action Model with Preserved Semantic Alignment
Vision-Language-Action (VLA) models have emerged as a powerful framework that unifies perception, language, and control, enabling robots to perform diverse tasks through multimodal understanding. However, current VLA models typically contain massive parameters and rely heavily on large-scale robot data pretraining, leading to high computational costs during training, as well as limited deployability for real-time inference. Moreover, most training paradigms often degrade the perceptual representations of the vision-language backbone, resulting in overfitting and poor generalization to downstream tasks. In this work, we present Evo-1, a lightweight VLA model that reduces computation and improves deployment efficiency, while maintaining strong performance without pretraining on robot data. Evo-1 builds on a native multimodal Vision-Language model (VLM), incorporating a novel cross-modulated diffusion transformer along with an optimized integration module, together forming an effective architecture. We further introduce a two-stage training paradigm that progressively aligns action with perception, preserving the representations of the VLM. Notably, with only 0.77 billion parameters, Evo-1 achieves state-of-the-art results on the Meta-World and RoboTwin suite, surpassing the previous best models by 12.4% and 6.9%, respectively, and also attains a competitive result of 94.8% on LIBERO. In real-world evaluations, Evo-1 attains a 78% success rate with high inference frequency and low memory overhead, outperforming all baseline methods. We release code, data, and model weights to facilitate future research on lightweight and efficient VLA models.
comment: Github: https://github.com/MINT-SJTU/Evo-1
Temporal Action Selection for Action Chunking
Action chunking is a widely adopted approach in Learning from Demonstration (LfD). By modeling multi-step action chunks rather than single-step actions, action chunking significantly enhances modeling capabilities for human expert policies. However, the reduced decision frequency restricts the utilization of recent observations, degrading reactivity - particularly evident in the inadequate adaptation to sensor noise and dynamic environmental changes. Existing efforts to address this issue have primarily resorted to trading off reactivity against decision consistency, without achieving both. To address this limitation, we propose a novel algorithm, Temporal Action Selector (TAS), which caches predicted action chunks from multiple timesteps and dynamically selects the optimal action through a lightweight selector network. TAS achieves balanced optimization across three critical dimensions: reactivity, decision consistency, and motion coherence. Experiments across multiple tasks with diverse base policies show that TAS significantly improves success rates - yielding an absolute gain of up to 73.3%. Furthermore, integrating TAS as a base policy with residual reinforcement learning (RL) substantially enhances training efficiency and elevates the performance plateau. Experiments in both simulation and physical robots confirm the method's efficacy.
BoRe-Depth: Self-supervised Monocular Depth Estimation with Boundary Refinement for Embedded Systems IROS 2025
Depth estimation is one of the key technologies for realizing 3D perception in unmanned systems. Monocular depth estimation has been widely researched because of its low-cost advantage, but the existing methods face the challenges of poor depth estimation performance and blurred object boundaries on embedded systems. In this paper, we propose a novel monocular depth estimation model, BoRe-Depth, which contains only 8.7M parameters. It can accurately estimate depth maps on embedded systems and significantly improves boundary quality. Firstly, we design an Enhanced Feature Adaptive Fusion Module (EFAF) which adaptively fuses depth features to enhance boundary detail representation. Secondly, we integrate semantic knowledge into the encoder to improve the object recognition and boundary perception capabilities. Finally, BoRe-Depth is deployed on NVIDIA Jetson Orin, and runs efficiently at 50.7 FPS. We demonstrate that the proposed model significantly outperforms previous lightweight models on multiple challenging datasets, and we provide detailed ablation studies for the proposed methods. The code is available at https://github.com/liangxiansheng093/BoRe-Depth.
comment: 8 pages, 5 figures, published to IROS 2025
ForeRobo: Unlocking Infinite Simulation Data for 3D Goal-driven Robotic Manipulation
Efficiently leveraging simulation to acquire advanced manipulation skills is both challenging and highly significant. We introduce \textit{ForeRobo}, a generative robotic agent that utilizes generative simulations to autonomously acquire manipulation skills driven by envisioned goal states. Instead of directly learning low-level policies, we advocate integrating generative paradigms with classical control. Our approach equips a robotic agent with a self-guided \textit{propose-generate-learn-actuate} cycle. The agent first proposes the skills to be acquired and constructs the corresponding simulation environments; it then configures objects into appropriate arrangements to generate skill-consistent goal states (\textit{ForeGen}). Subsequently, the virtually infinite data produced by ForeGen are used to train the proposed state generation model (\textit{ForeFormer}), which establishes point-wise correspondences by predicting the 3D goal position of every point in the current state, based on the scene state and task instructions. Finally, classical control algorithms are employed to drive the robot in real-world environments to execute actions based on the envisioned goal states. Compared with end-to-end policy learning methods, ForeFormer offers superior interpretability and execution efficiency. We train and benchmark ForeFormer across a variety of rigid-body and articulated-object manipulation tasks, and observe an average improvement of 56.32\% over the state-of-the-art state generation models, demonstrating strong generality across different manipulation patterns. Moreover, in real-world evaluations involving more than 20 robotic tasks, ForeRobo achieves zero-shot sim-to-real transfer and exhibits remarkable generalization capabilities, attaining an average success rate of 79.28\%.
Studying the Effect of Explicit Interaction Representations on Learning Scene-level Distributions of Human Trajectories
Effectively capturing the joint distribution of all agents in a scene is relevant for predicting the true evolution of the scene and in turn providing more accurate information to the decision processes of autonomous vehicles. While new models have been developed for this purpose in recent years, it remains unclear how to best represent the joint distributions particularly from the perspective of the interactions between agents. Thus far there is no clear consensus on how best to represent interactions between agents; whether they should be learned implicitly from data by neural networks, or explicitly modeled using the spatial and temporal relations that are more grounded in human decision-making. This paper aims to study various means of describing interactions within the same network structure and their effect on the final learned joint distributions. Our findings show that more often than not, simply allowing a network to establish interactive connections between agents based on data has a detrimental effect on performance. Instead, having well defined interactions (such as which agent of an agent pair passes first at an intersection) can often bring about a clear boost in performance.
GraSP-VLA: Graph-based Symbolic Action Representation for Long-Horizon Planning with VLA Policies
Deploying autonomous robots that can learn new skills from demonstrations is an important challenge of modern robotics. Existing solutions often apply end-to-end imitation learning with Vision-Language Action (VLA) models or symbolic approaches with Action Model Learning (AML). On the one hand, current VLA models are limited by the lack of high-level symbolic planning, which hinders their abilities in long-horizon tasks. On the other hand, symbolic approaches in AML lack generalization and scalability perspectives. In this paper we present a new neuro-symbolic approach, GraSP-VLA, a framework that uses a Continuous Scene Graph representation to generate a symbolic representation of human demonstrations. This representation is used to generate new planning domains during inference and serves as an orchestrator for low-level VLA policies, scaling up the number of actions that can be reproduced in a row. Our results show that GraSP-VLA is effective for modeling symbolic representations on the task of automatic planning domain generation from observations. In addition, results on real-world experiments show the potential of our Continuous Scene Graph representation to orchestrate low-level VLA policies in long-horizon tasks.
MacroNav: Multi-Task Context Representation Learning Enables Efficient Navigation in Unknown Environments
Autonomous navigation in unknown environments requires compact yet expressive spatial understanding under partial observability to support high-level decision making. Existing approaches struggle to balance rich contextual representation with navigation efficiency. We present MacroNav, a learning-based navigation framework featuring two key components: (1) a lightweight context encoder trained via multi-task self-supervised learning to capture multi-scale, navigation-centric spatial representations; and (2) a reinforcement learning policy that seamlessly integrates these representations with graph-based reasoning for efficient action selection. Extensive experiments demonstrate the context encoder's efficient and robust environmental understanding. Real-world deployments further validate MacroNav's effectiveness, yielding significant gains over state-of-the-art navigation methods in both Success Rate (SR) and Success weighted by Path Length (SPL), while maintaining low computational cost. Code will be released upon acceptance.
Design and Control of a Coaxial Dual-rotor Reconfigurable Tailsitter UAV Based on Swashplateless Mechanism
The tailsitter vertical takeoff and landing (VTOL) UAV is widely used due to its lower dead weight, which eliminates the actuators and mechanisms for tilting. However, the tailsitter UAV is susceptible to wind disturbances in multi-rotor mode, as it exposes a large frontal fuselage area. To address this issue, our tailsitter UAV features a reconfigurable wing design, allowing wings to retract in multi-rotor mode and extend in fixed- wing mode. Considering power efficiency, we design a coaxial heterogeneous dual-rotor configuration, which significantly re- duces the total power consumption. To reduce structural weight and simplify structural complexity, we employ a swashplateless mechanism with an improved design to control pitch and roll in multi-rotor mode. We optimize the structure of the swashplateless mechanism by adding flapping hinges, which reduces vibration during cyclic acceleration and deceleration. Finally, we perform comprehensive transition flight tests to validate stable flight performance across the entire flight envelope of the tailsitter UAV.
comment: 8 pages 12 figures
Can Context Bridge the Reality Gap? Sim-to-Real Transfer of Context-Aware Policies
Sim-to-real transfer remains a major challenge in reinforcement learning (RL) for robotics, as policies trained in simulation often fail to generalize to the real world due to discrepancies in environment dynamics. Domain Randomization (DR) mitigates this issue by exposing the policy to a wide range of randomized dynamics during training, yet leading to a reduction in performance. While standard approaches typically train policies agnostic to these variations, we investigate whether sim-to-real transfer can be improved by conditioning the policy on an estimate of the dynamics parameters -- referred to as context. To this end, we integrate a context estimation module into a DR-based RL framework and systematically compare SOTA supervision strategies. We evaluate the resulting context-aware policies in both a canonical control benchmark and a real-world pushing task using a Franka Emika Panda robot. Results show that context-aware policies outperform the context-agnostic baseline across all settings, although the best supervision strategy depends on the task.
GraspView: Active Perception Scoring and Best-View Optimization for Robotic Grasping in Cluttered Environments
Robotic grasping is a fundamental capability for autonomous manipulation, yet remains highly challenging in cluttered environments where occlusion, poor perception quality, and inconsistent 3D reconstructions often lead to unstable or failed grasps. Conventional pipelines have widely relied on RGB-D cameras to provide geometric information, which fail on transparent or glossy objects and degrade at close range. We present GraspView, an RGB-only robotic grasping pipeline that achieves accurate manipulation in cluttered environments without depth sensors. Our framework integrates three key components: (i) global perception scene reconstruction, which provides locally consistent, up-to-scale geometry from a single RGB view and fuses multi-view projections into a coherent global 3D scene; (ii) a render-and-score active perception strategy, which dynamically selects next-best-views to reveal occluded regions; and (iii) an online metric alignment module that calibrates VGGT predictions against robot kinematics to ensure physical scale consistency. Building on these tailor-designed modules, GraspView performs best-view global grasping, fusing multi-view reconstructions and leveraging GraspNet for robust execution. Experiments on diverse tabletop objects demonstrate that GraspView significantly outperforms both RGB-D and single-view RGB baselines, especially under heavy occlusion, near-field sensing, and with transparent objects. These results highlight GraspView as a practical and versatile alternative to RGB-D pipelines, enabling reliable grasping in unstructured real-world environments.
PUL-SLAM: Path-Uncertainty Co-Optimization with Lightweight Stagnation Detection for Efficient Robotic Exploration
Existing Active SLAM methodologies face issues such as slow exploration speed and suboptimal paths. To address these limitations, we propose a hybrid framework combining a Path-Uncertainty Co-Optimization Deep Reinforcement Learning framework and a Lightweight Stagnation Detection mechanism. The Path-Uncertainty Co-Optimization framework jointly optimizes travel distance and map uncertainty through a dual-objective reward function, balancing exploration and exploitation. The Lightweight Stagnation Detection reduces redundant exploration through Lidar Static Anomaly Detection and Map Update Stagnation Detection, terminating episodes on low expansion rates. Experimental results show that compared with the frontier-based method and RRT method, our approach shortens exploration time by up to 65% and reduces path distance by up to 42%, significantly improving exploration efficiency in complex environments while maintaining reliable map completeness. Ablation studies confirm that the collaborative mechanism accelerates training convergence. Empirical validation on a physical robotic platform demonstrates the algorithm's practical applicability and its successful transferability from simulation to real-world environments.
BFM-Zero: A Promptable Behavioral Foundation Model for Humanoid Control Using Unsupervised Reinforcement Learning
Building Behavioral Foundation Models (BFMs) for humanoid robots has the potential to unify diverse control tasks under a single, promptable generalist policy. However, existing approaches are either exclusively deployed on simulated humanoid characters, or specialized to specific tasks such as tracking. We propose BFM-Zero, a framework that learns an effective shared latent representation that embeds motions, goals, and rewards into a common space, enabling a single policy to be prompted for multiple downstream tasks without retraining. This well-structured latent space in BFM-Zero enables versatile and robust whole-body skills on a Unitree G1 humanoid in the real world, via diverse inference methods, including zero-shot motion tracking, goal reaching, and reward optimization, and few-shot optimization-based adaptation. Unlike prior on-policy reinforcement learning (RL) frameworks, BFM-Zero builds upon recent advancements in unsupervised RL and Forward-Backward (FB) models, which offer an objective-centric, explainable, and smooth latent representation of whole-body motions. We further extend BFM-Zero with critical reward shaping, domain randomization, and history-dependent asymmetric learning to bridge the sim-to-real gap. Those key design choices are quantitatively ablated in simulation. A first-of-its-kind model, BFM-Zero establishes a step toward scalable, promptable behavioral foundation models for whole-body humanoid control.
CBMC-V3: A CNS-inspired Control Framework Towards Manipulation Agility with SNN
As robotic arm applications extend beyond industrial settings into healthcare, service, and daily life, existing control algorithms struggle to achieve the agile manipulation required for complex environments with dynamic trajectories, unpredictable interactions, and diverse objects. This paper presents a biomimetic control framework based on Spiking Neural Networks (SNN), inspired by the human Central Nervous System (CNS), to achieve agile control in such environments. The proposed framework features five control modules (cerebral cortex, cerebellum, thalamus, brainstem, spinal cord), three hierarchical control levels (first-order, second-order, third-order), and two information pathways (ascending, descending). Each module is fully implemented using SNN. The spinal cord module uses spike encoding and Leaky Integrate-and-Fire (LIF) neurons for feedback control. The brainstem module employs a network of LIF and non-spiking LIF neurons to dynamically adjust spinal cord parameters via reinforcement learning. The thalamus module similarly adjusts the cerebellum's torque outputs. The cerebellum module uses a recurrent SNN to learn the robotic arm's dynamics through regression, providing feedforward gravity compensation torques. The framework is validated both in simulation and on real-world robotic arm platform under various loads and trajectories. Results demonstrate that our method outperforms the industrial-grade position control in manipulation agility.
Enhancing Fault-Tolerant Space Computing: Guidance Navigation and Control (GNC) and Landing Vision System (LVS) Implementations on Next-Gen Multi-Core Processors
Future planetary exploration missions demand high-performance, fault-tolerant computing to enable autonomous Guidance, Navigation, and Control (GNC) and Lander Vision System (LVS) operations during Entry, Descent, and Landing (EDL). This paper evaluates the deployment of GNC and LVS algorithms on next-generation multi-core processors--HPSC, Snapdragon VOXL2, and AMD Xilinx Versal--demonstrating up to 15x speedup for LVS image processing and over 250x speedup for Guidance for Fuel-Optimal Large Divert (GFOLD) trajectory optimization compared to legacy spaceflight hardware. To ensure computational reliability, we present ARBITER (Asynchronous Redundant Behavior Inspection for Trusted Execution and Recovery), a Multi-Core Voting (MV) mechanism that performs real-time fault detection and correction across redundant cores. ARBITER is validated in both static optimization tasks (GFOLD) and dynamic closed-loop control (Attitude Control System). A fault injection study further identifies the gradient computation stage in GFOLD as the most sensitive to bit-level errors, motivating selective protection strategies and vector-based output arbitration. This work establishes a scalable and energy-efficient architecture for future missions, including Mars Sample Return, Enceladus Orbilander, and Ceres Sample Return, where onboard autonomy, low latency, and fault resilience are critical.
An LLM-based Framework for Human-Swarm Teaming Cognition in Disaster Search and Rescue
Large-scale disaster Search And Rescue (SAR) operations are persistently challenged by complex terrain and disrupted communications. While Unmanned Aerial Vehicle (UAV) swarms offer a promising solution for tasks like wide-area search and supply delivery, yet their effective coordination places a significant cognitive burden on human operators. The core human-machine collaboration bottleneck lies in the ``intention-to-action gap'', which is an error-prone process of translating a high-level rescue objective into a low-level swarm command under high intensity and pressure. To bridge this gap, this study proposes a novel LLM-CRF system that leverages Large Language Models (LLMs) to model and augment human-swarm teaming cognition. The proposed framework initially captures the operator's intention through natural and multi-modal interactions with the device via voice or graphical annotations. It then employs the LLM as a cognitive engine to perform intention comprehension, hierarchical task decomposition, and mission planning for the UAV swarm. This closed-loop framework enables the swarm to act as a proactive partner, providing active feedback in real-time while reducing the need for manual monitoring and control, which considerably advances the efficacy of the SAR task. We evaluate the proposed framework in a simulated SAR scenario. Experimental results demonstrate that, compared to traditional order and command-based interfaces, the proposed LLM-driven approach reduced task completion time by approximately $64.2\%$ and improved task success rate by $7\%$. It also leads to a considerable reduction in subjective cognitive workload, with NASA-TLX scores dropping by $42.9\%$. This work establishes the potential of LLMs to create more intuitive and effective human-swarm collaborations in high-stakes scenarios.
Integrating Ergonomics and Manipulability for Upper Limb Postural Optimization in Bimanual Human-Robot Collaboration IROS 2025
This paper introduces an upper limb postural optimization method for enhancing physical ergonomics and force manipulability during bimanual human-robot co-carrying tasks. Existing research typically emphasizes human safety or manipulative efficiency, whereas our proposed method uniquely integrates both aspects to strengthen collaboration across diverse conditions (e.g., different grasping postures of humans, and different shapes of objects). Specifically, the joint angles of a simplified human skeleton model are optimized by minimizing the cost function to prioritize safety and manipulative capability. To guide humans towards the optimized posture, the reference end-effector poses of the robot are generated through a transformation module. A bimanual model predictive impedance controller (MPIC) is proposed for our human-like robot, CURI, to recalibrate the end effector poses through planned trajectories. The proposed method has been validated through various subjects and objects during human-human collaboration (HHC) and human-robot collaboration (HRC). The experimental results demonstrate significant improvement in muscle conditions by comparing the activation of target muscles before and after optimization.
comment: 7 pages, 7 figures, IROS 2025 accepted
Learning Vision-Driven Reactive Soccer Skills for Humanoid Robots
Humanoid soccer poses a representative challenge for embodied intelligence, requiring robots to operate within a tightly coupled perception-action loop. However, existing systems typically rely on decoupled modules, resulting in delayed responses and incoherent behaviors in dynamic environments, while real-world perceptual limitations further exacerbate these issues. In this work, we present a unified reinforcement learning-based controller that enables humanoid robots to acquire reactive soccer skills through the direct integration of visual perception and motion control. Our approach extends Adversarial Motion Priors to perceptual settings in real-world dynamic environments, bridging motion imitation and visually grounded dynamic control. We introduce an encoder-decoder architecture combined with a virtual perception system that models real-world visual characteristics, allowing the policy to recover privileged states from imperfect observations and establish active coordination between perception and action. The resulting controller demonstrates strong reactivity, consistently executing coherent and robust soccer behaviors across various scenarios, including real RoboCup matches.
comment: Project page: https://humanoid-kick.github.io
Dynamic Shape Control of Soft Robots Enabled by Data-Driven Model Reduction
Soft robots have shown immense promise in settings where they can leverage dynamic control of their entire bodies. However, effective dynamic shape control requires a controller that accounts for the robot's high-dimensional dynamics--a challenge exacerbated by a lack of general-purpose tools for modeling soft robots amenably for control. In this work, we conduct a comparative study of data-driven model reduction techniques for generating linear models amendable to dynamic shape control. We focus on three methods--the eigensystem realization algorithm, dynamic mode decomposition with control, and the Lagrangian operator inference (LOpInf) method. Using each class of model, we explored their efficacy in model predictive control policies for the dynamic shape control of a simulated eel-inspired soft robot in three experiments: 1) tracking simulated reference trajectories guaranteed to be feasible, 2) tracking reference trajectories generated from a biological model of eel kinematics, and 3) tracking reference trajectories generated by a reduced-scale physical analog. In all experiments, the LOpInf-based policies generated lower tracking errors than policies based on other models.
comment: 20 Pages, 8 Figures
Design Exploration for Protection and Cleaning of Solar Panels with Case Studies for Space Missions
Solar energy is used for many mission-critical applications including space exploration, sensor systems to monitor wildfires, etc. Their operation can be limited or even terminated if solar panels are covered with dust or hit by space debris. To address this issue, we designed panel cleaning mechanisms and tested protective materials. For cleaning mechanisms, we designed and compared a wiper system and a rail system. For protective materials, we found through collision tests that polycarbonate was very promising, though the most important factor was layering a soft material between the panel's surface and a hard material. In the cleaning system comparisons, the wiper-based system was more efficient than the rail-based system in terms of cost, cleaning speed, and total power consumption.
comment: 4 pages, 3 figures (5 assets)
Conformalized Non-uniform Sampling Strategies for Accelerated Sampling-based Motion Planning
Sampling-based motion planners (SBMPs) are widely used to compute dynamically feasible robot paths. However, their reliance on uniform sampling often leads to poor efficiency and slow planning in complex environments. We introduce a novel non-uniform sampling strategy that integrates into existing SBMPs by biasing sampling toward `certified' regions. These regions are constructed by (i) generating an initial, possibly infeasible, path using any heuristic path predictor (e.g., A* or vision-language models) and (ii) applying conformal prediction to quantify the predictor's uncertainty. This process yields prediction sets around the initial-guess path that are guaranteed, with user-specified probability, to contain the optimal solution. To our knowledge, this is the first non-uniform sampling approach for SBMPs that provides such probabilistically correct guarantees on the sampling regions. Extensive evaluations demonstrate that our method consistently finds feasible paths faster and generalizes better to unseen environments than existing baselines.
Isaac Lab: A GPU-Accelerated Simulation Framework for Multi-Modal Robot Learning
We present Isaac Lab, the natural successor to Isaac Gym, which extends the paradigm of GPU-native robotics simulation into the era of large-scale multi-modal learning. Isaac Lab combines high-fidelity GPU parallel physics, photorealistic rendering, and a modular, composable architecture for designing environments and training robot policies. Beyond physics and rendering, the framework integrates actuator models, multi-frequency sensor simulation, data collection pipelines, and domain randomization tools, unifying best practices for reinforcement and imitation learning at scale within a single extensible platform. We highlight its application to a diverse set of challenges, including whole-body control, cross-embodiment mobility, contact-rich and dexterous manipulation, and the integration of human demonstrations for skill acquisition. Finally, we discuss upcoming integration with the differentiable, GPU-accelerated Newton physics engine, which promises new opportunities for scalable, data-efficient, and gradient-based approaches to robot learning. We believe Isaac Lab's combination of advanced simulation capabilities, rich sensing, and data-center scale execution will help unlock the next generation of breakthroughs in robotics research.
comment: Code and documentation are available here: https://github.com/isaac-sim/IsaacLab
Pixi: Unified Software Development and Distribution for Robotics and AI
The reproducibility crisis in scientific computing constrains robotics research. Existing studies reveal that up to 70% of robotics algorithms cannot be reproduced by independent teams, while many others fail to reach deployment because creating shareable software environments remains prohibitively complex. These challenges stem from fragmented, multi-language, and hardware-software toolchains that lead to dependency hell. We present Pixi, a unified package-management framework that addresses these issues by capturing exact dependency states in project-level lockfiles, ensuring bit-for-bit reproducibility across platforms. Its high-performance SAT solver achieves up to 10x faster dependency resolution than comparable tools, while integration of the conda-forge and PyPI ecosystems removes the need for multiple managers. Adopted in over 5,300 projects since 2023, Pixi reduces setup times from hours to minutes and lowers technical barriers for researchers worldwide. By enabling scalable, reproducible, collaborative research infrastructure, Pixi accelerates progress in robotics and AI.
comment: 20 pages, 3 figures, 11 code snippets
Unified Multimodal Diffusion Forcing for Forceful Manipulation
Given a dataset of expert trajectories, standard imitation learning approaches typically learn a direct mapping from observations (e.g., RGB images) to actions. However, such methods often overlook the rich interplay between different modalities, i.e., sensory inputs, actions, and rewards, which is crucial for modeling robot behavior and understanding task outcomes. In this work, we propose Multimodal Diffusion Forcing, a unified framework for learning from multimodal robot trajectories that extends beyond action generation. Rather than modeling a fixed distribution, MDF applies random partial masking and trains a diffusion model to reconstruct the trajectory. This training objective encourages the model to learn temporal and cross-modal dependencies, such as predicting the effects of actions on force signals or inferring states from partial observations. We evaluate MDF on contact-rich, forceful manipulation tasks in simulated and real-world environments. Our results show that MDF not only delivers versatile functionalities, but also achieves strong performance, and robustness under noisy observations. More visualizations can be found on our website https://unified-df.github.io
comment: Project website: https://unified-df.github.io
ReGen: Generative Robot Simulation via Inverse Design
Simulation plays a key role in scaling robot learning and validating policies, but constructing simulations remains a labor-intensive process. This paper introduces ReGen, a generative simulation framework that automates simulation design via inverse design. Given a robot's behavior -- such as a motion trajectory or an objective function -- and its textual description, ReGen infers plausible scenarios and environments that could have caused the behavior. ReGen leverages large language models to synthesize scenarios by expanding a directed graph that encodes cause-and-effect relationships, relevant entities, and their properties. This structured graph is then translated into a symbolic program, which configures and executes a robot simulation environment. Our framework supports (i) augmenting simulations based on ego-agent behaviors, (ii) controllable, counterfactual scenario generation, (iii) reasoning about agent cognition and mental states, and (iv) reasoning with distinct sensing modalities, such as braking due to faulty GPS signals. We demonstrate ReGen in autonomous driving and robot manipulation tasks, generating more diverse, complex simulated environments compared to existing simulations with high success rates, and enabling controllable generation for corner cases. This approach enhances the validation of robot policies and supports data or simulation augmentation, advancing scalable robot learning for improved generalization and robustness. We provide code and example videos at: https://regen-sim.github.io/
ScheduleStream: Temporal Planning with Samplers for GPU-Accelerated Multi-Arm Task and Motion Planning & Scheduling
Bimanual and humanoid robots are appealing because of their human-like ability to leverage multiple arms to efficiently complete tasks. However, controlling multiple arms at once is computationally challenging due to the growth in the hybrid discrete-continuous action space. Task and Motion Planning (TAMP) algorithms can efficiently plan in hybrid spaces but generally produce plans, where only one arm is moving at a time, rather than schedules that allow for parallel arm motion. In order to extend TAMP to produce schedules, we present ScheduleStream, the first general-purpose framework for planning & scheduling with sampling operations. ScheduleStream models temporal dynamics using hybrid durative actions, which can be started asynchronously and persist for a duration that's a function of their parameters. We propose domain-independent algorithms that solve ScheduleStream problems without any application-specific mechanisms. We apply ScheduleStream to Task and Motion Planning & Scheduling (TAMPAS), where we use GPU acceleration within samplers to expedite planning. We compare ScheduleStream algorithms to several ablations in simulation and find that they produce more efficient solutions. We demonstrate ScheduleStream on several real-world bimanual robot tasks at https://schedulestream.github.io.
comment: Project website: https://schedulestream.github.io
Grounding Foundational Vision Models with 3D Human Poses for Robust Action Recognition NeurIPS 2025
For embodied agents to effectively understand and interact within the world around them, they require a nuanced comprehension of human actions grounded in physical space. Current action recognition models, often relying on RGB video, learn superficial correlations between patterns and action labels, so they struggle to capture underlying physical interaction dynamics and human poses in complex scenes. We propose a model architecture that grounds action recognition in physical space by fusing two powerful, complementary representations: V-JEPA 2's contextual, predictive world dynamics and CoMotion's explicit, occlusion-tolerant human pose data. Our model is validated on both the InHARD and UCF-19-Y-OCC benchmarks for general action recognition and high-occlusion action recognition, respectively. Our model outperforms three other baselines, especially within complex, occlusive scenes. Our findings emphasize a need for action recognition to be supported by spatial understanding instead of statistical pattern recognition.
comment: Accepted at NeurIPS 2025 SpaVLE, for code see https://github.com/nbabey20/groundactrec , 9 pages, 1 figure
Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
The Mini Wheelbot: A Testbed for Learning-based Balancing, Flips, and Articulated Driving
The Mini Wheelbot is a balancing, reaction wheel unicycle robot designed as a testbed for learning-based control. It is an unstable system with highly nonlinear yaw dynamics, non-holonomic driving, and discrete contact switches in a small, powerful, and rugged form factor. The Mini Wheelbot can use its wheels to stand up from any initial orientation - enabling automatic environment resets in repetitive experiments and even challenging half flips. We illustrate the effectiveness of the Mini Wheelbot as a testbed by implementing two popular learning-based control algorithms. First, we showcase Bayesian optimization for tuning the balancing controller. Second, we use imitation learning from an expert nonlinear MPC that uses gyroscopic effects to reorient the robot and can track higher-level velocity and orientation commands. The latter allows the robot to drive around based on user commands - for the first time in this class of robots. The Mini Wheelbot is not only compelling for testing learning-based control algorithms, but it is also just fun to work with, as demonstrated in the video of our experiments.
Action Deviation-Aware Inference for Low-Latency Wireless Robots
To support latency-sensitive AI applications ranging from autonomous driving to industrial robot manipulation, 6G envisions distributed ML with computational resources in mobile, edge, and cloud connected over hyper-reliable low-latency communication (HRLLC). In this setting, speculative decoding can facilitate collaborative inference of models distributively deployed: a lightweight on-device model locally generates drafts while a more capable remote target model on a server verifies and corrects them in parallel with speculative sampling, thus resulting in lower latency without compromising accuracy. However, unlike autoregressive text generation, behavior cloning policies, typically used for embodied AI applications, cannot parallelize verification and correction for multiple drafts as each generated action depends on observation updated by a previous action. To this end, we propose Action Deviation-Aware Hybrid Inference (ADAHI), wherein drafts are selectively transmitted and verified based on action deviation, which has a strong correlation with action's rejection probability by the target model. By invoking server operation only when necessary, communication and computational overhead can be reduced while accuracy gain from speculative sampling is preserved. Experiments on our testbed show that ADAHI reduces transmission and server operations by approximately 40%, lowers end-to-end latency by 39.2%, and attains up to 97.2% of the task-success rate of baseline that invokes speculative sampling for every draft embedding vector.
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing. Jingzehua Xu, Weihang Zhang, and Yangyang Li contributed equally to this work and are recognized as the co-first authors of the paper
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations SC 2025
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager.
comment: 7 pages, 2 figures, 2 tables; Accepted to be published as part of the 2025 IEEE International Conference on Intelligent Transportation Systems (ITSC 2025), Gold Coast, Australia, November 18-21, 2025
SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning NeurIPS 2025
Vision-language-action models (VLAs) show potential as generalist robot policies. However, these models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans. How can safety constraints be explicitly integrated into VLAs? We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors, effectively constraining VLA policies via safe reinforcement learning, and rigorously assuring their safety through targeted evaluations. Leveraging the constrained Markov decision process (CMDP) paradigm, ISA optimizes VLAs from a min-max perspective against elicited safety risks. Thus, policies aligned through this comprehensive approach achieve the following key features: (I) effective safety-performance trade-offs, reducing the cumulative cost of safety violations by 83.58% compared to the state-of-the-art method, while also maintaining task success rate (+3.85%). (II) strong safety assurance, with the ability to mitigate long-tail risks and handle extreme failure scenarios. (III) robust generalization of learned safety behaviors to various out-of-distribution perturbations. The effectiveness is evaluated on long-horizon mobile manipulation tasks. Our data, models and newly proposed benchmark environment are available at https://pku-safevla.github.io.
comment: Accepted by NeurIPS 2025 Spotlight Presentation
HiMaCon: Discovering Hierarchical Manipulation Concepts from Unlabeled Multi-Modal Data NeurIPS 2025
Effective generalization in robotic manipulation requires representations that capture invariant patterns of interaction across environments and tasks. We present a self-supervised framework for learning hierarchical manipulation concepts that encode these invariant patterns through cross-modal sensory correlations and multi-level temporal abstractions without requiring human annotation. Our approach combines a cross-modal correlation network that identifies persistent patterns across sensory modalities with a multi-horizon predictor that organizes representations hierarchically across temporal scales. Manipulation concepts learned through this dual structure enable policies to focus on transferable relational patterns while maintaining awareness of both immediate actions and longer-term goals. Empirical evaluation across simulated benchmarks and real-world deployments demonstrates significant performance improvements with our concept-enhanced policies. Analysis reveals that the learned concepts resemble human-interpretable manipulation primitives despite receiving no semantic supervision. This work advances both the understanding of representation learning for manipulation and provides a practical approach to enhancing robotic performance in complex scenarios.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
MLP-SLAM: Multilayer Perceptron-Based Simultaneous Localization and Mapping
The Visual Simultaneous Localization and Mapping (V-SLAM) system has seen significant development in recent years, demonstrating high precision in environments with limited dynamic objects. However, their performance significantly deteriorates when deployed in settings with a higher presence of movable objects, such as environments with pedestrians, cars, and buses, which are common in outdoor scenes. To address this issue, we propose a Multilayer Perceptron (MLP)-based real-time stereo SLAM system that leverages complete geometry information to avoid information loss. Moreover, there is currently no publicly available dataset for directly evaluating the effectiveness of dynamic and static feature classification methods, and to bridge this gap, we have created a publicly available dataset containing over 50,000 feature points. Experimental results demonstrate that our MLP-based dynamic and static feature point discriminator has achieved superior performance compared to other methods on this dataset. Furthermore, the MLP-based real-time stereo SLAM system has shown the highest average precision and fastest speed on the outdoor KITTI tracking datasets compared to other dynamic SLAM systems.The open-source code and datasets are available at https://github.com/TaozheLi/MLP-SLAM.
comment: Dynamic SLAM
Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
Team Xiaomi EV-AD VLA: Caption-Guided Retrieval System for Cross-Modal Drone Navigation -- Technical Report for IROS 2025 RoboSense Challenge Track 4
Cross-modal drone navigation remains a challenging task in robotics, requiring efficient retrieval of relevant images from large-scale databases based on natural language descriptions. The RoboSense 2025 Track 4 challenge addresses this challenge, focusing on robust, natural language-guided cross-view image retrieval across multiple platforms (drones, satellites, and ground cameras). Current baseline methods, while effective for initial retrieval, often struggle to achieve fine-grained semantic matching between text queries and visual content, especially in complex aerial scenes. To address this challenge, we propose a two-stage retrieval refinement method: Caption-Guided Retrieval System (CGRS) that enhances the baseline coarse ranking through intelligent reranking. Our method first leverages a baseline model to obtain an initial coarse ranking of the top 20 most relevant images for each query. We then use Vision-Language-Model (VLM) to generate detailed captions for these candidate images, capturing rich semantic descriptions of their visual content. These generated captions are then used in a multimodal similarity computation framework to perform fine-grained reranking of the original text query, effectively building a semantic bridge between the visual content and natural language descriptions. Our approach significantly improves upon the baseline, achieving a consistent 5\% improvement across all key metrics (Recall@1, Recall@5, and Recall@10). Our approach win TOP-2 in the challenge, demonstrating the practical value of our semantic refinement strategy in real-world robotic navigation scenarios.
OmniVLA: Physically-Grounded Multimodal VLA with Unified Multi-Sensor Perception for Robotic Manipulation
Vision-language-action (VLA) models have shown strong generalization for robotic action prediction through large-scale vision-language pretraining. However, most existing models rely solely on RGB cameras, limiting their perception and, consequently, manipulation capabilities. We present OmniVLA, an omni-modality VLA model that integrates novel sensing modalities for physically-grounded spatial intelligence beyond RGB perception. The core of our approach is the sensor-masked image, a unified representation that overlays spatially grounded and physically meaningful masks onto the RGB images, derived from sensors including an infrared camera, a mmWave radar, and a microphone array. This image-native unification keeps sensor input close to RGB statistics to facilitate training, provides a uniform interface across sensor hardware, and enables data-efficient learning with lightweight per-sensor projectors. Built on this, we present a multisensory vision-language-action model architecture and train the model based on an RGB-pretrained VLA backbone. We evaluate OmniVLA on challenging real-world tasks where sensor-modality perception guides the robotic manipulation. OmniVLA achieves an average task success rate of 84%, significantly outperforms both RGB-only and raw-sensor-input baseline models by 59% and 28% respectively, meanwhile showing higher learning efficiency and stronger generalization capability.
Toward Engineering AGI: Benchmarking the Engineering Design Capabilities of LLMs NeurIPS 2025
Modern engineering, spanning electrical, mechanical, aerospace, civil, and computer disciplines, stands as a cornerstone of human civilization and the foundation of our society. However, engineering design poses a fundamentally different challenge for large language models (LLMs) compared with traditional textbook-style problem solving or factual question answering. Although existing benchmarks have driven progress in areas such as language understanding, code synthesis, and scientific problem solving, real-world engineering design demands the synthesis of domain knowledge, navigation of complex trade-offs, and management of the tedious processes that consume much of practicing engineers' time. Despite these shared challenges across engineering disciplines, no benchmark currently captures the unique demands of engineering design work. In this work, we introduce EngDesign, an Engineering Design benchmark that evaluates LLMs' abilities to perform practical design tasks across nine engineering domains. Unlike existing benchmarks that focus on factual recall or question answering, EngDesign uniquely emphasizes LLMs' ability to synthesize domain knowledge, reason under constraints, and generate functional, objective-oriented engineering designs. Each task in EngDesign represents a real-world engineering design problem, accompanied by a detailed task description specifying design goals, constraints, and performance requirements. EngDesign pioneers a simulation-based evaluation paradigm that moves beyond textbook knowledge to assess genuine engineering design capabilities and shifts evaluation from static answer checking to dynamic, simulation-driven functional verification, marking a crucial step toward realizing the vision of engineering Artificial General Intelligence (AGI).
comment: To Appear in NeurIPS 2025 Datasets & Benchmarks Track
Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
Joint Verification and Refinement of Language Models for Safety-Constrained Planning
Large language models possess impressive capabilities in generating programs (e.g., Python) from natural language descriptions to execute robotic tasks. However, these generated programs often contain errors that violate externally given task specifications. Without an effective method to verify their correctness, the reliable deployment of language models in real-world systems is practically infeasible. We develop a method that converts generated robot programs into an automaton-based representation and verifies them against task-relevant safety specifications. We establish a theorem that any arbitrary combination of the verified programs will also satisfy the safety specifications. Hence, the method eliminates the need to verify complex programs composed of multiple simpler ones, reducing computation complexity. We then introduce an automated fine-tuning procedure that leverages verification outcomes for supervision. By applying the theorem, this procedure only requires training the model to generate safe sub-components, thereby improving training efficiency. Empirical results on robot applications show a 30 percent increase in the probability of generating specification-compliant programs, with training time reduced by half compared to fine-tuning on generating full programs.
Multiagent Systems
DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
Regret Lower Bounds for Decentralized Multi-Agent Stochastic Shortest Path Problems NeurIPS 2025
Multi-agent systems (MAS) are central to applications such as swarm robotics and traffic routing, where agents must coordinate in a decentralized manner to achieve a common objective. Stochastic Shortest Path (SSP) problems provide a natural framework for modeling decentralized control in such settings. While the problem of learning in SSP has been extensively studied in single-agent settings, the decentralized multi-agent variant remains largely unexplored. In this work, we take a step towards addressing that gap. We study decentralized multi-agent SSPs (Dec-MASSPs) under linear function approximation, where the transition dynamics and costs are represented using linear models. Applying novel symmetry-based arguments, we identify the structure of optimal policies. Our main contribution is the first regret lower bound for this setting based on the construction of hard-to-learn instances for any number of agents, $n$. Our regret lower bound of $\Omega(\sqrt{K})$, over $K$ episodes, highlights the inherent learning difficulty in Dec-MASSPs. These insights clarify the learning complexity of decentralized control and can further guide the design of efficient learning algorithms in multi-agent systems.
comment: To appear in 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
Computational Turing Test Reveals Systematic Differences Between Human and AI Language
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
When Empowerment Disempowers
Empowerment, a measure of an agent's ability to control its environment, has been proposed as a universal goal-agnostic objective for motivating assistive behavior in AI agents. While multi-human settings like homes and hospitals are promising for AI assistance, prior work on empowerment-based assistance assumes that the agent assists one human in isolation. We introduce an open source multi-human gridworld test suite Disempower-Grid. Using Disempower-Grid, we empirically show that assistive RL agents optimizing for one human's empowerment can significantly reduce another human's environmental influence and rewards - a phenomenon we formalize as disempowerment. We characterize when disempowerment occurs in these environments and show that joint empowerment mitigates disempowerment at the cost of the user's reward. Our work reveals a broader challenge for the AI alignment community: goal-agnostic objectives that seem aligned in single-agent settings can become misaligned in multi-agent contexts.
BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.
Multi-Agent Collaborative Framework For Math Problem Generation
Automatic question generation (AQG) for mathematics education remains an elusive goal for Intelligent Tutoring Systems and educators. While pre-trained transformer-based language models have significantly advanced natural language generation, they often struggle to precisely control problem complexity and cognitive demands. In this paper, we introduce a collaborative multi-agent framework as a novel method of incorporating inference-time computation into AQG. This approach leverages multiple agents that iteratively refine generated question-answer pairs to better balance complexity and cognitive demand. We evaluate the generated questions on five meta-evaluation criteria: relevance, importance, clarity, difficulty matching, answerability, to assess the system's ability to control the required complexity and quality of the questions. Preliminary evaluations show that this collaborative multi-agent framework elevates the quality of generated educational content by fostering a more nuanced balance between cognitive challenge and clarity. These promising outcomes suggest that integrating collaborative multi-agent workflows can yield more controlled, pedagogically valuable content that can help advance automated educational content generation and adaptive learning environments.
comment: Published in the Proceedings of the 18th International Conference on Educational Data Mining, 6 pages, 5 figures
Persuading Stable Matching
In bipartite matching problems, agents on two sides of a graph want to be paired according to their preferences. The stability of a matching depends on these preferences, which in uncertain environments also reflect agents' beliefs about the underlying state of the world. We investigate how a principal -- who observes the true state of the world -- can strategically shape these beliefs through Bayesian persuasion to induce stable matching that maximizes a desired utility. Due to the general intractability of the underlying matching optimization problem as well as the multi-receiver persuasion problem, our main considerations are two important special cases: (1) when agents can be categorized into a small number of types based on their value functions, and (2) when the number of possible world states is small. For each case, we study both public and private signaling settings. Our results draw a complete complexity landscape: we show that private persuasion remains intractable even when the number of worlds is small, while all other settings admit polynomial-time algorithms. We present efficient algorithms for each tractable case and prove NP-hardness for the intractable ones. These results illuminate the algorithmic frontier of stable matching under information design and clarify when optimal persuasion is computationally feasible.
ScheduleStream: Temporal Planning with Samplers for GPU-Accelerated Multi-Arm Task and Motion Planning & Scheduling
Bimanual and humanoid robots are appealing because of their human-like ability to leverage multiple arms to efficiently complete tasks. However, controlling multiple arms at once is computationally challenging due to the growth in the hybrid discrete-continuous action space. Task and Motion Planning (TAMP) algorithms can efficiently plan in hybrid spaces but generally produce plans, where only one arm is moving at a time, rather than schedules that allow for parallel arm motion. In order to extend TAMP to produce schedules, we present ScheduleStream, the first general-purpose framework for planning & scheduling with sampling operations. ScheduleStream models temporal dynamics using hybrid durative actions, which can be started asynchronously and persist for a duration that's a function of their parameters. We propose domain-independent algorithms that solve ScheduleStream problems without any application-specific mechanisms. We apply ScheduleStream to Task and Motion Planning & Scheduling (TAMPAS), where we use GPU acceleration within samplers to expedite planning. We compare ScheduleStream algorithms to several ablations in simulation and find that they produce more efficient solutions. We demonstrate ScheduleStream on several real-world bimanual robot tasks at https://schedulestream.github.io.
comment: Project website: https://schedulestream.github.io
Persuading Stable Matching
In bipartite matching problems, agents on two sides of a graph want to be paired according to their preferences. The stability of a matching depends on these preferences, which in uncertain environments also reflect agents' beliefs about the underlying state of the world. We investigate how a principal -- who observes the true state of the world -- can strategically shape these beliefs through Bayesian persuasion to induce stable matching that maximizes a desired utility. Due to the general intractability of the underlying matching optimization problem as well as the multi-receiver persuasion problem, our main considerations are two important special cases: (1) when agents can be categorized into a small number of types based on their value functions, and (2) when the number of possible world states is small. For each case, we study both public and private signaling settings. Our results draw a complete complexity landscape: we show that private persuasion remains intractable even when the number of worlds is small, while all other settings admit polynomial-time algorithms. We present efficient algorithms for each tractable case and prove NP-hardness for the intractable ones. These results illuminate the algorithmic frontier of stable matching under information design and clarify when optimal persuasion is computationally feasible.
ScheduleStream: Temporal Planning with Samplers for GPU-Accelerated Multi-Arm Task and Motion Planning & Scheduling
Bimanual and humanoid robots are appealing because of their human-like ability to leverage multiple arms to efficiently complete tasks. However, controlling multiple arms at once is computationally challenging due to the growth in the hybrid discrete-continuous action space. Task and Motion Planning (TAMP) algorithms can efficiently plan in hybrid spaces but generally produce plans, where only one arm is moving at a time, rather than schedules that allow for parallel arm motion. In order to extend TAMP to produce schedules, we present ScheduleStream, the first general-purpose framework for planning & scheduling with sampling operations. ScheduleStream models temporal dynamics using hybrid durative actions, which can be started asynchronously and persist for a duration that's a function of their parameters. We propose domain-independent algorithms that solve ScheduleStream problems without any application-specific mechanisms. We apply ScheduleStream to Task and Motion Planning & Scheduling (TAMPAS), where we use GPU acceleration within samplers to expedite planning. We compare ScheduleStream algorithms to several ablations in simulation and find that they produce more efficient solutions. We demonstrate ScheduleStream on several real-world bimanual robot tasks at https://schedulestream.github.io.
comment: Project website: https://schedulestream.github.io
DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration
Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.
Regret Lower Bounds for Decentralized Multi-Agent Stochastic Shortest Path Problems NeurIPS 2025
Multi-agent systems (MAS) are central to applications such as swarm robotics and traffic routing, where agents must coordinate in a decentralized manner to achieve a common objective. Stochastic Shortest Path (SSP) problems provide a natural framework for modeling decentralized control in such settings. While the problem of learning in SSP has been extensively studied in single-agent settings, the decentralized multi-agent variant remains largely unexplored. In this work, we take a step towards addressing that gap. We study decentralized multi-agent SSPs (Dec-MASSPs) under linear function approximation, where the transition dynamics and costs are represented using linear models. Applying novel symmetry-based arguments, we identify the structure of optimal policies. Our main contribution is the first regret lower bound for this setting based on the construction of hard-to-learn instances for any number of agents, $n$. Our regret lower bound of $Ω(\sqrt{K})$, over $K$ episodes, highlights the inherent learning difficulty in Dec-MASSPs. These insights clarify the learning complexity of decentralized control and can further guide the design of efficient learning algorithms in multi-agent systems.
comment: To appear in 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Large language models replicate and predict human cooperation across experiments in game theory
Large language models (LLMs) are increasingly used both to make decisions in domains such as health, education and law, and to simulate human behavior. Yet how closely LLMs mirror actual human decision-making remains poorly understood. This gap is critical: misalignment could produce harmful outcomes in practical applications, while failure to replicate human behavior renders LLMs ineffective for social simulations. Here, we address this gap by developing a digital twin of game-theoretic experiments and introducing a systematic prompting and probing framework for machine-behavioral evaluation. Testing three open-source models (Llama, Mistral and Qwen), we find that Llama reproduces human cooperation patterns with high fidelity, capturing human deviations from rational choice theory, while Qwen aligns closely with Nash equilibrium predictions. Notably, we achieved population-level behavioral replication without persona-based prompting, simplifying the simulation process. Extending beyond the original human-tested games, we generate and preregister testable hypotheses for novel game configurations outside the original parameter grid. Our findings demonstrate that appropriately calibrated LLMs can replicate aggregate human behavioral patterns and enable systematic exploration of unexplored experimental spaces, offering a complementary approach to traditional research in the social and behavioral sciences that generates new empirical predictions about human social decision-making.
Computational Turing Test Reveals Systematic Differences Between Human and AI Language
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
When Empowerment Disempowers
Empowerment, a measure of an agent's ability to control its environment, has been proposed as a universal goal-agnostic objective for motivating assistive behavior in AI agents. While multi-human settings like homes and hospitals are promising for AI assistance, prior work on empowerment-based assistance assumes that the agent assists one human in isolation. We introduce an open source multi-human gridworld test suite Disempower-Grid. Using Disempower-Grid, we empirically show that assistive RL agents optimizing for one human's empowerment can significantly reduce another human's environmental influence and rewards - a phenomenon we formalize as disempowerment. We characterize when disempowerment occurs in these environments and show that joint empowerment mitigates disempowerment at the cost of the user's reward. Our work reveals a broader challenge for the AI alignment community: goal-agnostic objectives that seem aligned in single-agent settings can become misaligned in multi-agent contexts.
BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.
Multi-Agent Collaborative Framework For Math Problem Generation
Automatic question generation (AQG) for mathematics education remains an elusive goal for Intelligent Tutoring Systems and educators. While pre-trained transformer-based language models have significantly advanced natural language generation, they often struggle to precisely control problem complexity and cognitive demands. In this paper, we introduce a collaborative multi-agent framework as a novel method of incorporating inference-time computation into AQG. This approach leverages multiple agents that iteratively refine generated question-answer pairs to better balance complexity and cognitive demand. We evaluate the generated questions on five meta-evaluation criteria: relevance, importance, clarity, difficulty matching, answerability, to assess the system's ability to control the required complexity and quality of the questions. Preliminary evaluations show that this collaborative multi-agent framework elevates the quality of generated educational content by fostering a more nuanced balance between cognitive challenge and clarity. These promising outcomes suggest that integrating collaborative multi-agent workflows can yield more controlled, pedagogically valuable content that can help advance automated educational content generation and adaptive learning environments.
comment: Published in the Proceedings of the 18th International Conference on Educational Data Mining, 6 pages, 5 figures
Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Revised to fix typos
Rater Equivalence: Evaluating Classifiers in Human Judgment Settings
In many decision settings, the definitive ground truth is either non-existent or inaccessible. We introduce a framework for evaluating classifiers based solely on human judgments. In such cases, it is helpful to compare automated classifiers to human judgment. We quantify a classifier's performance by its rater equivalence: the smallest number of human raters whose combined judgment matches the classifier's performance. Our framework uses human-generated labels both to construct benchmark panels and to evaluate performance. We distinguish between two models of utility: one based on agreement with the assumed but inaccessible ground truth, and one based on matching individual human judgments. Using case studies and formal analysis, we demonstrate how this framework can inform the evaluation and deployment of AI systems in practice.
Learning Communication Skills in Multi-task Multi-agent Deep Reinforcement Learning
In multi-agent deep reinforcement learning (MADRL), agents can communicate with one another to perform a task in a coordinated manner. When multiple tasks are involved, agents can also leverage knowledge from one task to improve learning in other tasks. In this paper, we propose Multi-task Communication Skills (MCS), a MADRL with communication method that learns and performs multiple tasks simultaneously, with agents interacting through learnable communication protocols. MCS employs a Transformer encoder to encode task-specific observations into a shared message space, capturing shared communication skills among agents. To enhance coordination among agents, we introduce a prediction network that correlates messages with the actions of sender agents in each task. We adapt three multi-agent benchmark environments to multi-task settings, where the number of agents as well as the observation and action spaces vary across tasks. Experimental results demonstrate that MCS achieves better performance than multi-task MADRL baselines without communication, as well as single-task MADRL baselines with and without communication.
comment: 20 pages, 10 figures
Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations SC 2025
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager.
comment: 7 pages, 2 figures, 2 tables; Accepted to be published as part of the 2025 IEEE International Conference on Intelligent Transportation Systems (ITSC 2025), Gold Coast, Australia, November 18-21, 2025
Characterising Global Platforms: Centralised, Decentralised, Federated, and Grassroots
Global digital platforms are software systems designed to serve entire populations, with some already serving billions of people. We propose atomic transactions-based multiagent transition systems and protocols as a formal framework to study them; introduce essential agents -- minimal sets of agents the removal of which makes communication impossible; and show that the cardinality of essential agents partitions all global platforms into four classes: 1. Centralised -- one (the server) 2. Decentralised -- finite $>1$ (bootstrap nodes) 3. Federated -- infinite but not universal (all servers) 4. Grassroots -- universal (all agents) Our illustrative formal example is a global social network, for which we provide centralised, decentralised, federated, and grassroots specifications via multiagent atomic transactions, and prove they all satisfy the same basic correctness properties. We discuss informally additional global platforms -- currencies, ``sharing economy'' apps, AI, and more. While this may be the first characterisation of centralised, decentralised, and federated global platforms, grassroots platforms have been formally defined previously, but using different notions. Here, we prove that their original definition implies that all agents are essential, placing grassroots platforms in a distinct class within the broader formal context that includes all global platforms. This work provides the first mathematical framework for classifying any global platform -- existing or imagined -- by providing a multiagent atomic-transactions specification of it and determining the cardinality of the minimal set of essential agents in the ensuing multiagent protocol. It thus provides a unifying mathematical approach for the study of global digital platforms, perhaps the most important class of computer systems today.
Robust Multi-Agent Decision-Making in Finite-Population Games
We study the robustness of an agent decision-making model in finite-population games, with a particular focus on the Kullback-Leibler Divergence Regularized Learning (KLD-RL) model. Specifically, we examine how the model's parameters influence the impact of various sources of noise and modeling inaccuracies -- factors commonly encountered in engineering applications of population games -- on agents' decision-making. Our analysis provides insights into how these parameters can be effectively tuned to mitigate such effects. Theoretical results are supported by numerical examples and simulation studies that validate the analysis and illustrate practical strategies for parameter selection.
Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Revised to fix typos
Rater Equivalence: Evaluating Classifiers in Human Judgment Settings
In many decision settings, the definitive ground truth is either non-existent or inaccessible. We introduce a framework for evaluating classifiers based solely on human judgments. In such cases, it is helpful to compare automated classifiers to human judgment. We quantify a classifier's performance by its rater equivalence: the smallest number of human raters whose combined judgment matches the classifier's performance. Our framework uses human-generated labels both to construct benchmark panels and to evaluate performance. We distinguish between two models of utility: one based on agreement with the assumed but inaccessible ground truth, and one based on matching individual human judgments. Using case studies and formal analysis, we demonstrate how this framework can inform the evaluation and deployment of AI systems in practice.
Learning Communication Skills in Multi-task Multi-agent Deep Reinforcement Learning
In multi-agent deep reinforcement learning (MADRL), agents can communicate with one another to perform a task in a coordinated manner. When multiple tasks are involved, agents can also leverage knowledge from one task to improve learning in other tasks. In this paper, we propose Multi-task Communication Skills (MCS), a MADRL with communication method that learns and performs multiple tasks simultaneously, with agents interacting through learnable communication protocols. MCS employs a Transformer encoder to encode task-specific observations into a shared message space, capturing shared communication skills among agents. To enhance coordination among agents, we introduce a prediction network that correlates messages with the actions of sender agents in each task. We adapt three multi-agent benchmark environments to multi-task settings, where the number of agents as well as the observation and action spaces vary across tasks. Experimental results demonstrate that MCS achieves better performance than multi-task MADRL baselines without communication, as well as single-task MADRL baselines with and without communication.
comment: 20 pages, 10 figures
Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations SC 2025
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager.
comment: 7 pages, 2 figures, 2 tables; Accepted to be published as part of the 2025 IEEE International Conference on Intelligent Transportation Systems (ITSC 2025), Gold Coast, Australia, November 18-21, 2025
Characterising Global Platforms: Centralised, Decentralised, Federated, and Grassroots
Global digital platforms are software systems designed to serve entire populations, with some already serving billions of people. We propose atomic transactions-based multiagent transition systems and protocols as a formal framework to study them; introduce essential agents -- minimal sets of agents the removal of which makes communication impossible; and show that the cardinality of essential agents partitions all global platforms into four classes: 1. Centralised -- one (the server) 2. Decentralised -- finite $>1$ (bootstrap nodes) 3. Federated -- infinite but not universal (all servers) 4. Grassroots -- universal (all agents) Our illustrative formal example is a global social network, for which we provide centralised, decentralised, federated, and grassroots specifications via multiagent atomic transactions, and prove they all satisfy the same basic correctness properties. We discuss informally additional global platforms -- currencies, ``sharing economy'' apps, AI, and more. While this may be the first characterisation of centralised, decentralised, and federated global platforms, grassroots platforms have been formally defined previously, but using different notions. Here, we prove that their original definition implies that all agents are essential, placing grassroots platforms in a distinct class within the broader formal context that includes all global platforms. This work provides the first mathematical framework for classifying any global platform -- existing or imagined -- by providing a multiagent atomic-transactions specification of it and determining the cardinality of the minimal set of essential agents in the ensuing multiagent protocol. It thus provides a unifying mathematical approach for the study of global digital platforms, perhaps the most important class of computer systems today.
Robust Multi-Agent Decision-Making in Finite-Population Games
We study the robustness of an agent decision-making model in finite-population games, with a particular focus on the Kullback-Leibler Divergence Regularized Learning (KLD-RL) model. Specifically, we examine how the model's parameters influence the impact of various sources of noise and modeling inaccuracies -- factors commonly encountered in engineering applications of population games -- on agents' decision-making. Our analysis provides insights into how these parameters can be effectively tuned to mitigate such effects. Theoretical results are supported by numerical examples and simulation studies that validate the analysis and illustrate practical strategies for parameter selection.
Systems and Control (CS)
Control Affine Hybrid Power Plant Subsystem Modeling for Supervisory Control Design
Hybrid power plants (HPPs) combine multiple power generators (conventional/variable) and energy storage capabilities to support generation inadequacy and grid demands. This paper introduces a modeling and control design framework for hybrid power plants (HPPs) consisting of a wind farm, solar plant, and battery storage. Specifically, this work adapts established modeling paradigms for wind farms, solar plants and battery models into a control affine form suitable for control design at the supervisory level. In the case of wind and battery models, generator torque and cell current control laws are developed using nonlinear control and control barrier function techniques to track a command from a supervisory control law while maintaining safe and stable operation. The utility of this modeling and control framework is illustrated through a test case using a utility demand signal for tracking, time varying wind and irradiance data, and a rule-based supervisory control law.
comment: 7 pages, 3 figures
Age of Job Completion Minimization with Stable Queues
We consider a time-slotted job-assignment system with a central server, N users and a machine which changes its state according to a Markov chain (hence called a Markov machine). The users submit their jobs to the central server according to a stochastic job arrival process. For each user, the server has a dedicated job queue. Upon receiving a job from a user, the server stores that job in the corresponding queue. When the machine is not working on a job assigned by the server, the machine can be either in internally busy or in free state, and the dynamics of these states follow a binary symmetric Markov chain. Upon sampling the state information of the machine, if the server identifies that the machine is in the free state, it schedules a user and submits a job to the machine from the job queue of the scheduled user. To maximize the number of jobs completed per unit time, we introduce a new metric, referred to as the age of job completion. To minimize the age of job completion and the sampling cost, we propose two policies and numerically evaluate their performance. For both of these policies, we find sufficient conditions under which the job queues will remain stable.
Funnel-Based Online Recovery Control for Nonlinear Systems With Unknown Dynamics
In this paper, we focus on recovery control of nonlinear systems from attacks or failures. The main challenges of this problem lie in (1) learning the unknown dynamics caused by attacks or failures with formal guarantees, and (2) finding the invariant set of states to formally ensure the state deviations allowed from the nominal trajectory. To solve this problem, we propose to apply the Recurrent Equilibrium Networks (RENs) to learn the unknown dynamics using the data from the real-time system states. The input-output property of this REN model is guaranteed by incremental integral quadratic constraints (IQCs). Then, we propose a funnel-based control method to achieve system recovery from the deviated states. In particular, a sufficient condition for nominal trajectory stabilization is derived together with the invariant funnels along the nominal trajectory. Eventually, the effectiveness of our proposed control method is illustrated by a simulation example of a DC microgrid control application.
comment: 13 pages, 14 figures
Synchronous Observer Design for Landmark-Inertial SLAM with Almost-Global Convergence
Landmark Inertial Simultaneous Localisation and Mapping (LI-SLAM) is the problem of estimating the locations of landmarks in the environment and the robot's pose relative to those landmarks using landmark position measurements and measurements from Inertial Measurement Unit (IMU). This paper proposes a nonlinear observer for LI-SLAM posed in continuous time and analyses the observer in a base space that encodes all the observable states of LI-SLAM. The local exponential stability and almost-global asymptotic stability of the error dynamics in base space is established in the proof section and validated using simulations.
comment: 13 pages, 3 figures, This work has been submitted to IFAC World Congress 2026 for possible publication
AI-Driven Phase-Shifted Carrier Optimization for Cascaded Bridge Converters, Modular Multilevel Converters, and Reconfigurable Batteries
Phase-shifted carrier pulse-width modulation (PSC-PWM) is a widely adopted scheduling algorithm in cascaded bridge converters, modular multilevel converters, and reconfigurable batteries. However, non-uniformed pulse widths for the modules with fixed phase shift angles lead to significant ripple current and output-voltage distortion. Voltage uniformity instead would require optimization of the phase shifts of the individual carriers. However, the computational burden for such optimization is beyond the capabilities of any simple embedded controller. This paper proposes a neural network that emulates the behavior of an instantaneous optimizer with significantly reduced computational burden. The proposed method has the advantages of stable performance in predicting the optimum phase-shift angles under balanced battery modules with non-identical modulation indices without requiring extensive lookup tables, slow numerical optimization, or complex controller tuning. With only one (re)training session for any specified number of modules, the proposed method is readily adaptable to different system sizes. Furthermore, the proposed framework also includes a simple scaling strategy that allows a neural network trained for fewer modules to be reused for larger systems by grouping modules and adjusting their phase shifts. The scaling strategy eliminates the need for retraining. Large-scale assessment, simulations, and experiments demonstrate that, on average, the proposed approach can reduce the current ripple and the weighted total harmonic distortion by up to 50 % in real time and is 100 to 500 thousand times faster than a conventional optimizer (e.g., genetic algorithms), making it the only solution for an online application.
comment: 10 pages, 11 figures
Data-driven uncertainty-aware seakeeping prediction of the Delft 372 catamaran using ensemble Hankel dynamic mode decomposition
In this study, we present and validate an ensemble-based Hankel Dynamic Mode Decomposition with control (HDMDc) for uncertainty-aware seakeeping predictions of a high-speed catamaran, namely the Delft 372 model. Experimental measurements (time histories) of wave elevation at the longitudinal center of gravity, heave, pitch, notional flight-deck velocity, notional bridge acceleration, and total resistance were collected from irregular wave basin tests on a 1:33.3 scale replica of the Delft 372 model under sea state 5 conditions at Fr = 0.425, and organized into training, validation, and test sets. The HDMDc algorithm constructs an equation-free linear reduced-order model of the seakeeping vessel by augmenting states and inputs with their time-lagged copies to capture nonlinear and memory effects. Two ensembling strategies, namely Bayesian HDMDc (BHDMDc), which samples hyperparameters considered stochastic variables with prior distribution to produce posterior mean forecasts with confidence intervals, and Frequentist HDMDc (FHDMDc), which aggregates multiple model obtained over data subsets, are compared in providing seakeeping prediction and uncertainty quantification. The FHDMDc approach is found to improve the accuracy of the predictions compared to the deterministic counterpart, also providing robust uncertainty estimation; whereas the application of BHDMDc to the present test case is not found beneficial in comparison to the deterministic model. FHDMDc-derived probability density functions for the motions closely match both experimental data and URANS results, demonstrating reliable and computationally efficient seakeeping prediction for design and operational support.
Deep Dictionary-Free Method for Identifying Linear Model of Nonlinear System with Input Delay
Nonlinear dynamical systems with input delays pose significant challenges for prediction, estimation, and control due to their inherent complexity and the impact of delays on system behavior. Traditional linear control techniques often fail in these contexts, necessitating innovative approaches. This paper introduces a novel approach to approximate the Koopman operator using an LSTM-enhanced Deep Koopman model, enabling linear representations of nonlinear systems with time delays. By incorporating Long Short-Term Memory (LSTM) layers, the proposed framework captures historical dependencies and efficiently encodes time-delayed system dynamics into a latent space. Unlike traditional extended Dynamic Mode Decomposition (eDMD) approaches that rely on predefined dictionaries, the LSTM-enhanced Deep Koopman model is dictionary-free, which mitigates the problems with the underlying dynamics being known and incorporated into the dictionary. Quantitative comparisons with extended eDMD on a simulated system demonstrate highly significant performance gains in prediction accuracy in cases where the true nonlinear dynamics are unknown and achieve comparable results to eDMD with known dynamics of a system.
Deep Koopman Economic Model Predictive Control of a Pasteurisation Unit
This paper presents a deep Koopman-based Economic Model Predictive Control (EMPC) for efficient operation of a laboratory-scale pasteurization unit (PU). The method uses Koopman operator theory to transform the complex, nonlinear system dynamics into a linear representation, enabling the application of convex optimization while representing the complex PU accurately. The deep Koopman model utilizes neural networks to learn the linear dynamics from experimental data, achieving a 45% improvement in open-loop prediction accuracy over conventional N4SID subspace identification. Both analyzed models were employed in the EMPC formulation that includes interpretable economic costs, such as energy consumption, material losses due to inadequate pasteurization, and actuator wear. The feasibility of EMPC is ensured using slack variables. The deep Koopman EMPC and N4SID EMPC are numerically validated on a nonlinear model of multivariable PU under external disturbance. The disturbances include feed pump fail-to-close scenario and the introduction of a cold batch to be pastuerized. These results demonstrate that the deep Koopmand EMPC achieves a 32% reduction in total economic cost compared to the N4SID baseline. This improvement is mainly due to the reductions in material losses and energy consumption. Furthermore, the steady-state operation via Koopman-based EMPC requires 10.2% less electrical energy. The results highlight the practical advantages of integrating deep Koopman representations with economic optimization to achieve resource-efficient control of thermal-intensive plants.
Overview and Performance Evaluation of Supervisory Controller Synthesis with Eclipse ESCET v4.0
Supervisory controllers control cyber-physical systems to ensure their correct and safe operation. Synthesis-based engineering (SBE) is an approach to largely automate their design and implementation. SBE combines model-based engineering with computer-aided design, allowing engineers to focus on 'what' the system should do (the requirements) rather than 'how' it should do it (design and implementation). In the Eclipse Supervisory Control Engineering Toolkit (ESCET) open-source project, a community of users, researchers, and tool vendors jointly develop a toolkit to support the entire SBE process, particularly through the CIF modeling language and tools. In this paper, we first provide a description of CIF's symbolic supervisory controller synthesis algorithm, and thereby include aspects that are often omitted in the literature, but are of great practical relevance, such as the prevention of runtime errors, handling different types of requirements, and supporting input variables (to connect to external inputs). Secondly, we introduce and describe CIF's benchmark models, a collection of 23 freely available industrial and academic models of various sizes and complexities. Thirdly, we describe recent improvements between ESCET versions v0.8 (December 2022) and v4.0 (June 2024) that affect synthesis performance, evaluate them on our benchmark models, and show the current practical synthesis performance of CIF. Fourthly, we briefly look at multi-level synthesis, a non-monolithic synthesis approach, evaluate its gains, and show that while it can help to further improve synthesis performance, further performance improvements are still needed to synthesize complex models.
Data-Driven Modeling of Photosynthesis Regulation Under Oscillating Light Condition - Part I: In-Silico Exploration
This paper explores the application of data-driven system identification techniques in the frequency domain to obtain simplified, control-oriented models of photosynthesis regulation under oscillating light conditions. In-silico datasets are generated using simulations of the physics-based Basic DREAM Model (BDM) Funete et al.[2024], with light intensity signals -- comprising DC (static) and AC (modulated) components as input and chlorophyll fluorescence (ChlF) as output. Using these data, the Best Linear Approximation (BLA) method is employed to estimate second-order linear time-invariant (LTI) transfer function models across different operating conditions defined by DC levels and modulation frequencies of light intensity. Building on these local models, a Linear Parameter-Varying (LPV) representation is constructed, in which the scheduling parameter is defined by the DC values of the light intensity, providing a compact state-space representation of the system dynamics.
comment: 10 pages, 14 figures
ComEMS4Build: Comfort-Oriented Energy Management System for Residential Buildings using Hydrogen for Seasonal Storage
Integrating flexible loads and storage systems into the residential sector contributes to the alignment of volatile renewable generation with demand. Besides batteries serving as a short-term storage solution, residential buildings can benefit from a Hydrogen (H2) storage system, allowing seasonal shifting of renewable energy. However, as the initial costs of H2 systems are high, coupling a Fuel Cell (FC) with a Heat Pump (HP) can contribute to the size reduction of the H2 system. The present study develops a Comfort-Oriented Energy Management System for Residential Buildings (ComEMS4Build) comprising Photovoltaics (PV), Battery Energy Storage System (BESS), and H2 storage, where FC and HP are envisioned as complementary technologies. The fuzzy-logic-based ComEMS4Build is designed and evaluated over a period of 12 weeks in winter for a family household building in Germany using a semi-synthetic modeling approach. The Rule-Based Control (RBC), which serves as a lower benchmark, is a scheduler designed to require minimal inputs for operation. The Model Predictive Control (MPC) is intended as a cost-optimal benchmark with an ideal forecast. The results show that ComEMS4Build, similar to MPC, does not violate the thermal comfort of occupants in 10 out of 12 weeks, while RBC has a slightly higher median discomfort of 0.68 Kh. The ComEMS4Build increases the weekly electricity costs by 12.06 EUR compared to MPC, while RBC increases the weekly costs by 30.14 EUR. The ComEMS4Build improves the Hybrid Energy Storage System (HESS) utilization and energy exchange with the main grid compared to the RBC. However, when it comes to the FC operation, the RBC has an advantage, as it reduces the toggling counts by 3.48% and working hours by 7.59% compared to MPC...
comment: 30 pages, 14 figures, Submitted to Applied Energy Journal
Differential Flatness of Quasi-Static Slider-Pusher Models with Applications in Control
This paper investigates the dynamic properties of planar slider-pusher systems as a motion primitive in manipulation tasks. To that end, we construct a differential kinematic model deriving from the limit surface approach under the quasi-static assumption and with negligible contact friction. The quasi-static model applies to generic slider shapes and circular pusher geometries, enabling a differential kinematic representation of the system. From this model, we analyze differential flatness - a property advantageous for control synthesis and planning - and find that slider-pusher systems with polygon sliders and circular pushers exhibit flatness with the centre of mass as a flat output. Leveraging this property, we propose two control strategies for trajectory tracking: a cascaded quasi-static feedback strategy and a dynamic feedback linearization approach. We validate these strategies through closed-loop simulations incorporating perturbed models and input noise, as well as experimental results using a physical setup with a finger-like pusher and vision-based state detection. The real-world experiments confirm the applicability of the simulation gains, highlighting the potential of the proposed methods for
Towards optimal control of ensembles of discrete-time systems
The control of ensembles of dynamical systems is an intriguing and challenging problem, arising for example in quantum control. We initiate the investigation of optimal control of ensembles of discrete-time systems, focusing on minimising the average finite horizon cost over the ensemble. For very general nonlinear control systems and stage and terminal costs, we establish existence of minimisers under mild assumptions. Furthermore, we provide a $\Gamma$-convergence result which enables consistent approximation of the challenging ensemble optimal control problem, for example, by using empirical probability measures over the ensemble. Our results form a solid foundation for discrete-time optimal control of ensembles, with many interesting avenues for future research.
Necessary and Sufficient Conditions for the Optimization-Based Concurrent Execution of Learned Robotic Tasks
In this work, we consider the problem of executing multiple tasks encoded by value functions, each learned through Reinforcement Learning, using an optimization-based framework. Prior works develop such a framework, but left unanswered a fundamental question of when learned value functions can be concurrently executed. The main contribution of this work is to present theorems which provide necessary and sufficient conditions to concurrently execute sets of learned tasks within subsets of the state space, using a previously proposed min-norm controller. These theorems provide insight into when learned control tasks are possible to be made concurrently executable, when they might already inherently be concurrently executable and when it is not possible at all to make a set of learned tasks concurrently executable using the previously proposed methods. Additional contributions of this work include extending the optimization-based framework to execute multiple tasks encoded by value functions to also account for value functions trained with a discount factor, making the overall framework more compatible with standard RL practices.
comment: currently in review
Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants CCS
Cyberattacks targeting critical infrastructures, such as water treatment facilities, represent significant threats to public health, safety, and the environment. This paper introduces a systematic approach for modeling and assessing covert man-in-the-middle (MitM) attacks that leverage system identification techniques to inform the attack design. We focus on the attacker's ability to deploy a covert controller, and we evaluate countermeasures based on the Process-Aware Stealthy Attack Detection (PASAD) anomaly detection method. Using a second-order linear time-invariant with time delay model, representative of water treatment dynamics, we design and simulate stealthy attacks. Our results highlight how factors such as system noise and inaccuracies in the attacker's plant model influence the attack's stealthiness, underscoring the need for more robust detection strategies in industrial control environments.
comment: Proceedings of the 2025 Workshop on Re-design Industrial Control Systems with Security -- RICSS 2025 Workshop under the ACM Conference on Computer and Communications Security (CCS)
A Co-simulation Framework for Quadrotor Control System Design using ROS 2 and MATLAB/Simulink
Co-simulation is a critical approach for the design and analysis of complex cyber-physical systems. It will enhance development efficiency and reduce costs. This paper presents a co-simulation framework integrating ROS 2 and MATLAB/Simulink for quadrotor unmanned aerial vehicle (UAV) control system design and verification. First, a six-degree-of-freedom nonlinear dynamic model of the quadrotor is derived accurately that based on Newton-Euler equations. Second, within the proposed framework, a hierarchical control architecture was designed and implemented: LQR controller for attitude control to achieve optimal regulation performance, and PID controller for position control to ensure robustness and practical applicability. Third, elaborated the architecture of the framework, including the implementation details of the cross-platform data exchange mechanism. Simulation results demonstrate the effectiveness of the framework, highlighting its capability to provide an efficient and standardized solution for rapid prototyping and Software-in-the-Loop (SIL) validation of UAV control algorithms.
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
TIMESAFE: Timing Interruption Monitoring and Security Assessment for Fronthaul Environments
5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthaul (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Computationally Efficient Analytical Models of Frequency and Voltage in Low-Inertia Systems
In this paper, low-order models of the frequency and voltage response of mixed-generation, low-inertia systems are presented. These models are unique in their ability to efficiently and accurately model frequency and voltage dynamics without increasing the computational burden as the share of inverters is increased in a system. The models are validated against industry-grade electromagnetic transient simulation, compared to which the proposed models are several orders of magnitude faster. The accuracy and efficiency of the low-inertia frequency and voltage models makes them well suited for a variety of planning and operational studies, especially for multi-scenario and probabilistic studies, as well as for screening studies to establish impact zones based on the dynamic interactions between inverters and synchronous generators.
Approximate non-linear model predictive control with safety-augmented neural networks
Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated using two numerical non-linear MPC benchmarks of different complexity, demonstrating computational speedups that are orders of magnitude higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where a naive NN implementation fails.
The Mini Wheelbot: A Testbed for Learning-based Balancing, Flips, and Articulated Driving
The Mini Wheelbot is a balancing, reaction wheel unicycle robot designed as a testbed for learning-based control. It is an unstable system with highly nonlinear yaw dynamics, non-holonomic driving, and discrete contact switches in a small, powerful, and rugged form factor. The Mini Wheelbot can use its wheels to stand up from any initial orientation - enabling automatic environment resets in repetitive experiments and even challenging half flips. We illustrate the effectiveness of the Mini Wheelbot as a testbed by implementing two popular learning-based control algorithms. First, we showcase Bayesian optimization for tuning the balancing controller. Second, we use imitation learning from an expert nonlinear MPC that uses gyroscopic effects to reorient the robot and can track higher-level velocity and orientation commands. The latter allows the robot to drive around based on user commands - for the first time in this class of robots. The Mini Wheelbot is not only compelling for testing learning-based control algorithms, but it is also just fun to work with, as demonstrated in the video of our experiments.
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing. Jingzehua Xu, Weihang Zhang, and Yangyang Li contributed equally to this work and are recognized as the co-first authors of the paper
Continuity Conditions for Piecewise Quadratic Functions on Simplicial Conic Partitions are Equivalent
Analysis of continuous-time piecewise linear systems based on piecewise quadratic (PWQ) Lyapunov functions typically requires continuity of these functions over a partition of the state space. Several conditions for guaranteeing continuity of PWQ functions over state space partitions can be found in the literature. In this technical note, we show that these continuity conditions are equivalent over so-called simplicial conic partitions. As a consequence, the choice of which condition to impose can be based solely on practical considerations such as specific application or numerical aspects, without introducing additional conservatism in the analysis.
comment: 8 pages, 3 figures. Nov 2025: Fixed author name typo; no other content changes
Global Convergence of Oja's Component Flow for General Square Matrices and Its Applications
In this study, the global convergence properties of the Oja flow, a continuous-time algorithm for principal component extraction, was established for general square matrices. The Oja flow is a matrix differential equation on the Stiefel manifold designed to extract a dominant subspace. Although its analysis has traditionally been restricted to symmetric positive-definite matrices, where it acts as a gradient flow, recent applications have extended its use to general matrices. In this non-symmetric case, the flow extracts the invariant subspace corresponding to the eigenvalues with the largest real parts. However, prior convergence results have been purely local, leaving the global behavior as an open problem. The findings of this study fill this gap by providing a comprehensive global convergence analysis, establishing that the flow converges exponentially for almost all initial conditions. We also propose a modification to the algorithm that enhances its numerical stability. As an application of this theory, we developed novel methods for model reduction of linear dynamical systems and the synthesis of low-rank stabilizing controllers. The study advances the theoretical understanding of the Oja flow and demonstrates its potential as a reliable and versatile tool for analyzing and controlling complex linear systems.
comment: 15 pages, 6 figures. Added two references and fixed errors and typos
On Structural Properties of Risk-Averse Optimal Stopping Problems
We establish structural properties of optimal stopping problems under time-consistent dynamic (coherent) risk measures, focusing on value function monotonicity and the existence of control limit (threshold) optimal policies. While such results are well developed for risk-neutral (expected-value) models, they remain underexplored in risk-averse settings. Coherent risk measures typically lack the tower property and are subadditive rather than additive, complicating structural analysis. We show that value function monotonicity mirrors the risk-neutral case. Moreover, if the risk envelope associated with each coherent risk measure admits a minimal element, the risk-averse optimal stopping problem reduces to an equivalent risk-neutral formulation. We also develop a general procedure for identifying control limit optimal policies and use it to derive practical, verifiable conditions on the risk measures and MDP structure that guarantee their existence. We illustrate the theory and verify these conditions through optimal stopping problems arising in operations, marketing, and finance.
Robust Multi-Agent Decision-Making in Finite-Population Games
We study the robustness of an agent decision-making model in finite-population games, with a particular focus on the Kullback-Leibler Divergence Regularized Learning (KLD-RL) model. Specifically, we examine how the model's parameters influence the impact of various sources of noise and modeling inaccuracies -- factors commonly encountered in engineering applications of population games -- on agents' decision-making. Our analysis provides insights into how these parameters can be effectively tuned to mitigate such effects. Theoretical results are supported by numerical examples and simulation studies that validate the analysis and illustrate practical strategies for parameter selection.
MAPS: A Mode-Aware Probabilistic Scheduling Framework for LPV-Based Adaptive Control
This paper proposes Mode-Aware Probabilistic Scheduling (MAPS), a novel adaptive control framework tailored for DC motor systems experiencing varying friction. MAPS uniquely integrates an Interacting Multiple Model (IMM) estimator with a Linear Parameter-Varying (LPV) based control strategy, leveraging real-time mode probability estimates to perform probabilistic gain scheduling. A key innovation of MAPS lies in directly using the updated mode probabilities as the interpolation weights for online gain synthesis in the LPV controller, thereby tightly coupling state estimation with adaptive control. This seamless integration enables the controller to dynamically adapt control gains in real time, effectively responding to changes in frictional operating modes without requiring explicit friction model identification. Validation on a Hardware-in-the-Loop Simulation (HILS) environment demonstrates that MAPS significantly enhances both state estimation accuracy and reference tracking performance compared to Linear Quadratic Regulator (LQR) controllers relying on predefined scheduling variables. These results establish MAPS as a robust, generalizable solution for friction-aware adaptive control in uncertain, time-varying environments, with practical real-time applicability.
Robust Nonlinear Data-Driven Predictive Control for Mixed Vehicle Platoons via Koopman Operator and Reachability Analysis
Mixed vehicle platoons, comprising connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), hold significant potential for enhancing traffic performance. However, most existing control strategies assume linear system dynamics and often ignore the impact of adverse factors such as noise, disturbances, and attacks, which are inherent to real-world scenarios. To address these limitations, we propose a Robust Nonlinear Data-Driven Predictive Control (RNDDPC) framework that ensures safe and optimal control under uncertain and adverse conditions. By utilizing Koopman operator theory, we map the system's nonlinear dynamics into a higher-dimensional space, constructing a Koopman-based model that approximates the behavior of the original nonlinear system. To mitigate modeling errors associated with this predictor, we introduce a data-driven reachable set analysis technique that performs secondary learning using matrix zonotope sets, generating a reachable set predictor for over-approximation of the future states of the underlying system. Then, we formulate the RNDDPC optimization problem and solve it in a receding horizon manner for robust control inputs. Extensive simulations demonstrate that the proposed framework significantly outperforms baseline methods in tracking performance under noise, disturbances, and attacks.
Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
comment: This work is an extenede version of arXiv:2408.15625 and has been submitted to the IEEE for possible publication
Revisiting Power System Stabilizers with Increased Inverter-Based Generation: A Case Study
As power systems evolve with increasing production from Inverter-Based Resources (IBRs), their underlying dynamics are undergoing significant changes that can jeopardize system operation, leading to poorly damped oscillations or small-signal rotor angle instability. In this work, we investigate whether Power System Stabilizer (PSS) setting adjustments can effectively restore system stability and provide adequate damping in systems with increased IBR penetration, using the benchmark Kundur Two-Area System as a case study. Specifically, we evaluate the model-based Residues and P-Vref PSS tuning methods to examine their effectiveness under evolving grid conditions. Our findings indicate that the effectiveness of these tuning methods is not guaranteed, particularly when coordination is limited. Consequently, our case study motivates local and adaptive online PSS tuning methods.
The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
The agent-based modelling community has a debate on how ``intelligent'' artificial agents should be, and in what ways their local intelligence relates to the emergence of a collective intelligence. I approach this debate by endowing the preys and predators of the Lotka-Volterra model with behavioral algorithms characterized by different levels of sophistication. The main finding is that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While this broadly confirms that, in general, relatively simple agents favor the emergence of complex collective behavior, it also suggests that one fundamental mechanism is that the capability of individuals to take first-order derivatives of one other's behavior can allow the collective computation of derivatives of any order.
comment: 29 pages, 3 figures, 3 tables
Systems and Control (EESS)
Control Affine Hybrid Power Plant Subsystem Modeling for Supervisory Control Design
Hybrid power plants (HPPs) combine multiple power generators (conventional/variable) and energy storage capabilities to support generation inadequacy and grid demands. This paper introduces a modeling and control design framework for hybrid power plants (HPPs) consisting of a wind farm, solar plant, and battery storage. Specifically, this work adapts established modeling paradigms for wind farms, solar plants and battery models into a control affine form suitable for control design at the supervisory level. In the case of wind and battery models, generator torque and cell current control laws are developed using nonlinear control and control barrier function techniques to track a command from a supervisory control law while maintaining safe and stable operation. The utility of this modeling and control framework is illustrated through a test case using a utility demand signal for tracking, time varying wind and irradiance data, and a rule-based supervisory control law.
comment: 7 pages, 3 figures
Age of Job Completion Minimization with Stable Queues
We consider a time-slotted job-assignment system with a central server, N users and a machine which changes its state according to a Markov chain (hence called a Markov machine). The users submit their jobs to the central server according to a stochastic job arrival process. For each user, the server has a dedicated job queue. Upon receiving a job from a user, the server stores that job in the corresponding queue. When the machine is not working on a job assigned by the server, the machine can be either in internally busy or in free state, and the dynamics of these states follow a binary symmetric Markov chain. Upon sampling the state information of the machine, if the server identifies that the machine is in the free state, it schedules a user and submits a job to the machine from the job queue of the scheduled user. To maximize the number of jobs completed per unit time, we introduce a new metric, referred to as the age of job completion. To minimize the age of job completion and the sampling cost, we propose two policies and numerically evaluate their performance. For both of these policies, we find sufficient conditions under which the job queues will remain stable.
Funnel-Based Online Recovery Control for Nonlinear Systems With Unknown Dynamics
In this paper, we focus on recovery control of nonlinear systems from attacks or failures. The main challenges of this problem lie in (1) learning the unknown dynamics caused by attacks or failures with formal guarantees, and (2) finding the invariant set of states to formally ensure the state deviations allowed from the nominal trajectory. To solve this problem, we propose to apply the Recurrent Equilibrium Networks (RENs) to learn the unknown dynamics using the data from the real-time system states. The input-output property of this REN model is guaranteed by incremental integral quadratic constraints (IQCs). Then, we propose a funnel-based control method to achieve system recovery from the deviated states. In particular, a sufficient condition for nominal trajectory stabilization is derived together with the invariant funnels along the nominal trajectory. Eventually, the effectiveness of our proposed control method is illustrated by a simulation example of a DC microgrid control application.
comment: 13 pages, 14 figures
Synchronous Observer Design for Landmark-Inertial SLAM with Almost-Global Convergence
Landmark Inertial Simultaneous Localisation and Mapping (LI-SLAM) is the problem of estimating the locations of landmarks in the environment and the robot's pose relative to those landmarks using landmark position measurements and measurements from Inertial Measurement Unit (IMU). This paper proposes a nonlinear observer for LI-SLAM posed in continuous time and analyses the observer in a base space that encodes all the observable states of LI-SLAM. The local exponential stability and almost-global asymptotic stability of the error dynamics in base space is established in the proof section and validated using simulations.
comment: 13 pages, 3 figures, This work has been submitted to IFAC World Congress 2026 for possible publication
AI-Driven Phase-Shifted Carrier Optimization for Cascaded Bridge Converters, Modular Multilevel Converters, and Reconfigurable Batteries
Phase-shifted carrier pulse-width modulation (PSC-PWM) is a widely adopted scheduling algorithm in cascaded bridge converters, modular multilevel converters, and reconfigurable batteries. However, non-uniformed pulse widths for the modules with fixed phase shift angles lead to significant ripple current and output-voltage distortion. Voltage uniformity instead would require optimization of the phase shifts of the individual carriers. However, the computational burden for such optimization is beyond the capabilities of any simple embedded controller. This paper proposes a neural network that emulates the behavior of an instantaneous optimizer with significantly reduced computational burden. The proposed method has the advantages of stable performance in predicting the optimum phase-shift angles under balanced battery modules with non-identical modulation indices without requiring extensive lookup tables, slow numerical optimization, or complex controller tuning. With only one (re)training session for any specified number of modules, the proposed method is readily adaptable to different system sizes. Furthermore, the proposed framework also includes a simple scaling strategy that allows a neural network trained for fewer modules to be reused for larger systems by grouping modules and adjusting their phase shifts. The scaling strategy eliminates the need for retraining. Large-scale assessment, simulations, and experiments demonstrate that, on average, the proposed approach can reduce the current ripple and the weighted total harmonic distortion by up to 50 % in real time and is 100 to 500 thousand times faster than a conventional optimizer (e.g., genetic algorithms), making it the only solution for an online application.
comment: 10 pages, 11 figures
Data-driven uncertainty-aware seakeeping prediction of the Delft 372 catamaran using ensemble Hankel dynamic mode decomposition
In this study, we present and validate an ensemble-based Hankel Dynamic Mode Decomposition with control (HDMDc) for uncertainty-aware seakeeping predictions of a high-speed catamaran, namely the Delft 372 model. Experimental measurements (time histories) of wave elevation at the longitudinal center of gravity, heave, pitch, notional flight-deck velocity, notional bridge acceleration, and total resistance were collected from irregular wave basin tests on a 1:33.3 scale replica of the Delft 372 model under sea state 5 conditions at Fr = 0.425, and organized into training, validation, and test sets. The HDMDc algorithm constructs an equation-free linear reduced-order model of the seakeeping vessel by augmenting states and inputs with their time-lagged copies to capture nonlinear and memory effects. Two ensembling strategies, namely Bayesian HDMDc (BHDMDc), which samples hyperparameters considered stochastic variables with prior distribution to produce posterior mean forecasts with confidence intervals, and Frequentist HDMDc (FHDMDc), which aggregates multiple model obtained over data subsets, are compared in providing seakeeping prediction and uncertainty quantification. The FHDMDc approach is found to improve the accuracy of the predictions compared to the deterministic counterpart, also providing robust uncertainty estimation; whereas the application of BHDMDc to the present test case is not found beneficial in comparison to the deterministic model. FHDMDc-derived probability density functions for the motions closely match both experimental data and URANS results, demonstrating reliable and computationally efficient seakeeping prediction for design and operational support.
Deep Dictionary-Free Method for Identifying Linear Model of Nonlinear System with Input Delay
Nonlinear dynamical systems with input delays pose significant challenges for prediction, estimation, and control due to their inherent complexity and the impact of delays on system behavior. Traditional linear control techniques often fail in these contexts, necessitating innovative approaches. This paper introduces a novel approach to approximate the Koopman operator using an LSTM-enhanced Deep Koopman model, enabling linear representations of nonlinear systems with time delays. By incorporating Long Short-Term Memory (LSTM) layers, the proposed framework captures historical dependencies and efficiently encodes time-delayed system dynamics into a latent space. Unlike traditional extended Dynamic Mode Decomposition (eDMD) approaches that rely on predefined dictionaries, the LSTM-enhanced Deep Koopman model is dictionary-free, which mitigates the problems with the underlying dynamics being known and incorporated into the dictionary. Quantitative comparisons with extended eDMD on a simulated system demonstrate highly significant performance gains in prediction accuracy in cases where the true nonlinear dynamics are unknown and achieve comparable results to eDMD with known dynamics of a system.
Deep Koopman Economic Model Predictive Control of a Pasteurisation Unit
This paper presents a deep Koopman-based Economic Model Predictive Control (EMPC) for efficient operation of a laboratory-scale pasteurization unit (PU). The method uses Koopman operator theory to transform the complex, nonlinear system dynamics into a linear representation, enabling the application of convex optimization while representing the complex PU accurately. The deep Koopman model utilizes neural networks to learn the linear dynamics from experimental data, achieving a 45% improvement in open-loop prediction accuracy over conventional N4SID subspace identification. Both analyzed models were employed in the EMPC formulation that includes interpretable economic costs, such as energy consumption, material losses due to inadequate pasteurization, and actuator wear. The feasibility of EMPC is ensured using slack variables. The deep Koopman EMPC and N4SID EMPC are numerically validated on a nonlinear model of multivariable PU under external disturbance. The disturbances include feed pump fail-to-close scenario and the introduction of a cold batch to be pastuerized. These results demonstrate that the deep Koopmand EMPC achieves a 32% reduction in total economic cost compared to the N4SID baseline. This improvement is mainly due to the reductions in material losses and energy consumption. Furthermore, the steady-state operation via Koopman-based EMPC requires 10.2% less electrical energy. The results highlight the practical advantages of integrating deep Koopman representations with economic optimization to achieve resource-efficient control of thermal-intensive plants.
Overview and Performance Evaluation of Supervisory Controller Synthesis with Eclipse ESCET v4.0
Supervisory controllers control cyber-physical systems to ensure their correct and safe operation. Synthesis-based engineering (SBE) is an approach to largely automate their design and implementation. SBE combines model-based engineering with computer-aided design, allowing engineers to focus on 'what' the system should do (the requirements) rather than 'how' it should do it (design and implementation). In the Eclipse Supervisory Control Engineering Toolkit (ESCET) open-source project, a community of users, researchers, and tool vendors jointly develop a toolkit to support the entire SBE process, particularly through the CIF modeling language and tools. In this paper, we first provide a description of CIF's symbolic supervisory controller synthesis algorithm, and thereby include aspects that are often omitted in the literature, but are of great practical relevance, such as the prevention of runtime errors, handling different types of requirements, and supporting input variables (to connect to external inputs). Secondly, we introduce and describe CIF's benchmark models, a collection of 23 freely available industrial and academic models of various sizes and complexities. Thirdly, we describe recent improvements between ESCET versions v0.8 (December 2022) and v4.0 (June 2024) that affect synthesis performance, evaluate them on our benchmark models, and show the current practical synthesis performance of CIF. Fourthly, we briefly look at multi-level synthesis, a non-monolithic synthesis approach, evaluate its gains, and show that while it can help to further improve synthesis performance, further performance improvements are still needed to synthesize complex models.
Data-Driven Modeling of Photosynthesis Regulation Under Oscillating Light Condition - Part I: In-Silico Exploration
This paper explores the application of data-driven system identification techniques in the frequency domain to obtain simplified, control-oriented models of photosynthesis regulation under oscillating light conditions. In-silico datasets are generated using simulations of the physics-based Basic DREAM Model (BDM) Funete et al.[2024], with light intensity signals -- comprising DC (static) and AC (modulated) components as input and chlorophyll fluorescence (ChlF) as output. Using these data, the Best Linear Approximation (BLA) method is employed to estimate second-order linear time-invariant (LTI) transfer function models across different operating conditions defined by DC levels and modulation frequencies of light intensity. Building on these local models, a Linear Parameter-Varying (LPV) representation is constructed, in which the scheduling parameter is defined by the DC values of the light intensity, providing a compact state-space representation of the system dynamics.
comment: 10 pages, 14 figures
ComEMS4Build: Comfort-Oriented Energy Management System for Residential Buildings using Hydrogen for Seasonal Storage
Integrating flexible loads and storage systems into the residential sector contributes to the alignment of volatile renewable generation with demand. Besides batteries serving as a short-term storage solution, residential buildings can benefit from a Hydrogen (H2) storage system, allowing seasonal shifting of renewable energy. However, as the initial costs of H2 systems are high, coupling a Fuel Cell (FC) with a Heat Pump (HP) can contribute to the size reduction of the H2 system. The present study develops a Comfort-Oriented Energy Management System for Residential Buildings (ComEMS4Build) comprising Photovoltaics (PV), Battery Energy Storage System (BESS), and H2 storage, where FC and HP are envisioned as complementary technologies. The fuzzy-logic-based ComEMS4Build is designed and evaluated over a period of 12 weeks in winter for a family household building in Germany using a semi-synthetic modeling approach. The Rule-Based Control (RBC), which serves as a lower benchmark, is a scheduler designed to require minimal inputs for operation. The Model Predictive Control (MPC) is intended as a cost-optimal benchmark with an ideal forecast. The results show that ComEMS4Build, similar to MPC, does not violate the thermal comfort of occupants in 10 out of 12 weeks, while RBC has a slightly higher median discomfort of 0.68 Kh. The ComEMS4Build increases the weekly electricity costs by 12.06 EUR compared to MPC, while RBC increases the weekly costs by 30.14 EUR. The ComEMS4Build improves the Hybrid Energy Storage System (HESS) utilization and energy exchange with the main grid compared to the RBC. However, when it comes to the FC operation, the RBC has an advantage, as it reduces the toggling counts by 3.48% and working hours by 7.59% compared to MPC...
comment: 30 pages, 14 figures, Submitted to Applied Energy Journal
Differential Flatness of Quasi-Static Slider-Pusher Models with Applications in Control
This paper investigates the dynamic properties of planar slider-pusher systems as a motion primitive in manipulation tasks. To that end, we construct a differential kinematic model deriving from the limit surface approach under the quasi-static assumption and with negligible contact friction. The quasi-static model applies to generic slider shapes and circular pusher geometries, enabling a differential kinematic representation of the system. From this model, we analyze differential flatness - a property advantageous for control synthesis and planning - and find that slider-pusher systems with polygon sliders and circular pushers exhibit flatness with the centre of mass as a flat output. Leveraging this property, we propose two control strategies for trajectory tracking: a cascaded quasi-static feedback strategy and a dynamic feedback linearization approach. We validate these strategies through closed-loop simulations incorporating perturbed models and input noise, as well as experimental results using a physical setup with a finger-like pusher and vision-based state detection. The real-world experiments confirm the applicability of the simulation gains, highlighting the potential of the proposed methods for
Towards optimal control of ensembles of discrete-time systems
The control of ensembles of dynamical systems is an intriguing and challenging problem, arising for example in quantum control. We initiate the investigation of optimal control of ensembles of discrete-time systems, focusing on minimising the average finite horizon cost over the ensemble. For very general nonlinear control systems and stage and terminal costs, we establish existence of minimisers under mild assumptions. Furthermore, we provide a $\Gamma$-convergence result which enables consistent approximation of the challenging ensemble optimal control problem, for example, by using empirical probability measures over the ensemble. Our results form a solid foundation for discrete-time optimal control of ensembles, with many interesting avenues for future research.
Necessary and Sufficient Conditions for the Optimization-Based Concurrent Execution of Learned Robotic Tasks
In this work, we consider the problem of executing multiple tasks encoded by value functions, each learned through Reinforcement Learning, using an optimization-based framework. Prior works develop such a framework, but left unanswered a fundamental question of when learned value functions can be concurrently executed. The main contribution of this work is to present theorems which provide necessary and sufficient conditions to concurrently execute sets of learned tasks within subsets of the state space, using a previously proposed min-norm controller. These theorems provide insight into when learned control tasks are possible to be made concurrently executable, when they might already inherently be concurrently executable and when it is not possible at all to make a set of learned tasks concurrently executable using the previously proposed methods. Additional contributions of this work include extending the optimization-based framework to execute multiple tasks encoded by value functions to also account for value functions trained with a discount factor, making the overall framework more compatible with standard RL practices.
comment: currently in review
Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants CCS
Cyberattacks targeting critical infrastructures, such as water treatment facilities, represent significant threats to public health, safety, and the environment. This paper introduces a systematic approach for modeling and assessing covert man-in-the-middle (MitM) attacks that leverage system identification techniques to inform the attack design. We focus on the attacker's ability to deploy a covert controller, and we evaluate countermeasures based on the Process-Aware Stealthy Attack Detection (PASAD) anomaly detection method. Using a second-order linear time-invariant with time delay model, representative of water treatment dynamics, we design and simulate stealthy attacks. Our results highlight how factors such as system noise and inaccuracies in the attacker's plant model influence the attack's stealthiness, underscoring the need for more robust detection strategies in industrial control environments.
comment: Proceedings of the 2025 Workshop on Re-design Industrial Control Systems with Security -- RICSS 2025 Workshop under the ACM Conference on Computer and Communications Security (CCS)
A Co-simulation Framework for Quadrotor Control System Design using ROS 2 and MATLAB/Simulink
Co-simulation is a critical approach for the design and analysis of complex cyber-physical systems. It will enhance development efficiency and reduce costs. This paper presents a co-simulation framework integrating ROS 2 and MATLAB/Simulink for quadrotor unmanned aerial vehicle (UAV) control system design and verification. First, a six-degree-of-freedom nonlinear dynamic model of the quadrotor is derived accurately that based on Newton-Euler equations. Second, within the proposed framework, a hierarchical control architecture was designed and implemented: LQR controller for attitude control to achieve optimal regulation performance, and PID controller for position control to ensure robustness and practical applicability. Third, elaborated the architecture of the framework, including the implementation details of the cross-platform data exchange mechanism. Simulation results demonstrate the effectiveness of the framework, highlighting its capability to provide an efficient and standardized solution for rapid prototyping and Software-in-the-Loop (SIL) validation of UAV control algorithms.
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
TIMESAFE: Timing Interruption Monitoring and Security Assessment for Fronthaul Environments
5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthaul (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Computationally Efficient Analytical Models of Frequency and Voltage in Low-Inertia Systems
In this paper, low-order models of the frequency and voltage response of mixed-generation, low-inertia systems are presented. These models are unique in their ability to efficiently and accurately model frequency and voltage dynamics without increasing the computational burden as the share of inverters is increased in a system. The models are validated against industry-grade electromagnetic transient simulation, compared to which the proposed models are several orders of magnitude faster. The accuracy and efficiency of the low-inertia frequency and voltage models makes them well suited for a variety of planning and operational studies, especially for multi-scenario and probabilistic studies, as well as for screening studies to establish impact zones based on the dynamic interactions between inverters and synchronous generators.
Approximate non-linear model predictive control with safety-augmented neural networks
Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated using two numerical non-linear MPC benchmarks of different complexity, demonstrating computational speedups that are orders of magnitude higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where a naive NN implementation fails.
The Mini Wheelbot: A Testbed for Learning-based Balancing, Flips, and Articulated Driving
The Mini Wheelbot is a balancing, reaction wheel unicycle robot designed as a testbed for learning-based control. It is an unstable system with highly nonlinear yaw dynamics, non-holonomic driving, and discrete contact switches in a small, powerful, and rugged form factor. The Mini Wheelbot can use its wheels to stand up from any initial orientation - enabling automatic environment resets in repetitive experiments and even challenging half flips. We illustrate the effectiveness of the Mini Wheelbot as a testbed by implementing two popular learning-based control algorithms. First, we showcase Bayesian optimization for tuning the balancing controller. Second, we use imitation learning from an expert nonlinear MPC that uses gyroscopic effects to reorient the robot and can track higher-level velocity and orientation commands. The latter allows the robot to drive around based on user commands - for the first time in this class of robots. The Mini Wheelbot is not only compelling for testing learning-based control algorithms, but it is also just fun to work with, as demonstrated in the video of our experiments.
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing. Jingzehua Xu, Weihang Zhang, and Yangyang Li contributed equally to this work and are recognized as the co-first authors of the paper
Continuity Conditions for Piecewise Quadratic Functions on Simplicial Conic Partitions are Equivalent
Analysis of continuous-time piecewise linear systems based on piecewise quadratic (PWQ) Lyapunov functions typically requires continuity of these functions over a partition of the state space. Several conditions for guaranteeing continuity of PWQ functions over state space partitions can be found in the literature. In this technical note, we show that these continuity conditions are equivalent over so-called simplicial conic partitions. As a consequence, the choice of which condition to impose can be based solely on practical considerations such as specific application or numerical aspects, without introducing additional conservatism in the analysis.
comment: 8 pages, 3 figures. Nov 2025: Fixed author name typo; no other content changes
Global Convergence of Oja's Component Flow for General Square Matrices and Its Applications
In this study, the global convergence properties of the Oja flow, a continuous-time algorithm for principal component extraction, was established for general square matrices. The Oja flow is a matrix differential equation on the Stiefel manifold designed to extract a dominant subspace. Although its analysis has traditionally been restricted to symmetric positive-definite matrices, where it acts as a gradient flow, recent applications have extended its use to general matrices. In this non-symmetric case, the flow extracts the invariant subspace corresponding to the eigenvalues with the largest real parts. However, prior convergence results have been purely local, leaving the global behavior as an open problem. The findings of this study fill this gap by providing a comprehensive global convergence analysis, establishing that the flow converges exponentially for almost all initial conditions. We also propose a modification to the algorithm that enhances its numerical stability. As an application of this theory, we developed novel methods for model reduction of linear dynamical systems and the synthesis of low-rank stabilizing controllers. The study advances the theoretical understanding of the Oja flow and demonstrates its potential as a reliable and versatile tool for analyzing and controlling complex linear systems.
comment: 15 pages, 6 figures. Added two references and fixed errors and typos
On Structural Properties of Risk-Averse Optimal Stopping Problems
We establish structural properties of optimal stopping problems under time-consistent dynamic (coherent) risk measures, focusing on value function monotonicity and the existence of control limit (threshold) optimal policies. While such results are well developed for risk-neutral (expected-value) models, they remain underexplored in risk-averse settings. Coherent risk measures typically lack the tower property and are subadditive rather than additive, complicating structural analysis. We show that value function monotonicity mirrors the risk-neutral case. Moreover, if the risk envelope associated with each coherent risk measure admits a minimal element, the risk-averse optimal stopping problem reduces to an equivalent risk-neutral formulation. We also develop a general procedure for identifying control limit optimal policies and use it to derive practical, verifiable conditions on the risk measures and MDP structure that guarantee their existence. We illustrate the theory and verify these conditions through optimal stopping problems arising in operations, marketing, and finance.
Robust Multi-Agent Decision-Making in Finite-Population Games
We study the robustness of an agent decision-making model in finite-population games, with a particular focus on the Kullback-Leibler Divergence Regularized Learning (KLD-RL) model. Specifically, we examine how the model's parameters influence the impact of various sources of noise and modeling inaccuracies -- factors commonly encountered in engineering applications of population games -- on agents' decision-making. Our analysis provides insights into how these parameters can be effectively tuned to mitigate such effects. Theoretical results are supported by numerical examples and simulation studies that validate the analysis and illustrate practical strategies for parameter selection.
MAPS: A Mode-Aware Probabilistic Scheduling Framework for LPV-Based Adaptive Control
This paper proposes Mode-Aware Probabilistic Scheduling (MAPS), a novel adaptive control framework tailored for DC motor systems experiencing varying friction. MAPS uniquely integrates an Interacting Multiple Model (IMM) estimator with a Linear Parameter-Varying (LPV) based control strategy, leveraging real-time mode probability estimates to perform probabilistic gain scheduling. A key innovation of MAPS lies in directly using the updated mode probabilities as the interpolation weights for online gain synthesis in the LPV controller, thereby tightly coupling state estimation with adaptive control. This seamless integration enables the controller to dynamically adapt control gains in real time, effectively responding to changes in frictional operating modes without requiring explicit friction model identification. Validation on a Hardware-in-the-Loop Simulation (HILS) environment demonstrates that MAPS significantly enhances both state estimation accuracy and reference tracking performance compared to Linear Quadratic Regulator (LQR) controllers relying on predefined scheduling variables. These results establish MAPS as a robust, generalizable solution for friction-aware adaptive control in uncertain, time-varying environments, with practical real-time applicability.
Robust Nonlinear Data-Driven Predictive Control for Mixed Vehicle Platoons via Koopman Operator and Reachability Analysis
Mixed vehicle platoons, comprising connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), hold significant potential for enhancing traffic performance. However, most existing control strategies assume linear system dynamics and often ignore the impact of adverse factors such as noise, disturbances, and attacks, which are inherent to real-world scenarios. To address these limitations, we propose a Robust Nonlinear Data-Driven Predictive Control (RNDDPC) framework that ensures safe and optimal control under uncertain and adverse conditions. By utilizing Koopman operator theory, we map the system's nonlinear dynamics into a higher-dimensional space, constructing a Koopman-based model that approximates the behavior of the original nonlinear system. To mitigate modeling errors associated with this predictor, we introduce a data-driven reachable set analysis technique that performs secondary learning using matrix zonotope sets, generating a reachable set predictor for over-approximation of the future states of the underlying system. Then, we formulate the RNDDPC optimization problem and solve it in a receding horizon manner for robust control inputs. Extensive simulations demonstrate that the proposed framework significantly outperforms baseline methods in tracking performance under noise, disturbances, and attacks.
Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
comment: This work is an extenede version of arXiv:2408.15625 and has been submitted to the IEEE for possible publication
Revisiting Power System Stabilizers with Increased Inverter-Based Generation: A Case Study
As power systems evolve with increasing production from Inverter-Based Resources (IBRs), their underlying dynamics are undergoing significant changes that can jeopardize system operation, leading to poorly damped oscillations or small-signal rotor angle instability. In this work, we investigate whether Power System Stabilizer (PSS) setting adjustments can effectively restore system stability and provide adequate damping in systems with increased IBR penetration, using the benchmark Kundur Two-Area System as a case study. Specifically, we evaluate the model-based Residues and P-Vref PSS tuning methods to examine their effectiveness under evolving grid conditions. Our findings indicate that the effectiveness of these tuning methods is not guaranteed, particularly when coordination is limited. Consequently, our case study motivates local and adaptive online PSS tuning methods.
The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
The agent-based modelling community has a debate on how ``intelligent'' artificial agents should be, and in what ways their local intelligence relates to the emergence of a collective intelligence. I approach this debate by endowing the preys and predators of the Lotka-Volterra model with behavioral algorithms characterized by different levels of sophistication. The main finding is that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While this broadly confirms that, in general, relatively simple agents favor the emergence of complex collective behavior, it also suggests that one fundamental mechanism is that the capability of individuals to take first-order derivatives of one other's behavior can allow the collective computation of derivatives of any order.
comment: 29 pages, 3 figures, 3 tables
Robotics
Source-Free Bistable Fluidic Gripper for Size-Selective and Stiffness-Adaptive Grasping
Conventional fluid-driven soft grippers typically depend on external sources, which limit portability and long-term autonomy. This work introduces a self-contained soft gripper with fixed size that operates solely through internal liquid redistribution among three interconnected bistable snap-through chambers. When the top sensing chamber deforms upon contact, the displaced liquid triggers snap-through expansion of the grasping chambers, enabling stable and size-selective grasping without continuous energy input. The internal hydraulic feedback further allows passive adaptation of gripping pressure to object stiffness. This source-free and compact design opens new possibilities for lightweight, stiffness-adaptive fluid-driven manipulation in soft robotics, providing a feasible approach for targeted size-specific sampling and operation in underwater and field environments.
Unconscious and Intentional Human Motion Cues for Expressive Robot-Arm Motion Design
This study investigates how human motion cues can be used to design expressive robot-arm movements. Using the imperfect-information game Geister, we analyzed two types of human piece-moving motions: natural gameplay (unconscious tendencies) and instructed expressions (intentional cues). Based on these findings, we created phase-specific robot motions by varying movement speed and stop duration, and evaluated observer impressions under two presentation modalities: a physical robot and a recorded video. Results indicate that late-phase motion timing, particularly during withdrawal, plays an important role in impression formation and that physical embodiment enhances the interpretability of motion cues. These findings provide insights for designing expressive robot motions based on human timing behavior.
comment: 5 pages, 5 figures, HAI2025 Workshop on Socially Aware and Cooperative Intelligent Systems
Motion Planning Under Temporal Logic Specifications In Semantically Unknown Environments
This paper addresses a motion planning problem to achieve spatio-temporal-logical tasks, expressed by syntactically co-safe linear temporal logic specifications (scLTL\next), in uncertain environments. Here, the uncertainty is modeled as some probabilistic knowledge on the semantic labels of the environment. For example, the task is "first go to region 1, then go to region 2"; however, the exact locations of regions 1 and 2 are not known a priori, instead a probabilistic belief is available. We propose a novel automata-theoretic approach, where a special product automaton is constructed to capture the uncertainty related to semantic labels, and a reward function is designed for each edge of this product automaton. The proposed algorithm utilizes value iteration for online replanning. We show some theoretical results and present some simulations/experiments to demonstrate the efficacy of the proposed approach.
comment: 8 pages, 6 figures
Flying Robotics Art: ROS-based Drone Draws the Record-Breaking Mural
This paper presents the innovative design and successful deployment of a pioneering autonomous unmanned aerial system developed for executing the world's largest mural painted by a drone. Addressing the dual challenges of maintaining artistic precision and operational reliability under adverse outdoor conditions such as wind and direct sunlight, our work introduces a robust system capable of navigating and painting outdoors with unprecedented accuracy. Key to our approach is a novel navigation system that combines an infrared (IR) motion capture camera and LiDAR technology, enabling precise location tracking tailored specifically for largescale artistic applications. We employ a unique control architecture that uses different regulation in tangential and normal directions relative to the planned path, enabling precise trajectory tracking and stable line rendering. We also present algorithms for trajectory planning and path optimization, allowing for complex curve drawing and area filling. The system includes a custom-designed paint spraying mechanism, specifically engineered to function effectively amidst the turbulent airflow generated by the drone's propellers, which also protects the drone's critical components from paint-related damage, ensuring longevity and consistent performance. Experimental results demonstrate the system's robustness and precision in varied conditions, showcasing its potential for autonomous large-scale art creation and expanding the functional applications of robotics in creative fields.
Multi-robot searching with limited sensing range for static and mobile intruders
We consider the problem of searching for an intruder in a geometric domain by utilizing multiple search robots. The domain is a simply connected orthogonal polygon with edges parallel to the cartesian coordinate axes. Each robot has a limited sensing capability. We study the problem for both static and mobile intruders. It turns out that the problem of finding an intruder is NP-hard, even for a stationary intruder. Given this intractability, we turn our attention towards developing efficient and robust algorithms, namely methods based on space-filling curves, random search, and cooperative random search. Moreover, for each proposed algorithm, we evaluate the trade-off between the number of search robots and the time required for the robots to complete the search process while considering the geometric properties of the connected orthogonal search area.
Manifold-constrained Hamilton-Jacobi Reachability Learning for Decentralized Multi-Agent Motion Planning
Safe multi-agent motion planning (MAMP) under task-induced constraints is a critical challenge in robotics. Many real-world scenarios require robots to navigate dynamic environments while adhering to manifold constraints imposed by tasks. For example, service robots must carry cups upright while avoiding collisions with humans or other robots. Despite recent advances in decentralized MAMP for high-dimensional systems, incorporating manifold constraints remains difficult. To address this, we propose a manifold-constrained Hamilton-Jacobi reachability (HJR) learning framework for decentralized MAMP. Our method solves HJR problems under manifold constraints to capture task-aware safety conditions, which are then integrated into a decentralized trajectory optimization planner. This enables robots to generate motion plans that are both safe and task-feasible without requiring assumptions about other agents' policies. Our approach generalizes across diverse manifold-constrained tasks and scales effectively to high-dimensional multi-agent manipulation problems. Experiments show that our method outperforms existing constrained motion planners and operates at speeds suitable for real-world applications. Video demonstrations are available at https://youtu.be/RYcEHMnPTH8 .
Multi-User Personalisation in Human-Robot Interaction: Using Quantitative Bipolar Argumentation Frameworks for Preferences Conflict Resolution
While personalisation in Human-Robot Interaction (HRI) has advanced significantly, most existing approaches focus on single-user adaptation, overlooking scenarios involving multiple stakeholders with potentially conflicting preferences. To address this, we propose the Multi-User Preferences Quantitative Bipolar Argumentation Framework (MUP-QBAF), a novel multi-user personalisation framework based on Quantitative Bipolar Argumentation Frameworks (QBAFs) that explicitly models and resolves multi-user preference conflicts. Unlike prior work in Argumentation Frameworks, which typically assumes static inputs, our approach is tailored to robotics: it incorporates both users' arguments and the robot's dynamic observations of the environment, allowing the system to adapt over time and respond to changing contexts. Preferences, both positive and negative, are represented as arguments whose strength is recalculated iteratively based on new information. The framework's properties and capabilities are presented and validated through a realistic case study, where an assistive robot mediates between the conflicting preferences of a caregiver and a care recipient during a frailty assessment task. This evaluation further includes a sensitivity analysis of argument base scores, demonstrating how preference outcomes can be shaped by user input and contextual observations. By offering a transparent, structured, and context-sensitive approach to resolving competing user preferences, this work advances the field of multi-user HRI. It provides a principled alternative to data-driven methods, enabling robots to navigate conflicts in real-world environments.
comment: Preprint submitted to a journal
OneOcc: Semantic Occupancy Prediction for Legged Robots with a Single Panoramic Camera
Robust 3D semantic occupancy is crucial for legged/humanoid robots, yet most semantic scene completion (SSC) systems target wheeled platforms with forward-facing sensors. We present OneOcc, a vision-only panoramic SSC framework designed for gait-introduced body jitter and 360{\deg} continuity. OneOcc combines: (i) Dual-Projection fusion (DP-ER) to exploit the annular panorama and its equirectangular unfolding, preserving 360{\deg} continuity and grid alignment; (ii) Bi-Grid Voxelization (BGV) to reason in Cartesian and cylindrical-polar spaces, reducing discretization bias and sharpening free/occupied boundaries; (iii) a lightweight decoder with Hierarchical AMoE-3D for dynamic multi-scale fusion and better long-range/occlusion reasoning; and (iv) plug-and-play Gait Displacement Compensation (GDC) learning feature-level motion correction without extra sensors. We also release two panoramic occupancy benchmarks: QuadOcc (real quadruped, first-person 360{\deg}) and Human360Occ (H3O) (CARLA human-ego 360{\deg} with RGB, Depth, semantic occupancy; standardized within-/cross-city splits). OneOcc sets new state-of-the-art (SOTA): on QuadOcc it beats strong vision baselines and popular LiDAR ones; on H3O it gains +3.83 mIoU (within-city) and +8.08 (cross-city). Modules are lightweight, enabling deployable full-surround perception for legged/humanoid robots. Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc.
comment: Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc
Indicating Robot Vision Capabilities with Augmented Reality
Research indicates that humans can mistakenly assume that robots and humans have the same field of view (FoV), possessing an inaccurate mental model of robots. This misperception may lead to failures during human-robot collaboration tasks where robots might be asked to complete impossible tasks about out-of-view objects. The issue is more severe when robots do not have a chance to scan the scene to update their world model while focusing on assigned tasks. To help align humans' mental models of robots' vision capabilities, we propose four FoV indicators in augmented reality (AR) and conducted a user human-subjects experiment (N=41) to evaluate them in terms of accuracy, confidence, task efficiency, and workload. These indicators span a spectrum from egocentric (robot's eye and head space) to allocentric (task space). Results showed that the allocentric blocks at the task space had the highest accuracy with a delay in interpreting the robot's FoV. The egocentric indicator of deeper eye sockets, possible for physical alteration, also increased accuracy. In all indicators, participants' confidence was high while cognitive load remained low. Finally, we contribute six guidelines for practitioners to apply our AR indicators or physical alterations to align humans' mental models with robots' vision capabilities.
ROSBag MCP Server: Analyzing Robot Data with LLMs for Agentic Embodied AI Applications
Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.
Development of the Bioinspired Tendon-Driven DexHand 021 with Proprioceptive Compliance Control
The human hand plays a vital role in daily life and industrial applications, yet replicating its multifunctional capabilities-including motion, sensing, and coordinated manipulation-with robotic systems remains a formidable challenge. Developing a dexterous robotic hand requires balancing human-like agility with engineering constraints such as complexity, size-to-weight ratio, durability, and force-sensing performance. This letter presents Dex-Hand 021, a high-performance, cable-driven five-finger robotic hand with 12 active and 7 passive degrees of freedom (DoFs), achieving 19 DoFs dexterity in a lightweight 1 kg design. We propose a proprioceptive force-sensing-based admittance control method to enhance manipulation. Experimental results demonstrate its superior performance: a single-finger load capacity exceeding 10 N, fingertip repeatability under 0.001 m, and force estimation errors below 0.2 N. Compared to PID control, joint torques in multi-object grasping are reduced by 31.19%, significantly improves force-sensing capability while preventing overload during collisions. The hand excels in both power and precision grasps, successfully executing 33 GRASP taxonomy motions and complex manipulation tasks. This work advances the design of lightweight, industrial-grade dexterous hands and enhances proprioceptive control, contributing to robotic manipulation and intelligent manufacturing.
comment: 8 pages 18 fogures, IEEE RAL accept
Value Elicitation for a Socially Assistive Robot Addressing Social Anxiety: A Participatory Design Approach ECAI 2025
Social anxiety is a prevalent mental health condition that can significantly impact overall well-being and quality of life. Despite its widespread effects, adequate support or treatment for social anxiety is often insufficient. Advances in technology, particularly in social robotics, offer promising opportunities to complement traditional mental health. As an initial step toward developing effective solutions, it is essential to understand the values that shape what is considered meaningful, acceptable, and helpful. In this study, a participatory design workshop was conducted with mental health academic researchers to elicit the underlying values that should inform the design of socially assistive robots for social anxiety support. Through creative, reflective, and envisioning activities, participants explored scenarios and design possibilities, allowing for systematic elicitation of values, expectations, needs, and preferences related to robot-supported interventions. The findings reveal rich insights into design-relevant values-including adaptivity, acceptance, and efficacy-that are core to support for individuals with social anxiety. This study highlights the significance of a research-led approach to value elicitation, emphasising user-centred and context-aware design considerations in the development of socially assistive robots.
comment: Accepted at Value Engineering in AI (VALE) Workshop (ECAI 2025)
GUIDES: Guidance Using Instructor-Distilled Embeddings for Pre-trained Robot Policy Enhancement IROS 2025
Pre-trained robot policies serve as the foundation of many validated robotic systems, which encapsulate extensive embodied knowledge. However, they often lack the semantic awareness characteristic of foundation models, and replacing them entirely is impractical in many situations due to high costs and the loss of accumulated knowledge. To address this gap, we introduce GUIDES, a lightweight framework that augments pre-trained policies with semantic guidance from foundation models without requiring architectural redesign. GUIDES employs a fine-tuned vision-language model (Instructor) to generate contextual instructions, which are encoded by an auxiliary module into guidance embeddings. These embeddings are injected into the policy's latent space, allowing the legacy model to adapt to this new semantic input through brief, targeted fine-tuning. For inference-time robustness, a large language model-based Reflector monitors the Instructor's confidence and, when confidence is low, initiates a reasoning loop that analyzes execution history, retrieves relevant examples, and augments the VLM's context to refine subsequent actions. Extensive validation in the RoboCasa simulation environment across diverse policy architectures shows consistent and substantial improvements in task success rates. Real-world deployment on a UR5 robot further demonstrates that GUIDES enhances motion precision for critical sub-tasks such as grasping. Overall, GUIDES offers a practical and resource-efficient pathway to upgrade, rather than replace, validated robot policies.
comment: 8 pages, 4 figures, Accepted by IEEE IROS 2025 Workshop WIR-M
Collaborative Assembly Policy Learning of a Sightless Robot
This paper explores a physical human-robot collaboration (pHRC) task involving the joint insertion of a board into a frame by a sightless robot and a human operator. While admittance control is commonly used in pHRC tasks, it can be challenging to measure the force/torque applied by the human for accurate human intent estimation, limiting the robot's ability to assist in the collaborative task. Other methods that attempt to solve pHRC tasks using reinforcement learning (RL) are also unsuitable for the board-insertion task due to its safety constraints and sparse rewards. Therefore, we propose a novel RL approach that utilizes a human-designed admittance controller to facilitate more active robot behavior and reduce human effort. Through simulation and real-world experiments, we demonstrate that our approach outperforms admittance control in terms of success rate and task completion time. Additionally, we observed a significant reduction in measured force/torque when using our proposed approach compared to admittance control. The video of the experiments is available at https://youtu.be/va07Gw6YIog.
comment: Accepted by IEEE ROBIO 2025
Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks -- particularly those involving locomotion -- require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
Learning-based Cooperative Robotic Paper Wrapping: A Unified Control Policy with Residual Force Control
Human-robot cooperation is essential in environments such as warehouses and retail stores, where workers frequently handle deformable objects like paper, bags, and fabrics. Coordinating robotic actions with human assistance remains difficult due to the unpredictable dynamics of deformable materials and the need for adaptive force control. To explore this challenge, we focus on the task of gift wrapping, which exemplifies a long-horizon manipulation problem involving precise folding, controlled creasing, and secure fixation of paper. Success is achieved when the robot completes the sequence to produce a neatly wrapped package with clean folds and no tears. We propose a learning-based framework that integrates a high-level task planner powered by a large language model (LLM) with a low-level hybrid imitation learning (IL) and reinforcement learning (RL) policy. At its core is a Sub-task Aware Robotic Transformer (START) that learns a unified policy from human demonstrations. The key novelty lies in capturing long-range temporal dependencies across the full wrapping sequence within a single model. Unlike vanilla Action Chunking with Transformer (ACT), typically applied to short tasks, our method introduces sub-task IDs that provide explicit temporal grounding. This enables robust performance across the entire wrapping process and supports flexible execution, as the policy learns sub-goals rather than merely replicating motion sequences. Our framework achieves a 97% success rate on real-world wrapping tasks. We show that the unified transformer-based policy reduces the need for specialized models, allows controlled human supervision, and effectively bridges high-level intent with the fine-grained force control required for deformable object manipulation.
Optimizing Earth-Moon Transfer and Cislunar Navigation: Integrating Low-Energy Trajectories, AI Techniques and GNSS-R Technologies
The rapid growth of cislunar activities, including lunar landings, the Lunar Gateway, and in-space refueling stations, requires advances in cost-efficient trajectory design and reliable integration of navigation and remote sensing. Traditional Earth-Moon transfers suffer from rigid launch windows and high propellant demands, while Earth-based GNSS systems provide little to no coverage beyond geostationary orbit. This limits autonomy and environmental awareness in cislunar space. This review compares four major transfer strategies by evaluating velocity requirements, flight durations, and fuel efficiency, and by identifying their suitability for both crewed and robotic missions. The emerging role of artificial intelligence and machine learning is highlighted: convolutional neural networks support automated crater recognition and digital terrain model generation, while deep reinforcement learning enables adaptive trajectory refinement during descent and landing to reduce risk and decision latency. The study also examines how GNSS-Reflectometry and advanced Positioning, Navigation, and Timing architectures can extend navigation capabilities beyond current limits. GNSS-R can act as a bistatic radar for mapping lunar ice, soil properties, and surface topography, while PNT systems support autonomous rendezvous, Lagrange point station-keeping, and coordinated satellite swarm operations. Combining these developments establishes a scalable framework for sustainable cislunar exploration and long-term human and robotic presence.
Learning Natural and Robust Hexapod Locomotion over Complex Terrains via Motion Priors based on Deep Reinforcement Learning
Multi-legged robots offer enhanced stability to navigate complex terrains with their multiple legs interacting with the environment. However, how to effectively coordinate the multiple legs in a larger action exploration space to generate natural and robust movements is a key issue. In this paper, we introduce a motion prior-based approach, successfully applying deep reinforcement learning algorithms to a real hexapod robot. We generate a dataset of optimized motion priors, and train an adversarial discriminator based on the priors to guide the hexapod robot to learn natural gaits. The learned policy is then successfully transferred to a real hexapod robot, and demonstrate natural gait patterns and remarkable robustness without visual information in complex terrains. This is the first time that a reinforcement learning controller has been used to achieve complex terrain walking on a real hexapod robot.
SENT Map - Semantically Enhanced Topological Maps with Foundation Models ICRA 2025
We introduce SENT-Map, a semantically enhanced topological map for representing indoor environments, designed to support autonomous navigation and manipulation by leveraging advancements in foundational models (FMs). Through representing the environment in a JSON text format, we enable semantic information to be added and edited in a format that both humans and FMs understand, while grounding the robot to existing nodes during planning to avoid infeasible states during deployment. Our proposed framework employs a two stage approach, first mapping the environment alongside an operator with a Vision-FM, then using the SENT-Map representation alongside a natural-language query within an FM for planning. Our experimental results show that semantic-enhancement enables even small locally-deployable FMs to successfully plan over indoor environments.
comment: Accepted at ICRA 2025 Workshop on Foundation Models and Neuro-Symbolic AI for Robotics
SENT Map -- Semantically Enhanced Topological Maps with Foundation Models ICRA 2025
We introduce SENT-Map, a semantically enhanced topological map for representing indoor environments, designed to support autonomous navigation and manipulation by leveraging advancements in foundational models (FMs). Through representing the environment in a JSON text format, we enable semantic information to be added and edited in a format that both humans and FMs understand, while grounding the robot to existing nodes during planning to avoid infeasible states during deployment. Our proposed framework employs a two stage approach, first mapping the environment alongside an operator with a Vision-FM, then using the SENT-Map representation alongside a natural-language query within an FM for planning. Our experimental results show that semantic-enhancement enables even small locally-deployable FMs to successfully plan over indoor environments.
comment: Accepted at ICRA 2025 Workshop on Foundation Models and Neuro-Symbolic AI for Robotics
Investigating Robot Control Policy Learning for Autonomous X-ray-guided Spine Procedures
Imitation learning-based robot control policies are enjoying renewed interest in video-based robotics. However, it remains unclear whether this approach applies to X-ray-guided procedures, such as spine instrumentation. This is because interpretation of multi-view X-rays is complex. We examine opportunities and challenges for imitation policy learning in bi-plane-guided cannula insertion. We develop an in silico sandbox for scalable, automated simulation of X-ray-guided spine procedures with a high degree of realism. We curate a dataset of correct trajectories and corresponding bi-planar X-ray sequences that emulate the stepwise alignment of providers. We then train imitation learning policies for planning and open-loop control that iteratively align a cannula solely based on visual information. This precisely controlled setup offers insights into limitations and capabilities of this method. Our policy succeeded on the first attempt in 68.5% of cases, maintaining safe intra-pedicular trajectories across diverse vertebral levels. The policy generalized to complex anatomy, including fractures, and remained robust to varied initializations. Rollouts on real bi-planar X-rays further suggest that the model can produce plausible trajectories, despite training exclusively in simulation. While these preliminary results are promising, we also identify limitations, especially in entry point precision. Full closed-look control will require additional considerations around how to provide sufficiently frequent feedback. With more robust priors and domain knowledge, such models may provide a foundation for future efforts toward lightweight and CT-free robotic intra-operative spinal navigation.
RoboRAN: A Unified Robotics Framework for Reinforcement Learning-Based Autonomous Navigation
Autonomous robots must navigate and operate in diverse environments, from terrestrial and aquatic settings to aerial and space domains. While Reinforcement Learning (RL) has shown promise in training policies for specific autonomous robots, existing frameworks and benchmarks are often constrained to unique platforms, limiting generalization and fair comparisons across different mobility systems. In this paper, we present a multi-domain framework for training, evaluating and deploying RL-based navigation policies across diverse robotic platforms and operational environments. Our work presents four key contributions: (1) a scalable and modular framework, facilitating seamless robot-task interchangeability and reproducible training pipelines; (2) sim-to-real transfer demonstrated through real-world experiments with multiple robots, including a satellite robotic simulator, an unmanned surface vessel, and a wheeled ground vehicle; (3) the release of the first open-source API for deploying Isaac Lab-trained policies to real robots, enabling lightweight inference and rapid field validation; and (4) uniform tasks and metrics for cross-medium evaluation, through a unified evaluation testbed to assess performance of navigation tasks in diverse operational conditions (aquatic, terrestrial and space). By ensuring consistency between simulation and real-world deployment, RoboRAN lowers the barrier to developing adaptable RL-based navigation strategies. Its modular design enables straightforward integration of new robots and tasks through predefined templates, fostering reproducibility and extension to diverse domains. To support the community, we release RoboRAN as open-source.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents ICRA 2025
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to ICRA 2025
An explicit construction of Kaleidocycles by elliptic theta functions
We consider the configuration space of ordered points on the two-dimensional sphere that satisfy a specific system of quadratic equations. We construct periodic orbits in this configuration space using elliptic theta functions and show that they simultaneously satisfy semi-discrete analogues of mKdV and sine-Gordon equations. The configuration space we investigate corresponds to the state space of a linkage mechanism known as the Kaleidocycle, and the constructed orbits describe the characteristic motion of the Kaleidocycle. A key consequence of our construction is the proof that Kaleidocycles exist for any number of tetrahedra greater than five. Our approach is founded on the relationship between the deformation of spatial curves and integrable systems, offering an intriguing example where an integrable system is explicitly solved to generate an orbit in the space of real solutions to polynomial equations defined by geometric constraints.
Autonomous Robotic Drilling System for Mice Cranial Window Creation
Robotic assistance for experimental manipulation in the life sciences is expected to enable favorable outcomes, regardless of the skill of the scientist. Experimental specimens in the life sciences are subject to individual variability and hence require intricate algorithms for successful autonomous robotic control. As a use case, we are studying the cranial window creation in mice. This operation requires the removal of an 8-mm circular patch of the skull, which is approximately 300 um thick, but the shape and thickness of the mouse skull significantly varies depending on the strain of the mouse, sex, and age. In this work, we develop an autonomous robotic drilling system with no offline planning, consisting of a trajectory planner with execution-time feedback with drilling completion level recognition based on image and force information. In the experiments, we first evaluate the image-and-force-based drilling completion level recognition by comparing it with other state-of-the-art deep learning image processing methods and conduct an ablation study in eggshell drilling to evaluate the impact of each module on system performance. Finally, the system performance is further evaluated in postmortem mice, achieving a success rate of 70% (14/20 trials) with an average drilling time of 9.3 min.
comment: 14 pages, 11 figures, accepted on T-ASE 2025
Toward Humanoid Brain-Body Co-design: Joint Optimization of Control and Morphology for Fall Recovery
Humanoid robots represent a central frontier in embodied intelligence, as their anthropomorphic form enables natural deployment in humans' workspace. Brain-body co-design for humanoids presents a promising approach to realizing this potential by jointly optimizing control policies and physical morphology. Within this context, fall recovery emerges as a critical capability. It not only enhances safety and resilience but also integrates naturally with locomotion systems, thereby advancing the autonomy of humanoids. In this paper, we propose RoboCraft, a scalable humanoid co-design framework for fall recovery that iteratively improves performance through the coupled updates of control policy and morphology. A shared policy pretrained across multiple designs is progressively finetuned on high-performing morphologies, enabling efficient adaptation without retraining from scratch. Concurrently, morphology search is guided by human-inspired priors and optimization algorithms, supported by a priority buffer that balances reevaluation of promising candidates with the exploration of novel designs. Experiments show that RoboCraft achieves an average performance gain of 44.55% on seven public humanoid robots, with morphology optimization drives at least 40% of improvements in co-designing four humanoid robots, underscoring the critical role of humanoid co-design.
Mastering Contact-rich Tasks by Combining Soft and Rigid Robotics with Imitation Learning
Soft robots have the potential to revolutionize the use of robotic systems with their capability of establishing safe, robust, and adaptable interactions with their environment, but their precise control remains challenging. In contrast, traditional rigid robots offer high accuracy and repeatability but lack the flexibility of soft robots. We argue that combining these characteristics in a hybrid robotic platform can significantly enhance overall capabilities. This work presents a novel hybrid robotic platform that integrates a rigid manipulator with a fully developed soft arm. This system is equipped with the intelligence necessary to perform flexible and generalizable tasks through imitation learning autonomously. The physical softness and machine learning enable our platform to achieve highly generalizable skills, while the rigid components ensure precision and repeatability.
comment: Update with additional results and experiments
Augmented Reality for RObots (ARRO): Pointing Visuomotor Policies Towards Visual Robustness
Visuomotor policies trained on human expert demonstrations have recently shown strong performance across a wide range of robotic manipulation tasks. However, these policies remain highly sensitive to domain shifts stemming from background or robot embodiment changes, which limits their generalization capabilities. In this paper, we present ARRO, a novel visual representation that leverages zero-shot open-vocabulary segmentation and object detection models to efficiently mask out task-irrelevant regions of the scene in real time without requiring additional training, modeling of the setup, or camera calibration. By filtering visual distractors and overlaying virtual guides during both training and inference, ARRO improves robustness to scene variations and reduces the need for additional data collection. We extensively evaluate ARRO with Diffusion Policy on a range of tabletop manipulation tasks in both simulation and real-world environments, and further demonstrate its compatibility and effectiveness with generalist robot policies, such as Octo and OpenVLA. Across all settings in our evaluation, ARRO yields consistent performance gains, allows for selective masking to choose between different objects, and shows robustness even to challenging segmentation conditions. Videos showcasing our results are available at: https://augmented-reality-for-robots.github.io/
mmE-Loc: Facilitating Accurate Drone Landing with Ultra-High-Frequency Localization
For precise, efficient, and safe drone landings, ground platforms should real-time, accurately locate descending drones and guide them to designated spots. While mmWave sensing combined with cameras improves localization accuracy, lower sampling frequency of traditional frame cameras compared to mmWave radar creates bottlenecks in system throughput. In this work, we upgrade traditional frame camera with event camera, a novel sensor that harmonizes in sampling frequency with mmWave radar within ground platform setup, and introduce mmE-Loc, a high-precision, low-latency ground localization system designed for precise drone landings. To fully exploit the \textit{temporal consistency} and \textit{spatial complementarity} between these two modalities, we propose two innovative modules: \textit{(i)} the Consistency-instructed Collaborative Tracking module, which further leverages the drone's physical knowledge of periodic micro-motions and structure for accurate measurements extraction, and \textit{(ii)} the Graph-informed Adaptive Joint Optimization module, which integrates drone motion information for efficient sensor fusion and drone localization. Real-world experiments conducted in landing scenarios with a drone delivery company demonstrate that mmE-Loc significantly outperforms state-of-the-art methods in both accuracy and latency.
comment: 17 pages, 34 figures. Journal extended version of arXiv:2502.14992
Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning
This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl
Thor: Towards Human-Level Whole-Body Reactions for Intense Contact-Rich Environments
Humanoids hold great potential for service, industrial, and rescue applications, in which robots must sustain whole-body stability while performing intense, contact-rich interactions with the environment. However, enabling humanoids to generate human-like, adaptive responses under such conditions remains a major challenge. To address this, we propose Thor, a humanoid framework for human-level whole-body reactions in contact-rich environments. Based on the robot's force analysis, we design a force-adaptive torso-tilt (FAT2) reward function to encourage humanoids to exhibit human-like responses during force-interaction tasks. To mitigate the high-dimensional challenges of humanoid control, Thor introduces a reinforcement learning architecture that decouples the upper body, waist, and lower body. Each component shares global observations of the whole body and jointly updates its parameters. Finally, we deploy Thor on the Unitree G1, and it substantially outperforms baselines in force-interaction tasks. Specifically, the robot achieves a peak pulling force of 167.7 N (approximately 48% of the G1's body weight) when moving backward and 145.5 N when moving forward, representing improvements of 68.9% and 74.7%, respectively, compared with the best-performing baseline. Moreover, Thor is capable of pulling a loaded rack (130 N) and opening a fire door with one hand (60 N). These results highlight Thor's effectiveness in enhancing humanoid force-interaction capabilities.
Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
AURA: Autonomous Upskilling with Retrieval-Augmented Agents
Designing reinforcement learning curricula for agile robots traditionally requires extensive manual tuning of reward functions, environment randomizations, and training configurations. We introduce AURA (Autonomous Upskilling with Retrieval-Augmented Agents), a schema-validated curriculum reinforcement learning (RL) framework that leverages Large Language Models (LLMs) as autonomous designers of multi-stage curricula. AURA transforms user prompts into YAML workflows that encode full reward functions, domain randomization strategies, and training configurations. All files are statically validated before any GPU time is used, ensuring efficient and reliable execution. A retrieval-augmented feedback loop allows specialized LLM agents to design, execute, and refine curriculum stages based on prior training results stored in a vector database, enabling continual improvement over time. Quantitative experiments show that AURA consistently outperforms LLM-guided baselines in generation success rate, humanoid locomotion, and manipulation tasks. Ablation studies highlight the importance of schema validation and retrieval for curriculum quality. AURA successfully trains end-to-end policies directly from user prompts and deploys them zero-shot on a custom humanoid robot in multiple environments - capabilities that did not exist previously with manually designed controllers. By abstracting the complexity of curriculum design, AURA enables scalable and adaptive policy learning pipelines that would be complex to construct by hand. Project page: https://aura-research.org/
Hybrid Dynamics Modeling and Trajectory Planning for a Cable-Trailer System with a Quadruped Robot
Inspired by sled-pulling dogs in transportation, we present a cable-trailer integrated with a quadruped robot system. The motion planning of this system faces challenges due to the interactions between the cable's state transitions, the trailer's nonholonomic constraints, and the system's underactuation. To address these challenges, we first develop a hybrid dynamics model that captures the cable's taut and slack states. A search algorithm is then introduced to compute a suboptimal trajectory while incorporating mode transitions. Additionally, we propose a novel collision avoidance constraint based on geometric polygons to formulate the trajectory optimization problem for the hybrid system. The proposed method is implemented on a Unitree A1 quadruped robot with a customized cable-trailer and validated through experiments. The real system demonstrates both agile and safe motion with cable mode transitions.
comment: 8 pages, 8 figures, Accept by RA-L 2025
Modeling Elastic-Body Dynamics of Robotic Fish Using a Variational Framework
Fish-inspired aquatic robots are gaining increasing attention in marine robot communities due to their high swimming speeds and efficient propulsion enabled by flexible bodies that generate undulatory motions. To support the design optimization and control of such systems, accurate, interpretable, and computationally tractable modeling of the underlying swimming dynamics is indispensable. In this letter, we present a full-body dynamics model for motor-actuated robotic fish, rigorously derived from Hamilton's principle. The model captures the continuously distributed elasticity of a deformable fish body undergoing large deformations and incorporates fluid-structure coupling effects, enabling self-propelled motion without prescribing kinematics. Preliminary open-loop simulations examine how actuation frequency and body stiffness influence the swimming speed and energy efficiency of the robotic fish. Closed-loop simulations further assess how stiffness distribution impacts the controller's velocity-tracking performance and energy efficiency. The results demonstrate the model's potential for performance evaluation and control optimization of soft robotic swimmers when stiffness is treated as a design variable.
comment: Under review at IEEE Robotics and Automation Letters (RA-L)
Scalable Multi-Robot Motion Planning Using Workspace Guidance-Informed Hypergraphs
In this work, we propose a method for multiple mobile robot motion planning that efficiently plans for robot teams up to 128 robots (an order of magnitude larger than existing state-of-the-art methods) in congested settings with narrow passages in the environment. We achieve this improvement in scalability by extending the state-of-the-art Decomposable State Space Hypergraph (DaSH) multi-robot planning framework to support mobile robot motion planning in congested environments. This is a problem that DaSH cannot be directly applied to because it lacks a highly structured, easily discretizable task space and features kinodynamic constraints. We accomplish this by exploiting knowledge about the workspace topology to limit exploration of the planning space and through modifying DaSH's conflict resolution scheme. This guidance captures when coordination between robots is necessary, allowing us to decompose the intractably large multi-robot search space while limiting risk of inter-robot conflicts by composing relevant robot groups together while planning.
comment: This work has been submitted for review
XRoboToolkit: A Cross-Platform Framework for Robot Teleoperation
The rapid advancement of Vision-Language-Action models has created an urgent need for large-scale, high-quality robot demonstration datasets. Although teleoperation is the predominant method for data collection, current approaches suffer from limited scalability, complex setup procedures, and suboptimal data quality. This paper presents XRoboToolkit, a cross-platform framework for extended reality based robot teleoperation built on the OpenXR standard. The system features low-latency stereoscopic visual feedback, optimization-based inverse kinematics, and support for diverse tracking modalities including head, controller, hand, and auxiliary motion trackers. XRoboToolkit's modular architecture enables seamless integration across robotic platforms and simulation environments, spanning precision manipulators, mobile robots, and dexterous hands. We demonstrate the framework's effectiveness through precision manipulation tasks and validate data quality by training VLA models that exhibit robust autonomous performance.
comment: 6 pages, 6 figures, accepted at The 2026 IEEE/SICE International Symposium on System Integration, project link: http://xr-robotics.github.io/
Stability analysis through folds: An end-loaded elastica with a lever arm
Many physical systems can be modelled as parameter-dependent variational problems. In numerous cases, multiple equilibria co-exist, requiring the evaluation of their stability, and the monitoring of transitions between them. Generally, the stability characteristics of the equilibria change near folds in the parameter space. The direction of stability changes is embedded in a specific projection of the solutions, known as distinguished bifurcation diagrams. In this article, we identify such projections for variational problems characterized by fixed-free ends - a class of problems frequently encountered in mechanics. Using these diagrams, we study an Elastica subject to an end load applied through a rigid lever arm. Several instances of snap-back instability are reported, along with their dependence on system parameters through numerical examples. These findings have potential applications in the design of soft robot arms and other actuator designs.
comment: 22 pages, 12 figures
Swarmodroid & AMPy: Reconfigurable Bristle-Bots and Software Package for Robotic Active Matter Studies
Large assemblies of extremely simple robots capable only of basic motion activities (like propelling forward or self-rotating) are often applied to study swarming behavior or implement various phenomena characteristic of active matter composed of non-equilibrium particles that convert their energy to a directed motion. As a result, a great abundance of compact swarm robots have been developed. The simplest are bristle-bots that self-propel via converting their vibration with the help of elastic bristles. However, many platforms are optimized for a certain class of studies, are not always made open-source, or have limited customization potential. To address these issues, we develop the open-source Swarmodroid 1.0 platform based on bristle-bots with reconfigurable 3D printed bodies and simple electronics that possess external control of motion velocity and demonstrate basic capabilities of trajectory adjustment. Then, we perform a detailed analysis of individual Swarmodroids' motion characteristics and their kinematics. In addition, we introduce the AMPy software package in Python that features OpenCV-based extraction of robotic swarm kinematics accompanied by the evaluation of key physical quantities describing the collective dynamics. Finally, we discuss potential applications as well as further directions for fundamental studies and Swarmodroid 1.0 platform development.
comment: 17 pages, 6 figures, 1 table + Supplementary Information. Comments are welcome
A Framework for Human-Reason-Aligned Trajectory Evaluation in Automated Vehicles
One major challenge for the adoption and acceptance of automated vehicles (AVs) is ensuring that they can make sound decisions in everyday situations that involve ethical tension. Much attention has focused on rare, high-stakes dilemmas such as trolley problems. Yet similar conflicts arise in routine driving when human considerations, such as legality, efficiency, and comfort, come into conflict. Current AV planning systems typically rely on rigid rules, which struggle to balance these competing considerations and often lead to behaviour that misaligns with human expectations. This paper introduces a reasons-based trajectory evaluation framework that operationalises the tracking condition of Meaningful Human Control (MHC). The framework represents human agents reasons (e.g., regulatory compliance) as quantifiable functions and evaluates how well candidate trajectories align with them. It assigns adjustable weights to agent priorities and includes a balance function to discourage excluding any agent. To demonstrate the approach, we use a real-world-inspired overtaking scenario, which highlights tensions between compliance, efficiency, and comfort. Our results show that different trajectories emerge as preferable depending on how agents reasons are weighted, and small shifts in priorities can lead to discrete changes in the selected action. This demonstrates that everyday ethical decisions in AV driving are highly sensitive to the weights assigned to the reasons of different human agents.
comment: This version incorporates revisions based on peer-review feedback from a new submission. The work has been accepted and is being prepared for publication
Multiagent Systems
Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
Multi-robot searching with limited sensing range for static and mobile intruders
We consider the problem of searching for an intruder in a geometric domain by utilizing multiple search robots. The domain is a simply connected orthogonal polygon with edges parallel to the cartesian coordinate axes. Each robot has a limited sensing capability. We study the problem for both static and mobile intruders. It turns out that the problem of finding an intruder is NP-hard, even for a stationary intruder. Given this intractability, we turn our attention towards developing efficient and robust algorithms, namely methods based on space-filling curves, random search, and cooperative random search. Moreover, for each proposed algorithm, we evaluate the trade-off between the number of search robots and the time required for the robots to complete the search process while considering the geometric properties of the connected orthogonal search area.
Inter-Agent Trust Models: A Comparative Study of Brief, Claim, Proof, Stake, Reputation and Constraint in Agentic Web Protocol Design-A2A, AP2, ERC-8004, and Beyond AAAI 2026
As the "agentic web" takes shape-billions of AI agents (often LLM-powered) autonomously transacting and collaborating-trust shifts from human oversight to protocol design. In 2025, several inter-agent protocols crystallized this shift, including Google's Agent-to-Agent (A2A), Agent Payments Protocol (AP2), and Ethereum's ERC-8004 "Trustless Agents," yet their underlying trust assumptions remain under-examined. This paper presents a comparative study of trust models in inter-agent protocol design: Brief (self- or third-party verifiable claims), Claim (self-proclaimed capabilities and identity, e.g. AgentCard), Proof (cryptographic verification, including zero-knowledge proofs and trusted execution environment attestations), Stake (bonded collateral with slashing and insurance), Reputation (crowd feedback and graph-based trust signals), and Constraint (sandboxing and capability bounding). For each, we analyze assumptions, attack surfaces, and design trade-offs, with particular emphasis on LLM-specific fragilities-prompt injection, sycophancy/nudge-susceptibility, hallucination, deception, and misalignment-that render purely reputational or claim-only approaches brittle. Our findings indicate no single mechanism suffices. We argue for trustless-by-default architectures anchored in Proof and Stake to gate high-impact actions, augmented by Brief for identity and discovery and Reputation overlays for flexibility and social signals. We comparatively evaluate A2A, AP2, ERC-8004 and related historical variations in academic research under metrics spanning security, privacy, latency/cost, and social robustness (Sybil/collusion/whitewashing resistance). We conclude with hybrid trust model recommendations that mitigate reputation gaming and misinformed LLM behavior, and we distill actionable design guidelines for safer, interoperable, and scalable agent economies.
comment: Submitted to AAAI 2026 Workshop on Trust and Control in Agentic AI (TrustAgent)
Learning Communication Skills in Multi-task Multi-agent Deep Reinforcement Learning
In multi-agent deep reinforcement learning (MADRL), agents can communicate with one another to perform a task in a coordinated manner. When multiple tasks are involved, agents can also leverage knowledge from one task to improve learning in other tasks. In this paper, we propose Multi-task Communication Skills (MCS), a MADRL with communication method that learns and performs multiple tasks simultaneously, with agents interacting through learnable communication protocols. MCS employs a Transformer encoder to encode task-specific observations into a shared message space, capturing shared communication skills among agents. To enhance coordination among agents, we introduce a prediction network that correlates messages with the actions of sender agents in each task. We adapt three multi-agent benchmark environments to multi-task settings, where the number of agents as well as the observation and action spaces vary across tasks. Experimental results demonstrate that MCS achieves better performance than multi-task MADRL baselines without communication, as well as single-task MADRL baselines with and without communication.
comment: 20 pages, 10 figures
Characterising Global Platforms: Centralised, Decentralised, Federated, and Grassroots
Global digital platforms are software systems designed to serve entire populations, with some already serving billions of people. We propose atomic transactions-based multiagent transition systems and protocols as a formal framework to study them; introduce essential agents -- minimal sets of agents the removal of which makes communication impossible; and show that the cardinality of essential agents partitions all global platforms into four classes: 1. Centralised -- one (the server) 2. Decentralised -- finite $>1$ (bootstrap nodes) 3. Federated -- infinite but not universal (all servers) 4. Grassroots -- universal (all agents) Our illustrative formal example is a global social network, for which we provide centralised, decentralised, federated, and grassroots specifications via multiagent atomic transactions, and prove they satisfy basic correctness properties. We discuss informally additional global platforms -- currencies, ``sharing economy'' apps, AI, and more. While this may be the first characterisation of centralised, decentralised, and federated global platforms, grassroots platforms have been formally defined previously, but using different notions. Here, we prove that their original definition implies that all agents are essential, placing grassroots platforms in a distinct class within the broader formal context that includes all global platforms. This work provides the first mathematical framework for classifying any global platform -- existing or imagined -- by providing a multiagent atomic-transactions specification of it and determining the cardinality of the minimal set of essential agents in the ensuing multiagent protocol. It thus
Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
Scaling Multi-Agent Environment Co-Design with Diffusion Models
The agent-environment co-design paradigm jointly optimises agent policies and environment configurations in search of improved system performance. With application domains ranging from warehouse logistics to windfarm management, co-design promises to fundamentally change how we deploy multi-agent systems. However, current co-design methods struggle to scale. They collapse under high-dimensional environment design spaces and suffer from sample inefficiency when addressing moving targets inherent to joint optimisation. We address these challenges by developing Diffusion Co-Design (DiCoDe), a scalable and sample-efficient co-design framework pushing co-design towards practically relevant settings. DiCoDe incorporates two core innovations. First, we introduce Projected Universal Guidance (PUG), a sampling technique that enables DiCoDe to explore a distribution of reward-maximising environments while satisfying hard constraints such as spatial separation between obstacles. Second, we devise a critic distillation mechanism to share knowledge from the reinforcement learning critic, ensuring that the guided diffusion model adapts to evolving agent policies using a dense and up-to-date learning signal. Together, these improvements lead to superior environment-policy pairs when validated on challenging multi-agent environment co-design benchmarks including warehouse automation, multi-agent pathfinding and wind farm optimisation. Our method consistently exceeds the state-of-the-art, achieving, for example, 39% higher rewards in the warehouse setting with 66% fewer simulation samples. This sets a new standard in agent-environment co-design, and is a stepping stone towards reaping the rewards of co-design in real world domains.
ALAS: Transactional and Dynamic Multi-Agent LLM Planning
Large language models enable flexible multi-agent planning but remain fragile in practice: verification is often circular, state changes are not tracked for repair, and small faults trigger costly global recomputation. We present ALAS, a stateful, disruption-aware framework that separates planning from non-circular validation, records a versioned execution log for grounded checks and restore points, and performs localized repair that preserves work in progress. The validator operates independently of the planning LLM with fresh, bounded context, avoiding self-check loops and mid-context attrition. The repair protocol edits only the minimal affected region under explicit policies (retry, catch, timeout, backoff, idempotency keys, compensation, loop guards) defined in a canonical workflow IR that maps to Amazon States Language and Argo Workflows. On job-shop scheduling suites (DMU, TA) across five classical benchmarks, ALAS matches or exceeds strong single-LLM and multi-agent baselines, achieving 83.7% success, reducing token usage by 60%, and running 1.82times faster under comparable settings. A minimal reliability study shows that the validator detects injected structural faults with low overhead, and that localized repair contains runtime perturbations with a bounded edit radius and less makespan degradation than global recompute. Results indicate that the combination of validator isolation, versioned execution logs, and localized repair provides measurable efficiency, feasibility, and scalability for multi-agent LLM planning. Code and seeds will be released.
KnowThyself: An Agentic Assistant for LLM Interpretability AAAI
We develop KnowThyself, an agentic assistant that advances large language model (LLM) interpretability. Existing tools provide useful insights but remain fragmented and code-intensive. KnowThyself consolidates these capabilities into a chat-based interface, where users can upload models, pose natural language questions, and obtain interactive visualizations with guided explanations. At its core, an orchestrator LLM first reformulates user queries, an agent router further directs them to specialized modules, and the outputs are finally contextualized into coherent explanations. This design lowers technical barriers and provides an extensible platform for LLM inspection. By embedding the whole process into a conversational workflow, KnowThyself offers a robust foundation for accessible LLM interpretability.
comment: 5 pages, 1 figure, Accepted for publication at the Demonstration Track of the 40th AAAI Conference on Artificial Intelligence (AAAI 26)
ASAP: an Agentic Solution to Auto-optimize Performance of Large-Scale LLM Training NeurIPS 2025
Optimizing large-language model (LLM) training on distributed domain-specific accelerator systems presents significant challenges due to its complex optimization space. Existing optimization methods, however, rely on time-consuming manual tuning or resource-intensive black-box searches, which struggle to keep pace with the rapidly evolving LLM domain, leading to slow development and underutilized resources. To address this, we introduce ASAP, an Agentic Solution to Auto-optimize Performance of Large-Scale LLM Training. It is a multi-agent system, featuring Coordinator, Analyzer, and Proposal agents, which integrates LLM reasoning with insights from performance profiling tools, roofline analysis, and a knowledge base of best practices and successful past optimizations from human experts. Our proposed design can automate the diagnosis of performance bottlenecks and recommend optimized sharding configurations with reasoning, thus effectively improving the efficiency of distributed LLM training. Experiments have shown that the ASAP-generated sharding configurations can contribute up to 28% training step time reduction and 1.43 times throughput improvement. When combined with additional optimization from human experts, throughput can be further increased to 2.58 times. The proposed ASAP promises to provide a scalable and explainable methodology for AI-assisted performance engineering in large-scale LLM training.
comment: This work has been accepted to Workshop on ML for Systems at NeurIPS 2025
OptiMA: A Transaction-Based Framework with Throughput Optimization for Very Complex Multi-Agent Systems
In recent years, the research of multi-agent systems has taken a direction to explore larger and more complex models to fulfill sophisticated tasks. We point out two possible pitfalls that might be caused by increasing complexity; susceptibilities to faults, and performance bottlenecks. To prevent the former threat, we propose a transaction-based framework to design very complex multi-agent systems (VCMAS). To address the second threat, we offer to integrate transaction scheduling into the proposed framework. We implemented both of these ideas to develop the OptiMA framework and show that it is able to facilitate the execution of VCMAS with more than a hundred agents. We also demonstrate the effect of transaction scheduling on such a system by showing improvements up to more than 16\%. Furthermore, we also performed a theoretical analysis on the transaction scheduling problem and provided practical tools that can be used for future research on it.
Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
KnowThyself: An Agentic Assistant for LLM Interpretability AAAI
We develop KnowThyself, an agentic assistant that advances large language model (LLM) interpretability. Existing tools provide useful insights but remain fragmented and code-intensive. KnowThyself consolidates these capabilities into a chat-based interface, where users can upload models, pose natural language questions, and obtain interactive visualizations with guided explanations. At its core, an orchestrator LLM first reformulates user queries, an agent router further directs them to specialized modules, and the outputs are finally contextualized into coherent explanations. This design lowers technical barriers and provides an extensible platform for LLM inspection. By embedding the whole process into a conversational workflow, KnowThyself offers a robust foundation for accessible LLM interpretability.
comment: 5 pages, 1 figure, Accepted for publication at the Demonstration Track of the 40th AAAI Conference on Artificial Intelligence (AAAI 26)
ASAP: an Agentic Solution to Auto-optimize Performance of Large-Scale LLM Training NeurIPS 2025
Optimizing large-language model (LLM) training on distributed domain-specific accelerator systems presents significant challenges due to its complex optimization space. Existing optimization methods, however, rely on time-consuming manual tuning or resource-intensive black-box searches, which struggle to keep pace with the rapidly evolving LLM domain, leading to slow development and underutilized resources. To address this, we introduce ASAP, an Agentic Solution to Auto-optimize Performance of Large-Scale LLM Training. It is a multi-agent system, featuring Coordinator, Analyzer, and Proposal agents, which integrates LLM reasoning with insights from performance profiling tools, roofline analysis, and a knowledge base of best practices and successful past optimizations from human experts. Our proposed design can automate the diagnosis of performance bottlenecks and recommend optimized sharding configurations with reasoning, thus effectively improving the efficiency of distributed LLM training. Experiments have shown that the ASAP-generated sharding configurations can contribute up to 28% training step time reduction and 1.43 times throughput improvement. When combined with additional optimization from human experts, throughput can be further increased to 2.58 times. The proposed ASAP promises to provide a scalable and explainable methodology for AI-assisted performance engineering in large-scale LLM training.
comment: This work has been accepted to Workshop on ML for Systems at NeurIPS 2025
Multi-robot searching with limited sensing range for static and mobile intruders
We consider the problem of searching for an intruder in a geometric domain by utilizing multiple search robots. The domain is a simply connected orthogonal polygon with edges parallel to the cartesian coordinate axes. Each robot has a limited sensing capability. We study the problem for both static and mobile intruders. It turns out that the problem of finding an intruder is NP-hard, even for a stationary intruder. Given this intractability, we turn our attention towards developing efficient and robust algorithms, namely methods based on space-filling curves, random search, and cooperative random search. Moreover, for each proposed algorithm, we evaluate the trade-off between the number of search robots and the time required for the robots to complete the search process while considering the geometric properties of the connected orthogonal search area.
Inter-Agent Trust Models: A Comparative Study of Brief, Claim, Proof, Stake, Reputation and Constraint in Agentic Web Protocol Design-A2A, AP2, ERC-8004, and Beyond AAAI 2026
As the "agentic web" takes shape-billions of AI agents (often LLM-powered) autonomously transacting and collaborating-trust shifts from human oversight to protocol design. In 2025, several inter-agent protocols crystallized this shift, including Google's Agent-to-Agent (A2A), Agent Payments Protocol (AP2), and Ethereum's ERC-8004 "Trustless Agents," yet their underlying trust assumptions remain under-examined. This paper presents a comparative study of trust models in inter-agent protocol design: Brief (self- or third-party verifiable claims), Claim (self-proclaimed capabilities and identity, e.g. AgentCard), Proof (cryptographic verification, including zero-knowledge proofs and trusted execution environment attestations), Stake (bonded collateral with slashing and insurance), Reputation (crowd feedback and graph-based trust signals), and Constraint (sandboxing and capability bounding). For each, we analyze assumptions, attack surfaces, and design trade-offs, with particular emphasis on LLM-specific fragilities-prompt injection, sycophancy/nudge-susceptibility, hallucination, deception, and misalignment-that render purely reputational or claim-only approaches brittle. Our findings indicate no single mechanism suffices. We argue for trustless-by-default architectures anchored in Proof and Stake to gate high-impact actions, augmented by Brief for identity and discovery and Reputation overlays for flexibility and social signals. We comparatively evaluate A2A, AP2, ERC-8004 and related historical variations in academic research under metrics spanning security, privacy, latency/cost, and social robustness (Sybil/collusion/whitewashing resistance). We conclude with hybrid trust model recommendations that mitigate reputation gaming and misinformed LLM behavior, and we distill actionable design guidelines for safer, interoperable, and scalable agent economies.
comment: Submitted to AAAI 2026 Workshop on Trust and Control in Agentic AI (TrustAgent)
OptiMA: A Transaction-Based Framework with Throughput Optimization for Very Complex Multi-Agent Systems
In recent years, the research of multi-agent systems has taken a direction to explore larger and more complex models to fulfill sophisticated tasks. We point out two possible pitfalls that might be caused by increasing complexity; susceptibilities to faults, and performance bottlenecks. To prevent the former threat, we propose a transaction-based framework to design very complex multi-agent systems (VCMAS). To address the second threat, we offer to integrate transaction scheduling into the proposed framework. We implemented both of these ideas to develop the OptiMA framework and show that it is able to facilitate the execution of VCMAS with more than a hundred agents. We also demonstrate the effect of transaction scheduling on such a system by showing improvements up to more than 16\%. Furthermore, we also performed a theoretical analysis on the transaction scheduling problem and provided practical tools that can be used for future research on it.
Scaling Multi-Agent Environment Co-Design with Diffusion Models
The agent-environment co-design paradigm jointly optimises agent policies and environment configurations in search of improved system performance. With application domains ranging from warehouse logistics to windfarm management, co-design promises to fundamentally change how we deploy multi-agent systems. However, current co-design methods struggle to scale. They collapse under high-dimensional environment design spaces and suffer from sample inefficiency when addressing moving targets inherent to joint optimisation. We address these challenges by developing Diffusion Co-Design (DiCoDe), a scalable and sample-efficient co-design framework pushing co-design towards practically relevant settings. DiCoDe incorporates two core innovations. First, we introduce Projected Universal Guidance (PUG), a sampling technique that enables DiCoDe to explore a distribution of reward-maximising environments while satisfying hard constraints such as spatial separation between obstacles. Second, we devise a critic distillation mechanism to share knowledge from the reinforcement learning critic, ensuring that the guided diffusion model adapts to evolving agent policies using a dense and up-to-date learning signal. Together, these improvements lead to superior environment-policy pairs when validated on challenging multi-agent environment co-design benchmarks including warehouse automation, multi-agent pathfinding and wind farm optimisation. Our method consistently exceeds the state-of-the-art, achieving, for example, 39% higher rewards in the warehouse setting with 66% fewer simulation samples. This sets a new standard in agent-environment co-design, and is a stepping stone towards reaping the rewards of co-design in real world domains.
ALAS: Transactional and Dynamic Multi-Agent LLM Planning
Large language models enable flexible multi-agent planning but remain fragile in practice: verification is often circular, state changes are not tracked for repair, and small faults trigger costly global recomputation. We present ALAS, a stateful, disruption-aware framework that separates planning from non-circular validation, records a versioned execution log for grounded checks and restore points, and performs localized repair that preserves work in progress. The validator operates independently of the planning LLM with fresh, bounded context, avoiding self-check loops and mid-context attrition. The repair protocol edits only the minimal affected region under explicit policies (retry, catch, timeout, backoff, idempotency keys, compensation, loop guards) defined in a canonical workflow IR that maps to Amazon States Language and Argo Workflows. On job-shop scheduling suites (DMU, TA) across five classical benchmarks, ALAS matches or exceeds strong single-LLM and multi-agent baselines, achieving 83.7% success, reducing token usage by 60%, and running 1.82times faster under comparable settings. A minimal reliability study shows that the validator detects injected structural faults with low overhead, and that localized repair contains runtime perturbations with a bounded edit radius and less makespan degradation than global recompute. Results indicate that the combination of validator isolation, versioned execution logs, and localized repair provides measurable efficiency, feasibility, and scalability for multi-agent LLM planning. Code and seeds will be released.
Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning
Retrieval-Augmented Generation (RAG) systems empower large language models (LLMs) with external knowledge, yet struggle with efficiency-accuracy trade-offs when scaling to large knowledge graphs. Existing approaches often rely on monolithic graph retrieval, incurring unnecessary latency for simple queries and fragmented reasoning for complex multi-hop questions. To address these challenges, this paper propose SPLIT-RAG, a multi-agent RAG framework that addresses these limitations with question-driven semantic graph partitioning and collaborative subgraph retrieval. The innovative framework first create Semantic Partitioning of Linked Information, then use the Type-Specialized knowledge base to achieve Multi-Agent RAG. The attribute-aware graph segmentation manages to divide knowledge graphs into semantically coherent subgraphs, ensuring subgraphs align with different query types, while lightweight LLM agents are assigned to partitioned subgraphs, and only relevant partitions are activated during retrieval, thus reduce search space while enhancing efficiency. Finally, a hierarchical merging module resolves inconsistencies across subgraph-derived answers through logical verifications. Extensive experimental validation demonstrates considerable improvements compared to existing approaches.
comment: 20 pages, 4 figures
Beyond Single Pass, Looping Through Time: KG-IRAG with Iterative Knowledge Retrieval
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 15 pages, 3 figures
Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning
This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl
Large Language Models Miss the Multi-Agent Mark NeurIPS 2025
Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
comment: NeurIPS 2025 (position track)
Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
Collaboration Dynamics and Reliability Challenges of Multi-Agent LLM Systems in Finite Element Analysis
Large Language Model (LLM)-based multi-agent systems are increasingly applied to automate computational workflows in science and engineering. However, how inter-agent dynamics influence reasoning quality and verification reliability remains unclear. We study these mechanisms using an AutoGen-based multi-agent framework for linear-elastic Finite Element Analysis (FEA), evaluating seven role configurations across four tasks under a fixed 12-turn conversation limit. From 1,120 controlled trials, we find that collaboration effectiveness depends more on functional complementarity than team size: the three-agent Coder-Executor-Critic configuration uniquely produced physically and visually correct solutions, while adding redundant reviewers reduced success rates. Yet three systematic failure modes persist: (1) affirmation bias, where the Rebuttal agent endorsed rather than challenged outputs (85-92% agreement, including errors); (2) premature consensus caused by redundant reviewers; and (3) a verification-validation gap where executable but physically incorrect code passed undetected. No agent combination successfully validated constitutive relations in complex tasks. Building on theories of functional diversity, role differentiation, and computational validation, we propose actionable design principles: (i) assign complementary agent roles, (ii) enforce multi-level validation (execution, specification, physics), and (iii) prevent early consensus through adversarial or trigger-based interaction control. These findings establish a principled foundation for designing trustworthy LLM collaborations in engineering workflows.
Scalable Multi-Robot Motion Planning Using Workspace Guidance-Informed Hypergraphs
In this work, we propose a method for multiple mobile robot motion planning that efficiently plans for robot teams up to 128 robots (an order of magnitude larger than existing state-of-the-art methods) in congested settings with narrow passages in the environment. We achieve this improvement in scalability by extending the state-of-the-art Decomposable State Space Hypergraph (DaSH) multi-robot planning framework to support mobile robot motion planning in congested environments. This is a problem that DaSH cannot be directly applied to because it lacks a highly structured, easily discretizable task space and features kinodynamic constraints. We accomplish this by exploiting knowledge about the workspace topology to limit exploration of the planning space and through modifying DaSH's conflict resolution scheme. This guidance captures when coordination between robots is necessary, allowing us to decompose the intractably large multi-robot search space while limiting risk of inter-robot conflicts by composing relevant robot groups together while planning.
comment: This work has been submitted for review
A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms (orthogonal to MARL learning paradigms), using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
Collaboration Dynamics and Reliability Challenges of Multi-Agent LLM Systems in Finite Element Analysis
Large Language Model (LLM)-based multi-agent systems are increasingly applied to automate computational workflows in science and engineering. However, how inter-agent dynamics influence reasoning quality and verification reliability remains unclear. We study these mechanisms using an AutoGen-based multi-agent framework for linear-elastic Finite Element Analysis (FEA), evaluating seven role configurations across four tasks under a fixed 12-turn conversation limit. From 1,120 controlled trials, we find that collaboration effectiveness depends more on functional complementarity than team size: the three-agent Coder-Executor-Critic configuration uniquely produced physically and visually correct solutions, while adding redundant reviewers reduced success rates. Yet three systematic failure modes persist: (1) affirmation bias, where the Rebuttal agent endorsed rather than challenged outputs (85-92% agreement, including errors); (2) premature consensus caused by redundant reviewers; and (3) a verification-validation gap where executable but physically incorrect code passed undetected. No agent combination successfully validated constitutive relations in complex tasks. Building on theories of functional diversity, role differentiation, and computational validation, we propose actionable design principles: (i) assign complementary agent roles, (ii) enforce multi-level validation (execution, specification, physics), and (iii) prevent early consensus through adversarial or trigger-based interaction control. These findings establish a principled foundation for designing trustworthy LLM collaborations in engineering workflows.
Scalable Multi-Robot Motion Planning Using Workspace Guidance-Informed Hypergraphs
In this work, we propose a method for multiple mobile robot motion planning that efficiently plans for robot teams up to 128 robots (an order of magnitude larger than existing state-of-the-art methods) in congested settings with narrow passages in the environment. We achieve this improvement in scalability by extending the state-of-the-art Decomposable State Space Hypergraph (DaSH) multi-robot planning framework to support mobile robot motion planning in congested environments. This is a problem that DaSH cannot be directly applied to because it lacks a highly structured, easily discretizable task space and features kinodynamic constraints. We accomplish this by exploiting knowledge about the workspace topology to limit exploration of the planning space and through modifying DaSH's conflict resolution scheme. This guidance captures when coordination between robots is necessary, allowing us to decompose the intractably large multi-robot search space while limiting risk of inter-robot conflicts by composing relevant robot groups together while planning.
comment: This work has been submitted for review
A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms (orthogonal to MARL learning paradigms), using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning
Retrieval-Augmented Generation (RAG) systems empower large language models (LLMs) with external knowledge, yet struggle with efficiency-accuracy trade-offs when scaling to large knowledge graphs. Existing approaches often rely on monolithic graph retrieval, incurring unnecessary latency for simple queries and fragmented reasoning for complex multi-hop questions. To address these challenges, this paper propose SPLIT-RAG, a multi-agent RAG framework that addresses these limitations with question-driven semantic graph partitioning and collaborative subgraph retrieval. The innovative framework first create Semantic Partitioning of Linked Information, then use the Type-Specialized knowledge base to achieve Multi-Agent RAG. The attribute-aware graph segmentation manages to divide knowledge graphs into semantically coherent subgraphs, ensuring subgraphs align with different query types, while lightweight LLM agents are assigned to partitioned subgraphs, and only relevant partitions are activated during retrieval, thus reduce search space while enhancing efficiency. Finally, a hierarchical merging module resolves inconsistencies across subgraph-derived answers through logical verifications. Extensive experimental validation demonstrates considerable improvements compared to existing approaches.
comment: 20 pages, 4 figures
Beyond Single Pass, Looping Through Time: KG-IRAG with Iterative Knowledge Retrieval
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 15 pages, 3 figures
Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning
This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl
Large Language Models Miss the Multi-Agent Mark NeurIPS 2025
Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
comment: NeurIPS 2025 (position track)
Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
Systems and Control (CS)
A Constant-Gain Equation-Error Framework for Airliner Aerodynamic Monitoring Using QAR Data
Monitoring the in-service aerodynamic performance of airliners is critical for operational efficiency and safety, but using operational Quick Access Recorder (QAR) data for this purpose presents significant challenges. This paper first establishes that the absence of key parameters, particularly aircraft moments of inertia, makes conventional state-propagation filters fundamentally unsuitable for this application. This limitation necessitates a decoupled, Equation-Error Method (EEM). However, we then demonstrate through a comparative analysis that standard recursive estimators with time-varying gains, such as Recursive Least Squares (RLS), also fail within an EEM framework, exhibiting premature convergence or instability when applied to low-excitation cruise data. To overcome these dual challenges, we propose and validate the Constant-Gain Equation-Error Method (CG-EEM). This framework employs a custom estimator with a constant, Kalman-like gain, which is perfectly suited to the stationary, low-signal-to-noise characteristics of cruise flight. The CG-EEM is extensively validated on a large, multi-fleet dataset of over 200 flights, where it produces highly consistent, physically plausible aerodynamic parameters and correctly identifies known performance differences between aircraft types. The result is a robust, scalable, and computationally efficient tool for fleet-wide performance monitoring and the early detection of performance degradation.
Flying Robotics Art: ROS-based Drone Draws the Record-Breaking Mural
This paper presents the innovative design and successful deployment of a pioneering autonomous unmanned aerial system developed for executing the world's largest mural painted by a drone. Addressing the dual challenges of maintaining artistic precision and operational reliability under adverse outdoor conditions such as wind and direct sunlight, our work introduces a robust system capable of navigating and painting outdoors with unprecedented accuracy. Key to our approach is a novel navigation system that combines an infrared (IR) motion capture camera and LiDAR technology, enabling precise location tracking tailored specifically for largescale artistic applications. We employ a unique control architecture that uses different regulation in tangential and normal directions relative to the planned path, enabling precise trajectory tracking and stable line rendering. We also present algorithms for trajectory planning and path optimization, allowing for complex curve drawing and area filling. The system includes a custom-designed paint spraying mechanism, specifically engineered to function effectively amidst the turbulent airflow generated by the drone's propellers, which also protects the drone's critical components from paint-related damage, ensuring longevity and consistent performance. Experimental results demonstrate the system's robustness and precision in varied conditions, showcasing its potential for autonomous large-scale art creation and expanding the functional applications of robotics in creative fields.
Geometrically robust least squares through manifold optimization
This paper presents a methodology for solving a geometrically robust least squares problem, which arises in various applications where the model is subject to geometric constraints. The problem is formulated as a minimax optimization problem on a product manifold, where one variable is constrained to a ball describing uncertainty. To handle the constraint, an exact penalty method is applied. A first-order gradient descent ascent algorithm is proposed to solve the problem, and its convergence properties are illustrated by an example. The proposed method offers a robust approach to solving a wide range of problems arising in signal processing and data-driven control.
comment: Submitted to the 26th International Symposium on Mathematical Theory of Networks and Systems 19-23 August 2024, Cambridge, UK
Artificial-reference tracking MPC with probabilistically validated performance on industrial embedded systems
Industrial embedded systems are typically used to execute simple control algorithms due to their low computational resources. Despite these limitations, the implementation of advanced control techniques such as Model Predictive Control (MPC) has been explored by the control community in recent years, typically considering simple linear formulations or explicit ones to facilitate the online computation of the control input. These simplifications often lack features and properties that are desirable in real-world environments. In this article, we present an efficient implementation for embedded systems of MPC for tracking with artificial reference, solved via a recently developed structure-exploiting first-order method. This formulation is tailored to a wide range of applications by incorporating essential practical features at a small computational cost, including integration with an offset-free scheme, back-off parameters that enable constraint tightening, and soft constraints that preserve feasibility under disturbances or plant-model mismatch. We accompany this with a framework for probabilistic performance validation of the closed-loop system over long-term operation. We illustrate the applicability of the approach on a Programmable Logic Controller (PLC), incorporated in a hardware-in-the-loop setup to control a nonlinear continuous stirred-tank reactor. The behavior of the closed-loop system is probabilistically validated with respect to constraint violations and the number of iterations required at each time step by the MPC optimization algorithm.
comment: 14 pages, 24 figures
Tensor-Efficient High-Dimensional Q-learning
High-dimensional reinforcement learning faces challenges with complex calculations and low sample efficiency in large state-action spaces. Q-learning algorithms struggle particularly with the curse of dimensionality, where the number of state-action pairs grows exponentially with problem size. While neural network-based approaches like Deep Q-Networks have shown success, recent tensor-based methods using low-rank decomposition offer more parameter-efficient alternatives. Building upon existing tensor-based methods, we propose Tensor-Efficient Q-Learning (TEQL), which enhances low-rank tensor decomposition via improved block coordinate descent on discretized state-action spaces, incorporating novel exploration and regularization mechanisms. The key innovation is an exploration strategy that combines approximation error with visit count-based upper confidence bound to prioritize actions with high uncertainty, avoiding wasteful random exploration. Additionally, we incorporate a frequency-based penalty term in the objective function to encourage exploration of less-visited state-action pairs and reduce overfitting to frequently visited regions. Empirical results on classic control tasks demonstrate that TEQL outperforms conventional matrix-based methods and deep RL approaches in both sample efficiency and total rewards, making it suitable for resource-constrained applications, such as space and healthcare where sampling costs are high.
Powered Descent Trajectory Optimization of Chandrayaan-3 using Radau Collocation and Controllable Sets
India achieved a significant milestone on August $23^{\text{rd}}$ 2023, becoming the fourth country to accomplish a soft landing on the Moon. This paper presents the powered descent trajectory design for the Chandrayaan-3 mission. The optimization framework is based on pseudospectral Radau collocation, and controllability-based waypoint refinement is employed to further enhance the robustness of the trajectory against state and control perturbations. Furthermore, the trade-off between fuel consumption and robustness is explicitly quantified, providing insights into the practical considerations of mission planning.
comment: 6 pages, 6 figure, Accepted for publication in Indian Control Conference 2025
Manifold-constrained Hamilton-Jacobi Reachability Learning for Decentralized Multi-Agent Motion Planning
Safe multi-agent motion planning (MAMP) under task-induced constraints is a critical challenge in robotics. Many real-world scenarios require robots to navigate dynamic environments while adhering to manifold constraints imposed by tasks. For example, service robots must carry cups upright while avoiding collisions with humans or other robots. Despite recent advances in decentralized MAMP for high-dimensional systems, incorporating manifold constraints remains difficult. To address this, we propose a manifold-constrained Hamilton-Jacobi reachability (HJR) learning framework for decentralized MAMP. Our method solves HJR problems under manifold constraints to capture task-aware safety conditions, which are then integrated into a decentralized trajectory optimization planner. This enables robots to generate motion plans that are both safe and task-feasible without requiring assumptions about other agents' policies. Our approach generalizes across diverse manifold-constrained tasks and scales effectively to high-dimensional multi-agent manipulation problems. Experiments show that our method outperforms existing constrained motion planners and operates at speeds suitable for real-world applications. Video demonstrations are available at https://youtu.be/RYcEHMnPTH8 .
Exploiting Over-Approximation Errors as Preview Information for Nonlinear Control
We study the control of nonlinear constrained systems via over-approximations. Our key observation is that the over-approximation error, rather than being an unknown disturbance, can be exploited as input-dependent preview information. This leads to the notion of informed policies, which depend on both the state and the error. We formulate the concretization problem -recovering a valid input for the true system from a preview-based policy- as a fixed-point equation. Existence of solutions follows from the Brouwer fixed-point theorem, while efficient computation is enabled through closed-form, linear, or convex programs for input-affine systems, and through an iterative method based on the Banach fixed-point theorem for nonlinear systems.
comment: 7 pages, 2 figures
Explicit Ensemble Learning Surrogate for Joint Chance-Constrained Optimal Power Flow
The increasing penetration of renewable generation introduces uncertainty into power systems, challenging traditional deterministic optimization methods. Chance-constrained optimization offers an approach to balancing cost and risk; however, incorporating joint chance constraints introduces computational challenges. This paper presents an ensemble support vector machine surrogate for joint chance constraint optimal power flow, where multiple linear classifiers are trained on simulated optimal power flow data and embedded as tractable hyperplane constraints via Big--M reformulations. The surrogate yields a polyhedral approximation of probabilistic line flow limits that preserves interpretability and scalability. Numerical experiments on the IEEE 118-bus system show that the proposed method achieves near-optimal costs with a negligible average error of $0.03\%$. These results demonstrate the promise of ensemble surrogates as efficient and transparent tools for risk-aware optimization of power systems.
Data-driven Modeling of Grid-following Control in Grid-connected Converters
As power systems evolve with the integration of renewable energy sources and the implementation of smart grid technologies, there is an increasing need for flexible and scalable modeling approaches capable of accurately capturing the complex dynamics of modern grids. To meet this need, various methods, such as the sparse identification of nonlinear dynamics and deep symbolic regression, have been developed to identify dynamical systems directly from data. In this study, we examine the application of a converter-based resource as a replacement for a traditional generator within a lossless transmission line linked to an infinite bus system. This setup is used to generate synthetic data in grid-following control mode, enabling the evaluation of these methods in effectively capturing system dynamics.
System Identification of a Moored ASV with Recessed Moon Pool via Deterministic and Bayesian Hankel-DMDc
This study addresses the system identification of a small autonomous surface vehicle (ASV) under moored conditions using Hankel dynamic mode decomposition with control (HDMDc) and its Bayesian extension (BHDMDc). Experiments were carried out on a Codevintec CK-14e ASV in the towing tank of CNR-INM, under both irregular and regular head-sea wave conditions. The ASV under investigation features a recessed moon pool, which induces nonlinear responses due to sloshing, thereby increasing the modelling challenge. Data-driven reduced-order models were built from measurements of vessel motions and mooring loads. The HDMDc framework provided accurate deterministic predictions of vessel dynamics, while the Bayesian formulation enabled uncertainty-aware characterization of the model response by accounting for variability in hyperparameter selection. Validation against experimental data demonstrated that both HDMDc and BHDMDc can predict the vessel's response to unseen regular and irregular wave excitations. In conclusion, the study shows that HDMDc-based ROMs are a viable data-driven alternative for system identification, demonstrating for the first time their generalization capability for a sea condition different from the training set, achieving high accuracy in reproducing vessel dynamics.
comment: 26 pages, 11 figures, 2 tables, 1 box
An Alternative Derivation and Optimal Design Method of the Generalized Bilinear Transformation for Discretizing Analog Systems
A popular method for designing digital systems is transforming the transfer function of the corresponding analog systems from the continuous-time domain (s-domain) into the discrete-time domain (z-domain) using the Euler or Tustin method. We demonstrate that these transformations are two specific forms of the Generalized Bilinear Transformation (GBT) with a design parameter, $\alpha$. However, the physical meaning and optimal design method for this parameter are not sufficiently studied. In this paper, we propose an alternative derivation of the GBT derived by employing a new hexagonal shape to approximate the enclosed area of the error function, and we define the parameter $\alpha$ as the shape factor. The physical meaning of the shape factor is firstly revealed, which equals to the percentage of the backward rectangular ratio of the proposed hexagonal shape. We demonstrate that the stable range of the shape factor is [0.5, 1] through domain mapping. Depending on the operating frequencies and the shape factor, we observe two distinct distortion modes, i.e., the magnitude and phase distortion. We proceed to develop an optimal design method for the shape factor based on an objective function in form of the normalized magnitude or phase error. Finally, a low-pass filter (LPF) is designed and tested to verify the effectiveness of the proposed method by comparing the theoretical calculations with the experimental results.
Maximum Likelihood Estimation of Dynamic Sub-Networks with Missing Data
Maximum likelihood estimation is effective for identifying dynamical systems, but applying it to large networks becomes computationally prohibitive. This paper introduces a maximum likelihood estimation method that enables identification of sub-networks within complex interconnected systems without estimating the entire network. The key insight is that under specific topological conditions, a sub-network's parameters can be estimated using only local measurements: signals within the target sub-network and those in the directly connected to the so-called separator sub-network. This approach significantly reduces computational complexity while enhancing privacy by eliminating the need to share sensitive internal data across organizational boundaries. We establish theoretical conditions for network separability, derive the probability density function for the sub-network, and demonstrate the method's effectiveness through numerical examples.
A Digital Twin of Evaporative Thermo-Fluidic Process in Fixation Unit of DoD Inkjet Printers
In inkjet printing, optimal paper moisture is crucial for print quality, achieved through hot-air impingement in the fixation unit. This paper presents a modular digital twin of the fixation unit, modeling the thermo-fluidic drying process and monitoring its spatio-temporal performance. The novel approach formulates the digital twin as an infinite-dimensional state estimator that infers fixation states from limited sensor data, while remaining robust to disturbances. Modularity is achieved through a graph-theoretic model, where each node represents thermo-fluidic dynamics in different sections of the fixation unit. Evaporation is modeled as a nonlinear boundary effect coupled with node dynamics via Linear Fractional Representation. Using the Partial Integral Equation (PIE) framework, we develop a unified approach for stability, input-output analysis, simulation, and rapid prototyping, validated with operational data from a commercial printer. An $\mathcal{H}_{\infty}$-optimal Luenberger state estimator is then synthesized to estimate thermal states from available sensor data, enabling real-time monitoring of spatio-temporal thermal effects on paper sheets.
Lightwave Power Transfer-Enabled Underwater Optical ISAC Systems under Ship Attitude Variation
In this paper, we propose a lightwave power transfer-enabled underwater optical integrated sensing and communication (O-ISAC) system, where an access point (AP) mounted on a seasurface ship transmits lightwave signals to two nodes, namely ($i$) a seabed sensor that harvests energy and transmits uplink information to the AP, and ($ii$) a sensing target whose position is estimated by the AP using an array of pinhole cameras. To capture practical deployment conditions, the ship attitude variation is modeled through its roll, pitch, and yaw angles, each following a Gaussian distribution under low-to-moderate sea states. Closed-form approximations are derived for the mean squared error (MSE) of target localization and the achievable uplink data rate. Analytical and simulation results demonstrate excellent agreement, validating the proposed models and derived expressions, while revealing the fundamental communication-sensing tradeoff in the O-ISAC system. The results further provide valuable design insights, including the optimal camera placement on the ship to minimize localization error, achieving a minimum MSE of $10^{-2}$ $\text{m}^2$ with multiple cameras under roll, pitch, and yaw angle variation of $10^{\circ}$, and the optimal harvest-use ratio of $0.55$ for the considered setup.
comment: This paper has been submitted to the IEEE International Conference on Communications (ICC 2026) conference
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games - Part II: Stability
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. In Part I, we introduced an evolutionary model and a new solution concept - the mixed stationary Nash Equilibrium (MSNE) - which coincides with the rest points of the mean field evolutionary model under meaningful families of revision protocols. In this second part, we investigate the evolutionary stability of MSNE. We derive conditions on both the structure of the MSNE and the game's payoff map that ensure local and global stability under evolutionary dynamics. These results characterize when MSNE can robustly emerge and persist against strategic deviations, thereby providing insight into its long-term viability in large population dynamic games.
Computing the nearest $Ω$-admissible descriptor dissipative Hamiltonian system
For a given set $\Omega \subseteq \mathbb{C}$, a matrix pair $(E,A)$ is called $\Omega$-admissible if it is regular, impulse-free and its eigenvalues lie inside the region $\Omega$. In this paper, we provide a dissipative Hamiltonian characterization for the matrix pairs that are $\Omega$-admissible where $\Omega$ is an LMI region. We then use these results for solving the nearest $\Omega$-admissible matrix pair problem: Given a matrix pair $(E,A)$, find the nearest $\Omega$-admissible pair $(\tilde E, \tilde A)$ to the given pair $(E,A)$. We illustrate our results on several data sets and compare with the state of the art.
comment: 24 pages, 6 figures, code available from https://gitlab.com/ngillis/nearest-omega-stable-pair
Theoretical and Experimental Limitations of RoCoF Estimation
A precise estimation of the Rate of Change of Frequency (RoCoF) is crucial for secure power system operation. In fact, RoCoF is strictly related to the amount of the available physical and/or virtual inertia of the system and the severity of the active power unbalance following a disturbance. For this reason, it is widely exploited in different protection systems, e.g., Anti-Islanding, Under Frequency Load Shedding (UFLS) and wide-area protection systems. The new paradigm of modern power systems, with a low-inertia and converter-based generation assets, is increasing the transient severity, making the frequency and the RoCoF estimation more complex and less precise for the actual devices. This work addresses this issue by proposing a numerically robust approach based on concepts inherited from differential geometry and fluid mechanics. The proposed approach is then tested with high-sampling real experimental measurements and used to develop a faster control logic for a RoCoF-based UFLS control scheme. The proposed approach provides information to protections regarding the nature of the contingency which can be used to improve its response.
MHE in Output Feedback Control of Uncertain Nonlinear Systems via IQCs
We propose a moving horizon estimation (MHE) scheme for general nonlinear constrained systems with parametric or static nonlinear uncertainties and a predetermined state feedback controller that is assumed to robustly stabilize the system in the absence of estimation errors. Leveraging integral quadratic constraints (IQCs), we introduce a new notion of detectability that is robust to possibly non-parametric uncertainties and verifiable in practice. Assuming that the uncertain system driven by the controller satisfies this notion of detectability, we provide an MHE formulation such that the closed-loop system formed of the uncertain system, the controller and MHE is input-to-state stable w.r.t. exogenous disturbances.
comment: 8 pages, 2 figures; extended version; a shortened version is accepted at IEEE Control System Letters, October 27, 2025
Collaborative Assembly Policy Learning of a Sightless Robot
This paper explores a physical human-robot collaboration (pHRC) task involving the joint insertion of a board into a frame by a sightless robot and a human operator. While admittance control is commonly used in pHRC tasks, it can be challenging to measure the force/torque applied by the human for accurate human intent estimation, limiting the robot's ability to assist in the collaborative task. Other methods that attempt to solve pHRC tasks using reinforcement learning (RL) are also unsuitable for the board-insertion task due to its safety constraints and sparse rewards. Therefore, we propose a novel RL approach that utilizes a human-designed admittance controller to facilitate more active robot behavior and reduce human effort. Through simulation and real-world experiments, we demonstrate that our approach outperforms admittance control in terms of success rate and task completion time. Additionally, we observed a significant reduction in measured force/torque when using our proposed approach compared to admittance control. The video of the experiments is available at https://youtu.be/va07Gw6YIog.
comment: Accepted by IEEE ROBIO 2025
Frequency- and Amplitude-Modulated Gates for Universal Quantum Control
Achieving high-fidelity single- and two-qubit gates is essential for executing arbitrary digital quantum algorithms and for building error-corrected quantum computers. We propose a theoretical framework for implementing quantum gates using frequency- and amplitude-modulated microwave control, which extends conventional amplitude modulation by introducing frequency modulation as an additional degree of control. Our approach operates on fixed-frequency qubits, converting the need for qubit frequency tunability into drive frequency modulation. Using Floquet theory, we analyze and design these drives for optimal fidelity within specified criteria. Our framework spans adiabatic to nonadiabatic gates within the Floquet framework, ensuring broad applicability across gate types and control schemes. Using typical transmon qubit parameters in numerical simulations, we demonstrate a universal gate set-including the X, Hadamard, phase, and CZ gates-with control error well below 0.1% and gate times of 25-40 ns for single-qubit operations and 125-135 ns for two-qubit operations. Furthermore, we show an always-on CZ gate tailored for driven qubits, which has gate times of 80-90 ns.
Active Noise Control Method Using Time Domain Neural Networks for Path Decoupling
In decentralized active noise control (ANC) systems, crosstalk between multichannel secondary sources and error microphones significantly degrades control accuracy. Moreover, prefiltering reference signals in filtered-x (Fx) type algorithms may further introduce modeling errors. A theoretical analysis of the Fx-based decentralized control algorithm was performed, which reveals how prefiltering and crosstalk affect the control performance. Then, a hybrid method combining fixed-value neural networks and adaptive strategies was proposed for efficient decentralized ANC. The adaptive filter models the primary path of its own channel online using the least mean square (LMS) algorithm while the neural network (named DecNet) is used for secondary paths inverting and decoupling. The hybrid DecNet-LMS algorithm was implemented in the time domain to guarantee causality and avoid latency. Simulation results with measured acoustic paths show that the proposed method outperforms the existing ANC algorithms using either traditional adaptive filters or neural network-based fixed-coefficient methods under different acoustic conditions.
Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
D2-UC: A Distributed-Distributed Quantum-Classical Framework for Unit Commitment
This paper introduces D2-UC, a quantum-ready framework for the unit commitment (UC) problem that prepares UC for near-term hybrid quantum-classical solvers by combining distributed classical decomposition with distributed quantum execution. We reformulate deterministic and stochastic UC into a three-block alternating direction method of multipliers (ADMM): (i) a convex quadratic subproblem for dispatch and reserves, (ii) a binary subproblem expressed as a quadratic unconstrained binary optimization (QUBO), and (iii) a proximal slack update for consensus. The core contributions are fivefold. First, we demonstrate how the full UC problem can be expressed as a single monolithic QUBO, establishing a direct interface to quantum solvers. Second, we decompose this large binary block into three type-specific QUBOs for commitment, startup, and shutdown, making the problem more tractable but revealing slower ADMM convergence. Third, we restore local logical couplings through per-unit-time micro-QUBOs, which accelerate convergence. Fourth, we batch micro-QUBOs into K non-overlapping block-diagonal problems, reducing many subproblems to a fixed number of solver-ready QUBOs per iteration, compatible with distributed variational quantum eigensolvers (DVQE). Fifth, we integrate an accept-if-better safeguard with DVQE to stabilize hybrid updates and prevent oscillations. Case studies confirm that the proposed methods deliver feasible schedules, faster convergence, and QUBO sizes aligned with current and near-term quantum hardware capabilities. All detailed data, codes, and parameter values are available at https://github.com/LSU-RAISE-LAB/3B-ADMM-UC-DVQE .
Exploiting Over-Approximation Errors as Preview Information for Nonlinear Control
We study the control of nonlinear constrained systems via over-approximations. Our key observation is that the over-approximation error, rather than being an unknown disturbance, can be exploited as input-dependent preview information. This leads to the notion of informed policies, which depend on both the state and the error. We formulate the concretization problem -- recovering a valid input for the true system from a preview-based policy -- as a fixed-point equation. Existence of solutions follows from the Brouwer fixed-point theorem, while efficient computation is enabled through closed-form, linear, or convex programs for input-affine systems, and through an iterative method based on the Banach fixed-point theorem for nonlinear systems.
comment: 7 pages, 2 figures
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games -- Part II: Stability
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. In Part I, we introduced an evolutionary model and a new solution concept - the mixed stationary Nash Equilibrium (MSNE) - which coincides with the rest points of the mean field evolutionary model under meaningful families of revision protocols. In this second part, we investigate the evolutionary stability of MSNE. We derive conditions on both the structure of the MSNE and the game's payoff map that ensure local and global stability under evolutionary dynamics. These results characterize when MSNE can robustly emerge and persist against strategic deviations, thereby providing insight into its long-term viability in large population dynamic games.
Removing Time-Scale Separation in Feedback-Based Optimization via Estimators
Feedback-based optimization (FBO) provides a simple control framework for regulating a stable dynamical system to the solution of a constrained optimization problem in the presence of exogenous disturbances, and does so without full knowledge of the plant dynamics. However, closed-loop stability requires the controller to operate on a sufficiently slower timescale than the plant, significantly constraining achievable closed-loop performance. Motivated by this trade-off, we propose an estimator-based modification of FBO which leverages dynamic plant model information to eliminate the time-scale separation requirement of traditional FBO. Under this design, the convergence rate of the closed-loop system is limited only by the dominant eigenvalue of the open-loop system. We extend the approach to the case of design based on only an approximate plant model when the original system is singularly perturbed. The results are illustrated via an application to fast power system frequency control using inverter-based resources.
Simulation-Based Validation of an Integrated 4D/5D Digital-Twin Framework for Predictive Construction Control
Persistent cost and schedule deviations remain a major challenge in the U.S. construction industry, revealing the limitations of deterministic CPM and static document-based estimating. This study presents an integrated 4D/5D digital-twin framework that couples Building Information Modeling (BIM) with natural-language processing (NLP)-based cost mapping, computer-vision (CV)-driven progress measurement, Bayesian probabilistic CPM updating, and deep-reinforcement-learning (DRL) resource-leveling. A nine-month case implementation on a Dallas-Fort Worth mid-rise project demonstrated measurable gains in accuracy and efficiency: 43% reduction in estimating labor, 6% reduction in overtime, and 30% project-buffer utilization, while maintaining an on-time finish at 128 days within P50-P80 confidence bounds. The digital-twin sandbox also enabled real-time "what-if" forecasting and traceable cost-schedule alignment through a 5D knowledge graph. Findings confirm that integrating AI-based analytics with probabilistic CPM and DRL enhances forecasting precision, transparency, and control resilience. The validated workflow establishes a practical pathway toward predictive, adaptive, and auditable construction management.
Asynchronous Push-sum Dual Gradient Algorithm in Distributed Model Predictive Control
This paper studies the distributed model predictive control (DMPC) problem for distributed discrete-time linear systems with both local and global constraints over directed communication networks. We establish an optimization problem to formulate the DMPC policy, including the design of terminal ingredients. To cope with the global constraint, we transform the primal optimization problem into its dual problem. Then, we propose a novel asynchronous push-sum dual gradient (APDG) algorithm with an adaptive step-size scheme to solve this dual problem in a fully asynchronous distributed manner. The proposed algorithm does not require synchronous waiting and any form of coordination, which greatly improves solving efficiency. We prove that the APDG algorithm converges at an R-linear rate as long as the step-size does not exceed the designed upper bound. Furthermore, we develop a distributed termination criterion to terminate the APDG algorithm when its output solution satisfies the specified suboptimality and the global constraint, thereby avoiding an infinite number of iterations. The recursive feasibility and the stability of the closed-loop system are also established. Finally, a numerical example is provided to clarify and validate our theoretical findings.
Proximal Gradient Dynamics and Feedback Control for Equality-Constrained Composite Optimization
This paper studies equality-constrained composite minimization problems. This class of problems, capturing regularization terms and inequality constraints, naturally arises in a wide range of engineering and machine learning applications. To tackle these optimization problems, inspired by recent results, we introduce the \emph{proportional--integral proximal gradient dynamics} (PI--PGD): a closed-loop system where the Lagrange multipliers are control inputs and states are the problem decision variables. First, we establish the equivalence between the stationary points of the minimization problem and the equilibria of the PI--PGD. Then for the case of affine constraints, by leveraging tools from contraction theory we give a comprehensive convergence analysis for the dynamics, showing linear--exponential convergence towards the equilibrium. That is, the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. Our findings are illustrated numerically on a set of representative examples, which include an exploratory application to nonlinear equality constraints.
comment: 18 pages, 10 figures
Reactive power flow optimization in AC drive systems
This paper explores a limit avoidance approach in the case of input (modulation) and output (current) constraints with the aim of enhancing system availability of AC drives. Drawing on the observation that, in a certain range of reactive power, there exists a trade-off between current and modulation magnitude, we exploit this freedom and define a constrained optimization problem. We propose two approaches, one in the form of an activation-function which drives the reactive power set-point towards safety, and an approach which uses online feedback optimization to set the reactive power dynamically. Both methods compromise reactive power tracking accuracy for increased system robustness. Through a high fidelity simulation, we compare the benefits of the two methods, highlighting their effectiveness in industrial applications.
comment: Accepted for an oral talk at the Conference on Decision and Control, 2025
Accounting for Subsystem Aging Variability in Battery Energy Storage System Optimization
This paper presents a degradation-cost-aware optimization framework for multi-string battery energy storage systems, emphasizing the impact of inhomogeneous subsystem-level aging in operational decision-making. We evaluate four scenarios for an energy arbitrage scenario, that vary in model precision and treatment of aging costs. Key performance metrics include operational revenue, power schedule mismatch, missed revenues, capacity losses, and revenue generated per unit of capacity loss. Our analysis reveals that ignoring heterogeneity of subunits may lead to infeasible dispatch plans and reduced revenues. In contrast, combining accurate representation of degraded subsystems and the consideration of aging costs in the objective function improves operational accuracy and economic efficiency of BESS with heterogeneous aged subunits. The fully informed scenario, which combines aging-cost-aware optimization with precise string-level modeling, achieves 21% higher revenue per unit of SOH loss compared to the baseline scenario. These findings highlight that modeling aging heterogeneity is not just a technical refinement but may become a crucial enabler for maximizing both short-term profitability and long-term asset value in particular for long BESS usage scenarios.
An Empirical Bayes approach to ARX Estimation
Empirical Bayes inference is based on estimation of the parameters of an a priori distribution from the observed data. The estimation technique of the parameters of the prior, called hyperparameters, is based on the marginal distribution obtained by integrating the joint density of the model with respect to the prior. This is a key step which needs to be properly adapted to the problem at hand. In this paper we study Empirical Bayes inference of linear autoregressive models with inputs (ARX models) for time series and compare the performance of the marginal parametric estimator with that a full Empirical Bayesian analysis based on the estimated prior. Such a comparison, can only make sense for a (realistic) finite data length. In this setting, we propose a new estimation technique of the hyperparameters by a sequential Bayes procedure which is essentially a backward Kalman filter. It turns out that for finite data length the marginal Bayes tends to behave slightly better than the full Empirical Bayesian parameter estimator and so also in the case of slowly varying random parameters.
Recurrent neural network-based robust control systems with closed-loop regional incremental ISS and application to MPC design
This paper investigates the design of output-feedback schemes for systems described by a class of recurrent neural networks. We propose a procedure based on linear matrix inequalities for designing an observer and a static state-feedback controller. The algorithm leverages global and regional incremental input-to-state stability (incremental ISS) and enables the tracking of constant setpoints, ensuring robustness to disturbances and state estimation uncertainty. To address the potential limitations of regional incremental ISS, we introduce an alternative scheme in which the static law is replaced with a tube-based nonlinear model predictive controller (NMPC) that exploits regional incremental ISS properties. We show that these conditions enable the formulation of a robust NMPC law with guarantees of convergence and recursive feasibility, leading to an enlarged region of attraction. Theoretical results are validated through numerical simulations on the pH-neutralisation process benchmark.
comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Control (under review)
Release Date Optimization in MRP Using Clearing Functions
This paper integrates a clearing function (CF)-based release planning approach into Material Requirements Planning (MRP) to address its limitations in modeling capacity constraints and dynamic lead times. The proposed optimization model replaces MRP's backward scheduling step while preserving its overall structure. Performance is evaluated through simulation experiments on two flow shop systems that explore a range of demand uncertainties and utilization levels. Computational results show that the proposed approach is capable of yielding significant improvements over the conventional backward scheduling approach, due to its ability to compute planned lead times for individual production orders as opposed to BOM items.
PGD-based optimization of 3D bobsleigh track centerlines from 2D centerlines for simulation applications
The centerline of a bobsleigh track defines its geometry and is essential for simulation modeling. To reduce bBobsleigh training costs, leveraging the centerline of the bobsleigh track to construct a virtual environment that closely replicates real competitive settings presents a promising solution. However, publicly available centerline data are typically limited and it is imprecise to construct a training system solely based on 2-dimensional (2D) centerline. To address this practical issue, this paper proposes a method for generating a 3-dimensional (3D) track centerline based on 2D centerline data. Incorporating international track design regulations, the method formulates an optimization problem that considers total track length, height difference, slope constraints, and geometric continuity. A Projected Gradient Descent (PGD) algorithm is used to solve the optimization problem. The generated 3D centerlines are compared with real track data, and the results show that the method can reproduce realistic centerline trends from original or scaled 2D data. For the selected track segment, the relative errors in total length, height difference, and average slope are within 1.7%, 3.2% and 4.1%, respectively, for real 2D data and within 1.1%, 3.5% and 4.3% respectively for scaled data. All slope values remain within the allowable limits. Moreover, by adjusting the segmentation or modifying the weight of height difference in the cost function, various centerline styles applicable to different competitions can be generated. Under different segmentation and weight factors, the maximum errors reach up to 4.4%, 4.8%, and 9.8%, and 4.4%, 4.8%, and 10.0%, respectively. The proposed method provides a flexible and efficient tool for supporting bobsleigh track centerline design.
On Improvisation and Open-Endedness: Insights for Experiential AI AAAI 2026
Improvisation-the art of spontaneous creation that unfolds moment-to-moment without a scripted outcome-requires practitioners to continuously sense, adapt, and create anew. It is a fundamental mode of human creativity spanning music, dance, and everyday life. The open-ended nature of improvisation produces a stream of novel, unrepeatable moments-an aspect highly valued in artistic creativity. In parallel, open-endedness (OE)-a system's capacity for unbounded novelty and endless "interestingness"-is exemplified in natural or cultural evolution and has been considered "the last grand challenge" in artificial life (ALife). The rise of generative AI now raises the question in computational creativity (CC) research: What makes a "good" improvisation for AI? Can AI learn to improvise in a genuinely open-ended way? In this work-in-progress paper, we report insights from in-depth interviews with 6 experts in improvisation across dance, music, and contact improvisation. We draw systemic connections between human improvisational arts and the design of future experiential AI agents that could improvise alone or alongside humans-or even with other AI agents-embodying qualities of improvisation drawn from practice: active listening (umwelt and awareness), being in the time (mindfulness and ephemerality), embracing the unknown (source of randomness and serendipity), non-judgmental flow (acceptance and dynamical stability, balancing structure and surprise (unpredictable criticality at edge of chaos), imaginative metaphor (synaesthesia and planning), empathy, trust, boundary, and care (mutual theory of mind), and playfulness and intrinsic motivation (maintaining interestingness).
comment: Submitted to AAAI 2026 Creative AI for Live Interactive Performances Workshop (CLIP) as a work-in-progress paper
Wireless Laser Power Transfer for Low-altitude Uncrewed Aerial Vehicle-assisted Internet of Things: Paradigms, Challenges, and Solutions
Low-altitude uncrewed aerial vehicles (UAVs) have become integral enablers for the Internet of Things (IoT) by offering enhanced coverage, improved connectivity and access to remote areas. A critical challenge limiting their operational capacity lies in the energy constraints of both aerial platforms and ground-based sensors. This paper explores WLPT as a transformative solution for sustainable energy provisioning in UAV-assisted IoT networks. We first systematically investigate the fundamental principles of WLPT and analysis the comparative advantages. Then, we introduce three operational paradigms for system integration, identify key challenges, and discuss corresponding potential solutions. In case study, we propose a multi-agent reinforcement learning framework to address the coordination and optimization challenges in WLPT-enabled UAV-assisted IoT data collection. Simulation results demonstrate that our framework significantly improves energy sustainability and data freshness. Finally, we discuss some future directions.
comment: This paper has been submitted to IEEE Internet of Things Magazine
Optimization via a Control-Centric Framework
Optimization plays a central role in intelligent systems and cyber-physical technologies, where speed and reliability of convergence directly impact performance. In control theory, optimization-centric methods are standard: controllers are designed by repeatedly solving optimization problems, as in linear quadratic regulation, $H_\infty$ control, and model predictive control. In contrast, this paper develops a control-centric framework for optimization itself, where algorithms are constructed directly from Lyapunov stability principles rather than being proposed first and analyzed afterward. A key element is the stationarity vector, which encodes first-order optimality conditions and enables Lyapunov-based convergence analysis. By pairing a Lyapunov function with a selectable decay law, we obtain continuous-time dynamics with guaranteed exponential, finite-time, fixed-time, or prescribed-time convergence. Within this framework, we introduce three feedback realizations of increasing restrictiveness: the Hessian-gradient, Newton, and gradient dynamics. Each realization shapes the decay of the stationarity vector to achieve the desired rate. These constructions unify unconstrained optimization, extend naturally to constrained problems via Lyapunov-consistent primal-dual dynamics, and broaden the results for minimax and generalized Nash equilibrium seeking problems beyond exponential stability. The framework provides systematic design tools for optimization algorithms in control and game-theoretic problems.
comment: This work has been submitted to the IEEE for possible publication. 12 pages, 3 figures
Uncertainty Estimators for Robust Backup Control Barrier Functions
Designing safe controllers is crucial and notoriously challenging for input-constrained safety-critical control systems. Backup control barrier functions offer an approach for the construction of safe controllers online by considering the flow of the system under a backup controller. However, in the presence of model uncertainties, the flow cannot be accurately computed, making this method insufficient for safety assurance. To tackle this shortcoming, we integrate backup control barrier functions with uncertainty estimators and calculate the flow under a reconstruction of the model uncertainty while refining this estimate over time. We prove that the controllers resulting from the proposed Uncertainty Estimator Backup Control Barrier Function (UE-bCBF) approach guarantee safety, are robust to unknown disturbances, and satisfy input constraints.
comment: 8 pages, 4 figures. Code and videos available at https://github.com/davidvwijk/UE-bCBF
KAN-Therm: A Lightweight Battery Thermal Model Using Kolmogorov-Arnold Network
Battery management systems (BMSs) rely on real-time estimation of battery temperature distribution in battery cells to ensure safe and optimal operation of Lithium-ion batteries (LIBs). However, physical BMS often suffers from memory and computational resource limitations required by highfidelity models. Temperature prediction using physics-based models becomes challenging due to their higher computational time. In contrast, machine learning based approaches offer faster predictions but demand larger memory overhead. In this work, we develop a lightweight and efficient Kolmogorov-Arnold networks (KAN) based thermal model, KAN-Therm, to predict the core temperature of a cylindrical battery. We have compared the memory overhead and computation costs of our method with Multi-layer perceptron (MLP), recurrent neural network (RNN), and long shortterm memory (LSTM) network. Our results show that the proposed KAN-Therm model exhibit the best prediction accuracy with the least memory overhead and computation time.
comment: 12 pages, 7 figures
Systems and Control (EESS)
A Constant-Gain Equation-Error Framework for Airliner Aerodynamic Monitoring Using QAR Data
Monitoring the in-service aerodynamic performance of airliners is critical for operational efficiency and safety, but using operational Quick Access Recorder (QAR) data for this purpose presents significant challenges. This paper first establishes that the absence of key parameters, particularly aircraft moments of inertia, makes conventional state-propagation filters fundamentally unsuitable for this application. This limitation necessitates a decoupled, Equation-Error Method (EEM). However, we then demonstrate through a comparative analysis that standard recursive estimators with time-varying gains, such as Recursive Least Squares (RLS), also fail within an EEM framework, exhibiting premature convergence or instability when applied to low-excitation cruise data. To overcome these dual challenges, we propose and validate the Constant-Gain Equation-Error Method (CG-EEM). This framework employs a custom estimator with a constant, Kalman-like gain, which is perfectly suited to the stationary, low-signal-to-noise characteristics of cruise flight. The CG-EEM is extensively validated on a large, multi-fleet dataset of over 200 flights, where it produces highly consistent, physically plausible aerodynamic parameters and correctly identifies known performance differences between aircraft types. The result is a robust, scalable, and computationally efficient tool for fleet-wide performance monitoring and the early detection of performance degradation.
Flying Robotics Art: ROS-based Drone Draws the Record-Breaking Mural
This paper presents the innovative design and successful deployment of a pioneering autonomous unmanned aerial system developed for executing the world's largest mural painted by a drone. Addressing the dual challenges of maintaining artistic precision and operational reliability under adverse outdoor conditions such as wind and direct sunlight, our work introduces a robust system capable of navigating and painting outdoors with unprecedented accuracy. Key to our approach is a novel navigation system that combines an infrared (IR) motion capture camera and LiDAR technology, enabling precise location tracking tailored specifically for largescale artistic applications. We employ a unique control architecture that uses different regulation in tangential and normal directions relative to the planned path, enabling precise trajectory tracking and stable line rendering. We also present algorithms for trajectory planning and path optimization, allowing for complex curve drawing and area filling. The system includes a custom-designed paint spraying mechanism, specifically engineered to function effectively amidst the turbulent airflow generated by the drone's propellers, which also protects the drone's critical components from paint-related damage, ensuring longevity and consistent performance. Experimental results demonstrate the system's robustness and precision in varied conditions, showcasing its potential for autonomous large-scale art creation and expanding the functional applications of robotics in creative fields.
Geometrically robust least squares through manifold optimization
This paper presents a methodology for solving a geometrically robust least squares problem, which arises in various applications where the model is subject to geometric constraints. The problem is formulated as a minimax optimization problem on a product manifold, where one variable is constrained to a ball describing uncertainty. To handle the constraint, an exact penalty method is applied. A first-order gradient descent ascent algorithm is proposed to solve the problem, and its convergence properties are illustrated by an example. The proposed method offers a robust approach to solving a wide range of problems arising in signal processing and data-driven control.
comment: Submitted to the 26th International Symposium on Mathematical Theory of Networks and Systems 19-23 August 2024, Cambridge, UK
Artificial-reference tracking MPC with probabilistically validated performance on industrial embedded systems
Industrial embedded systems are typically used to execute simple control algorithms due to their low computational resources. Despite these limitations, the implementation of advanced control techniques such as Model Predictive Control (MPC) has been explored by the control community in recent years, typically considering simple linear formulations or explicit ones to facilitate the online computation of the control input. These simplifications often lack features and properties that are desirable in real-world environments. In this article, we present an efficient implementation for embedded systems of MPC for tracking with artificial reference, solved via a recently developed structure-exploiting first-order method. This formulation is tailored to a wide range of applications by incorporating essential practical features at a small computational cost, including integration with an offset-free scheme, back-off parameters that enable constraint tightening, and soft constraints that preserve feasibility under disturbances or plant-model mismatch. We accompany this with a framework for probabilistic performance validation of the closed-loop system over long-term operation. We illustrate the applicability of the approach on a Programmable Logic Controller (PLC), incorporated in a hardware-in-the-loop setup to control a nonlinear continuous stirred-tank reactor. The behavior of the closed-loop system is probabilistically validated with respect to constraint violations and the number of iterations required at each time step by the MPC optimization algorithm.
comment: 14 pages, 24 figures
Tensor-Efficient High-Dimensional Q-learning
High-dimensional reinforcement learning faces challenges with complex calculations and low sample efficiency in large state-action spaces. Q-learning algorithms struggle particularly with the curse of dimensionality, where the number of state-action pairs grows exponentially with problem size. While neural network-based approaches like Deep Q-Networks have shown success, recent tensor-based methods using low-rank decomposition offer more parameter-efficient alternatives. Building upon existing tensor-based methods, we propose Tensor-Efficient Q-Learning (TEQL), which enhances low-rank tensor decomposition via improved block coordinate descent on discretized state-action spaces, incorporating novel exploration and regularization mechanisms. The key innovation is an exploration strategy that combines approximation error with visit count-based upper confidence bound to prioritize actions with high uncertainty, avoiding wasteful random exploration. Additionally, we incorporate a frequency-based penalty term in the objective function to encourage exploration of less-visited state-action pairs and reduce overfitting to frequently visited regions. Empirical results on classic control tasks demonstrate that TEQL outperforms conventional matrix-based methods and deep RL approaches in both sample efficiency and total rewards, making it suitable for resource-constrained applications, such as space and healthcare where sampling costs are high.
Powered Descent Trajectory Optimization of Chandrayaan-3 using Radau Collocation and Controllable Sets
India achieved a significant milestone on August $23^{\text{rd}}$ 2023, becoming the fourth country to accomplish a soft landing on the Moon. This paper presents the powered descent trajectory design for the Chandrayaan-3 mission. The optimization framework is based on pseudospectral Radau collocation, and controllability-based waypoint refinement is employed to further enhance the robustness of the trajectory against state and control perturbations. Furthermore, the trade-off between fuel consumption and robustness is explicitly quantified, providing insights into the practical considerations of mission planning.
comment: 6 pages, 6 figure, Accepted for publication in Indian Control Conference 2025
Manifold-constrained Hamilton-Jacobi Reachability Learning for Decentralized Multi-Agent Motion Planning
Safe multi-agent motion planning (MAMP) under task-induced constraints is a critical challenge in robotics. Many real-world scenarios require robots to navigate dynamic environments while adhering to manifold constraints imposed by tasks. For example, service robots must carry cups upright while avoiding collisions with humans or other robots. Despite recent advances in decentralized MAMP for high-dimensional systems, incorporating manifold constraints remains difficult. To address this, we propose a manifold-constrained Hamilton-Jacobi reachability (HJR) learning framework for decentralized MAMP. Our method solves HJR problems under manifold constraints to capture task-aware safety conditions, which are then integrated into a decentralized trajectory optimization planner. This enables robots to generate motion plans that are both safe and task-feasible without requiring assumptions about other agents' policies. Our approach generalizes across diverse manifold-constrained tasks and scales effectively to high-dimensional multi-agent manipulation problems. Experiments show that our method outperforms existing constrained motion planners and operates at speeds suitable for real-world applications. Video demonstrations are available at https://youtu.be/RYcEHMnPTH8 .
Exploiting Over-Approximation Errors as Preview Information for Nonlinear Control
We study the control of nonlinear constrained systems via over-approximations. Our key observation is that the over-approximation error, rather than being an unknown disturbance, can be exploited as input-dependent preview information. This leads to the notion of informed policies, which depend on both the state and the error. We formulate the concretization problem -recovering a valid input for the true system from a preview-based policy- as a fixed-point equation. Existence of solutions follows from the Brouwer fixed-point theorem, while efficient computation is enabled through closed-form, linear, or convex programs for input-affine systems, and through an iterative method based on the Banach fixed-point theorem for nonlinear systems.
comment: 7 pages, 2 figures
Explicit Ensemble Learning Surrogate for Joint Chance-Constrained Optimal Power Flow
The increasing penetration of renewable generation introduces uncertainty into power systems, challenging traditional deterministic optimization methods. Chance-constrained optimization offers an approach to balancing cost and risk; however, incorporating joint chance constraints introduces computational challenges. This paper presents an ensemble support vector machine surrogate for joint chance constraint optimal power flow, where multiple linear classifiers are trained on simulated optimal power flow data and embedded as tractable hyperplane constraints via Big--M reformulations. The surrogate yields a polyhedral approximation of probabilistic line flow limits that preserves interpretability and scalability. Numerical experiments on the IEEE 118-bus system show that the proposed method achieves near-optimal costs with a negligible average error of $0.03\%$. These results demonstrate the promise of ensemble surrogates as efficient and transparent tools for risk-aware optimization of power systems.
Data-driven Modeling of Grid-following Control in Grid-connected Converters
As power systems evolve with the integration of renewable energy sources and the implementation of smart grid technologies, there is an increasing need for flexible and scalable modeling approaches capable of accurately capturing the complex dynamics of modern grids. To meet this need, various methods, such as the sparse identification of nonlinear dynamics and deep symbolic regression, have been developed to identify dynamical systems directly from data. In this study, we examine the application of a converter-based resource as a replacement for a traditional generator within a lossless transmission line linked to an infinite bus system. This setup is used to generate synthetic data in grid-following control mode, enabling the evaluation of these methods in effectively capturing system dynamics.
System Identification of a Moored ASV with Recessed Moon Pool via Deterministic and Bayesian Hankel-DMDc
This study addresses the system identification of a small autonomous surface vehicle (ASV) under moored conditions using Hankel dynamic mode decomposition with control (HDMDc) and its Bayesian extension (BHDMDc). Experiments were carried out on a Codevintec CK-14e ASV in the towing tank of CNR-INM, under both irregular and regular head-sea wave conditions. The ASV under investigation features a recessed moon pool, which induces nonlinear responses due to sloshing, thereby increasing the modelling challenge. Data-driven reduced-order models were built from measurements of vessel motions and mooring loads. The HDMDc framework provided accurate deterministic predictions of vessel dynamics, while the Bayesian formulation enabled uncertainty-aware characterization of the model response by accounting for variability in hyperparameter selection. Validation against experimental data demonstrated that both HDMDc and BHDMDc can predict the vessel's response to unseen regular and irregular wave excitations. In conclusion, the study shows that HDMDc-based ROMs are a viable data-driven alternative for system identification, demonstrating for the first time their generalization capability for a sea condition different from the training set, achieving high accuracy in reproducing vessel dynamics.
comment: 26 pages, 11 figures, 2 tables, 1 box
An Alternative Derivation and Optimal Design Method of the Generalized Bilinear Transformation for Discretizing Analog Systems
A popular method for designing digital systems is transforming the transfer function of the corresponding analog systems from the continuous-time domain (s-domain) into the discrete-time domain (z-domain) using the Euler or Tustin method. We demonstrate that these transformations are two specific forms of the Generalized Bilinear Transformation (GBT) with a design parameter, $\alpha$. However, the physical meaning and optimal design method for this parameter are not sufficiently studied. In this paper, we propose an alternative derivation of the GBT derived by employing a new hexagonal shape to approximate the enclosed area of the error function, and we define the parameter $\alpha$ as the shape factor. The physical meaning of the shape factor is firstly revealed, which equals to the percentage of the backward rectangular ratio of the proposed hexagonal shape. We demonstrate that the stable range of the shape factor is [0.5, 1] through domain mapping. Depending on the operating frequencies and the shape factor, we observe two distinct distortion modes, i.e., the magnitude and phase distortion. We proceed to develop an optimal design method for the shape factor based on an objective function in form of the normalized magnitude or phase error. Finally, a low-pass filter (LPF) is designed and tested to verify the effectiveness of the proposed method by comparing the theoretical calculations with the experimental results.
Maximum Likelihood Estimation of Dynamic Sub-Networks with Missing Data
Maximum likelihood estimation is effective for identifying dynamical systems, but applying it to large networks becomes computationally prohibitive. This paper introduces a maximum likelihood estimation method that enables identification of sub-networks within complex interconnected systems without estimating the entire network. The key insight is that under specific topological conditions, a sub-network's parameters can be estimated using only local measurements: signals within the target sub-network and those in the directly connected to the so-called separator sub-network. This approach significantly reduces computational complexity while enhancing privacy by eliminating the need to share sensitive internal data across organizational boundaries. We establish theoretical conditions for network separability, derive the probability density function for the sub-network, and demonstrate the method's effectiveness through numerical examples.
A Digital Twin of Evaporative Thermo-Fluidic Process in Fixation Unit of DoD Inkjet Printers
In inkjet printing, optimal paper moisture is crucial for print quality, achieved through hot-air impingement in the fixation unit. This paper presents a modular digital twin of the fixation unit, modeling the thermo-fluidic drying process and monitoring its spatio-temporal performance. The novel approach formulates the digital twin as an infinite-dimensional state estimator that infers fixation states from limited sensor data, while remaining robust to disturbances. Modularity is achieved through a graph-theoretic model, where each node represents thermo-fluidic dynamics in different sections of the fixation unit. Evaporation is modeled as a nonlinear boundary effect coupled with node dynamics via Linear Fractional Representation. Using the Partial Integral Equation (PIE) framework, we develop a unified approach for stability, input-output analysis, simulation, and rapid prototyping, validated with operational data from a commercial printer. An $\mathcal{H}_{\infty}$-optimal Luenberger state estimator is then synthesized to estimate thermal states from available sensor data, enabling real-time monitoring of spatio-temporal thermal effects on paper sheets.
Lightwave Power Transfer-Enabled Underwater Optical ISAC Systems under Ship Attitude Variation
In this paper, we propose a lightwave power transfer-enabled underwater optical integrated sensing and communication (O-ISAC) system, where an access point (AP) mounted on a seasurface ship transmits lightwave signals to two nodes, namely ($i$) a seabed sensor that harvests energy and transmits uplink information to the AP, and ($ii$) a sensing target whose position is estimated by the AP using an array of pinhole cameras. To capture practical deployment conditions, the ship attitude variation is modeled through its roll, pitch, and yaw angles, each following a Gaussian distribution under low-to-moderate sea states. Closed-form approximations are derived for the mean squared error (MSE) of target localization and the achievable uplink data rate. Analytical and simulation results demonstrate excellent agreement, validating the proposed models and derived expressions, while revealing the fundamental communication-sensing tradeoff in the O-ISAC system. The results further provide valuable design insights, including the optimal camera placement on the ship to minimize localization error, achieving a minimum MSE of $10^{-2}$ $\text{m}^2$ with multiple cameras under roll, pitch, and yaw angle variation of $10^{\circ}$, and the optimal harvest-use ratio of $0.55$ for the considered setup.
comment: This paper has been submitted to the IEEE International Conference on Communications (ICC 2026) conference
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games - Part II: Stability
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. In Part I, we introduced an evolutionary model and a new solution concept - the mixed stationary Nash Equilibrium (MSNE) - which coincides with the rest points of the mean field evolutionary model under meaningful families of revision protocols. In this second part, we investigate the evolutionary stability of MSNE. We derive conditions on both the structure of the MSNE and the game's payoff map that ensure local and global stability under evolutionary dynamics. These results characterize when MSNE can robustly emerge and persist against strategic deviations, thereby providing insight into its long-term viability in large population dynamic games.
Computing the nearest $Ω$-admissible descriptor dissipative Hamiltonian system
For a given set $\Omega \subseteq \mathbb{C}$, a matrix pair $(E,A)$ is called $\Omega$-admissible if it is regular, impulse-free and its eigenvalues lie inside the region $\Omega$. In this paper, we provide a dissipative Hamiltonian characterization for the matrix pairs that are $\Omega$-admissible where $\Omega$ is an LMI region. We then use these results for solving the nearest $\Omega$-admissible matrix pair problem: Given a matrix pair $(E,A)$, find the nearest $\Omega$-admissible pair $(\tilde E, \tilde A)$ to the given pair $(E,A)$. We illustrate our results on several data sets and compare with the state of the art.
comment: 24 pages, 6 figures, code available from https://gitlab.com/ngillis/nearest-omega-stable-pair
Theoretical and Experimental Limitations of RoCoF Estimation
A precise estimation of the Rate of Change of Frequency (RoCoF) is crucial for secure power system operation. In fact, RoCoF is strictly related to the amount of the available physical and/or virtual inertia of the system and the severity of the active power unbalance following a disturbance. For this reason, it is widely exploited in different protection systems, e.g., Anti-Islanding, Under Frequency Load Shedding (UFLS) and wide-area protection systems. The new paradigm of modern power systems, with a low-inertia and converter-based generation assets, is increasing the transient severity, making the frequency and the RoCoF estimation more complex and less precise for the actual devices. This work addresses this issue by proposing a numerically robust approach based on concepts inherited from differential geometry and fluid mechanics. The proposed approach is then tested with high-sampling real experimental measurements and used to develop a faster control logic for a RoCoF-based UFLS control scheme. The proposed approach provides information to protections regarding the nature of the contingency which can be used to improve its response.
MHE in Output Feedback Control of Uncertain Nonlinear Systems via IQCs
We propose a moving horizon estimation (MHE) scheme for general nonlinear constrained systems with parametric or static nonlinear uncertainties and a predetermined state feedback controller that is assumed to robustly stabilize the system in the absence of estimation errors. Leveraging integral quadratic constraints (IQCs), we introduce a new notion of detectability that is robust to possibly non-parametric uncertainties and verifiable in practice. Assuming that the uncertain system driven by the controller satisfies this notion of detectability, we provide an MHE formulation such that the closed-loop system formed of the uncertain system, the controller and MHE is input-to-state stable w.r.t. exogenous disturbances.
comment: 8 pages, 2 figures; extended version; a shortened version is accepted at IEEE Control System Letters, October 27, 2025
Collaborative Assembly Policy Learning of a Sightless Robot
This paper explores a physical human-robot collaboration (pHRC) task involving the joint insertion of a board into a frame by a sightless robot and a human operator. While admittance control is commonly used in pHRC tasks, it can be challenging to measure the force/torque applied by the human for accurate human intent estimation, limiting the robot's ability to assist in the collaborative task. Other methods that attempt to solve pHRC tasks using reinforcement learning (RL) are also unsuitable for the board-insertion task due to its safety constraints and sparse rewards. Therefore, we propose a novel RL approach that utilizes a human-designed admittance controller to facilitate more active robot behavior and reduce human effort. Through simulation and real-world experiments, we demonstrate that our approach outperforms admittance control in terms of success rate and task completion time. Additionally, we observed a significant reduction in measured force/torque when using our proposed approach compared to admittance control. The video of the experiments is available at https://youtu.be/va07Gw6YIog.
comment: Accepted by IEEE ROBIO 2025
Frequency- and Amplitude-Modulated Gates for Universal Quantum Control
Achieving high-fidelity single- and two-qubit gates is essential for executing arbitrary digital quantum algorithms and for building error-corrected quantum computers. We propose a theoretical framework for implementing quantum gates using frequency- and amplitude-modulated microwave control, which extends conventional amplitude modulation by introducing frequency modulation as an additional degree of control. Our approach operates on fixed-frequency qubits, converting the need for qubit frequency tunability into drive frequency modulation. Using Floquet theory, we analyze and design these drives for optimal fidelity within specified criteria. Our framework spans adiabatic to nonadiabatic gates within the Floquet framework, ensuring broad applicability across gate types and control schemes. Using typical transmon qubit parameters in numerical simulations, we demonstrate a universal gate set-including the X, Hadamard, phase, and CZ gates-with control error well below 0.1% and gate times of 25-40 ns for single-qubit operations and 125-135 ns for two-qubit operations. Furthermore, we show an always-on CZ gate tailored for driven qubits, which has gate times of 80-90 ns.
Active Noise Control Method Using Time Domain Neural Networks for Path Decoupling
In decentralized active noise control (ANC) systems, crosstalk between multichannel secondary sources and error microphones significantly degrades control accuracy. Moreover, prefiltering reference signals in filtered-x (Fx) type algorithms may further introduce modeling errors. A theoretical analysis of the Fx-based decentralized control algorithm was performed, which reveals how prefiltering and crosstalk affect the control performance. Then, a hybrid method combining fixed-value neural networks and adaptive strategies was proposed for efficient decentralized ANC. The adaptive filter models the primary path of its own channel online using the least mean square (LMS) algorithm while the neural network (named DecNet) is used for secondary paths inverting and decoupling. The hybrid DecNet-LMS algorithm was implemented in the time domain to guarantee causality and avoid latency. Simulation results with measured acoustic paths show that the proposed method outperforms the existing ANC algorithms using either traditional adaptive filters or neural network-based fixed-coefficient methods under different acoustic conditions.
Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
D2-UC: A Distributed-Distributed Quantum-Classical Framework for Unit Commitment
This paper introduces D2-UC, a quantum-ready framework for the unit commitment (UC) problem that prepares UC for near-term hybrid quantum-classical solvers by combining distributed classical decomposition with distributed quantum execution. We reformulate deterministic and stochastic UC into a three-block alternating direction method of multipliers (ADMM): (i) a convex quadratic subproblem for dispatch and reserves, (ii) a binary subproblem expressed as a quadratic unconstrained binary optimization (QUBO), and (iii) a proximal slack update for consensus. The core contributions are fivefold. First, we demonstrate how the full UC problem can be expressed as a single monolithic QUBO, establishing a direct interface to quantum solvers. Second, we decompose this large binary block into three type-specific QUBOs for commitment, startup, and shutdown, making the problem more tractable but revealing slower ADMM convergence. Third, we restore local logical couplings through per-unit-time micro-QUBOs, which accelerate convergence. Fourth, we batch micro-QUBOs into K non-overlapping block-diagonal problems, reducing many subproblems to a fixed number of solver-ready QUBOs per iteration, compatible with distributed variational quantum eigensolvers (DVQE). Fifth, we integrate an accept-if-better safeguard with DVQE to stabilize hybrid updates and prevent oscillations. Case studies confirm that the proposed methods deliver feasible schedules, faster convergence, and QUBO sizes aligned with current and near-term quantum hardware capabilities. All detailed data, codes, and parameter values are available at https://github.com/LSU-RAISE-LAB/3B-ADMM-UC-DVQE .
Exploiting Over-Approximation Errors as Preview Information for Nonlinear Control
We study the control of nonlinear constrained systems via over-approximations. Our key observation is that the over-approximation error, rather than being an unknown disturbance, can be exploited as input-dependent preview information. This leads to the notion of informed policies, which depend on both the state and the error. We formulate the concretization problem -- recovering a valid input for the true system from a preview-based policy -- as a fixed-point equation. Existence of solutions follows from the Brouwer fixed-point theorem, while efficient computation is enabled through closed-form, linear, or convex programs for input-affine systems, and through an iterative method based on the Banach fixed-point theorem for nonlinear systems.
comment: 7 pages, 2 figures
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games -- Part II: Stability
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. In Part I, we introduced an evolutionary model and a new solution concept - the mixed stationary Nash Equilibrium (MSNE) - which coincides with the rest points of the mean field evolutionary model under meaningful families of revision protocols. In this second part, we investigate the evolutionary stability of MSNE. We derive conditions on both the structure of the MSNE and the game's payoff map that ensure local and global stability under evolutionary dynamics. These results characterize when MSNE can robustly emerge and persist against strategic deviations, thereby providing insight into its long-term viability in large population dynamic games.
Removing Time-Scale Separation in Feedback-Based Optimization via Estimators
Feedback-based optimization (FBO) provides a simple control framework for regulating a stable dynamical system to the solution of a constrained optimization problem in the presence of exogenous disturbances, and does so without full knowledge of the plant dynamics. However, closed-loop stability requires the controller to operate on a sufficiently slower timescale than the plant, significantly constraining achievable closed-loop performance. Motivated by this trade-off, we propose an estimator-based modification of FBO which leverages dynamic plant model information to eliminate the time-scale separation requirement of traditional FBO. Under this design, the convergence rate of the closed-loop system is limited only by the dominant eigenvalue of the open-loop system. We extend the approach to the case of design based on only an approximate plant model when the original system is singularly perturbed. The results are illustrated via an application to fast power system frequency control using inverter-based resources.
Simulation-Based Validation of an Integrated 4D/5D Digital-Twin Framework for Predictive Construction Control
Persistent cost and schedule deviations remain a major challenge in the U.S. construction industry, revealing the limitations of deterministic CPM and static document-based estimating. This study presents an integrated 4D/5D digital-twin framework that couples Building Information Modeling (BIM) with natural-language processing (NLP)-based cost mapping, computer-vision (CV)-driven progress measurement, Bayesian probabilistic CPM updating, and deep-reinforcement-learning (DRL) resource-leveling. A nine-month case implementation on a Dallas-Fort Worth mid-rise project demonstrated measurable gains in accuracy and efficiency: 43% reduction in estimating labor, 6% reduction in overtime, and 30% project-buffer utilization, while maintaining an on-time finish at 128 days within P50-P80 confidence bounds. The digital-twin sandbox also enabled real-time "what-if" forecasting and traceable cost-schedule alignment through a 5D knowledge graph. Findings confirm that integrating AI-based analytics with probabilistic CPM and DRL enhances forecasting precision, transparency, and control resilience. The validated workflow establishes a practical pathway toward predictive, adaptive, and auditable construction management.
Asynchronous Push-sum Dual Gradient Algorithm in Distributed Model Predictive Control
This paper studies the distributed model predictive control (DMPC) problem for distributed discrete-time linear systems with both local and global constraints over directed communication networks. We establish an optimization problem to formulate the DMPC policy, including the design of terminal ingredients. To cope with the global constraint, we transform the primal optimization problem into its dual problem. Then, we propose a novel asynchronous push-sum dual gradient (APDG) algorithm with an adaptive step-size scheme to solve this dual problem in a fully asynchronous distributed manner. The proposed algorithm does not require synchronous waiting and any form of coordination, which greatly improves solving efficiency. We prove that the APDG algorithm converges at an R-linear rate as long as the step-size does not exceed the designed upper bound. Furthermore, we develop a distributed termination criterion to terminate the APDG algorithm when its output solution satisfies the specified suboptimality and the global constraint, thereby avoiding an infinite number of iterations. The recursive feasibility and the stability of the closed-loop system are also established. Finally, a numerical example is provided to clarify and validate our theoretical findings.
Proximal Gradient Dynamics and Feedback Control for Equality-Constrained Composite Optimization
This paper studies equality-constrained composite minimization problems. This class of problems, capturing regularization terms and inequality constraints, naturally arises in a wide range of engineering and machine learning applications. To tackle these optimization problems, inspired by recent results, we introduce the \emph{proportional--integral proximal gradient dynamics} (PI--PGD): a closed-loop system where the Lagrange multipliers are control inputs and states are the problem decision variables. First, we establish the equivalence between the stationary points of the minimization problem and the equilibria of the PI--PGD. Then for the case of affine constraints, by leveraging tools from contraction theory we give a comprehensive convergence analysis for the dynamics, showing linear--exponential convergence towards the equilibrium. That is, the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. Our findings are illustrated numerically on a set of representative examples, which include an exploratory application to nonlinear equality constraints.
comment: 18 pages, 10 figures
Reactive power flow optimization in AC drive systems
This paper explores a limit avoidance approach in the case of input (modulation) and output (current) constraints with the aim of enhancing system availability of AC drives. Drawing on the observation that, in a certain range of reactive power, there exists a trade-off between current and modulation magnitude, we exploit this freedom and define a constrained optimization problem. We propose two approaches, one in the form of an activation-function which drives the reactive power set-point towards safety, and an approach which uses online feedback optimization to set the reactive power dynamically. Both methods compromise reactive power tracking accuracy for increased system robustness. Through a high fidelity simulation, we compare the benefits of the two methods, highlighting their effectiveness in industrial applications.
comment: Accepted for an oral talk at the Conference on Decision and Control, 2025
Accounting for Subsystem Aging Variability in Battery Energy Storage System Optimization
This paper presents a degradation-cost-aware optimization framework for multi-string battery energy storage systems, emphasizing the impact of inhomogeneous subsystem-level aging in operational decision-making. We evaluate four scenarios for an energy arbitrage scenario, that vary in model precision and treatment of aging costs. Key performance metrics include operational revenue, power schedule mismatch, missed revenues, capacity losses, and revenue generated per unit of capacity loss. Our analysis reveals that ignoring heterogeneity of subunits may lead to infeasible dispatch plans and reduced revenues. In contrast, combining accurate representation of degraded subsystems and the consideration of aging costs in the objective function improves operational accuracy and economic efficiency of BESS with heterogeneous aged subunits. The fully informed scenario, which combines aging-cost-aware optimization with precise string-level modeling, achieves 21% higher revenue per unit of SOH loss compared to the baseline scenario. These findings highlight that modeling aging heterogeneity is not just a technical refinement but may become a crucial enabler for maximizing both short-term profitability and long-term asset value in particular for long BESS usage scenarios.
An Empirical Bayes approach to ARX Estimation
Empirical Bayes inference is based on estimation of the parameters of an a priori distribution from the observed data. The estimation technique of the parameters of the prior, called hyperparameters, is based on the marginal distribution obtained by integrating the joint density of the model with respect to the prior. This is a key step which needs to be properly adapted to the problem at hand. In this paper we study Empirical Bayes inference of linear autoregressive models with inputs (ARX models) for time series and compare the performance of the marginal parametric estimator with that a full Empirical Bayesian analysis based on the estimated prior. Such a comparison, can only make sense for a (realistic) finite data length. In this setting, we propose a new estimation technique of the hyperparameters by a sequential Bayes procedure which is essentially a backward Kalman filter. It turns out that for finite data length the marginal Bayes tends to behave slightly better than the full Empirical Bayesian parameter estimator and so also in the case of slowly varying random parameters.
Recurrent neural network-based robust control systems with closed-loop regional incremental ISS and application to MPC design
This paper investigates the design of output-feedback schemes for systems described by a class of recurrent neural networks. We propose a procedure based on linear matrix inequalities for designing an observer and a static state-feedback controller. The algorithm leverages global and regional incremental input-to-state stability (incremental ISS) and enables the tracking of constant setpoints, ensuring robustness to disturbances and state estimation uncertainty. To address the potential limitations of regional incremental ISS, we introduce an alternative scheme in which the static law is replaced with a tube-based nonlinear model predictive controller (NMPC) that exploits regional incremental ISS properties. We show that these conditions enable the formulation of a robust NMPC law with guarantees of convergence and recursive feasibility, leading to an enlarged region of attraction. Theoretical results are validated through numerical simulations on the pH-neutralisation process benchmark.
comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Control (under review)
Release Date Optimization in MRP Using Clearing Functions
This paper integrates a clearing function (CF)-based release planning approach into Material Requirements Planning (MRP) to address its limitations in modeling capacity constraints and dynamic lead times. The proposed optimization model replaces MRP's backward scheduling step while preserving its overall structure. Performance is evaluated through simulation experiments on two flow shop systems that explore a range of demand uncertainties and utilization levels. Computational results show that the proposed approach is capable of yielding significant improvements over the conventional backward scheduling approach, due to its ability to compute planned lead times for individual production orders as opposed to BOM items.
PGD-based optimization of 3D bobsleigh track centerlines from 2D centerlines for simulation applications
The centerline of a bobsleigh track defines its geometry and is essential for simulation modeling. To reduce bBobsleigh training costs, leveraging the centerline of the bobsleigh track to construct a virtual environment that closely replicates real competitive settings presents a promising solution. However, publicly available centerline data are typically limited and it is imprecise to construct a training system solely based on 2-dimensional (2D) centerline. To address this practical issue, this paper proposes a method for generating a 3-dimensional (3D) track centerline based on 2D centerline data. Incorporating international track design regulations, the method formulates an optimization problem that considers total track length, height difference, slope constraints, and geometric continuity. A Projected Gradient Descent (PGD) algorithm is used to solve the optimization problem. The generated 3D centerlines are compared with real track data, and the results show that the method can reproduce realistic centerline trends from original or scaled 2D data. For the selected track segment, the relative errors in total length, height difference, and average slope are within 1.7%, 3.2% and 4.1%, respectively, for real 2D data and within 1.1%, 3.5% and 4.3% respectively for scaled data. All slope values remain within the allowable limits. Moreover, by adjusting the segmentation or modifying the weight of height difference in the cost function, various centerline styles applicable to different competitions can be generated. Under different segmentation and weight factors, the maximum errors reach up to 4.4%, 4.8%, and 9.8%, and 4.4%, 4.8%, and 10.0%, respectively. The proposed method provides a flexible and efficient tool for supporting bobsleigh track centerline design.
On Improvisation and Open-Endedness: Insights for Experiential AI AAAI 2026
Improvisation-the art of spontaneous creation that unfolds moment-to-moment without a scripted outcome-requires practitioners to continuously sense, adapt, and create anew. It is a fundamental mode of human creativity spanning music, dance, and everyday life. The open-ended nature of improvisation produces a stream of novel, unrepeatable moments-an aspect highly valued in artistic creativity. In parallel, open-endedness (OE)-a system's capacity for unbounded novelty and endless "interestingness"-is exemplified in natural or cultural evolution and has been considered "the last grand challenge" in artificial life (ALife). The rise of generative AI now raises the question in computational creativity (CC) research: What makes a "good" improvisation for AI? Can AI learn to improvise in a genuinely open-ended way? In this work-in-progress paper, we report insights from in-depth interviews with 6 experts in improvisation across dance, music, and contact improvisation. We draw systemic connections between human improvisational arts and the design of future experiential AI agents that could improvise alone or alongside humans-or even with other AI agents-embodying qualities of improvisation drawn from practice: active listening (umwelt and awareness), being in the time (mindfulness and ephemerality), embracing the unknown (source of randomness and serendipity), non-judgmental flow (acceptance and dynamical stability, balancing structure and surprise (unpredictable criticality at edge of chaos), imaginative metaphor (synaesthesia and planning), empathy, trust, boundary, and care (mutual theory of mind), and playfulness and intrinsic motivation (maintaining interestingness).
comment: Submitted to AAAI 2026 Creative AI for Live Interactive Performances Workshop (CLIP) as a work-in-progress paper
Wireless Laser Power Transfer for Low-altitude Uncrewed Aerial Vehicle-assisted Internet of Things: Paradigms, Challenges, and Solutions
Low-altitude uncrewed aerial vehicles (UAVs) have become integral enablers for the Internet of Things (IoT) by offering enhanced coverage, improved connectivity and access to remote areas. A critical challenge limiting their operational capacity lies in the energy constraints of both aerial platforms and ground-based sensors. This paper explores WLPT as a transformative solution for sustainable energy provisioning in UAV-assisted IoT networks. We first systematically investigate the fundamental principles of WLPT and analysis the comparative advantages. Then, we introduce three operational paradigms for system integration, identify key challenges, and discuss corresponding potential solutions. In case study, we propose a multi-agent reinforcement learning framework to address the coordination and optimization challenges in WLPT-enabled UAV-assisted IoT data collection. Simulation results demonstrate that our framework significantly improves energy sustainability and data freshness. Finally, we discuss some future directions.
comment: This paper has been submitted to IEEE Internet of Things Magazine
Optimization via a Control-Centric Framework
Optimization plays a central role in intelligent systems and cyber-physical technologies, where speed and reliability of convergence directly impact performance. In control theory, optimization-centric methods are standard: controllers are designed by repeatedly solving optimization problems, as in linear quadratic regulation, $H_\infty$ control, and model predictive control. In contrast, this paper develops a control-centric framework for optimization itself, where algorithms are constructed directly from Lyapunov stability principles rather than being proposed first and analyzed afterward. A key element is the stationarity vector, which encodes first-order optimality conditions and enables Lyapunov-based convergence analysis. By pairing a Lyapunov function with a selectable decay law, we obtain continuous-time dynamics with guaranteed exponential, finite-time, fixed-time, or prescribed-time convergence. Within this framework, we introduce three feedback realizations of increasing restrictiveness: the Hessian-gradient, Newton, and gradient dynamics. Each realization shapes the decay of the stationarity vector to achieve the desired rate. These constructions unify unconstrained optimization, extend naturally to constrained problems via Lyapunov-consistent primal-dual dynamics, and broaden the results for minimax and generalized Nash equilibrium seeking problems beyond exponential stability. The framework provides systematic design tools for optimization algorithms in control and game-theoretic problems.
comment: This work has been submitted to the IEEE for possible publication. 12 pages, 3 figures
Uncertainty Estimators for Robust Backup Control Barrier Functions
Designing safe controllers is crucial and notoriously challenging for input-constrained safety-critical control systems. Backup control barrier functions offer an approach for the construction of safe controllers online by considering the flow of the system under a backup controller. However, in the presence of model uncertainties, the flow cannot be accurately computed, making this method insufficient for safety assurance. To tackle this shortcoming, we integrate backup control barrier functions with uncertainty estimators and calculate the flow under a reconstruction of the model uncertainty while refining this estimate over time. We prove that the controllers resulting from the proposed Uncertainty Estimator Backup Control Barrier Function (UE-bCBF) approach guarantee safety, are robust to unknown disturbances, and satisfy input constraints.
comment: 8 pages, 4 figures. Code and videos available at https://github.com/davidvwijk/UE-bCBF
KAN-Therm: A Lightweight Battery Thermal Model Using Kolmogorov-Arnold Network
Battery management systems (BMSs) rely on real-time estimation of battery temperature distribution in battery cells to ensure safe and optimal operation of Lithium-ion batteries (LIBs). However, physical BMS often suffers from memory and computational resource limitations required by highfidelity models. Temperature prediction using physics-based models becomes challenging due to their higher computational time. In contrast, machine learning based approaches offer faster predictions but demand larger memory overhead. In this work, we develop a lightweight and efficient Kolmogorov-Arnold networks (KAN) based thermal model, KAN-Therm, to predict the core temperature of a cylindrical battery. We have compared the memory overhead and computation costs of our method with Multi-layer perceptron (MLP), recurrent neural network (RNN), and long shortterm memory (LSTM) network. Our results show that the proposed KAN-Therm model exhibit the best prediction accuracy with the least memory overhead and computation time.
comment: 12 pages, 7 figures
Robotics
TWIST2: Scalable, Portable, and Holistic Humanoid Data Collection System
Large-scale data has driven breakthroughs in robotics, from language models to vision-language-action models in bimanual manipulation. However, humanoid robotics lacks equally effective data collection frameworks. Existing humanoid teleoperation systems either use decoupled control or depend on expensive motion capture setups. We introduce TWIST2, a portable, mocap-free humanoid teleoperation and data collection system that preserves full whole-body control while advancing scalability. Our system leverages PICO4U VR for obtaining real-time whole-body human motions, with a custom 2-DoF robot neck (cost around $250) for egocentric vision, enabling holistic human-to-humanoid control. We demonstrate long-horizon dexterous and mobile humanoid skills and we can collect 100 demonstrations in 15 minutes with an almost 100% success rate. Building on this pipeline, we propose a hierarchical visuomotor policy framework that autonomously controls the full humanoid body based on egocentric vision. Our visuomotor policy successfully demonstrates whole-body dexterous manipulation and dynamic kicking tasks. The entire system is fully reproducible and open-sourced at https://yanjieze.com/TWIST2 . Our collected dataset is also open-sourced at https://twist-data.github.io .
comment: Website: https://yanjieze.com/TWIST2
XR-1: Towards Versatile Vision-Language-Action Models via Learning Unified Vision-Motion Representations
Recent progress in large-scale robotic datasets and vision-language models (VLMs) has advanced research on vision-language-action (VLA) models. However, existing VLA models still face two fundamental challenges: (i) producing precise low-level actions from high-dimensional observations, (ii) bridging domain gaps across heterogeneous data sources, including diverse robot embodiments and human demonstrations. Existing methods often encode latent variables from either visual dynamics or robotic actions to guide policy learning, but they fail to fully exploit the complementary multi-modal knowledge present in large-scale, heterogeneous datasets. In this work, we present X Robotic Model 1 (XR-1), a novel framework for versatile and scalable VLA learning across diverse robots, tasks, and environments. XR-1 introduces the \emph{Unified Vision-Motion Codes (UVMC)}, a discrete latent representation learned via a dual-branch VQ-VAE that jointly encodes visual dynamics and robotic motion. UVMC addresses these challenges by (i) serving as an intermediate representation between the observations and actions, and (ii) aligning multimodal dynamic information from heterogeneous data sources to capture complementary knowledge. To effectively exploit UVMC, we propose a three-stage training paradigm: (i) self-supervised UVMC learning, (ii) UVMC-guided pretraining on large-scale cross-embodiment robotic datasets, and (iii) task-specific post-training. We validate XR-1 through extensive real-world experiments with more than 14,000 rollouts on six different robot embodiments, spanning over 120 diverse manipulation tasks. XR-1 consistently outperforms state-of-the-art baselines such as $\pi_{0.5}$, $\pi_0$, RDT, UniVLA, and GR00T-N1.5 while demonstrating strong generalization to novel objects, background variations, distractors, and illumination changes. Our project is at https://xr-1-vla.github.io/.
Non-Contact Manipulation of Induced Magnetic Dipoles
Extending the field of magnetic manipulation to conductive, non-magnetic objects opens the door for a wide array of applications previously limited to hard or soft magnetic materials. Of particular interest is the recycling of space debris through the use of oscillating magnetic fields, which represent a cache of raw materials in an environment particularly suited to the low forces generated from inductive magnetic manipulation. Building upon previous work that demonstrated 3D open-loop position control by leveraging the opposing dipole moment created from induced eddy currents, this work demonstrates closed-loop position control of a semi-buoyant aluminum sphere in lab tests, and the efficacy of varying methods for force inversion is explored. The closed-loop methods represent a critical first step towards wider applications for 3-DOF position control of induced magnetic dipoles.
Many-vs-Many Missile Guidance via Virtual Targets
This paper presents a novel approach to many-vs-many missile guidance using virtual targets (VTs) generated by a Normalizing Flows-based trajectory predictor. Rather than assigning n interceptors directly to m physical targets through conventional weapon target assignment algorithms, we propose a centralized strategy that constructs n VT trajectories representing probabilistic predictions of maneuvering target behavior. Each interceptor is guided toward its assigned VT using Zero-Effort-Miss guidance during midcourse flight, transitioning to Proportional Navigation guidance for terminal interception. This approach treats many-vs-many engagements as many-vs-distribution scenarios, exploiting numerical superiority (n > m) by distributing interceptors across diverse trajectory hypotheses rather than pursuing identical deterministic predictions. Monte Carlo simulations across various target-interceptor configurations (1-6 targets, 1-8 interceptors) demonstrate that the VT method matches or exceeds baseline straight-line prediction performance by 0-4.1% when n = m, with improvements increasing to 5.8-14.4% when n > m. The results confirm that probabilistic VTs enable effective exploitation of numerical superiority, significantly increasing interception probability in many-vs-many scenarios.
comment: will be submitted to Journal of Guidance, Control, and Dynamics as Technical Note
Keeping it Local, Tiny and Real: Automated Report Generation on Edge Computing Devices for Mechatronic-Based Cognitive Systems
Recent advancements in Deep Learning enable hardware-based cognitive systems, that is, mechatronic systems in general and robotics in particular with integrated Artificial Intelligence, to interact with dynamic and unstructured environments. While the results are impressive, the application of such systems to critical tasks like autonomous driving as well as service and care robotics necessitate the evaluation of large amount of heterogeneous data. Automated report generation for Mobile Robotics can play a crucial role in facilitating the evaluation and acceptance of such systems in various domains. In this paper, we propose a pipeline for generating automated reports in natural language utilizing various multi-modal sensors that solely relies on local models capable of being deployed on edge computing devices, thus preserving the privacy of all actors involved and eliminating the need for external services. In particular, we evaluate our implementation on a diverse dataset spanning multiple domains including indoor, outdoor and urban environments, providing quantitative as well as qualitative evaluation results. Various generated example reports and other supplementary materials are available via a public repository.
comment: 6 pages, 4 figures, 1 table; accepted for MECATRONICS-REM 2025 International Conference, PARIS, FRANCE December 3-5 2025
Dexterous Robotic Piano Playing at Scale
Endowing robot hands with human-level dexterity has been a long-standing goal in robotics. Bimanual robotic piano playing represents a particularly challenging task: it is high-dimensional, contact-rich, and requires fast, precise control. We present OmniPianist, the first agent capable of performing nearly one thousand music pieces via scalable, human-demonstration-free learning. Our approach is built on three core components. First, we introduce an automatic fingering strategy based on Optimal Transport (OT), allowing the agent to autonomously discover efficient piano-playing strategies from scratch without demonstrations. Second, we conduct large-scale Reinforcement Learning (RL) by training more than 2,000 agents, each specialized in distinct music pieces, and aggregate their experience into a dataset named RP1M++, consisting of over one million trajectories for robotic piano playing. Finally, we employ a Flow Matching Transformer to leverage RP1M++ through large-scale imitation learning, resulting in the OmniPianist agent capable of performing a wide range of musical pieces. Extensive experiments and ablation studies highlight the effectiveness and scalability of our approach, advancing dexterous robotic piano playing at scale.
From the Laboratory to Real-World Application: Evaluating Zero-Shot Scene Interpretation on Edge Devices for Mobile Robotics
Video Understanding, Scene Interpretation and Commonsense Reasoning are highly challenging tasks enabling the interpretation of visual information, allowing agents to perceive, interact with and make rational decisions in its environment. Large Language Models (LLMs) and Visual Language Models (VLMs) have shown remarkable advancements in these areas in recent years, enabling domain-specific applications as well as zero-shot open vocabulary tasks, combining multiple domains. However, the required computational complexity poses challenges for their application on edge devices and in the context of Mobile Robotics, especially considering the trade-off between accuracy and inference time. In this paper, we investigate the capabilities of state-of-the-art VLMs for the task of Scene Interpretation and Action Recognition, with special regard to small VLMs capable of being deployed to edge devices in the context of Mobile Robotics. The proposed pipeline is evaluated on a diverse dataset consisting of various real-world cityscape, on-campus and indoor scenarios. The experimental evaluation discusses the potential of these small models on edge devices, with particular emphasis on challenges, weaknesses, inherent model biases and the application of the gained information. Supplementary material is provided via the following repository: https://datahub.rz.rptu.de/hstr-csrl-public/publications/scene-interpretation-on-edge-devices/
comment: 15 pages, 6 figures, 1 table; accepted for AI-2025 Forty-fifth SGAI International Conference on Artificial Intelligence CAMBRIDGE, ENGLAND 16-18 DECEMBER 2025
Synthetic Crop-Weed Image Generation and its Impact on Model Generalization
Precise semantic segmentation of crops and weeds is necessary for agricultural weeding robots. However, training deep learning models requires large annotated datasets, which are costly to obtain in real fields. Synthetic data can reduce this burden, but the gap between simulated and real images remains a challenge. In this paper, we present a pipeline for procedural generation of synthetic crop-weed images using Blender, producing annotated datasets under diverse conditions of plant growth, weed density, lighting, and camera angle. We benchmark several state-of-the-art segmentation models on synthetic and real datasets and analyze their cross-domain generalization. Our results show that training on synthetic images leads to a sim-to-real gap of 10%, surpassing previous state-of-the-art methods. Moreover, synthetic data demonstrates good generalization properties, outperforming real datasets in cross-domain scenarios. These findings highlight the potential of synthetic agricultural datasets and support hybrid strategies for more efficient model training.
Whole-body motion planning and safety-critical control for aerial manipulation
Aerial manipulation combines the maneuverability of multirotors with the dexterity of robotic arms to perform complex tasks in cluttered spaces. Yet planning safe, dynamically feasible trajectories remains difficult due to whole-body collision avoidance and the conservativeness of common geometric abstractions such as bounding boxes or ellipsoids. We present a whole-body motion planning and safety-critical control framework for aerial manipulators built on superquadrics (SQs). Using an SQ-plus-proxy representation, we model both the vehicle and obstacles with differentiable, geometry-accurate surfaces. Leveraging this representation, we introduce a maximum-clearance planner that fuses Voronoi diagrams with an equilibrium-manifold formulation to generate smooth, collision-aware trajectories. We further design a safety-critical controller that jointly enforces thrust limits and collision avoidance via high-order control barrier functions. In simulation, our approach outperforms sampling-based planners in cluttered environments, producing faster, safer, and smoother trajectories and exceeding ellipsoid-based baselines in geometric fidelity. Actual experiments on a physical aerial-manipulation platform confirm feasibility and robustness, demonstrating consistent performance across simulation and hardware settings. The video can be found at https://youtu.be/hQYKwrWf1Ak.
comment: Submitted to 2026 IFAC World Congress with the Journal option (MECHATRONICS)
Cycle-Sync: Robust Global Camera Pose Estimation through Enhanced Cycle-Consistent Synchronization NeurIPS 2025
We introduce Cycle-Sync, a robust and global framework for estimating camera poses (both rotations and locations). Our core innovation is a location solver that adapts message-passing least squares (MPLS) -- originally developed for group synchronization -- to camera location estimation. We modify MPLS to emphasize cycle-consistent information, redefine cycle consistencies using estimated distances from previous iterations, and incorporate a Welsch-type robust loss. We establish the strongest known deterministic exact-recovery guarantee for camera location estimation, showing that cycle consistency alone -- without access to inter-camera distances -- suffices to achieve the lowest sample complexity currently known. To further enhance robustness, we introduce a plug-and-play outlier rejection module inspired by robust subspace recovery, and we fully integrate cycle consistency into MPLS for rotation synchronization. Our global approach avoids the need for bundle adjustment. Experiments on synthetic and real datasets show that Cycle-Sync consistently outperforms leading pose estimators, including full structure-from-motion pipelines with bundle adjustment.
comment: NeurIPS 2025 spotlight paper
ZJUNlict Extended Team Description Paper 2025
This paper presents the ZJUNlict team's work over the past year, covering both hardware and software advancements. In the hardware domain, the integration of an IMU into the v2023 robot was completed to enhance posture accuracy and angular velocity planning. On the software side, key modules were optimized, including the strategy and CUDA modules, with significant improvements in decision making efficiency, ball pursuit prediction, and ball possession prediction to adapt to high-tempo game dynamics.
SuckTac: Camera-based Tactile Sucker for Unstructured Surface Perception and Interaction
Suckers are significant for robots in picking, transferring, manipulation and locomotion on diverse surfaces. However, most of the existing suckers lack high-fidelity perceptual and tactile sensing, which impedes them from resolving the fine-grained geometric features and interaction status of the target surface. This limits their robust performance with irregular objects and in complex, unstructured environments. Inspired by the adaptive structure and high-performance sensory capabilities of cephalopod suckers, in this paper, we propose a novel, intelligent sucker, named SuckTac, that integrates a camera-based tactile sensor directly within its optimized structure to provide high-density perception and robust suction. Specifically, through joint structure design and optimization and based on a multi-material integrated casting technique, a camera and light source are embedded into the sucker, which enables in-situ, high-density perception of fine details like surface shape, texture and roughness. To further enhance robustness and adaptability, the sucker's mechanical design is also optimized by refining its profile, adding a compliant lip, and incorporating surface microstructure. Extensive experiments, including challenging tasks such as robotic cloth manipulation and soft mobile robot inspection, demonstrate the superior performance and broad applicability of the proposed system.
LACY: A Vision-Language Model-based Language-Action Cycle for Self-Improving Robotic Manipulation
Learning generalizable policies for robotic manipulation increasingly relies on large-scale models that map language instructions to actions (L2A). However, this one-way paradigm often produces policies that execute tasks without deeper contextual understanding, limiting their ability to generalize or explain their behavior. We argue that the complementary skill of mapping actions back to language (A2L) is essential for developing more holistic grounding. An agent capable of both acting and explaining its actions can form richer internal representations and unlock new paradigms for self-supervised learning. We introduce LACY (Language-Action Cycle), a unified framework that learns such bidirectional mappings within a single vision-language model. LACY is jointly trained on three synergistic tasks: generating parameterized actions from language (L2A), explaining observed actions in language (A2L), and verifying semantic consistency between two language descriptions (L2C). This enables a self-improving cycle that autonomously generates and filters new training data through an active augmentation strategy targeting low-confidence cases, thereby improving the model without additional human labels. Experiments on pick-and-place tasks in both simulation and the real world show that LACY improves task success rates by 56.46% on average and yields more robust language-action grounding for robotic manipulation. Project page: https://vla2026.github.io/LACY/
comment: Preprint. Project page: https://vla2026.github.io/LACY/
A Quantitative Comparison of Centralised and Distributed Reinforcement Learning-Based Control for Soft Robotic Arms
This paper presents a quantitative comparison between centralised and distributed multi-agent reinforcement learning (MARL) architectures for controlling a soft robotic arm modelled as a Cosserat rod in simulation. Using PyElastica and the OpenAI Gym interface, we train both a global Proximal Policy Optimisation (PPO) controller and a Multi-Agent PPO (MAPPO) under identical budgets. Both approaches are based on the arm having $n$ number of controlled sections. The study systematically varies $n$ and evaluates the performance of the arm to reach a fixed target in three scenarios: default baseline condition, recovery from external disturbance, and adaptation to actuator failure. Quantitative metrics used for the evaluation are mean action magnitude, mean final distance, mean episode length, and success rate. The results show that there are no significant benefits of the distributed policy when the number of controlled sections $n\le4$. In very simple systems, when $n\le2$, the centralised policy outperforms the distributed one. When $n$ increases to $4< n\le 12$, the distributed policy shows a high sample efficiency. In these systems, distributed policy promotes a stronger success rate, resilience, and robustness under local observability and yields faster convergence given the same sample size. However, centralised policies achieve much higher time efficiency during training as it takes much less time to train the same size of samples. These findings highlight the trade-offs between centralised and distributed policy in reinforcement learning-based control for soft robotic systems and provide actionable design guidance for future sim-to-real transfer in soft rod-like manipulators.
comment: 7 pages, 4 figures, 2 tables, submitted to RoboSoft 2026
Kinematic and Ergonomic Design of a Robotic Arm for Precision Laparoscopic Surgery
Robotic assistance in minimally invasive surgery can greatly enhance surgical precision and reduce surgeon fatigue. This paper presents a focused investigation on the kinematic and ergonomic design principles for a laparoscopic surgical robotic arm aimed at high-precision tasks. We propose a 7-degree-of-freedom (7-DOF) robotic arm system that incorporates a remote center of motion (RCM) at the instrument insertion point and ergonomic considerations to improve surgeon interaction. The design is implemented on a general-purpose robotic platform, and a series of simulated surgical tasks were performed to evaluate targeting accuracy, task efficiency, and surgeon comfort compared to conventional manual laparoscopy. Experimental results demonstrate that the optimized robotic design achieves significantly improved targeting accuracy (error reduced by over 50%) and shorter task completion times, while substantially lowering operator muscle strain and discomfort. These findings validate the importance of kinematic optimization (such as added articulations and tremor filtering) and human-centered ergonomic design in enhancing the performance of robot-assisted surgery. The insights from this work can guide the development of next-generation surgical robots that improve surgical outcomes and ergonomics for the operating team.
Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on object functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
Census-Based Population Autonomy For Distributed Robotic Teaming
Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.
comment: 16 pages, 17 figures
3D Cal: An Open-Source Software Library for Calibrating Tactile Sensors
Tactile sensing plays a key role in enabling dexterous and reliable robotic manipulation, but realizing this capability requires substantial calibration to convert raw sensor readings into physically meaningful quantities. Despite its near-universal necessity, the calibration process remains ad hoc and labor-intensive. Here, we introduce \libname{}, an open-source library that transforms a low-cost 3D printer into an automated probing device capable of generating large volumes of labeled training data for tactile sensor calibration. We demonstrate the utility of \libname{} by calibrating two commercially available vision-based tactile sensors, DIGIT and GelSight Mini, to reconstruct high-quality depth maps using the collected data and a custom convolutional neural network. In addition, we perform a data ablation study to determine how much data is needed for accurate calibration, providing practical guidelines for researchers working with these specific sensors, and we benchmark the trained models on previously unseen objects to evaluate calibration accuracy and generalization performance. By automating tactile sensor calibration, \libname{} can accelerate tactile sensing research, simplify sensor deployment, and promote the practical integration of tactile sensing in robotic platforms.
WorldPlanner: Monte Carlo Tree Search and MPC with Action-Conditioned Visual World Models
Robots must understand their environment from raw sensory inputs and reason about the consequences of their actions in it to solve complex tasks. Behavior Cloning (BC) leverages task-specific human demonstrations to learn this knowledge as end-to-end policies. However, these policies are difficult to transfer to new tasks, and generating training data is challenging because it requires careful demonstrations and frequent environment resets. In contrast to such policy-based view, in this paper we take a model-based approach where we collect a few hours of unstructured easy-to-collect play data to learn an action-conditioned visual world model, a diffusion-based action sampler, and optionally a reward model. The world model -- in combination with the action sampler and a reward model -- is then used to optimize long sequences of actions with a Monte Carlo Tree Search (MCTS) planner. The resulting plans are executed on the robot via a zeroth-order Model Predictive Controller (MPC). We show that the action sampler mitigates hallucinations of the world model during planning and validate our approach on 3 real-world robotic tasks with varying levels of planning and modeling complexity. Our experiments support the hypothesis that planning leads to a significant improvement over BC baselines on a standard manipulation test environment.
A Collaborative Reasoning Framework for Anomaly Diagnostics in Underwater Robotics ICRA 2026
The safe deployment of autonomous systems in safety-critical settings requires a paradigm that combines human expertise with AI-driven analysis, especially when anomalies are unforeseen. We introduce AURA (Autonomous Resilience Agent), a collaborative framework for anomaly and fault diagnostics in robotics. AURA integrates large language models (LLMs), a high-fidelity digital twin (DT), and human-in-the-loop interaction to detect and respond to anomalous behavior in real time. The architecture uses two agents with clear roles: (i) a low-level State Anomaly Characterization Agent that monitors telemetry and converts signals into a structured natural-language problem description, and (ii) a high-level Diagnostic Reasoning Agent that conducts a knowledge-grounded dialogue with an operator to identify root causes, drawing on external sources. Human-validated diagnoses are then converted into new training examples that refine the low-level perceptual model. This feedback loop progressively distills expert knowledge into the AI, transforming it from a static tool into an adaptive partner. We describe the framework's operating principles and provide a concrete implementation, establishing a pattern for trustworthy, continually improving human-robot teams.
comment: Paper was submitted for ICRA 2026
Comprehensive Assessment of LiDAR Evaluation Metrics: A Comparative Study Using Simulated and Real Data
For developing safe Autonomous Driving Systems (ADS), rigorous testing is required before they are deemed safe for road deployments. Since comprehensive conventional physical testing is impractical due to cost and safety concerns, Virtual Testing Environments (VTE) can be adopted as an alternative. Comparing VTE-generated sensor outputs against their real-world analogues can be a strong indication that the VTE accurately represents reality. Correspondingly, this work explores a comprehensive experimental approach to finding evaluation metrics suitable for comparing real-world and simulated LiDAR scans. The metrics were tested in terms of sensitivity and accuracy with different noise, density, distortion, sensor orientation, and channel settings. From comparing the metrics, we found that Density Aware Chamfer Distance (DCD) works best across all cases. In the second step of the research, a Virtual Testing Environment was generated using real LiDAR scan data. The data was collected in a controlled environment with only static objects using an instrumented vehicle equipped with LiDAR, IMU and cameras. Simulated LiDAR scans were generated from the VTEs using the same pose as real LiDAR scans. The simulated and LiDAR scans were compared in terms of model perception and geometric similarity. Actual and simulated LiDAR scans have a similar semantic segmentation output with a mIoU of 21\% with corrected intensity and an average density aware chamfer distance (DCD) of 0.63. This indicates a slight difference in the geometric properties of simulated and real LiDAR scans and a significant difference between model outputs. During the comparison, density-aware chamfer distance was found to be the most correlated among the metrics with perception methods.
EvtSlowTV - A Large and Diverse Dataset for Event-Based Depth Estimation
Event cameras, with their high dynamic range (HDR) and low latency, offer a promising alternative for robust depth estimation in challenging environments. However, many event-based depth estimation approaches are constrained by small-scale annotated datasets, limiting their generalizability to real-world scenarios. To bridge this gap, we introduce EvtSlowTV, a large-scale event camera dataset curated from publicly available YouTube footage, which contains more than 13B events across various environmental conditions and motions, including seasonal hiking, flying, scenic driving, and underwater exploration. EvtSlowTV is an order of magnitude larger than existing event datasets, providing an unconstrained, naturalistic setting for event-based depth learning. This work shows the suitability of EvtSlowTV for a self-supervised learning framework to capitalise on the HDR potential of raw event streams. We further demonstrate that training with EvtSlowTV enhances the model's ability to generalise to complex scenes and motions. Our approach removes the need for frame-based annotations and preserves the asynchronous nature of event data.
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
EvtSlowTV -- A Large and Diverse Dataset for Event-Based Depth Estimation
Event cameras, with their high dynamic range (HDR) and low latency, offer a promising alternative for robust depth estimation in challenging environments. However, many event-based depth estimation approaches are constrained by small-scale annotated datasets, limiting their generalizability to real-world scenarios. To bridge this gap, we introduce EvtSlowTV, a large-scale event camera dataset curated from publicly available YouTube footage, which contains more than 13B events across various environmental conditions and motions, including seasonal hiking, flying, scenic driving, and underwater exploration. EvtSlowTV is an order of magnitude larger than existing event datasets, providing an unconstrained, naturalistic setting for event-based depth learning. This work shows the suitability of EvtSlowTV for a self-supervised learning framework to capitalise on the HDR potential of raw event streams. We further demonstrate that training with EvtSlowTV enhances the model's ability to generalise to complex scenes and motions. Our approach removes the need for frame-based annotations and preserves the asynchronous nature of event data.
Using Fiber Optic Bundles to Miniaturize Vision-Based Tactile Sensors
Vision-based tactile sensors have recently become popular due to their combination of low cost, very high spatial resolution, and ease of integration using widely available miniature cameras. The associated field of view and focal length, however, are difficult to package in a human-sized finger. In this paper we employ optical fiber bundles to achieve a form factor that, at 15 mm diameter, is smaller than an average human fingertip. The electronics and camera are also located remotely, further reducing package size. The sensor achieves a spatial resolution of 0.22 mm and a minimum force resolution 5 mN for normal and shear contact forces. With these attributes, the DIGIT Pinki sensor is suitable for applications such as robotic and teleoperated digital palpation. We demonstrate its utility for palpation of the prostate gland and show that it can achieve clinically relevant discrimination of prostate stiffness for phantom and ex vivo tissue.
comment: This work has been submitted to the IEEE for possible publication. The CAD design files of DIGIT Pinki are available at https://github.com/facebookresearch/digit-design
Tactile Displays Driven by Projected Light
Tactile displays that lend tangible form to digital content could transform computing interactions. However, achieving the resolution, speed, and dynamic range needed for perceptual fidelity remains challenging. We present a tactile display that directly converts projected light into visible tactile patterns via a photomechanical surface populated with millimeter-scale optotactile pixels. The pixels transduce incident light into mechanical displacements through photostimulated thermal gas expansion, yielding millimeter scale displacements with response times of 2 to 100 milliseconds. Employing projected light for power transmission and addressing renders these displays highly scalable. We demonstrate optically driven displays with up to 1,511 addressable pixels -- several times more pixels than any prior tactile display attaining comparable performance. Perceptual studies confirm that these displays can reproduce diverse spatiotemporal tactile patterns with high fidelity. This research establishes a foundation for practical, versatile high-resolution tactile displays driven by light.
Replicating Human Anatomy with Vision Controlled Jetting -- A Pneumatic Musculoskeletal Hand and Forearm
The functional replication and actuation of complex structures inspired by nature is a longstanding goal for humanity. Creating such complex structures combining soft and rigid features and actuating them with artificial muscles would further our understanding of natural kinematic structures. We printed a biomimetic hand in a single print process comprised of a rigid skeleton, soft joint capsules, tendons, and printed touch sensors. We showed it's actuation using electric motors. In this work, we expand on this work by adding a forearm that is also closely modeled after the human anatomy and replacing the hand's motors with 22 independently controlled pneumatic artificial muscles (PAMs). Our thin, high-strain (up to 30.1%) PAMs match the performance of state-of-the-art artificial muscles at a lower cost. The system showcases human-like dexterity with independent finger movements, demonstrating successful grasping of various objects, ranging from a small, lightweight coin to a large can of 272g in weight. The performance evaluation, based on fingertip and grasping forces along with finger joint range of motion, highlights the system's potential.
Mobile Robotic Multi-View Photometric Stereo SP
Multi-View Photometric Stereo (MVPS) is a popular method for fine-detailed 3D acquisition of an object from images. Despite its outstanding results on diverse material objects, a typical MVPS experimental setup requires a well-calibrated light source and a monocular camera installed on an immovable base. This restricts the use of MVPS on a movable platform, limiting us from taking MVPS benefits in 3D acquisition for mobile robotics applications. To this end, we introduce a new mobile robotic system for MVPS. While the proposed system brings advantages, it introduces additional algorithmic challenges. Addressing them, in this paper, we further propose an incremental approach for mobile robotic MVPS. Our approach leverages a supervised learning setup to predict per-view surface normal, object depth, and per-pixel uncertainty in model-predicted results. A refined depth map per view is obtained by solving an MVPS-driven optimization problem proposed in this paper. Later, we fuse the refined depth map while tracking the camera pose w.r.t the reference frame to recover globally consistent object 3D geometry. Experimental results show the advantages of our robotic system and algorithm, featuring the local high-frequency surface detail recovery with globally consistent object shape. Our work is beyond any MVPS system yet presented, providing encouraging results on objects with unknown reflectance properties using fewer frames without a tiring calibration and installation process, enabling computationally efficient robotic automation approach to photogrammetry. The proposed approach is nearly 100 times computationally faster than the state-of-the-art MVPS methods such as [1, 2] while maintaining the similar results when tested on subjects taken from the benchmark DiLiGenT MV dataset [3].
comment: Acknowledgment Added. Published at International Society Journal of Photogrammetry and Remote Sensing (ISPRS). 32 pages, 14 Figures, 5 Tables
FRASA: An End-to-End Reinforcement Learning Agent for Fall Recovery and Stand Up of Humanoid Robots
Humanoid robotics faces significant challenges in achieving stable locomotion and recovering from falls in dynamic environments. Traditional methods, such as Model Predictive Control (MPC) and Key Frame Based (KFB) routines, either require extensive fine-tuning or lack real-time adaptability. This paper introduces FRASA, a Deep Reinforcement Learning (DRL) agent that integrates fall recovery and stand up strategies into a unified framework. Leveraging the Cross-Q algorithm, FRASA significantly reduces training time and offers a versatile recovery strategy that adapts to unpredictable disturbances. Comparative tests on Sigmaban humanoid robots demonstrate FRASA superior performance against the KFB method deployed in the RoboCup 2023 by the Rhoban Team, world champion of the KidSize League.
Extended Friction Models for the Physics Simulation of Servo Actuators
Accurate physical simulation is crucial for the development and validation of control algorithms in robotic systems. Recent works in Reinforcement Learning (RL) take notably advantage of extensive simulations to produce efficient robot control. State-of-the-art servo actuator models generally fail at capturing the complex friction dynamics of these systems. This limits the transferability of simulated behaviors to real-world applications. In this work, we present extended friction models that allow to more accurately simulate servo actuator dynamics. We propose a comprehensive analysis of various friction models, present a method for identifying model parameters using recorded trajectories from a pendulum test bench, and demonstrate how these models can be integrated into physics engines. The proposed friction models are validated on four distinct servo actuators and tested on 2R manipulators, showing significant improvements in accuracy over the standard Coulomb-Viscous model. Our results highlight the importance of considering advanced friction effects in the simulation of servo actuators to enhance the realism and reliability of robotic simulations.
Dual-Stream Diffusion for World-Model Augmented Vision-Language-Action Model
Recently, augmenting vision-language-action models (VLAs) with world-models has shown promise in robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while enabling cross-modal knowledge sharing. In addition, we propose training techniques such as independent noise perturbations for each modality and a decoupled flow matching loss, which enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Furthermore, based on the decoupled training framework, we introduce a sampling method where we sample action and vision tokens asynchronously at different rates, which shows improvement through inference-time scaling. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over a standard VLA baseline and implicit world-modeling methods, with our inference-time scaling approach providing an additional 2-5% gain on success rate. On real-world tasks with the Franka Research 3, DUST outperforms baselines in success rate by 13%, confirming its effectiveness beyond simulation. Lastly, we demonstrate the effectiveness of DUST in large-scale pretraining with action-free videos from BridgeV2, where DUST leads to significant gain when transferred to the RoboCasa benchmark.
comment: 20 pages, 10 figures
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of aerial vehicles is a key requirement in applications ranging from missile guidance to UAV collision avoidance. While most prediction methods assume deterministic target motion, real-world targets often exhibit stochastic behaviors such as evasive maneuvers or random gliding patterns. This paper introduces a probabilistic framework based on Conditional Normalizing Flows (CNFs) to model and predict such stochastic dynamics directly from trajectory data. The learned model generates probability distributions of future target positions conditioned on initial states and dynamic parameters, enabling efficient sampling and exact density evaluation. To provide deterministic surrogates compatible with existing guidance and planning algorithms, sampled trajectories are clustered using a time series k-means approach, yielding a set of representative "virtual target" trajectories. The method is target-agnostic, computationally efficient, and requires only trajectory data for training, making it suitable as a drop-in replacement for deterministic predictors. Simulated scenarios with maneuvering and ballistic targets demonstrate that the proposed approach bridges the gap between deterministic assumptions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: Manuscript accepted by Journal of Guidance, Control, and Dynamics
Genie Envisioner: A Unified World Foundation Platform for Robotic Manipulation
We introduce Genie Envisioner (GE), a unified world foundation platform for robotic manipulation that integrates policy learning, evaluation, and simulation within a single video-generative framework. At its core, GE-Base is a large-scale, instruction-conditioned video diffusion model that captures the spatial, temporal, and semantic dynamics of real-world robotic interactions in a structured latent space. Built upon this foundation, GE-Act maps latent representations to executable action trajectories through a lightweight, flow-matching decoder, enabling precise and generalizable policy inference across diverse embodiments with minimal supervision. To support scalable evaluation and training, GE-Sim serves as an action-conditioned neural simulator, producing high-fidelity rollouts for closed-loop policy development. The platform is further equipped with EWMBench, a standardized benchmark suite measuring visual fidelity, physical consistency, and instruction-action alignment. Together, these components establish Genie Envisioner as a scalable and practical foundation for instruction-driven, general-purpose embodied intelligence. All code, models, and benchmarks will be released publicly.
comment: https://genie-envisioner.github.io/
Radar-Based Odometry for Low-Speed Driving
We address automotive odometry for low-speed driving and parking, where centimeter-level accuracy is required due to tight spaces and nearby obstacles. Traditional methods using inertial-measurement units and wheel encoders require vehicle-specific calibration, making them costly for consumer-grade vehicles. To overcome this, we propose a radar-based simultaneous localization and mapping (SLAM) approach that fuses inertial and 4D radar measurements. Our approach tightly couples feature positions and Doppler velocities for accurate localization and robust data association. Key contributions include a tightly coupled radar-Doppler extended Kalman filter, multi-radar support and an information-based feature-pruning strategy. Experiments using both proprietary and public datasets demonstrate high-accuracy localization during low-speed driving.
comment: This work has been submitted to the IEEE for possible publication
No Plan but Everything Under Control: Robustly Solving Sequential Tasks with Dynamically Composed Gradient Descent ICRA25
We introduce a novel gradient-based approach for solving sequential tasks by dynamically adjusting the underlying myopic potential field in response to feedback and the world's regularities. This adjustment implicitly considers subgoals encoded in these regularities, enabling the solution of long sequential tasks, as demonstrated by solving the traditional planning domain of Blocks World - without any planning. Unlike conventional planning methods, our feedback-driven approach adapts to uncertain and dynamic environments, as demonstrated by one hundred real-world trials involving drawer manipulation. These experiments highlight the robustness of our method compared to planning and show how interactive perception and error recovery naturally emerge from gradient descent without explicitly implementing them. This offers a computationally efficient alternative to planning for a variety of sequential tasks, while aligning with observations on biological problem-solving strategies.
comment: Accepted at ICRA25; Supplementary Material under https://www.tu.berlin/robotics/papers/noplan ; 7 pages + 6 figures;
UniCoD: Enhancing Robot Policy via Unified Continuous and Discrete Representation Learning
Building generalist robot policies that can handle diverse tasks in open-ended environments is a central challenge in robotics. To leverage knowledge from large-scale pretraining, prior work (VLA) has typically built generalist policies either on top of vision-language understanding models (VLMs) or generative models. However, both semantic understanding from vision-language pretraining and visual dynamics modeling from visual-generation pretraining are crucial for embodied robots. Recent unified models of generation and understanding have demonstrated strong capabilities in both comprehension and generation through large-scale pretraining. We posit that robotic policy learning can likewise benefit from the combined strengths of understanding, planning, and continuous future representation learning. Building on this insight, we introduce UniCoD, which acquires the ability to dynamically model high-dimensional visual features through pretraining on over 1M internet-scale instructional manipulation videos. Subsequently, UniCoD is fine-tuned on data collected from the robot embodiment, enabling the learning of mappings from predictive representations to action tokens. Extensive experiments show our approach consistently outperforms baseline methods in terms of 9\% and 12\% across simulation environments and real-world out-of-distribution tasks.
Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction pairs can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
Kinematify: Open-Vocabulary Synthesis of High-DoF Articulated Objects
A deep understanding of kinematic structures and movable components is essential for enabling robots to manipulate objects and model their own articulated forms. Such understanding is captured through articulated objects, which are essential for tasks such as physical simulation, motion planning, and policy learning. However, creating these models, particularly for objects with high degrees of freedom (DoF), remains a significant challenge. Existing methods typically rely on motion sequences or strong assumptions from hand-curated datasets, which hinders scalability. In this paper, we introduce Kinematify, an automated framework that synthesizes articulated objects directly from arbitrary RGB images or textual descriptions. Our method addresses two core challenges: (i) inferring kinematic topologies for high-DoF objects and (ii) estimating joint parameters from static geometry. To achieve this, we combine MCTS search for structural inference with geometry-driven optimization for joint reasoning, producing physically consistent and functionally valid descriptions. We evaluate Kinematify on diverse inputs from both synthetic and real-world environments, demonstrating improvements in registration and kinematic topology accuracy over prior work.
comment: project page: https://sites.google.com/deemos.com/kinematify
Generative World Models of Tasks: LLM-Driven Hierarchical Scaffolding for Embodied Agents NeurIPS 2025
Recent advances in agent development have focused on scaling model size and raw interaction data, mirroring successes in large language models. However, for complex, long-horizon multi-agent tasks such as robotic soccer, this end-to-end approach often fails due to intractable exploration spaces and sparse rewards. We propose that an effective world model for decision-making must model the world's physics and also its task semantics. A systematic review of 2024 research in low-resource multi-agent soccer reveals a clear trend towards integrating symbolic and hierarchical methods, such as Hierarchical Task Networks (HTNs) and Bayesian Strategy Networks (BSNs), with multi-agent reinforcement learning (MARL). These methods decompose complex goals into manageable subgoals, creating an intrinsic curriculum that shapes agent learning. We formalize this trend into a framework for Hierarchical Task Environments (HTEs), which are essential for bridging the gap between simple, reactive behaviors and sophisticated, strategic team play. Our framework incorporates the use of Large Language Models (LLMs) as generative world models of tasks, capable of dynamically generating this scaffolding. We argue that HTEs provide a mechanism to guide exploration, generate meaningful learning signals, and train agents to internalize hierarchical structure, enabling the development of more capable and general-purpose agents with greater sample efficiency than purely end-to-end approaches.
comment: In the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World Models for Decision Making (EWM)
Neural Network Aided Kalman Filtering with Model Predictive Control Enables Robot-Assisted Drone Recovery on a Wavy Surface
Recovering a drone on a disturbed water surface remains a significant challenge in maritime robotics. In this paper, we propose a unified framework for robot-assisted drone recovery on a wavy surface that addresses two major tasks: Firstly, accurate prediction of a moving drone's position under wave-induced disturbances using KalmanNet Plus Plus (KalmanNet++), a Neural Network Aided Kalman Filtering we proposed. Secondly, effective motion planning using the desired position we got for a manipulator via Receding Horizon Model Predictive Control (RHMPC). Specifically, we compared multiple prediction methods and proposed KalmanNet Plus Plus to predict the position of the UAV, thereby obtaining the desired position. The KalmanNet++ predicts the drone's future position 0.1\,s ahead, while the manipulator plans a capture trajectory in real time, thus overcoming not only wave-induced base motions but also limited constraints such as torque constraints and joint constraints. For the system design, we provide a collaborative system, comprising a manipulator subsystem and a UAV subsystem, enables drone lifting and drone recovery. Simulation and real-world experiments using wave-disturbed motion data demonstrate that our approach achieves a high success rate - above 95\% and outperforms conventional baseline methods by up to 10\% in efficiency and 20\% in precision. The results underscore the feasibility and robustness of our system, which achieves state-of-the-art performance and offers a practical solution for maritime drone operations.
comment: 17 pages, 51 figures
Light Future: Multimodal Action Frame Prediction via InstructPix2Pix WACV 2026
Predicting future motion trajectories is a critical capability across domains such as robotics, autonomous systems, and human activity forecasting, enabling safer and more intelligent decision-making. This paper proposes a novel, efficient, and lightweight approach for robot action prediction, offering significantly reduced computational cost and inference latency compared to conventional video prediction models. Importantly, it pioneers the adaptation of the InstructPix2Pix model for forecasting future visual frames in robotic tasks, extending its utility beyond static image editing. We implement a deep learning-based visual prediction framework that forecasts what a robot will observe 100 frames (10 seconds) into the future, given a current image and a textual instruction. We repurpose and fine-tune the InstructPix2Pix model to accept both visual and textual inputs, enabling multimodal future frame prediction. Experiments on the RoboTWin dataset (generated based on real-world scenarios) demonstrate that our method achieves superior SSIM and PSNR compared to state-of-the-art baselines in robot action prediction tasks. Unlike conventional video prediction models that require multiple input frames, heavy computation, and slow inference latency, our approach only needs a single image and a text prompt as input. This lightweight design enables faster inference, reduced GPU demands, and flexible multimodal control, particularly valuable for applications like robotics and sports motion trajectory analytics, where motion trajectory precision is prioritized over visual fidelity.
comment: 9 pages including appendix, 4 tables, 8 figures, to be submitted to WACV 2026
Grounded Vision-Language Interpreter for Integrated Task and Motion Planning
While recent advances in vision-language models have accelerated the development of language-guided robot planners, their black-box nature often lacks safety guarantees and interpretability crucial for real-world deployment. Conversely, classical symbolic planners offer rigorous safety verification but require significant expert knowledge for setup. To bridge the current gap, this paper proposes ViLaIn-TAMP, a hybrid planning framework for enabling verifiable, interpretable, and autonomous robot behaviors. ViLaIn-TAMP comprises three main components: (1) a Vision-Language Interpreter (ViLaIn) adapted from previous work that converts multimodal inputs into structured problem specifications, (2) a modular Task and Motion Planning (TAMP) system that grounds these specifications in actionable trajectory sequences through symbolic and geometric constraint reasoning, and (3) a corrective planning (CP) module which receives concrete feedback on failed solution attempts and feed them with constraints back to ViLaIn to refine the specification. We design challenging manipulation tasks in a cooking domain and evaluate our framework. Experimental results demonstrate that ViLaIn-TAMP outperforms a VLM-as-a-planner baseline by 18% in mean success rate, and that adding the CP module boosts mean success rate by 32%.
comment: Project website: https://omron-sinicx.github.io/ViLaIn-TAMP/
Talk2Event: Grounded Understanding of Dynamic Scenes from Event Cameras NeurIPS 2025
Event cameras offer microsecond-level latency and robustness to motion blur, making them ideal for understanding dynamic environments. Yet, connecting these asynchronous streams to human language remains an open challenge. We introduce Talk2Event, the first large-scale benchmark for language-driven object grounding in event-based perception. Built from real-world driving data, we provide over 30,000 validated referring expressions, each enriched with four grounding attributes -- appearance, status, relation to viewer, and relation to other objects -- bridging spatial, temporal, and relational reasoning. To fully exploit these cues, we propose EventRefer, an attribute-aware grounding framework that dynamically fuses multi-attribute representations through a Mixture of Event-Attribute Experts (MoEE). Our method adapts to different modalities and scene dynamics, achieving consistent gains over state-of-the-art baselines in event-only, frame-only, and event-frame fusion settings. We hope our dataset and approach will establish a foundation for advancing multimodal, temporally-aware, and language-driven perception in real-world robotics and autonomy.
comment: NeurIPS 2025 Spotlight; 43 pages, 17 figures, 16 tables; Project Page at https://talk2event.github.io
Towards Predicting Any Human Trajectory In Context NeurIPS 2025
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, the need to fine-tune for each new scenario is often impractical for deployment on edge devices. To address this challenge, we introduce TrajICL, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables adaptation without fine-tuning on the scenario-specific data at inference time without requiring weight updates. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. Project Page: https://fujiry0.github.io/TrajICL-project-page/.
comment: NeurIPS 2025
Rethinking Bimanual Robotic Manipulation: Learning with Decoupled Interaction Framework
Bimanual robotic manipulation is an emerging and critical topic in the robotics community. Previous works primarily rely on integrated control models that take the perceptions and states of both arms as inputs to directly predict their actions. However, we think bimanual manipulation involves not only coordinated tasks but also various uncoordinated tasks that do not require explicit cooperation during execution, such as grasping objects with the closest hand, which integrated control frameworks ignore to consider due to their enforced cooperation in the early inputs. In this paper, we propose a novel decoupled interaction framework that considers the characteristics of different tasks in bimanual manipulation. The key insight of our framework is to assign an independent model to each arm to enhance the learning of uncoordinated tasks, while introducing a selective interaction module that adaptively learns weights from its own arm to improve the learning of coordinated tasks. Extensive experiments on seven tasks in the RoboTwin dataset demonstrate that: (1) Our framework achieves outstanding performance, with a 23.5% boost over the SOTA method. (2) Our framework is flexible and can be seamlessly integrated into existing methods. (3) Our framework can be effectively extended to multi-agent manipulation tasks, achieving a 28% boost over the integrated control SOTA. (4) The performance boost stems from the decoupled design itself, surpassing the SOTA by 16.5% in success rate with only 1/6 of the model size.
comment: 15 pages, 8 figures
DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
RoboTron-Mani: All-in-One Multimodal Large Model for Robotic Manipulation
Recently, robotics has advanced significantly through the integration of larger models and large-scale datasets. However, challenges remain in applying these models to 3D spatial interactions and managing data collection costs. To address these issues, we propose the multimodal robotic manipulation model RoboTron-Mani and the comprehensive dataset RoboData. RoboTron-Mani, on one hand, enhances 3D perception through camera parameters and occupancy supervision. On the other hand, it further incorporates Modality-Isolation-Mask and multimodal decoder blocks based on OpenFlamingo, improving modality fusion and fine-grained perception. RoboData integrats several publicly-available datasets, achieving the first fusion of multi-view images, camera parameters, depth maps, actions, and space alignment, which facilitates comprehensive learning from diverse robotic datasets and offers one complete evaluation system. Trained on RoboData, RoboTron-Mani is the first generalist policy that surpasses expert models, enabling simultaneous evaluation of all tasks across multiple datasets, rather than being limited to specific data or task selections. Specifically, RoboTron-Mani boosts manipulation performance by increasing the average sequence length on CALVIN from 1.7 to 3.5, enabling cross-embodiment generalization, and achieving state-of-the-art results on both simulated and real-world datasets.
Adv-BMT: Bidirectional Motion Transformer for Safety-Critical Traffic Scenario Generation
Scenario-based testing is essential for validating the performance of autonomous driving (AD) systems. However, such testing is limited by the scarcity of long-tailed, safety-critical scenarios in existing datasets collected in the real world. To tackle the data issue, we propose the Adv-BMT framework, which augments real-world scenarios with diverse and realistic adversarial traffic interactions. The core component of Adv-BMT is a bidirectional motion transformer (BMT) model to perform inverse traffic motion predictions, which takes agent information in the last time step of the scenario as input, and reconstructs the traffic in the inverse of chronological order until the initial time step. The Adv-BMT framework is a two-staged pipeline: it first conducts adversarial initializations and then inverse motion predictions. Different from previous work, we do not need any collision data for pretraining, and are able to generate realistic and diverse collision interactions. Our experimental results validate the quality of generated collision scenarios by Adv-BMT: training in our augmented dataset would reduce episode collision rates by 20%. Demo and code are available at: https://metadriverse.github.io/adv-bmt/.
MetAdv: A Unified and Interactive Adversarial Testing Platform for Autonomous Driving ACM MM 2025
Evaluating and ensuring the adversarial robustness of autonomous driving (AD) systems is a critical and unresolved challenge. This paper introduces MetAdv, a novel adversarial testing platform that enables realistic, dynamic, and interactive evaluation by tightly integrating virtual simulation with physical vehicle feedback. At its core, MetAdv establishes a hybrid virtual-physical sandbox, within which we design a three-layer closed-loop testing environment with dynamic adversarial test evolution. This architecture facilitates end-to-end adversarial evaluation, ranging from high-level unified adversarial generation, through mid-level simulation-based interaction, to low-level execution on physical vehicles. Additionally, MetAdv supports a broad spectrum of AD tasks, algorithmic paradigms (e.g., modular deep learning pipelines, end-to-end learning, vision-language models). It supports flexible 3D vehicle modeling and seamless transitions between simulated and physical environments, with built-in compatibility for commercial platforms such as Apollo and Tesla. A key feature of MetAdv is its human-in-the-loop capability: besides flexible environmental configuration for more customized evaluation, it enables real-time capture of physiological signals and behavioral feedback from drivers, offering new insights into human-machine trust under adversarial conditions. We believe MetAdv can offer a scalable and unified framework for adversarial assessment, paving the way for safer AD.
comment: ACM MM 2025 Most Popular Demo Award
ROADWork: A Dataset and Benchmark for Learning to Recognize, Observe, Analyze and Drive Through Work Zones ICCV 2025
Perceiving and autonomously navigating through work zones is a challenging and underexplored problem. Open datasets for this long-tailed scenario are scarce. We propose the ROADWork dataset to learn to recognize, observe, analyze, and drive through work zones. State-of-the-art foundation models fail when applied to work zones. Fine-tuning models on our dataset significantly improves perception and navigation in work zones. With ROADWork dataset, we discover new work zone images with higher precision (+32.5%) at a much higher rate (12.8$\times$) around the world. Open-vocabulary methods fail too, whereas fine-tuned detectors improve performance (+32.2 AP). Vision-Language Models (VLMs) struggle to describe work zones, but fine-tuning substantially improves performance (+36.7 SPICE). Beyond fine-tuning, we show the value of simple techniques. Video label propagation provides additional gains (+2.6 AP) for instance segmentation. While reading work zone signs, composing a detector and text spotter via crop-scaling improves performance +14.2% 1-NED). Composing work zone detections to provide context further reduces hallucinations (+3.9 SPICE) in VLMs. We predict navigational goals and compute drivable paths from work zone videos. Incorporating road work semantics ensures 53.6% goals have angular error (AE) < 0.5 (+9.9 %) and 75.3% pathways have AE < 0.5 (+8.1 %).
comment: ICCV 2025 Accepted Paper
Human-Exoskeleton Kinematic Calibration to Improve Hand Tracking for Dexterous Teleoperation
Hand exoskeletons are critical tools for dexterous teleoperation and immersive manipulation interfaces, but achieving accurate hand tracking remains a challenge due to user-specific anatomical variability and donning inconsistencies. These issues lead to kinematic misalignments that degrade tracking performance and limit applicability in precision tasks. We propose a subject-specific calibration framework for exoskeleton-based hand tracking that estimates virtual link parameters through residual-weighted optimization. A data-driven approach is introduced to empirically tune cost function weights using motion capture ground truth, enabling accurate and consistent calibration across users. Implemented on the Maestro hand exoskeleton with seven healthy participants, the method achieved substantial reductions in joint and fingertip tracking errors across diverse hand geometries. Qualitative visualizations using a Unity-based virtual hand further demonstrate improved motion fidelity. The proposed framework generalizes to exoskeletons with closed-loop kinematics and minimal sensing, laying the foundation for high-fidelity teleoperation and robot learning applications.
comment: 8 pages, 10 figures, 1 supplementary video, submitted to RA-L
Enhancing Fatigue Detection through Heterogeneous Multi-Source Data Integration and Cross-Domain Modality Imputation
Fatigue detection for human operators plays a key role in safety critical applications such as aviation, mining, and long haul transport. While numerous studies have demonstrated the effectiveness of high fidelity sensors in controlled laboratory environments, their performance often degrades when ported to real world settings due to noise, lighting conditions, and field of view constraints, thereby limiting their practicality. This paper formalizes a deployment oriented setting for real world fatigue detection, where high quality sensors are often unavailable in practical applications. To address this challenge, we propose leveraging knowledge from heterogeneous source domains, including high fidelity sensors that are difficult to deploy in the field but commonly used in controlled environments, to assist fatigue detection in the real world target domain. Building on this idea, we design a heterogeneous and multiple source fatigue detection framework that adaptively utilizes the available modalities in the target domain while exploiting diverse configurations in the source domains through alignment across domains and modality imputation. Our experiments, conducted using a field deployed sensor setup and two publicly available human fatigue datasets, demonstrate the practicality, robustness, and improved generalization of our approach across subjects and domains. The proposed method achieves consistent gains over strong baselines in sensor constrained scenarios.
comment: 4figures,14pages
NaviTrace: Evaluating Embodied Navigation of Vision-Language Models
Vision-language models demonstrate unprecedented performance and generalization across a wide range of tasks and scenarios. Integrating these foundation models into robotic navigation systems opens pathways toward building general-purpose robots. Yet, evaluating these models' navigation capabilities remains constrained by costly real-world trials, overly simplified simulations, and limited benchmarks. We introduce NaviTrace, a high-quality Visual Question Answering benchmark where a model receives an instruction and embodiment type (human, legged robot, wheeled robot, bicycle) and must output a 2D navigation trace in image space. Across 1000 scenarios and more than 3000 expert traces, we systematically evaluate eight state-of-the-art VLMs using a newly introduced semantic-aware trace score. This metric combines Dynamic Time Warping distance, goal endpoint error, and embodiment-conditioned penalties derived from per-pixel semantics and correlates with human preferences. Our evaluation reveals consistent gap to human performance caused by poor spatial grounding and goal localization. NaviTrace establishes a scalable and reproducible benchmark for real-world robotic navigation. The benchmark and leaderboard can be found at https://leggedrobotics.github.io/navitrace_webpage/.
comment: 9 pages, 6 figures, under review at IEEE conference
Deep Learning Warm Starts for Trajectory Optimization on the International Space Station
Trajectory optimization is a cornerstone of modern robot autonomy, enabling systems to compute trajectories and controls in real-time while respecting safety and physical constraints. However, it has seen limited usage in spaceflight applications due to its heavy computational demands that exceed the capability of most flight computers. In this work, we provide results on the first in-space demonstration of using machine learning-based warm starts for accelerating trajectory optimization for the Astrobee free-flying robot onboard the International Space Station (ISS). We formulate a data-driven optimal control approach that trains a neural network to learn the structure of the trajectory generation problem being solved using sequential convex programming (SCP). Onboard, this trained neural network predicts solutions for the trajectory generation problem and relies on using the SCP solver to enforce safety constraints for the system. Our trained network reduces the number of solver iterations required for convergence in cases including rotational dynamics by 60% and in cases with obstacles drawn from the training distribution of the warm start model by 50%. This work represents a significant milestone in the use of learning-based control for spaceflight applications and a stepping stone for future advances in the use of machine learning for autonomous guidance, navigation, & control.
comment: Accepted to 2025 International Conference on Space Robotics (iSpaRo). Presented at RSS 2025 Workshop on Space Robotics
Generalized Nash Equilibrium Solutions in Dynamic Games With Shared Constraints
In dynamic games with shared constraints, Generalized Nash Equilibria (GNE) are often computed using the normalized solution concept, which assumes identical Lagrange multipliers for shared constraints across all players. While widely used, this approach excludes other potentially valuable GNE. This paper presents a novel method based on the Mixed Complementarity Problem (MCP) formulation to compute non-normalized GNE, expanding the solution space. We also propose a systematic approach for selecting the optimal GNE based on predefined criteria, enhancing practical flexibility. Numerical examples illustrate the methods effectiveness, offering an alternative to traditional normalized solutions.
Multiagent Systems
When One Modality Sabotages the Others: A Diagnostic Lens on Multimodal Reasoning NeurIPS 2025
Despite rapid growth in multimodal large language models (MLLMs), their reasoning traces remain opaque: it is often unclear which modality drives a prediction, how conflicts are resolved, or when one stream dominates. In this paper, we introduce modality sabotage, a diagnostic failure mode in which a high-confidence unimodal error overrides other evidence and misleads the fused result. To analyze such dynamics, we propose a lightweight, model-agnostic evaluation layer that treats each modality as an agent, producing candidate labels and a brief self-assessment used for auditing. A simple fusion mechanism aggregates these outputs, exposing contributors (modalities supporting correct outcomes) and saboteurs (modalities that mislead). Applying our diagnostic layer in a case study on multimodal emotion recognition benchmarks with foundation models revealed systematic reliability profiles, providing insight into whether failures may arise from dataset artifacts or model limitations. More broadly, our framework offers a diagnostic scaffold for multimodal reasoning, supporting principled auditing of fusion dynamics and informing possible interventions.
comment: Accepted at the Multimodal Algorithmic Reasoning (MAR) Workshop, NeurIPS 2025
From Solo to Symphony: Orchestrating Multi-Agent Collaboration with Single-Agent Demos
Training a team of agents from scratch in multi-agent reinforcement learning (MARL) is highly inefficient, much like asking beginners to play a symphony together without first practicing solo. Existing methods, such as offline or transferable MARL, can ease this burden, but they still rely on costly multi-agent data, which often becomes the bottleneck. In contrast, solo experiences are far easier to obtain in many important scenarios, e.g., collaborative coding, household cooperation, and search-and-rescue. To unlock their potential, we propose Solo-to-Collaborative RL (SoCo), a framework that transfers solo knowledge into cooperative learning. SoCo first pretrains a shared solo policy from solo demonstrations, then adapts it for cooperation during multi-agent training through a policy fusion mechanism that combines an MoE-like gating selector and an action editor. Experiments across diverse cooperative tasks show that SoCo significantly boosts the training efficiency and performance of backbone algorithms. These results demonstrate that solo demonstrations provide a scalable and effective complement to multi-agent data, making cooperative learning more practical and broadly applicable.
Modeling Hawkish-Dovish Latent Beliefs in Multi-Agent Debate-Based LLMs for Monetary Policy Decision Classification
Accurately forecasting central bank policy decisions, particularly those of the Federal Open Market Committee(FOMC) has become increasingly important amid heightened economic uncertainty. While prior studies have used monetary policy texts to predict rate changes, most rely on static classification models that overlook the deliberative nature of policymaking. This study proposes a novel framework that structurally imitates the FOMC's collective decision-making process by modeling multiple large language models(LLMs) as interacting agents. Each agent begins with a distinct initial belief and produces a prediction based on both qualitative policy texts and quantitative macroeconomic indicators. Through iterative rounds, agents revise their predictions by observing the outputs of others, simulating deliberation and consensus formation. To enhance interpretability, we introduce a latent variable representing each agent's underlying belief(e.g., hawkish or dovish), and we theoretically demonstrate how this belief mediates the perception of input information and interaction dynamics. Empirical results show that this debate-based approach significantly outperforms standard LLMs-based baselines in prediction accuracy. Furthermore, the explicit modeling of beliefs provides insights into how individual perspectives and social influence shape collective policy forecasts.
comment: PRIMA2025 Accepted
Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning
We study the problem of learning multi-task, multi-agent policies for cooperative, temporal objectives, under centralized training, decentralized execution. In this setting, using automata to represent tasks enables the decomposition of complex tasks into simpler sub-tasks that can be assigned to agents. However, existing approaches remain sample-inefficient and are limited to the single-task case. In this work, we present Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning (ACC-MARL), a framework for learning task-conditioned, decentralized team policies. We identify the main challenges to ACC-MARL's feasibility in practice, propose solutions, and prove the correctness of our approach. We further show that the value functions of learned policies can be used to assign tasks optimally at test time. Experiments show emergent task-aware, multi-step coordination among agents, e.g., pressing a button to unlock a door, holding the door, and short-circuiting tasks.
Optimizing Multi-Lane Intersection Performance in Mixed Autonomy Environments
One of the main challenges in managing traffic at multilane intersections is ensuring smooth coordination between human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). This paper presents a novel traffic signal control framework that combines Graph Attention Networks (GAT) with Soft Actor-Critic (SAC) reinforcement learning to address this challenge. GATs are used to model the dynamic graph- structured nature of traffic flow to capture spatial and temporal dependencies between lanes and signal phases. The proposed SAC is a robust off-policy reinforcement learning algorithm that enables adaptive signal control through entropy-optimized decision making. This design allows the system to coordinate the signal timing and vehicle movement simultaneously with objectives focused on minimizing travel time, enhancing performance, ensuring safety, and improving fairness between HDVs and CAVs. The model is evaluated using a SUMO-based simulation of a four-way intersection and incorporating different traffic densities and CAV penetration rates. The experimental results demonstrate the effectiveness of the GAT-SAC approach by achieving a 24.1% reduction in average delay and up to 29.2% fewer traffic violations compared to traditional methods. Additionally, the fairness ratio between HDVs and CAVs improved to 1.59, indicating more equitable treatment across vehicle types. These findings suggest that the GAT-SAC framework holds significant promise for real-world deployment in mixed-autonomy traffic systems.
Census-Based Population Autonomy For Distributed Robotic Teaming
Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.
comment: 16 pages, 17 figures
Mina: A Multilingual LLM-Powered Legal Assistant Agent for Bangladesh for Empowering Access to Justice
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
When One Modality Sabotages the Others: A Diagnostic Lens on Multimodal Reasoning NeurIPS 2025
Despite rapid growth in multimodal large language models (MLLMs), their reasoning traces remain opaque: it is often unclear which modality drives a prediction, how conflicts are resolved, or when one stream dominates. In this paper, we introduce modality sabotage, a diagnostic failure mode in which a high-confidence unimodal error overrides other evidence and misleads the fused result. To analyze such dynamics, we propose a lightweight, model-agnostic evaluation layer that treats each modality as an agent, producing candidate labels and a brief self-assessment used for auditing. A simple fusion mechanism aggregates these outputs, exposing contributors (modalities supporting correct outcomes) and saboteurs (modalities that mislead). Applying our diagnostic layer in a case study on multimodal emotion recognition benchmarks with foundation models revealed systematic reliability profiles, providing insight into whether failures may arise from dataset artifacts or model limitations. More broadly, our framework offers a diagnostic scaffold for multimodal reasoning, supporting principled auditing of fusion dynamics and informing possible interventions.
comment: Accepted at the Multimodal Algorithmic Reasoning (MAR) Workshop, NeurIPS 2025
From Solo to Symphony: Orchestrating Multi-Agent Collaboration with Single-Agent Demos
Training a team of agents from scratch in multi-agent reinforcement learning (MARL) is highly inefficient, much like asking beginners to play a symphony together without first practicing solo. Existing methods, such as offline or transferable MARL, can ease this burden, but they still rely on costly multi-agent data, which often becomes the bottleneck. In contrast, solo experiences are far easier to obtain in many important scenarios, e.g., collaborative coding, household cooperation, and search-and-rescue. To unlock their potential, we propose Solo-to-Collaborative RL (SoCo), a framework that transfers solo knowledge into cooperative learning. SoCo first pretrains a shared solo policy from solo demonstrations, then adapts it for cooperation during multi-agent training through a policy fusion mechanism that combines an MoE-like gating selector and an action editor. Experiments across diverse cooperative tasks show that SoCo significantly boosts the training efficiency and performance of backbone algorithms. These results demonstrate that solo demonstrations provide a scalable and effective complement to multi-agent data, making cooperative learning more practical and broadly applicable.
Modeling Hawkish-Dovish Latent Beliefs in Multi-Agent Debate-Based LLMs for Monetary Policy Decision Classification
Accurately forecasting central bank policy decisions, particularly those of the Federal Open Market Committee(FOMC) has become increasingly important amid heightened economic uncertainty. While prior studies have used monetary policy texts to predict rate changes, most rely on static classification models that overlook the deliberative nature of policymaking. This study proposes a novel framework that structurally imitates the FOMC's collective decision-making process by modeling multiple large language models(LLMs) as interacting agents. Each agent begins with a distinct initial belief and produces a prediction based on both qualitative policy texts and quantitative macroeconomic indicators. Through iterative rounds, agents revise their predictions by observing the outputs of others, simulating deliberation and consensus formation. To enhance interpretability, we introduce a latent variable representing each agent's underlying belief(e.g., hawkish or dovish), and we theoretically demonstrate how this belief mediates the perception of input information and interaction dynamics. Empirical results show that this debate-based approach significantly outperforms standard LLMs-based baselines in prediction accuracy. Furthermore, the explicit modeling of beliefs provides insights into how individual perspectives and social influence shape collective policy forecasts.
comment: PRIMA2025 Accepted
Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning
We study the problem of learning multi-task, multi-agent policies for cooperative, temporal objectives, under centralized training, decentralized execution. In this setting, using automata to represent tasks enables the decomposition of complex tasks into simpler sub-tasks that can be assigned to agents. However, existing approaches remain sample-inefficient and are limited to the single-task case. In this work, we present Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning (ACC-MARL), a framework for learning task-conditioned, decentralized team policies. We identify the main challenges to ACC-MARL's feasibility in practice, propose solutions, and prove the correctness of our approach. We further show that the value functions of learned policies can be used to assign tasks optimally at test time. Experiments show emergent task-aware, multi-step coordination among agents, e.g., pressing a button to unlock a door, holding the door, and short-circuiting tasks.
Optimizing Multi-Lane Intersection Performance in Mixed Autonomy Environments
One of the main challenges in managing traffic at multilane intersections is ensuring smooth coordination between human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). This paper presents a novel traffic signal control framework that combines Graph Attention Networks (GAT) with Soft Actor-Critic (SAC) reinforcement learning to address this challenge. GATs are used to model the dynamic graph- structured nature of traffic flow to capture spatial and temporal dependencies between lanes and signal phases. The proposed SAC is a robust off-policy reinforcement learning algorithm that enables adaptive signal control through entropy-optimized decision making. This design allows the system to coordinate the signal timing and vehicle movement simultaneously with objectives focused on minimizing travel time, enhancing performance, ensuring safety, and improving fairness between HDVs and CAVs. The model is evaluated using a SUMO-based simulation of a four-way intersection and incorporating different traffic densities and CAV penetration rates. The experimental results demonstrate the effectiveness of the GAT-SAC approach by achieving a 24.1% reduction in average delay and up to 29.2% fewer traffic violations compared to traditional methods. Additionally, the fairness ratio between HDVs and CAVs improved to 1.59, indicating more equitable treatment across vehicle types. These findings suggest that the GAT-SAC framework holds significant promise for real-world deployment in mixed-autonomy traffic systems.
Census-Based Population Autonomy For Distributed Robotic Teaming
Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.
comment: 16 pages, 17 figures
CPU-Based Layout Design for Picker-to-Parts Pallet Warehouses
Picker-to-parts pallet warehouses often face inefficiencies due to conventional layouts causing excessive travel distances and high labor requirements. This study introduces a novel layout design inspired by CPU architecture, partitioning warehouse space into specialized zones, namely Performance (P), Efficiency (E), and Shared (S). Discrete-event simulation is used to evaluate this design against traditional rectangular (random and ABC storage) and Flying-V layouts. Results demonstrate significant improvements in throughput time and reduced labor requirements, highlighting the potential for CPU-based layouts in optimizing warehouse operations.
comment: 15 pages,10 figures, conference
Strategic Communication and Language Bias in Multi-Agent LLM Coordination
Large Language Model (LLM)-based agents are increasingly deployed in multi-agent scenarios where coordination is crucial but not always assured. Research shows that the way strategic scenarios are framed linguistically can affect cooperation. This paper explores whether allowing agents to communicate amplifies these language-driven effects. Leveraging FAIRGAME, we simulate one-shot and repeated games across different languages and models, both with and without communication. Our experiments, conducted with two advanced LLMs-GPT-4o and Llama 4 Maverick-reveal that communication significantly influences agent behavior, though its impact varies by language, personality, and game structure. These findings underscore the dual role of communication in fostering coordination and reinforcing biases.
Osprey: A Scalable Framework for the Orchestration of Agentic Systems
Coordinating workflows across complex systems remains a central challenge in safety-critical environments such as scientific facilities. Language-model-driven agents offer a natural interface for these tasks, but existing approaches often lack scalability, reliability, and human oversight. We introduce the Osprey Framework, a domain-agnostic, production-ready architecture for scalable agentic systems that integrate conversational context with robust tool orchestration across safety-critical domains. Our framework provides: (i) dynamic capability classification to select only relevant tools; (ii) plan-first orchestration with explicit dependencies and optional human approval; (iii) context-aware task extraction that combines dialogue history with external memory and domain resources; and (iv) production-ready execution with checkpointing, artifact management, and modular deployment. We demonstrate its versatility through two case studies: a deployment at the Advanced Light Source particle accelerator and a tutorial-style wind farm monitoring example. These results establish Osprey as a reliable and transparent framework for agentic systems across diverse high-stakes domains.
I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard's, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
When Is Diversity Rewarded in Cooperative Multi-Agent Learning?
The success of teams in robotics, nature, and society often depends on the division of labor among diverse specialists; however, a principled explanation for when such diversity surpasses a homogeneous team is still missing. Focusing on multi-agent task allocation problems, we study this question from the perspective of reward design: what kinds of objectives are best suited for heterogeneous teams? We first consider an instantaneous, non-spatial setting where the global reward is built by two generalized aggregation operators: an inner operator that maps the $N$ agents' effort allocations on individual tasks to a task score, and an outer operator that merges the $M$ task scores into the global team reward. We prove that the curvature of these operators determines whether heterogeneity can increase reward, and that for broad reward families this collapses to a simple convexity test. Next, we ask what incentivizes heterogeneity to emerge when embodied, time-extended agents must learn an effort allocation policy. To study heterogeneity in such settings, we use multi-agent reinforcement learning (MARL) as our computational paradigm, and introduce Heterogeneity Gain Parameter Search (HetGPS), a gradient-based algorithm that optimizes the parameter space of underspecified MARL environments to find scenarios where heterogeneity is advantageous. Across different environments, we show that HetGPS rediscovers the reward regimes predicted by our theory to maximize the advantage of heterogeneity, both validating HetGPS and connecting our theoretical insights to reward design in MARL. Together, these results help us understand when behavioral diversity delivers a measurable benefit.
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Co-Evolving Complexity: An Adversarial Framework for Automatic MARL Curricula NeurIPS 2025
The advancement of general-purpose intelligent agents is intrinsically linked to the environments in which they are trained. While scaling models and datasets has yielded remarkable capabilities, scaling the complexity, diversity, and interactivity of environments remains a crucial bottleneck. Hand-crafted environments are finite and often contain implicit biases, limiting the potential for agents to develop truly generalizable and robust skills. In this work, we propose a paradigm for generating a boundless and adaptive curriculum of challenges by framing the environment generation process as an adversarial game. We introduce a system where a team of cooperative multi-agent defenders learns to survive against a procedurally generative attacker. The attacker agent learns to produce increasingly challenging configurations of enemy units, dynamically creating novel worlds tailored to exploit the defenders' current weaknesses. Concurrently, the defender team learns cooperative strategies to overcome these generated threats. This co-evolutionary dynamic creates a self-scaling environment where complexity arises organically from the adversarial interaction, providing an effectively infinite stream of novel and relevant training data. We demonstrate that with minimal training, this approach leads to the emergence of complex, intelligent behaviors, such as flanking and shielding by the attacker, and focus-fire and spreading by the defenders. Our findings suggest that adversarial co-evolution is a powerful mechanism for automatically scaling environmental complexity, driving agents towards greater robustness and strategic depth.
comment: Published in the proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA)
Generative World Models of Tasks: LLM-Driven Hierarchical Scaffolding for Embodied Agents NeurIPS 2025
Recent advances in agent development have focused on scaling model size and raw interaction data, mirroring successes in large language models. However, for complex, long-horizon multi-agent tasks such as robotic soccer, this end-to-end approach often fails due to intractable exploration spaces and sparse rewards. We propose that an effective world model for decision-making must model the world's physics and also its task semantics. A systematic review of 2024 research in low-resource multi-agent soccer reveals a clear trend towards integrating symbolic and hierarchical methods, such as Hierarchical Task Networks (HTNs) and Bayesian Strategy Networks (BSNs), with multi-agent reinforcement learning (MARL). These methods decompose complex goals into manageable subgoals, creating an intrinsic curriculum that shapes agent learning. We formalize this trend into a framework for Hierarchical Task Environments (HTEs), which are essential for bridging the gap between simple, reactive behaviors and sophisticated, strategic team play. Our framework incorporates the use of Large Language Models (LLMs) as generative world models of tasks, capable of dynamically generating this scaffolding. We argue that HTEs provide a mechanism to guide exploration, generate meaningful learning signals, and train agents to internalize hierarchical structure, enabling the development of more capable and general-purpose agents with greater sample efficiency than purely end-to-end approaches.
comment: In the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World Models for Decision Making (EWM)
H-NeiFi: Non-Invasive and Consensus-Efficient Multi-Agent Opinion Guidance
The openness of social media enables the free exchange of opinions, but it also presents challenges in guiding opinion evolution towards global consensus. Existing methods often directly modify user views or enforce cross-group connections. These intrusive interventions undermine user autonomy, provoke psychological resistance, and reduce the efficiency of global consensus. Additionally, due to the lack of a long-term perspective, promoting local consensus often exacerbates divisions at the macro level. To address these issues, we propose the hierarchical, non-intrusive opinion guidance framework, H-NeiFi. It first establishes a two-layer dynamic model based on social roles, considering the behavioral characteristics of both experts and non-experts. Additionally, we introduce a non-intrusive neighbor filtering method that adaptively controls user communication channels. Using multi-agent reinforcement learning (MARL), we optimize information propagation paths through a long-term reward function, avoiding direct interference with user interactions. Experiments show that H-NeiFi increases consensus speed by 22.0% to 30.7% and maintains global convergence even in the absence of experts. This approach enables natural and efficient consensus guidance by protecting user interaction autonomy, offering a new paradigm for social network governance.
CPU-Based Layout Design for Picker-to-Parts Pallet Warehouses
Picker-to-parts pallet warehouses often face inefficiencies due to conventional layouts causing excessive travel distances and high labor requirements. This study introduces a novel layout design inspired by CPU architecture, partitioning warehouse space into specialized zones, namely Performance (P), Efficiency (E), and Shared (S). Discrete-event simulation is used to evaluate this design against traditional rectangular (random and ABC storage) and Flying-V layouts. Results demonstrate significant improvements in throughput time and reduced labor requirements, highlighting the potential for CPU-based layouts in optimizing warehouse operations.
comment: 15 pages,10 figures, conference
Strategic Communication and Language Bias in Multi-Agent LLM Coordination
Large Language Model (LLM)-based agents are increasingly deployed in multi-agent scenarios where coordination is crucial but not always assured. Research shows that the way strategic scenarios are framed linguistically can affect cooperation. This paper explores whether allowing agents to communicate amplifies these language-driven effects. Leveraging FAIRGAME, we simulate one-shot and repeated games across different languages and models, both with and without communication. Our experiments, conducted with two advanced LLMs-GPT-4o and Llama 4 Maverick-reveal that communication significantly influences agent behavior, though its impact varies by language, personality, and game structure. These findings underscore the dual role of communication in fostering coordination and reinforcing biases.
Osprey: A Scalable Framework for the Orchestration of Agentic Systems
Coordinating workflows across complex systems remains a central challenge in safety-critical environments such as scientific facilities. Language-model-driven agents offer a natural interface for these tasks, but existing approaches often lack scalability, reliability, and human oversight. We introduce the Osprey Framework, a domain-agnostic, production-ready architecture for scalable agentic systems that integrate conversational context with robust tool orchestration across safety-critical domains. Our framework provides: (i) dynamic capability classification to select only relevant tools; (ii) plan-first orchestration with explicit dependencies and optional human approval; (iii) context-aware task extraction that combines dialogue history with external memory and domain resources; and (iv) production-ready execution with checkpointing, artifact management, and modular deployment. We demonstrate its versatility through two case studies: a deployment at the Advanced Light Source particle accelerator and a tutorial-style wind farm monitoring example. These results establish Osprey as a reliable and transparent framework for agentic systems across diverse high-stakes domains.
I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard's, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
When Is Diversity Rewarded in Cooperative Multi-Agent Learning?
The success of teams in robotics, nature, and society often depends on the division of labor among diverse specialists; however, a principled explanation for when such diversity surpasses a homogeneous team is still missing. Focusing on multi-agent task allocation problems, we study this question from the perspective of reward design: what kinds of objectives are best suited for heterogeneous teams? We first consider an instantaneous, non-spatial setting where the global reward is built by two generalized aggregation operators: an inner operator that maps the $N$ agents' effort allocations on individual tasks to a task score, and an outer operator that merges the $M$ task scores into the global team reward. We prove that the curvature of these operators determines whether heterogeneity can increase reward, and that for broad reward families this collapses to a simple convexity test. Next, we ask what incentivizes heterogeneity to emerge when embodied, time-extended agents must learn an effort allocation policy. To study heterogeneity in such settings, we use multi-agent reinforcement learning (MARL) as our computational paradigm, and introduce Heterogeneity Gain Parameter Search (HetGPS), a gradient-based algorithm that optimizes the parameter space of underspecified MARL environments to find scenarios where heterogeneity is advantageous. Across different environments, we show that HetGPS rediscovers the reward regimes predicted by our theory to maximize the advantage of heterogeneity, both validating HetGPS and connecting our theoretical insights to reward design in MARL. Together, these results help us understand when behavioral diversity delivers a measurable benefit.
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Co-Evolving Complexity: An Adversarial Framework for Automatic MARL Curricula NeurIPS 2025
The advancement of general-purpose intelligent agents is intrinsically linked to the environments in which they are trained. While scaling models and datasets has yielded remarkable capabilities, scaling the complexity, diversity, and interactivity of environments remains a crucial bottleneck. Hand-crafted environments are finite and often contain implicit biases, limiting the potential for agents to develop truly generalizable and robust skills. In this work, we propose a paradigm for generating a boundless and adaptive curriculum of challenges by framing the environment generation process as an adversarial game. We introduce a system where a team of cooperative multi-agent defenders learns to survive against a procedurally generative attacker. The attacker agent learns to produce increasingly challenging configurations of enemy units, dynamically creating novel worlds tailored to exploit the defenders' current weaknesses. Concurrently, the defender team learns cooperative strategies to overcome these generated threats. This co-evolutionary dynamic creates a self-scaling environment where complexity arises organically from the adversarial interaction, providing an effectively infinite stream of novel and relevant training data. We demonstrate that with minimal training, this approach leads to the emergence of complex, intelligent behaviors, such as flanking and shielding by the attacker, and focus-fire and spreading by the defenders. Our findings suggest that adversarial co-evolution is a powerful mechanism for automatically scaling environmental complexity, driving agents towards greater robustness and strategic depth.
comment: Published in the proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA)
Generative World Models of Tasks: LLM-Driven Hierarchical Scaffolding for Embodied Agents NeurIPS 2025
Recent advances in agent development have focused on scaling model size and raw interaction data, mirroring successes in large language models. However, for complex, long-horizon multi-agent tasks such as robotic soccer, this end-to-end approach often fails due to intractable exploration spaces and sparse rewards. We propose that an effective world model for decision-making must model the world's physics and also its task semantics. A systematic review of 2024 research in low-resource multi-agent soccer reveals a clear trend towards integrating symbolic and hierarchical methods, such as Hierarchical Task Networks (HTNs) and Bayesian Strategy Networks (BSNs), with multi-agent reinforcement learning (MARL). These methods decompose complex goals into manageable subgoals, creating an intrinsic curriculum that shapes agent learning. We formalize this trend into a framework for Hierarchical Task Environments (HTEs), which are essential for bridging the gap between simple, reactive behaviors and sophisticated, strategic team play. Our framework incorporates the use of Large Language Models (LLMs) as generative world models of tasks, capable of dynamically generating this scaffolding. We argue that HTEs provide a mechanism to guide exploration, generate meaningful learning signals, and train agents to internalize hierarchical structure, enabling the development of more capable and general-purpose agents with greater sample efficiency than purely end-to-end approaches.
comment: In the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World Models for Decision Making (EWM)
H-NeiFi: Non-Invasive and Consensus-Efficient Multi-Agent Opinion Guidance
The openness of social media enables the free exchange of opinions, but it also presents challenges in guiding opinion evolution towards global consensus. Existing methods often directly modify user views or enforce cross-group connections. These intrusive interventions undermine user autonomy, provoke psychological resistance, and reduce the efficiency of global consensus. Additionally, due to the lack of a long-term perspective, promoting local consensus often exacerbates divisions at the macro level. To address these issues, we propose the hierarchical, non-intrusive opinion guidance framework, H-NeiFi. It first establishes a two-layer dynamic model based on social roles, considering the behavioral characteristics of both experts and non-experts. Additionally, we introduce a non-intrusive neighbor filtering method that adaptively controls user communication channels. Using multi-agent reinforcement learning (MARL), we optimize information propagation paths through a long-term reward function, avoiding direct interference with user interactions. Experiments show that H-NeiFi increases consensus speed by 22.0% to 30.7% and maintains global convergence even in the absence of experts. This approach enables natural and efficient consensus guidance by protecting user interaction autonomy, offering a new paradigm for social network governance.
Systems and Control (CS)
LLM-Supported Formal Knowledge Representation for Enhancing Control Engineering Content with an Interactive Semantic Layer
The rapid growth of research output in control engineering calls for new approaches to structure and formalize domain knowledge. This paper briefly describes an LLM-supported method for semi-automated generation of formal knowledge representations that combine human readability with machine interpretability and increased expressiveness. Based on the Imperative Representation of Knowledge (PyIRK) framework, we demonstrate how language models can assist in transforming natural-language descriptions and mathematical definitions (available as LaTeX source code) into a formalized knowledge graph. As a first application we present the generation of an ``interactive semantic layer'' to enhance the source documents in order to facilitate knowledge transfer. From our perspective this contributes to the vision of easily accessible, collaborative, and verifiable knowledge bases for the control engineering domain.
comment: 4 pages, 2 figures
Adjustable Low-Cost Highly Sensitive Microwave Oscillator Sensor for Liquid Level Detection
This paper explores the implementation of a low-cost high-precision microwave oscillator sensor with an adjustable input resistance to enhance its limit of detection (LoD). To achieve this, we introduce a \textit{Z$_{2}$} branch in the input network, comprising a transmission line, a capacitor (\textit{C$_{B}$}) and a resistor (\textit{R$_{V}$}). The sensor is tested with eight different liquids with different dielectric constants, including water, IV fluid, milk, ethanol, acetone, petrol, olive oil, and Vaseline. By fine-tuning the \textit{Z$_{2}$} branch, a clear relationship is found between $\varepsilon_{r}$ of materials and R$_{V}$.Our experimental results demonstrate outstanding characteristics, including remarkable linearity (nonlinearity < 2.44\%), high accuracy with an average sensitivity of 21 kHz/$\mu$m, and an excellent limit of detection (LoD < 0.05 mm). The sensor also exhibits good stability across a range of liquid temperatures and shows robust and repeatable behavior. Considering the strong absorption of microwave energy in liquids with high dielectric constants, this oscillator sensor is a superior choice over capacitive sensors for such applications. We validate the performance of the oscillator sensor using water as a representative liquid. Additionally, we substantiate the sensor's improvement through both experimental results and theoretical analysis. Its advantages, including affordability, compatibility with CMOS and MEMS technologies, and ease of fabrication, make it an excellent choice for small-scale liquid detection applications.
An unscented Kalman filter method for real time input-parameter-state estimation
The input-parameter-state estimation capabilities of a novel unscented Kalman filter is examined herein on both linear and nonlinear systems. The unknown input is estimated in two stages within each time step. Firstly, the predicted dynamic states and the system parameters provide an estimation of the input. Secondly, the corrected with measurements states and parameters provide a final estimation. Importantly, it is demonstrated using the perturbation analysis that, a system with at least a zero or a non-zero known input can potentially be uniquely identified. This output-only methodology allows for a better understanding of the system compared to classical output-only parameter identification strategies, given that all the dynamic states, the parameters, and the input are estimated jointly and in real-time.
comment: author-accepted manuscript (AAM) published in Mechanical Systems and Signal Processing
Policy Gradient Methods for Information-Theoretic Opacity in Markov Decision Processes
Opacity, or non-interference, is a property ensuring that an external observer cannot infer confidential information (the "secret") from system observations. We introduce an information-theoretic measure of opacity, which quantifies information leakage using the conditional entropy of the secret given the observer's partial observations in a system modeled as a Markov decision process (MDP). Our objective is to find a control policy that maximizes opacity while satisfying task performance constraints, assuming that an informed observer is aware of the control policy and system dynamics. Specifically, we consider a class of opacity called state-based opacity, where the secret is a propositional formula about the past or current state of the system, and a special case of state-based opacity called language-based opacity, where the secret is defined by a temporal logic formula (LTL) or a regular language recognized by a finite-state automaton. First, we prove that finite-memory policies can outperform Markov policies in optimizing information-theoretic opacity. Second, we develop an algorithm to compute a maximally opaque Markov policy using a primal-dual gradient-based algorithm, and prove its convergence. Since opacity cannot be expressed as a cumulative cost, we develop a novel method to compute the gradient of conditional entropy with respect to policy parameters using observable operators in hidden Markov models. The experimental results validate the effectiveness and optimality of our proposed methods.
Feedback dynamics in Politics: The interplay between sentiment and engagement
We investigate feedback mechanisms in political communication by testing whether politicians adapt the sentiment of their messages in response to public engagement. Using over 1.5 million tweets from Members of Parliament in the United Kingdom, Spain, and Greece during 2021, we identify sentiment dynamics through a simple yet interpretable linear model. The analysis reveals a closed-loop behavior: engagement with positive and negative messages influences the sentiment of subsequent posts. Moreover, the learned coefficients highlight systematic differences across political roles: opposition members are more reactive to negative engagement, whereas government officials respond more to positive signals. These results provide a quantitative, control-oriented view of behavioral adaptation in online politics, showing how feedback principles can explain the self-reinforcing dynamics that emerge in social media discourse.
comment: 6 pages, 7 figures
Stochastic Redistribution of Indistinguishable Items in Shared Habitation: A Multi-Agent Simulation Framework
This paper presents a discrete-event stochastic model for the redistribution of indistinguishable personal items, exemplified by socks, among multiple cohabitants sharing a communal laundry system. Drawing on concepts from ecological population dynamics, diffusion processes, and stochastic exchange theory, the model captures the probabilistic mechanisms underlying item mixing, recovery, and loss. Each cohabitant is represented as an autonomous agent whose belongings interact through iterative cycles of collective washing, sorting, and partial correction. The system's evolution is characterized by random mixing events, selective recollection, and attrition over time. Implemented using the SimPy discrete-event simulation framework, the model demonstrates that even minimal exchange probabilities can generate emergent asymmetries, quasi-equilibrium distributions, and long-term disorder. The findings illustrate how stochastic processes inherent to shared domestic systems can produce persistent imbalances, offering a quantitative perspective on an everyday social phenomenon.
Natural-gas storage modelling by deep reinforcement learning
We introduce GasRL, a simulator that couples a calibrated representation of the natural gas market with a model of storage-operator policies trained with deep reinforcement learning (RL). We use it to analyse how optimal stockpile management affects equilibrium prices and the dynamics of demand and supply. We test various RL algorithms and find that Soft Actor Critic (SAC) exhibits superior performance in the GasRL environment: multiple objectives of storage operators - including profitability, robust market clearing and price stabilisation - are successfully achieved. Moreover, the equilibrium price dynamics induced by SAC-derived optimal policies have characteristics, such as volatility and seasonality, that closely match those of real-world prices. Remarkably, this adherence to the historical distribution of prices is obtained without explicitly calibrating the model to price data. We show how the simulator can be used to assess the effects of EU-mandated minimum storage thresholds. We find that such thresholds have a positive effect on market resilience against unanticipated shifts in the distribution of supply shocks. For example, with unusually large shocks, market disruptions are averted more often if a threshold is in place.
comment: 8 pages, 5 figures, published on
ISAC Empowered Air-Sea Collaborative System: A UAV-USV Joint Inspection Framework
In this paper, we construct an air-sea collaborative system framework based on the Integrated Sensing and Communication (ISAC) techniques, where the Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vehicle (USV) jointly inspect targets of interest while keeping communication with each other simultaneously. First, we demonstrate the unique challenges encountered in this collaborative system, i.e., the coupling and heterogeneity of the UAV/USV's trajectories. Then, we formulate a total energy consumption minimization problem to jointly optimize the trajectories, flying and hovering times, target scheduling, and beamformers under the constraints of water currents, collision avoidance, and Sensing and Communication (S\&C) requirements. To address the strong coupling of the variables, we divide the original problem into two subproblems, namely, the hover point selection and the joint trajectory planning and beamforming design. In the first subproblem, we propose a three-step hierarchical method including: (1) a virtual base station coverage (VBSC) and clustering algorithm to obtain the target scheduling and rough position of hover points; (2) a Bi-traveling salesman problem with neighborhood (Bi-TSPN)-based algorithm to determine the visiting order sequence of the hover points; (3) a hover point refinement and time allocation algorithm to further optimize the time allocation. In the latter subproblem, we complete the remaining trajectory planning and beamforming design in each flying and hovering stage by developing a semi-definite relaxation (SDR) and successive convex approximation (SCA) method. Finally, we conduct a series of simulations to demonstrate the superiority of the proposed scheme over existing sequential access and leader-follower strategies.
comment: 13 pages, 15 figures
Analytical Framework for Assessing Effective Regional Inertia
This paper proposes a novel formulation of effective regional inertia that explicitly accounts for both system topology and the spatial distribution of inertia. Unlike traditional approaches that model a region as an aggregated machine with an equivalent inertia, the proposed metric provides a topology-aware representation. The methodology builds on an analytical framework that extends classical slow coherency theory to address network partitioning and regional frequency stability. Based on these partitions, we develop a systematic procedure to evaluate the effective inertia of each region, enabling a more accurate interpretation of local inertial contributions, including those from virtual inertia provided by inverter-based resources (IBRs). Case studies on the IEEE 39-bus and 68-bus systems demonstrate that the integration of inertial devices does not uniformly improve system frequency response, underscoring the importance of the proposed metric for effective regional inertia assessment.
Reliability entails input-selective contraction and regulation in excitable networks
The animal nervous system offers a model of computation combining digital reliability and analog efficiency. Understanding how this sweet spot can be realized is a core question of neuromorphic engineering. To this aim, this paper explores the connection between reliability, contraction, and regulation in excitable systems. Using the FitzHugh-Nagumo model of excitable behavior as a proof-of-concept, it is shown that neuronal reliability can be formalized as an average trajectory contraction property induced by the input. In excitable networks, reliability is shown to enable regulation of the network to a robustly stable steady state. It is thus posited that regulation provides a notion of dynamical analog computation, and that stability makes such a computation model robust.
Many-vs-Many Missile Guidance via Virtual Targets
This paper presents a novel approach to many-vs-many missile guidance using virtual targets (VTs) generated by a Normalizing Flows-based trajectory predictor. Rather than assigning n interceptors directly to m physical targets through conventional weapon target assignment algorithms, we propose a centralized strategy that constructs n VT trajectories representing probabilistic predictions of maneuvering target behavior. Each interceptor is guided toward its assigned VT using Zero-Effort-Miss guidance during midcourse flight, transitioning to Proportional Navigation guidance for terminal interception. This approach treats many-vs-many engagements as many-vs-distribution scenarios, exploiting numerical superiority (n > m) by distributing interceptors across diverse trajectory hypotheses rather than pursuing identical deterministic predictions. Monte Carlo simulations across various target-interceptor configurations (1-6 targets, 1-8 interceptors) demonstrate that the VT method matches or exceeds baseline straight-line prediction performance by 0-4.1% when n = m, with improvements increasing to 5.8-14.4% when n > m. The results confirm that probabilistic VTs enable effective exploitation of numerical superiority, significantly increasing interception probability in many-vs-many scenarios.
comment: will be submitted to Journal of Guidance, Control, and Dynamics as Technical Note
Decentralized Approach to Detect and Eliminate Flapping Phenomena due to Flexible Resources
This paper presents a decentralized methodology for detecting and mitigating flapping phenomena in power systems, primarily caused by the operation of discrete devices. The proposed approach applies moving-window autocorrelation to local measurements, enabling each device to autonomously identify sustained oscillations. Upon detection, a probabilistic, device-specific mitigation strategy is executed. Flexible demand resources (DFRs), under-load tap changers (ULTCs), and automatic voltage regulators (AVRs) are utilised to illustrate the performance of the proposed approach to both discrete and continuous-operation devices. Results show that the proposed method is robust and properly distinguishes damped oscillations from persistent flapping, allowing devices to independently recognize problematic operating scenarios and implement corrective actions accordingly.
Before AI Takes Over: Rethinking Nonlinear Signal Processing in Communications
There is an urgent reflection on traditional nonlinear signal processing methods in communications before Artificial Intelligence (AI) dominates the field. It implies a need to reassess or reinterpret established theories and tools, highlighting the tension between data-driven and model-based approaches. This paper calls for preserving valuable insights from classical signal processing while exploring how they can coexist or integrate with emerging AI methods.
comment: Submitted to npj Wireless Technology
Coherency among Power System Devices
The paper proposes a novel general definition of coherency among power system devices of any type. The proposed approach is thus not limited to synchronous machines. With this aim, the paper shows that coherency can be formally based on the difference in the complex frequency of the current injections of any two devices electrically connected to the same grid. The proposed definition is model-agnostic, making it general and suitable for modern power systems composed of a heterogeneous mix of technologies. The paper also provides a systematic analytical procedure to study the properties that specific device models must satisfy to be coherent. Time-domain simulations are conducted in three case studies whose results illustrate the ability of our definition to evaluate coherency among any type of device.
Using ensemble learning with hybrid graph neural networks and transformers to predict traffic in cities
Intelligent transportation systems (ITS) still have a hard time accurately predicting traffic in cities, especially in big, multimodal settings with complicated spatiotemporal dynamics. This paper presents HybridST, a hybrid architecture that integrates Graph Neural Networks (GNNs), multi-head temporal Transformers, and supervised ensemble learning methods (XGBoost or Random Forest) to collectively capture spatial dependencies, long-range temporal patterns, and exogenous signals, including weather, calendar, or control states. We test our model on the METR-LA, PEMS-BAY, and Seattle Loop tree public benchmark datasets. These datasets include situations ranging from freeway sensor networks to vehicle-infrastructure cooperative perception. Experimental results show that HybridST consistently beats classical baselines (LSTM, GCN, DCRNN, PDFormer) on important metrics like MAE and RMSE, while still being very scalable and easy to understand. The proposed framework presents a promising avenue for real-time urban mobility planning, energy optimization, and congestion alleviation strategies, especially within the framework of smart cities and significant events such as the 2030 FIFA World Cup.
Generalized Swing Control Framework for Inverter-based Resources
This paper proposes a novel control framework designed for Inverter-Based Resources (IBRs), denoted as Generalized Swing Control (GSC). The proposed GSC framework generalizes the definition of Grid-Forming (GFM) control schemes and exploits the coupling between active and reactive power dynamics. To validate the proposed scheme, we conduct extensive time-domain simulations and small-signal analysis using a modified version of the WSCC 9-bus system and a 1479-bus dynamic model of the all-island Irish transmission system. The case studies focus on evaluating the dynamic performance of the proposed framework under different configurations, including Virtual Synchronous Machine (VSM), coupled-VSM and dual-VSM schemes. To address the nonlinear nature of power system dynamics, sensitivity analysis based on Monte Carlo methods are employed to improve parameter tuning and assess the stability of GSC configurations in the studied systems.
Decentralized Voltage Control of AC Microgrids with Constant Power Loads using Control Barrier Functions
This paper proposes a novel nonlinear decentralized voltage controller for constrained regulation of meshed AC Microgrid networks with high penetration of constant power loads. Perceiving the load demand as an unknown disturbance, the network model is reformulated in a cascaded structure composed of a nominal, i.e. uncertainty-free, and an error subsystem. The latter captures the distance between the true and the nominal state trajectories, for which we prove boundedness via a suitable control barrier function. Under sufficient conditions, we prove asymptotic stability of the cascaded dynamics with respect to an equilibrium set and also provide an estimate of the region of attraction. In addition, it is rigorously shown that the proposed nonlinear control law also enforces constrained regulation around a rated voltage value, without the need of saturation devices. The operation of the closed-loop system is illustrated in a simulation scenario, demonstrating bounded operation and convergence to a neighbourhood of the desired reference vector.
comment: 12 pages
Explicit MPC for the constrained zonotope case with low-rank matrix updates
Solving the explicit Model Predictive Control (MPC) problem requires enumerating all critical regions and their associated feedback laws, a task that scales exponentially with the system dimension and the prediction horizon, as well. When the problem's constraints are boxes or zonotopes, the feasible domain admits a compact constrained-zonotope representation. Building on this insight, we exploit the geometric properties of the equivalent constrained-zonotope reformulation to accelerate the computation of the explicit solution. Specifically, we formulate the multi-parametric problem in the lifted generator space and solve it using second-order optimality conditions, employ low-rank matrix updates to reduce computation time, and introduce an analytic enumeration of candidate active sets that yields the explicit solution in tree form.
A Kullback-Leibler divergence method for input-system-state identification
The capability of a novel Kullback-Leibler divergence method is examined herein within the Kalman filter framework to select the input-parameter-state estimation execution with the most plausible results. This identification suffers from the uncertainty related to obtaining different results from different initial parameter set guesses, and the examined approach uses the information gained from the data in going from the prior to the posterior distribution to address the issue. Firstly, the Kalman filter is performed for a number of different initial parameter sets providing the system input-parameter-state estimation. Secondly, the resulting posterior distributions are compared simultaneously to the initial prior distributions using the Kullback-Leibler divergence. Finally, the identification with the least Kullback-Leibler divergence is selected as the one with the most plausible results. Importantly, the method is shown to select the better performed identification in linear, nonlinear, and limited information applications, providing a powerful tool for system monitoring.
comment: 32 pages, 17 figures, published in Journal of Sound and Vibration
Constrained Performance Boosting Control for Nonlinear Systems via ADMM
We present the Alternating Direction Method of Multipliers for Performance Boosting (ADMM-PB), an approach to design performance boosting controllers for stable or pre-stabilized nonlinear systems, while explicitly seeking input and state constraint satisfaction. Rooted on a recently proposed approach for designing neural-network controllers that guarantees closed-loop stability by design while minimizing generic cost functions, our strategy integrates it within an alternating direction method of multipliers routine to seek constraint handling without modifying the controller structure of the aforementioned seminal strategy. Our numerical results showcase the advantages of the proposed approach over a baseline penalizing constraint violation through barrier-like terms in the cost, indicating that ADMM-PB can lead to considerably lower constraint violations at the price of inducing slightly more cautious closed-loop behaviors.
H-Infinity Filter Enhanced CNN-LSTM for Arrhythmia Detection from Heart Sound Recordings ICSE
Early detection of heart arrhythmia can prevent severe future complications in cardiac patients. While manual diagnosis still remains the clinical standard, it relies heavily on visual interpretation and is inherently subjective. In recent years, deep learning has emerged as a powerful tool to automate arrhythmia detection, offering improved accuracy, consistency, and efficiency. Several variants of convolutional and recurrent neural network architectures have been widely explored to capture spatial and temporal patterns in physiological signals. However, despite these advancements, current models often struggle to generalize well in real-world scenarios, especially when dealing with small or noisy datasets, which are common challenges in biomedical applications. In this paper, a novel CNN-H-Infinity-LSTM architecture is proposed to identify arrhythmic heart signals from heart sound recordings. This architecture introduces trainable parameters inspired by the H-Infinity filter from control theory, enhancing robustness and generalization. Extensive experimentation on the PhysioNet CinC Challenge 2016 dataset, a public benchmark of heart audio recordings, demonstrates that the proposed model achieves stable convergence and outperforms existing benchmarks, with a test accuracy of 99.42% and an F1 score of 98.85%.
comment: This is a preprint of a paper to appear at the 15th IEEE International Conference on Systems Engineering and Technology (ICSET 2025)
ZJUNlict Extended Team Description Paper 2025
This paper presents the ZJUNlict team's work over the past year, covering both hardware and software advancements. In the hardware domain, the integration of an IMU into the v2023 robot was completed to enhance posture accuracy and angular velocity planning. On the software side, key modules were optimized, including the strategy and CUDA modules, with significant improvements in decision making efficiency, ball pursuit prediction, and ball possession prediction to adapt to high-tempo game dynamics.
Performance Analysis of NOMA-Assisted Optical OFDM ISAC Systems with Clipping Distortion
This paper studies the performance of optical orthogonal frequency-division multiplexing (OFDM)-based multi-user integrated sensing and communication (ISAC) systems employing non-orthogonal multiple access (NOMA). Due to their inherent high peak-to-average power ratio (PAPR), OFDM waveforms are clipped to fit the limited dynamic range of the optical transmitters (e.g., light-emitting diodes (LEDs)), resulting in clipping distortion. To alleviate the impact of the distortion, we propose a novel transmitter architecture where the clipping processes are performed before NOMA superposition coding. We then analyze the performance of the proposed optical ISAC systems considering the effects of power allocation and clipping distortion. For the communication subsystem, we analyze the effect of NOMA on the achievable sum rate and bit error rate (BER). For the sensing subsystem, the root mean square error (RMSE) and Cram\'er-Rao bound (CRB) of estimating the transmission distance accuracy are obtained. Simulation results reveal that allocating more power to the strong user yields a higher sum rate, lower BER, and better sensing performance, whereas a more balanced power allocation among users results in degraded BER and sensing performance.
A Reliability-Cost Optimization Framework for EV and DER Integration in Standard and Reconfigurable Distribution Network Topologies
The rapid growth of electric vehicle (EV) adoption poses operational and economic challenges for power distribution systems, including increased line loading levels and network congestions. This may require potential infrastructure reinforcement and expansion. As a fast inexpensive alternative solution, network topology reconfiguration (NTR) offers a practical means to redistribute power flows, reduce operational costs, and defer infrastructure upgrades. This paper presents a linear programming framework to evaluate the impact of varying EV penetration on operational costs under four configurations: standard distribution network (SDN), SDN with NTR (SDNTR), SDN with distributed energy resources (SDN-DER), and SDNTR with DERs (SDNTR-DER). Numerical simulations are conducted on the IEEE 33-bus system. The analysis demonstrates that integrating DERs reduces operational costs, while NTR further enhances system flexibility, enabling higher EV penetration levels without compromising feasibility. The combined SDNTR-DER approach offers the most cost-effective and reliable pathway for accommodating future EV growth while mitigating the need for immediate infrastructure upgrades.
Online Distributed Zeroth-Order Optimization With Non-Zero-Mean Adverse Noises
In this paper, the problem of online distributed zeroth-order optimization subject to a set constraint is studied via a multi-agent network, where each agent can communicate with its immediate neighbors via a time-varying directed graph. Different from the existing works on online distributed zeroth- order optimization, we consider the case where the estimate on the gradients are influenced by some non-zero-mean adverse noises. To handle this problem, we propose a new online dis- tributed zeroth-order mirror descent algorithm involving a kernel function-based estimator and a clipped strategy. Particularly, in the estimator, the kernel function-based strategy is provided to deal with the adverse noises, and eliminate the low-order terms in the Taylor expansions of the objective functions. Furthermore, the performance of the presented algorithm is measured by employing the dynamic regrets, where the offline benchmarks are to find the optimal point at each time. Under the mild assumptions on the graph and the objective functions, we prove that if the variation in the optimal point sequence grows at a certain rate, then the high probability bound of the dynamic regrets increases sublinearly. Finally, a simulation experiment is worked out to demonstrate the effectiveness of our theoretical results.
Near Optimal Convergence to Coarse Correlated Equilibrium in General-Sum Markov Games
No-regret learning dynamics play a central role in game theory, enabling decentralized convergence to equilibrium for concepts such as Coarse Correlated Equilibrium (CCE) or Correlated Equilibrium (CE). In this work, we improve the convergence rate to CCE in general-sum Markov games, reducing it from the previously best-known rate of $\mathcal{O}(\log^5 T / T)$ to a sharper $\mathcal{O}(\log T / T)$. This matches the best known convergence rate for CE in terms of $T$, number of iterations, while also improving the dependence on the action set size from polynomial to polylogarithmic-yielding exponential gains in high-dimensional settings. Our approach builds on recent advances in adaptive step-size techniques for no-regret algorithms in normal-form games, and extends them to the Markovian setting via a stage-wise scheme that adjusts learning rates based on real-time feedback. We frame policy updates as an instance of Optimistic Follow-the-Regularized-Leader (OFTRL), customized for value-iteration-based learning. The resulting self-play algorithm achieves, to our knowledge, the fastest known convergence rate to CCE in Markov games.
Census-Based Population Autonomy For Distributed Robotic Teaming
Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.
comment: 16 pages, 17 figures
Microgrids optimal radial reconfiguration via FORWARD algorithm
Microgrids offer a promising paradigm for integrating distributed energy resources, bolstering energy resilience, and reducing the impact of blackouts. However, their inherent decentralization and dynamic operation present substantial energy management complexities. These complexities, including balancing supply and demand, ensuring system stability, and minimizing operational costs, often necessitate solving computationally intractable NP-hard Mixed-Integer Non-Linear Programming (MINLP) problems. Traditional MINLP solvers struggle with the scalability and feasibility guarantees required for these challenges. To address this, this paper tackles the problem of resource allocation and radial configuration design for microgrid power distribution and proposes and abstracted problem which is solved by introducing a permutation-based iterative search method over the recently introduced FORWARD method to efficiently identify feasible, near-optimal radial network structures while inherently respecting physical constraints. Furthermore, this paper investigates the integration of the proposed method as a warm-start strategy for benchmark MINLP solvers offering a scalable solution for comprehensive microgrid design.
Quantifying Power Systems Resilience Using Statistical Analysis and Bayesian Learning
The increasing frequency and intensity of extreme weather events is significantly affecting the power grid, causing large-scale outages and impacting power system resilience. Yet limited work has been done on systematically modeling the impacts of weather parameters to quantify resilience. This study presents a framework using statistical and Bayesian learning approaches to quantitatively model the relationship between weather parameters and power system resilience metrics. By leveraging real-world publicly available outage and weather data, we identify key weather variables of wind speed, temperature, and precipitation influencing a particular region's resilience metrics. A case study of Cook County, Illinois, and Miami-Dade County, Florida, reveals that these weather parameters are critical factors in resiliency analysis and risk assessment. Additionally, we find that these weather variables have combined effects when studied jointly compared to their effects in isolation. This framework provides valuable insights for understanding how weather events affect power distribution system performance, supporting decision-makers in developing more effective strategies for risk mitigation, resource allocation, and adaptation to changing climatic conditions.
Distributed Incast Detection in Data Center Networks
Incast traffic in data centers can lead to severe performance degradation, such as packet loss and increased latency. Effectively addressing incast requires prompt and accurate detection. Existing solutions, including MA-ECN, BurstRadar and Pulser, typically rely on fixed thresholds of switch port egress queue lengths or their gradients to identify microburst caused by incast flows. However, these queue length related methods often suffer from delayed detection and high error rates. In this study, we propose a distributed incast detection method for data center networks at the switch-level, leveraging a probabilistic hypothesis test with an optimal detection threshold. By analyzing the arrival intervals of new flows, our algorithm can immediately determine if a flow is part of an incast traffic from its initial packet. The experimental results demonstrate that our method offers significant improvements over existing approaches in both detection speed and inference accuracy.
Oscillation Analysis and Damping Control for a Proposed North American AC-DC Macrogrid
In recent years, several studies conducted by both industry and U.S. Department of Energy (DOE)-funded initiatives have proposed linking North America's Eastern and Western Interconnections (EI and WI) through a multiterminal DC (MTDC) macrogrid. These studies have explored the advantages and opportunities of the proposed configuration from the perspectives of capacity sharing and frequency support. However, the potential challenges of small-signal stability arising from this interconnection have not been thoroughly examined. To address this gap, detailed model-based simulation studies are performed in this paper to assess the risks of poorly damped inter-area oscillations in the proposed macrogrid. A custom-built dynamic model of the MTDC system is developed and integrated with industry-grade models of the EI and WI, incorporating high levels of inverter-based energy resources. Through model-based oscillation analysis, potential shifts in inter-area modes for both EI and WI, resulting from the MTDC integration are characterized, and modes with inadequate damping are identified. Furthermore, to mitigate the risks of unstable oscillations, supplementary damping controllers are designed for the MTDC system, leveraging wide-area feedback to modulate active power set points at selected converter stations. A frequency scanning approach is employed for data-driven model linearization and controller synthesis. The damping performance is evaluated under the designed operating conditions and selected contingency scenarios.
Robust reduced-order model predictive control using peak-to-peak analysis of filtered signals
We address the design of a model predictive control (MPC) scheme for large-scale linear systems using reduced-order models (ROMs). Our approach uses a ROM, leverages tools from robust control, and integrates them into an MPC framework to achieve computational tractability with robust constraint satisfaction. Our key contribution is a method to obtain guaranteed bounds on the predicted outputs of the full-order system by predicting a (scalar) error-bounding system alongside the ROM. This bound is then used to formulate a robust ROM-based MPC that guarantees constraint satisfaction and robust performance. Our method is developed step-by-step by (i) analysing the error, (ii) bounding the peak-to-peak gain, an (iii) using filtered signals. We demonstrate our method on a 100-dimensional mass-spring-damper system, achieving over four orders of magnitude reduction in conservatism relative to existing approaches.
comment: Code available at: https://github.com/KohlerJohannes/ROM_MPC_ECC
Observer-based neural networks for flow estimation and control
Neural network observers (NNOs) are proposed for real-time estimation of fluid flows, addressing a key challenge in flow control: obtaining real-time flow states from a limited set of sparse and noisy sensor data. For this task, we propose a generalization of the classical Luenberger observer. In the present framework, the estimation loop is composed of subsystems modeled as neural networks (NNs). By combining flow information from selected probes and an NN surrogate model (NNSM) of the flow system, we train NNOs capable of fusing information to provide the best estimation of the states, that can in turn be fed back to an NN controller (NNC). The NNO capabilities are demonstrated for three nonlinear dynamical systems. First, a variation of the Kuramoto-Sivashinsky (KS) equation with control inputs is studied, where variables are sparsely probed. We show that the NNO is able to track states even when probes are contaminated with random noise or with sensors at insufficient sample rates to match the control time step. Then, a confined cylinder flow is investigated, where velocity signals along the cylinder wake are estimated by using a small set of wall pressure sensors. In both the KS and cylinder problems, we show that the estimated states can be used to enable closed-loop control, taking advantage of stabilizing NNCs. Finally, we present a legacy dataset of a turbulent boundary layer experiment, where convolutional NNs (CNNs) are employed to implement the models required for the estimation loop. We show that, by combining low-resolution noise-corrupted sensor data with an imperfect NNSM, it is possible to produce more accurate estimates, outperforming both the direct reconstructions via specialized super-resolution NNs and the direct model propagation from initial conditions.
Digital Twin-Driven Pavement Health Monitoring and Maintenance Optimization Using Graph Neural Networks
Pavement infrastructure monitoring is challenged by complex spatial dependencies, changing environmental conditions, and non-linear deterioration across road networks. Traditional Pavement Management Systems (PMS) remain largely reactive, lacking real-time intelligence for failure prevention and optimal maintenance planning. To address this, we propose a unified Digital Twin (DT) and Graph Neural Network (GNN) framework for scalable, data-driven pavement health monitoring and predictive maintenance. Pavement segments and spatial relations are modeled as graph nodes and edges, while real-time UAV, sensor, and LiDAR data stream into the DT. The inductive GNN learns deterioration patterns from graph-structured inputs to forecast distress and enable proactive interventions. Trained on a real-world-inspired dataset with segment attributes and dynamic connectivity, our model achieves an R2 of 0.3798, outperforming baseline regressors and effectively capturing non-linear degradation. We also develop an interactive dashboard and reinforcement learning module for simulation, visualization, and adaptive maintenance planning. This DT-GNN integration enhances forecasting precision and establishes a closed feedback loop for continuous improvement, positioning the approach as a foundation for proactive, intelligent, and sustainable pavement management, with future extensions toward real-world deployment, multi-agent coordination, and smart-city integration.
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
Analytical modelling of a stop-less modular bus service with an application to charging strategies comparison
Buses are a vital component of metropolitan public transport, yet conventional bus services often struggle with inefficiencies including extended dwelling time, which increases in-vehicle travel time for non-alighting passengers. A stop-less autonomous modular (SLAM) bus service has emerged as a solution, enabling dynamic capacity to reduce dwelling time. Meanwhile, the electrification of buses is advancing as a strategy to mitigate greenhouse gas emissions and reduces operators' costs, but introduces new operational constraints due to charging requirements. This study develops analytical optimization models for SLAM bus service that integrates vehicle-to-vehicle (V2V) charging technology. By comparing the optimal designs and their feasibility across non-charging case and charging strategies, we identify a sequence of operational stages as ridership grows: from idle capacity under low demand, to full small buses, full large buses, and a proposed frequency-capped regime where only bus capacity expands. Under the mobile charging strategy, this progression further includes an energy-limited regime, in which frequency declines, and ultimately infeasibility under high demand. These findings enable operators to deliver more efficient services.
Guided Bayesian Optimization: Data-Efficient Controller Tuning with Digital Twin
This article presents the guided Bayesian optimization algorithm as an efficient data-driven method for iteratively tuning closed-loop controller parameters using an event-triggered digital twin of the system based on available closed-loop data. We define a controller tuning framework independent of the controller or the plant structure. Our proposed methodology is model-free, making it suitable for nonlinear and unmodelled plants with measurement noise. The objective function consists of performance metrics modeled by Gaussian processes. We utilize the available information in the closed-loop system to identify and progressively maintain a digital twin that guides the optimizer, improving the data efficiency of our method. Switching the digital twin on and off is triggered by data-driven criteria related to the digital twin's uncertainty estimations in the BO tuning framework. Effectively, it replaces much of the exploration of the real system with exploration performed on the digital twin. We analyze the properties of our method in simulation and demonstrate its performance on two real closed-loop systems with different plant and controller structures. The experimental results show that our method requires fewer experiments on the physical plant than Bayesian optimization to find the optimal controller parameters.
comment: This work has been published in IEEE Transactions on Automation Science and Engineering
Drift Plus Optimistic Penalty: A Learning Framework for Stochastic Network Optimization with Improved Regret Bounds
We consider the problem of joint routing and scheduling in queueing networks, where the edge transmission costs are unknown. At each time-slot, the network controller receives noisy observations of transmission costs only for those edges it selects for transmission. The network controller's objective is to make routing and scheduling decisions so that the total expected cost is minimized. This problem exhibits an exploration-exploitation trade-off, however, previous bandit-style solutions cannot be directly applied to this problem due to the queueing dynamics. In order to ensure network stability, the network controller needs to optimize throughput and cost simultaneously. We show that the best achievable cost is lower bounded by the solution to a static optimization problem, and develop a network control policy using techniques from Lyapunov drift-plus-penalty optimization and multi-arm bandits. We show that the policy achieves a sub-linear regret of order $O(\sqrt{T}\log T)$, as compared to the best policy that has complete knowledge of arrivals and costs. Finally, we evaluate the proposed policy using simulations and show that its regret is indeed sub-linear.
Constrained Optimal Fuel Consumption of HEVs under Observational Noise
In our prior work, we investigated the minimum fuel consumption of a hybrid electric vehicle (HEV) under a state-of-charge (SOC) balance constraint, assuming perfect SOC measurements and accurate reference speed profiles. The constrained optimal fuel consumption (COFC) problem was addressed using a constrained reinforcement learning (CRL) framework. However, in real-world scenarios, SOC readings are often corrupted by sensor noise, and reference speeds may deviate from actual driving conditions. To account for these imperfections, this study reformulates the COFC problem by explicitly incorporating observational noise in both SOC and reference speed. We adopt a robust CRL approach, where the noise is modeled as a uniform distribution, and employ a structured training procedure to ensure stability. The proposed method is evaluated through simulations on the Toyota Prius hybrid system (THS), using both the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). Results show that fuel consumption and SOC constraint satisfaction remain robust across varying noise levels. Furthermore, the analysis reveals that observational noise in SOC and speed can impact fuel consumption to different extents. To the best of our knowledge, this is the first study to explicitly examine how observational noise -- commonly encountered in dynamometer testing and predictive energy control (PEC) applications -- affects constrained optimal fuel consumption in HEVs.
comment: Minor text and figure adjustments; no substantive changes
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of aerial vehicles is a key requirement in applications ranging from missile guidance to UAV collision avoidance. While most prediction methods assume deterministic target motion, real-world targets often exhibit stochastic behaviors such as evasive maneuvers or random gliding patterns. This paper introduces a probabilistic framework based on Conditional Normalizing Flows (CNFs) to model and predict such stochastic dynamics directly from trajectory data. The learned model generates probability distributions of future target positions conditioned on initial states and dynamic parameters, enabling efficient sampling and exact density evaluation. To provide deterministic surrogates compatible with existing guidance and planning algorithms, sampled trajectories are clustered using a time series k-means approach, yielding a set of representative "virtual target" trajectories. The method is target-agnostic, computationally efficient, and requires only trajectory data for training, making it suitable as a drop-in replacement for deterministic predictors. Simulated scenarios with maneuvering and ballistic targets demonstrate that the proposed approach bridges the gap between deterministic assumptions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: Manuscript accepted by Journal of Guidance, Control, and Dynamics
Constrained computational hybrid controller for Input Affine Hybrid Dynamical Systems
Hybrid dynamical systems are viewed as the most complicated systems with continuous and event-based behaviors. Since traditional controllers cannot handle these systems, some newly-developed controllers have been published in recent decades to deal with them. This paper presents a novel implementable constrained final-state controller based on partitioning the system's state-space, computational simulations, and graph theory. Experimental results and a comparison with Model Predictive Controller on the three tank benchmark and swing-up control of a pendulum show the effectiveness of the proposed Computational Hybrid Controller(CHC).
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
comment: European Control Conference 2025 (ECC), Thessaloniki, Greece
Chance-Constrained Neural MPC under Uncontrollable Agents via Sequential Convex Programming
This work investigates the challenge of ensuring safety guarantees under uncontrollable agents whose behaviors are stochastic and depend on both their own and the system's states. We present a neural model predictive control (MPC) framework that predicts the trajectory of the uncontrollable agent using a predictor learned from offline data. To provide probabilistic guarantees on prediction errors, we employ split conformal prediction to construct region-specific, time-dependent uncertainty bounds, which are integrated into the MPC formulation. To solve the resulting non-convex, discontinuous optimization problem, we propose a two-loop iterative sequential convex programming algorithm. The inner loop solves convexified subproblems with fixed error bounds, while the outer loop refines these bounds based on updated control sequences. We establish convergence guarantees under mild regularity conditions and demonstrate the optimality of the algorithm. We illustrate our method with an autonomous driving scenario involving interactive pedestrians. Experimental results demonstrate that our approach achieves superior safety and efficiency compared to baseline methods, with success rates exceeding 99.5\% while maintaining higher average speeds in multi-pedestrian scenarios.
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Neural Network Aided Kalman Filtering with Model Predictive Control Enables Robot-Assisted Drone Recovery on a Wavy Surface
Recovering a drone on a disturbed water surface remains a significant challenge in maritime robotics. In this paper, we propose a unified framework for robot-assisted drone recovery on a wavy surface that addresses two major tasks: Firstly, accurate prediction of a moving drone's position under wave-induced disturbances using KalmanNet Plus Plus (KalmanNet++), a Neural Network Aided Kalman Filtering we proposed. Secondly, effective motion planning using the desired position we got for a manipulator via Receding Horizon Model Predictive Control (RHMPC). Specifically, we compared multiple prediction methods and proposed KalmanNet Plus Plus to predict the position of the UAV, thereby obtaining the desired position. The KalmanNet++ predicts the drone's future position 0.1\,s ahead, while the manipulator plans a capture trajectory in real time, thus overcoming not only wave-induced base motions but also limited constraints such as torque constraints and joint constraints. For the system design, we provide a collaborative system, comprising a manipulator subsystem and a UAV subsystem, enables drone lifting and drone recovery. Simulation and real-world experiments using wave-disturbed motion data demonstrate that our approach achieves a high success rate - above 95\% and outperforms conventional baseline methods by up to 10\% in efficiency and 20\% in precision. The results underscore the feasibility and robustness of our system, which achieves state-of-the-art performance and offers a practical solution for maritime drone operations.
comment: 17 pages, 51 figures
On the Number of Control Nodes in Boolean Networks with Degree Constraints
This paper studies the minimum control node set problem for Boolean networks (BNs) with degree constraints. The main contribution is to derive the nontrivial lower and upper bounds on the size of the minimum control node set through combinatorial analysis of four types of BNs (i.e., $k$-$k$-XOR-BNs, simple $k$-$k$-AND-BNs, $k$-$k$-AND-BNs with negation and $k$-$k$-NC-BNs, where the $k$-$k$-AND-BN with negation is an extension of the simple $k$-$k$-AND-BN that considers the occurrence of negation and NC means nested canalyzing). More specifically, four bounds for the size of the minimum control node set: general lower bound, best case upper bound, worst case lower bound, and general upper bound are studied. By dividing nodes into three disjoint sets, extending the time to reach the target state, and utilizing necessary conditions for controllability, these bounds are obtained, and further meaningful results and phenomena are discovered. Notably, all of the above results involving the AND function also apply to the OR function.
comment: 35 pages, 9 figures
Machine Learning-assisted Dynamics-Constrained Day-Ahead Energy Scheduling
TThe rapid expansion of inverter-based resources, such as wind and solar power plants, will significantly diminish the presence of conventional synchronous generators in fu-ture power grids with rich renewable energy sources. This transition introduces in-creased complexity and reduces dynamic stability in system operation and control, with low inertia being a widely recognized challenge. However, the literature has not thoroughly explored grid dynamic performance associated with energy scheduling so-lutions that traditionally only consider grid steady-state constraints. This paper will bridge the gap by enforcing grid dynamic constraints when conducting optimal energy scheduling; particularly, this paper explores locational post-contingency rate of change of frequency (RoCoF) requirements to accommodate substantial inertia reductions. This paper introduces a machine learning-assisted RoCoF-constrained unit commit-ment (ML-RCUC) model designed to ensure RoCoF stability after the most severe generator outage while maintaining operational efficiency. A graph-informed NN (GINN)-based RoCoF predictor is first trained on a high-fidelity simulation dataset to track the highest locational RoCoF, which is then reformulated as mixed-integer linear programming constraints that are integrated into the unit commitment model. Case studies, by solving the optimization problem ML-RCUC and validating its solutions with time-domain simulations, demonstrate that the proposed method can ensure loca-tional RoCoF stability with minimum conservativeness.
Improving the Accuracy of DC Optimal Power Flow Formulations via Parameter Optimization
DC Optimal Power Flow (DC-OPF) problems optimize the generators' active power setpoints while satisfying constraints based on the DC power flow linearization. The computational tractability advantages of DC-OPF problems come at the expense of inaccuracies relative to AC Optimal Power Flow (AC-OPF) problems that accurately model the nonlinear steady-state behavior of power grids. This paper proposes an algorithm that significantly improves the accuracy of the generators' active power setpoints from DC-OPF problems with respect to the corresponding AC-OPF problems over a specified range of operating conditions. Using sensitivity information in a machine learning-inspired methodology, this algorithm tunes coefficient and bias parameters in the DC power flow approximation to improve the accuracy of the resulting DC-OPF solutions. Employing the Truncated Newton Conjugate-Gradient (TNC) method -- a Quasi-Newton optimization technique -- this parameter tuning occurs during an offline training phase, with the resulting parameters then used in online computations. Numerical results underscore the algorithm's efficacy with accuracy improvements in squared two-norm and $\infty$-norm losses of up to $90\%$ and $79\%$, respectively, relative to traditional DC-OPF formulations.
Human-Exoskeleton Kinematic Calibration to Improve Hand Tracking for Dexterous Teleoperation
Hand exoskeletons are critical tools for dexterous teleoperation and immersive manipulation interfaces, but achieving accurate hand tracking remains a challenge due to user-specific anatomical variability and donning inconsistencies. These issues lead to kinematic misalignments that degrade tracking performance and limit applicability in precision tasks. We propose a subject-specific calibration framework for exoskeleton-based hand tracking that estimates virtual link parameters through residual-weighted optimization. A data-driven approach is introduced to empirically tune cost function weights using motion capture ground truth, enabling accurate and consistent calibration across users. Implemented on the Maestro hand exoskeleton with seven healthy participants, the method achieved substantial reductions in joint and fingertip tracking errors across diverse hand geometries. Qualitative visualizations using a Unity-based virtual hand further demonstrate improved motion fidelity. The proposed framework generalizes to exoskeletons with closed-loop kinematics and minimal sensing, laying the foundation for high-fidelity teleoperation and robot learning applications.
comment: 8 pages, 10 figures, 1 supplementary video, submitted to RA-L
Systems and Control (EESS)
LLM-Supported Formal Knowledge Representation for Enhancing Control Engineering Content with an Interactive Semantic Layer
The rapid growth of research output in control engineering calls for new approaches to structure and formalize domain knowledge. This paper briefly describes an LLM-supported method for semi-automated generation of formal knowledge representations that combine human readability with machine interpretability and increased expressiveness. Based on the Imperative Representation of Knowledge (PyIRK) framework, we demonstrate how language models can assist in transforming natural-language descriptions and mathematical definitions (available as LaTeX source code) into a formalized knowledge graph. As a first application we present the generation of an ``interactive semantic layer'' to enhance the source documents in order to facilitate knowledge transfer. From our perspective this contributes to the vision of easily accessible, collaborative, and verifiable knowledge bases for the control engineering domain.
comment: 4 pages, 2 figures
Adjustable Low-Cost Highly Sensitive Microwave Oscillator Sensor for Liquid Level Detection
This paper explores the implementation of a low-cost high-precision microwave oscillator sensor with an adjustable input resistance to enhance its limit of detection (LoD). To achieve this, we introduce a \textit{Z$_{2}$} branch in the input network, comprising a transmission line, a capacitor (\textit{C$_{B}$}) and a resistor (\textit{R$_{V}$}). The sensor is tested with eight different liquids with different dielectric constants, including water, IV fluid, milk, ethanol, acetone, petrol, olive oil, and Vaseline. By fine-tuning the \textit{Z$_{2}$} branch, a clear relationship is found between $\varepsilon_{r}$ of materials and R$_{V}$.Our experimental results demonstrate outstanding characteristics, including remarkable linearity (nonlinearity < 2.44\%), high accuracy with an average sensitivity of 21 kHz/$\mu$m, and an excellent limit of detection (LoD < 0.05 mm). The sensor also exhibits good stability across a range of liquid temperatures and shows robust and repeatable behavior. Considering the strong absorption of microwave energy in liquids with high dielectric constants, this oscillator sensor is a superior choice over capacitive sensors for such applications. We validate the performance of the oscillator sensor using water as a representative liquid. Additionally, we substantiate the sensor's improvement through both experimental results and theoretical analysis. Its advantages, including affordability, compatibility with CMOS and MEMS technologies, and ease of fabrication, make it an excellent choice for small-scale liquid detection applications.
An unscented Kalman filter method for real time input-parameter-state estimation
The input-parameter-state estimation capabilities of a novel unscented Kalman filter is examined herein on both linear and nonlinear systems. The unknown input is estimated in two stages within each time step. Firstly, the predicted dynamic states and the system parameters provide an estimation of the input. Secondly, the corrected with measurements states and parameters provide a final estimation. Importantly, it is demonstrated using the perturbation analysis that, a system with at least a zero or a non-zero known input can potentially be uniquely identified. This output-only methodology allows for a better understanding of the system compared to classical output-only parameter identification strategies, given that all the dynamic states, the parameters, and the input are estimated jointly and in real-time.
comment: author-accepted manuscript (AAM) published in Mechanical Systems and Signal Processing
Policy Gradient Methods for Information-Theoretic Opacity in Markov Decision Processes
Opacity, or non-interference, is a property ensuring that an external observer cannot infer confidential information (the "secret") from system observations. We introduce an information-theoretic measure of opacity, which quantifies information leakage using the conditional entropy of the secret given the observer's partial observations in a system modeled as a Markov decision process (MDP). Our objective is to find a control policy that maximizes opacity while satisfying task performance constraints, assuming that an informed observer is aware of the control policy and system dynamics. Specifically, we consider a class of opacity called state-based opacity, where the secret is a propositional formula about the past or current state of the system, and a special case of state-based opacity called language-based opacity, where the secret is defined by a temporal logic formula (LTL) or a regular language recognized by a finite-state automaton. First, we prove that finite-memory policies can outperform Markov policies in optimizing information-theoretic opacity. Second, we develop an algorithm to compute a maximally opaque Markov policy using a primal-dual gradient-based algorithm, and prove its convergence. Since opacity cannot be expressed as a cumulative cost, we develop a novel method to compute the gradient of conditional entropy with respect to policy parameters using observable operators in hidden Markov models. The experimental results validate the effectiveness and optimality of our proposed methods.
Feedback dynamics in Politics: The interplay between sentiment and engagement
We investigate feedback mechanisms in political communication by testing whether politicians adapt the sentiment of their messages in response to public engagement. Using over 1.5 million tweets from Members of Parliament in the United Kingdom, Spain, and Greece during 2021, we identify sentiment dynamics through a simple yet interpretable linear model. The analysis reveals a closed-loop behavior: engagement with positive and negative messages influences the sentiment of subsequent posts. Moreover, the learned coefficients highlight systematic differences across political roles: opposition members are more reactive to negative engagement, whereas government officials respond more to positive signals. These results provide a quantitative, control-oriented view of behavioral adaptation in online politics, showing how feedback principles can explain the self-reinforcing dynamics that emerge in social media discourse.
comment: 6 pages, 7 figures
Stochastic Redistribution of Indistinguishable Items in Shared Habitation: A Multi-Agent Simulation Framework
This paper presents a discrete-event stochastic model for the redistribution of indistinguishable personal items, exemplified by socks, among multiple cohabitants sharing a communal laundry system. Drawing on concepts from ecological population dynamics, diffusion processes, and stochastic exchange theory, the model captures the probabilistic mechanisms underlying item mixing, recovery, and loss. Each cohabitant is represented as an autonomous agent whose belongings interact through iterative cycles of collective washing, sorting, and partial correction. The system's evolution is characterized by random mixing events, selective recollection, and attrition over time. Implemented using the SimPy discrete-event simulation framework, the model demonstrates that even minimal exchange probabilities can generate emergent asymmetries, quasi-equilibrium distributions, and long-term disorder. The findings illustrate how stochastic processes inherent to shared domestic systems can produce persistent imbalances, offering a quantitative perspective on an everyday social phenomenon.
Natural-gas storage modelling by deep reinforcement learning
We introduce GasRL, a simulator that couples a calibrated representation of the natural gas market with a model of storage-operator policies trained with deep reinforcement learning (RL). We use it to analyse how optimal stockpile management affects equilibrium prices and the dynamics of demand and supply. We test various RL algorithms and find that Soft Actor Critic (SAC) exhibits superior performance in the GasRL environment: multiple objectives of storage operators - including profitability, robust market clearing and price stabilisation - are successfully achieved. Moreover, the equilibrium price dynamics induced by SAC-derived optimal policies have characteristics, such as volatility and seasonality, that closely match those of real-world prices. Remarkably, this adherence to the historical distribution of prices is obtained without explicitly calibrating the model to price data. We show how the simulator can be used to assess the effects of EU-mandated minimum storage thresholds. We find that such thresholds have a positive effect on market resilience against unanticipated shifts in the distribution of supply shocks. For example, with unusually large shocks, market disruptions are averted more often if a threshold is in place.
comment: 8 pages, 5 figures, published on
ISAC Empowered Air-Sea Collaborative System: A UAV-USV Joint Inspection Framework
In this paper, we construct an air-sea collaborative system framework based on the Integrated Sensing and Communication (ISAC) techniques, where the Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vehicle (USV) jointly inspect targets of interest while keeping communication with each other simultaneously. First, we demonstrate the unique challenges encountered in this collaborative system, i.e., the coupling and heterogeneity of the UAV/USV's trajectories. Then, we formulate a total energy consumption minimization problem to jointly optimize the trajectories, flying and hovering times, target scheduling, and beamformers under the constraints of water currents, collision avoidance, and Sensing and Communication (S\&C) requirements. To address the strong coupling of the variables, we divide the original problem into two subproblems, namely, the hover point selection and the joint trajectory planning and beamforming design. In the first subproblem, we propose a three-step hierarchical method including: (1) a virtual base station coverage (VBSC) and clustering algorithm to obtain the target scheduling and rough position of hover points; (2) a Bi-traveling salesman problem with neighborhood (Bi-TSPN)-based algorithm to determine the visiting order sequence of the hover points; (3) a hover point refinement and time allocation algorithm to further optimize the time allocation. In the latter subproblem, we complete the remaining trajectory planning and beamforming design in each flying and hovering stage by developing a semi-definite relaxation (SDR) and successive convex approximation (SCA) method. Finally, we conduct a series of simulations to demonstrate the superiority of the proposed scheme over existing sequential access and leader-follower strategies.
comment: 13 pages, 15 figures
Analytical Framework for Assessing Effective Regional Inertia
This paper proposes a novel formulation of effective regional inertia that explicitly accounts for both system topology and the spatial distribution of inertia. Unlike traditional approaches that model a region as an aggregated machine with an equivalent inertia, the proposed metric provides a topology-aware representation. The methodology builds on an analytical framework that extends classical slow coherency theory to address network partitioning and regional frequency stability. Based on these partitions, we develop a systematic procedure to evaluate the effective inertia of each region, enabling a more accurate interpretation of local inertial contributions, including those from virtual inertia provided by inverter-based resources (IBRs). Case studies on the IEEE 39-bus and 68-bus systems demonstrate that the integration of inertial devices does not uniformly improve system frequency response, underscoring the importance of the proposed metric for effective regional inertia assessment.
Reliability entails input-selective contraction and regulation in excitable networks
The animal nervous system offers a model of computation combining digital reliability and analog efficiency. Understanding how this sweet spot can be realized is a core question of neuromorphic engineering. To this aim, this paper explores the connection between reliability, contraction, and regulation in excitable systems. Using the FitzHugh-Nagumo model of excitable behavior as a proof-of-concept, it is shown that neuronal reliability can be formalized as an average trajectory contraction property induced by the input. In excitable networks, reliability is shown to enable regulation of the network to a robustly stable steady state. It is thus posited that regulation provides a notion of dynamical analog computation, and that stability makes such a computation model robust.
Many-vs-Many Missile Guidance via Virtual Targets
This paper presents a novel approach to many-vs-many missile guidance using virtual targets (VTs) generated by a Normalizing Flows-based trajectory predictor. Rather than assigning n interceptors directly to m physical targets through conventional weapon target assignment algorithms, we propose a centralized strategy that constructs n VT trajectories representing probabilistic predictions of maneuvering target behavior. Each interceptor is guided toward its assigned VT using Zero-Effort-Miss guidance during midcourse flight, transitioning to Proportional Navigation guidance for terminal interception. This approach treats many-vs-many engagements as many-vs-distribution scenarios, exploiting numerical superiority (n > m) by distributing interceptors across diverse trajectory hypotheses rather than pursuing identical deterministic predictions. Monte Carlo simulations across various target-interceptor configurations (1-6 targets, 1-8 interceptors) demonstrate that the VT method matches or exceeds baseline straight-line prediction performance by 0-4.1% when n = m, with improvements increasing to 5.8-14.4% when n > m. The results confirm that probabilistic VTs enable effective exploitation of numerical superiority, significantly increasing interception probability in many-vs-many scenarios.
comment: will be submitted to Journal of Guidance, Control, and Dynamics as Technical Note
Decentralized Approach to Detect and Eliminate Flapping Phenomena due to Flexible Resources
This paper presents a decentralized methodology for detecting and mitigating flapping phenomena in power systems, primarily caused by the operation of discrete devices. The proposed approach applies moving-window autocorrelation to local measurements, enabling each device to autonomously identify sustained oscillations. Upon detection, a probabilistic, device-specific mitigation strategy is executed. Flexible demand resources (DFRs), under-load tap changers (ULTCs), and automatic voltage regulators (AVRs) are utilised to illustrate the performance of the proposed approach to both discrete and continuous-operation devices. Results show that the proposed method is robust and properly distinguishes damped oscillations from persistent flapping, allowing devices to independently recognize problematic operating scenarios and implement corrective actions accordingly.
Before AI Takes Over: Rethinking Nonlinear Signal Processing in Communications
There is an urgent reflection on traditional nonlinear signal processing methods in communications before Artificial Intelligence (AI) dominates the field. It implies a need to reassess or reinterpret established theories and tools, highlighting the tension between data-driven and model-based approaches. This paper calls for preserving valuable insights from classical signal processing while exploring how they can coexist or integrate with emerging AI methods.
comment: Submitted to npj Wireless Technology
Coherency among Power System Devices
The paper proposes a novel general definition of coherency among power system devices of any type. The proposed approach is thus not limited to synchronous machines. With this aim, the paper shows that coherency can be formally based on the difference in the complex frequency of the current injections of any two devices electrically connected to the same grid. The proposed definition is model-agnostic, making it general and suitable for modern power systems composed of a heterogeneous mix of technologies. The paper also provides a systematic analytical procedure to study the properties that specific device models must satisfy to be coherent. Time-domain simulations are conducted in three case studies whose results illustrate the ability of our definition to evaluate coherency among any type of device.
Using ensemble learning with hybrid graph neural networks and transformers to predict traffic in cities
Intelligent transportation systems (ITS) still have a hard time accurately predicting traffic in cities, especially in big, multimodal settings with complicated spatiotemporal dynamics. This paper presents HybridST, a hybrid architecture that integrates Graph Neural Networks (GNNs), multi-head temporal Transformers, and supervised ensemble learning methods (XGBoost or Random Forest) to collectively capture spatial dependencies, long-range temporal patterns, and exogenous signals, including weather, calendar, or control states. We test our model on the METR-LA, PEMS-BAY, and Seattle Loop tree public benchmark datasets. These datasets include situations ranging from freeway sensor networks to vehicle-infrastructure cooperative perception. Experimental results show that HybridST consistently beats classical baselines (LSTM, GCN, DCRNN, PDFormer) on important metrics like MAE and RMSE, while still being very scalable and easy to understand. The proposed framework presents a promising avenue for real-time urban mobility planning, energy optimization, and congestion alleviation strategies, especially within the framework of smart cities and significant events such as the 2030 FIFA World Cup.
Generalized Swing Control Framework for Inverter-based Resources
This paper proposes a novel control framework designed for Inverter-Based Resources (IBRs), denoted as Generalized Swing Control (GSC). The proposed GSC framework generalizes the definition of Grid-Forming (GFM) control schemes and exploits the coupling between active and reactive power dynamics. To validate the proposed scheme, we conduct extensive time-domain simulations and small-signal analysis using a modified version of the WSCC 9-bus system and a 1479-bus dynamic model of the all-island Irish transmission system. The case studies focus on evaluating the dynamic performance of the proposed framework under different configurations, including Virtual Synchronous Machine (VSM), coupled-VSM and dual-VSM schemes. To address the nonlinear nature of power system dynamics, sensitivity analysis based on Monte Carlo methods are employed to improve parameter tuning and assess the stability of GSC configurations in the studied systems.
Decentralized Voltage Control of AC Microgrids with Constant Power Loads using Control Barrier Functions
This paper proposes a novel nonlinear decentralized voltage controller for constrained regulation of meshed AC Microgrid networks with high penetration of constant power loads. Perceiving the load demand as an unknown disturbance, the network model is reformulated in a cascaded structure composed of a nominal, i.e. uncertainty-free, and an error subsystem. The latter captures the distance between the true and the nominal state trajectories, for which we prove boundedness via a suitable control barrier function. Under sufficient conditions, we prove asymptotic stability of the cascaded dynamics with respect to an equilibrium set and also provide an estimate of the region of attraction. In addition, it is rigorously shown that the proposed nonlinear control law also enforces constrained regulation around a rated voltage value, without the need of saturation devices. The operation of the closed-loop system is illustrated in a simulation scenario, demonstrating bounded operation and convergence to a neighbourhood of the desired reference vector.
comment: 12 pages
Explicit MPC for the constrained zonotope case with low-rank matrix updates
Solving the explicit Model Predictive Control (MPC) problem requires enumerating all critical regions and their associated feedback laws, a task that scales exponentially with the system dimension and the prediction horizon, as well. When the problem's constraints are boxes or zonotopes, the feasible domain admits a compact constrained-zonotope representation. Building on this insight, we exploit the geometric properties of the equivalent constrained-zonotope reformulation to accelerate the computation of the explicit solution. Specifically, we formulate the multi-parametric problem in the lifted generator space and solve it using second-order optimality conditions, employ low-rank matrix updates to reduce computation time, and introduce an analytic enumeration of candidate active sets that yields the explicit solution in tree form.
A Kullback-Leibler divergence method for input-system-state identification
The capability of a novel Kullback-Leibler divergence method is examined herein within the Kalman filter framework to select the input-parameter-state estimation execution with the most plausible results. This identification suffers from the uncertainty related to obtaining different results from different initial parameter set guesses, and the examined approach uses the information gained from the data in going from the prior to the posterior distribution to address the issue. Firstly, the Kalman filter is performed for a number of different initial parameter sets providing the system input-parameter-state estimation. Secondly, the resulting posterior distributions are compared simultaneously to the initial prior distributions using the Kullback-Leibler divergence. Finally, the identification with the least Kullback-Leibler divergence is selected as the one with the most plausible results. Importantly, the method is shown to select the better performed identification in linear, nonlinear, and limited information applications, providing a powerful tool for system monitoring.
comment: 32 pages, 17 figures, published in Journal of Sound and Vibration
Constrained Performance Boosting Control for Nonlinear Systems via ADMM
We present the Alternating Direction Method of Multipliers for Performance Boosting (ADMM-PB), an approach to design performance boosting controllers for stable or pre-stabilized nonlinear systems, while explicitly seeking input and state constraint satisfaction. Rooted on a recently proposed approach for designing neural-network controllers that guarantees closed-loop stability by design while minimizing generic cost functions, our strategy integrates it within an alternating direction method of multipliers routine to seek constraint handling without modifying the controller structure of the aforementioned seminal strategy. Our numerical results showcase the advantages of the proposed approach over a baseline penalizing constraint violation through barrier-like terms in the cost, indicating that ADMM-PB can lead to considerably lower constraint violations at the price of inducing slightly more cautious closed-loop behaviors.
H-Infinity Filter Enhanced CNN-LSTM for Arrhythmia Detection from Heart Sound Recordings ICSE
Early detection of heart arrhythmia can prevent severe future complications in cardiac patients. While manual diagnosis still remains the clinical standard, it relies heavily on visual interpretation and is inherently subjective. In recent years, deep learning has emerged as a powerful tool to automate arrhythmia detection, offering improved accuracy, consistency, and efficiency. Several variants of convolutional and recurrent neural network architectures have been widely explored to capture spatial and temporal patterns in physiological signals. However, despite these advancements, current models often struggle to generalize well in real-world scenarios, especially when dealing with small or noisy datasets, which are common challenges in biomedical applications. In this paper, a novel CNN-H-Infinity-LSTM architecture is proposed to identify arrhythmic heart signals from heart sound recordings. This architecture introduces trainable parameters inspired by the H-Infinity filter from control theory, enhancing robustness and generalization. Extensive experimentation on the PhysioNet CinC Challenge 2016 dataset, a public benchmark of heart audio recordings, demonstrates that the proposed model achieves stable convergence and outperforms existing benchmarks, with a test accuracy of 99.42% and an F1 score of 98.85%.
comment: This is a preprint of a paper to appear at the 15th IEEE International Conference on Systems Engineering and Technology (ICSET 2025)
ZJUNlict Extended Team Description Paper 2025
This paper presents the ZJUNlict team's work over the past year, covering both hardware and software advancements. In the hardware domain, the integration of an IMU into the v2023 robot was completed to enhance posture accuracy and angular velocity planning. On the software side, key modules were optimized, including the strategy and CUDA modules, with significant improvements in decision making efficiency, ball pursuit prediction, and ball possession prediction to adapt to high-tempo game dynamics.
Performance Analysis of NOMA-Assisted Optical OFDM ISAC Systems with Clipping Distortion
This paper studies the performance of optical orthogonal frequency-division multiplexing (OFDM)-based multi-user integrated sensing and communication (ISAC) systems employing non-orthogonal multiple access (NOMA). Due to their inherent high peak-to-average power ratio (PAPR), OFDM waveforms are clipped to fit the limited dynamic range of the optical transmitters (e.g., light-emitting diodes (LEDs)), resulting in clipping distortion. To alleviate the impact of the distortion, we propose a novel transmitter architecture where the clipping processes are performed before NOMA superposition coding. We then analyze the performance of the proposed optical ISAC systems considering the effects of power allocation and clipping distortion. For the communication subsystem, we analyze the effect of NOMA on the achievable sum rate and bit error rate (BER). For the sensing subsystem, the root mean square error (RMSE) and Cram\'er-Rao bound (CRB) of estimating the transmission distance accuracy are obtained. Simulation results reveal that allocating more power to the strong user yields a higher sum rate, lower BER, and better sensing performance, whereas a more balanced power allocation among users results in degraded BER and sensing performance.
A Reliability-Cost Optimization Framework for EV and DER Integration in Standard and Reconfigurable Distribution Network Topologies
The rapid growth of electric vehicle (EV) adoption poses operational and economic challenges for power distribution systems, including increased line loading levels and network congestions. This may require potential infrastructure reinforcement and expansion. As a fast inexpensive alternative solution, network topology reconfiguration (NTR) offers a practical means to redistribute power flows, reduce operational costs, and defer infrastructure upgrades. This paper presents a linear programming framework to evaluate the impact of varying EV penetration on operational costs under four configurations: standard distribution network (SDN), SDN with NTR (SDNTR), SDN with distributed energy resources (SDN-DER), and SDNTR with DERs (SDNTR-DER). Numerical simulations are conducted on the IEEE 33-bus system. The analysis demonstrates that integrating DERs reduces operational costs, while NTR further enhances system flexibility, enabling higher EV penetration levels without compromising feasibility. The combined SDNTR-DER approach offers the most cost-effective and reliable pathway for accommodating future EV growth while mitigating the need for immediate infrastructure upgrades.
Online Distributed Zeroth-Order Optimization With Non-Zero-Mean Adverse Noises
In this paper, the problem of online distributed zeroth-order optimization subject to a set constraint is studied via a multi-agent network, where each agent can communicate with its immediate neighbors via a time-varying directed graph. Different from the existing works on online distributed zeroth- order optimization, we consider the case where the estimate on the gradients are influenced by some non-zero-mean adverse noises. To handle this problem, we propose a new online dis- tributed zeroth-order mirror descent algorithm involving a kernel function-based estimator and a clipped strategy. Particularly, in the estimator, the kernel function-based strategy is provided to deal with the adverse noises, and eliminate the low-order terms in the Taylor expansions of the objective functions. Furthermore, the performance of the presented algorithm is measured by employing the dynamic regrets, where the offline benchmarks are to find the optimal point at each time. Under the mild assumptions on the graph and the objective functions, we prove that if the variation in the optimal point sequence grows at a certain rate, then the high probability bound of the dynamic regrets increases sublinearly. Finally, a simulation experiment is worked out to demonstrate the effectiveness of our theoretical results.
Near Optimal Convergence to Coarse Correlated Equilibrium in General-Sum Markov Games
No-regret learning dynamics play a central role in game theory, enabling decentralized convergence to equilibrium for concepts such as Coarse Correlated Equilibrium (CCE) or Correlated Equilibrium (CE). In this work, we improve the convergence rate to CCE in general-sum Markov games, reducing it from the previously best-known rate of $\mathcal{O}(\log^5 T / T)$ to a sharper $\mathcal{O}(\log T / T)$. This matches the best known convergence rate for CE in terms of $T$, number of iterations, while also improving the dependence on the action set size from polynomial to polylogarithmic-yielding exponential gains in high-dimensional settings. Our approach builds on recent advances in adaptive step-size techniques for no-regret algorithms in normal-form games, and extends them to the Markovian setting via a stage-wise scheme that adjusts learning rates based on real-time feedback. We frame policy updates as an instance of Optimistic Follow-the-Regularized-Leader (OFTRL), customized for value-iteration-based learning. The resulting self-play algorithm achieves, to our knowledge, the fastest known convergence rate to CCE in Markov games.
Census-Based Population Autonomy For Distributed Robotic Teaming
Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.
comment: 16 pages, 17 figures
Microgrids optimal radial reconfiguration via FORWARD algorithm
Microgrids offer a promising paradigm for integrating distributed energy resources, bolstering energy resilience, and reducing the impact of blackouts. However, their inherent decentralization and dynamic operation present substantial energy management complexities. These complexities, including balancing supply and demand, ensuring system stability, and minimizing operational costs, often necessitate solving computationally intractable NP-hard Mixed-Integer Non-Linear Programming (MINLP) problems. Traditional MINLP solvers struggle with the scalability and feasibility guarantees required for these challenges. To address this, this paper tackles the problem of resource allocation and radial configuration design for microgrid power distribution and proposes and abstracted problem which is solved by introducing a permutation-based iterative search method over the recently introduced FORWARD method to efficiently identify feasible, near-optimal radial network structures while inherently respecting physical constraints. Furthermore, this paper investigates the integration of the proposed method as a warm-start strategy for benchmark MINLP solvers offering a scalable solution for comprehensive microgrid design.
Quantifying Power Systems Resilience Using Statistical Analysis and Bayesian Learning
The increasing frequency and intensity of extreme weather events is significantly affecting the power grid, causing large-scale outages and impacting power system resilience. Yet limited work has been done on systematically modeling the impacts of weather parameters to quantify resilience. This study presents a framework using statistical and Bayesian learning approaches to quantitatively model the relationship between weather parameters and power system resilience metrics. By leveraging real-world publicly available outage and weather data, we identify key weather variables of wind speed, temperature, and precipitation influencing a particular region's resilience metrics. A case study of Cook County, Illinois, and Miami-Dade County, Florida, reveals that these weather parameters are critical factors in resiliency analysis and risk assessment. Additionally, we find that these weather variables have combined effects when studied jointly compared to their effects in isolation. This framework provides valuable insights for understanding how weather events affect power distribution system performance, supporting decision-makers in developing more effective strategies for risk mitigation, resource allocation, and adaptation to changing climatic conditions.
Distributed Incast Detection in Data Center Networks
Incast traffic in data centers can lead to severe performance degradation, such as packet loss and increased latency. Effectively addressing incast requires prompt and accurate detection. Existing solutions, including MA-ECN, BurstRadar and Pulser, typically rely on fixed thresholds of switch port egress queue lengths or their gradients to identify microburst caused by incast flows. However, these queue length related methods often suffer from delayed detection and high error rates. In this study, we propose a distributed incast detection method for data center networks at the switch-level, leveraging a probabilistic hypothesis test with an optimal detection threshold. By analyzing the arrival intervals of new flows, our algorithm can immediately determine if a flow is part of an incast traffic from its initial packet. The experimental results demonstrate that our method offers significant improvements over existing approaches in both detection speed and inference accuracy.
Oscillation Analysis and Damping Control for a Proposed North American AC-DC Macrogrid
In recent years, several studies conducted by both industry and U.S. Department of Energy (DOE)-funded initiatives have proposed linking North America's Eastern and Western Interconnections (EI and WI) through a multiterminal DC (MTDC) macrogrid. These studies have explored the advantages and opportunities of the proposed configuration from the perspectives of capacity sharing and frequency support. However, the potential challenges of small-signal stability arising from this interconnection have not been thoroughly examined. To address this gap, detailed model-based simulation studies are performed in this paper to assess the risks of poorly damped inter-area oscillations in the proposed macrogrid. A custom-built dynamic model of the MTDC system is developed and integrated with industry-grade models of the EI and WI, incorporating high levels of inverter-based energy resources. Through model-based oscillation analysis, potential shifts in inter-area modes for both EI and WI, resulting from the MTDC integration are characterized, and modes with inadequate damping are identified. Furthermore, to mitigate the risks of unstable oscillations, supplementary damping controllers are designed for the MTDC system, leveraging wide-area feedback to modulate active power set points at selected converter stations. A frequency scanning approach is employed for data-driven model linearization and controller synthesis. The damping performance is evaluated under the designed operating conditions and selected contingency scenarios.
Robust reduced-order model predictive control using peak-to-peak analysis of filtered signals
We address the design of a model predictive control (MPC) scheme for large-scale linear systems using reduced-order models (ROMs). Our approach uses a ROM, leverages tools from robust control, and integrates them into an MPC framework to achieve computational tractability with robust constraint satisfaction. Our key contribution is a method to obtain guaranteed bounds on the predicted outputs of the full-order system by predicting a (scalar) error-bounding system alongside the ROM. This bound is then used to formulate a robust ROM-based MPC that guarantees constraint satisfaction and robust performance. Our method is developed step-by-step by (i) analysing the error, (ii) bounding the peak-to-peak gain, an (iii) using filtered signals. We demonstrate our method on a 100-dimensional mass-spring-damper system, achieving over four orders of magnitude reduction in conservatism relative to existing approaches.
comment: Code available at: https://github.com/KohlerJohannes/ROM_MPC_ECC
Observer-based neural networks for flow estimation and control
Neural network observers (NNOs) are proposed for real-time estimation of fluid flows, addressing a key challenge in flow control: obtaining real-time flow states from a limited set of sparse and noisy sensor data. For this task, we propose a generalization of the classical Luenberger observer. In the present framework, the estimation loop is composed of subsystems modeled as neural networks (NNs). By combining flow information from selected probes and an NN surrogate model (NNSM) of the flow system, we train NNOs capable of fusing information to provide the best estimation of the states, that can in turn be fed back to an NN controller (NNC). The NNO capabilities are demonstrated for three nonlinear dynamical systems. First, a variation of the Kuramoto-Sivashinsky (KS) equation with control inputs is studied, where variables are sparsely probed. We show that the NNO is able to track states even when probes are contaminated with random noise or with sensors at insufficient sample rates to match the control time step. Then, a confined cylinder flow is investigated, where velocity signals along the cylinder wake are estimated by using a small set of wall pressure sensors. In both the KS and cylinder problems, we show that the estimated states can be used to enable closed-loop control, taking advantage of stabilizing NNCs. Finally, we present a legacy dataset of a turbulent boundary layer experiment, where convolutional NNs (CNNs) are employed to implement the models required for the estimation loop. We show that, by combining low-resolution noise-corrupted sensor data with an imperfect NNSM, it is possible to produce more accurate estimates, outperforming both the direct reconstructions via specialized super-resolution NNs and the direct model propagation from initial conditions.
Digital Twin-Driven Pavement Health Monitoring and Maintenance Optimization Using Graph Neural Networks
Pavement infrastructure monitoring is challenged by complex spatial dependencies, changing environmental conditions, and non-linear deterioration across road networks. Traditional Pavement Management Systems (PMS) remain largely reactive, lacking real-time intelligence for failure prevention and optimal maintenance planning. To address this, we propose a unified Digital Twin (DT) and Graph Neural Network (GNN) framework for scalable, data-driven pavement health monitoring and predictive maintenance. Pavement segments and spatial relations are modeled as graph nodes and edges, while real-time UAV, sensor, and LiDAR data stream into the DT. The inductive GNN learns deterioration patterns from graph-structured inputs to forecast distress and enable proactive interventions. Trained on a real-world-inspired dataset with segment attributes and dynamic connectivity, our model achieves an R2 of 0.3798, outperforming baseline regressors and effectively capturing non-linear degradation. We also develop an interactive dashboard and reinforcement learning module for simulation, visualization, and adaptive maintenance planning. This DT-GNN integration enhances forecasting precision and establishes a closed feedback loop for continuous improvement, positioning the approach as a foundation for proactive, intelligent, and sustainable pavement management, with future extensions toward real-world deployment, multi-agent coordination, and smart-city integration.
Toward an Agricultural Operational Design Domain: A Framework
The agricultural sector increasingly relies on autonomous systems that operate in complex and variable environments. Unlike on-road applications, agricultural automation integrates driving and working processes, each of which imposes distinct operational constraints. Handling this complexity and ensuring consistency throughout the development and validation processes requires a structured, transparent, and verified description of the environment. However, existing Operational Design Domain (ODD) concepts do not yet address the unique challenges of agricultural applications. Therefore, this work introduces the Agricultural ODD (Ag-ODD) Framework, which can be used to describe and verify the operational boundaries of autonomous agricultural systems. The Ag-ODD Framework consists of three core elements. First, the Ag-ODD description concept, which provides a structured method for unambiguously defining environmental and operational parameters using concepts from ASAM Open ODD and CityGML. Second, the 7-Layer Model derived from the PEGASUS 6-Layer Model, has been extended to include a process layer to capture dynamic agricultural operations. Third, the iterative verification process verifies the Ag-ODD against its corresponding logical scenarios, derived from the 7-Layer Model, to ensure the Ag-ODD's completeness and consistency. Together, these elements provide a consistent approach for creating unambiguous and verifiable Ag-ODD. Demonstrative use cases show how the Ag-ODD Framework can support the standardization and scalability of environmental descriptions for autonomous agricultural systems.
comment: 18 pages, 7 figures, 2 tables
Analytical modelling of a stop-less modular bus service with an application to charging strategies comparison
Buses are a vital component of metropolitan public transport, yet conventional bus services often struggle with inefficiencies including extended dwelling time, which increases in-vehicle travel time for non-alighting passengers. A stop-less autonomous modular (SLAM) bus service has emerged as a solution, enabling dynamic capacity to reduce dwelling time. Meanwhile, the electrification of buses is advancing as a strategy to mitigate greenhouse gas emissions and reduces operators' costs, but introduces new operational constraints due to charging requirements. This study develops analytical optimization models for SLAM bus service that integrates vehicle-to-vehicle (V2V) charging technology. By comparing the optimal designs and their feasibility across non-charging case and charging strategies, we identify a sequence of operational stages as ridership grows: from idle capacity under low demand, to full small buses, full large buses, and a proposed frequency-capped regime where only bus capacity expands. Under the mobile charging strategy, this progression further includes an energy-limited regime, in which frequency declines, and ultimately infeasibility under high demand. These findings enable operators to deliver more efficient services.
Guided Bayesian Optimization: Data-Efficient Controller Tuning with Digital Twin
This article presents the guided Bayesian optimization algorithm as an efficient data-driven method for iteratively tuning closed-loop controller parameters using an event-triggered digital twin of the system based on available closed-loop data. We define a controller tuning framework independent of the controller or the plant structure. Our proposed methodology is model-free, making it suitable for nonlinear and unmodelled plants with measurement noise. The objective function consists of performance metrics modeled by Gaussian processes. We utilize the available information in the closed-loop system to identify and progressively maintain a digital twin that guides the optimizer, improving the data efficiency of our method. Switching the digital twin on and off is triggered by data-driven criteria related to the digital twin's uncertainty estimations in the BO tuning framework. Effectively, it replaces much of the exploration of the real system with exploration performed on the digital twin. We analyze the properties of our method in simulation and demonstrate its performance on two real closed-loop systems with different plant and controller structures. The experimental results show that our method requires fewer experiments on the physical plant than Bayesian optimization to find the optimal controller parameters.
comment: This work has been published in IEEE Transactions on Automation Science and Engineering
Drift Plus Optimistic Penalty: A Learning Framework for Stochastic Network Optimization with Improved Regret Bounds
We consider the problem of joint routing and scheduling in queueing networks, where the edge transmission costs are unknown. At each time-slot, the network controller receives noisy observations of transmission costs only for those edges it selects for transmission. The network controller's objective is to make routing and scheduling decisions so that the total expected cost is minimized. This problem exhibits an exploration-exploitation trade-off, however, previous bandit-style solutions cannot be directly applied to this problem due to the queueing dynamics. In order to ensure network stability, the network controller needs to optimize throughput and cost simultaneously. We show that the best achievable cost is lower bounded by the solution to a static optimization problem, and develop a network control policy using techniques from Lyapunov drift-plus-penalty optimization and multi-arm bandits. We show that the policy achieves a sub-linear regret of order $O(\sqrt{T}\log T)$, as compared to the best policy that has complete knowledge of arrivals and costs. Finally, we evaluate the proposed policy using simulations and show that its regret is indeed sub-linear.
Constrained Optimal Fuel Consumption of HEVs under Observational Noise
In our prior work, we investigated the minimum fuel consumption of a hybrid electric vehicle (HEV) under a state-of-charge (SOC) balance constraint, assuming perfect SOC measurements and accurate reference speed profiles. The constrained optimal fuel consumption (COFC) problem was addressed using a constrained reinforcement learning (CRL) framework. However, in real-world scenarios, SOC readings are often corrupted by sensor noise, and reference speeds may deviate from actual driving conditions. To account for these imperfections, this study reformulates the COFC problem by explicitly incorporating observational noise in both SOC and reference speed. We adopt a robust CRL approach, where the noise is modeled as a uniform distribution, and employ a structured training procedure to ensure stability. The proposed method is evaluated through simulations on the Toyota Prius hybrid system (THS), using both the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). Results show that fuel consumption and SOC constraint satisfaction remain robust across varying noise levels. Furthermore, the analysis reveals that observational noise in SOC and speed can impact fuel consumption to different extents. To the best of our knowledge, this is the first study to explicitly examine how observational noise -- commonly encountered in dynamometer testing and predictive energy control (PEC) applications -- affects constrained optimal fuel consumption in HEVs.
comment: Minor text and figure adjustments; no substantive changes
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of aerial vehicles is a key requirement in applications ranging from missile guidance to UAV collision avoidance. While most prediction methods assume deterministic target motion, real-world targets often exhibit stochastic behaviors such as evasive maneuvers or random gliding patterns. This paper introduces a probabilistic framework based on Conditional Normalizing Flows (CNFs) to model and predict such stochastic dynamics directly from trajectory data. The learned model generates probability distributions of future target positions conditioned on initial states and dynamic parameters, enabling efficient sampling and exact density evaluation. To provide deterministic surrogates compatible with existing guidance and planning algorithms, sampled trajectories are clustered using a time series k-means approach, yielding a set of representative "virtual target" trajectories. The method is target-agnostic, computationally efficient, and requires only trajectory data for training, making it suitable as a drop-in replacement for deterministic predictors. Simulated scenarios with maneuvering and ballistic targets demonstrate that the proposed approach bridges the gap between deterministic assumptions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: Manuscript accepted by Journal of Guidance, Control, and Dynamics
Constrained computational hybrid controller for Input Affine Hybrid Dynamical Systems
Hybrid dynamical systems are viewed as the most complicated systems with continuous and event-based behaviors. Since traditional controllers cannot handle these systems, some newly-developed controllers have been published in recent decades to deal with them. This paper presents a novel implementable constrained final-state controller based on partitioning the system's state-space, computational simulations, and graph theory. Experimental results and a comparison with Model Predictive Controller on the three tank benchmark and swing-up control of a pendulum show the effectiveness of the proposed Computational Hybrid Controller(CHC).
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
comment: European Control Conference 2025 (ECC), Thessaloniki, Greece
Chance-Constrained Neural MPC under Uncontrollable Agents via Sequential Convex Programming
This work investigates the challenge of ensuring safety guarantees under uncontrollable agents whose behaviors are stochastic and depend on both their own and the system's states. We present a neural model predictive control (MPC) framework that predicts the trajectory of the uncontrollable agent using a predictor learned from offline data. To provide probabilistic guarantees on prediction errors, we employ split conformal prediction to construct region-specific, time-dependent uncertainty bounds, which are integrated into the MPC formulation. To solve the resulting non-convex, discontinuous optimization problem, we propose a two-loop iterative sequential convex programming algorithm. The inner loop solves convexified subproblems with fixed error bounds, while the outer loop refines these bounds based on updated control sequences. We establish convergence guarantees under mild regularity conditions and demonstrate the optimality of the algorithm. We illustrate our method with an autonomous driving scenario involving interactive pedestrians. Experimental results demonstrate that our approach achieves superior safety and efficiency compared to baseline methods, with success rates exceeding 99.5\% while maintaining higher average speeds in multi-pedestrian scenarios.
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models NeurIPS 2025
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), which uses the agent's own policy to simulate future states. A Message Generation Network (MGN) then compresses this plan into a message. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems, while scaling environmental complexity. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
comment: Published in the Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments for Agents (SEA). Additionally accepted for presentation in the NeurIPS 2025 Workshop: Embodied World Models for Decision Making (EWM) and the NeurIPS 2025 Workshop: Optimization for Machine Learning (OPT)
Neural Network Aided Kalman Filtering with Model Predictive Control Enables Robot-Assisted Drone Recovery on a Wavy Surface
Recovering a drone on a disturbed water surface remains a significant challenge in maritime robotics. In this paper, we propose a unified framework for robot-assisted drone recovery on a wavy surface that addresses two major tasks: Firstly, accurate prediction of a moving drone's position under wave-induced disturbances using KalmanNet Plus Plus (KalmanNet++), a Neural Network Aided Kalman Filtering we proposed. Secondly, effective motion planning using the desired position we got for a manipulator via Receding Horizon Model Predictive Control (RHMPC). Specifically, we compared multiple prediction methods and proposed KalmanNet Plus Plus to predict the position of the UAV, thereby obtaining the desired position. The KalmanNet++ predicts the drone's future position 0.1\,s ahead, while the manipulator plans a capture trajectory in real time, thus overcoming not only wave-induced base motions but also limited constraints such as torque constraints and joint constraints. For the system design, we provide a collaborative system, comprising a manipulator subsystem and a UAV subsystem, enables drone lifting and drone recovery. Simulation and real-world experiments using wave-disturbed motion data demonstrate that our approach achieves a high success rate - above 95\% and outperforms conventional baseline methods by up to 10\% in efficiency and 20\% in precision. The results underscore the feasibility and robustness of our system, which achieves state-of-the-art performance and offers a practical solution for maritime drone operations.
comment: 17 pages, 51 figures
On the Number of Control Nodes in Boolean Networks with Degree Constraints
This paper studies the minimum control node set problem for Boolean networks (BNs) with degree constraints. The main contribution is to derive the nontrivial lower and upper bounds on the size of the minimum control node set through combinatorial analysis of four types of BNs (i.e., $k$-$k$-XOR-BNs, simple $k$-$k$-AND-BNs, $k$-$k$-AND-BNs with negation and $k$-$k$-NC-BNs, where the $k$-$k$-AND-BN with negation is an extension of the simple $k$-$k$-AND-BN that considers the occurrence of negation and NC means nested canalyzing). More specifically, four bounds for the size of the minimum control node set: general lower bound, best case upper bound, worst case lower bound, and general upper bound are studied. By dividing nodes into three disjoint sets, extending the time to reach the target state, and utilizing necessary conditions for controllability, these bounds are obtained, and further meaningful results and phenomena are discovered. Notably, all of the above results involving the AND function also apply to the OR function.
comment: 35 pages, 9 figures
Machine Learning-assisted Dynamics-Constrained Day-Ahead Energy Scheduling
TThe rapid expansion of inverter-based resources, such as wind and solar power plants, will significantly diminish the presence of conventional synchronous generators in fu-ture power grids with rich renewable energy sources. This transition introduces in-creased complexity and reduces dynamic stability in system operation and control, with low inertia being a widely recognized challenge. However, the literature has not thoroughly explored grid dynamic performance associated with energy scheduling so-lutions that traditionally only consider grid steady-state constraints. This paper will bridge the gap by enforcing grid dynamic constraints when conducting optimal energy scheduling; particularly, this paper explores locational post-contingency rate of change of frequency (RoCoF) requirements to accommodate substantial inertia reductions. This paper introduces a machine learning-assisted RoCoF-constrained unit commit-ment (ML-RCUC) model designed to ensure RoCoF stability after the most severe generator outage while maintaining operational efficiency. A graph-informed NN (GINN)-based RoCoF predictor is first trained on a high-fidelity simulation dataset to track the highest locational RoCoF, which is then reformulated as mixed-integer linear programming constraints that are integrated into the unit commitment model. Case studies, by solving the optimization problem ML-RCUC and validating its solutions with time-domain simulations, demonstrate that the proposed method can ensure loca-tional RoCoF stability with minimum conservativeness.
Improving the Accuracy of DC Optimal Power Flow Formulations via Parameter Optimization
DC Optimal Power Flow (DC-OPF) problems optimize the generators' active power setpoints while satisfying constraints based on the DC power flow linearization. The computational tractability advantages of DC-OPF problems come at the expense of inaccuracies relative to AC Optimal Power Flow (AC-OPF) problems that accurately model the nonlinear steady-state behavior of power grids. This paper proposes an algorithm that significantly improves the accuracy of the generators' active power setpoints from DC-OPF problems with respect to the corresponding AC-OPF problems over a specified range of operating conditions. Using sensitivity information in a machine learning-inspired methodology, this algorithm tunes coefficient and bias parameters in the DC power flow approximation to improve the accuracy of the resulting DC-OPF solutions. Employing the Truncated Newton Conjugate-Gradient (TNC) method -- a Quasi-Newton optimization technique -- this parameter tuning occurs during an offline training phase, with the resulting parameters then used in online computations. Numerical results underscore the algorithm's efficacy with accuracy improvements in squared two-norm and $\infty$-norm losses of up to $90\%$ and $79\%$, respectively, relative to traditional DC-OPF formulations.
Human-Exoskeleton Kinematic Calibration to Improve Hand Tracking for Dexterous Teleoperation
Hand exoskeletons are critical tools for dexterous teleoperation and immersive manipulation interfaces, but achieving accurate hand tracking remains a challenge due to user-specific anatomical variability and donning inconsistencies. These issues lead to kinematic misalignments that degrade tracking performance and limit applicability in precision tasks. We propose a subject-specific calibration framework for exoskeleton-based hand tracking that estimates virtual link parameters through residual-weighted optimization. A data-driven approach is introduced to empirically tune cost function weights using motion capture ground truth, enabling accurate and consistent calibration across users. Implemented on the Maestro hand exoskeleton with seven healthy participants, the method achieved substantial reductions in joint and fingertip tracking errors across diverse hand geometries. Qualitative visualizations using a Unity-based virtual hand further demonstrate improved motion fidelity. The proposed framework generalizes to exoskeletons with closed-loop kinematics and minimal sensing, laying the foundation for high-fidelity teleoperation and robot learning applications.
comment: 8 pages, 10 figures, 1 supplementary video, submitted to RA-L
Robotics
TACO: Trajectory-Aware Controller Optimization for Quadrotors ICRA 2026
Controller performance in quadrotor trajectory tracking depends heavily on parameter tuning, yet standard approaches often rely on fixed, manually tuned parameters that sacrifice task-specific performance. We present Trajectory-Aware Controller Optimization (TACO), a framework that adapts controller parameters online based on the upcoming reference trajectory and current quadrotor state. TACO employs a learned predictive model and a lightweight optimization scheme to optimize controller gains in real time with respect to a broad class of trajectories, and can also be used to adapt trajectories to improve dynamic feasibility while respecting smoothness constraints. To enable large-scale training, we also introduce a parallelized quadrotor simulator supporting fast data collection on diverse trajectories. Experiments on a variety of trajectory types show that TACO outperforms conventional, static parameter tuning while operating orders of magnitude faster than black-box optimization baselines, enabling practical real-time deployment on a physical quadrotor. Furthermore, we show that adapting trajectories using TACO significantly reduces the tracking error obtained by the quadrotor.
comment: 8 pages, 6 figures. In submission to ICRA 2026
TurboMap: GPU-Accelerated Local Mapping for Visual SLAM ICRA 2026
This paper presents TurboMap, a GPU-accelerated and CPU-optimized local mapping module for visual SLAM systems. We identify key performance bottlenecks in the local mapping process for visual SLAM and address them through targeted GPU and CPU optimizations. Specifically, we offload map point triangulation and fusion to the GPU, accelerate redundant keyframe culling on the CPU, and integrate a GPU-accelerated solver to speed up local bundle adjustment. Our implementation is built on top of ORB-SLAM3 and leverages CUDA for GPU programming. The experimental results show that TurboMap achieves an average speedup of 1.3x in the EuRoC dataset and 1.6x in the TUM-VI dataset in the local mapping module, on both desktop and embedded platforms, while maintaining the accuracy of the original system.
comment: Submitted to ICRA 2026
Path-Coordinated Continual Learning with Neural Tangent Kernel-Justified Plasticity: A Theoretical Framework with Near State-of-the-Art Performance
Catastrophic forgetting is one of the fundamental issues of continual learning because neural networks forget the tasks learned previously when trained on new tasks. The proposed framework is a new path-coordinated framework of continual learning that unites the Neural Tangent Kernel (NTK) theory of principled plasticity bounds, statistical validation by Wilson confidence intervals, and evaluation of path quality by the use of multiple metrics. Experimental evaluation shows an average accuracy of 66.7% at the cost of 23.4% catastrophic forgetting on Split-CIFAR10, a huge improvement over the baseline and competitive performance achieved, which is very close to state-of-the-art results. Further, it is found out that NTK condition numbers are predictive indicators of learning capacity limits, showing the existence of a critical threshold at condition number $>10^{11}$. It is interesting to note that the proposed strategy shows a tendency of lowering forgetting as the sequence of tasks progresses (27% to 18%), which is a system stabilization. The framework validates 80% of discovered paths with a rigorous statistical guarantee and maintains 90-97% retention on intermediate tasks. The core capacity limits of the continual learning environment are determined in the analysis, and actionable insights to enhance the adaptive regularization are offered.
comment: Under review, IEEE Letters
Stein-based Optimization of Sampling Distributions in Model Predictive Path Integral Control
This paper presents a novel method for Model Predictive Path Integral (MPPI) control that optimizes sample generation towards an optimal trajectory through Stein Variational Gradient Descent (SVGD). MPPI is traditionally reliant on randomly sampled trajectories, often by a Gaussian distribution. The result can lead to sample deprivation, under-representing the space of possible trajectories, and yield suboptimal results. Through introducing SVGD updates in between MPPI environment steps, we present Stein-Optimized Path-Integral Inference (SOPPI), an MPPI/SVGD algorithm that can dynamically update noise distributions at runtime to shape a more optimal representation without an excessive increase in computational requirements. We demonstrate the efficacy of our method systems ranging from a Cart-Pole to a two-dimensional bipedal walking task, indicating improved performance above standard MPPI across a range of hyper-parameters and demonstrate feasibility at lower particle counts. We discuss the applicability of this MPPI/SVGD method to higher degree-of-freedom systems, as well as its potential to new developments in state-of-the-art differentiable simulators.
comment: 8 pages, 6 figures
TRACE: Textual Reasoning for Affordance Coordinate Extraction ICCV 2025
Vision-Language Models (VLMs) struggle to translate high-level instructions into the precise spatial affordances required for robotic manipulation. While visual Chain-of-Thought (CoT) methods exist, they are often computationally intensive. In this work, we introduce TRACE (Textual Reasoning for Affordance Coordinate Extraction), a novel methodology that integrates a textual Chain of Reasoning (CoR) into the affordance prediction process. We use this methodology to create the TRACE dataset, a large-scale collection created via an autonomous pipeline that pairs instructions with explicit textual rationales. By fine-tuning a VLM on this data, our model learns to externalize its spatial reasoning before acting. Our experiments show that our TRACE-tuned model achieves state-of-the-art performance, reaching 48.1% accuracy on the primary Where2Place (W2P) benchmark (a 9.6% relative improvement) and 55.0% on the more challenging W2P(h) subset. Crucially, an ablation study demonstrates that performance scales directly with the amount of reasoning data used, confirming the CoR's effectiveness. Furthermore, analysis of the model's attention maps reveals an interpretable reasoning process where focus shifts dynamically across reasoning steps. This work shows that training VLMs to generate a textual CoR is an effective and robust strategy for enhancing the precision, reliability, and interpretability of VLM-based robot control. Our dataset and code are available at https://github.com/jink-ucla/TRACE
comment: ICCV 2025. *Equal contribution. {\dag}Corresponding author
Hybrid Neural Network-Based Indoor Localisation System for Mobile Robots Using CSI Data in a Robotics Simulator
We present a hybrid neural network model for inferring the position of mobile robots using Channel State Information (CSI) data from a Massive MIMO system. By leveraging an existing CSI dataset, our approach integrates a Convolutional Neural Network (CNN) with a Multilayer Perceptron (MLP) to form a Hybrid Neural Network (HyNN) that estimates 2D robot positions. CSI readings are converted into synthetic images using the TINTO tool. The localisation solution is integrated with a robotics simulator, and the Robot Operating System (ROS), which facilitates its evaluation through heterogeneous test cases, and the adoption of state estimators like Kalman filters. Our contributions illustrate the potential of our HyNN model in achieving precise indoor localisation and navigation for mobile robots in complex environments. The study follows, and proposes, a generalisable procedure applicable beyond the specific use case studied, making it adaptable to different scenarios and datasets.
comment: 13 pages, 7 figures. Conference paper (ROBOVIS 2025)
Fractional Diffusion Bridge Models NeurIPS 2025
We present Fractional Diffusion Bridge Models (FDBM), a novel generative diffusion bridge framework driven by an approximation of the rich and non-Markovian fractional Brownian motion (fBM). Real stochastic processes exhibit a degree of memory effects (correlations in time), long-range dependencies, roughness and anomalous diffusion phenomena that are not captured in standard diffusion or bridge modeling due to the use of Brownian motion (BM). As a remedy, leveraging a recent Markovian approximation of fBM (MA-fBM), we construct FDBM that enable tractable inference while preserving the non-Markovian nature of fBM. We prove the existence of a coupling-preserving generative diffusion bridge and leverage it for future state prediction from paired training data. We then extend our formulation to the Schr\"{o}dinger bridge problem and derive a principled loss function to learn the unpaired data translation. We evaluate FDBM on both tasks: predicting future protein conformations from aligned data, and unpaired image translation. In both settings, FDBM achieves superior performance compared to the Brownian baselines, yielding lower root mean squared deviation (RMSD) of C$_\alpha$ atomic positions in protein structure prediction and lower Fr\'echet Inception Distance (FID) in unpaired image translation.
comment: To appear in NeurIPS 2025 proceedings. This version includes post-camera-ready revisions
GenDexHand: Generative Simulation for Dexterous Hands
Data scarcity remains a fundamental bottleneck for embodied intelligence. Existing approaches use large language models (LLMs) to automate gripper-based simulation generation, but they transfer poorly to dexterous manipulation, which demands more specialized environment design. Meanwhile, dexterous manipulation tasks are inherently more difficult due to their higher degrees of freedom. Massively generating feasible and trainable dexterous hand tasks remains an open challenge. To this end, we present GenDexHand, a generative simulation pipeline that autonomously produces diverse robotic tasks and environments for dexterous manipulation. GenDexHand introduces a closed-loop refinement process that adjusts object placements and scales based on vision-language model (VLM) feedback, substantially improving the average quality of generated environments. Each task is further decomposed into sub-tasks to enable sequential reinforcement learning, reducing training time and increasing success rates. Our work provides a viable path toward scalable training of diverse dexterous hand behaviors in embodied intelligence by offering a simulation-based solution to synthetic data generation. Our website: https://winniechen2002.github.io/GenDexHand/.
MOBIUS: A Multi-Modal Bipedal Robot that can Walk, Crawl, Climb, and Roll
This article presents a Multi-Modal Bipedal Intelligent Urban Scout robot (MOBIUS) capable of walking, crawling, climbing, and rolling. MOBIUS features four limbs--two 6-DoF arms with two-finger grippers for manipulation and climbing, and two 4-DoF legs for locomotion--enabling smooth transitions across diverse terrains without reconfiguration. A hybrid control architecture combines reinforcement learning-based locomotion with model-based predictive and admittance control enhanced for safety by a Reference Governor toward compliant contact interactions. A high-level MIQCP planner autonomously selects locomotion modes to balance stability and energy efficiency. Hardware experiments demonstrate robust gait transitions, dynamic climbing, and full-body load support via pinch grasp. Overall, MOBIUS demonstrates the importance of tight integration between morphology, high-level planning, and control to enable mobile loco-manipulation and grasping, substantially expanding its interaction capabilities, workspace, and traversability.
comment: 23 pages, 20 figures. Collaborative work between the Robotics and Mechanisms Laboratory (RoMeLa) and Mitsubishi Electric Research Laboratories (MERL)
Lightweight Learning from Actuation-Space Demonstrations via Flow Matching for Whole-Body Soft Robotic Grasping
Robotic grasping under uncertainty remains a fundamental challenge due to its uncertain and contact-rich nature. Traditional rigid robotic hands, with limited degrees of freedom and compliance, rely on complex model-based and heavy feedback controllers to manage such interactions. Soft robots, by contrast, exhibit embodied mechanical intelligence: their underactuated structures and passive flexibility of their whole body, naturally accommodate uncertain contacts and enable adaptive behaviors. To harness this capability, we propose a lightweight actuation-space learning framework that infers distributional control representations for whole-body soft robotic grasping, directly from deterministic demonstrations using a flow matching model (Rectified Flow),without requiring dense sensing or heavy control loops. Using only 30 demonstrations (less than 8% of the reachable workspace), the learned policy achieves a 97.5% grasp success rate across the whole workspace, generalizes to grasped-object size variations of +-33%, and maintains stable performance when the robot's dynamic response is directly adjusted by scaling the execution time from 20% to 200%. These results demonstrate that actuation-space learning, by leveraging its passive redundant DOFs and flexibility, converts the body's mechanics into functional control intelligence and substantially reduces the burden on central controllers for this uncertain-rich task.
3EED: Ground Everything Everywhere in 3D NeurIPS 2025
Visual grounding in 3D is the key for embodied agents to localize language-referred objects in open-world environments. However, existing benchmarks are limited to indoor focus, single-platform constraints, and small scale. We introduce 3EED, a multi-platform, multi-modal 3D grounding benchmark featuring RGB and LiDAR data from vehicle, drone, and quadruped platforms. We provide over 128,000 objects and 22,000 validated referring expressions across diverse outdoor scenes -- 10x larger than existing datasets. We develop a scalable annotation pipeline combining vision-language model prompting with human verification to ensure high-quality spatial grounding. To support cross-platform learning, we propose platform-aware normalization and cross-modal alignment techniques, and establish benchmark protocols for in-domain and cross-platform evaluations. Our findings reveal significant performance gaps, highlighting the challenges and opportunities of generalizable 3D grounding. The 3EED dataset and benchmark toolkit are released to advance future research in language-driven 3D embodied perception.
comment: NeurIPS 2025 DB Track; 29 pages, 17 figures, 10 tables; Project Page at https://project-3eed.github.io/
Unified Diffusion VLA: Vision-Language-Action Model via Joint Discrete Denoising Diffusion Process
Vision-language-action (VLA) models aim to understand natural language instructions and visual observations and to execute corresponding actions as an embodied agent. Recent work integrates future images into the understanding-acting loop, yielding unified VLAs that jointly understand, generate, and act -- reading text and images and producing future images and actions. However, these models either rely on external experts for modality unification or treat image generation and action prediction as separate processes, limiting the benefits of direct synergy between these tasks. Our core philosophy is to optimize generation and action jointly through a synchronous denoising process, where the iterative refinement enables actions to evolve from initialization, under constant and sufficient visual guidance. We ground this philosophy in our proposed Unified Diffusion VLA and Joint Discrete Denoising Diffusion Process (JD3P), which is a joint diffusion process that integrates multiple modalities into a single denoising trajectory to serve as the key mechanism enabling understanding, generation, and acting to be intrinsically synergistic. Our model and theory are built on a unified tokenized space of all modalities and a hybrid attention mechanism. We further propose a two-stage training pipeline and several inference-time techniques that optimize performance and efficiency. Our approach achieves state-of-the-art performance on benchmarks such as CALVIN, LIBERO, and SimplerEnv with 4$\times$ faster inference than autoregressive methods, and we demonstrate its effectiveness through in-depth analysis and real-world evaluations. Our project page is available at https://irpn-eai.github.io/UD-VLA.github.io/.
MARS: Multi-Agent Robotic System with Multimodal Large Language Models for Assistive Intelligence
Multimodal large language models (MLLMs) have shown remarkable capabilities in cross-modal understanding and reasoning, offering new opportunities for intelligent assistive systems, yet existing systems still struggle with risk-aware planning, user personalization, and grounding language plans into executable skills in cluttered homes. We introduce MARS - a Multi-Agent Robotic System powered by MLLMs for assistive intelligence and designed for smart home robots supporting people with disabilities. The system integrates four agents: a visual perception agent for extracting semantic and spatial features from environment images, a risk assessment agent for identifying and prioritizing hazards, a planning agent for generating executable action sequences, and an evaluation agent for iterative optimization. By combining multimodal perception with hierarchical multi-agent decision-making, the framework enables adaptive, risk-aware, and personalized assistance in dynamic indoor environments. Experiments on multiple datasets demonstrate the superior overall performance of the proposed system in risk-aware planning and coordinated multi-agent execution compared with state-of-the-art multimodal models. The proposed approach also highlights the potential of collaborative AI for practical assistive scenarios and provides a generalizable methodology for deploying MLLM-enabled multi-agent systems in real-world environments.
comment: 3 figures, 1 table; under review at Multimedia Systems (Springer)
PixelVLA: Advancing Pixel-level Understanding in Vision-Language-Action Model
Vision-Language-Action models (VLAs) are emerging as powerful tools for learning generalizable visuomotor control policies. However, current VLAs are mostly trained on large-scale image-text-action data and remain limited in two key ways: (i) they struggle with pixel-level scene understanding, and (ii) they rely heavily on textual prompts, which reduces their flexibility in real-world settings. To address these challenges, we introduce PixelVLA, the first VLA model designed to support both pixel-level reasoning and multimodal prompting with text and visual inputs. Our approach is built on a new visuomotor instruction tuning framework that integrates a multiscale pixel-aware encoder with a visual prompting encoder. To train PixelVLA effectively, we further propose a two-stage automated annotation pipeline that generates Pixel-160K, a large-scale dataset with pixel-level annotations derived from existing robot data. Experiments on three standard VLA benchmarks and two VLA model variants show that PixelVLA improves manipulation success rates by 10.1%-17.8% over OpenVLA, while requiring only 1.5% of its pretraining cost. These results demonstrate that PixelVLA can be integrated into existing VLAs to enable more accurate, efficient, and versatile robot control in complex environments. The dataset and code will be released as open source.
comment: 17pages,7 figures, 5 tabels
Phy-Tac: Toward Human-Like Grasping via Physics-Conditioned Tactile Goals
Humans naturally grasp objects with minimal level required force for stability, whereas robots often rely on rigid, over-squeezing control. To narrow this gap, we propose a human-inspired physics-conditioned tactile method (Phy-Tac) for force-optimal stable grasping (FOSG) that unifies pose selection, tactile prediction, and force regulation. A physics-based pose selector first identifies feasible contact regions with optimal force distribution based on surface geometry. Then, a physics-conditioned latent diffusion model (Phy-LDM) predicts the tactile imprint under FOSG target. Last, a latent-space LQR controller drives the gripper toward this tactile imprint with minimal actuation, preventing unnecessary compression. Trained on a physics-conditioned tactile dataset covering diverse objects and contact conditions, the proposed Phy-LDM achieves superior tactile prediction accuracy, while the Phy-Tac outperforms fixed-force and GraspNet-based baselines in grasp stability and force efficiency. Experiments on classical robotic platforms demonstrate force-efficient and adaptive manipulation that bridges the gap between robotic and human grasping.
comment: 9 papges, 10 figures, 3 tables
Discriminately Treating Motion Components Evolves Joint Depth and Ego-Motion Learning
Unsupervised learning of depth and ego-motion, two fundamental 3D perception tasks, has made significant strides in recent years. However, most methods treat ego-motion as an auxiliary task, either mixing all motion types or excluding depth-independent rotational motions in supervision. Such designs limit the incorporation of strong geometric constraints, reducing reliability and robustness under diverse conditions. This study introduces a discriminative treatment of motion components, leveraging the geometric regularities of their respective rigid flows to benefit both depth and ego-motion estimation. Given consecutive video frames, network outputs first align the optical axes and imaging planes of the source and target cameras. Optical flows between frames are transformed through these alignments, and deviations are quantified to impose geometric constraints individually on each ego-motion component, enabling more targeted refinement. These alignments further reformulate the joint learning process into coaxial and coplanar forms, where depth and each translation component can be mutually derived through closed-form geometric relationships, introducing complementary constraints that improve depth robustness. DiMoDE, a general depth and ego-motion joint learning framework incorporating these designs, achieves state-of-the-art performance on multiple public datasets and a newly collected diverse real-world dataset, particularly under challenging conditions. Our source code will be publicly available at mias.group/DiMoDE upon publication.
comment: 18 pages, 14 figures
SE(3)-PoseFlow: Estimating 6D Pose Distributions for Uncertainty-Aware Robotic Manipulation
Object pose estimation is a fundamental problem in robotics and computer vision, yet it remains challenging due to partial observability, occlusions, and object symmetries, which inevitably lead to pose ambiguity and multiple hypotheses consistent with the same observation. While deterministic deep networks achieve impressive performance under well-constrained conditions, they are often overconfident and fail to capture the multi-modality of the underlying pose distribution. To address these challenges, we propose a novel probabilistic framework that leverages flow matching on the SE(3) manifold for estimating 6D object pose distributions. Unlike existing methods that regress a single deterministic output, our approach models the full pose distribution with a sample-based estimate and enables reasoning about uncertainty in ambiguous cases such as symmetric objects or severe occlusions. We achieve state-of-the-art results on Real275, YCB-V, and LM-O, and demonstrate how our sample-based pose estimates can be leveraged in downstream robotic manipulation tasks such as active perception for disambiguating uncertain viewpoints or guiding grasp synthesis in an uncertainty-aware manner.
Floor Plan-Guided Visual Navigation Incorporating Depth and Directional Cues
Guiding an agent to a specific target in indoor environments based solely on RGB inputs and a floor plan is a promising yet challenging problem. Although existing methods have made significant progress, two challenges remain unresolved. First, the modality gap between egocentric RGB observations and the floor plan hinders the integration of visual and spatial information for both local obstacle avoidance and global planning. Second, accurate localization is critical for navigation performance, but remains challenging at deployment in unseen environments due to the lack of explicit geometric alignment between RGB inputs and floor plans. We propose a novel diffusion-based policy, denoted as GlocDiff, which integrates global path planning from the floor plan with local depth-aware features derived from RGB observations. The floor plan offers explicit global guidance, while the depth features provide implicit geometric cues, collectively enabling precise prediction of optimal navigation directions and robust obstacle avoidance. Moreover, GlocDiff introduces noise perturbation during training to enhance robustness against pose estimation errors, and we find that combining this with a relatively stable VO module during inference results in significantly improved navigation performance. Extensive experiments on the FloNa benchmark demonstrate GlocDiff's efficiency and effectiveness in achieving superior navigation performance, and the success of real-world deployments also highlights its potential for widespread practical applications.
MO-SeGMan: Rearrangement Planning Framework for Multi Objective Sequential and Guided Manipulation in Constrained Environments
In this work, we introduce MO-SeGMan, a Multi-Objective Sequential and Guided Manipulation planner for highly constrained rearrangement problems. MO-SeGMan generates object placement sequences that minimize both replanning per object and robot travel distance while preserving critical dependency structures with a lazy evaluation method. To address highly cluttered, non-monotone scenarios, we propose a Selective Guided Forward Search (SGFS) that efficiently relocates only critical obstacles and to feasible relocation points. Furthermore, we adopt a refinement method for adaptive subgoal selection to eliminate unnecessary pick-and-place actions, thereby improving overall solution quality. Extensive evaluations on nine benchmark rearrangement tasks demonstrate that MO-SeGMan generates feasible motion plans in all cases, consistently achieving faster solution times and superior solution quality compared to the baselines. These results highlight the robustness and scalability of the proposed framework for complex rearrangement planning problems.
comment: 8 pages, 8 figures, website:https://sites.google.com/view/mo-segman/
AERMANI-VLM: Structured Prompting and Reasoning for Aerial Manipulation with Vision Language Models
The rapid progress of vision--language models (VLMs) has sparked growing interest in robotic control, where natural language can express the operation goals while visual feedback links perception to action. However, directly deploying VLM-driven policies on aerial manipulators remains unsafe and unreliable since the generated actions are often inconsistent, hallucination-prone, and dynamically infeasible for flight. In this work, we present AERMANI-VLM, the first framework to adapt pretrained VLMs for aerial manipulation by separating high-level reasoning from low-level control, without any task-specific fine-tuning. Our framework encodes natural language instructions, task context, and safety constraints into a structured prompt that guides the model to generate a step-by-step reasoning trace in natural language. This reasoning output is used to select from a predefined library of discrete, flight-safe skills, ensuring interpretable and temporally consistent execution. By decoupling symbolic reasoning from physical action, AERMANI-VLM mitigates hallucinated commands and prevents unsafe behavior, enabling robust task completion. We validate the framework in both simulation and hardware on diverse multi-step pick-and-place tasks, demonstrating strong generalization to previously unseen commands, objects, and environments.
Designing for Distributed Heterogeneous Modularity: On Software Architecture and Deployment of MoonBots SP
This paper presents the software architecture and deployment strategy behind the MoonBot platform: a modular space robotic system composed of heterogeneous components distributed across multiple computers, networks and ultimately celestial bodies. We introduce a principled approach to distributed, heterogeneous modularity, extending modular robotics beyond physical reconfiguration to software, communication and orchestration. We detail the architecture of our system that integrates component-based design, a data-oriented communication model using ROS2 and Zenoh, and a deployment orchestrator capable of managing complex multi-module assemblies. These abstractions enable dynamic reconfiguration, decentralized control, and seamless collaboration between numerous operators and modules. At the heart of this system lies our open-source Motion Stack software, validated by months of field deployment with self-assembling robots, inter-robot cooperation, and remote operation. Our architecture tackles the significant hurdles of modular robotics by significantly reducing integration and maintenance overhead, while remaining scalable and robust. Although tested with space in mind, we propose generalizable patterns for designing robotic systems that must scale across time, hardware, teams and operational environments.
comment: 6 pages, 8 figures. Accepted at ISPARO 2025
FoldPath: End-to-End Object-Centric Motion Generation via Modulated Implicit Paths IROS 2025
Object-Centric Motion Generation (OCMG) is instrumental in advancing automated manufacturing processes, particularly in domains requiring high-precision expert robotic motions, such as spray painting and welding. To realize effective automation, robust algorithms are essential for generating extended, object-aware trajectories across intricate 3D geometries. However, contemporary OCMG techniques are either based on ad-hoc heuristics or employ learning-based pipelines that are still reliant on sensitive post-processing steps to generate executable paths. We introduce FoldPath, a novel, end-to-end, neural field based method for OCMG. Unlike prior deep learning approaches that predict discrete sequences of end-effector waypoints, FoldPath learns the robot motion as a continuous function, thus implicitly encoding smooth output paths. This paradigm shift eliminates the need for brittle post-processing steps that concatenate and order the predicted discrete waypoints. Particularly, our approach demonstrates superior predictive performance compared to recently proposed learning-based methods, and attains generalization capabilities even in real industrial settings, where only a limited amount of 70 expert samples are provided. We validate FoldPath through comprehensive experiments in a realistic simulation environment and introduce new, rigorous metrics designed to comprehensively evaluate long-horizon robotic paths, thus advancing the OCMG task towards practical maturity.
comment: Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
CaRLi-V: Camera-RADAR-LiDAR Point-Wise 3D Velocity Estimation
Accurate point-wise velocity estimation in 3D is crucial for robot interaction with non-rigid, dynamic agents, such as humans, enabling robust performance in path planning, collision avoidance, and object manipulation in dynamic environments. To this end, this paper proposes a novel RADAR, LiDAR, and camera fusion pipeline for point-wise 3D velocity estimation named CaRLi-V. This pipeline leverages raw RADAR measurements to create a novel RADAR representation, the velocity cube, which densely represents radial velocities within the RADAR's field-of-view. By combining the velocity cube for radial velocity extraction, optical flow for tangential velocity estimation, and LiDAR for point-wise range measurements through a closed-form solution, our approach can produce 3D velocity estimates for a dense array of points. Developed as an open-source ROS2 package, CaRLi-V has been field-tested against a custom dataset and proven to produce low velocity error metrics relative to ground truth, enabling point-wise velocity estimation for robotic applications.
EREBUS: End-to-end Robust Event Based Underwater Simulation ICRA
The underwater domain presents a vast array of challenges for roboticists and computer vision researchers alike, such as poor lighting conditions and high dynamic range scenes. In these adverse conditions, traditional vision techniques struggle to adapt and lead to suboptimal performance. Event-based cameras present an attractive solution to this problem, mitigating the issues of traditional cameras by tracking changes in the footage on a frame-by-frame basis. In this paper, we introduce a pipeline which can be used to generate realistic synthetic data of an event-based camera mounted to an AUV (Autonomous Underwater Vehicle) in an underwater environment for training vision models. We demonstrate the effectiveness of our pipeline using the task of rock detection with poor visibility and suspended particulate matter, but the approach can be generalized to other underwater tasks.
comment: Accepted to ICRA AQUA2SIM Workshop 2025, 6 pages, 3 figures, conference paper
CM-LIUW-Odometry: Robust and High-Precision LiDAR-Inertial-UWB-Wheel Odometry for Extreme Degradation Coal Mine Tunnels IROS 2025
Simultaneous Localization and Mapping (SLAM) in large-scale, complex, and GPS-denied underground coal mine environments presents significant challenges. Sensors must contend with abnormal operating conditions: GPS unavailability impedes scene reconstruction and absolute geographic referencing, uneven or slippery terrain degrades wheel odometer accuracy, and long, feature-poor tunnels reduce LiDAR effectiveness. To address these issues, we propose CoalMine-LiDAR-IMU-UWB-Wheel-Odometry (CM-LIUW-Odometry), a multimodal SLAM framework based on the Iterated Error-State Kalman Filter (IESKF). First, LiDAR-inertial odometry is tightly fused with UWB absolute positioning constraints to align the SLAM system with a global coordinate. Next, wheel odometer is integrated through tight coupling, enhanced by nonholonomic constraints (NHC) and vehicle lever arm compensation, to address performance degradation in areas beyond UWB measurement range. Finally, an adaptive motion mode switching mechanism dynamically adjusts the robot's motion mode based on UWB measurement range and environmental degradation levels. Experimental results validate that our method achieves superior accuracy and robustness in real-world underground coal mine scenarios, outperforming state-of-the-art approaches. We open source our code of this work on Github to benefit the robotics community.
comment: Accepted by IROS 2025
Lateral Velocity Model for Vehicle Parking Applications
Automated parking requires accurate localization for quick and precise maneuvering in tight spaces. While the longitudinal velocity can be measured using wheel encoders, the estimation of the lateral velocity remains a key challenge due to the absence of dedicated sensors in consumer-grade vehicles. Existing approaches often rely on simplified vehicle models, such as the zero-slip model, which assumes no lateral velocity at the rear axle. It is well established that this assumption does not hold during low-speed driving and researchers thus introduce additional heuristics to account for differences. In this work, we analyze real-world data from parking scenarios and identify a systematic deviation from the zero-slip assumption. We provide explanations for the observed effects and then propose a lateral velocity model that better captures the lateral dynamics of the vehicle during parking. The model improves estimation accuracy, while relying on only two parameters, making it well-suited for integration into consumer-grade applications.
comment: This manuscript has been submitted to Vehicle System Dynamics for possible publication
Model to Model: Understanding the Venus Flytrap Snapping Mechanism and Transferring it to a 3D-printed Bistable Soft Robotic Demonstrator
The Venus flytrap (Dionaea muscipula) does not only serve as the textbook model for a carnivorous plant, but also has long intrigued both botanists and engineers with its rapidly closing leaf trap. The trap closure is triggered by two consecutive touches of a potential prey, after which the lobes rapidly switch from their concave open-state to their convex close-state and catch the prey within 100-500 ms after being triggered. This transformation from concave to convex is initiated by changes in turgor pressure and the release of stored elastic energy from prestresses in the concave state, which accelerate this movement, leading to inversion of the lobes bi-axial curvature. Possessing two low-energy states, the leaves can be characterized as bistable systems. With our research, we seek to deepen the understanding of Venus flytrap motion mechanics and apply its principles to the design of an artificial bistable lobe actuator. We identified geometrical characteristics, such as dimensional ratios and the thickness gradient in the lobe, and transferred these to two 3D-printed bistable actuator models. One actuator parallels the simulated geometry of a Venus flytrap leaf, the other is a lobe model designed with CAD. Both models display concave-convex bi-stability and snap close. These demonstrators are the first step in the development of an artificial Venus flytrap that mimics the mechanical behavior of the biological model and can be used as a soft fast gripper.
comment: Conference Proceedings Paper Living machines 2025
Design and development of an electronics-free earthworm robot
Soft robotic systems have gained widespread attention due to their inherent flexibility, adaptability, and safety, making them well-suited for varied applications. Among bioinspired designs, earthworm locomotion has been extensively studied for its efficient peristaltic motion, enabling movement in confined and unstructured environments. Existing earthworm-inspired robots primarily utilize pneumatic actuation due to its high force-to-weight ratio and ease of implementation. However, these systems often rely on bulky, power-intensive electronic control units, limiting their practicality. In this work, we present an electronics-free, earthworm-inspired pneumatic robot utilizing a modified Pneumatic Logic Gate (PLG) design. By integrating preconfigured PLG units with bellow actuators, we achieved a plug-and-play style modular system capable of peristaltic locomotion without external electronic components. The proposed design reduces system complexity while maintaining efficient actuation. We characterize the bellow actuators under different operating conditions and evaluate the robots locomotion performance. Our findings demonstrate that the modified PLG-based control system effectively generates peristaltic wave propagation, achieving autonomous motion with minimal deviation. This study serves as a proof of concept for the development of electronics-free, peristaltic soft robots. The proposed system has potential for applications in hazardous environments, where untethered, adaptable locomotion is critical. Future work will focus on further optimizing the robot design and exploring untethered operation using onboard compressed air sources.
comment: Conference Proceedings Paper Living Machines 2025
Thermo-responsive closing and reopening artificial Venus Flytrap utilizing shape memory elastomers
Despite their often perceived static and slow nature, some plants can move faster than the blink of an eye. The rapid snap closure motion of the Venus flytrap (Dionaea muscipula) has long captivated the interest of researchers and engineers alike, serving as a model for plant-inspired soft machines and robots. The translation of the fast snapping closure has inspired the development of various artificial Venus flytrap (AVF) systems. However, translating both the closing and reopening motion of D. muscipula into an autonomous plant inspired soft machine has yet to be achieved. In this study, we present an AVF that autonomously closes and reopens, utilizing novel thermo-responsive UV-curable shape memory materials for soft robotic systems. The life-sized thermo-responsive AVF exhibits closing and reopening motions triggered in a naturally occurring temperature range. The doubly curved trap lobes, built from shape memory polymers, close at 38{\deg}C, while reopening initiates around 45{\deg}C, employing shape memory elastomer strips as antagonistic actuators to facilitate lobe reopening. This work represents the first demonstration of thermo-responsive closing and reopening in an AVF with programmed sequential motion in response to increasing temperature. This approach marks the next step toward autonomously bidirectional moving soft machines/robots.
comment: Conference Proceedings Paper Living Machines 2025
Embodied Cognition Augmented End2End Autonomous Driving
In recent years, vision-based end-to-end autonomous driving has emerged as a new paradigm. However, popular end-to-end approaches typically rely on visual feature extraction networks trained under label supervision. This limited supervision framework restricts the generality and applicability of driving models. In this paper, we propose a novel paradigm termed $E^{3}AD$, which advocates for comparative learning between visual feature extraction networks and the general EEG large model, in order to learn latent human driving cognition for enhancing end-to-end planning. In this work, we collected a cognitive dataset for the mentioned contrastive learning process. Subsequently, we investigated the methods and potential mechanisms for enhancing end-to-end planning with human driving cognition, using popular driving models as baselines on publicly available autonomous driving datasets. Both open-loop and closed-loop tests are conducted for a comprehensive evaluation of planning performance. Experimental results demonstrate that the $E^{3}AD$ paradigm significantly enhances the end-to-end planning performance of baseline models. Ablation studies further validate the contribution of driving cognition and the effectiveness of comparative learning process. To the best of our knowledge, this is the first work to integrate human driving cognition for improving end-to-end autonomous driving planning. It represents an initial attempt to incorporate embodied cognitive data into end-to-end autonomous driving, providing valuable insights for future brain-inspired autonomous driving systems. Our code will be made available at Github
comment: 24 pages,4 pages
RobustVLA: Robustness-Aware Reinforcement Post-Training for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently emerged as powerful general-purpose policies for robotic manipulation, benefiting from large-scale multi-modal pre-training. However, they often fail to generalize reliably in out-of-distribution deployments, where unavoidable disturbances such as observation noise, sensor errors, or actuation perturbations become prevalent. While recent Reinforcement Learning (RL)-based post-training provides a practical means to adapt pre-trained VLA models, existing methods mainly emphasize reward maximization and overlook robustness to environmental uncertainty. In this work, we introduce RobustVLA, a lightweight online RL post-training method designed to explicitly enhance the resilience of VLA models. Through a systematic robustness analysis, we identify two key regularizations: Jacobian regularization, which mitigates sensitivity to observation noise, and smoothness regularization, which stabilizes policies under action perturbations. Extensive experiments across diverse robotic environments demonstrate that RobustVLA significantly outperforms prior state-of-the-art methods in robustness and reliability. Our results highlight the importance of principled robustness-aware RL post-training as a key step toward improving the reliability and robustness of VLA models.
A High-Speed Capable Spherical Robot
This paper designs a new spherical robot structure capable of supporting high-speed motion at up to 10 m/s. Building upon a single-pendulum-driven spherical robot, the design incorporates a momentum wheel with an axis aligned with the secondary pendulum, creating a novel spherical robot structure. Practical experiments with the physical prototype have demonstrated that this new spherical robot can achieve stable high-speed motion through simple decoupled control, which was unattainable with the original structure. The spherical robot designed for high-speed motion not only increases speed but also significantly enhances obstacle-crossing performance and terrain robustness.
comment: 5 pages
Lyapunov Stability Learning with Nonlinear Control via Inductive Biases
Finding a control Lyapunov function (CLF) in a dynamical system with a controller is an effective way to guarantee stability, which is a crucial issue in safety-concerned applications. Recently, deep learning models representing CLFs have been applied into a learner-verifier framework to identify satisfiable candidates. However, the learner treats Lyapunov conditions as complex constraints for optimisation, which is hard to achieve global convergence. It is also too complicated to implement these Lyapunov conditions for verification. To improve this framework, we treat Lyapunov conditions as inductive biases and design a neural CLF and a CLF-based controller guided by this knowledge. This design enables a stable optimisation process with limited constraints, and allows end-to-end learning of both the CLF and the controller. Our approach achieves a higher convergence rate and larger region of attraction (ROA) in learning the CLF compared to existing methods among abundant experiment cases. We also thoroughly reveal why the success rate decreases with previous methods during learning.
comment: Accepted by IEEE Robio 2025
Contact Map Transfer with Conditional Diffusion Model for Generalizable Dexterous Grasp Generation
Dexterous grasp generation is a fundamental challenge in robotics, requiring both grasp stability and adaptability across diverse objects and tasks. Analytical methods ensure stable grasps but are inefficient and lack task adaptability, while generative approaches improve efficiency and task integration but generalize poorly to unseen objects and tasks due to data limitations. In this paper, we propose a transfer-based framework for dexterous grasp generation, leveraging a conditional diffusion model to transfer high-quality grasps from shape templates to novel objects within the same category. Specifically, we reformulate the grasp transfer problem as the generation of an object contact map, incorporating object shape similarity and task specifications into the diffusion process. To handle complex shape variations, we introduce a dual mapping mechanism, capturing intricate geometric relationship between shape templates and novel objects. Beyond the contact map, we derive two additional object-centric maps, the part map and direction map, to encode finer contact details for more stable grasps. We then develop a cascaded conditional diffusion model framework to jointly transfer these three maps, ensuring their intra-consistency. Finally, we introduce a robust grasp recovery mechanism, identifying reliable contact points and optimizing grasp configurations efficiently. Extensive experiments demonstrate the superiority of our proposed method. Our approach effectively balances grasp quality, generation efficiency, and generalization performance across various tasks. Project homepage: https://cmtdiffusion.github.io/
Design and Fabrication of Origami-Inspired Knitted Fabrics for Soft Robotics
Soft robots employing compliant materials and deformable structures offer great potential for wearable devices that are comfortable and safe for human interaction. However, achieving both structural integrity and compliance for comfort remains a significant challenge. In this study, we present a novel fabrication and design method that combines the advantages of origami structures with the material programmability and wearability of knitted fabrics. We introduce a general design method that translates origami patterns into knit designs by programming both stitch and material patterns. The method creates folds in preferred directions while suppressing unintended buckling and bending by selectively incorporating heat fusible yarn to create rigid panels around compliant creases. We experimentally quantify folding moments and show that stitch patterning enhances folding directionality while the heat fusible yarn (1) keeps geometry consistent by reducing edge curl and (2) prevents out-of-plane deformations by stiffening panels. We demonstrate the framework through the successful reproduction of complex origami tessellations, including Miura-ori, Yoshimura, and Kresling patterns, and present a wearable knitted Kaleidocycle robot capable of locomotion. The combination of structural reconfigurability, material programmability, and potential for manufacturing scalability highlights knitted origami as a promising platform for next-generation wearable robotics.
Improving Needle Penetration via Precise Rotational Insertion Using Iterative Learning Control
Achieving precise control of robotic tool paths is often challenged by inherent system misalignments, unmodeled dynamics, and actuation inaccuracies. This work introduces an Iterative Learning Control (ILC) strategy to enable precise rotational insertion of a tool during robotic surgery, improving penetration efficacy and safety compared to straight insertion tested in subretinal injection. A 4 degree of freedom (DOF) robot manipulator is used, where misalignment of the fourth joint complicates the simple application of needle rotation, motivating an ILC approach that iteratively adjusts joint commands based on positional feedback. The process begins with calibrating the forward kinematics for the chosen surgical tool to achieve higher accuracy, followed by successive ILC iterations guided by Optical Coherence Tomography (OCT) volume scans to measure the error and refine control inputs. Experimental results, tested on subretinal injection tasks on ex vivo pig eyes, show that the optimized trajectory resulted in higher success rates in tissue penetration and subretinal injection compared to straight insertion, demonstrating the effectiveness of ILC in overcoming misalignment challenges. This approach offers potential applications for other high precision robot tasks requiring controlled insertions as well.
comment: 10 pages, 10 figures
Don't Just Search, Understand: Semantic Path Planning Agent for Spherical Tensegrity Robots in Unknown Environments
Endowed with inherent dynamical properties that grant them remarkable ruggedness and adaptability, spherical tensegrity robots stand as prototypical examples of hybrid softrigid designs and excellent mobile platforms. However, path planning for these robots in unknown environments presents a significant challenge, requiring a delicate balance between efficient exploration and robust planning. Traditional path planners, which treat the environment as a geometric grid, often suffer from redundant searches and are prone to failure in complex scenarios due to their lack of semantic understanding. To overcome these limitations, we reframe path planning in unknown environments as a semantic reasoning task. We introduce a Semantic Agent for Tensegrity robots (SATPlanner) driven by a Large Language Model (LLM). SATPlanner leverages high-level environmental comprehension to generate efficient and reliable planning strategies.At the core of SATPlanner is an Adaptive Observation Window mechanism, inspired by the "fast" and "slow" thinking paradigms of LLMs. This mechanism dynamically adjusts the perceptual field of the agent: it narrows for rapid traversal of open spaces and expands to reason about complex obstacle configurations. This allows the agent to construct a semantic belief of the environment, enabling the search space to grow only linearly with the path length (O(L)) while maintaining path quality. We extensively evaluate SATPlanner in 1,000 simulation trials, where it achieves a 100% success rate, outperforming other real-time planning algorithms. Critically, SATPlanner reduces the search space by 37.2% compared to the A* algorithm while achieving comparable, near-optimal path lengths. Finally, the practical feasibility of SATPlanner is validated on a physical spherical tensegrity robot prototype.
comment: 8 pages, 5 figures
High-Precision Surgical Robotic System for Intraocular Procedures
Despite the extensive demonstration of robotic systems for both cataract and vitreoretinal procedures, existing technologies or mechanisms still possess insufficient accuracy, precision, and degrees of freedom for instrument manipulation or potentially automated tool exchange during surgical procedures. A new robotic system that focuses on improving tooltip accuracy, tracking performance, and smooth instrument exchange mechanism is therefore designed and manufactured. Its tooltip accuracy, precision, and mechanical capability of maintaining small incision through remote center of motion were externally evaluated using an optical coherence tomography (OCT) system. Through robot calibration and precise coordinate registration, the accuracy of tooltip positioning was measured to be 0.053$\pm$0.031 mm, and the overall performance was demonstrated on an OCT-guided automated cataract lens extraction procedure with deep learning-based pre-operative anatomical modeling and real-time supervision.
Embodiment Transfer Learning for Vision-Language-Action Models
Vision-language-action (VLA) models have significantly advanced robotic learning, enabling training on large-scale, cross-embodiment data and fine-tuning for specific robots. However, state-of-the-art autoregressive VLAs struggle with multi-robot collaboration. We introduce embodiment transfer learning, denoted as ET-VLA, a novel framework for efficient and effective transfer of pre-trained VLAs to multi-robot. ET-VLA's core is Synthetic Continued Pretraining (SCP), which uses synthetically generated data to warm up the model for the new embodiment, bypassing the need for real human demonstrations and reducing data collection costs. SCP enables the model to learn correct actions and precise action token numbers. Following SCP, the model is fine-tuned on target embodiment data. To further enhance the model performance on multi-embodiment, we present the Embodied Graph-of-Thought technique, a novel approach that formulates each sub-task as a node, that allows the VLA model to distinguish the functionalities and roles of each embodiment during task execution. Our work considers bimanual robots, a simple version of multi-robot to verify our approaches. We validate the effectiveness of our method on both simulation benchmarks and real robots covering three different bimanual embodiments. In particular, our proposed ET-VLA \space can outperform OpenVLA on six real-world tasks over 53.2%. We will open-source all codes to support the community in advancing VLA models for robot learning.
Saliency-Guided Domain Adaptation for Left-Hand Driving in Autonomous Steering
Domain adaptation is required for automated driving models to generalize well across diverse road conditions. This paper explores a training method for domain adaptation to adapt PilotNet, an end-to-end deep learning-based model, for left-hand driving conditions using real-world Australian highway data. Four training methods were evaluated: (1) a baseline model trained on U.S. right-hand driving data, (2) a model trained on flipped U.S. data, (3) a model pretrained on U.S. data and then fine-tuned on Australian highways, and (4) a model pretrained on flipped U.S. data and then finetuned on Australian highways. This setup examines whether incorporating flipped data enhances the model adaptation by providing an initial left-hand driving alignment. The paper compares model performance regarding steering prediction accuracy and attention, using saliency-based analysis to measure attention shifts across significant road regions. Results show that pretraining on flipped data alone worsens prediction stability due to misaligned feature representations, but significantly improves adaptation when followed by fine-tuning, leading to lower prediction error and stronger focus on left-side cues. To validate this approach across different architectures, the same experiments were done on ResNet, which confirmed similar adaptation trends. These findings emphasize the importance of preprocessing techniques, such as flipped-data pretraining, followed by fine-tuning to improve model adaptation with minimal retraining requirements.
Tackling the Kidnapped Robot Problem via Sparse Feasible Hypothesis Sampling and Reliable Batched Multi-Stage Inference
This paper addresses the Kidnapped Robot Problem (KRP), a core localization challenge of relocalizing a robot in a known map without prior pose estimate when localization loss or at SLAM initialization. For this purpose, a passive 2-D global relocalization framework is proposed. It estimates the global pose efficiently and reliably from a single LiDAR scan and an occupancy grid map while the robot remains stationary, thereby enhancing the long-term autonomy of mobile robots. The proposed framework casts global relocalization as a non-convex problem and solves it via the multi-hypothesis scheme with batched multi-stage inference and early termination, balancing completeness and efficiency. The Rapidly-exploring Random Tree (RRT), under traversability constraints, asymptotically covers the reachable space to generate sparse, uniformly distributed feasible positional hypotheses, fundamentally reducing the sampling space. The hypotheses are preliminarily ordered by the proposed Scan Mean Absolute Difference (SMAD), a coarse beam-error level metric that facilitates the early termination by prioritizing high-likelihood candidates. The SMAD computation is optimized for non-panoramic scans. And the Translation-Affinity Scan-to-Map Alignment Metric (TAM) is proposed for reliable orientation selection at hypothesized positions and accurate final pose evaluation to mitigate degradation in conventional likelihood-field metrics under translational uncertainty induced by sparse hypotheses, as well as non-panoramic LiDAR scan and environmental changes. Real-world experiments on a resource-constrained mobile robot with non-panoramic LiDAR scan demonstrate that the proposed framework outperforms existing methods in both global relocalization success rate and computational efficiency.
comment: 10 pages, 8 figures. This work has been submitted to the IEEE for possible publication
Closed-loop Control of Steerable Balloon Endoscopes for Robot-assisted Transcatheter Intracardiac Procedures
To move away from open-heart surgery towards safer transcatheter procedures, there is a growing need for improved imaging techniques and robotic solutions to enable simple, accurate tool navigation. Common imaging modalities, such as fluoroscopy and ultrasound, have limitations that can be overcome using cardioscopy, i.e., direct optical visualization inside the beating heart. We present a cardioscope designed as a steerable balloon. As a balloon, it can be collapsed to pass through the vasculature and subsequently inflated inside the heart for visualization and tool delivery through an integrated working channel. Through careful design of balloon wall thickness, a single input, balloon inflation pressure, is used to independently control two outputs, balloon diameter (corresponding to field of view diameter) and balloon bending angle (enabling precise working channel positioning). This balloon technology can be tuned to produce cardioscopes designed for a range of intracardiac tasks. To illustrate this approach, a balloon design is presented for the specific task of aortic leaflet laceration. Image-based closed-loop control of bending angle is also demonstrated as a means of enabling stable orientation control during tool insertion and removal.
comment: 8 pages, 11 figures
LiDAR-VGGT: Cross-Modal Coarse-to-Fine Fusion for Globally Consistent and Metric-Scale Dense Mapping
Reconstructing large-scale colored point clouds is an important task in robotics, supporting perception, navigation, and scene understanding. Despite advances in LiDAR inertial visual odometry (LIVO), its performance remains highly sensitive to extrinsic calibration. Meanwhile, 3D vision foundation models, such as VGGT, suffer from limited scalability in large environments and inherently lack metric scale. To overcome these limitations, we propose LiDAR-VGGT, a novel framework that tightly couples LiDAR inertial odometry with the state-of-the-art VGGT model through a two-stage coarse- to-fine fusion pipeline: First, a pre-fusion module with robust initialization refinement efficiently estimates VGGT poses and point clouds with coarse metric scale within each session. Then, a post-fusion module enhances cross-modal 3D similarity transformation, using bounding-box-based regularization to reduce scale distortions caused by inconsistent FOVs between LiDAR and camera sensors. Extensive experiments across multiple datasets demonstrate that LiDAR-VGGT achieves dense, globally consistent colored point clouds and outperforms both VGGT-based methods and LIVO baselines. The implementation of our proposed novel color point cloud evaluation toolkit will be released as open source.
Scaling Cross-Embodiment World Models for Dexterous Manipulation
Cross-embodiment learning seeks to build generalist robots that operate across diverse morphologies, but differences in action spaces and kinematics hinder data sharing and policy transfer. This raises a central question: Is there any invariance that allows actions to transfer across embodiments? We conjecture that environment dynamics are embodiment-invariant, and that world models capturing these dynamics can provide a unified interface across embodiments. To learn such a unified world model, the crucial step is to design state and action representations that abstract away embodiment-specific details while preserving control relevance. To this end, we represent different embodiments (e.g., human hands and robot hands) as sets of 3D particles and define actions as particle displacements, creating a shared representation for heterogeneous data and control problems. A graph-based world model is then trained on exploration data from diverse simulated robot hands and real human hands, and integrated with model-based planning for deployment on novel hardware. Experiments on rigid and deformable manipulation tasks reveal three findings: (i) scaling to more training embodiments improves generalization to unseen ones, (ii) co-training on both simulated and real data outperforms training on either alone, and (iii) the learned models enable effective control on robots with varied degrees of freedom. These results establish world models as a promising interface for cross-embodiment dexterous manipulation.
An Enhanced Proprioceptive Method for Soft Robots Integrating Bend Sensors and IMUs
This study presents an enhanced proprioceptive method for accurate shape estimation of soft robots using only off-the-shelf sensors, ensuring cost-effectiveness and easy applicability. By integrating inertial measurement units (IMUs) with complementary bend sensors, IMU drift is mitigated, enabling reliable long-term proprioception. A Kalman filter fuses segment tip orientations from both sensors in a mutually compensatory manner, improving shape estimation over single-sensor methods. A piecewise constant curvature model estimates the tip location from the fused orientation data and reconstructs the robot's deformation. Experiments under no loading, external forces, and passive obstacle interactions during 45 minutes of continuous operation showed a root mean square error of 16.96 mm (2.91% of total length), a 56% reduction compared to IMU-only benchmarks. These results demonstrate that our approach not only enables long-duration proprioception in soft robots but also maintains high accuracy and robustness across these diverse conditions.
Robotic Monitoring of Colorimetric Leaf Sensors for Precision Agriculture ICRA
Common remote sensing modalities (RGB, multispectral, hyperspectral imaging or LiDAR) are often used to indirectly measure crop health and do not directly capture plant stress indicators. Commercially available direct leaf sensors are bulky, powered electronics that are expensive and interfere with crop growth. In contrast, low-cost, passive and bio-degradable leaf sensors offer an opportunity to advance real-time monitoring as they directly interface with the crop surface while not interfering with crop growth. To this end, we co-design a sensor-detector system, where the sensor is a passive colorimetric leaf sensor that directly measures crop health in a precision agriculture setting, and the detector autonomously obtains optical signals from these leaf sensors. The detector comprises a low size weight and power (SWaP) mobile ground robot with an onboard monocular RGB camera and object detector to localize each leaf sensor, as well as a hyperspectral camera with a motorized mirror and halogen light to acquire hyperspectral images. The sensor's crop health-dependent optical signals can be extracted from the hyperspectral images. The proof-of-concept system is demonstrated in row-crop environments both indoors and outdoors where it is able to autonomously navigate, locate and obtain a hyperspectral image of all leaf sensors present, and acquire interpretable spectral resonance with 80 $\%$ accuracy within a required retrieval distance from the sensor.
comment: Revised version. Initial version was accepted to the Novel Approaches for Precision Agriculture and Forestry with Autonomous Robots IEEE ICRA Workshop - 2025
Kinematically Controllable Cable Robots with Reconfigurable End-effectors
To enlarge the translational workspace of cable-driven robots, one common approach is to increase the number of cables. However, this introduces two challenges: (1) cable interference significantly reduces the rotational workspace, and (2) the solution of tensions in cables becomes non-unique, resulting in difficulties for kinematic control of the robot. In this work, we design structurally simple reconfigurable end-effectors for cable robots. By incorporating a spring, a helical-grooved shaft, and a matching nut, relative linear motions between end-effector components are converted into relative rotations, thereby expanding the rotational workspace of the mechanism. Meanwhile, a bearing is introduced to provide an additional rotational degree of freedom, making the mechanism non-redundant. As a result, the robot's motion can be controlled purely through kinematics without additional tension sensing and control.
comment: 8 pages, 7 figures, Technical Report
Mixed-Density Diffuser: Efficient Planning with Non-uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional or memory computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a temporal horizon and that certain parts of a planned trajectory should be more densely planned. We propose Mixed Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. MDD achieves a new SOTA across the Maze2D, Franka Kitchen, and Antmaze D4RL task domains.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESSAN) (under review)
MarsLGPR: Mars Rover Localization with Ground Penetrating Radar
In this work, we propose the use of Ground Penetrating Radar (GPR) for rover localization on Mars. Precise pose estimation is an important task for mobile robots exploring planetary surfaces, as they operate in GPS-denied environments. Although visual odometry provides accurate localization, it is computationally expensive and can fail in dim or high-contrast lighting. Wheel encoders can also provide odometry estimation, but are prone to slipping on the sandy terrain encountered on Mars. Although traditionally a scientific surveying sensor, GPR has been used on Earth for terrain classification and localization through subsurface feature matching. The Perseverance rover and the upcoming ExoMars rover have GPR sensors already equipped to aid in the search of water and mineral resources. We propose to leverage GPR to aid in Mars rover localization. Specifically, we develop a novel GPR-based deep learning model that predicts 1D relative pose translation. We fuse our GPR pose prediction method with inertial and wheel encoder data in a filtering framework to output rover localization. We perform experiments in a Mars analog environment and demonstrate that our GPR-based displacement predictions both outperform wheel encoders and improve multi-modal filtering estimates in high-slip environments. Lastly, we present the first dataset aimed at GPR-based localization in Mars analog environments, which will be made publicly available at https://umfieldrobotics.github.io/marslgpr.
Cosmos-Surg-dVRK: World Foundation Model-based Automated Online Evaluation of Surgical Robot Policy Learning
The rise of surgical robots and vision-language-action models has accelerated the development of autonomous surgical policies and efficient assessment strategies. However, evaluating these policies directly on physical robotic platforms such as the da Vinci Research Kit (dVRK) remains hindered by high costs, time demands, reproducibility challenges, and variability in execution. World foundation models (WFM) for physical AI offer a transformative approach to simulate complex real-world surgical tasks, such as soft tissue deformation, with high fidelity. This work introduces Cosmos-Surg-dVRK, a surgical finetune of the Cosmos WFM, which, together with a trained video classifier, enables fully automated online evaluation and benchmarking of surgical policies. We evaluate Cosmos-Surg-dVRK using two distinct surgical datasets. On tabletop suture pad tasks, the automated pipeline achieves strong correlation between online rollouts in Cosmos-Surg-dVRK and policy outcomes on the real dVRK Si platform, as well as good agreement between human labelers and the V-JEPA 2-derived video classifier. Additionally, preliminary experiments with ex-vivo porcine cholecystectomy tasks in Cosmos-Surg-dVRK demonstrate promising alignment with real-world evaluations, highlighting the platform's potential for more complex surgical procedures.
comment: minor metadata and notation fixes; +3 citations
FlexEvent: Towards Flexible Event-Frame Object Detection at Varying Operational Frequencies NeurIPS 2025
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to the microsecond-level temporal resolution and asynchronous operation. Existing event detectors, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event data. To address these limitations, we propose FlexEvent, a novel framework that enables detection at varying frequencies. Our approach consists of two key components: FlexFuse, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FlexTune, a frequency-adaptive fine-tuning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems.
comment: NeurIPS 2025; 28 pages, 14 figures, 10 tables; Code at https://flexevent.github.io/
If They Disagree, Will You Conform? Exploring the Role of Robots' Value Awareness in a Decision-Making Task
This study investigates whether the opinions of robotic agents can influence human decision-making when robots display value awareness (i.e., the capability of understanding human preferences and prioritizing them in decision-making). We designed an experiment in which participants interacted with two Furhat robots - one programmed to be Value-Aware and the other Non-Value-Aware - during a labeling task for images representing human values. Results indicate that participants distinguished the Value-Aware robot from the Non-Value-Aware one. Although their explicit choices did not indicate a clear preference for one robot over the other, participants directed their gaze more toward the Value-Aware robot. Additionally, the Value-Aware robot was perceived as more loyal, suggesting that value awareness in a social robot may enhance its perceived commitment to the group. Finally, when both robots disagreed with the participant, conformity occurred in about one out of four trials, and participants took longer to confirm their responses, suggesting that two robots expressing dissent may introduce hesitation in decision-making. On one hand, this highlights the potential risk that robots, if misused, could manipulate users for unethical purposes. On the other hand, it reinforces the idea that social robots could encourage reflection in ambiguous situations and help users avoid scams.
comment: Pre-print version
DW-A-PRM: A Dynamic Weighted Planner
Robot path planning plays a pivotal role in enabling autonomous systems to navigate safely and efficiently in complex and uncertain environments. Despite extensive research on classical graph-based methods and sampling-based planners, achieving an optimal balance between global optimality, computational efficiency, and adaptability to dynamic environments remains an open challenge. To address this issue, this paper proposes a hybrid path planning framework, which integrates heuristic-driven search with probabilistic roadmap construction under a dynamic weighting scheme. By coupling the global guidance of A* with the stochastic exploration of PRM, the method achieves a synergistic balance between search optimality and computational tractability. Comprehensive experiments in diverse simulated environments demonstrate that the proposed method consistently yields smoother and shorter paths while significantly reducing computational overhead compared with conventional approach and other hybrid planners. These results highlight the potential of the proposed framework as an effective and generalizable solution for real-time robotic navigation in complex environments.
RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass skilled human operators. We present RL-100, a real-world reinforcement learning training framework built on diffusion visuomotor policies trained by supervised learning. RL-100 introduces a three-stage pipeline. First, imitation learning leverages human priors. Second, iterative offline reinforcement learning uses an Offline Policy Evaluation procedure, abbreviated OPE, to gate PPO-style updates that are applied in the denoising process for conservative and reliable improvement. Third, online reinforcement learning eliminates residual failure modes. An additional lightweight consistency distillation head compresses the multi-step sampling process in diffusion into a single-step policy, enabling high-frequency control with an order-of-magnitude reduction in latency while preserving task performance. The framework is task-, embodiment-, and representation-agnostic and supports both 3D point clouds and 2D RGB inputs, a variety of robot platforms, and both single-step and action-chunk policies. We evaluate RL-100 on seven real-robot tasks spanning dynamic rigid-body control, such as Push-T and Agile Bowling, fluids and granular pouring, deformable cloth folding, precise dexterous unscrewing, and multi-stage orange juicing. RL-100 attains 100\% success across evaluated trials for a total of 900 out of 900 episodes, including up to 250 out of 250 consecutive trials on one task. The method achieves near-human teleoperation or better time efficiency and demonstrates multi-hour robustness with uninterrupted operation lasting up to two hours.
comment: https://lei-kun.github.io/RL-100/
Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
Infinite-Horizon Value Function Approximation for Model Predictive Control
Model Predictive Control has emerged as a popular tool for robots to generate complex motions. However, the real-time requirement has limited the use of hard constraints and large preview horizons, which are necessary to ensure safety and stability. In practice, practitioners have to carefully design cost functions that can imitate an infinite horizon formulation, which is tedious and often results in local minima. In this work, we study how to approximate the infinite horizon value function of constrained optimal control problems with neural networks using value iteration and trajectory optimization. Furthermore, we experimentally demonstrate how using this value function approximation as a terminal cost provides global stability to the model predictive controller. The approach is validated on two toy problems and a real-world scenario with online obstacle avoidance on an industrial manipulator where the value function is conditioned to the goal and obstacle.
UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.
comment: Accepted to RSS 2025. Code is available at https://github.com/OpenDriveLab/UniVLA
A Helping (Human) Hand in Kinematic Structure Estimation ICRA25
Visual uncertainties such as occlusions, lack of texture, and noise present significant challenges in obtaining accurate kinematic models for safe robotic manipulation. We introduce a probabilistic real-time approach that leverages the human hand as a prior to mitigate these uncertainties. By tracking the constrained motion of the human hand during manipulation and explicitly modeling uncertainties in visual observations, our method reliably estimates an object's kinematic model online. We validate our approach on a novel dataset featuring challenging objects that are occluded during manipulation and offer limited articulations for perception. The results demonstrate that by incorporating an appropriate prior and explicitly accounting for uncertainties, our method produces accurate estimates, outperforming two recent baselines by 195% and 140%, respectively. Furthermore, we demonstrate that our approach's estimates are precise enough to allow a robot to manipulate even small objects safely.
comment: Accepted at ICRA25; 8 pages + 7 figures; For supplementary material, see https://www.tu.berlin/robotics/papers/helpinghands
VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
Bellman Diffusion Models
Diffusion models have seen tremendous success as generative architectures. Recently, they have been shown to be effective at modelling policies for offline reinforcement learning and imitation learning. We explore using diffusion as a model class for the successor state measure (SSM) of a policy. We find that enforcing the Bellman flow constraints leads to a simple Bellman update on the diffusion step distribution.
MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new MG called Flex-MG, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 42 pages
A Time-dependent Risk-aware distributed Multi-Agent Path Finder based on A* IROS 2025
Multi-Agent Path-Finding (MAPF) focuses on the collaborative planning of paths for multiple agents within shared spaces, aiming for collision-free navigation. Conventional planning methods often overlook the presence of other agents, which can result in conflicts. In response, this article introduces the A$^*_+$T algorithm, a distributed approach that improves coordination among agents by anticipating their positions based on their movement speeds. The algorithm also considers dynamic obstacles, assessing potential collisions with respect to observed speeds and trajectories, thereby facilitating collision-free path planning in environments populated by other agents and moving objects. It incorporates a risk layer surrounding both dynamic and static entities, enhancing its utility in real-world applications. Each agent functions autonomously while being mindful of the paths chosen by others, effectively addressing the complexities inherent in multi-agent situations. The performance of A$^*_+$T has been rigorously tested in the Gazebo simulation environment and benchmarked against established approaches such as CBS, ECBS, and SIPP. Furthermore, the algorithm has shown competence in single-agent experiments, with results demonstrating its effectiveness in managing dynamic obstacles and affirming its practical relevance across various scenarios.
comment: 8 pages, 10 figures, 2 tabels, submited to IROS 2025
DTAA: A Detect, Track and Avoid Architecture for navigation in spaces with Multiple Velocity Objects
Proactive collision avoidance measures are imperative in environments where humans and robots coexist. Moreover, the introduction of high quality legged robots into workplaces highlighted the crucial role of a robust, fully autonomous safety solution for robots to be viable in shared spaces or in co-existence with humans. This article establishes for the first time ever an innovative Detect-Track-and-Avoid Architecture (DTAA) to enhance safety and overall mission performance. The proposed novel architectyre has the merit ot integrating object detection using YOLOv8, utilizing Ultralytics embedded object tracking, and state estimation of tracked objects through Kalman filters. Moreover, a novel heuristic clustering is employed to facilitate active avoidance of multiple closely positioned objects with similar velocities, creating sets of unsafe spaces for the Nonlinear Model Predictive Controller (NMPC) to navigate around. The NMPC identifies the most hazardous unsafe space, considering not only their current positions but also their predicted future locations. In the sequel, the NMPC calculates maneuvers to guide the robot along a path planned by D$^{*}_{+}$ towards its intended destination, while maintaining a safe distance to all identified obstacles. The efficacy of the novelly suggested DTAA framework is being validated by Real-life experiments featuring a Boston Dynamics Spot robot that demonstrates the robot's capability to consistently maintain a safe distance from humans in dynamic subterranean, urban indoor, and outdoor environments.
Spatiotemporal Calibration for Laser Vision Sensor in Hand-eye System Based on Straight-line Constraint
Laser vision sensors (LVS) are critical perception modules for industrial robots, facilitating real-time acquisition of workpiece geometric data in welding applications. However, the camera communication delay will lead to a temporal desynchronization between captured images and the robot motions. Additionally, hand-eye extrinsic parameters may vary during prolonged measurement. To address these issues, we introduce a measurement model of LVS considering the effect of the camera's time-offset and propose a teaching-free spatiotemporal calibration method utilizing line constraints. This method involves a robot equipped with an LVS repeatedly scanning straight-line fillet welds using S-shaped trajectories. Regardless of the robot's orientation changes, all measured welding positions are constrained to a straight-line, represented by Plucker coordinates. Moreover, a nonlinear optimization model based on straight-line constraints is established. Subsequently, the Levenberg-Marquardt algorithm (LMA) is employed to optimize parameters, including time-offset, hand-eye extrinsic parameters, and straight-line parameters. The feasibility and accuracy of the proposed approach are quantitatively validated through experiments on curved weld scanning. We open-sourced the code, dataset, and simulation report at https://anonymous.4open.science/r/LVS_ST_CALIB-015F/README.md.
comment: Submitted to IEEE RAL
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each primal step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
From Grounding to Manipulation: Case Studies of Foundation Model Integration in Embodied Robotic Systems EMNLP 2025
Foundation models (FMs) are increasingly used to bridge language and action in embodied agents, yet the operational characteristics of different FM integration strategies remain under-explored -- particularly for complex instruction following and versatile action generation in changing environments. This paper examines three paradigms for building robotic systems: end-to-end vision-language-action (VLA) models that implicitly integrate perception and planning, and modular pipelines incorporating either vision-language models (VLMs) or multimodal large language models (LLMs). We evaluate these paradigms through two focused case studies: a complex instruction grounding task assessing fine-grained instruction understanding and cross-modal disambiguation, and an object manipulation task targeting skill transfer via VLA finetuning. Our experiments in zero-shot and few-shot settings reveal trade-offs in generalization and data efficiency. By exploring performance limits, we distill design implications for developing language-driven physical agents and outline emerging challenges and opportunities for FM-powered robotics in real-world conditions.
comment: EMNLP 2025 camera ready
Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: IEEE Transactions on Robotics (T-RO). v6 update on stability analysis in Appendix J under relaxed Assumption 1
iKap: Kinematics-aware Planning with Imperative Learning
Trajectory planning in robotics aims to generate collision-free pose sequences that can be reliably executed. Recently, vision-to-planning systems have gained increasing attention for their efficiency and ability to interpret and adapt to surrounding environments. However, traditional modular systems suffer from increased latency and error propagation, while purely data-driven approaches often overlook the robot's kinematic constraints. This oversight leads to discrepancies between planned trajectories and those that are executable. To address these challenges, we propose iKap, a novel vision-to-planning system that integrates the robot's kinematic model directly into the learning pipeline. iKap employs a self-supervised learning approach and incorporates the state transition model within a differentiable bi-level optimization framework. This integration ensures the network learns collision-free waypoints while satisfying kinematic constraints, enabling gradient back-propagation for end-to-end training. Our experimental results demonstrate that iKap achieves higher success rates and reduced latency compared to the state-of-the-art methods. Besides the complete system, iKap offers a visual-to-planning network that seamlessly works with various controllers, providing a robust solution for robots navigating complex environments.
comment: 6 pages, 6 figures
Dexterous Contact-Rich Manipulation via the Contact Trust Region
What is a good local description of contact dynamics for contact-rich manipulation, and where can we trust this local description? While many approaches often rely on the Taylor approximation of dynamics with an ellipsoidal trust region, we argue that such approaches are fundamentally inconsistent with the unilateral nature of contact. As a remedy, we present the Contact Trust Region (CTR), which captures the unilateral nature of contact while remaining efficient for computation. With CTR, we first develop a Model-Predictive Control (MPC) algorithm capable of synthesizing local contact-rich plans. Then, we extend this capability to plan globally by stitching together local MPC plans, enabling efficient and dexterous contact-rich manipulation. To verify the performance of our method, we perform comprehensive evaluations, both in high-fidelity simulation and on hardware, on two contact-rich systems: a planar IiwaBimanual system and a 3D AllegroHand system. On both systems, our method offers a significantly lower-compute alternative to existing RL-based approaches to contact-rich manipulation. In particular, our Allegro in-hand manipulation policy, in the form of a roadmap, takes fewer than 10 minutes to build offline on a standard laptop using just its CPU, with online inference taking just a few seconds. Experiment data, video and code are available at ctr.theaiinstitute.com.
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
This paper presents a control strategy based on dual quaternions for the coordinated formation flying of small UAV groups. A virtual structure is employed to define the desired formation, enabling unified control of its position, orientation, and shape. This abstraction makes formation management easier by allowing a low-level controller to compute individual UAV commands efficiently. The proposed controller integrates a pose control module with a geometry-based adaptive strategy, ensuring precise and robust task execution. The effectiveness of the approach is demonstrated through both simulation and experimental results.
MarsLGPR: Mars Rover Localization with Ground Penetrating Radar
In this work, we propose the use of Ground Penetrating Radar (GPR) for rover localization on Mars. Precise pose estimation is an important task for mobile robots exploring planetary surfaces, as they operate in GPS-denied environments. Although visual odometry provides accurate localization, it is computationally expensive and can fail in dim or high-contrast lighting. Wheel encoders can also provide odometry estimation, but are prone to slipping on the sandy terrain encountered on Mars. Although traditionally a scientific surveying sensor, GPR has been used on Earth for terrain classification and localization through subsurface feature matching. The Perseverance rover and the upcoming ExoMars rover have GPR sensors already equipped to aid in the search of water and mineral resources. We propose to leverage GPR to aid in Mars rover localization. Specifically, we develop a novel GPR-based deep learning model that predicts 1D relative pose translation. We fuse our GPR pose prediction method with inertial and wheel encoder data in a filtering framework to output rover localization. We perform experiments in a Mars analog environment and demonstrate that our GPR-based displacement predictions both outperform wheel encoders and improve multi-modal filtering estimates in high-slip environments. Lastly, we present the first dataset aimed at GPR-based localization in Mars analog environments, which will be made publicly available at https://umfieldrobotics.github.io/marslgpr.
comment: IEEE Transactions on Field Robotics (2025)
Integrated Shape-Force Estimation for Continuum Robots: A Virtual-Work and Polynomial-Curvature Framework
Cable-driven continuum robots (CDCRs) are widely used in surgical and inspection tasks that require dexterous manipulation in confined spaces. Existing model-based estimation methods either assume constant curvature or rely on geometry-space interpolants, both of which struggle with accuracy under large deformations and sparse sensing. This letter introduces an integrated shape-force estimation framework that combines cable-tension measurements with tip-pose data to reconstruct backbone shape and estimate external tip force simultaneously. The framework employs polynomial curvature kinematics (PCK) and a virtual-work-based static formulation expressed directly in curvature space, where polynomial modal coefficients serve as generalized coordinates. The proposed method is validated through Cosserat-rod-based simulations and hardware experiments on a torque-cell-enabled CDCR prototype. Results show that the second-order PCK model achieves superior shape and force accuracy, combining a lightweight shape optimization with a closed-form, iteration-free force estimation, offering a compact and robust alternative to prior constant-curvature and geometry-space approaches.
Interactive Identification of Granular Materials using Force Measurements
Despite the potential the ability to identify granular materials creates for applications such as robotic cooking or earthmoving, granular material identification remains a challenging area, existing methods mostly relying on shaking the materials in closed containers. This work presents an interactive material identification framework that enables robots to identify a wide range of granular materials using only force-torque measurements. Unlike prior works, the proposed approach uses direct interaction with the materials. The approach is evaluated through experiments with a real-world dataset comprising 11 granular materials, which we also make publicly available. Results show that our method can identify a wide range of granular materials with near-perfect accuracy while relying solely on force measurements obtained from direct interaction. Further, our comprehensive data analysis and experiments show that a high-performancefeature space must combine features related to the force signal's time-domain dynamics and frequency spectrum. We account for this by proposing a combination of the raw signal and its high-frequency magnitude histogram as the suggested feature space representation. We show that the proposed feature space outperforms baselines by a significant margin. The code and data set are available at: https://irobotics.aalto.fi/identify_granular/.
comment: Accepted to 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Closing the Intent-to-Behavior Gap via Fulfillment Priority Logic
Practitioners designing reinforcement learning policies face a fundamental challenge: translating intended behavioral objectives into representative reward functions. This challenge stems from behavioral intent requiring simultaneous achievement of multiple competing objectives, typically addressed through labor-intensive linear reward composition that yields brittle results. Consider the ubiquitous robotics scenario where performance maximization directly conflicts with energy conservation. Such competitive dynamics are resistant to simple linear reward combinations. In this paper, we present the concept of objective fulfillment upon which we build Fulfillment Priority Logic (FPL). FPL allows practitioners to define logical formula representing their intentions and priorities within multi-objective reinforcement learning. Our novel Balanced Policy Gradient algorithm leverages FPL specifications to achieve up to 500\% better sample efficiency compared to Soft Actor Critic. Notably, this work constitutes the first implementation of non-linear utility scalarization design, specifically for continuous control problems.
The Difference between the Left and Right Invariant Extended Kalman Filter
The extended Kalman filter (EKF) has been the industry standard for state estimation problems over the past sixty years. The Invariant Extended Kalman Filter (IEKF) is a recent development of the EKF for the class of group-affine systems on Lie groups that has shown superior performance for inertial navigation problems. The IEKF comes in two versions, left- and right- handed respectively, and there is a perception in the robotics community that these filters are different and one should choose the handedness of the IEKF to match handedness of the measurement model for a given filtering problem. In this paper, we revisit these algorithms and demonstrate that the left- and right- IEKF algorithms (with reset step) are identical, that is, the choice of the handedness does not affect the IEKF's performance when the reset step is properly implemented. The reset step was not originally proposed as part of the IEKF, however, we provide simulations to show that the reset step improves asymptotic performance of all versions of the the filter, and should be included in all high performance algorithms. The GNSS-aided inertial navigation system (INS) is used as a motivating example to demonstrate the equivalence of the two filters.
comment: 20 pages, 4 figures, submitted to Control Engineering Practice
Learning Terrain-Specialized Policies for Adaptive Locomotion in Challenging Environments
Legged robots must exhibit robust and agile locomotion across diverse, unstructured terrains, a challenge exacerbated under blind locomotion settings where terrain information is unavailable. This work introduces a hierarchical reinforcement learning framework that leverages terrain-specialized policies and curriculum learning to enhance agility and tracking performance in complex environments. We validated our method on simulation, where our approach outperforms a generalist policy by up to 16% in success rate and achieves lower tracking errors as the velocity target increases, particularly on low-friction and discontinuous terrains, demonstrating superior adaptability and robustness across mixed-terrain scenarios.
comment: Accepted to the 22nd International Conference on Advanced Robotics (ICAR 2025). 7 pages
End-to-End Crop Row Navigation via LiDAR-Based Deep Reinforcement Learning
Reliable navigation in under-canopy agricultural environments remains a challenge due to GNSS unreliability, cluttered rows, and variable lighting. To address these limitations, we present an end-to-end learning-based navigation system that maps raw 3D LiDAR data directly to control commands using a deep reinforcement learning policy trained entirely in simulation. Our method includes a voxel-based downsampling strategy that reduces LiDAR input size by 95.83%, enabling efficient policy learning without relying on labeled datasets or manually designed control interfaces. The policy was validated in simulation, achieving a 100% success rate in straight-row plantations and showing a gradual decline in performance as row curvature increased, tested across varying sinusoidal frequencies and amplitudes.
comment: Accepted to the 22nd International Conference on Advanced Robotics (ICAR 2025). 7 pages
Multi-Objective Planning with Contextual Lexicographic Reward Preferences AAMAS
Autonomous agents are often required to plan under multiple objectives whose preference ordering varies based on context. The agent may encounter multiple contexts during its course of operation, each imposing a distinct lexicographic ordering over the objectives, with potentially different reward functions associated with each context. Existing approaches to multi-objective planning typically consider a single preference ordering over the objectives, across the state space, and do not support planning under multiple objective orderings within an environment. We present Contextual Lexicographic Markov Decision Process (CLMDP), a framework that enables planning under varying lexicographic objective orderings, depending on the context. In a CLMDP, both the objective ordering at a state and the associated reward functions are determined by the context. We employ a Bayesian approach to infer a state-context mapping from expert trajectories. Our algorithm to solve a CLMDP first computes a policy for each objective ordering and then combines them into a single context-aware policy that is valid and cycle-free. The effectiveness of the proposed approach is evaluated in simulation and using a mobile robot.
comment: 9 pages, 5 figures, 2 tables, To appear in Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2025
Multiagent Systems
JaxMARL-HFT: GPU-Accelerated Large-Scale Multi-Agent Reinforcement Learning for High-Frequency Trading
Agent-based modelling (ABM) approaches for high-frequency financial markets are difficult to calibrate and validate, partly due to the large parameter space created by defining fixed agent policies. Multi-agent reinforcement learning (MARL) enables more realistic agent behaviour and reduces the number of free parameters, but the heavy computational cost has so far limited research efforts. To address this, we introduce JaxMARL-HFT (JAX-based Multi-Agent Reinforcement Learning for High-Frequency Trading), the first GPU-accelerated open-source multi-agent reinforcement learning environment for high-frequency trading (HFT) on market-by-order (MBO) data. Extending the JaxMARL framework and building on the JAX-LOB implementation, JaxMARL-HFT is designed to handle a heterogeneous set of agents, enabling diverse observation/action spaces and reward functions. It is designed flexibly, so it can also be used for single-agent RL, or extended to act as an ABM with fixed-policy agents. Leveraging JAX enables up to a 240x reduction in end-to-end training time, compared with state-of-the-art reference implementations on the same hardware. This significant speed-up makes it feasible to exploit the large, granular datasets available in high-frequency trading, and to perform the extensive hyperparameter sweeps required for robust and efficient MARL research in trading. We demonstrate the use of JaxMARL-HFT with independent Proximal Policy Optimization (IPPO) for a two-player environment, with an order execution and a market making agent, using one year of LOB data (400 million orders), and show that these agents learn to outperform standard benchmarks. The code for the JaxMARL-HFT framework is available on GitHub.
comment: Code available at: https://github.com/vmohl/JaxMARL-HFT
ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book
We present ABIDES-MARL, a framework that combines a new multi-agent reinforcement learning (MARL) methodology with a new realistic limit-order-book (LOB) simulation system to study equilibrium behavior in complex financial market games. The system extends ABIDES-Gym by decoupling state collection from kernel interruption, enabling synchronized learning and decision-making for multiple adaptive agents while maintaining compatibility with standard RL libraries. It preserves key market features such as price-time priority and discrete tick sizes. Methodologically, we use MARL to approximate equilibrium-like behavior in multi-period trading games with a finite number of heterogeneous agents-an informed trader, a liquidity trader, noise traders, and competing market makers-all with individual price impacts. This setting bridges optimal execution and market microstructure by embedding the liquidity trader's optimization problem within a strategic trading environment. We validate the approach by solving an extended Kyle model within the simulation system, recovering the gradual price discovery phenomenon. We then extend the analysis to a liquidity trader's problem where market liquidity arises endogenously and show that, at equilibrium, execution strategies shape market-maker behavior and price dynamics. ABIDES-MARL provides a reproducible foundation for analyzing equilibrium and strategic adaptation in realistic markets and contributes toward building economically interpretable agentic AI systems for finance.
Learning what to say and how precisely: Efficient Communication via Differentiable Discrete Communication Learning
Effective communication in multi-agent reinforcement learning (MARL) is critical for success but constrained by bandwidth, yet past approaches have been limited to complex gating mechanisms that only decide \textit{whether} to communicate, not \textit{how precisely}. Learning to optimize message precision at the bit-level is fundamentally harder, as the required discretization step breaks gradient flow. We address this by generalizing Differentiable Discrete Communication Learning (DDCL), a framework for end-to-end optimization of discrete messages. Our primary contribution is an extension of DDCL to support unbounded signals, transforming it into a universal, plug-and-play layer for any MARL architecture. We verify our approach with three key results. First, through a qualitative analysis in a controlled environment, we demonstrate \textit{how} agents learn to dynamically modulate message precision according to the informational needs of the task. Second, we integrate our variant of DDCL into four state-of-the-art MARL algorithms, showing it reduces bandwidth by over an order of magnitude while matching or exceeding task performance. Finally, we provide direct evidence for the \enquote{Bitter Lesson} in MARL communication: a simple Transformer-based policy leveraging DDCL matches the performance of complex, specialized architectures, questioning the necessity of bespoke communication designs.
comment: 30 pages, 12 figures, 6 tables
An Explanation-oriented Inquiry Dialogue Game for Expert Collaborative Recommendations
This work presents a requirement analysis for collaborative dialogues among medical experts and an inquiry dialogue game based on this analysis for incorporating explainability into multiagent system design. The game allows experts with different knowledge bases to collaboratively make recommendations while generating rich traces of the reasoning process through combining explanation-based illocutionary forces in an inquiry dialogue. The dialogue game was implemented as a prototype web-application and evaluated against the specification through a formative user study. The user study confirms that the dialogue game meets the needs for collaboration among medical experts. It also provides insights on the real-life value of dialogue-based communication tools for the medical community.
Designing Non-monetary Intersection Control Mechanisms for Efficient Selfish Routing
Urban traffic congestion stems from the misalignment between self-interested routing decisions and socially optimal flows. Intersections, as critical bottlenecks, amplify these inefficiencies because existing control schemes often neglect drivers' strategic behavior. Autonomous intersections, enabled by vehicle-to-infrastructure communication, permit vehicle-level scheduling based on individual requests. Leveraging this fine-grained control, we propose a non-monetary mechanism that strategically adjusts request timestamps-delaying or advancing passage times-to incentivize socially efficient routing. We present a hierarchical architecture separating local scheduling by roadside units from network-wide timestamp adjustments by a central planner. We establish an experimentally validated analytical model, prove the existence and essential uniqueness of equilibrium flows and formulate the planner's problem as an offline bilevel optimization program solvable with standard tools. Experiments on the Sioux Falls network show up to a 68% reduction in the efficiency gap between equilibrium and optimal flows, demonstrating scalability and effectiveness.
From Pixels to Cooperation Multi Agent Reinforcement Learning based on Multimodal World Models
Learning cooperative multi-agent policies directly from high-dimensional, multimodal sensory inputs like pixels and audio (from pixels) is notoriously sample-inefficient. Model-free Multi-Agent Reinforcement Learning (MARL) algorithms struggle with the joint challenge of representation learning, partial observability, and credit assignment. To address this, we propose a novel framework based on a shared, generative Multimodal World Model (MWM). Our MWM is trained to learn a compressed latent representation of the environment's dynamics by fusing distributed, multimodal observations from all agents using a scalable attention-based mechanism. Subsequently, we leverage this learned MWM as a fast, "imagined" simulator to train cooperative MARL policies (e.g., MAPPO) entirely within its latent space, decoupling representation learning from policy learning. We introduce a new set of challenging multimodal, multi-agent benchmarks built on a 3D physics simulator. Our experiments demonstrate that our MWM-MARL framework achieves orders-of-magnitude greater sample efficiency compared to state-of-the-art model-free MARL baselines. We further show that our proposed multimodal fusion is essential for task success in environments with sensory asymmetry and that our architecture provides superior robustness to sensor-dropout, a critical feature for real-world deployment.
Credit Network Modeling and Analysis via Large Language Models
We investigate the application of large language models (LLMs) to construct credit networks from firms' textual financial statements and to analyze the resulting network structures. We start with using LLMs to translate each firm's financial statement into a credit network that pertains solely to that firm. These networks are then aggregated to form a comprehensive credit network representing the whole financial system. During this process, the inconsistencies in financial statements are automatically detected and human intervention is involved. We demonstrate that this translation process is effective across financial statements corresponding to credit networks with diverse topological structures. We further investigate the reasoning capabilities of LLMs in analyzing credit networks and determining optimal strategies for executing financial operations to maximize network performance measured by the total assets of firms, which is an inherently combinatorial optimization challenge. To demonstrate this capability, we focus on two financial operations: portfolio compression and debt removal, applying them to both synthetic and real-world datasets. Our findings show that LLMs can generate coherent reasoning and recommend effective executions of these operations to enhance overall network performance.
comment: 8 pages, 5 figures, 4 tables
JaxMARL-HFT: GPU-Accelerated Large-Scale Multi-Agent Reinforcement Learning for High-Frequency Trading
Agent-based modelling (ABM) approaches for high-frequency financial markets are difficult to calibrate and validate, partly due to the large parameter space created by defining fixed agent policies. Multi-agent reinforcement learning (MARL) enables more realistic agent behaviour and reduces the number of free parameters, but the heavy computational cost has so far limited research efforts. To address this, we introduce JaxMARL-HFT (JAX-based Multi-Agent Reinforcement Learning for High-Frequency Trading), the first GPU-accelerated open-source multi-agent reinforcement learning environment for high-frequency trading (HFT) on market-by-order (MBO) data. Extending the JaxMARL framework and building on the JAX-LOB implementation, JaxMARL-HFT is designed to handle a heterogeneous set of agents, enabling diverse observation/action spaces and reward functions. It is designed flexibly, so it can also be used for single-agent RL, or extended to act as an ABM with fixed-policy agents. Leveraging JAX enables up to a 240x reduction in end-to-end training time, compared with state-of-the-art reference implementations on the same hardware. This significant speed-up makes it feasible to exploit the large, granular datasets available in high-frequency trading, and to perform the extensive hyperparameter sweeps required for robust and efficient MARL research in trading. We demonstrate the use of JaxMARL-HFT with independent Proximal Policy Optimization (IPPO) for a two-player environment, with an order execution and a market making agent, using one year of LOB data (400 million orders), and show that these agents learn to outperform standard benchmarks. The code for the JaxMARL-HFT framework is available on GitHub.
comment: Code available at: https://github.com/vmohl/JaxMARL-HFT
ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book
We present ABIDES-MARL, a framework that combines a new multi-agent reinforcement learning (MARL) methodology with a new realistic limit-order-book (LOB) simulation system to study equilibrium behavior in complex financial market games. The system extends ABIDES-Gym by decoupling state collection from kernel interruption, enabling synchronized learning and decision-making for multiple adaptive agents while maintaining compatibility with standard RL libraries. It preserves key market features such as price-time priority and discrete tick sizes. Methodologically, we use MARL to approximate equilibrium-like behavior in multi-period trading games with a finite number of heterogeneous agents-an informed trader, a liquidity trader, noise traders, and competing market makers-all with individual price impacts. This setting bridges optimal execution and market microstructure by embedding the liquidity trader's optimization problem within a strategic trading environment. We validate the approach by solving an extended Kyle model within the simulation system, recovering the gradual price discovery phenomenon. We then extend the analysis to a liquidity trader's problem where market liquidity arises endogenously and show that, at equilibrium, execution strategies shape market-maker behavior and price dynamics. ABIDES-MARL provides a reproducible foundation for analyzing equilibrium and strategic adaptation in realistic markets and contributes toward building economically interpretable agentic AI systems for finance.
Learning what to say and how precisely: Efficient Communication via Differentiable Discrete Communication Learning
Effective communication in multi-agent reinforcement learning (MARL) is critical for success but constrained by bandwidth, yet past approaches have been limited to complex gating mechanisms that only decide \textit{whether} to communicate, not \textit{how precisely}. Learning to optimize message precision at the bit-level is fundamentally harder, as the required discretization step breaks gradient flow. We address this by generalizing Differentiable Discrete Communication Learning (DDCL), a framework for end-to-end optimization of discrete messages. Our primary contribution is an extension of DDCL to support unbounded signals, transforming it into a universal, plug-and-play layer for any MARL architecture. We verify our approach with three key results. First, through a qualitative analysis in a controlled environment, we demonstrate \textit{how} agents learn to dynamically modulate message precision according to the informational needs of the task. Second, we integrate our variant of DDCL into four state-of-the-art MARL algorithms, showing it reduces bandwidth by over an order of magnitude while matching or exceeding task performance. Finally, we provide direct evidence for the \enquote{Bitter Lesson} in MARL communication: a simple Transformer-based policy leveraging DDCL matches the performance of complex, specialized architectures, questioning the necessity of bespoke communication designs.
comment: 30 pages, 12 figures, 6 tables
An Explanation-oriented Inquiry Dialogue Game for Expert Collaborative Recommendations
This work presents a requirement analysis for collaborative dialogues among medical experts and an inquiry dialogue game based on this analysis for incorporating explainability into multiagent system design. The game allows experts with different knowledge bases to collaboratively make recommendations while generating rich traces of the reasoning process through combining explanation-based illocutionary forces in an inquiry dialogue. The dialogue game was implemented as a prototype web-application and evaluated against the specification through a formative user study. The user study confirms that the dialogue game meets the needs for collaboration among medical experts. It also provides insights on the real-life value of dialogue-based communication tools for the medical community.
Designing Non-monetary Intersection Control Mechanisms for Efficient Selfish Routing
Urban traffic congestion stems from the misalignment between self-interested routing decisions and socially optimal flows. Intersections, as critical bottlenecks, amplify these inefficiencies because existing control schemes often neglect drivers' strategic behavior. Autonomous intersections, enabled by vehicle-to-infrastructure communication, permit vehicle-level scheduling based on individual requests. Leveraging this fine-grained control, we propose a non-monetary mechanism that strategically adjusts request timestamps-delaying or advancing passage times-to incentivize socially efficient routing. We present a hierarchical architecture separating local scheduling by roadside units from network-wide timestamp adjustments by a central planner. We establish an experimentally validated analytical model, prove the existence and essential uniqueness of equilibrium flows and formulate the planner's problem as an offline bilevel optimization program solvable with standard tools. Experiments on the Sioux Falls network show up to a 68% reduction in the efficiency gap between equilibrium and optimal flows, demonstrating scalability and effectiveness.
Credit Network Modeling and Analysis via Large Language Models
We investigate the application of large language models (LLMs) to construct credit networks from firms' textual financial statements and to analyze the resulting network structures. We start with using LLMs to translate each firm's financial statement into a credit network that pertains solely to that firm. These networks are then aggregated to form a comprehensive credit network representing the whole financial system. During this process, the inconsistencies in financial statements are automatically detected and human intervention is involved. We demonstrate that this translation process is effective across financial statements corresponding to credit networks with diverse topological structures. We further investigate the reasoning capabilities of LLMs in analyzing credit networks and determining optimal strategies for executing financial operations to maximize network performance measured by the total assets of firms, which is an inherently combinatorial optimization challenge. To demonstrate this capability, we focus on two financial operations: portfolio compression and debt removal, applying them to both synthetic and real-world datasets. Our findings show that LLMs can generate coherent reasoning and recommend effective executions of these operations to enhance overall network performance.
comment: 8 pages, 5 figures, 4 tables
GTAlign: Game-Theoretic Alignment of LLM Assistants for Social Welfare
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a social welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and social welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .
comment: 31 pages, 6 figures
Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version
MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new MG called Flex-MG, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 42 pages
Language-Driven Coordination and Learning in Multi-Agent Simulation Environments
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
The Digital Ecosystem of Beliefs: does evolution favour AI over humans?
As AI systems are integrated into social networks, there are AI safety concerns that AI-generated content may dominate the web, e.g. in popularity or impact on beliefs. To understand such questions, this paper proposes the Digital Ecosystem of Beliefs (Digico), the first evolutionary framework for controlled experimentation with multi-population interactions in simulated social networks. Following a Universal Darwinism approach, the framework models a population of agents which change their messaging strategies due to evolutionary updates. They interact via messages, update their beliefs following a contagion model, and maintain their beliefs through cognitive Lamarckian inheritance. Initial experiments with Digico implement two types of agents, which are modelled to represent AIs vs humans based on higher rates of communication, higher rates of evolution, seeding fixed beliefs with propaganda aims, and higher influence on the recommendation algorithm. These experiments show that: a) when AIs have faster messaging, evolution, and more influence on the recommendation algorithm, they get 80% to 95% of the views; b) AIs designed for propaganda can typically convince 50% of humans to adopt extreme beliefs, and up to 85% when agents believe only a limited number of channels; c) a penalty for content that violates agents' beliefs reduces propaganda effectiveness up to 8%. We further discuss Digico as a tool for systematic experimentation across multi-agent configurations, the implications for legislation, personal use, and platform design, and the use of Digico for studying evolutionary principles.
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration
Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
GTAlign: Game-Theoretic Alignment of LLM Assistants for Social Welfare
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a social welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and social welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .
comment: 31 pages, 6 figures
GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration
Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.
Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version
MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new MG called Flex-MG, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 42 pages
Language-Driven Coordination and Learning in Multi-Agent Simulation Environments
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
The Digital Ecosystem of Beliefs: does evolution favour AI over humans?
As AI systems are integrated into social networks, there are AI safety concerns that AI-generated content may dominate the web, e.g. in popularity or impact on beliefs. To understand such questions, this paper proposes the Digital Ecosystem of Beliefs (Digico), the first evolutionary framework for controlled experimentation with multi-population interactions in simulated social networks. Following a Universal Darwinism approach, the framework models a population of agents which change their messaging strategies due to evolutionary updates. They interact via messages, update their beliefs following a contagion model, and maintain their beliefs through cognitive Lamarckian inheritance. Initial experiments with Digico implement two types of agents, which are modelled to represent AIs vs humans based on higher rates of communication, higher rates of evolution, seeding fixed beliefs with propaganda aims, and higher influence on the recommendation algorithm. These experiments show that: a) when AIs have faster messaging, evolution, and more influence on the recommendation algorithm, they get 80% to 95% of the views; b) AIs designed for propaganda can typically convince 50% of humans to adopt extreme beliefs, and up to 85% when agents believe only a limited number of channels; c) a penalty for content that violates agents' beliefs reduces propaganda effectiveness up to 8%. We further discuss Digico as a tool for systematic experimentation across multi-agent configurations, the implications for legislation, personal use, and platform design, and the use of Digico for studying evolutionary principles.
Systems and Control (CS)
Model Predictive Control with Multiple Constraint Horizons
In this work we propose a Model Predictive Control (MPC) formulation that splits constraints in two different types. Motivated by safety considerations, the first type of constraint enforces a control-invariant set, while the second type could represent a less restrictive constraint on the system state. This distinction enables closed-loop sub- optimality results for nonlinear MPC with heterogeneous state constraints (distinct constraints across open loop predicted states), and no terminal elements. Removing the non-invariant constraint recovers the partially constrained case. Beyond its theoretical interest, heterogeneous constrained MPC shows how constraint choices shape the system's closed loop. In the partially constrained case, adjusting the constraint horizon (how many predicted- state constraints are enforced) trades estimation accuracy for computational cost. Our analysis yields first, a sub- optimality upper-bound accounting for distinct constraint sets, their horizons and decay rates, that is tighter for short horizons than prior work. Second, to our knowledge, we give the first lower bound (beyond open-loop cost) on closed-loop sub-optimality. Together these bounds provide a powerful analysis framework, allowing designers to evaluate the effect of horizons in MPC sub-optimality. We demonstrate our results via simulations on nonlinear and linear safety-critical systems.
comment: Submitted to Transactions on Automatic Control
Hopfield Neural Networks for Online Constrained Parameter Estimation with Time-Varying Dynamics and Disturbances
This paper proposes two projector-based Hopfield neural network (HNN) estimators for online, constrained parameter estimation under time-varying data, additive disturbances, and slowly drifting physical parameters. The first is a constraint-aware HNN that enforces linear equalities and inequalities (via slack neurons) and continuously tracks the constrained least-squares target. The second augments the state with compensation neurons and a concatenated regressor to absorb bias-like disturbance components within the same energy function. For both estimators we establish global uniform ultimate boundedness with explicit convergence rate and ultimate bound, and we derive practical tuning rules that link the three design gains to closed-loop bandwidth and steady-state accuracy. We also introduce an online identifiability monitor that adapts the constraint weight and time step, and, when needed, projects updates onto identifiable subspaces to prevent drift in poorly excited directions...
comment: Submitted to International Journal od Adaptive Control and Signal Processing
Second-Order Policy Gradient Methods for the Linear Quadratic Regulator
Policy gradient methods are a powerful family of reinforcement learning algorithms for continuous control that optimize a policy directly. However, standard first-order methods often converge slowly. Second-order methods can accelerate learning by using curvature information, but they are typically expensive to compute. The linear quadratic regulator (LQR) is a practical setting in which key quantities, such as the policy gradient, admit closed-form expressions. In this work, we develop second-order policy gradient algorithms for LQR by deriving explicit formulas for both the approximate and exact Hessians used in Gauss--Newton and Newton methods, respectively. Numerical experiments show a faster convergence rate for the proposed second-order approach over the standard first-order policy gradient baseline.
comment: 8 pages, 2 figs
ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book
We present ABIDES-MARL, a framework that combines a new multi-agent reinforcement learning (MARL) methodology with a new realistic limit-order-book (LOB) simulation system to study equilibrium behavior in complex financial market games. The system extends ABIDES-Gym by decoupling state collection from kernel interruption, enabling synchronized learning and decision-making for multiple adaptive agents while maintaining compatibility with standard RL libraries. It preserves key market features such as price-time priority and discrete tick sizes. Methodologically, we use MARL to approximate equilibrium-like behavior in multi-period trading games with a finite number of heterogeneous agents-an informed trader, a liquidity trader, noise traders, and competing market makers-all with individual price impacts. This setting bridges optimal execution and market microstructure by embedding the liquidity trader's optimization problem within a strategic trading environment. We validate the approach by solving an extended Kyle model within the simulation system, recovering the gradual price discovery phenomenon. We then extend the analysis to a liquidity trader's problem where market liquidity arises endogenously and show that, at equilibrium, execution strategies shape market-maker behavior and price dynamics. ABIDES-MARL provides a reproducible foundation for analyzing equilibrium and strategic adaptation in realistic markets and contributes toward building economically interpretable agentic AI systems for finance.
MOBIUS: A Multi-Modal Bipedal Robot that can Walk, Crawl, Climb, and Roll
This article presents a Multi-Modal Bipedal Intelligent Urban Scout robot (MOBIUS) capable of walking, crawling, climbing, and rolling. MOBIUS features four limbs--two 6-DoF arms with two-finger grippers for manipulation and climbing, and two 4-DoF legs for locomotion--enabling smooth transitions across diverse terrains without reconfiguration. A hybrid control architecture combines reinforcement learning-based locomotion with model-based predictive and admittance control enhanced for safety by a Reference Governor toward compliant contact interactions. A high-level MIQCP planner autonomously selects locomotion modes to balance stability and energy efficiency. Hardware experiments demonstrate robust gait transitions, dynamic climbing, and full-body load support via pinch grasp. Overall, MOBIUS demonstrates the importance of tight integration between morphology, high-level planning, and control to enable mobile loco-manipulation and grasping, substantially expanding its interaction capabilities, workspace, and traversability.
comment: 23 pages, 20 figures. Collaborative work between the Robotics and Mechanisms Laboratory (RoMeLa) and Mitsubishi Electric Research Laboratories (MERL)
On polynomial explicit partial estimator design for nonlinear systems with parametric uncertainties
This paper investigates the idea of designing data-driven partial estimators for nonlinear systems showing parametric uncertainties using sparse multivariate polynomial relationships. A general framework is first presented and then validated on two illustrative examples with comparison to different possible Machine/Deep-Learning based alternatives. The results suggests the superiority of the proposed sparse identification scheme, at least when the learning data is small.
comment: Submitted to ACC2026
Deep Learning Prediction of Beam Coherence Time for Near-FieldTeraHertz Networks
Large multiple antenna arrays coupled with accurate beamforming are essential in terahertz (THz) communications to ensure link reliability. However, as the number of antennas increases, beam alignment (focusing) and beam tracking in mobile networks incur prohibitive overhead. Additionally, the near-field region expands both with the size of antenna arrays and the carrier frequency, calling for adjustments in the beamforming to account for spherical wavefront instead of the conventional planar wave assumption. In this letter, we introduce a novel beam coherence time for mobile THz networks, to drastically reduce the rate of beam updates. Then, we propose a deep learning model, relying on a simple feedforward neural network with a time-dependent input, to predict the beam coherence time and adjust the beamforming on the fly with minimal overhead. Our numerical results demonstrate the effectiveness of the proposed approach by enabling higher data rates while reducing the overhead, especially at high (i.e., vehicular) mobility.
comment: IEEE Wireless Communication Letters (accepted October 2025)
Data-driven stabilization of nonlinear systems via descriptor embedding
We introduce the notion of descriptor embedding for nonlinear systems and use it for the data-driven design of stabilizing controllers. Specifically, we provide sufficient data-dependent LMI conditions which, if feasible, return a stabilizing nonlinear controller of the form $u=K(x)Z(x)$ where $K(x)$ belongs to a polytope and $Z$ is a user-defined function. The proposed method is then extended to account for the presence of uncertainties and noisy data. Furthermore, a method to estimate the resulting region of attraction is given using only data. Simulation examples are used to illustrate the results and compare them to existing methods from the literature.
comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Control
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games -- Part I: Equilibria
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. While prior work in evolutionary game theory has primarily focused on static games without individual player state dynamics, we present the first comprehensive evolutionary analysis of such dynamic games. We propose an evolutionary model together with a mean field approximation of the finite-population game and establish strong approximation guarantees. We show that standard solution concepts for dynamic games lack an evolutionary interpretation, and we propose a new concept - the Mixed Stationary Nash Equilibrium (MSNE) - which admits one. We analyze the relationship between MSNE and the rest points of the mean field evolutionary model and study the evolutionary stability of MSNE.
Risk Aware Safe Control with Cooperative Sensing for Dynamic Obstacle Avoidance
This paper presents the design, development, and on vehicle implementation and validation of a safety critical controller for autonomous driving under sensing and communication uncertainty. Cooperative sensing, fused via a Wasserstein barycenter (WB), is used to optimize the distribution of the dynamic obstacle locations. The Conditional Value at Risk (CVaR) is introduced to form a risk aware control-barrier-function (CBF) framework with the optimized distribution samplings. The proposed WB CVaR CBF safety filter improves control inputs that minimize tail risk while certifying forward invariance of the safe set. A model predictive controller (MPC) performs path tracking, and the safety filter modulates the nominal control inputs to enforce risk aware constraints. We detail the software architecture and integration with vehicle actuation and cooperative sensing. The approach is evaluated on a full-scale autonomous vehicle (AV) in scenarios with measurement noise, communication perturbations, and input disturbances, and is compared against a baseline MPC CBF design. Results demonstrate improved safety margins and robustness, highlighting the practicality of deploying the risk-aware safety filter on an actual AV.
Orthogonal-by-construction augmentation of physics-based input-output models
Model augmentation is a promising approach for integrating first-principles-based models with machine learning components. Augmentation can result in better model accuracy and faster convergence compared to black-box system identification methods, while maintaining interpretability of the models in terms of how the original dynamics are complemented by learning. A widely used augmentation structure in the literature is based on the parallel connection of the physics-based and learning components, for both of which the corresponding parameters are jointly optimized. However, due to overlap in representation of the system dynamics by such an additive structure, estimation often leads to physically unrealistic parameters, compromising model interpretability. To overcome this limitation, this paper introduces a novel orthogonal-by-construction model augmentation structure for input-output models, that guarantees recovery of the physically true parameters under appropriate identifiability conditions.
comment: Submitted for publication
A High-Speed Capable Spherical Robot
This paper designs a new spherical robot structure capable of supporting high-speed motion at up to 10 m/s. Building upon a single-pendulum-driven spherical robot, the design incorporates a momentum wheel with an axis aligned with the secondary pendulum, creating a novel spherical robot structure. Practical experiments with the physical prototype have demonstrated that this new spherical robot can achieve stable high-speed motion through simple decoupled control, which was unattainable with the original structure. The spherical robot designed for high-speed motion not only increases speed but also significantly enhances obstacle-crossing performance and terrain robustness.
comment: 5 pages
Koopman-based Prediction of Connectivity for Flying Ad Hoc Networks
The application of machine learning (ML) to communication systems is expected to play a pivotal role in future artificial intelligence (AI)-based next-generation wireless networks. While most existing works focus on ML techniques for static wireless environments, they often face limitations when applied to highly dynamic environments, such as flying ad hoc networks (FANETs). This paper explores the use of data-driven Koopman approaches to address these challenges. Specifically, we investigate how these approaches can model UAV trajectory dynamics within FANETs, enabling more accurate predictions and improved network performance. By leveraging Koopman operator theory, we propose two possible approaches -- centralized and distributed -- to efficiently address the challenges posed by the constantly changing topology of FANETs. To demonstrate this, we consider a FANET performing surveillance with UAVs following pre-determined trajectories and predict signal-to-interference-plus-noise ratios (SINRs) to ensure reliable communication between UAVs. Our results show that these approaches can accurately predict connectivity and isolation events that lead to modelled communication outages. This capability could help UAVs schedule their transmissions based on these predictions.
Experimental Demonstration of Software-Orchestrated Quantum Network Applications over a Campus-Scale Testbed
To fulfill their promise, quantum networks must transform from isolated testbeds into scalable infrastructures for distributed quantum applications. In this paper, we present a prototype orchestrator for the Argonne Quantum Network (ArQNet) testbed that leverages design principles of software-defined networking (SDN) to automate typical quantum communication experiments across buildings in the Argonne campus connected over deployed, telecom fiber. Our implementation validates a scalable architecture supporting service-level abstraction of quantum networking tasks, distributed time synchronization, and entanglement verification across remote nodes. We present a prototype service of continuous, stable entanglement distribution between remote sites that ran for 12 hours, which defines a promising path towards scalable quantum networks.
comment: 11 pages, 8 figures, journal
Deep Learning-Accelerated Shapley Value for Fair Allocation in Power Systems: The Case of Carbon Emission Responsibility
Allocating costs, benefits, and emissions fairly among power system participant entities represents a persistent challenge. The Shapley value provides an axiomatically fair solution, yet computational barriers have limited its adoption beyond small-scale applications. This paper presents SurroShap, a scalable Shapley value approximation framework combining efficient coalition sampling with deep learning surrogate models that accelerate characteristic function evaluations. Exemplified through carbon emission responsibility allocation in power networks, SurroShap enables Shapley-based fair allocation for power systems with thousands of entities for the first time. We derive theoretical error bounds proving that time-averaged SurroShap allocations converge to be $\varepsilon$-close to exact Shapley values. Experiments on nine systems ranging from 26 to 1,951 entities demonstrate completion within the real-time operational window even at maximum scale, achieving 10^4-10^5 speedups over other sampling-based methods while maintaining tight error bounds. The resulting Shapley-based carbon allocations possess six desirable properties aligning individual interests with decarbonization goals. Year-long simulations on the Texas 2000-bus system validate real-world applicability, with regional analysis revealing how renewable-rich areas offset emission responsibility through exports while load centers bear responsibility for driving system-wide generation.
Assessing Climate Vulnerability Risk for Substations in Massachusetts Via Sensitivity Analysis
The electric grid is increasingly vital, supporting essential services such as healthcare, heating and cooling transportation, telecommunications, and water systems. This growing dependence on reliable power underscores the need for enhanced grid resilience. This study presents Eversource's Climate Vulnerability Assessment (CVA) for bulk distribution substations in Massachusetts, evaluating risks from storm surge, sea level rise, precipitation, and extreme temperatures. The focus is on developing a cost-efficient model to guide targeted resilience investments. This is achieved by overcoming the limitations of single-variable analyses through hazard-specific assessments that integrate spatial, climate, electrical asset, and other relevant data; and applying sensitivity analysis to establish data-driven thresholds for actionable climate risks. By integrating geospatial analysis and data modeling with power engineering principles, this study provides a practical and replicable framework for equitable, data-informed climate adaptation planning. The results indicate that thresholds for certain climate hazards can be highly sensitive and result in significantly larger sets of stations requiring mitigation measures to adequately adapt to climate change, indicating that high-fidelity long-term climate projections are critical.
Neural Networks for AC Optimal Power Flow: Improving Worst-Case Guarantees during Training SC
The AC Optimal Power Flow (AC-OPF) problem is central to power system operation but challenging to solve efficiently due to its nonconvex and nonlinear nature. Neural networks (NNs) offer fast surrogates, yet their black-box behavior raises concerns about constraint violations that can compromise safety. We propose a verification-informed NN framework that incorporates worst-case constraint violations directly into training, producing models that are both accurate and provably safer. Through post-hoc verification, we achieve substantial reductions in worst-case violations and, for the first time, verify all operational constraints of large-scale AC-OPF proxies. Practical feasibility is further enhanced via restoration and warm-start strategies for infeasible operating points. Experiments on systems ranging from 57 to 793 buses demonstrate scalability, speed, and reliability, bridging the gap between ML acceleration and safe, real-time deployment of AC-OPF solutions - and paving the way toward data-driven optimal control.
comment: Submitted to PSCC 2026 (under review)
Limits of Safe AI Deployment: Differentiating Oversight and Control
Oversight and control, which we collectively call supervision, are often discussed as ways to ensure that AI systems are accountable, reliable, and able to fulfill governance and management requirements. However, the requirements for "human oversight" risk codifying vague or inconsistent interpretations of key concepts like oversight and control. This ambiguous terminology could undermine efforts to design or evaluate systems that must operate under meaningful human supervision. This matters because the term is used by regulatory texts such as the EU AI Act. This paper undertakes a targeted critical review of literature on supervision outside of AI, along with a brief summary of past work on the topic related to AI. We next differentiate control as ex-ante or real-time and operational rather than policy or governance, and oversight as performed ex-post, or a policy and governance function. Control aims to prevent failures, while oversight focuses on detection, remediation, or incentives for future prevention. Building on this, we make three contributions. 1) We propose a framework to align regulatory expectations with what is technically and organizationally plausible, articulating the conditions under which each mechanism is possible, where they fall short, and what is required to make them meaningful in practice. 2) We outline how supervision methods should be documented and integrated into risk management, and drawing on the Microsoft Responsible AI Maturity Model, we outline a maturity model for AI supervision. 3) We explicitly highlight boundaries of these mechanisms, including where they apply, where they fail, and where it is clear that no existing methods suffice. This foregrounds the question of whether meaningful supervision is possible in a given deployment context, and can support regulators, auditors, and practitioners in identifying both present and future limitations.
comment: Revised to improve table formatting and update draft
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each primal step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
Spherical Point Process with Random Heights: New Approach for Modeling and Analysis of Downlink Satellite Networks
The Low Earth Orbit (LEO) satellite industry is undergoing rapid expansion, with operators competitively launching satellites due to the first-come, first-served principle governing orbital rights. This has led to the formation of increasingly large-scale, volumetric constellation where satellites operate across a diverse range of altitudes. To address the need for analyzing such complex networks, this paper establishes a new analytical framework for LEO constellations by leveraging a 3D Poisson point process (PPP). Specifically, we introduce a random height model (RHM) that can capture various altitude distributions by applying a random radial displacement to points generated by a homogeneous PPP on a nominal shell. Building on this, we derive an analytical expression for the downlink coverage probability. To motivate our model, we show that the altitude distributions of several leading satellite constellations, including Starlink, align with our model's assumptions. We then demonstrate through Monte Carlo simulations that the coverage probability of our RHM closely matches that of these real-world networks. Finally, we confirm the accuracy of our analytical expressions by showing their agreement with simulation results. Our work thereby provides a powerful tool for understanding and predict how the statistical distribution of satellite altitudes impacts network performance.
comment: submitted to IEEE journal
Aggregative games with bilevel structures: Distributed algorithms and convergence analysis
In this paper, the problem of distributively seeking the equilibria of aggregative games with bilevel structures is studied. Different from the traditional aggregative games, here the aggregation is determined by the minimizer of a virtual leader's objective function in the inner level, which depends on the actions of the players in the outer level. Moreover, the global objective function of the virtual leader is formed by the sum of some local functions with two arguments, each of which is strongly convex with respect to the second argument. When making decisions, each player in the outer level only has access to a local part of the virtual leader's objective function. To handle this problem, first, we propose a second order gradient-based distributed algorithm, where the Hessian matrices associated with the objective functions of the leader are involved. By the algorithm, players update their actions while cooperatively minimizing the objective function of the virtual leader to estimate the aggregation by communicating with their neighbors via a connected graph. Under mild assumptions on the graph and cost functions, we prove that the actions of players asymptotically converge to the Nash equilibrium point. Then, for the case where the Hessian matrices associated with the objective functions of the virtual leader are not available, we propose a first order gradient-based distributed algorithm, where a distributed two-point estimate strategy is developed to estimate the gradients of players' cost functions in the outer level. Under the same conditions, we prove that the convergence errors of players' actions to the Nash equilibrium point are linear with respect to the estimate parameters. Finally, simulations are provided to demonstrate the effectiveness of our theoretical results.
Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: IEEE Transactions on Robotics (T-RO). v6 update on stability analysis in Appendix J under relaxed Assumption 1
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
This paper presents a control strategy based on dual quaternions for the coordinated formation flying of small UAV groups. A virtual structure is employed to define the desired formation, enabling unified control of its position, orientation, and shape. This abstraction makes formation management easier by allowing a low-level controller to compute individual UAV commands efficiently. The proposed controller integrates a pose control module with a geometry-based adaptive strategy, ensuring precise and robust task execution. The effectiveness of the approach is demonstrated through both simulation and experimental results.
Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. Added new experiments, figures, and exposition
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
Detection Augmented Bandit Procedures for Piecewise Stationary MABs: A Modular Approach
Conventional Multi-Armed Bandit (MAB) algorithms are designed for stationary environments, where the reward distributions associated with the arms do not change with time. In many applications, however, the environment is more accurately modeled as being non-stationary. In this work, piecewise stationary MAB (PS-MAB) environments are investigated, in which the reward distributions associated with a subset of the arms change at some change-points and remain stationary between change-points. Our focus is on the asymptotic analysis of PS-MABs, for which practical algorithms based on change detection have been previously proposed. Our goal is to modularize the design and analysis of such Detection Augmented Bandit (DAB) procedures. To this end, we first provide novel, improved performance lower bounds for PS-MABs. Then, we identify the requirements for stationary bandit algorithms and change detectors in a DAB procedure that are needed for the modularization. We assume that the rewards are sub-Gaussian. Under this assumption and a condition on the separation of the change-points, we show that the analysis of DAB procedures can indeed be modularized, so that the regret bounds can be obtained in a unified manner for various combinations of change detectors and bandit algorithms. Through this analysis, we develop new modular DAB procedures that are order-optimal. Finally, we showcase the practical effectiveness of our modular DAB approach in our experiments, studying its regret performance compared to other methods and investigating its detection capabilities.
comment: 30 pages, 4 figures, 1 table, submitted to TIT
The Difference between the Left and Right Invariant Extended Kalman Filter
The extended Kalman filter (EKF) has been the industry standard for state estimation problems over the past sixty years. The Invariant Extended Kalman Filter (IEKF) is a recent development of the EKF for the class of group-affine systems on Lie groups that has shown superior performance for inertial navigation problems. The IEKF comes in two versions, left- and right- handed respectively, and there is a perception in the robotics community that these filters are different and one should choose the handedness of the IEKF to match handedness of the measurement model for a given filtering problem. In this paper, we revisit these algorithms and demonstrate that the left- and right- IEKF algorithms (with reset step) are identical, that is, the choice of the handedness does not affect the IEKF's performance when the reset step is properly implemented. The reset step was not originally proposed as part of the IEKF, however, we provide simulations to show that the reset step improves asymptotic performance of all versions of the the filter, and should be included in all high performance algorithms. The GNSS-aided inertial navigation system (INS) is used as a motivating example to demonstrate the equivalence of the two filters.
comment: 20 pages, 4 figures, submitted to Control Engineering Practice
Expertise and confidence explain how social influence evolves along intellective tasks
Discovering the antecedents of individuals' influence in collaborative environments is an important, practical, and challenging problem. In this paper, we study interpersonal influence in small groups of individuals who collectively execute a sequence of intellective tasks. We observe that along an issue sequence with feedback, individuals with higher expertise and social confidence are accorded higher interpersonal influence. We also observe that low-performing individuals tend to underestimate their high-performing teammate's expertise. Based on these observations, we introduce three hypotheses and present empirical and theoretical support for their validity. We report empirical evidence on longstanding theories of transactive memory systems, social comparison, and confidence heuristics on the origins of social influence. We propose a cognitive dynamical model inspired by these theories to describe the process by which individuals adjust interpersonal influences over time. We demonstrate the model's accuracy in predicting individuals' influence and provide analytical results on its asymptotic behavior for the case with identically performing individuals. Lastly, we propose a novel approach using deep neural networks on a pre-trained text embedding model for predicting the influence of individuals. Using message contents, message times, and individual correctness collected during tasks, we are able to accurately predict individuals' self-reported influence over time. Extensive experiments verify the accuracy of the proposed models compared to baselines such as structural balance and reflected appraisal model. While the neural networks model is the most accurate, the dynamical model is the most interpretable for influence prediction.
Joint Scheduling of DER under Demand Charges: Structure and Approximation
We study the joint scheduling of behind-the-meter distributed energy resources (DERs), including flexible loads, renewable generation, and battery energy storage systems, under net energy metering tariffs with demand charges. The problem is formulated as a stochastic dynamic program aimed at maximizing expected operational surplus while accounting for renewable generation uncertainty. We analytically characterize the optimal control policy and show that it admits a threshold-based structure. However, due to the strong temporal coupling of the storage and demand charge constraints, the number of conditional branches in the policy scales combinatorially with the scheduling horizon, as it requires a look-ahead over future states. To overcome the high computational complexity in the general formulation, an efficient approximation algorithm is proposed, which searches for the peak demand under a mildly relaxed problem. We show that the algorithm scales linearly with the scheduling horizon. Extensive simulations using two open-source datasets validate the proposed algorithm and compare its performance against different DER control strategies, including a reinforcement learning-based one. Under varying storage and tariff parameters, the results show that the proposed algorithm outperforms various benchmarks in achieving a relatively small solution gap compared to a theoretical upper bound.
comment: 15 pages, 6 tables, 8 figures
Multi-Objective Planning with Contextual Lexicographic Reward Preferences AAMAS
Autonomous agents are often required to plan under multiple objectives whose preference ordering varies based on context. The agent may encounter multiple contexts during its course of operation, each imposing a distinct lexicographic ordering over the objectives, with potentially different reward functions associated with each context. Existing approaches to multi-objective planning typically consider a single preference ordering over the objectives, across the state space, and do not support planning under multiple objective orderings within an environment. We present Contextual Lexicographic Markov Decision Process (CLMDP), a framework that enables planning under varying lexicographic objective orderings, depending on the context. In a CLMDP, both the objective ordering at a state and the associated reward functions are determined by the context. We employ a Bayesian approach to infer a state-context mapping from expert trajectories. Our algorithm to solve a CLMDP first computes a policy for each objective ordering and then combines them into a single context-aware policy that is valid and cycle-free. The effectiveness of the proposed approach is evaluated in simulation and using a mobile robot.
comment: 9 pages, 5 figures, 2 tables, To appear in Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2025
Systems and Control (EESS)
Model Predictive Control with Multiple Constraint Horizons
In this work we propose a Model Predictive Control (MPC) formulation that splits constraints in two different types. Motivated by safety considerations, the first type of constraint enforces a control-invariant set, while the second type could represent a less restrictive constraint on the system state. This distinction enables closed-loop sub- optimality results for nonlinear MPC with heterogeneous state constraints (distinct constraints across open loop predicted states), and no terminal elements. Removing the non-invariant constraint recovers the partially constrained case. Beyond its theoretical interest, heterogeneous constrained MPC shows how constraint choices shape the system's closed loop. In the partially constrained case, adjusting the constraint horizon (how many predicted- state constraints are enforced) trades estimation accuracy for computational cost. Our analysis yields first, a sub- optimality upper-bound accounting for distinct constraint sets, their horizons and decay rates, that is tighter for short horizons than prior work. Second, to our knowledge, we give the first lower bound (beyond open-loop cost) on closed-loop sub-optimality. Together these bounds provide a powerful analysis framework, allowing designers to evaluate the effect of horizons in MPC sub-optimality. We demonstrate our results via simulations on nonlinear and linear safety-critical systems.
comment: Submitted to Transactions on Automatic Control
Hopfield Neural Networks for Online Constrained Parameter Estimation with Time-Varying Dynamics and Disturbances
This paper proposes two projector-based Hopfield neural network (HNN) estimators for online, constrained parameter estimation under time-varying data, additive disturbances, and slowly drifting physical parameters. The first is a constraint-aware HNN that enforces linear equalities and inequalities (via slack neurons) and continuously tracks the constrained least-squares target. The second augments the state with compensation neurons and a concatenated regressor to absorb bias-like disturbance components within the same energy function. For both estimators we establish global uniform ultimate boundedness with explicit convergence rate and ultimate bound, and we derive practical tuning rules that link the three design gains to closed-loop bandwidth and steady-state accuracy. We also introduce an online identifiability monitor that adapts the constraint weight and time step, and, when needed, projects updates onto identifiable subspaces to prevent drift in poorly excited directions...
comment: Submitted to International Journal od Adaptive Control and Signal Processing
Second-Order Policy Gradient Methods for the Linear Quadratic Regulator
Policy gradient methods are a powerful family of reinforcement learning algorithms for continuous control that optimize a policy directly. However, standard first-order methods often converge slowly. Second-order methods can accelerate learning by using curvature information, but they are typically expensive to compute. The linear quadratic regulator (LQR) is a practical setting in which key quantities, such as the policy gradient, admit closed-form expressions. In this work, we develop second-order policy gradient algorithms for LQR by deriving explicit formulas for both the approximate and exact Hessians used in Gauss--Newton and Newton methods, respectively. Numerical experiments show a faster convergence rate for the proposed second-order approach over the standard first-order policy gradient baseline.
comment: 8 pages, 2 figs
ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book
We present ABIDES-MARL, a framework that combines a new multi-agent reinforcement learning (MARL) methodology with a new realistic limit-order-book (LOB) simulation system to study equilibrium behavior in complex financial market games. The system extends ABIDES-Gym by decoupling state collection from kernel interruption, enabling synchronized learning and decision-making for multiple adaptive agents while maintaining compatibility with standard RL libraries. It preserves key market features such as price-time priority and discrete tick sizes. Methodologically, we use MARL to approximate equilibrium-like behavior in multi-period trading games with a finite number of heterogeneous agents-an informed trader, a liquidity trader, noise traders, and competing market makers-all with individual price impacts. This setting bridges optimal execution and market microstructure by embedding the liquidity trader's optimization problem within a strategic trading environment. We validate the approach by solving an extended Kyle model within the simulation system, recovering the gradual price discovery phenomenon. We then extend the analysis to a liquidity trader's problem where market liquidity arises endogenously and show that, at equilibrium, execution strategies shape market-maker behavior and price dynamics. ABIDES-MARL provides a reproducible foundation for analyzing equilibrium and strategic adaptation in realistic markets and contributes toward building economically interpretable agentic AI systems for finance.
MOBIUS: A Multi-Modal Bipedal Robot that can Walk, Crawl, Climb, and Roll
This article presents a Multi-Modal Bipedal Intelligent Urban Scout robot (MOBIUS) capable of walking, crawling, climbing, and rolling. MOBIUS features four limbs--two 6-DoF arms with two-finger grippers for manipulation and climbing, and two 4-DoF legs for locomotion--enabling smooth transitions across diverse terrains without reconfiguration. A hybrid control architecture combines reinforcement learning-based locomotion with model-based predictive and admittance control enhanced for safety by a Reference Governor toward compliant contact interactions. A high-level MIQCP planner autonomously selects locomotion modes to balance stability and energy efficiency. Hardware experiments demonstrate robust gait transitions, dynamic climbing, and full-body load support via pinch grasp. Overall, MOBIUS demonstrates the importance of tight integration between morphology, high-level planning, and control to enable mobile loco-manipulation and grasping, substantially expanding its interaction capabilities, workspace, and traversability.
comment: 23 pages, 20 figures. Collaborative work between the Robotics and Mechanisms Laboratory (RoMeLa) and Mitsubishi Electric Research Laboratories (MERL)
On polynomial explicit partial estimator design for nonlinear systems with parametric uncertainties
This paper investigates the idea of designing data-driven partial estimators for nonlinear systems showing parametric uncertainties using sparse multivariate polynomial relationships. A general framework is first presented and then validated on two illustrative examples with comparison to different possible Machine/Deep-Learning based alternatives. The results suggests the superiority of the proposed sparse identification scheme, at least when the learning data is small.
comment: Submitted to ACC2026
Deep Learning Prediction of Beam Coherence Time for Near-FieldTeraHertz Networks
Large multiple antenna arrays coupled with accurate beamforming are essential in terahertz (THz) communications to ensure link reliability. However, as the number of antennas increases, beam alignment (focusing) and beam tracking in mobile networks incur prohibitive overhead. Additionally, the near-field region expands both with the size of antenna arrays and the carrier frequency, calling for adjustments in the beamforming to account for spherical wavefront instead of the conventional planar wave assumption. In this letter, we introduce a novel beam coherence time for mobile THz networks, to drastically reduce the rate of beam updates. Then, we propose a deep learning model, relying on a simple feedforward neural network with a time-dependent input, to predict the beam coherence time and adjust the beamforming on the fly with minimal overhead. Our numerical results demonstrate the effectiveness of the proposed approach by enabling higher data rates while reducing the overhead, especially at high (i.e., vehicular) mobility.
comment: IEEE Wireless Communication Letters (accepted October 2025)
Data-driven stabilization of nonlinear systems via descriptor embedding
We introduce the notion of descriptor embedding for nonlinear systems and use it for the data-driven design of stabilizing controllers. Specifically, we provide sufficient data-dependent LMI conditions which, if feasible, return a stabilizing nonlinear controller of the form $u=K(x)Z(x)$ where $K(x)$ belongs to a polytope and $Z$ is a user-defined function. The proposed method is then extended to account for the presence of uncertainties and noisy data. Furthermore, a method to estimate the resulting region of attraction is given using only data. Simulation examples are used to illustrate the results and compare them to existing methods from the literature.
comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Control
Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games -- Part I: Equilibria
We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. While prior work in evolutionary game theory has primarily focused on static games without individual player state dynamics, we present the first comprehensive evolutionary analysis of such dynamic games. We propose an evolutionary model together with a mean field approximation of the finite-population game and establish strong approximation guarantees. We show that standard solution concepts for dynamic games lack an evolutionary interpretation, and we propose a new concept - the Mixed Stationary Nash Equilibrium (MSNE) - which admits one. We analyze the relationship between MSNE and the rest points of the mean field evolutionary model and study the evolutionary stability of MSNE.
Risk Aware Safe Control with Cooperative Sensing for Dynamic Obstacle Avoidance
This paper presents the design, development, and on vehicle implementation and validation of a safety critical controller for autonomous driving under sensing and communication uncertainty. Cooperative sensing, fused via a Wasserstein barycenter (WB), is used to optimize the distribution of the dynamic obstacle locations. The Conditional Value at Risk (CVaR) is introduced to form a risk aware control-barrier-function (CBF) framework with the optimized distribution samplings. The proposed WB CVaR CBF safety filter improves control inputs that minimize tail risk while certifying forward invariance of the safe set. A model predictive controller (MPC) performs path tracking, and the safety filter modulates the nominal control inputs to enforce risk aware constraints. We detail the software architecture and integration with vehicle actuation and cooperative sensing. The approach is evaluated on a full-scale autonomous vehicle (AV) in scenarios with measurement noise, communication perturbations, and input disturbances, and is compared against a baseline MPC CBF design. Results demonstrate improved safety margins and robustness, highlighting the practicality of deploying the risk-aware safety filter on an actual AV.
Orthogonal-by-construction augmentation of physics-based input-output models
Model augmentation is a promising approach for integrating first-principles-based models with machine learning components. Augmentation can result in better model accuracy and faster convergence compared to black-box system identification methods, while maintaining interpretability of the models in terms of how the original dynamics are complemented by learning. A widely used augmentation structure in the literature is based on the parallel connection of the physics-based and learning components, for both of which the corresponding parameters are jointly optimized. However, due to overlap in representation of the system dynamics by such an additive structure, estimation often leads to physically unrealistic parameters, compromising model interpretability. To overcome this limitation, this paper introduces a novel orthogonal-by-construction model augmentation structure for input-output models, that guarantees recovery of the physically true parameters under appropriate identifiability conditions.
comment: Submitted for publication
A High-Speed Capable Spherical Robot
This paper designs a new spherical robot structure capable of supporting high-speed motion at up to 10 m/s. Building upon a single-pendulum-driven spherical robot, the design incorporates a momentum wheel with an axis aligned with the secondary pendulum, creating a novel spherical robot structure. Practical experiments with the physical prototype have demonstrated that this new spherical robot can achieve stable high-speed motion through simple decoupled control, which was unattainable with the original structure. The spherical robot designed for high-speed motion not only increases speed but also significantly enhances obstacle-crossing performance and terrain robustness.
comment: 5 pages
Koopman-based Prediction of Connectivity for Flying Ad Hoc Networks
The application of machine learning (ML) to communication systems is expected to play a pivotal role in future artificial intelligence (AI)-based next-generation wireless networks. While most existing works focus on ML techniques for static wireless environments, they often face limitations when applied to highly dynamic environments, such as flying ad hoc networks (FANETs). This paper explores the use of data-driven Koopman approaches to address these challenges. Specifically, we investigate how these approaches can model UAV trajectory dynamics within FANETs, enabling more accurate predictions and improved network performance. By leveraging Koopman operator theory, we propose two possible approaches -- centralized and distributed -- to efficiently address the challenges posed by the constantly changing topology of FANETs. To demonstrate this, we consider a FANET performing surveillance with UAVs following pre-determined trajectories and predict signal-to-interference-plus-noise ratios (SINRs) to ensure reliable communication between UAVs. Our results show that these approaches can accurately predict connectivity and isolation events that lead to modelled communication outages. This capability could help UAVs schedule their transmissions based on these predictions.
Experimental Demonstration of Software-Orchestrated Quantum Network Applications over a Campus-Scale Testbed
To fulfill their promise, quantum networks must transform from isolated testbeds into scalable infrastructures for distributed quantum applications. In this paper, we present a prototype orchestrator for the Argonne Quantum Network (ArQNet) testbed that leverages design principles of software-defined networking (SDN) to automate typical quantum communication experiments across buildings in the Argonne campus connected over deployed, telecom fiber. Our implementation validates a scalable architecture supporting service-level abstraction of quantum networking tasks, distributed time synchronization, and entanglement verification across remote nodes. We present a prototype service of continuous, stable entanglement distribution between remote sites that ran for 12 hours, which defines a promising path towards scalable quantum networks.
comment: 11 pages, 8 figures, journal
Deep Learning-Accelerated Shapley Value for Fair Allocation in Power Systems: The Case of Carbon Emission Responsibility
Allocating costs, benefits, and emissions fairly among power system participant entities represents a persistent challenge. The Shapley value provides an axiomatically fair solution, yet computational barriers have limited its adoption beyond small-scale applications. This paper presents SurroShap, a scalable Shapley value approximation framework combining efficient coalition sampling with deep learning surrogate models that accelerate characteristic function evaluations. Exemplified through carbon emission responsibility allocation in power networks, SurroShap enables Shapley-based fair allocation for power systems with thousands of entities for the first time. We derive theoretical error bounds proving that time-averaged SurroShap allocations converge to be $\varepsilon$-close to exact Shapley values. Experiments on nine systems ranging from 26 to 1,951 entities demonstrate completion within the real-time operational window even at maximum scale, achieving 10^4-10^5 speedups over other sampling-based methods while maintaining tight error bounds. The resulting Shapley-based carbon allocations possess six desirable properties aligning individual interests with decarbonization goals. Year-long simulations on the Texas 2000-bus system validate real-world applicability, with regional analysis revealing how renewable-rich areas offset emission responsibility through exports while load centers bear responsibility for driving system-wide generation.
Assessing Climate Vulnerability Risk for Substations in Massachusetts Via Sensitivity Analysis
The electric grid is increasingly vital, supporting essential services such as healthcare, heating and cooling transportation, telecommunications, and water systems. This growing dependence on reliable power underscores the need for enhanced grid resilience. This study presents Eversource's Climate Vulnerability Assessment (CVA) for bulk distribution substations in Massachusetts, evaluating risks from storm surge, sea level rise, precipitation, and extreme temperatures. The focus is on developing a cost-efficient model to guide targeted resilience investments. This is achieved by overcoming the limitations of single-variable analyses through hazard-specific assessments that integrate spatial, climate, electrical asset, and other relevant data; and applying sensitivity analysis to establish data-driven thresholds for actionable climate risks. By integrating geospatial analysis and data modeling with power engineering principles, this study provides a practical and replicable framework for equitable, data-informed climate adaptation planning. The results indicate that thresholds for certain climate hazards can be highly sensitive and result in significantly larger sets of stations requiring mitigation measures to adequately adapt to climate change, indicating that high-fidelity long-term climate projections are critical.
Neural Networks for AC Optimal Power Flow: Improving Worst-Case Guarantees during Training SC
The AC Optimal Power Flow (AC-OPF) problem is central to power system operation but challenging to solve efficiently due to its nonconvex and nonlinear nature. Neural networks (NNs) offer fast surrogates, yet their black-box behavior raises concerns about constraint violations that can compromise safety. We propose a verification-informed NN framework that incorporates worst-case constraint violations directly into training, producing models that are both accurate and provably safer. Through post-hoc verification, we achieve substantial reductions in worst-case violations and, for the first time, verify all operational constraints of large-scale AC-OPF proxies. Practical feasibility is further enhanced via restoration and warm-start strategies for infeasible operating points. Experiments on systems ranging from 57 to 793 buses demonstrate scalability, speed, and reliability, bridging the gap between ML acceleration and safe, real-time deployment of AC-OPF solutions - and paving the way toward data-driven optimal control.
comment: Submitted to PSCC 2026 (under review)
Limits of Safe AI Deployment: Differentiating Oversight and Control
Oversight and control, which we collectively call supervision, are often discussed as ways to ensure that AI systems are accountable, reliable, and able to fulfill governance and management requirements. However, the requirements for "human oversight" risk codifying vague or inconsistent interpretations of key concepts like oversight and control. This ambiguous terminology could undermine efforts to design or evaluate systems that must operate under meaningful human supervision. This matters because the term is used by regulatory texts such as the EU AI Act. This paper undertakes a targeted critical review of literature on supervision outside of AI, along with a brief summary of past work on the topic related to AI. We next differentiate control as ex-ante or real-time and operational rather than policy or governance, and oversight as performed ex-post, or a policy and governance function. Control aims to prevent failures, while oversight focuses on detection, remediation, or incentives for future prevention. Building on this, we make three contributions. 1) We propose a framework to align regulatory expectations with what is technically and organizationally plausible, articulating the conditions under which each mechanism is possible, where they fall short, and what is required to make them meaningful in practice. 2) We outline how supervision methods should be documented and integrated into risk management, and drawing on the Microsoft Responsible AI Maturity Model, we outline a maturity model for AI supervision. 3) We explicitly highlight boundaries of these mechanisms, including where they apply, where they fail, and where it is clear that no existing methods suffice. This foregrounds the question of whether meaningful supervision is possible in a given deployment context, and can support regulators, auditors, and practitioners in identifying both present and future limitations.
comment: Revised to improve table formatting and update draft
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each primal step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
Spherical Point Process with Random Heights: New Approach for Modeling and Analysis of Downlink Satellite Networks
The Low Earth Orbit (LEO) satellite industry is undergoing rapid expansion, with operators competitively launching satellites due to the first-come, first-served principle governing orbital rights. This has led to the formation of increasingly large-scale, volumetric constellation where satellites operate across a diverse range of altitudes. To address the need for analyzing such complex networks, this paper establishes a new analytical framework for LEO constellations by leveraging a 3D Poisson point process (PPP). Specifically, we introduce a random height model (RHM) that can capture various altitude distributions by applying a random radial displacement to points generated by a homogeneous PPP on a nominal shell. Building on this, we derive an analytical expression for the downlink coverage probability. To motivate our model, we show that the altitude distributions of several leading satellite constellations, including Starlink, align with our model's assumptions. We then demonstrate through Monte Carlo simulations that the coverage probability of our RHM closely matches that of these real-world networks. Finally, we confirm the accuracy of our analytical expressions by showing their agreement with simulation results. Our work thereby provides a powerful tool for understanding and predict how the statistical distribution of satellite altitudes impacts network performance.
comment: submitted to IEEE journal
Aggregative games with bilevel structures: Distributed algorithms and convergence analysis
In this paper, the problem of distributively seeking the equilibria of aggregative games with bilevel structures is studied. Different from the traditional aggregative games, here the aggregation is determined by the minimizer of a virtual leader's objective function in the inner level, which depends on the actions of the players in the outer level. Moreover, the global objective function of the virtual leader is formed by the sum of some local functions with two arguments, each of which is strongly convex with respect to the second argument. When making decisions, each player in the outer level only has access to a local part of the virtual leader's objective function. To handle this problem, first, we propose a second order gradient-based distributed algorithm, where the Hessian matrices associated with the objective functions of the leader are involved. By the algorithm, players update their actions while cooperatively minimizing the objective function of the virtual leader to estimate the aggregation by communicating with their neighbors via a connected graph. Under mild assumptions on the graph and cost functions, we prove that the actions of players asymptotically converge to the Nash equilibrium point. Then, for the case where the Hessian matrices associated with the objective functions of the virtual leader are not available, we propose a first order gradient-based distributed algorithm, where a distributed two-point estimate strategy is developed to estimate the gradients of players' cost functions in the outer level. Under the same conditions, we prove that the convergence errors of players' actions to the Nash equilibrium point are linear with respect to the estimate parameters. Finally, simulations are provided to demonstrate the effectiveness of our theoretical results.
Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: IEEE Transactions on Robotics (T-RO). v6 update on stability analysis in Appendix J under relaxed Assumption 1
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
This paper presents a control strategy based on dual quaternions for the coordinated formation flying of small UAV groups. A virtual structure is employed to define the desired formation, enabling unified control of its position, orientation, and shape. This abstraction makes formation management easier by allowing a low-level controller to compute individual UAV commands efficiently. The proposed controller integrates a pose control module with a geometry-based adaptive strategy, ensuring precise and robust task execution. The effectiveness of the approach is demonstrated through both simulation and experimental results.
Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. Added new experiments, figures, and exposition
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
Detection Augmented Bandit Procedures for Piecewise Stationary MABs: A Modular Approach
Conventional Multi-Armed Bandit (MAB) algorithms are designed for stationary environments, where the reward distributions associated with the arms do not change with time. In many applications, however, the environment is more accurately modeled as being non-stationary. In this work, piecewise stationary MAB (PS-MAB) environments are investigated, in which the reward distributions associated with a subset of the arms change at some change-points and remain stationary between change-points. Our focus is on the asymptotic analysis of PS-MABs, for which practical algorithms based on change detection have been previously proposed. Our goal is to modularize the design and analysis of such Detection Augmented Bandit (DAB) procedures. To this end, we first provide novel, improved performance lower bounds for PS-MABs. Then, we identify the requirements for stationary bandit algorithms and change detectors in a DAB procedure that are needed for the modularization. We assume that the rewards are sub-Gaussian. Under this assumption and a condition on the separation of the change-points, we show that the analysis of DAB procedures can indeed be modularized, so that the regret bounds can be obtained in a unified manner for various combinations of change detectors and bandit algorithms. Through this analysis, we develop new modular DAB procedures that are order-optimal. Finally, we showcase the practical effectiveness of our modular DAB approach in our experiments, studying its regret performance compared to other methods and investigating its detection capabilities.
comment: 30 pages, 4 figures, 1 table, submitted to TIT
The Difference between the Left and Right Invariant Extended Kalman Filter
The extended Kalman filter (EKF) has been the industry standard for state estimation problems over the past sixty years. The Invariant Extended Kalman Filter (IEKF) is a recent development of the EKF for the class of group-affine systems on Lie groups that has shown superior performance for inertial navigation problems. The IEKF comes in two versions, left- and right- handed respectively, and there is a perception in the robotics community that these filters are different and one should choose the handedness of the IEKF to match handedness of the measurement model for a given filtering problem. In this paper, we revisit these algorithms and demonstrate that the left- and right- IEKF algorithms (with reset step) are identical, that is, the choice of the handedness does not affect the IEKF's performance when the reset step is properly implemented. The reset step was not originally proposed as part of the IEKF, however, we provide simulations to show that the reset step improves asymptotic performance of all versions of the the filter, and should be included in all high performance algorithms. The GNSS-aided inertial navigation system (INS) is used as a motivating example to demonstrate the equivalence of the two filters.
comment: 20 pages, 4 figures, submitted to Control Engineering Practice
Expertise and confidence explain how social influence evolves along intellective tasks
Discovering the antecedents of individuals' influence in collaborative environments is an important, practical, and challenging problem. In this paper, we study interpersonal influence in small groups of individuals who collectively execute a sequence of intellective tasks. We observe that along an issue sequence with feedback, individuals with higher expertise and social confidence are accorded higher interpersonal influence. We also observe that low-performing individuals tend to underestimate their high-performing teammate's expertise. Based on these observations, we introduce three hypotheses and present empirical and theoretical support for their validity. We report empirical evidence on longstanding theories of transactive memory systems, social comparison, and confidence heuristics on the origins of social influence. We propose a cognitive dynamical model inspired by these theories to describe the process by which individuals adjust interpersonal influences over time. We demonstrate the model's accuracy in predicting individuals' influence and provide analytical results on its asymptotic behavior for the case with identically performing individuals. Lastly, we propose a novel approach using deep neural networks on a pre-trained text embedding model for predicting the influence of individuals. Using message contents, message times, and individual correctness collected during tasks, we are able to accurately predict individuals' self-reported influence over time. Extensive experiments verify the accuracy of the proposed models compared to baselines such as structural balance and reflected appraisal model. While the neural networks model is the most accurate, the dynamical model is the most interpretable for influence prediction.
Joint Scheduling of DER under Demand Charges: Structure and Approximation
We study the joint scheduling of behind-the-meter distributed energy resources (DERs), including flexible loads, renewable generation, and battery energy storage systems, under net energy metering tariffs with demand charges. The problem is formulated as a stochastic dynamic program aimed at maximizing expected operational surplus while accounting for renewable generation uncertainty. We analytically characterize the optimal control policy and show that it admits a threshold-based structure. However, due to the strong temporal coupling of the storage and demand charge constraints, the number of conditional branches in the policy scales combinatorially with the scheduling horizon, as it requires a look-ahead over future states. To overcome the high computational complexity in the general formulation, an efficient approximation algorithm is proposed, which searches for the peak demand under a mildly relaxed problem. We show that the algorithm scales linearly with the scheduling horizon. Extensive simulations using two open-source datasets validate the proposed algorithm and compare its performance against different DER control strategies, including a reinforcement learning-based one. Under varying storage and tariff parameters, the results show that the proposed algorithm outperforms various benchmarks in achieving a relatively small solution gap compared to a theoretical upper bound.
comment: 15 pages, 6 tables, 8 figures
Multi-Objective Planning with Contextual Lexicographic Reward Preferences AAMAS
Autonomous agents are often required to plan under multiple objectives whose preference ordering varies based on context. The agent may encounter multiple contexts during its course of operation, each imposing a distinct lexicographic ordering over the objectives, with potentially different reward functions associated with each context. Existing approaches to multi-objective planning typically consider a single preference ordering over the objectives, across the state space, and do not support planning under multiple objective orderings within an environment. We present Contextual Lexicographic Markov Decision Process (CLMDP), a framework that enables planning under varying lexicographic objective orderings, depending on the context. In a CLMDP, both the objective ordering at a state and the associated reward functions are determined by the context. We employ a Bayesian approach to infer a state-context mapping from expert trajectories. Our algorithm to solve a CLMDP first computes a policy for each objective ordering and then combines them into a single context-aware policy that is valid and cycle-free. The effectiveness of the proposed approach is evaluated in simulation and using a mobile robot.
comment: 9 pages, 5 figures, 2 tables, To appear in Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2025
Robotics
SLAP: Shortcut Learning for Abstract Planning
Long-horizon decision-making with sparse rewards and continuous states and actions remains a fundamental challenge in AI and robotics. Task and motion planning (TAMP) is a model-based framework that addresses this challenge by planning hierarchically with abstract actions (options). These options are manually defined, limiting the agent to behaviors that we as human engineers know how to program (pick, place, move). In this work, we propose Shortcut Learning for Abstract Planning (SLAP), a method that leverages existing TAMP options to automatically discover new ones. Our key idea is to use model-free reinforcement learning (RL) to learn shortcuts in the abstract planning graph induced by the existing options in TAMP. Without any additional assumptions or inputs, shortcut learning leads to shorter solutions than pure planning, and higher task success rates than flat and hierarchical RL. Qualitatively, SLAP discovers dynamic physical improvisations (e.g., slap, wiggle, wipe) that differ significantly from the manually-defined ones. In experiments in four simulated robotic environments, we show that SLAP solves and generalizes to a wide range of tasks, reducing overall plan lengths by over 50% and consistently outperforming planning and RL baselines.
Deployable Vision-driven UAV River Navigation via Human-in-the-loop Preference Alignment ICRA 2026
Rivers are critical corridors for environmental monitoring and disaster response, where Unmanned Aerial Vehicles (UAVs) guided by vision-driven policies can provide fast, low-cost coverage. However, deployment exposes simulation-trained policies with distribution shift and safety risks and requires efficient adaptation from limited human interventions. We study human-in-the-loop (HITL) learning with a conservative overseer who vetoes unsafe or inefficient actions and provides statewise preferences by comparing the agent's proposal with a corrective override. We introduce Statewise Hybrid Preference Alignment for Robotics (SPAR-H), which fuses direct preference optimization on policy logits with a reward-based pathway that trains an immediate-reward estimator from the same preferences and updates the policy using a trust-region surrogate. With five HITL rollouts collected from a fixed novice policy, SPAR-H achieves the highest final episodic reward and the lowest variance across initial conditions among tested methods. The learned reward model aligns with human-preferred actions and elevates nearby non-intervened choices, supporting stable propagation of improvements. We benchmark SPAR-H against imitation learning (IL), direct preference variants, and evaluative reinforcement learning (RL) in the HITL setting, and demonstrate real-world feasibility of continual preference alignment for UAV river following. Overall, dual statewise preferences empirically provide a practical route to data-efficient online adaptation in riverine navigation.
comment: Submitted to ICRA 2026
AquaROM: shape optimization pipeline for soft swimmers using parametric reduced order models
The efficient optimization of actuated soft structures, particularly under complex nonlinear forces, remains a critical challenge in advancing robotics. Simulations of nonlinear structures, such as soft-bodied robots modeled using the finite element method (FEM), often demand substantial computational resources, especially during optimization. To address this challenge, we propose a novel optimization algorithm based on a tensorial parametric reduced order model (PROM). Our algorithm leverages dimensionality reduction and solution approximation techniques to facilitate efficient solving of nonlinear constrained optimization problems. The well-structured tensorial approach enables the use of analytical gradients within a specifically chosen reduced order basis (ROB), significantly enhancing computational efficiency. To showcase the performance of our method, we apply it to optimizing soft robotic swimmer shapes. These actuated soft robots experience hydrodynamic forces, subjecting them to both internal and external nonlinear forces, which are incorporated into our optimization process using a data-free ROB for fast and accurate computations. This approach not only reduces computational complexity but also unlocks new opportunities to optimize complex nonlinear systems in soft robotics, paving the way for more efficient design and control.
GauDP: Reinventing Multi-Agent Collaboration through Gaussian-Image Synergy in Diffusion Policies NeurIPS 2025
Recently, effective coordination in embodied multi-agent systems has remained a fundamental challenge, particularly in scenarios where agents must balance individual perspectives with global environmental awareness. Existing approaches often struggle to balance fine-grained local control with comprehensive scene understanding, resulting in limited scalability and compromised collaboration quality. In this paper, we present GauDP, a novel Gaussian-image synergistic representation that facilitates scalable, perception-aware imitation learning in multi-agent collaborative systems. Specifically, GauDP constructs a globally consistent 3D Gaussian field from decentralized RGB observations, then dynamically redistributes 3D Gaussian attributes to each agent's local perspective. This enables all agents to adaptively query task-critical features from the shared scene representation while maintaining their individual viewpoints. This design facilitates both fine-grained control and globally coherent behavior without requiring additional sensing modalities (e.g., 3D point cloud). We evaluate GauDP on the RoboFactory benchmark, which includes diverse multi-arm manipulation tasks. Our method achieves superior performance over existing image-based methods and approaches the effectiveness of point-cloud-driven methods, while maintaining strong scalability as the number of agents increases.
comment: Accepted by NeurIPS 2025. Project page: https://ziyeeee.github.io/gaudp.io/
Breaking the Latency Barrier: Synergistic Perception and Control for High-Frequency 3D Ultrasound Servoing
Real-time tracking of dynamic targets amidst large-scale, high-frequency disturbances remains a critical unsolved challenge in Robotic Ultrasound Systems (RUSS), primarily due to the end-to-end latency of existing systems. This paper argues that breaking this latency barrier requires a fundamental shift towards the synergistic co-design of perception and control. We realize it in a novel framework with two tightly-coupled contributions: (1) a Decoupled Dual-Stream Perception Network that robustly estimates 3D translational state from 2D images at high frequency, and (2) a Single-Step Flow Policy that generates entire action sequences in one inference pass, bypassing the iterative bottleneck of conventional policies. This synergy enables a closed-loop control frequency exceeding 60Hz. On a dynamic phantom, our system not only tracks complex 3D trajectories with a mean error below 6.5mm but also demonstrates robust re-acquisition from over 170mm displacement. Furthermore, it can track targets at speeds of 102mm/s, achieving a terminal error below 1.7mm. Moreover, in-vivo experiments on a human volunteer validate the framework's effectiveness and robustness in a realistic clinical setting. Our work presents a RUSS holistically architected to unify high-bandwidth tracking with large-scale repositioning, a critical step towards robust autonomy in dynamic clinical environments.
URDF-Anything: Constructing Articulated Objects with 3D Multimodal Language Model NeurIPS 2025
Constructing accurate digital twins of articulated objects is essential for robotic simulation training and embodied AI world model building, yet historically requires painstaking manual modeling or multi-stage pipelines. In this work, we propose \textbf{URDF-Anything}, an end-to-end automatic reconstruction framework based on a 3D multimodal large language model (MLLM). URDF-Anything utilizes an autoregressive prediction framework based on point-cloud and text multimodal input to jointly optimize geometric segmentation and kinematic parameter prediction. It implements a specialized $[SEG]$ token mechanism that interacts directly with point cloud features, enabling fine-grained part-level segmentation while maintaining consistency with the kinematic parameter predictions. Experiments on both simulated and real-world datasets demonstrate that our method significantly outperforms existing approaches regarding geometric segmentation (mIoU 17\% improvement), kinematic parameter prediction (average error reduction of 29\%), and physical executability (surpassing baselines by 50\%). Notably, our method exhibits excellent generalization ability, performing well even on objects outside the training set. This work provides an efficient solution for constructing digital twins for robotic simulation, significantly enhancing the sim-to-real transfer capability.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
pacSTL: PAC-Bounded Signal Temporal Logic from Data-Driven Reachability Analysis
Real-world robotic systems must comply with safety requirements in the presence of uncertainty. To define and measure requirement adherence, Signal Temporal Logic (STL) offers a mathematically rigorous and expressive language. However, standard STL cannot account for uncertainty. We address this problem by presenting pacSTL, a framework that combines Probably Approximately Correct (PAC) bounded set predictions with an interval extension of STL through optimization problems on the atomic proposition level. pacSTL provides PAC-bounded robustness intervals on the specification level that can be utilized in monitoring. We demonstrate the effectiveness of this approach through maritime navigation and analyze the efficiency and scalability of pacSTL through simulation and real-world experimentation on model vessels.
Fast-SmartWay: Panoramic-Free End-to-End Zero-Shot Vision-and-Language Navigation
Recent advances in Vision-and-Language Navigation in Continuous Environments (VLN-CE) have leveraged multimodal large language models (MLLMs) to achieve zero-shot navigation. However, existing methods often rely on panoramic observations and two-stage pipelines involving waypoint predictors, which introduce significant latency and limit real-world applicability. In this work, we propose Fast-SmartWay, an end-to-end zero-shot VLN-CE framework that eliminates the need for panoramic views and waypoint predictors. Our approach uses only three frontal RGB-D images combined with natural language instructions, enabling MLLMs to directly predict actions. To enhance decision robustness, we introduce an Uncertainty-Aware Reasoning module that integrates (i) a Disambiguation Module for avoiding local optima, and (ii) a Future-Past Bidirectional Reasoning mechanism for globally coherent planning. Experiments on both simulated and real-robot environments demonstrate that our method significantly reduces per-step latency while achieving competitive or superior performance compared to panoramic-view baselines. These results demonstrate the practicality and effectiveness of Fast-SmartWay for real-world zero-shot embodied navigation.
Maestro: Orchestrating Robotics Modules with Vision-Language Models for Zero-Shot Generalist Robots
Today's best-explored routes towards generalist robots center on collecting ever larger "observations-in actions-out" robotics datasets to train large end-to-end models, copying a recipe that has worked for vision-language models (VLMs). We pursue a road less traveled: building generalist policies directly around VLMs by augmenting their general capabilities with specific robot capabilities encapsulated in a carefully curated set of perception, planning, and control modules. In Maestro, a VLM coding agent dynamically composes these modules into a programmatic policy for the current task and scenario. Maestro's architecture benefits from a streamlined closed-loop interface without many manually imposed structural constraints, and a comprehensive and diverse tool repertoire. As a result, it largely surpasses today's VLA models for zero-shot performance on challenging manipulation skills. Further, Maestro is easily extensible to incorporate new modules, easily editable to suit new embodiments such as a quadruped-mounted arm, and even easily adapts from minimal real-world experiences through local code edits.
comment: Project website: https://maestro-robot.github.io
Heuristic Step Planning for Learning Dynamic Bipedal Locomotion: A Comparative Study of Model-Based and Model-Free Approaches
This work presents an extended framework for learning-based bipedal locomotion that incorporates a heuristic step-planning strategy guided by desired torso velocity tracking. The framework enables precise interaction between a humanoid robot and its environment, supporting tasks such as crossing gaps and accurately approaching target objects. Unlike approaches based on full or simplified dynamics, the proposed method avoids complex step planners and analytical models. Step planning is primarily driven by heuristic commands, while a Raibert-type controller modulates the foot placement length based on the error between desired and actual torso velocity. We compare our method with a model-based step-planning approach -- the Linear Inverted Pendulum Model (LIPM) controller. Experimental results demonstrate that our approach attains comparable or superior accuracy in maintaining target velocity (up to 80%), significantly greater robustness on uneven terrain (over 50% improvement), and improved energy efficiency. These results suggest that incorporating complex analytical, model-based components into the training architecture may be unnecessary for achieving stable and robust bipedal walking, even in unstructured environments.
Real-Time Learning of Predictive Dynamic Obstacle Models for Robotic Motion Planning ICRA
Autonomous systems often must predict the motions of nearby agents from partial and noisy data. This paper asks and answers the question: "can we learn, in real-time, a nonlinear predictive model of another agent's motions?" Our online framework denoises and forecasts such dynamics using a modified sliding-window Hankel Dynamic Mode Decomposition (Hankel-DMD). Partial noisy measurements are embedded into a Hankel matrix, while an associated Page matrix enables singular-value hard thresholding (SVHT) to estimate the effective rank. A Cadzow projection enforces structured low-rank consistency, yielding a denoised trajectory and local noise variance estimates. From this representation, a time-varying Hankel-DMD lifted linear predictor is constructed for multi-step forecasts. The residual analysis provides variance-tracking signals that can support downstream estimators and risk-aware planning. We validate the approach in simulation under Gaussian and heavy-tailed noise, and experimentally on a dynamic crane testbed. Results show that the method achieves stable variance-aware denoising and short-horizon prediction suitable for integration into real-time control frameworks.
comment: 10 pages, 6 figures, submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing
Model-free source seeking of exponentially convergent unicycle: theoretical and robotic experimental results
This paper introduces a novel model-free, real-time unicycle-based source seeking design. This design steers autonomously the unicycle dynamic system towards the extremum point of an objective function or physical/scaler signal that is unknown expression-wise, but accessible via measurements. A key contribution of this paper is that the introduced design converges exponentially to the extremum point of objective functions (or scaler signals) that behave locally like a higher-degree power functions (e.g., fourth degree polynomial function) as opposed to locally quadratic objective functions, the usual case in literature. We provide theoretical and simulation results to support out theoretical results. Also, for the first time in the literature, we provide experimental robotic results that demonstrate the effectiveness of the proposed design and its exponential convergence ability.
Dropping the D: RGB-D SLAM Without the Depth Sensor
We present DropD-SLAM, a real-time monocular SLAM system that achieves RGB-D-level accuracy without relying on depth sensors. The system replaces active depth input with three pretrained vision modules: a monocular metric depth estimator, a learned keypoint detector, and an instance segmentation network. Dynamic objects are suppressed using dilated instance masks, while static keypoints are assigned predicted depth values and backprojected into 3D to form metrically scaled features. These are processed by an unmodified RGB-D SLAM back end for tracking and mapping. On the TUM RGB-D benchmark, DropD-SLAM attains 7.4 cm mean ATE on static sequences and 1.8 cm on dynamic sequences, matching or surpassing state-of-the-art RGB-D methods while operating at 22 FPS on a single GPU. These results suggest that modern pretrained vision models can replace active depth sensors as reliable, real-time sources of metric scale, marking a step toward simpler and more cost-effective SLAM systems.
Robust Trajectory Generation and Control for Quadrotor Motion Planning with Field-of-View Control Barrier Certification
Many approaches to multi-robot coordination are susceptible to failure due to communication loss and uncertainty in estimation. We present a real-time communication-free distributed navigation algorithm certified by control barrier functions, that models and controls the onboard sensing behavior to keep neighbors in the limited field of view for position estimation. The approach is robust to temporary tracking loss and directly synthesizes control to stabilize visual contact through control Lyapunov-barrier functions. The main contributions of this paper are a continuous-time robust trajectory generation and control method certified by control barrier functions for distributed multi-robot systems and a discrete optimization procedure, namely, MPC-CBF, to approximate the certified controller. In addition, we propose a linear surrogate of high-order control barrier function constraints and use sequential quadratic programming to solve MPC-CBF efficiently.
comment: 8 pages, 8 figures, 3 tables, accepted to RA-L 2025
MOSPA: Human Motion Generation Driven by Spatial Audio NeurIPS 2025
Enabling virtual humans to dynamically and realistically respond to diverse auditory stimuli remains a key challenge in character animation, demanding the integration of perceptual modeling and motion synthesis. Despite its significance, this task remains largely unexplored. Most previous works have primarily focused on mapping modalities like speech, audio, and music to generate human motion. As of yet, these models typically overlook the impact of spatial features encoded in spatial audio signals on human motion. To bridge this gap and enable high-quality modeling of human movements in response to spatial audio, we introduce the first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which contains diverse and high-quality spatial audio and motion data. For benchmarking, we develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully captures the relationship between body motion and spatial audio through an effective fusion mechanism. Once trained, MOSPA can generate diverse, realistic human motions conditioned on varying spatial audio inputs. We perform a thorough investigation of the proposed dataset and conduct extensive experiments for benchmarking, where our method achieves state-of-the-art performance on this task. Our code and model are publicly available at https://github.com/xsy27/Mospa-Acoustic-driven-Motion-Generation
comment: NeurIPS 2025 (Spotlight)
Co-MTP: A Cooperative Trajectory Prediction Framework with Multi-Temporal Fusion for Autonomous Driving ICRA 2025
Vehicle-to-everything technologies (V2X) have become an ideal paradigm to extend the perception range and see through the occlusion. Exiting efforts focus on single-frame cooperative perception, however, how to capture the temporal cue between frames with V2X to facilitate the prediction task even the planning task is still underexplored. In this paper, we introduce the Co-MTP, a general cooperative trajectory prediction framework with multi-temporal fusion for autonomous driving, which leverages the V2X system to fully capture the interaction among agents in both history and future domains to benefit the planning. In the history domain, V2X can complement the incomplete history trajectory in single-vehicle perception, and we design a heterogeneous graph transformer to learn the fusion of the history feature from multiple agents and capture the history interaction. Moreover, the goal of prediction is to support future planning. Thus, in the future domain, V2X can provide the prediction results of surrounding objects, and we further extend the graph transformer to capture the future interaction among the ego planning and the other vehicles' intentions and obtain the final future scenario state under a certain planning action. We evaluate the Co-MTP framework on the real-world dataset V2X-Seq, and the results show that Co-MTP achieves state-of-the-art performance and that both history and future fusion can greatly benefit prediction.
comment: 8 pages, 3 figures, ICRA 2025
Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting
Spacecraft pose estimation is crucial for autonomous in-space operations, such as rendezvous, docking and on-orbit servicing. Vision-based pose estimation methods, which typically employ RGB imaging sensors, is a compelling solution for spacecraft pose estimation, but are challenged by harsh lighting conditions, which produce imaging artifacts such as glare, over-exposure, blooming and lens flare. Due to their much higher dynamic range, neuromorphic or event sensors are more resilient to extreme lighting conditions. However, event sensors generally have lower spatial resolution and suffer from reduced signal-to-noise ratio during periods of low relative motion. This work addresses these individual sensor limitations by introducing a sensor fusion approach combining RGB and event sensors. A beam-splitter prism was employed to achieve precise optical and temporal alignment. Then, a RANSAC-based technique was developed to fuse the information from the RGB and event channels to achieve pose estimation that leveraged the strengths of the two modalities. The pipeline was complemented by dropout uncertainty estimation to detect extreme conditions that affect either channel. To benchmark the performance of the proposed event-RGB fusion method, we collected a comprehensive real dataset of RGB and event data for satellite pose estimation in a laboratory setting under a variety of challenging illumination conditions. Encouraging results on the dataset demonstrate the efficacy of our event-RGB fusion approach and further supports the usage of event sensors for spacecraft pose estimation. To support community research on this topic, our dataset has been released publicly.
comment: Associated dataset: https://zenodo.org/records/15861758
Systems and Control (CS)
Universal Barrier Functions for Safety and Stability of Constrained Nonlinear Systems
In this paper, we address the problem of synthesizing safe and stabilizing controllers for nonlinear systems subject to complex safety specifications and input constraints. We introduce the Universal Barrier Function (UBF), a single continuously differentiable scalar-valued function that encodes both stability and safety criteria while accounting for input constraints. Using the UBF, we formulate a Quadratic Program (UBF-QP) to generate control inputs that are both safe and stabilizing under input constraints. We demonstrate that the UBF-QP is feasible if a UBF exists. Furthermore, under mild conditions, we prove that a UBF always exists. The proposed framework is then extended to systems with higher relative degrees. Finally, numerical simulations illustrate the effectiveness of our proposed approach.
comment: 16 pages, 14 figures
Robust Self-Triggered Control Approaches Optimizing Sampling Sequences with Synchronous Measurements
Feedback control algorithms traditionally rely on periodic execution on digital platforms. While this simplifies design and analysis, it often leads to inefficient resource usage (e.g., CPU, network bandwidth) in embedded control and shared networks. This work investigates self-triggering implementations of linear controllers in sampled-data systems with synchronous measurements. Our approach precomputes the next sampling sequence over a finite horizon based on current state information. We introduce a novel optimal self-triggering scheme that guarantees exponential stability for unperturbed systems and global uniform ultimate boundedness for perturbed systems. This ensures robustness against external disturbances with explicit performance guarantees. Simulations demonstrate the benefits of our approach.
comment: Note: This research was conducted in 2017--2018. The literature review has not been updated and may not reflect subsequent or concurrent developments in the field
GOSPA-Driven Non-Myopic Multi-Sensor Management with Multi-Bernoulli Filtering
In this paper, we propose a non-myopic sensor management algorithm for multi-target tracking, with multiple sensors operating in the same surveillance area. The algorithm is based on multi-Bernoulli filtering and selects the actions that solve a non-myopic minimisation problem, where the cost function is the mean square generalised optimal sub-pattern assignment (GOSPA) error, over a future time window. For tractability, the sensor management algorithm actually uses an upper bound of the GOSPA error and is implemented via Monte Carlo Tree Search (MCTS). The sensors have the ability to jointly optimise and select their actions with the considerations of all other sensors in the surveillance area. The benefits of the proposed algorithm are analysed via simulations.
comment: submitted to IEEE Transactions on Aerospace and Electronic Systems November 2025
Online Energy Storage Arbitrage under Imperfect Predictions: A Conformal Risk-Aware Approach
This work proposes a conformal approach for energy storage arbitrage to control the downside risks arose from imperfect price forecasts. Energy storage arbitrage relies solely on predictions of future market prices, while inaccurate price predictions may lead to significant profit losses. Based on conformal decision theory, we describe a controller that dynamically adjusts decision conservativeness through prediction sets without distributional assumptions. To enable online calibration when online profit loss feedback is unobservable, we establish that a temporal difference error serves as a measurable proxy. Building on this insight, we develop two online calibration strategies: prediction error-based adaptation targeting forecast accuracy, and value error-based calibration focusing on decision quality. Analysis of the conformal controller proves bounded long-term risk with convergence guarantees in temporal difference error, which further effectively manages risk exposure in potential profit losses. Case studies demonstrate superior performance in balancing risk and opportunity compared to benchmarks under varying forecast conditions.
On Structural Properties of Risk-Averse Optimal Stopping Problems
We establish structural properties of optimal stopping problems under time-consistent dynamic (coherent) risk measures, focusing on value function monotonicity and the existence of control limit (threshold) optimal policies. While such results are well developed for risk-neutral (expected-value) models, they remain underexplored in risk-averse settings. Coherent risk measures typically lack the tower property and are subadditive rather than additive, complicating structural analysis. We show that value function monotonicity mirrors the risk-neutral case. Moreover, if the risk envelope associated with each coherent risk measure admits a minimal element, the risk-averse optimal stopping problem reduces to an equivalent risk-neutral formulation. We also develop a general procedure for identifying control limit optimal policies and use it to derive practical, verifiable conditions on the risk measures and MDP structure that guarantee their existence. We illustrate the theory and verify these conditions through optimal stopping problems arising in operations, marketing, and finance.
Autonomous Vehicle front steering control computation saving
For autonomous vehicles lane keeping purposes it is crucial to control the vehicle yaw rate. As it is known a vehicle yaw rate control can be achieved handling the steering angle. One option is to consider a robust controller and depending of the requirements the synthesis can drive to a high order controller. Nowadays this kind of vehicles needs a networked based control (IVN -Intelligent Vehicle Network-)with a considerable amount of control loops for different vehicle components. Therefore, in this environment the controllers computation saving could be a good option for unload the network and digital processors. That is the main target of this contribution; in order to accomplish this goal a interlacing implementation technique is considered. Results in a real path tracking illustrates viability of this procedure.
comment: 17 pages, 6 figures
Secure Distributed Consensus Estimation under False Data Injection Attacks: A Defense Strategy Based on Partial Channel Coding
This article investigates the security issue caused by false data injection attacks in distributed estimation, wherein each sensor can construct two types of residues based on local estimates and neighbor information, respectively. The resource-constrained attacker can select partial channels from the sensor network and arbitrarily manipulate the transmitted data. We derive necessary and sufficient conditions to reveal system vulnerabilities, under which the attacker is able to diverge the estimation error while preserving the stealthiness of all residues. We propose two defense strategies with mechanisms of exploiting the Euclidean distance between local estimates to detect attacks, and adopting the coding scheme to protect the transmitted data, respectively. It is proven that the former has the capability to address the majority of security loopholes, while the latter can serve as an additional enhancement to the former. By employing the time-varying coding matrix to mitigate the risk of being cracked, we demonstrate that the latter can safeguard against adversaries injecting stealthy sequences into the encoded channels. Hence, drawing upon the security analysis, we further provide a procedure to select security-critical channels that need to be encoded, thereby achieving a trade-off between security and coding costs. Finally, some numerical simulations are conducted to demonstrate the theoretical results.
Parallel KKT Solver in PIQP for Multistage Optimization
This paper presents an efficient parallel Cholesky factorization and triangular solve algorithm for the Karush-Kuhn-Tucker (KKT) systems arising in multistage optimization problems, with a focus on model predictive control and trajectory optimization for racing. The proposed approach directly parallelizes solving the KKT systems with block-tridiagonal-arrow KKT matrices on the linear algebra level arising in interior-point methods. The algorithm is implemented as a new backend of the PIQP solver and released as open source. Numerical experiments on the chain-of-masses benchmarks and a minimum curvature race line optimization problem demonstrate substantial performance gains compared to other state-of-the-art solvers.
Traffic-Aware Grid Planning for Dynamic Wireless Electric Vehicle Charging
Dynamic Wireless Electric Vehicle Charging (DWC) on electrified roadways is an emerging technology that can significantly reduce battery sizes, eliminate charging downtime, and alleviate range anxiety, specially for long-haul transportation and fleet operations of electric vehicles (EVs). However, these systems introduce new challenges for power system planning due to their short-duration and high-power demands which can strain the grid if not properly managed. As the energy demands from DWC depend on vehicle speed, density, dwell time in charging zones, and load profiles along road segments, there is a need for integrated planning of such systems, jointly considering both traffic behavior and EV energy consumption. In this paper, we propose a traffic-aware grid planning framework for DWC. We leverage a macroscopic Cell Transmission Model of traffic flow to estimate real-time, spatiotemporal EV charging demand from DWC corridors. The demand model is then integrated into an AC Optimal Power Flow based formulation to optimally size a microgrid that supports DWC under varying traffic conditions while minimizing the cost of operation. Our framework explicitly models how spatiotemporal traffic patterns affect the utilization of grid resources to obtain system designs that achieve lower costs and are easier to operationalize as compared to planning models that rely on worst-case traffic data. We demonstrate the framework on data from a 14-mile segment of the I-210W highway in California, USA, evaluating multiple traffic scenarios like free-flow, severe congestion, accidents of varying severity, and natural disasters like forest fires. Our results demonstrate that traffic-aware grid planning significantly reduces infrastructure costs as compared to worst-scenario based modeling, while ensuring reliability of service in terms of meeting charging demands under diverse traffic conditions.
Low-Cost Carriers in Aviation: Significance and Developments
This paper aims to discuss the impacts of low-cost airlines on the air transport market and, in particular, to present the most recent findings from the specialized literature in this field. To this end, several papers published on the topic since 2015 were selected and analyzed. Based on this analysis, the main subjects addressed in the studies were categorized into five groups: (i) impacts of low-cost airlines on competing carriers; (ii) impacts on airports; (iii) general effects on air transport demand; (iv) effects on passengers' choice processes; and (v) broader effects on geographical regions.
Minimizing Maximum Latency of Task Offloading for Multi-UAV-assisted Maritime Search and Rescue
Unmanned Aerial Vehicles (UAVs) play a crucial role in Maritime Search and Rescue (MSAR), contributing to the improvement of rescue efficiency and reduction of casualties. Typically, UAVs equipped with cameras collect data from disaster areas and transmit it to the shore-based rescue command centers. By deploying Mobile Edge Computing (MEC) servers, UAVs can pre-process video footage to reduce data transmission volume, thus reducing transmission delays. However, the limited computational capacity and energy of UAVs pose significant challenges to the efficiency of UAV-assisted MSAR systems. To address these problems, in this paper, we investigate a multi-UAV assisted MSAR system consisting of multiple Surveillance UAVs (S-UAVs) and a Relay UAV (R-UAV). Then, we formulate a joint optimization problem to minimize the maximum total latency among all S-UAVs via jointly making the computing offloading decisions, R-UAV deployment, and the association between a S-UAV and rescue targets while ensuring that all targets are monitored by S-UAVs. Since the formulated optimization problem is typically hard to solve due to its non-convexity, we propose an effective iterative algorithm by breaking it into three sub-problems. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
Real-Time Learning of Predictive Dynamic Obstacle Models for Robotic Motion Planning ICRA
Autonomous systems often must predict the motions of nearby agents from partial and noisy data. This paper asks and answers the question: "can we learn, in real-time, a nonlinear predictive model of another agent's motions?" Our online framework denoises and forecasts such dynamics using a modified sliding-window Hankel Dynamic Mode Decomposition (Hankel-DMD). Partial noisy measurements are embedded into a Hankel matrix, while an associated Page matrix enables singular-value hard thresholding (SVHT) to estimate the effective rank. A Cadzow projection enforces structured low-rank consistency, yielding a denoised trajectory and local noise variance estimates. From this representation, a time-varying Hankel-DMD lifted linear predictor is constructed for multi-step forecasts. The residual analysis provides variance-tracking signals that can support downstream estimators and risk-aware planning. We validate the approach in simulation under Gaussian and heavy-tailed noise, and experimentally on a dynamic crane testbed. Results show that the method achieves stable variance-aware denoising and short-horizon prediction suitable for integration into real-time control frameworks.
comment: 10 pages, 6 figures, submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing
Deep Q-Network for Optimizing NOMA-Aided Resource Allocation in Smart Factories with URLLC Constraints
This paper presents a Deep Q-Network (DQN)- based algorithm for NOMA-aided resource allocation in smart factories, addressing the stringent requirements of Ultra-Reliable Low-Latency Communication (URLLC). The proposed algorithm dynamically allocates sub-channels and optimizes power levels to maximize throughput while meeting strict latency constraints. By incorporating a tunable parameter {\lambda}, the algorithm balances the trade-off between throughput and latency, making it suitable for various devices, including robots, sensors, and controllers, each with distinct communication needs. Simulation results show that robots achieve higher throughput, while sensors and controllers meet the low-latency requirements of URLLC, ensuring reliable communication for real-time industrial applications.
comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC) 2025. This is the preprint version of the paper
High-Power Dual-Channel Field Chamber for High-Frequency Magnetic Neuromodulation
Several novel methods, including magnetogenetics and magnetoelectric stimulation, use high frequency alternating magnetic fields to precisely manipulate neural activity. To quantify the behavioral effects of such interventions in a freely moving mouse, we developed a dual-channel magnetic chamber, specifically designed for rate-sensitive magnetothermal-genetic stimulation, and adaptable for other uses of alternating magnetic fields. Through an optimized coil design, the system allows independent control of two spatially orthogonal uniform magnetic fields delivered at different frequencies within a 10 cm x 10 cm x 6 cm chamber. The two channels have nominal frequencies of 50 and 550 kHz with peak magnetic field strengths of 88 and 12.5 mT, achieved with resonant coil drives having peak voltages of 1.6 and 1.8 kV and currents of 1.0 and 0.26 kA, respectively. Additionally, a liquid cooling system enables magnetic field generation for second-level duration, and an observation port and camera allow video capture of the animal's behavior within the chamber. The system generates high-amplitude magnetic fields across two widely separated frequency channels with negligible interference (< 1%). Relatively uniform magnetic field distribution (+/-10% across 94% of the chamber volume) is maintained throughout the chamber, and temperature increase of the inner side of the coil enclosure during the operation is limited to < 0.35 {\deg}C/s to ensure in vivo safety. Using cobalt-doped and undoped iron oxide nanoparticles, we demonstrate channel-specific heating rates of 3.5 {\deg}C/s and 1.5 {\deg}C/s, respectively, validating frequency-selectivity. Both channels can run continuously for four seconds stably.
comment: 25 pages, 8 figures
Magnetic Materials for Transcranial Magnetic Stimulation (TMS)
Various coils for transcranial magnetic stimulation (TMS) are widely available for clinical and research use. These coils are almost all designed as air coils, which require large levels of energy to achieve a given magnetic flux density and in turn electric field strength, whereas in other sectors, such as power electronics or electrical machines, magnetic materials have been used for a long time to achieve higher efficiencies. We tested the impact on the electric and magnetic properties of different soft magnetic materials, including various ferrite cores, laminated sheet materials of nonisotropic corn-oriented silicon-steel, non-oriented silicon-steel, as well as cobalt-iron, and soft magnetic compound powder cores with insulated particles. Every material led to a reduction in coil current and voltage for the same target electric field strength. For the same field energy, every material yielded lower losses. Most common materials saturated already at very low currents. More material in thicker layers could shift the saturation point but at the cost of high weight. Due to their low saturation flux density, ferrites appear unsuitable for the high amplitude requirements of TMS. Laminated sheet materials and powder cores reduce the pulse energy, but the laminated sheet material adds more weight for the same effect than powder cores. Thus, appropriate magnetic materials can reduce the required pulse energy. Saturation flux density is the most relevant parameter, whereas the permeability beyond a certain base level is practically irrelevant. Most importantly, the weight of a magnetic-core coil may always be increased compared to an air coil for the same target field.
comment: 30 pages, 14 figures, 2 tables
Iterative Cut-Based PWA Approximation of Multi-Dimensional Nonlinear Systems
PieceWise Affine (PWA) approximations for nonlinear functions have been extensively used for tractable, computationally efficient control of nonlinear systems. However, reaching a desired approximation accuracy without prior information about the behavior of the nonlinear systems remains a challenge in the function approximation and control literature. As the name suggests, PWA approximation aims at approximating a nonlinear function or system by dividing the domain into multiple subregions where the nonlinear function or dynamics is approximated locally by an affine function also called local mode. Without prior knowledge of the form of the nonlinearity, the required number of modes, the locations of the subregions, and the local approximations need to be optimized simultaneously, which becomes highly complex for large-scale systems with multi-dimensional nonlinear functions. This paper introduces a novel approach for PWA approximation of multi-dimensional nonlinear systems, utilizing a hinging hyperplane formalism for cut-based partitioning of the domain. The complexity of the PWA approximation is iteratively increased until reaching the desired accuracy level. Further, the tractable cut definitions allow for different forms of subregions, as well as the ability to impose continuity constraints on the PWA approximation. The methodology is explained via multiple examples and its performance is compared to two existing approaches through case studies, showcasing its efficacy.
comment: 9 pages, 4 figures, submitted to journal
ORFit: One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares
While large machine learning models have shown remarkable performance in various domains, their training typically requires iterating for many passes over the training data. However, due to computational and memory constraints and potential privacy concerns, storing and accessing all the data is impractical in many real-world scenarios where the data arrives in a stream. In this paper, we investigate the problem of one-pass learning, in which a model is trained on sequentially arriving data without retraining on previous datapoints. Motivated by the demonstrated effectiveness of overparameterized models and the phenomenon of benign overfitting, we propose Orthogonal Recursive Fitting (ORFit), an algorithm for one-pass learning which seeks to perfectly fit each new datapoint while minimally altering the predictions on previous datapoints. ORFit updates the parameters in a direction orthogonal to past gradients, similar to orthogonal gradient descent (OGD) in continual learning. We show that, interestingly, ORFit's update leads to an operation similar to the recursive least-squares (RLS) algorithm in adaptive filtering but with significantly improved memory and computational efficiency, i.e., linear, instead of quadratic, in the number of parameters. To further reduce memory usage, we leverage the structure of the streaming data via an incremental principal component analysis (IPCA). We show that using the principal components is minimax optimal, i.e., it minimizes the worst-case forgetting of previous predictions for unknown future updates. Further, we prove that, for overparameterized linear models, the parameter vector obtained by ORFit matches what the standard multi-pass stochastic gradient descent (SGD) would converge to. Finally, we extend our results to the nonlinear setting for highly overparameterized models, relevant for deep learning.
comment: Journal extension of v1: Y. Min, K, Ahn, N. Azizan, "One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares," IEEE Conference on Decision and Control, 2022
Spatio-Temporal Consistent Soft Sensor Modeling and Monitoring of Thermal Power Plants based on Physical Knowledge
Data-driven soft sensors have been widely applied in complex industrial processes. However, the interpretable spatio-temporal features extraction by soft sensors remains a challenge. In this light, this work introduces a novel method termed spatio-temporal consistent and interpretable model (STCIM). First, temporal and spatial features are captured and aligned by a far topological spatio-temporal consistency extraction block. Then, the features are mapped into an interpretable latent space for further prediction by explicitly giving physical meanings to latent variables. The efficacy of the proposed STCIM is demonstrated through the modeling of two generated datasets and a real-life dataset of coal-fired power plants. The corresponding experiments show: 1) The generalization of STCIM outperforms other methods, especially in different operation situations. 2) The far topological spatio-temporal consistency is vital for feature alignment. 3) The hyper-parameters of physics-informed interpretable latent space loss decide the performance of STCIM.
Lyapunov Neural ODE State-Feedback Control Policies
Deep neural networks are increasingly used as an effective parameterization of control policies in various learning-based control paradigms. For continuous-time optimal control problems (OCPs), which are central to many decision-making tasks, control policy learning can be cast as a neural ordinary differential equation (NODE) problem wherein state and control constraints are naturally accommodated. This paper presents a NODE approach to solving continuous-time OCPs for the case of stabilizing a known constrained nonlinear system around a target state. The approach, termed Lyapunov-NODE control (L-NODEC), uses a novel Lyapunov loss formulation that incorporates an exponentially-stabilizing control Lyapunov function to learn a state-feedback neural control policy, bridging the gap of solving continuous-time OCPs via NODEs with stability guarantees. The proposed Lyapunov loss allows L-NODEC to guarantee exponential stability of the controlled system, as well as its adversarial robustness to perturbations to the initial state. The performance of L-NODEC is illustrated in two problems, including a dose delivery problem in plasma medicine. In both cases, L-NODEC effectively stabilizes the controlled system around the target state despite perturbations to the initial state and reduces the inference time necessary to reach the target.
Systems and Control (EESS)
Universal Barrier Functions for Safety and Stability of Constrained Nonlinear Systems
In this paper, we address the problem of synthesizing safe and stabilizing controllers for nonlinear systems subject to complex safety specifications and input constraints. We introduce the Universal Barrier Function (UBF), a single continuously differentiable scalar-valued function that encodes both stability and safety criteria while accounting for input constraints. Using the UBF, we formulate a Quadratic Program (UBF-QP) to generate control inputs that are both safe and stabilizing under input constraints. We demonstrate that the UBF-QP is feasible if a UBF exists. Furthermore, under mild conditions, we prove that a UBF always exists. The proposed framework is then extended to systems with higher relative degrees. Finally, numerical simulations illustrate the effectiveness of our proposed approach.
comment: 16 pages, 14 figures
Robust Self-Triggered Control Approaches Optimizing Sampling Sequences with Synchronous Measurements
Feedback control algorithms traditionally rely on periodic execution on digital platforms. While this simplifies design and analysis, it often leads to inefficient resource usage (e.g., CPU, network bandwidth) in embedded control and shared networks. This work investigates self-triggering implementations of linear controllers in sampled-data systems with synchronous measurements. Our approach precomputes the next sampling sequence over a finite horizon based on current state information. We introduce a novel optimal self-triggering scheme that guarantees exponential stability for unperturbed systems and global uniform ultimate boundedness for perturbed systems. This ensures robustness against external disturbances with explicit performance guarantees. Simulations demonstrate the benefits of our approach.
comment: Note: This research was conducted in 2017--2018. The literature review has not been updated and may not reflect subsequent or concurrent developments in the field
GOSPA-Driven Non-Myopic Multi-Sensor Management with Multi-Bernoulli Filtering
In this paper, we propose a non-myopic sensor management algorithm for multi-target tracking, with multiple sensors operating in the same surveillance area. The algorithm is based on multi-Bernoulli filtering and selects the actions that solve a non-myopic minimisation problem, where the cost function is the mean square generalised optimal sub-pattern assignment (GOSPA) error, over a future time window. For tractability, the sensor management algorithm actually uses an upper bound of the GOSPA error and is implemented via Monte Carlo Tree Search (MCTS). The sensors have the ability to jointly optimise and select their actions with the considerations of all other sensors in the surveillance area. The benefits of the proposed algorithm are analysed via simulations.
comment: submitted to IEEE Transactions on Aerospace and Electronic Systems November 2025
Online Energy Storage Arbitrage under Imperfect Predictions: A Conformal Risk-Aware Approach
This work proposes a conformal approach for energy storage arbitrage to control the downside risks arose from imperfect price forecasts. Energy storage arbitrage relies solely on predictions of future market prices, while inaccurate price predictions may lead to significant profit losses. Based on conformal decision theory, we describe a controller that dynamically adjusts decision conservativeness through prediction sets without distributional assumptions. To enable online calibration when online profit loss feedback is unobservable, we establish that a temporal difference error serves as a measurable proxy. Building on this insight, we develop two online calibration strategies: prediction error-based adaptation targeting forecast accuracy, and value error-based calibration focusing on decision quality. Analysis of the conformal controller proves bounded long-term risk with convergence guarantees in temporal difference error, which further effectively manages risk exposure in potential profit losses. Case studies demonstrate superior performance in balancing risk and opportunity compared to benchmarks under varying forecast conditions.
On Structural Properties of Risk-Averse Optimal Stopping Problems
We establish structural properties of optimal stopping problems under time-consistent dynamic (coherent) risk measures, focusing on value function monotonicity and the existence of control limit (threshold) optimal policies. While such results are well developed for risk-neutral (expected-value) models, they remain underexplored in risk-averse settings. Coherent risk measures typically lack the tower property and are subadditive rather than additive, complicating structural analysis. We show that value function monotonicity mirrors the risk-neutral case. Moreover, if the risk envelope associated with each coherent risk measure admits a minimal element, the risk-averse optimal stopping problem reduces to an equivalent risk-neutral formulation. We also develop a general procedure for identifying control limit optimal policies and use it to derive practical, verifiable conditions on the risk measures and MDP structure that guarantee their existence. We illustrate the theory and verify these conditions through optimal stopping problems arising in operations, marketing, and finance.
Autonomous Vehicle front steering control computation saving
For autonomous vehicles lane keeping purposes it is crucial to control the vehicle yaw rate. As it is known a vehicle yaw rate control can be achieved handling the steering angle. One option is to consider a robust controller and depending of the requirements the synthesis can drive to a high order controller. Nowadays this kind of vehicles needs a networked based control (IVN -Intelligent Vehicle Network-)with a considerable amount of control loops for different vehicle components. Therefore, in this environment the controllers computation saving could be a good option for unload the network and digital processors. That is the main target of this contribution; in order to accomplish this goal a interlacing implementation technique is considered. Results in a real path tracking illustrates viability of this procedure.
comment: 17 pages, 6 figures
Secure Distributed Consensus Estimation under False Data Injection Attacks: A Defense Strategy Based on Partial Channel Coding
This article investigates the security issue caused by false data injection attacks in distributed estimation, wherein each sensor can construct two types of residues based on local estimates and neighbor information, respectively. The resource-constrained attacker can select partial channels from the sensor network and arbitrarily manipulate the transmitted data. We derive necessary and sufficient conditions to reveal system vulnerabilities, under which the attacker is able to diverge the estimation error while preserving the stealthiness of all residues. We propose two defense strategies with mechanisms of exploiting the Euclidean distance between local estimates to detect attacks, and adopting the coding scheme to protect the transmitted data, respectively. It is proven that the former has the capability to address the majority of security loopholes, while the latter can serve as an additional enhancement to the former. By employing the time-varying coding matrix to mitigate the risk of being cracked, we demonstrate that the latter can safeguard against adversaries injecting stealthy sequences into the encoded channels. Hence, drawing upon the security analysis, we further provide a procedure to select security-critical channels that need to be encoded, thereby achieving a trade-off between security and coding costs. Finally, some numerical simulations are conducted to demonstrate the theoretical results.
Parallel KKT Solver in PIQP for Multistage Optimization
This paper presents an efficient parallel Cholesky factorization and triangular solve algorithm for the Karush-Kuhn-Tucker (KKT) systems arising in multistage optimization problems, with a focus on model predictive control and trajectory optimization for racing. The proposed approach directly parallelizes solving the KKT systems with block-tridiagonal-arrow KKT matrices on the linear algebra level arising in interior-point methods. The algorithm is implemented as a new backend of the PIQP solver and released as open source. Numerical experiments on the chain-of-masses benchmarks and a minimum curvature race line optimization problem demonstrate substantial performance gains compared to other state-of-the-art solvers.
Traffic-Aware Grid Planning for Dynamic Wireless Electric Vehicle Charging
Dynamic Wireless Electric Vehicle Charging (DWC) on electrified roadways is an emerging technology that can significantly reduce battery sizes, eliminate charging downtime, and alleviate range anxiety, specially for long-haul transportation and fleet operations of electric vehicles (EVs). However, these systems introduce new challenges for power system planning due to their short-duration and high-power demands which can strain the grid if not properly managed. As the energy demands from DWC depend on vehicle speed, density, dwell time in charging zones, and load profiles along road segments, there is a need for integrated planning of such systems, jointly considering both traffic behavior and EV energy consumption. In this paper, we propose a traffic-aware grid planning framework for DWC. We leverage a macroscopic Cell Transmission Model of traffic flow to estimate real-time, spatiotemporal EV charging demand from DWC corridors. The demand model is then integrated into an AC Optimal Power Flow based formulation to optimally size a microgrid that supports DWC under varying traffic conditions while minimizing the cost of operation. Our framework explicitly models how spatiotemporal traffic patterns affect the utilization of grid resources to obtain system designs that achieve lower costs and are easier to operationalize as compared to planning models that rely on worst-case traffic data. We demonstrate the framework on data from a 14-mile segment of the I-210W highway in California, USA, evaluating multiple traffic scenarios like free-flow, severe congestion, accidents of varying severity, and natural disasters like forest fires. Our results demonstrate that traffic-aware grid planning significantly reduces infrastructure costs as compared to worst-scenario based modeling, while ensuring reliability of service in terms of meeting charging demands under diverse traffic conditions.
Low-Cost Carriers in Aviation: Significance and Developments
This paper aims to discuss the impacts of low-cost airlines on the air transport market and, in particular, to present the most recent findings from the specialized literature in this field. To this end, several papers published on the topic since 2015 were selected and analyzed. Based on this analysis, the main subjects addressed in the studies were categorized into five groups: (i) impacts of low-cost airlines on competing carriers; (ii) impacts on airports; (iii) general effects on air transport demand; (iv) effects on passengers' choice processes; and (v) broader effects on geographical regions.
Minimizing Maximum Latency of Task Offloading for Multi-UAV-assisted Maritime Search and Rescue
Unmanned Aerial Vehicles (UAVs) play a crucial role in Maritime Search and Rescue (MSAR), contributing to the improvement of rescue efficiency and reduction of casualties. Typically, UAVs equipped with cameras collect data from disaster areas and transmit it to the shore-based rescue command centers. By deploying Mobile Edge Computing (MEC) servers, UAVs can pre-process video footage to reduce data transmission volume, thus reducing transmission delays. However, the limited computational capacity and energy of UAVs pose significant challenges to the efficiency of UAV-assisted MSAR systems. To address these problems, in this paper, we investigate a multi-UAV assisted MSAR system consisting of multiple Surveillance UAVs (S-UAVs) and a Relay UAV (R-UAV). Then, we formulate a joint optimization problem to minimize the maximum total latency among all S-UAVs via jointly making the computing offloading decisions, R-UAV deployment, and the association between a S-UAV and rescue targets while ensuring that all targets are monitored by S-UAVs. Since the formulated optimization problem is typically hard to solve due to its non-convexity, we propose an effective iterative algorithm by breaking it into three sub-problems. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
Real-Time Learning of Predictive Dynamic Obstacle Models for Robotic Motion Planning ICRA
Autonomous systems often must predict the motions of nearby agents from partial and noisy data. This paper asks and answers the question: "can we learn, in real-time, a nonlinear predictive model of another agent's motions?" Our online framework denoises and forecasts such dynamics using a modified sliding-window Hankel Dynamic Mode Decomposition (Hankel-DMD). Partial noisy measurements are embedded into a Hankel matrix, while an associated Page matrix enables singular-value hard thresholding (SVHT) to estimate the effective rank. A Cadzow projection enforces structured low-rank consistency, yielding a denoised trajectory and local noise variance estimates. From this representation, a time-varying Hankel-DMD lifted linear predictor is constructed for multi-step forecasts. The residual analysis provides variance-tracking signals that can support downstream estimators and risk-aware planning. We validate the approach in simulation under Gaussian and heavy-tailed noise, and experimentally on a dynamic crane testbed. Results show that the method achieves stable variance-aware denoising and short-horizon prediction suitable for integration into real-time control frameworks.
comment: 10 pages, 6 figures, submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025
When Semantics Connect the Swarm: LLM-Driven Fuzzy Control for Cooperative Multi-Robot Underwater Coverage
Underwater multi-robot cooperative coverage remains challenging due to partial observability, limited communication, environmental uncertainty, and the lack of access to global localization. To address these issues, this paper presents a semantics-guided fuzzy control framework that couples Large Language Models (LLMs) with interpretable control and lightweight coordination. Raw multimodal observations are compressed by the LLM into compact, human-interpretable semantic tokens that summarize obstacles, unexplored regions, and Objects Of Interest (OOIs) under uncertain perception. A fuzzy inference system with pre-defined membership functions then maps these tokens into smooth and stable steering and gait commands, enabling reliable navigation without relying on global positioning. Then, we further coordinate multiple robots by introducing semantic communication that shares intent and local context in linguistic form, enabling agreement on who explores where while avoiding redundant revisits. Extensive simulations in unknown reef-like environments show that, under limited sensing and communication, the proposed framework achieves robust OOI-oriented navigation and cooperative coverage with improved efficiency and adaptability, narrowing the gap between semantic cognition and distributed underwater control in GPS-denied, map-free conditions.
comment: This paper has been submitted to IEEE Transactions on Mobile Computing
Deep Q-Network for Optimizing NOMA-Aided Resource Allocation in Smart Factories with URLLC Constraints
This paper presents a Deep Q-Network (DQN)- based algorithm for NOMA-aided resource allocation in smart factories, addressing the stringent requirements of Ultra-Reliable Low-Latency Communication (URLLC). The proposed algorithm dynamically allocates sub-channels and optimizes power levels to maximize throughput while meeting strict latency constraints. By incorporating a tunable parameter {\lambda}, the algorithm balances the trade-off between throughput and latency, making it suitable for various devices, including robots, sensors, and controllers, each with distinct communication needs. Simulation results show that robots achieve higher throughput, while sensors and controllers meet the low-latency requirements of URLLC, ensuring reliable communication for real-time industrial applications.
comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC) 2025. This is the preprint version of the paper
High-Power Dual-Channel Field Chamber for High-Frequency Magnetic Neuromodulation
Several novel methods, including magnetogenetics and magnetoelectric stimulation, use high frequency alternating magnetic fields to precisely manipulate neural activity. To quantify the behavioral effects of such interventions in a freely moving mouse, we developed a dual-channel magnetic chamber, specifically designed for rate-sensitive magnetothermal-genetic stimulation, and adaptable for other uses of alternating magnetic fields. Through an optimized coil design, the system allows independent control of two spatially orthogonal uniform magnetic fields delivered at different frequencies within a 10 cm x 10 cm x 6 cm chamber. The two channels have nominal frequencies of 50 and 550 kHz with peak magnetic field strengths of 88 and 12.5 mT, achieved with resonant coil drives having peak voltages of 1.6 and 1.8 kV and currents of 1.0 and 0.26 kA, respectively. Additionally, a liquid cooling system enables magnetic field generation for second-level duration, and an observation port and camera allow video capture of the animal's behavior within the chamber. The system generates high-amplitude magnetic fields across two widely separated frequency channels with negligible interference (< 1%). Relatively uniform magnetic field distribution (+/-10% across 94% of the chamber volume) is maintained throughout the chamber, and temperature increase of the inner side of the coil enclosure during the operation is limited to < 0.35 {\deg}C/s to ensure in vivo safety. Using cobalt-doped and undoped iron oxide nanoparticles, we demonstrate channel-specific heating rates of 3.5 {\deg}C/s and 1.5 {\deg}C/s, respectively, validating frequency-selectivity. Both channels can run continuously for four seconds stably.
comment: 25 pages, 8 figures
Magnetic Materials for Transcranial Magnetic Stimulation (TMS)
Various coils for transcranial magnetic stimulation (TMS) are widely available for clinical and research use. These coils are almost all designed as air coils, which require large levels of energy to achieve a given magnetic flux density and in turn electric field strength, whereas in other sectors, such as power electronics or electrical machines, magnetic materials have been used for a long time to achieve higher efficiencies. We tested the impact on the electric and magnetic properties of different soft magnetic materials, including various ferrite cores, laminated sheet materials of nonisotropic corn-oriented silicon-steel, non-oriented silicon-steel, as well as cobalt-iron, and soft magnetic compound powder cores with insulated particles. Every material led to a reduction in coil current and voltage for the same target electric field strength. For the same field energy, every material yielded lower losses. Most common materials saturated already at very low currents. More material in thicker layers could shift the saturation point but at the cost of high weight. Due to their low saturation flux density, ferrites appear unsuitable for the high amplitude requirements of TMS. Laminated sheet materials and powder cores reduce the pulse energy, but the laminated sheet material adds more weight for the same effect than powder cores. Thus, appropriate magnetic materials can reduce the required pulse energy. Saturation flux density is the most relevant parameter, whereas the permeability beyond a certain base level is practically irrelevant. Most importantly, the weight of a magnetic-core coil may always be increased compared to an air coil for the same target field.
comment: 30 pages, 14 figures, 2 tables
Iterative Cut-Based PWA Approximation of Multi-Dimensional Nonlinear Systems
PieceWise Affine (PWA) approximations for nonlinear functions have been extensively used for tractable, computationally efficient control of nonlinear systems. However, reaching a desired approximation accuracy without prior information about the behavior of the nonlinear systems remains a challenge in the function approximation and control literature. As the name suggests, PWA approximation aims at approximating a nonlinear function or system by dividing the domain into multiple subregions where the nonlinear function or dynamics is approximated locally by an affine function also called local mode. Without prior knowledge of the form of the nonlinearity, the required number of modes, the locations of the subregions, and the local approximations need to be optimized simultaneously, which becomes highly complex for large-scale systems with multi-dimensional nonlinear functions. This paper introduces a novel approach for PWA approximation of multi-dimensional nonlinear systems, utilizing a hinging hyperplane formalism for cut-based partitioning of the domain. The complexity of the PWA approximation is iteratively increased until reaching the desired accuracy level. Further, the tractable cut definitions allow for different forms of subregions, as well as the ability to impose continuity constraints on the PWA approximation. The methodology is explained via multiple examples and its performance is compared to two existing approaches through case studies, showcasing its efficacy.
comment: 9 pages, 4 figures, submitted to journal
ORFit: One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares
While large machine learning models have shown remarkable performance in various domains, their training typically requires iterating for many passes over the training data. However, due to computational and memory constraints and potential privacy concerns, storing and accessing all the data is impractical in many real-world scenarios where the data arrives in a stream. In this paper, we investigate the problem of one-pass learning, in which a model is trained on sequentially arriving data without retraining on previous datapoints. Motivated by the demonstrated effectiveness of overparameterized models and the phenomenon of benign overfitting, we propose Orthogonal Recursive Fitting (ORFit), an algorithm for one-pass learning which seeks to perfectly fit each new datapoint while minimally altering the predictions on previous datapoints. ORFit updates the parameters in a direction orthogonal to past gradients, similar to orthogonal gradient descent (OGD) in continual learning. We show that, interestingly, ORFit's update leads to an operation similar to the recursive least-squares (RLS) algorithm in adaptive filtering but with significantly improved memory and computational efficiency, i.e., linear, instead of quadratic, in the number of parameters. To further reduce memory usage, we leverage the structure of the streaming data via an incremental principal component analysis (IPCA). We show that using the principal components is minimax optimal, i.e., it minimizes the worst-case forgetting of previous predictions for unknown future updates. Further, we prove that, for overparameterized linear models, the parameter vector obtained by ORFit matches what the standard multi-pass stochastic gradient descent (SGD) would converge to. Finally, we extend our results to the nonlinear setting for highly overparameterized models, relevant for deep learning.
comment: Journal extension of v1: Y. Min, K, Ahn, N. Azizan, "One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive Least-Squares," IEEE Conference on Decision and Control, 2022
Spatio-Temporal Consistent Soft Sensor Modeling and Monitoring of Thermal Power Plants based on Physical Knowledge
Data-driven soft sensors have been widely applied in complex industrial processes. However, the interpretable spatio-temporal features extraction by soft sensors remains a challenge. In this light, this work introduces a novel method termed spatio-temporal consistent and interpretable model (STCIM). First, temporal and spatial features are captured and aligned by a far topological spatio-temporal consistency extraction block. Then, the features are mapped into an interpretable latent space for further prediction by explicitly giving physical meanings to latent variables. The efficacy of the proposed STCIM is demonstrated through the modeling of two generated datasets and a real-life dataset of coal-fired power plants. The corresponding experiments show: 1) The generalization of STCIM outperforms other methods, especially in different operation situations. 2) The far topological spatio-temporal consistency is vital for feature alignment. 3) The hyper-parameters of physics-informed interpretable latent space loss decide the performance of STCIM.
Lyapunov Neural ODE State-Feedback Control Policies
Deep neural networks are increasingly used as an effective parameterization of control policies in various learning-based control paradigms. For continuous-time optimal control problems (OCPs), which are central to many decision-making tasks, control policy learning can be cast as a neural ordinary differential equation (NODE) problem wherein state and control constraints are naturally accommodated. This paper presents a NODE approach to solving continuous-time OCPs for the case of stabilizing a known constrained nonlinear system around a target state. The approach, termed Lyapunov-NODE control (L-NODEC), uses a novel Lyapunov loss formulation that incorporates an exponentially-stabilizing control Lyapunov function to learn a state-feedback neural control policy, bridging the gap of solving continuous-time OCPs via NODEs with stability guarantees. The proposed Lyapunov loss allows L-NODEC to guarantee exponential stability of the controlled system, as well as its adversarial robustness to perturbations to the initial state. The performance of L-NODEC is illustrated in two problems, including a dose delivery problem in plasma medicine. In both cases, L-NODEC effectively stabilizes the controlled system around the target state despite perturbations to the initial state and reduces the inference time necessary to reach the target.
Multiagent Systems
Predictive Auxiliary Learning for Belief-based Multi-Agent Systems
The performance of multi-agent reinforcement learning (MARL) in partially observable environments depends on effectively aggregating information from observations, communications, and reward signals. While most existing multi-agent systems primarily rely on rewards as the only feedback for policy training, our research shows that introducing auxiliary predictive tasks can significantly enhance learning efficiency and stability. We propose Belief-based Predictive Auxiliary Learning (BEPAL), a framework that incorporates auxiliary training objectives to support policy optimization. BEPAL follows the centralized training with decentralized execution paradigm. Each agent learns a belief model that predicts unobservable state information, such as other agents' rewards or motion directions, alongside its policy model. By enriching hidden state representations with information that does not directly contribute to immediate reward maximization, this auxiliary learning process stabilizes MARL training and improves overall performance. We evaluate BEPAL in the predator-prey environment and Google Research Football, where it achieves an average improvement of about 16 percent in performance metrics and demonstrates more stable convergence compared to baseline methods.
GOSPA-Driven Non-Myopic Multi-Sensor Management with Multi-Bernoulli Filtering
In this paper, we propose a non-myopic sensor management algorithm for multi-target tracking, with multiple sensors operating in the same surveillance area. The algorithm is based on multi-Bernoulli filtering and selects the actions that solve a non-myopic minimisation problem, where the cost function is the mean square generalised optimal sub-pattern assignment (GOSPA) error, over a future time window. For tractability, the sensor management algorithm actually uses an upper bound of the GOSPA error and is implemented via Monte Carlo Tree Search (MCTS). The sensors have the ability to jointly optimise and select their actions with the considerations of all other sensors in the surveillance area. The benefits of the proposed algorithm are analysed via simulations.
comment: submitted to IEEE Transactions on Aerospace and Electronic Systems November 2025
A Simple Logic of Cohesive Group Agency
We propose a structure to represent the social fabric of a group. We call it the `cohesion network' of the group. It can be seen as a graph whose vertices are strict subgroups and whose edges indicate a prescribed `pro-social behaviour' from one subgroup towards another. In social psychology, pro-social behaviours are building blocks of full-blown cooperation, which we assimilate here with `group cohesiveness'. We then define a formal framework to study cohesive group agency. To do so, we simply instantiate pro-social behaviour with the more specific relation of `successful assistance' between acting entities in a group. The relations of assistance within a group at the moment of agency constitute the social fabric of the cohesive group agency. We build our logical theory upon the logic of agency "bringing-it-about". We obtain a family of logics of cohesive group agency, one for every class of cohesion networks.
Predictive Auxiliary Learning for Belief-based Multi-Agent Systems
The performance of multi-agent reinforcement learning (MARL) in partially observable environments depends on effectively aggregating information from observations, communications, and reward signals. While most existing multi-agent systems primarily rely on rewards as the only feedback for policy training, our research shows that introducing auxiliary predictive tasks can significantly enhance learning efficiency and stability. We propose Belief-based Predictive Auxiliary Learning (BEPAL), a framework that incorporates auxiliary training objectives to support policy optimization. BEPAL follows the centralized training with decentralized execution paradigm. Each agent learns a belief model that predicts unobservable state information, such as other agents' rewards or motion directions, alongside its policy model. By enriching hidden state representations with information that does not directly contribute to immediate reward maximization, this auxiliary learning process stabilizes MARL training and improves overall performance. We evaluate BEPAL in the predator-prey environment and Google Research Football, where it achieves an average improvement of about 16 percent in performance metrics and demonstrates more stable convergence compared to baseline methods.
Robotics
Multi-Mapcher: Loop Closure Detection-Free Heterogeneous LiDAR Multi-Session SLAM Leveraging Outlier-Robust Registration for Autonomous Vehicles
As various 3D light detection and ranging (LiDAR) sensors have been introduced to the market, research on multi-session simultaneous localization and mapping (MSS) using heterogeneous LiDAR sensors has been actively conducted. Existing MSS methods mostly rely on loop closure detection for inter-session alignment; however, the performance of loop closure detection can be potentially degraded owing to the differences in the density and field of view (FoV) of the sensors used in different sessions. In this study, we challenge the existing paradigm that relies heavily on loop detection modules and propose a novel MSS framework, called Multi-Mapcher, that employs large-scale map-to-map registration to perform inter-session initial alignment, which is commonly assumed to be infeasible, by leveraging outlier-robust 3D point cloud registration. Next, after finding inter-session loops by radius search based on the assumption that the inter-session initial alignment is sufficiently precise, anchor node-based robust pose graph optimization is employed to build a consistent global map. As demonstrated in our experiments, our approach shows substantially better MSS performance for various LiDAR sensors used to capture the sessions and is faster than state-of-the-art approaches. Our code is available at https://github.com/url-kaist/multi-mapcher.
comment: 13 pages, 12 figures
Improving Robustness to Out-of-Distribution States in Imitation Learning via Deep Koopman-Boosted Diffusion Policy
Integrating generative models with action chunking has shown significant promise in imitation learning for robotic manipulation. However, the existing diffusion-based paradigm often struggles to capture strong temporal dependencies across multiple steps, particularly when incorporating proprioceptive input. This limitation can lead to task failures, where the policy overfits to proprioceptive cues at the expense of capturing the visually derived features of the task. To overcome this challenge, we propose the Deep Koopman-boosted Dual-branch Diffusion Policy (D3P) algorithm. D3P introduces a dual-branch architecture to decouple the roles of different sensory modality combinations. The visual branch encodes the visual observations to indicate task progression, while the fused branch integrates both visual and proprioceptive inputs for precise manipulation. Within this architecture, when the robot fails to accomplish intermediate goals, such as grasping a drawer handle, the policy can dynamically switch to execute action chunks generated by the visual branch, allowing recovery to previously observed states and facilitating retrial of the task. To further enhance visual representation learning, we incorporate a Deep Koopman Operator module that captures structured temporal dynamics from visual inputs. During inference, we use the test-time loss of the generative model as a confidence signal to guide the aggregation of the temporally overlapping predicted action chunks, thereby enhancing the reliability of policy execution. In simulation experiments across six RLBench tabletop tasks, D3P outperforms the state-of-the-art diffusion policy by an average of 14.6\%. On three real-world robotic manipulation tasks, it achieves a 15.0\% improvement. Code: https://github.com/dianyeHuang/D3P.
comment: Accepted by IEEE T-RO
Adaptive and Multi-object Grasping via Deformable Origami Modules
Soft robotics gripper have shown great promise in handling fragile and geometrically complex objects. However, most existing solutions rely on bulky actuators, complex control strategies, or advanced tactile sensing to achieve stable and reliable grasping performance. In this work, we present a multi-finger hybrid gripper featuring passively deformable origami modules that generate constant force and torque output. Each finger composed of parallel origami modules is driven by a 1-DoF actuator mechanism, enabling passive shape adaptability and stable grasping force without active sensing or feedback control. More importantly, we demonstrate an interesting capability in simultaneous multi-object grasping, which allows stacked objects of varied shape and size to be picked, transported and placed independently at different states, significantly improving manipulation efficiency compared to single-object grasping. These results highlight the potential of origami-based compliant structures as scalable modules for adaptive, stable and efficient multi-object manipulation in domestic and industrial pick-and-place scenarios.
Descriptive Model-based Learning and Control for Bipedal Locomotion
Bipedal balance is challenging due to its multi-phase, hybrid nature and high-dimensional state space. Traditional balance control approaches for bipedal robots rely on low-dimensional models for locomotion planning and reactive control, constraining the full robot to behave like these simplified models. This involves tracking preset reference paths for the Center of Mass and upper body obtained through low-dimensional models, often resulting in inefficient walking patterns with bent knees. However, we observe that bipedal balance is inherently low-dimensional and can be effectively described with simple state and action descriptors in a low-dimensional state space. This allows the robot's motion to evolve freely in its high-dimensional state space, only constraining its projection in the low-dimensional state space. In this work, we propose a novel control approach that avoids prescribing a low-dimensional model to the full model. Instead, our control framework uses a descriptive model with the minimum degrees of freedom necessary to maintain balance, allowing the remaining degrees of freedom to evolve freely in the high-dimensional space. This results in an efficient human-like walking gait and improved robustness.
comment: 8 pages, 15 figures
OmniTrack++: Omnidirectional Multi-Object Tracking by Learning Large-FoV Trajectory Feedback CVPR 2025
This paper investigates Multi-Object Tracking (MOT) in panoramic imagery, which introduces unique challenges including a 360{\deg} Field of View (FoV), resolution dilution, and severe view-dependent distortions. Conventional MOT methods designed for narrow-FoV pinhole cameras generalize unsatisfactorily under these conditions. To address panoramic distortion, large search space, and identity ambiguity under a 360{\deg} FoV, OmniTrack++ adopts a feedback-driven framework that progressively refines perception with trajectory cues. A DynamicSSM block first stabilizes panoramic features, implicitly alleviating geometric distortion. On top of normalized representations, FlexiTrack Instances use trajectory-informed feedback for flexible localization and reliable short-term association. To ensure long-term robustness, an ExpertTrack Memory consolidates appearance cues via a Mixture-of-Experts design, enabling recovery from fragmented tracks and reducing identity drift. Finally, a Tracklet Management module adaptively switches between end-to-end and tracking-by-detection modes according to scene dynamics, offering a balanced and scalable solution for panoramic MOT. To support rigorous evaluation, we establish the EmboTrack benchmark, a comprehensive dataset for panoramic MOT that includes QuadTrack, captured with a quadruped robot, and BipTrack, collected with a bipedal wheel-legged robot. Together, these datasets span wide-angle environments and diverse motion patterns, providing a challenging testbed for real-world panoramic perception. Extensive experiments on JRDB and EmboTrack demonstrate that OmniTrack++ achieves state-of-the-art performance, yielding substantial HOTA improvements of +25.5% on JRDB and +43.07% on QuadTrack over the original OmniTrack. Datasets and code will be made publicly available at https://github.com/xifen523/OmniTrack.
comment: Extended version of CVPR 2025 paper arXiv:2503.04565. Datasets and code will be made publicly available at https://github.com/xifen523/OmniTrack
Design and Development of a Modular Bucket Drum Excavator for Lunar ISRU
In-Situ Resource Utilization (ISRU) is one of the key technologies for enabling sustainable access to the Moon. The ability to excavate lunar regolith is the first step in making lunar resources accessible and usable. This work presents the development of a bucket drum for the modular robotic system MoonBot, as part of the Japanese Moonshot program. A 3D-printed prototype made of PLA was manufactured to evaluate its efficiency through a series of sandbox tests. The resulting tool weighs 4.8 kg and has a volume of 14.06 L. It is capable of continuous excavation at a rate of 777.54 kg/h with a normalized energy consumption of 0.022 Wh/kg. In batch operation, the excavation rate is 172.02 kg/h with a normalized energy consumption of 0.86 Wh per kilogram of excavated material. The obtained results demonstrate the successful implementation of the concept. A key advantage of the developed tool is its compatibility with the modular MoonBot robotic platform, which enables flexible and efficient mission planning. Further improvements may include the integration of sensors and an autonomous control system to enhance the excavation process.
comment: 6 pages, 4 figures. Accepted at IEEE iSpaRo 2025
Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
iFlyBot-VLA Technical Report
We introduce iFlyBot-VLA, a large-scale Vision-Language-Action (VLA) model trained under a novel framework. The main contributions are listed as follows: (1) a latent action model thoroughly trained on large-scale human and robotic manipulation videos; (2) a dual-level action representation framework that jointly supervises both the Vision-Language Model (VLM) and the action expert during training; (3) a mixed training strategy that combines robot trajectory data with general QA and spatial QA datasets, effectively enhancing the 3D perceptual and reasoning capabilities of the VLM backbone. Specifically, the VLM is trained to predict two complementary forms of actions: latent actions, derived from our latent action model pretrained on cross-embodiment manipulation data, which capture implicit high-level intentions; and structured discrete action tokens, obtained through frequency-domain transformations of continuous control signals, which encode explicit low-level dynamics. This dual supervision aligns the representation spaces of language, vision, and action, enabling the VLM to directly contribute to action generation. Experimental results on the LIBERO Franka benchmark demonstrate the superiority of our frame-work, while real-world evaluations further show that iFlyBot-VLA achieves competitive success rates across diverse and challenging manipulation tasks. Furthermore, we plan to open-source a portion of our self-constructed dataset to support future research in the community
Runge-Kutta Approximations for Direct Coning Compensation Applying Lie Theory
The integration of gyroscope measurements is an essential task for most navigation systems. Modern vehicles typically use strapdown systems, such that gyro integration requires coning compensation to account for the sensor's rotation during the integration. Many coning compensation algorithms have been developed and a few are reviewed. This work introduces a new class of coning correction algorithm built directly from the classical Runge-Kutta integration routines. A simple case is shown to collapse to one of the most popular coning algorithms and a clear procedure for generating higher-order algorithms is presented.
RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
Beyond the Uncanny Valley: A Mixed-Method Investigation of Anthropomorphism in Protective Responses to Robot Abuse
Robots with anthropomorphic features are increasingly shaping how humans perceive and morally engage with them. Our research investigates how different levels of anthropomorphism influence protective responses to robot abuse, extending the Computers as Social Actors (CASA) and uncanny valley theories into a moral domain. In an experiment, we invite 201 participants to view videos depicting abuse toward a robot with low (Spider), moderate (Two-Foot), or high (Humanoid) anthropomorphism. To provide a comprehensive analysis, we triangulate three modalities: self-report surveys measuring emotions and uncanniness, physiological data from automated facial expression analysis, and qualitative reflections. Findings indicate that protective responses are not linear. The moderately anthropomorphic Two-Foot robot, rated highest in eeriness and "spine-tingling" sensations consistent with the uncanny valley, elicited the strongest physiological anger expressions. Self-reported anger and guilt are significantly higher for both the Two-Foot and Humanoid robots compared to the Spider. Qualitative findings further reveal that as anthropomorphism increases, moral reasoning shifts from technical assessments of property damage to condemnation of the abuser's character, while governance proposals expand from property law to calls for quasi-animal rights and broader societal responsibility. These results suggest that the uncanny valley does not dampen moral concern but paradoxically heightens protective impulses, offering critical implications for robot design, policy, and future legal frameworks.
Knolling Bot: Teaching Robots the Human Notion of Tidiness NeurIPS 2025
For robots to truly collaborate and assist humans, they must understand not only logic and instructions, but also the subtle emotions, aesthetics, and feelings that define our humanity. Human art and aesthetics are among the most elusive concepts-often difficult even for people to articulate-and without grasping these fundamentals, robots will be unable to help in many spheres of daily life. Consider the long-promised robotic butler: automating domestic chores demands more than motion planning. It requires an internal model of cleanliness and tidiness-a challenge largely unexplored by AI. To bridge this gap, we propose an approach that equips domestic robots to perform simple tidying tasks via knolling, the practice of arranging scattered items into neat, space-efficient layouts. Unlike the uniformity of industrial settings, household environments feature diverse objects and highly subjective notions of tidiness. Drawing inspiration from NLP, we treat knolling as a sequential prediction problem and employ a transformer based model to forecast each object's placement. Our method learns a generalizable concept of tidiness, generates diverse solutions adaptable to varying object sets, and incorporates human preferences for personalized arrangements. This work represents a step forward in building robots that internalize human aesthetic sense and can genuinely co-create in our living spaces.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Creative AI Track
MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 7.7% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.
comment: Project Page: https://umass-embodied-agi.github.io/MindJourney
World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training
Vision-Language-Action (VLA) models trained via imitation learning suffer from significant performance degradation in data-scarce scenarios due to their reliance on large-scale demonstration datasets. Although reinforcement learning (RL)-based post-training has proven effective in addressing data scarcity, its application to VLA models is hindered by the non-resettable nature of real-world environments. This limitation is particularly critical in high-risk domains such as industrial automation, where interactions often induce state changes that are costly or infeasible to revert. Furthermore, existing VLA approaches lack a reliable mechanism for detecting task completion, leading to redundant actions that reduce overall task success rates. To address these challenges, we propose World-Env, an RL-based post-training framework that replaces physical interaction with a low-cost, world model-based virtual simulator. World-Env consists of two key components: (1) a video-based world simulator that generates temporally consistent future visual observations, and (2) a vision-language model (VLM)-guided instant reflector that provides continuous reward signals and predicts action termination. This simulated environment enables VLA models to safely explore and generalize beyond their initial imitation learning distribution. Our method achieves notable performance gains with as few as five expert demonstrations per task. Experiments on complex robotic manipulation tasks demonstrate that World-Env effectively overcomes the data inefficiency, safety constraints, and inefficient execution of conventional VLA models that rely on real-world interaction, offering a practical and scalable solution for post-training in resource-constrained settings. Our code is available at https://github.com/amap-cvlab/world-env.
Multiagent Systems
A CPU-Centric Perspective on Agentic AI
Agentic AI frameworks add a decision-making orchestrator embedded with external tools, including web search, Python interpreter, contextual database, and others, on top of monolithic LLMs, turning them from passive text oracles into autonomous problem-solvers that can plan, call tools, remember past steps, and adapt on the fly. This paper aims to characterize and understand the system bottlenecks introduced by agentic AI workloads from a largely overlooked CPU-centric perspective. We first systematically characterize Agentic AI on the basis of orchestrator/decision making component, inference path dynamics and repetitiveness of the agentic flow which directly influences the system-level performance. Thereafter, based on the characterization, we choose five representative agentic AI workloads- Haystack RAG, Toolformer, ChemCrow, Langchain and SWE-Agent to profile latency, throughput and energy metrics and demystify the significant impact of CPUs on these metrics relative to GPUs. We observe that - 1. Tool processing on CPUs can take up to 90.6% of the total latency; 2. Agentic throughput gets bottlenecked either by CPU factors - coherence, synchronization and over-subscription of cores or GPU factors - main memory capacity and bandwidth; \circled{3} CPU dynamic energy consumes up to 44% of the total dynamic energy at large batch sizes. Based on the profiling insights, we present two key optimizations- 1. CPU and GPU-Aware Micro-batching (CGAM) and 2. Mixed Agentic Workload Scheduling (MAWS) for homogeneous and heterogeneous agentic workloads respectively to demonstrate the potential to improve the performance, efficiency, and scalability of agentic AI. We achieve up to 2.1x and 1.41x P50 latency speedup compared to the multi-processing benchmark for homogeneous and heterogeneous agentic workloads respectively.
Leveraging Multi-Agent System (MAS) and Fine-Tuned Small Language Models (SLMs) for Automated Telecom Network Troubleshooting
Telecom networks are rapidly growing in scale and complexity, making effective management, operation, and optimization increasingly challenging. Although Artificial Intelligence (AI) has been applied to many telecom tasks, existing models are often narrow in scope, require large amounts of labeled data, and struggle to generalize across heterogeneous deployments. Consequently, network troubleshooting continues to rely heavily on Subject Matter Experts (SMEs) to manually correlate various data sources to identify root causes and corrective actions. To address these limitations, we propose a Multi-Agent System (MAS) that employs an agentic workflow, with Large Language Models (LLMs) coordinating multiple specialized tools for fully automated network troubleshooting. Once faults are detected by AI/ML-based monitors, the framework dynamically activates agents such as an orchestrator, solution planner, executor, data retriever, and root-cause analyzer to diagnose issues and recommend remediation strategies within a short time frame. A key component of this system is the solution planner, which generates appropriate remediation plans based on internal documentation. To enable this, we fine-tuned a Small Language Model (SLM) on proprietary troubleshooting documents to produce domain-grounded solution plans. Experimental results demonstrate that the proposed framework significantly accelerates troubleshooting automation across both Radio Access Network (RAN) and Core network domains.
comment: 6 pages, 7 figures, 1 table
AgentGit: A Version Control Framework for Reliable and Scalable LLM-Powered Multi-Agent Systems
With the rapid progress of large language models (LLMs), LLM-powered multi-agent systems (MAS) are drawing increasing interest across academia and industry. However, many current MAS frameworks struggle with reliability and scalability, especially on complex tasks. We present AgentGit, a framework that brings Git-like rollback and branching to MAS workflows. Built as an infrastructure layer on top of LangGraph, AgentGit supports state commit, revert, and branching, allowing agents to traverse, compare, and explore multiple trajectories efficiently. To evaluate AgentGit, we designed an experiment that optimizes target agents by selecting better prompts. We ran a multi-step A/B test against three baselines -- LangGraph, AutoGen, and Agno -- on a real-world task: retrieving and analyzing paper abstracts. Results show that AgentGit significantly reduces redundant computation, lowers runtime and token usage, and supports parallel exploration across multiple branches, enhancing both reliability and scalability in MAS development. This work offers a practical path to more robust MAS design and enables error recovery, safe exploration, iterative debugging, and A/B testing in collaborative AI systems.
Spatial Crowdsourcing-based Task Allocation for UAV-assisted Maritime Data Collection
Driven by the unceasing development of maritime services, tasks of unmanned aerial vehicle (UAV)-assisted maritime data collection (MDC) are becoming increasingly diverse, complex and personalized. As a result, effective task allocation for MDC is becoming increasingly critical. In this work, integrating the concept of spatial crowdsourcing (SC), we develop an SC-based MDC network model and investigate the task allocation problem for UAV-assisted MDC. In variable maritime service scenarios, tasks are allocated to UAVs based on the spatial and temporal requirements of the tasks, as well as the mobility of the UAVs. To address this problem, we design an SC-based task allocation algorithm for the MDC (SC-MDC-TA). The quality estimation is utilized to assess and regulate task execution quality by evaluating signal to interference plus noise ratio and the UAV energy consumption. The reverse auction is employed to potentially reduce the task waiting time as much as possible while ensuring timely completion. Additionally, we establish typical task allocation scenarios based on maritime service requirements indicated by electronic navigational charts. Simulation results demonstrate that the proposed SC-MDC-TA algorithm effectively allocates tasks for various MDC scenarios. Furthermore, compared to the benchmark, the SC-MDC-TA algorithm can also reduce the task completion time and lower the UAV energy consumption.
EvoMem: Improving Multi-Agent Planning with Dual-Evolving Memory
Planning has been a cornerstone of artificial intelligence for solving complex problems, and recent progress in LLM-based multi-agent frameworks have begun to extend this capability. However, the role of human-like memory within these frameworks remains largely unexplored. Understanding how agents coordinate through memory is critical for natural language planning, where iterative reasoning, constraint tracking, and error correction drive the success. Inspired by working memory model in cognitive psychology, we present EvoMem, a multi-agent framework built on a dual-evolving memory mechanism. The framework consists of three agents (Constraint Extractor, Verifier, and Actor) and two memory modules: Constraint Memory (CMem), which evolves across queries by storing task-specific rules and constraints while remains fixed within a query, and Query-feedback Memory (QMem), which evolves within a query by accumulating feedback across iterations for solution refinement. Both memory modules are reset at the end of each query session. Evaluations on trip planning, meeting planning, and calendar scheduling show consistent performance improvements, highlighting the effectiveness of EvoMem. This success underscores the importance of memory in enhancing multi-agent planning.
Sherlock: Reliable and Efficient Agentic Workflow Execution
With the increasing adoption of large language models (LLM), agentic workflows, which compose multiple LLM calls with tools, retrieval, and reasoning steps, are increasingly replacing traditional applications. However, such workflows are inherently error-prone: incorrect or partially correct output at one step can propagate or even amplify through subsequent stages, compounding the impact on the final output. Recent work proposes integrating verifiers that validate LLM output or actions, such as self-reflection, debate, or LLM-as-a-judge mechanisms. Yet, verifying every step introduces significant latency and cost overheads. In this work, we seek to answer three key questions: which nodes in a workflow are most error-prone and thus deserve costly verification, how to select the most appropriate verifier for each node, and how to use verification with minimal impact to latency? Our solution, Sherlock, addresses these using counterfactual analysis on agentic workflows to identify error-prone nodes and selectively attaching cost-optimal verifiers only where necessary. At runtime, Sherlock speculatively executes downstream tasks to reduce latency overhead, while verification runs in the background. If verification fails, execution is rolled back to the last verified output. Compared to the non-verifying baseline, Sherlock delivers an 18.3% accuracy gain on average across benchmarks. Sherlock reduces workflow execution time by up to 48.7% over non-speculative execution and lowers verification cost by 26.0% compared to the Monte Carlo search-based method, demonstrating that principled, fault-aware verification effectively balances efficiency and reliability in agentic workflows.
STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack
Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. STACKFEED defines a ReACT actor agent on each document to perform structured edits based on document specific targeted instructions. Experimental results showcase that STACKFEED significantly improves KB quality and performance of the RAG system. We evaluate STACKFEED on low-resource programming problems, modified python packaged and factual question-answering tasks.
3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark EMNLP 25
Though Large Vision-Language Models (LVLMs) are being actively explored in medicine, their ability to conduct complex real-world telemedicine consultations combining accurate diagnosis with professional dialogue remains underexplored. This paper presents 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source framework for simulating and evaluating LVLM-driven telemedical consultations. 3MDBench simulates patient variability through temperament-based Patient Agent and evaluates diagnostic accuracy and dialogue quality via Assessor Agent. It includes 2996 cases across 34 diagnoses from real-world telemedicine interactions, combining textual and image-based data. The experimental study compares diagnostic strategies for widely used open and closed-source LVLMs. We demonstrate that multimodal dialogue with internal reasoning improves F1 score by 6.5% over non-dialogue settings, highlighting the importance of context-aware, information-seeking questioning. Moreover, injecting predictions from a diagnostic convolutional neural network into the LVLM's context boosts F1 by up to 20%. Source code is available at https://github.com/univanxx/3mdbench.
comment: EMNLP 25 (main)
H-NeiFi: Non-Invasive and Consensus-Efficient Multi-Agent Opinion Guidance
The openness of social media enables the free exchange of opinions, but it also presents challenges in guiding opinion evolution towards global consensus. Existing methods often directly modify user views or enforce cross-group connections. These intrusive interventions undermine user autonomy, provoke psychological resistance, and reduce the efficiency of global consensus. Additionally, due to the lack of a long-term perspective, promoting local consensus often exacerbates divisions at the macro level. To address these issues, we propose the hierarchical, non-intrusive opinion guidance framework, H-NeiFi. It first establishes a two-layer dynamic model based on social roles, considering the behavioral characteristics of both experts and non-experts. Additionally, we introduce a non-intrusive neighbor filtering method that adaptively controls user communication channels. Using multi-agent reinforcement learning (MARL), we optimize information propagation paths through a long-term reward function, avoiding direct interference with user interactions. Experiments show that H-NeiFi increases consensus speed by 22.0% to 30.7% and maintains global convergence even in the absence of experts. This approach enables natural and efficient consensus guidance by protecting user interaction autonomy, offering a new paradigm for social network governance.
KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems NeurIPS2025
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.
comment: Accepted for publication in NeurIPS2025. Code is available at \url{https://github.com/FastMAS/KVCOMM}
Systems and Control (CS)
Quantum Computing for EVs to Enhance Grid Resilience and Disaster Relief: Challenges and Opportunities
The power grid is the foundation of modern society, however extreme weather events have increasingly caused widespread outages. Enhancing grid resilience is therefore critical to maintaining secure and reliable operations. In disaster relief and restoration, vehicle-to-grid (V2G) technology allows electric vehicles (EVs) to serve as mobile energy resources by discharging to support critical loads or regulating grid frequency as needed. Effective V2G operation requires coordinated charging and discharging of many EVs through optimization. Similarly, in grid restoration, EVs must be strategically routed to affected areas, forming the mobile charging station placement (CSP) problem, which presents another complex optimization challenge. This work reviews state-of-the-art optimization methods for V2G and mobile CSP applications, outlines their limitations, and explores how quantum computing (QC) could overcome current computational bottlenecks. A QC-focused perspective is presented on enhancing grid resilience and accelerating restoration as extreme weather events grow more frequent and severe.
comment: 11 pages, 0 figures, 2 tables, Submitted to IEEE Transactions on Smart Grid
Hybrid Quantum-Classical Optimization of the Resource Scheduling Problem
Resource scheduling is critical in many industries, especially in power systems. The Unit Commitment problem determines the on/off status and output levels of generators under many constraints. Traditional exact methods, such as mathematical programming methods or dynamic programming, remain the backbone of UC solution techniques, but they often rely on linear approximations or exhaustive search, leading to high computational burdens as system size grows. Metaheuristic approaches, such as genetic algorithms, particle swarm optimization, and other evolutionary methods, have been explored to mitigate this complexity; however, they typically lack optimality guarantees, exhibit sensitivity to initial conditions, and can become prohibitively time-consuming for large-scale systems. In this paper, we introduce a quantum-classical hybrid algorithm for UC and, by extension, other resource scheduling problems, that leverages Benders decomposition to decouple binary commitment decisions from continuous economic dispatch. The binary master problem is formulated as a quadratic unconstrained binary optimization model and solved on a quantum annealer. The continuous subproblem, which minimizes generation costs, with Lagrangian cuts feeding back to the master until convergence. We evaluate our hybrid framework on systems scaled from 10 to 1,000 generation units. Compared against a classical mixed-integer nonlinear programming baseline, the hybrid algorithm achieves a consistently lower computation-time growth rate and maintains an absolute optimality gap below 1.63%. These results demonstrate that integrating quantum annealing within a hybrid quantum-classical Benders decomposition loop can significantly accelerate large-scale resource scheduling without sacrificing solution quality, pointing toward a viable path for addressing the escalating complexity of modern power grids.
comment: 13 pages, 7 figures, 1 table Submitted to Next Research
Unveiling Uniform Shifted Power Law in Stochastic Human and Autonomous Driving Behavior
Accurately simulating rare but safety-critical driving behaviors is essential for the evaluation and certification of autonomous vehicles (AVs). However, current models often fail to reproduce realistic collision rates when calibrated on real-world data, largely due to inadequate representation of long-tailed behavioral distributions. Here, we uncover a simple yet unifying shifted power law that robustly characterizes the stochasticity of both human-driven vehicle (HV) and AV behaviors, especially in the long-tail regime. The model adopts a parsimonious analytical form with only one or two parameters, enabling efficient calibration even under data sparsity. Analyzing large-scale, micro-level trajectory data from global HV and AV datasets, the shifted power law achieves an average R2 of 0.97 and a nearly identical tail distribution, uniformly fits both frequent behaviors and rare safety-critical deviations, significantly outperforming existing Gaussian-based baselines. When integrated into an agent-based traffic simulator, it enables forward-rolling simulations that reproduce realistic crash patterns for both HVs and AVs, achieving rates consistent with real-world statistics and improving the fidelity of safety assessment without post hoc correction. This discovery offers a unified and data-efficient foundation for modeling high-risk behavior and improves the fidelity of simulation-based safety assessments for mixed AV/HV traffic. The shifted power law provides a promising path toward simulation-driven validation and global certification of AV technologies.
Frequency Quality Assessment of GFM and GFL Converters and Synchronous Condensers
This paper compares the impact of different conventional and emerging technologies and control strategies on frequency quality. We study, in particular, the long-term dynamic performance of grid-forming (GFM) and grid-following (GFL) inverter-based resources (IBRs) as well as conventional synchronous machines. Extensive simulations and several realistic scenarios consider both short-term and long-term aspects of frequency quality. It is shown that, while overall GFM IBRs significantly improve frequency quality, a combination of GFL IBRs providing frequency support such as wind and batteries, and synchronous condensers, might be enough to meet similar frequency quality standards. Another result of the paper is that the need for automatic generation control (AGC) becomes less clear in GFM IBR-dominated grids from a frequency quality perspective.
Adaptive Federated Learning to Optimize the MultiCast flows in Data Centers
Data centers play an increasingly critical role in societal digitalization, yet their rapidly growing energy demand poses significant challenges for sustainable operation. To enhance the energy efficiency of geographically distributed data centers, this paper formulates a multi-period optimization model that captures the interdependence of electricity, heat, and data flows. The optimization of such multicast flows inherently involves mixed-integer formulations and the access to proprietary or sensitive datasets, which correspondingly exacerbate computational complexity and raise data-privacy concerns. To address these challenges, an adaptive federated learning-to-optimization approach is proposed, accounting for the heterogeneity of datasets across distributed data centers. To safeguard privacy, cryptography techniques are leveraged in both the learning and optimization processes. A model acceptance criterion with convergence guarantee is developed to improve learning performance and filter out potentially contaminated data, while a verifiable double aggregation mechanism is further proposed to simultaneously ensure privacy and integrity of shared data during optimization. Theoretical analysis and numerical simulations demonstrate that the proposed approach preserves the privacy and integrity of shared data, achieves near-optimal performance, and exhibits high computational efficiency, making it suitable for large-scale data center optimization under privacy constraints.
Efficiency and Optimality in Electrochemical Battery Model Parameter Identification: A Comparative Study of Estimation Techniques
Parameter identification for electrochemical battery models has always been challenging due to the multitude of parameters involved, most of which cannot be directly measured. This paper evaluates the efficiency and optimality of three widely-used parameter identification methods for electrochemical battery models: Least Squares Method (LS), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). Therefore, a Single Particle Model (SPM) of a battery was developed and discretized. Battery parameter grouping was then performed to reduce the number of parameters required. Using a set of parameters previously identified from a real battery as a benchmark, we generated fitting and validation datasets to assess the methods' runtime and accuracy. The comparative analysis reveals that PSO outperforms the other methods in terms of accuracy and stability, making it highly effective for parameter identification when there is no prior knowledge of the battery's internal parameters. In contrast, LS is better suited for minor adjustments in parameters, particularly for aging batteries, whereas GA lags behind in both computational efficiency and optimality with respect to PSO.
comment: Accepted and published in the Proceedings of the 2024 10th International Conference on Optimization and Applications (ICOA), IEEE, 2024. Copyright 2024 IEEE. This is the author's accepted manuscript; the final version is available at IEEE Xplore (DOI: 10.1109/ICOA62581.2024.10754301)
Digital Twin of Aerosol Jet Printing
Aerosol Jet (AJ) printing is a versatile additive manufacturing technique capable of producing high-resolution interconnects on both 2D and 3D substrates. The AJ process is complex and dynamic with many hidden and unobservable states that influence the machine performance, including aerosol particle diameter, aerosol carrier density, vial level, and ink deposition in the tube and nozzle. Despite its promising potential, the widespread adoption of AJ printing is limited by inconsistencies in print quality that often stem from variability in these hidden states. To address these challenges, we develop a digital twin model of the AJ process that offers real-time insights into the machine's operations. The digital twin is built around a physics-based macro-model created through simulation and experimentation. The states and parameters of the digital model are continuously updated using probabilistic sequential estimation techniques to closely align with real-time measurements extracted from the AJ system's sensor and video data. The result is a digital model of the AJ process that continuously evolves over a physical machine's lifecycle. The digital twin enables accurate monitoring of unobservable physical characteristics, detects and predicts anomalous behavior, and forecasts the effect of control adjustments. This work presents a comprehensive end-to-end digital twin framework that integrates customized computer vision techniques, physics-based macro-modeling, and advanced probabilistic estimation methods to construct an evolving digital representation of the AJ equipment and process. While the methodologies are customized for aerosol jet printing, the process for constructing the digital twin can be applied for other advanced manufacturing techniques.
Towards Quantum Algorithms for the Optimization of Spanning Trees: The Power Distribution Grids Use Case
Optimizing the topology of networks is an important challenge across engineering disciplines. In energy systems, network reconfiguration can substantially reduce losses and costs and thus support the energy transition. Unfortunately, many related optimization problems are NP hard, restricting practical applications. In this article, we address the problem of minimizing losses in radial networks, a problem that routinely arises in distribution grid operation. We show that even the computation of approximate solutions is computationally hard and propose quantum optimization as a promising alternative. We derive two quantum algorithmic primitives based on the Quantum Alternating Operator Ansatz (QAOA) that differ in the sampling of network topologies: a tailored sampling of radial topologies and simple sampling with penalty terms to suppress non-radial topologies. We show how to apply these algorithmic primitives to distribution grid reconfiguration and quantify the necessary quantum resources.
FTT-GRU: A Hybrid Fast Temporal Transformer with GRU for Remaining Useful Life Prediction
Accurate prediction of the remaining useful life (RUL) of industrial machinery is essential for reducing downtime and optimizing maintenance schedules. Existing approaches, such as long short-term memory (LSTM) networks and convolutional neural networks (CNNs), often struggle to model both global temporal dependencies and fine-grained degradation trends in multivariate sensor data. We propose a hybrid model, FTT-GRU, which combines a Fast Temporal Transformer (FTT) -- a lightweight Transformer variant using linearized attention via fast Fourier transform (FFT) -- with a gated recurrent unit (GRU) layer for sequential modeling. To the best of our knowledge, this is the first application of an FTT with a GRU for RUL prediction on NASA CMAPSS, enabling simultaneous capture of global and local degradation patterns in a compact architecture. On CMAPSS FD001, FTT-GRU attains RMSE 30.76, MAE 18.97, and $R^2=0.45$, with 1.12 ms CPU latency at batch=1. Relative to the best published deep baseline (TCN--Attention), it improves RMSE by 1.16\% and MAE by 4.00\%. Training curves averaged over $k=3$ runs show smooth convergence with narrow 95\% confidence bands, and ablations (GRU-only, FTT-only) support the contribution of both components. These results demonstrate that a compact Transformer-RNN hybrid delivers accurate and efficient RUL predictions on CMAPSS, making it suitable for real-time industrial prognostics.
comment: 5 pages, The 2025 International Conference on Computational Science and Computational Intelligence
Rotatable Antenna System Empowered Low-Altitude Economy: Opportunities and Challenges
Low-altitude economy (LAE) is an emerging technological paradigm that enables continuous airspace coverage at multiple altitudes by providing highly reliable data connectivity for numerous low-altitude applications. However, existing networks cannot sufficiently support LAE development, as current base stations (BSs) are primarily designed for terrestrial users and lack the capability to provide continuous coverage at low altitudes. To overcome these challenges, rotatable antenna system (RAS) is introduced in LAE, enabling flexible beamforming by dynamically adjusting the boresight of directional antennas to extend low-altitude coverage and enhance the stability of data transmission. In this article, we first provide an overview of RAS-empowered LAE applications, including low-altitude communication, sensing, control, and computation. Then, we present two practical RAS deployment strategies for LAE scenarios, namely RAS-aided multi-BS and multi-unmanned aerial vehicle (UAV) cooperative coverages, as well as provide detailed discussions on their system architectures and performance benefits. Additionally, key design issues of RAS in LAE are discussed, including channel modeling and estimation, cellular access and interference cancellation, as well as RAS configuration and boresight optimization. Finally, we demonstrate the performance gains of RAS in LAE networks through experimental and simulation results.
comment: 8 pages, 5 figures, accepted in IEEE Wireless Communication (Early Access)
Image-based ground distance detection for crop-residue-covered soil
Conservation agriculture features a soil surface covered with crop residues, which brings benefits of improving soil health and saving water. However, one significant challenge in conservation agriculture lies in precisely controlling the seeding depth on the soil covered with crop residues. This is constrained by the lack of ground distance information, since current distance measurement techniques, like laser, ultrasonic, or mechanical displacement sensors, are incapable of differentiating whether the distance information comes from the residue or the soil. This paper presents an image-based method to get the ground distance information for the crop-residues-covered soil. This method is performed with 3D camera and RGB camera, obtaining depth image and color image at the same time. The color image is used to distinguish the different areas of residues and soil and finally generates a mask image. The mask image is applied to the depth image so that only the soil area depth information can be used to calculate the ground distance, and residue areas can be recognized and excluded from ground distance detection. Experimentation shows that this distance measurement method is feasible for real-time implementation, and the measurement error is within plus or minus 3mm. It can be applied in conservation agriculture machinery for precision depth seeding, as well as other depth-control-demanding applications like transplant or tillage.
comment: under review at Computers and Electronics in Agriculture
On Improvisation and Open-Endedness: Insights for Experiential AI AAAI 2026
Improvisation-the art of spontaneous creation that unfolds moment-to-moment without a scripted outcome-requires practitioners to continuously sense, adapt, and create anew. It is a fundamental mode of human creativity spanning music, dance, and everyday life. The open-ended nature of improvisation produces a stream of novel, unrepeatable moments-an aspect highly valued in artistic creativity. In parallel, open-endedness (OE)-a system's capacity for unbounded novelty and endless "interestingness"-is exemplified in natural or cultural evolution and has been considered "the last grand challenge" in artificial life (ALife). The rise of generative AI now raises the question in computational creativity (CC) research: What makes a "good" improvisation for AI? Can AI learn to improvise in a genuinely open-ended way? In this work-in-progress paper, we report insights from in-depth interviews with 6 experts in improvisation across dance, music, and contact improvisation. We draw systemic connections between human improvisational arts and the design of future experiential AI agents that could improvise alone or alongside humans-or even with other AI agents-embodying qualities of improvisation drawn from practice: active listening (umwelt and awareness), being in the time (mindfulness and ephemerality), embracing the unknown (source of randomness and serendipity), non-judgmental flow (acceptance and dynamical stability, balancing structure and surprise (unpredictable criticality at edge of chaos), imaginative metaphor (synaesthesia and planning), empathy, trust, boundary, and care (mutual theory of mind), and playfulness and intrinsic motivation (maintaining interestingness).
comment: Submitted to AAAI 2026 Creative AI for Live Interactive Performances Workshop (CLIP) as a work-in-progress paper
Descriptive Model-based Learning and Control for Bipedal Locomotion
Bipedal balance is challenging due to its multi-phase, hybrid nature and high-dimensional state space. Traditional balance control approaches for bipedal robots rely on low-dimensional models for locomotion planning and reactive control, constraining the full robot to behave like these simplified models. This involves tracking preset reference paths for the Center of Mass and upper body obtained through low-dimensional models, often resulting in inefficient walking patterns with bent knees. However, we observe that bipedal balance is inherently low-dimensional and can be effectively described with simple state and action descriptors in a low-dimensional state space. This allows the robot's motion to evolve freely in its high-dimensional state space, only constraining its projection in the low-dimensional state space. In this work, we propose a novel control approach that avoids prescribing a low-dimensional model to the full model. Instead, our control framework uses a descriptive model with the minimum degrees of freedom necessary to maintain balance, allowing the remaining degrees of freedom to evolve freely in the high-dimensional space. This results in an efficient human-like walking gait and improved robustness.
comment: 8 pages, 15 figures
Optimization of continuous-flow over traffic networks with fundamental diagram constraints
Optimal transport (OT) theory provides a principled framework for modeling mass movement in applications such as mobility, logistics, and economics. Classical formulations, however, generally ignore capacity limits that are intrinsic in applications, in particular in traffic flow problems. We address this limitation by incorporating fundamental diagrams into a dynamic continuous-flow OT model on graphs, thereby including empirical relations between local density and maximal flux. We adopt an Eulerian kinetic action on graphs that preserves displacement interpolation in direct analogy with the continuous theory. Momentum lives on edges and density on nodes, mirroring road-network semantics in which segments carry speed and intersections store mass. The resulting fundamental-diagram-constrained OT problem preserves mass conservation and admits a convex variational discretization, yielding optimal congestion-aware traffic flow over road networks. We establish the existence and uniqueness of the optimal flow with sources and sinks, and develop an efficient convex optimization method. Numerical studies begin with a single-lane line network and scale to a city-level road network.
comment: 13 pages, 5 figures
Symbol Detection in a MIMO Wireless Communication System Using a FeFET-coupled CMOS Ring Oscillator Array
Symbol decoding in multiple-input multiple-output (MIMO) wireless communication systems requires the deployment of fast, energy-efficient computing hardware deployable at the edge. The brute-force, exact maximum likelihood (ML) decoder, solved on conventional classical digital hardware, has exponential time complexity. Approximate classical solvers implemented on the same hardware have polynomial time complexity at the best. In this article, we design an alternative ring-oscillator-based coupled oscillator array to act as an oscillator Ising machine (OIM) and heuristically solve the ML-based MIMO detection problem. Complementary metal oxide semiconductor (CMOS) technology is used to design the ring oscillators, and ferroelectric field effect transistor (FeFET) technology is chosen as the coupling element (X) between the oscillators in this CMOS + X OIM design. For this purpose, we experimentally report high linear range of conductance variation (1 micro-S to 60 micro-S) in a FeFET device fabricated at 28 nm high-K/ metal gate (HKMG) CMOS technology node. We incorporate the conductance modulation characteristic in SPICE simulation of the ring oscillators connected in an all-to-all fashion through a crossbar array of these FeFET devices. We show that the above range of conductance variation of the FeFET device is suitable to obtain optimum OIM performance with no significant performance drop up to a MIMO size of 100 transmitting and 100 receiving antennas, thereby making FeFET a suitable device for this application. Our simulations and associated analysis using the Kuramoto model of oscillators also predict that this designed classical analog OIM, if implemented experimentally, will offer logarithmic scaling of computation time with MIMO size, thereby offering a huge improvement (in terms of computation speed) over aforementioned MIMO decoders run on conventional digital hardware.
comment: 58 pages including supplementary information, 5 main figures, 4 main tables, 2 supplementary figures, 2 supplementary tables
CT-ESKF: A General Framework of Covariance Transformation-Based Error-State Kalman Filter
Invariant extended Kalman filter (InEKF) possesses excellent trajectory-independent property and better consistency compared to conventional extended Kalman filter (EKF). However, when applied to scenarios involving both global-frame and body-frame observations, InEKF may fail to preserve its trajectory-independent property. This work introduces the concept of equivalence between error states and covariance matrices among different error-state Kalman filters, and shows that although InEKF exhibits trajectory independence, its covariance propagation is actually equivalent to EKF. A covariance transformation-based error-state Kalman filter (CT-ESKF) framework is proposed that unifies various error-state Kalman filtering algorithms. The framework gives birth to novel filtering algorithms that demonstrate improved performance in integrated navigation systems that incorporate both global and body-frame observations. Experimental results show that the EKF with covariance transformation outperforms both InEKF and original EKF in a representative INS/GNSS/Odometer integrated navigation system.
comment: 19 pages, 12 figures
Large Language Models for Control
This paper investigates using large language models (LLMs) to generate control actions directly, without requiring control-engineering expertise or hand-tuned algorithms. We implement several variants: (i) prompt-only, (ii) tool-assisted with access to historical data, and (iii) prediction-assisted using learned or simple models to score candidate actions. We compare them on tracking accuracy and actuation effort, with and without a prompt that requests lower actuator usage. Results show prompt-only LLMs already produce viable control, while tool-augmented versions adapt better to changing objectives but can be more sensitive to constraints, supporting LLM-in-the-loop control for evolving cyber-physical systems today and operator and human inputs.
Continuous Classification Aggregation
We prove that any optimal, independent, and zero unanimous fuzzy classification aggregation function of a continuum of individual classifications of $m\ge 3$ objects into $2\le p\le m$ types must be a weighted arithmetic mean. We also provide a characterization for the case when $m=p=2$.
comment: 18 pages
Imperfect Competition in Markets for Short-Circuit Current Services
An important limitation of Inverter-Based Resources (IBR) is their reduced contribution to Short-Circuit Current (SCC), as compared to that of Synchronous Generators (SGs). With increasing penetration of IBR in most power systems, the reducing SCC poses challenges to a secure system operation, as line protections may not trip when required. In order to address this issue, the SCC ancillary service could be procured via an economic mechanism, aiming at securing adequate SCC on all buses. However, the suitability of markets for SCC services is not well understood, given that these could be prone to market-power issues: since the SCC contributions from various SGs to a certain bus are determined by the electrical topology of the grid, this is a highly local service. It is necessary to understand if SGs at advantageous electrical locations could exert market power and, if so, how it could be mitigated. In order to fill this gap, this paper adopts an SCC-constrained bilevel model to investigate strategic behaviors of SGs. To address the non-convexity due to unit commitment variables, the model is restructured through a primal-dual formulation. Based on a modified IEEE 30-bus system, cases with strategic SGs placed at different buses are analyzed. These studies demonstrate that agents exerting market power could achieve up to triple revenues from SCC provision, highlighting the need to carefully design these markets.
comment: Ancillary services, short-circuit current, market power, bilevel optimization, primal-dual formulation. A paper submitted to
Distributionally Robust Control Synthesis for Stochastic Systems with Safety and Reach-Avoid Specifications
We investigate the problem of synthesizing distributionally robust control policies for stochastic systems under safety and reach-avoid specifications. Using a game-theoretical framework, we consider the setting where the probability distribution of the disturbance at each time step is selected from an ambiguity set defined by the Wasserstein distance. The goal is to synthesize a distributionally robust control policy that ensures the satisfaction probability exceeds a specified threshold under any distribution within the ambiguity set. First, for both safety and reach-avoid specifications, we establish the existence of optimal policies by leveraging the dynamic programming principles. Then we demonstrate how the associated optimization problem can be efficiently solved using the dual representation of Wasserstein distributionally robust optimization. Furthermore, for safety specifications in particular, we introduce a novel concept of distributionally robust control barrier certificates and show how these enable the efficient synthesis of controllers through sum-of-squares programming techniques. Finally, our experimental results reveal that incorporating distributional robustness during the synthesis phase significantly improves the satisfaction probability during online execution, even with limited statistical knowledge of the disturbance distribution.
Introducing Coherent-Control Koopman Modeling to Reservoir Scale Porous Media Flow Studies
Accurate and robust surrogate modeling is essential for the real-time control and optimization of large-scale subsurface systems, such as geological CO2 storage and waterflood management. This study investigates the limits of classical Dynamic Mode Decomposition with control (DMDc) and introduces CCKM, as a robust alter-native, in enforcing control in pressure and water saturation reservoir dynamics under challenging prediction scenarios. We introduced a control-coherent incremental ({\Delta}) CCKM formulation, in which the field update is driven by actuator changes rather than rather than actuator levels as in the original level formulation and compared them both against DMDc and a Hybrid B-only surrogate that re-uses DMDcs bottom-B (same-step feed-through), showing that only CCKM remains stable and accurate under regime shifts. Two representative cases are considered: (i) an out-of-distribution shut-in and restart case, and (ii) an in-distribution bottomhole pressure (BHP) drawdown. Results show that only CCKM consistently maintains stability and accuracy across both scenarios, achieving sub-bar mean absolute error and sub-percent Frobenius norm percent change error (FPCE) even under regime shifts, while DMDc exhibit large unphysical errors during control transients. The findings demonstrate that strict control-coherence is critical for reliable surrogate modeling, particularly in settings with abrupt changes in control strategy. The proposed framework is broadly applicable to real-time reservoir optimization and can be integrated seamlessly into existing optimization and monitoring workflows, enabling fast and trustworthy deci-sion support in the presence of both expected and unexpected actuation regimes.
Systems and Control (EESS)
Quantum Computing for EVs to Enhance Grid Resilience and Disaster Relief: Challenges and Opportunities
The power grid is the foundation of modern society, however extreme weather events have increasingly caused widespread outages. Enhancing grid resilience is therefore critical to maintaining secure and reliable operations. In disaster relief and restoration, vehicle-to-grid (V2G) technology allows electric vehicles (EVs) to serve as mobile energy resources by discharging to support critical loads or regulating grid frequency as needed. Effective V2G operation requires coordinated charging and discharging of many EVs through optimization. Similarly, in grid restoration, EVs must be strategically routed to affected areas, forming the mobile charging station placement (CSP) problem, which presents another complex optimization challenge. This work reviews state-of-the-art optimization methods for V2G and mobile CSP applications, outlines their limitations, and explores how quantum computing (QC) could overcome current computational bottlenecks. A QC-focused perspective is presented on enhancing grid resilience and accelerating restoration as extreme weather events grow more frequent and severe.
comment: 11 pages, 0 figures, 2 tables, Submitted to IEEE Transactions on Smart Grid
Hybrid Quantum-Classical Optimization of the Resource Scheduling Problem
Resource scheduling is critical in many industries, especially in power systems. The Unit Commitment problem determines the on/off status and output levels of generators under many constraints. Traditional exact methods, such as mathematical programming methods or dynamic programming, remain the backbone of UC solution techniques, but they often rely on linear approximations or exhaustive search, leading to high computational burdens as system size grows. Metaheuristic approaches, such as genetic algorithms, particle swarm optimization, and other evolutionary methods, have been explored to mitigate this complexity; however, they typically lack optimality guarantees, exhibit sensitivity to initial conditions, and can become prohibitively time-consuming for large-scale systems. In this paper, we introduce a quantum-classical hybrid algorithm for UC and, by extension, other resource scheduling problems, that leverages Benders decomposition to decouple binary commitment decisions from continuous economic dispatch. The binary master problem is formulated as a quadratic unconstrained binary optimization model and solved on a quantum annealer. The continuous subproblem, which minimizes generation costs, with Lagrangian cuts feeding back to the master until convergence. We evaluate our hybrid framework on systems scaled from 10 to 1,000 generation units. Compared against a classical mixed-integer nonlinear programming baseline, the hybrid algorithm achieves a consistently lower computation-time growth rate and maintains an absolute optimality gap below 1.63%. These results demonstrate that integrating quantum annealing within a hybrid quantum-classical Benders decomposition loop can significantly accelerate large-scale resource scheduling without sacrificing solution quality, pointing toward a viable path for addressing the escalating complexity of modern power grids.
comment: 13 pages, 7 figures, 1 table Submitted to Next Research
Unveiling Uniform Shifted Power Law in Stochastic Human and Autonomous Driving Behavior
Accurately simulating rare but safety-critical driving behaviors is essential for the evaluation and certification of autonomous vehicles (AVs). However, current models often fail to reproduce realistic collision rates when calibrated on real-world data, largely due to inadequate representation of long-tailed behavioral distributions. Here, we uncover a simple yet unifying shifted power law that robustly characterizes the stochasticity of both human-driven vehicle (HV) and AV behaviors, especially in the long-tail regime. The model adopts a parsimonious analytical form with only one or two parameters, enabling efficient calibration even under data sparsity. Analyzing large-scale, micro-level trajectory data from global HV and AV datasets, the shifted power law achieves an average R2 of 0.97 and a nearly identical tail distribution, uniformly fits both frequent behaviors and rare safety-critical deviations, significantly outperforming existing Gaussian-based baselines. When integrated into an agent-based traffic simulator, it enables forward-rolling simulations that reproduce realistic crash patterns for both HVs and AVs, achieving rates consistent with real-world statistics and improving the fidelity of safety assessment without post hoc correction. This discovery offers a unified and data-efficient foundation for modeling high-risk behavior and improves the fidelity of simulation-based safety assessments for mixed AV/HV traffic. The shifted power law provides a promising path toward simulation-driven validation and global certification of AV technologies.
Frequency Quality Assessment of GFM and GFL Converters and Synchronous Condensers
This paper compares the impact of different conventional and emerging technologies and control strategies on frequency quality. We study, in particular, the long-term dynamic performance of grid-forming (GFM) and grid-following (GFL) inverter-based resources (IBRs) as well as conventional synchronous machines. Extensive simulations and several realistic scenarios consider both short-term and long-term aspects of frequency quality. It is shown that, while overall GFM IBRs significantly improve frequency quality, a combination of GFL IBRs providing frequency support such as wind and batteries, and synchronous condensers, might be enough to meet similar frequency quality standards. Another result of the paper is that the need for automatic generation control (AGC) becomes less clear in GFM IBR-dominated grids from a frequency quality perspective.
Adaptive Federated Learning to Optimize the MultiCast flows in Data Centers
Data centers play an increasingly critical role in societal digitalization, yet their rapidly growing energy demand poses significant challenges for sustainable operation. To enhance the energy efficiency of geographically distributed data centers, this paper formulates a multi-period optimization model that captures the interdependence of electricity, heat, and data flows. The optimization of such multicast flows inherently involves mixed-integer formulations and the access to proprietary or sensitive datasets, which correspondingly exacerbate computational complexity and raise data-privacy concerns. To address these challenges, an adaptive federated learning-to-optimization approach is proposed, accounting for the heterogeneity of datasets across distributed data centers. To safeguard privacy, cryptography techniques are leveraged in both the learning and optimization processes. A model acceptance criterion with convergence guarantee is developed to improve learning performance and filter out potentially contaminated data, while a verifiable double aggregation mechanism is further proposed to simultaneously ensure privacy and integrity of shared data during optimization. Theoretical analysis and numerical simulations demonstrate that the proposed approach preserves the privacy and integrity of shared data, achieves near-optimal performance, and exhibits high computational efficiency, making it suitable for large-scale data center optimization under privacy constraints.
Efficiency and Optimality in Electrochemical Battery Model Parameter Identification: A Comparative Study of Estimation Techniques
Parameter identification for electrochemical battery models has always been challenging due to the multitude of parameters involved, most of which cannot be directly measured. This paper evaluates the efficiency and optimality of three widely-used parameter identification methods for electrochemical battery models: Least Squares Method (LS), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). Therefore, a Single Particle Model (SPM) of a battery was developed and discretized. Battery parameter grouping was then performed to reduce the number of parameters required. Using a set of parameters previously identified from a real battery as a benchmark, we generated fitting and validation datasets to assess the methods' runtime and accuracy. The comparative analysis reveals that PSO outperforms the other methods in terms of accuracy and stability, making it highly effective for parameter identification when there is no prior knowledge of the battery's internal parameters. In contrast, LS is better suited for minor adjustments in parameters, particularly for aging batteries, whereas GA lags behind in both computational efficiency and optimality with respect to PSO.
comment: Accepted and published in the Proceedings of the 2024 10th International Conference on Optimization and Applications (ICOA), IEEE, 2024. Copyright 2024 IEEE. This is the author's accepted manuscript; the final version is available at IEEE Xplore (DOI: 10.1109/ICOA62581.2024.10754301)
Digital Twin of Aerosol Jet Printing
Aerosol Jet (AJ) printing is a versatile additive manufacturing technique capable of producing high-resolution interconnects on both 2D and 3D substrates. The AJ process is complex and dynamic with many hidden and unobservable states that influence the machine performance, including aerosol particle diameter, aerosol carrier density, vial level, and ink deposition in the tube and nozzle. Despite its promising potential, the widespread adoption of AJ printing is limited by inconsistencies in print quality that often stem from variability in these hidden states. To address these challenges, we develop a digital twin model of the AJ process that offers real-time insights into the machine's operations. The digital twin is built around a physics-based macro-model created through simulation and experimentation. The states and parameters of the digital model are continuously updated using probabilistic sequential estimation techniques to closely align with real-time measurements extracted from the AJ system's sensor and video data. The result is a digital model of the AJ process that continuously evolves over a physical machine's lifecycle. The digital twin enables accurate monitoring of unobservable physical characteristics, detects and predicts anomalous behavior, and forecasts the effect of control adjustments. This work presents a comprehensive end-to-end digital twin framework that integrates customized computer vision techniques, physics-based macro-modeling, and advanced probabilistic estimation methods to construct an evolving digital representation of the AJ equipment and process. While the methodologies are customized for aerosol jet printing, the process for constructing the digital twin can be applied for other advanced manufacturing techniques.
Towards Quantum Algorithms for the Optimization of Spanning Trees: The Power Distribution Grids Use Case
Optimizing the topology of networks is an important challenge across engineering disciplines. In energy systems, network reconfiguration can substantially reduce losses and costs and thus support the energy transition. Unfortunately, many related optimization problems are NP hard, restricting practical applications. In this article, we address the problem of minimizing losses in radial networks, a problem that routinely arises in distribution grid operation. We show that even the computation of approximate solutions is computationally hard and propose quantum optimization as a promising alternative. We derive two quantum algorithmic primitives based on the Quantum Alternating Operator Ansatz (QAOA) that differ in the sampling of network topologies: a tailored sampling of radial topologies and simple sampling with penalty terms to suppress non-radial topologies. We show how to apply these algorithmic primitives to distribution grid reconfiguration and quantify the necessary quantum resources.
FTT-GRU: A Hybrid Fast Temporal Transformer with GRU for Remaining Useful Life Prediction
Accurate prediction of the remaining useful life (RUL) of industrial machinery is essential for reducing downtime and optimizing maintenance schedules. Existing approaches, such as long short-term memory (LSTM) networks and convolutional neural networks (CNNs), often struggle to model both global temporal dependencies and fine-grained degradation trends in multivariate sensor data. We propose a hybrid model, FTT-GRU, which combines a Fast Temporal Transformer (FTT) -- a lightweight Transformer variant using linearized attention via fast Fourier transform (FFT) -- with a gated recurrent unit (GRU) layer for sequential modeling. To the best of our knowledge, this is the first application of an FTT with a GRU for RUL prediction on NASA CMAPSS, enabling simultaneous capture of global and local degradation patterns in a compact architecture. On CMAPSS FD001, FTT-GRU attains RMSE 30.76, MAE 18.97, and $R^2=0.45$, with 1.12 ms CPU latency at batch=1. Relative to the best published deep baseline (TCN--Attention), it improves RMSE by 1.16\% and MAE by 4.00\%. Training curves averaged over $k=3$ runs show smooth convergence with narrow 95\% confidence bands, and ablations (GRU-only, FTT-only) support the contribution of both components. These results demonstrate that a compact Transformer-RNN hybrid delivers accurate and efficient RUL predictions on CMAPSS, making it suitable for real-time industrial prognostics.
comment: 5 pages, The 2025 International Conference on Computational Science and Computational Intelligence
Rotatable Antenna System Empowered Low-Altitude Economy: Opportunities and Challenges
Low-altitude economy (LAE) is an emerging technological paradigm that enables continuous airspace coverage at multiple altitudes by providing highly reliable data connectivity for numerous low-altitude applications. However, existing networks cannot sufficiently support LAE development, as current base stations (BSs) are primarily designed for terrestrial users and lack the capability to provide continuous coverage at low altitudes. To overcome these challenges, rotatable antenna system (RAS) is introduced in LAE, enabling flexible beamforming by dynamically adjusting the boresight of directional antennas to extend low-altitude coverage and enhance the stability of data transmission. In this article, we first provide an overview of RAS-empowered LAE applications, including low-altitude communication, sensing, control, and computation. Then, we present two practical RAS deployment strategies for LAE scenarios, namely RAS-aided multi-BS and multi-unmanned aerial vehicle (UAV) cooperative coverages, as well as provide detailed discussions on their system architectures and performance benefits. Additionally, key design issues of RAS in LAE are discussed, including channel modeling and estimation, cellular access and interference cancellation, as well as RAS configuration and boresight optimization. Finally, we demonstrate the performance gains of RAS in LAE networks through experimental and simulation results.
comment: 8 pages, 5 figures, accepted in IEEE Wireless Communication (Early Access)
Image-based ground distance detection for crop-residue-covered soil
Conservation agriculture features a soil surface covered with crop residues, which brings benefits of improving soil health and saving water. However, one significant challenge in conservation agriculture lies in precisely controlling the seeding depth on the soil covered with crop residues. This is constrained by the lack of ground distance information, since current distance measurement techniques, like laser, ultrasonic, or mechanical displacement sensors, are incapable of differentiating whether the distance information comes from the residue or the soil. This paper presents an image-based method to get the ground distance information for the crop-residues-covered soil. This method is performed with 3D camera and RGB camera, obtaining depth image and color image at the same time. The color image is used to distinguish the different areas of residues and soil and finally generates a mask image. The mask image is applied to the depth image so that only the soil area depth information can be used to calculate the ground distance, and residue areas can be recognized and excluded from ground distance detection. Experimentation shows that this distance measurement method is feasible for real-time implementation, and the measurement error is within plus or minus 3mm. It can be applied in conservation agriculture machinery for precision depth seeding, as well as other depth-control-demanding applications like transplant or tillage.
comment: under review at Computers and Electronics in Agriculture
On Improvisation and Open-Endedness: Insights for Experiential AI AAAI 2026
Improvisation-the art of spontaneous creation that unfolds moment-to-moment without a scripted outcome-requires practitioners to continuously sense, adapt, and create anew. It is a fundamental mode of human creativity spanning music, dance, and everyday life. The open-ended nature of improvisation produces a stream of novel, unrepeatable moments-an aspect highly valued in artistic creativity. In parallel, open-endedness (OE)-a system's capacity for unbounded novelty and endless "interestingness"-is exemplified in natural or cultural evolution and has been considered "the last grand challenge" in artificial life (ALife). The rise of generative AI now raises the question in computational creativity (CC) research: What makes a "good" improvisation for AI? Can AI learn to improvise in a genuinely open-ended way? In this work-in-progress paper, we report insights from in-depth interviews with 6 experts in improvisation across dance, music, and contact improvisation. We draw systemic connections between human improvisational arts and the design of future experiential AI agents that could improvise alone or alongside humans-or even with other AI agents-embodying qualities of improvisation drawn from practice: active listening (umwelt and awareness), being in the time (mindfulness and ephemerality), embracing the unknown (source of randomness and serendipity), non-judgmental flow (acceptance and dynamical stability, balancing structure and surprise (unpredictable criticality at edge of chaos), imaginative metaphor (synaesthesia and planning), empathy, trust, boundary, and care (mutual theory of mind), and playfulness and intrinsic motivation (maintaining interestingness).
comment: Submitted to AAAI 2026 Creative AI for Live Interactive Performances Workshop (CLIP) as a work-in-progress paper
Descriptive Model-based Learning and Control for Bipedal Locomotion
Bipedal balance is challenging due to its multi-phase, hybrid nature and high-dimensional state space. Traditional balance control approaches for bipedal robots rely on low-dimensional models for locomotion planning and reactive control, constraining the full robot to behave like these simplified models. This involves tracking preset reference paths for the Center of Mass and upper body obtained through low-dimensional models, often resulting in inefficient walking patterns with bent knees. However, we observe that bipedal balance is inherently low-dimensional and can be effectively described with simple state and action descriptors in a low-dimensional state space. This allows the robot's motion to evolve freely in its high-dimensional state space, only constraining its projection in the low-dimensional state space. In this work, we propose a novel control approach that avoids prescribing a low-dimensional model to the full model. Instead, our control framework uses a descriptive model with the minimum degrees of freedom necessary to maintain balance, allowing the remaining degrees of freedom to evolve freely in the high-dimensional space. This results in an efficient human-like walking gait and improved robustness.
comment: 8 pages, 15 figures
Optimization of continuous-flow over traffic networks with fundamental diagram constraints
Optimal transport (OT) theory provides a principled framework for modeling mass movement in applications such as mobility, logistics, and economics. Classical formulations, however, generally ignore capacity limits that are intrinsic in applications, in particular in traffic flow problems. We address this limitation by incorporating fundamental diagrams into a dynamic continuous-flow OT model on graphs, thereby including empirical relations between local density and maximal flux. We adopt an Eulerian kinetic action on graphs that preserves displacement interpolation in direct analogy with the continuous theory. Momentum lives on edges and density on nodes, mirroring road-network semantics in which segments carry speed and intersections store mass. The resulting fundamental-diagram-constrained OT problem preserves mass conservation and admits a convex variational discretization, yielding optimal congestion-aware traffic flow over road networks. We establish the existence and uniqueness of the optimal flow with sources and sinks, and develop an efficient convex optimization method. Numerical studies begin with a single-lane line network and scale to a city-level road network.
comment: 13 pages, 5 figures
Symbol Detection in a MIMO Wireless Communication System Using a FeFET-coupled CMOS Ring Oscillator Array
Symbol decoding in multiple-input multiple-output (MIMO) wireless communication systems requires the deployment of fast, energy-efficient computing hardware deployable at the edge. The brute-force, exact maximum likelihood (ML) decoder, solved on conventional classical digital hardware, has exponential time complexity. Approximate classical solvers implemented on the same hardware have polynomial time complexity at the best. In this article, we design an alternative ring-oscillator-based coupled oscillator array to act as an oscillator Ising machine (OIM) and heuristically solve the ML-based MIMO detection problem. Complementary metal oxide semiconductor (CMOS) technology is used to design the ring oscillators, and ferroelectric field effect transistor (FeFET) technology is chosen as the coupling element (X) between the oscillators in this CMOS + X OIM design. For this purpose, we experimentally report high linear range of conductance variation (1 micro-S to 60 micro-S) in a FeFET device fabricated at 28 nm high-K/ metal gate (HKMG) CMOS technology node. We incorporate the conductance modulation characteristic in SPICE simulation of the ring oscillators connected in an all-to-all fashion through a crossbar array of these FeFET devices. We show that the above range of conductance variation of the FeFET device is suitable to obtain optimum OIM performance with no significant performance drop up to a MIMO size of 100 transmitting and 100 receiving antennas, thereby making FeFET a suitable device for this application. Our simulations and associated analysis using the Kuramoto model of oscillators also predict that this designed classical analog OIM, if implemented experimentally, will offer logarithmic scaling of computation time with MIMO size, thereby offering a huge improvement (in terms of computation speed) over aforementioned MIMO decoders run on conventional digital hardware.
comment: 58 pages including supplementary information, 5 main figures, 4 main tables, 2 supplementary figures, 2 supplementary tables
CT-ESKF: A General Framework of Covariance Transformation-Based Error-State Kalman Filter
Invariant extended Kalman filter (InEKF) possesses excellent trajectory-independent property and better consistency compared to conventional extended Kalman filter (EKF). However, when applied to scenarios involving both global-frame and body-frame observations, InEKF may fail to preserve its trajectory-independent property. This work introduces the concept of equivalence between error states and covariance matrices among different error-state Kalman filters, and shows that although InEKF exhibits trajectory independence, its covariance propagation is actually equivalent to EKF. A covariance transformation-based error-state Kalman filter (CT-ESKF) framework is proposed that unifies various error-state Kalman filtering algorithms. The framework gives birth to novel filtering algorithms that demonstrate improved performance in integrated navigation systems that incorporate both global and body-frame observations. Experimental results show that the EKF with covariance transformation outperforms both InEKF and original EKF in a representative INS/GNSS/Odometer integrated navigation system.
comment: 19 pages, 12 figures
Large Language Models for Control
This paper investigates using large language models (LLMs) to generate control actions directly, without requiring control-engineering expertise or hand-tuned algorithms. We implement several variants: (i) prompt-only, (ii) tool-assisted with access to historical data, and (iii) prediction-assisted using learned or simple models to score candidate actions. We compare them on tracking accuracy and actuation effort, with and without a prompt that requests lower actuator usage. Results show prompt-only LLMs already produce viable control, while tool-augmented versions adapt better to changing objectives but can be more sensitive to constraints, supporting LLM-in-the-loop control for evolving cyber-physical systems today and operator and human inputs.
Continuous Classification Aggregation
We prove that any optimal, independent, and zero unanimous fuzzy classification aggregation function of a continuum of individual classifications of $m\ge 3$ objects into $2\le p\le m$ types must be a weighted arithmetic mean. We also provide a characterization for the case when $m=p=2$.
comment: 18 pages
Imperfect Competition in Markets for Short-Circuit Current Services
An important limitation of Inverter-Based Resources (IBR) is their reduced contribution to Short-Circuit Current (SCC), as compared to that of Synchronous Generators (SGs). With increasing penetration of IBR in most power systems, the reducing SCC poses challenges to a secure system operation, as line protections may not trip when required. In order to address this issue, the SCC ancillary service could be procured via an economic mechanism, aiming at securing adequate SCC on all buses. However, the suitability of markets for SCC services is not well understood, given that these could be prone to market-power issues: since the SCC contributions from various SGs to a certain bus are determined by the electrical topology of the grid, this is a highly local service. It is necessary to understand if SGs at advantageous electrical locations could exert market power and, if so, how it could be mitigated. In order to fill this gap, this paper adopts an SCC-constrained bilevel model to investigate strategic behaviors of SGs. To address the non-convexity due to unit commitment variables, the model is restructured through a primal-dual formulation. Based on a modified IEEE 30-bus system, cases with strategic SGs placed at different buses are analyzed. These studies demonstrate that agents exerting market power could achieve up to triple revenues from SCC provision, highlighting the need to carefully design these markets.
comment: Ancillary services, short-circuit current, market power, bilevel optimization, primal-dual formulation. A paper submitted to
Distributionally Robust Control Synthesis for Stochastic Systems with Safety and Reach-Avoid Specifications
We investigate the problem of synthesizing distributionally robust control policies for stochastic systems under safety and reach-avoid specifications. Using a game-theoretical framework, we consider the setting where the probability distribution of the disturbance at each time step is selected from an ambiguity set defined by the Wasserstein distance. The goal is to synthesize a distributionally robust control policy that ensures the satisfaction probability exceeds a specified threshold under any distribution within the ambiguity set. First, for both safety and reach-avoid specifications, we establish the existence of optimal policies by leveraging the dynamic programming principles. Then we demonstrate how the associated optimization problem can be efficiently solved using the dual representation of Wasserstein distributionally robust optimization. Furthermore, for safety specifications in particular, we introduce a novel concept of distributionally robust control barrier certificates and show how these enable the efficient synthesis of controllers through sum-of-squares programming techniques. Finally, our experimental results reveal that incorporating distributional robustness during the synthesis phase significantly improves the satisfaction probability during online execution, even with limited statistical knowledge of the disturbance distribution.
Introducing Coherent-Control Koopman Modeling to Reservoir Scale Porous Media Flow Studies
Accurate and robust surrogate modeling is essential for the real-time control and optimization of large-scale subsurface systems, such as geological CO2 storage and waterflood management. This study investigates the limits of classical Dynamic Mode Decomposition with control (DMDc) and introduces CCKM, as a robust alter-native, in enforcing control in pressure and water saturation reservoir dynamics under challenging prediction scenarios. We introduced a control-coherent incremental ({\Delta}) CCKM formulation, in which the field update is driven by actuator changes rather than rather than actuator levels as in the original level formulation and compared them both against DMDc and a Hybrid B-only surrogate that re-uses DMDcs bottom-B (same-step feed-through), showing that only CCKM remains stable and accurate under regime shifts. Two representative cases are considered: (i) an out-of-distribution shut-in and restart case, and (ii) an in-distribution bottomhole pressure (BHP) drawdown. Results show that only CCKM consistently maintains stability and accuracy across both scenarios, achieving sub-bar mean absolute error and sub-percent Frobenius norm percent change error (FPCE) even under regime shifts, while DMDc exhibit large unphysical errors during control transients. The findings demonstrate that strict control-coherence is critical for reliable surrogate modeling, particularly in settings with abrupt changes in control strategy. The proposed framework is broadly applicable to real-time reservoir optimization and can be integrated seamlessly into existing optimization and monitoring workflows, enabling fast and trustworthy deci-sion support in the presence of both expected and unexpected actuation regimes.
Robotics
Whole-Body Proprioceptive Morphing: A Modular Soft Gripper for Robust Cross-Scale Grasping
Biological systems, such as the octopus, exhibit masterful cross-scale manipulation by adaptively reconfiguring their entire form, a capability that remains elusive in robotics. Conventional soft grippers, while compliant, are mostly constrained by a fixed global morphology, and prior shape-morphing efforts have been largely confined to localized deformations, failing to replicate this biological dexterity. Inspired by this natural exemplar, we introduce the paradigm of collaborative, whole-body proprioceptive morphing, realized in a modular soft gripper architecture. Our design is a distributed network of modular self-sensing pneumatic actuators that enables the gripper to intelligently reconfigure its entire topology, achieving multiple morphing states that are controllable to form diverse polygonal shapes. By integrating rich proprioceptive feedback from embedded sensors, our system can seamlessly transition from a precise pinch to a large envelope grasp. We experimentally demonstrate that this approach expands the grasping envelope and enhances generalization across diverse object geometries (standard and irregular) and scales (up to 10$\times$), while also unlocking novel manipulation modalities such as multi-object and internal hook grasping. This work presents a low-cost, easy-to-fabricate, and scalable framework that fuses distributed actuation with integrated sensing, offering a new pathway toward achieving biological levels of dexterity in robotic manipulation.
Dual-Stream Diffusion for World-Model Augmented Vision-Language-Action Model
Recently, augmenting Vision-Language-Action models (VLAs) with world modeling has shown promise in improving robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while still enabling cross-modal knowledge sharing. In addition, we introduce independent noise perturbations for each modality and a decoupled flow-matching loss. This design enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Based on the decoupling of modalities during training, we also introduce a joint sampling method that supports test-time scaling, where action and vision tokens evolve asynchronously at different rates. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over baseline methods, while our test-time scaling approach provides an additional 2-5% boost. On real-world tasks with the Franka Research 3, DUST improves success rates by 13%, confirming its effectiveness beyond simulation. Furthermore, pre-training on action-free videos from BridgeV2 yields significant transfer gains on RoboCasa, underscoring DUST's potential for large-scale VLA pretraining.
comment: 20 pages, 10 figures
Toward Accurate Long-Horizon Robotic Manipulation: Language-to-Action with Foundation Models via Scene Graphs
This paper presents a framework that leverages pre-trained foundation models for robotic manipulation without domain-specific training. The framework integrates off-the-shelf models, combining multimodal perception from foundation models with a general-purpose reasoning model capable of robust task sequencing. Scene graphs, dynamically maintained within the framework, provide spatial awareness and enable consistent reasoning about the environment. The framework is evaluated through a series of tabletop robotic manipulation experiments, and the results highlight its potential for building robotic manipulation systems directly on top of off-the-shelf foundation models.
EBT-Policy: Energy Unlocks Emergent Physical Reasoning Capabilities
Implicit policies parameterized by generative models, such as Diffusion Policy, have become the standard for policy learning and Vision-Language-Action (VLA) models in robotics. However, these approaches often suffer from high computational cost, exposure bias, and unstable inference dynamics, which lead to divergence under distribution shifts. Energy-Based Models (EBMs) address these issues by learning energy landscapes end-to-end and modeling equilibrium dynamics, offering improved robustness and reduced exposure bias. Yet, policies parameterized by EBMs have historically struggled to scale effectively. Recent work on Energy-Based Transformers (EBTs) demonstrates the scalability of EBMs to high-dimensional spaces, but their potential for solving core challenges in physically embodied models remains underexplored. We introduce a new energy-based architecture, EBT-Policy, that solves core issues in robotic and real-world settings. Across simulated and real-world tasks, EBT-Policy consistently outperforms diffusion-based policies, while requiring less training and inference computation. Remarkably, on some tasks it converges within just two inference steps, a 50x reduction compared to Diffusion Policy's 100. Moreover, EBT-Policy exhibits emergent capabilities not seen in prior models, such as zero-shot recovery from failed action sequences using only behavior cloning and without explicit retry training. By leveraging its scalar energy for uncertainty-aware inference and dynamic compute allocation, EBT-Policy offers a promising path toward robust, generalizable robot behavior under distribution shifts.
comment: 9 pages, 6 figures, 4 tables
Preliminary Prototyping of Avoidance Behaviors Triggered by a User's Physical Approach to a Robot
Human-robot interaction frequently involves physical proximity or contact. In human-human settings, people flexibly accept, reject, or tolerate such approaches depending on the relationship and context. We explore the design of a robot's rejective internal state and corresponding avoidance behaviors, such as withdrawing or pushing away, when a person approaches. We model the accumulation and decay of discomfort as a function of interpersonal distance, and implement tolerance (endurance) and limit-exceeding avoidance driven by the Dominance axis of the PAD affect model. The behaviors and their intensities are realized on an arm robot. Results illustrate a coherent pipeline from internal state parameters to graded endurance motions and, once a limit is crossed, to avoidance actions.
comment: Workshop on Socially Aware and Cooperative Intelligent Systems in HAI 2025
Learning Soft Robotic Dynamics with Active Exploration
Soft robots offer unmatched adaptability and safety in unstructured environments, yet their compliant, high-dimensional, and nonlinear dynamics make modeling for control notoriously difficult. Existing data-driven approaches often fail to generalize, constrained by narrowly focused task demonstrations or inefficient random exploration. We introduce SoftAE, an uncertainty-aware active exploration framework that autonomously learns task-agnostic and generalizable dynamics models of soft robotic systems. SoftAE employs probabilistic ensemble models to estimate epistemic uncertainty and actively guides exploration toward underrepresented regions of the state-action space, achieving efficient coverage of diverse behaviors without task-specific supervision. We evaluate SoftAE on three simulated soft robotic platforms -- a continuum arm, an articulated fish in fluid, and a musculoskeletal leg with hybrid actuation -- and on a pneumatically actuated continuum soft arm in the real world. Compared with random exploration and task-specific model-based reinforcement learning, SoftAE produces more accurate dynamics models, enables superior zero-shot control on unseen tasks, and maintains robustness under sensing noise, actuation delays, and nonlinear material effects. These results demonstrate that uncertainty-driven active exploration can yield scalable, reusable dynamics models across diverse soft robotic morphologies, representing a step toward more autonomous, adaptable, and data-efficient control in compliant robots.
Towards a Multi-Embodied Grasping Agent
Multi-embodiment grasping focuses on developing approaches that exhibit generalist behavior across diverse gripper designs. Existing methods often learn the kinematic structure of the robot implicitly and face challenges due to the difficulty of sourcing the required large-scale data. In this work, we present a data-efficient, flow-based, equivariant grasp synthesis architecture that can handle different gripper types with variable degrees of freedom and successfully exploit the underlying kinematic model, deducing all necessary information solely from the gripper and scene geometry. Unlike previous equivariant grasping methods, we translated all modules from the ground up to JAX and provide a model with batching capabilities over scenes, grippers, and grasps, resulting in smoother learning, improved performance and faster inference time. Our dataset encompasses grippers ranging from humanoid hands to parallel yaw grippers and includes 25,000 scenes and 20 million grasps.
comment: 9 pages, 3 figures
Modified-Emergency Index (MEI): A Criticality Metric for Autonomous Driving in Lateral Conflict
Effective, reliable, and efficient evaluation of autonomous driving safety is essential to demonstrate its trustworthiness. Criticality metrics provide an objective means of assessing safety. However, as existing metrics primarily target longitudinal conflicts, accurately quantifying the risks of lateral conflicts - prevalent in urban settings - remains challenging. This paper proposes the Modified-Emergency Index (MEI), a metric designed to quantify evasive effort in lateral conflicts. Compared to the original Emergency Index (EI), MEI refines the estimation of the time available for evasive maneuvers, enabling more precise risk quantification. We validate MEI on a public lateral conflict dataset based on Argoverse-2, from which we extract over 1,500 high-quality AV conflict cases, including more than 500 critical events. MEI is then compared with the well-established ACT and the widely used PET metrics. Results show that MEI consistently outperforms them in accurately quantifying criticality and capturing risk evolution. Overall, these findings highlight MEI as a promising metric for evaluating urban conflicts and enhancing the safety assessment framework for autonomous driving. The open-source implementation is available at https://github.com/AutoChengh/MEI.
A Modular and Scalable System Architecture for Heterogeneous UAV Swarms Using ROS 2 and PX4-Autopilot
In this paper a modular and scalable architecture for heterogeneous swarm-based Counter Unmanned Aerial Systems (C-UASs) built on PX4-Autopilot and Robot Operating System 2 (ROS 2) framework is presented. The proposed architecture emphasizes seamless integration of hardware components by introducing independent ROS 2 nodes for each component of a Unmanned Aerial Vehicle (UAV). Communication between swarm participants is abstracted in software, allowing the use of various technologies without architectural changes. Key functionalities are supported, e.g. leader following and formation flight to maneuver the swarm. The system also allows computer vision algorithms to be integrated for the detection and tracking of UAVs. Additionally, a ground station control is integrated for the coordination of swarm operations. Swarm-based Unmanned Aerial System (UAS) architecture is verified within a Gazebo simulation environment but also in real-world demonstrations.
Vectorized Online POMDP Planning ICRA 2026
Planning under partial observability is an essential capability of autonomous robots. The Partially Observable Markov Decision Process (POMDP) provides a powerful framework for planning under partial observability problems, capturing the stochastic effects of actions and the limited information available through noisy observations. POMDP solving could benefit tremendously from massive parallelization of today's hardware, but parallelizing POMDP solvers has been challenging. They rely on interleaving numerical optimization over actions with the estimation of their values, which creates dependencies and synchronization bottlenecks between parallel processes that can quickly offset the benefits of parallelization. In this paper, we propose Vectorized Online POMDP Planner (VOPP), a novel parallel online solver that leverages a recent POMDP formulation that analytically solves part of the optimization component, leaving only the estimation of expectations for numerical computation. VOPP represents all data structures related to planning as a collection of tensors and implements all planning steps as fully vectorized computations over this representation. The result is a massively parallel solver with no dependencies and synchronization bottlenecks between parallel computations. Experimental results indicate that VOPP is at least 20X more efficient in computing near-optimal solutions compared to an existing state-of-the-art parallel online solver.
comment: 8 pages, 3 figures. Submitted to ICRA 2026
Hybrid Gripper Finger Enabling In-Grasp Friction Modulation Using Inflatable Silicone Pockets ICRA 2026
Grasping objects with diverse mechanical properties, such as heavy, slippery, or fragile items, remains a significant challenge in robotics. Conventional grippers often rely on applying high normal forces, which can cause damage to objects. To address this limitation, we present a hybrid gripper finger that combines a rigid structural shell with a soft, inflatable silicone pocket. The gripper finger can actively modulate its surface friction by controlling the internal air pressure of the silicone pocket. Results from fundamental experiments indicate that increasing the internal pressure results in a proportional increase in the effective coefficient of friction. This enables the gripper to stably lift heavy and slippery objects without increasing the gripping force and to handle fragile or deformable objects, such as eggs, fruits, and paper cups, with minimal damage by increasing friction rather than applying excessive force. The experimental results demonstrate that the hybrid gripper finger with adaptable friction provides a robust and safer alternative to relying solely on high normal forces, thereby enhancing the gripper flexibility in handling delicate, fragile, and diverse objects.
comment: Submitted to ICRA 2026
MobiDock: Design and Control of A Modular Self Reconfigurable Bimanual Mobile Manipulator via Robotic Docking ICRA2026
Multi-robot systems, particularly mobile manipulators, face challenges in control coordination and dynamic stability when working together. To address this issue, this study proposes MobiDock, a modular self-reconfigurable mobile manipulator system that allows two independent robots to physically connect and form a unified mobile bimanual platform. This process helps transform a complex multi-robot control problem into the management of a simpler, single system. The system utilizes an autonomous docking strategy based on computer vision with AprilTag markers and a new threaded screw-lock mechanism. Experimental results show that the docked configuration demonstrates better performance in dynamic stability and operational efficiency compared to two independently cooperating robots. Specifically, the unified system has lower Root Mean Square (RMS) Acceleration and Jerk values, higher angular precision, and completes tasks significantly faster. These findings confirm that physical reconfiguration is a powerful design principle that simplifies cooperative control, improving stability and performance for complex tasks in real-world environments.
comment: ICRA2026 submited
Confined Space Underwater Positioning Using Collaborative Robots
Positioning of underwater robots in confined and cluttered spaces remains a key challenge for field operations. Existing systems are mostly designed for large, open-water environments and struggle in industrial settings due to poor coverage, reliance on external infrastructure, and the need for feature-rich surroundings. Multipath effects from continuous sound reflections further degrade signal quality, reducing accuracy and reliability. Accurate and easily deployable positioning is essential for repeatable autonomous missions; however, this requirement has created a technological bottleneck limiting underwater robotic deployment. This paper presents the Collaborative Aquatic Positioning (CAP) system, which integrates collaborative robotics and sensor fusion to overcome these limitations. Inspired by the "mother-ship" concept, the surface vehicle acts as a mobile leader to assist in positioning a submerged robot, enabling localization even in GPS-denied and highly constrained environments. The system is validated in a large test tank through repeatable autonomous missions using CAP's position estimates for real-time trajectory control. Experimental results demonstrate a mean Euclidean distance (MED) error of 70 mm, achieved in real time without requiring fixed infrastructure, extensive calibration, or environmental features. CAP leverages advances in mobile robot sensing and leader-follower control to deliver a step change in accurate, practical, and infrastructure-free underwater localization.
comment: 31 pages including appendix, 24 figures
WildfireX-SLAM: A Large-scale Low-altitude RGB-D Dataset for Wildfire SLAM and Beyond
3D Gaussian splatting (3DGS) and its subsequent variants have led to remarkable progress in simultaneous localization and mapping (SLAM). While most recent 3DGS-based SLAM works focus on small-scale indoor scenes, developing 3DGS-based SLAM methods for large-scale forest scenes holds great potential for many real-world applications, especially for wildfire emergency response and forest management. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, and collecting such a dataset over real-world scenes is costly and technically infeasible. To this end, we have built a large-scale, comprehensive, and high-quality synthetic dataset for SLAM in wildfire and forest environments. Leveraging the Unreal Engine 5 Electric Dreams Environment Sample Project, we developed a pipeline to easily collect aerial and ground views, including ground-truth camera poses and a range of additional data modalities from unmanned aerial vehicle. Our pipeline also provides flexible controls on environmental factors such as light, weather, and types and conditions of wildfire, supporting the need for various tasks covering forest mapping, wildfire emergency response, and beyond. The resulting pilot dataset, WildfireX-SLAM, contains 5.5k low-altitude RGB-D aerial images from a large-scale forest map with a total size of 16 km2. On top of WildfireX-SLAM, a thorough benchmark is also conducted, which not only reveals the unique challenges of 3DGS-based SLAM in the forest but also highlights potential improvements for future works. The dataset and code will be publicly available. Project page: https://zhicongsun.github.io/wildfirexslam.
comment: This paper has been accepted by MMM 2026
Learning Generalizable Visuomotor Policy through Dynamics-Alignment
Behavior cloning methods for robot learning suffer from poor generalization due to limited data support beyond expert demonstrations. Recent approaches leveraging video prediction models have shown promising results by learning rich spatiotemporal representations from large-scale datasets. However, these models learn action-agnostic dynamics that cannot distinguish between different control inputs, limiting their utility for precise manipulation tasks and requiring large pretraining datasets. We propose a Dynamics-Aligned Flow Matching Policy (DAP) that integrates dynamics prediction into policy learning. Our method introduces a novel architecture where policy and dynamics models provide mutual corrective feedback during action generation, enabling self-correction and improved generalization. Empirical validation demonstrates generalization performance superior to baseline methods on real-world robotic manipulation tasks, showing particular robustness in OOD scenarios including visual distractions and lighting variations.
comment: 9 pages, 6 figures
RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Solving long sequential tasks poses a significant challenge in embodied artificial intelligence. Enabling a robotic system to perform diverse sequential tasks with a broad range of manipulation skills is an active area of research. In this work, we present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN), to address the challenge of solving multiple complex tasks over long time horizons in robotic manipulation. ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning. It consists of a central manipulation network that coordinates an ensemble of various neural networks, each specialising in distinct re-combinable sub-tasks to generate their correct in-sequence actions for solving complex long-horizon manipulation tasks. Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks and achieving adaptive behaviours beyond demonstrations, while exhibiting robustness to various sensory noises. These results demonstrate the significance and versatility of ROMAN's dynamic adaptability featuring autonomous failure recovery capabilities, and highlight its potential for various autonomous manipulation tasks that demand adaptive motor skills.
comment: To appear in Nature Machine Intelligence. Includes the main and supplementary manuscript. Total of 70 pages, with a total of 9 Figures and 17 Tables
GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
comment: This article has been accepted for publication in npj Robotics
A Study on Human-Swarm Interaction: A Framework for Assessing Situation Awareness and Task Performance
This paper introduces a framework for human swarm interaction studies that measures situation awareness in dynamic environments. A tablet-based interface was developed for a user study by implementing the concepts introduced in the framework, where operators guided a robotic swarm in a single-target search task, marking hazardous cells unknown to the swarm. Both subjective and objective situation awareness measures were used, with task performance evaluated based on how close the robots were to the target. The framework enabled a structured investigation of the role of situation awareness in human swarm interaction, leading to key findings such as improved task performance across attempts, showing the interface was learnable, centroid active robot position proved to be a useful task performance metric for assessing situation awareness, perception and projection played a key role in task performance, highlighting their importance in interface design and objective situation awareness influenced both subjective situation awareness and task performance, emphasizing the need for interfaces that emphasise objective situation awareness. These findings validate our framework as a structured approach for integrating situation awareness concepts into human swarm interaction studies, offering a systematic way to assess situation awareness and task performance. The framework can be applied to other swarming studies to evaluate interface learnability, identify meaningful task performance metrics, and refine interface designs to enhance situation awareness, ultimately improving human swarm interaction in dynamic environments.
comment: 10 pages, 8 figures, 2 tables, 2 equations
Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.
A Tactile Feedback Approach to Path Recovery after High-Speed Impacts for Collision-Resilient Drones
Aerial robots are a well-established solution for exploration, monitoring, and inspection, thanks to their superior maneuverability and agility. However, in many environments, they risk crashing and sustaining damage after collisions. Traditional methods focus on avoiding obstacles entirely, but these approaches can be limiting, particularly in cluttered spaces or on weight-and compute-constrained platforms such as drones. This paper presents a novel approach to enhance drone robustness and autonomy by developing a path recovery and adjustment method for a high-speed collision-resilient aerial robot equipped with lightweight, distributed tactile sensors. The proposed system explicitly models collisions using pre-collision velocities, rates and tactile feedback to predict post-collision dynamics, improving state estimation accuracy. Additionally, we introduce a computationally efficient vector-field-based path representation that guarantees convergence to a user-specified path, while naturally avoiding known obstacles. Post-collision, contact point locations are incorporated into the vector field as a repulsive potential, enabling the drone to avoid obstacles while naturally returning to its path. The effectiveness of this method is validated through Monte Carlo simulations and demonstrated on a physical prototype, showing successful path following, collision recovery, and adjustment at speeds up to 3.7 m/s.
SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents
With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench -- the first comprehensive benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments, covering both explicit and implicit hazards. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 9 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. Dataset and codes are available in https://github.com/shengyin1224/SafeAgentBench and https://huggingface.co/datasets/safeagentbench/SafeAgentBench.
comment: 28 pages, 19 tables, 15 figures
From Canada to Japan: How 10,000 km Affect User Perception in Robot Teleoperation
Robot teleoperation (RTo) has emerged as a viable alternative to local control, particularly when human intervention is still necessary. This research aims to study the distance effect on user perception in RTo, exploring the potential of teleoperated robots for older adult care. We propose an evaluation of non-expert users' perception of long-distance RTo, examining how their perception changes before and after interaction, as well as comparing it to that of locally operated robots. We have designed a specific protocol consisting of multiple questionnaires, along with a dedicated software architecture using the Robotics Operating System (ROS) and Unity. The results revealed no statistically significant differences between the local and remote robot conditions, suggesting that robots may be a viable alternative to traditional local control.
comment: Author preprint - Accepted for Humanoids 2025
A Practical-Driven Framework for Transitioning Drive-by-Wire to Autonomous Driving Systems: A Case Study with a Chrysler Pacifica Hybrid Vehicle
Transitioning from a Drive-by-Wire (DBW) system to a fully autonomous driving system (ADS) involves multiple stages of development and demands robust positioning and sensing capabilities. This paper presents a practice-driven framework for facilitating the DBW-to-ADS transition using a 2022 Chrysler Pacifica Hybrid Minivan equipped with cameras, LiDAR, GNSS, and onboard computing hardware configured with the Robot Operating System (ROS) and Autoware.AI. The implementation showcases offline autonomous operations utilizing pre-recorded LiDAR and camera data, point clouds, and vector maps, enabling effective localization and path planning within a structured test environment. The study addresses key challenges encountered during the transition, particularly those related to wireless-network-assisted sensing and positioning. It offers practical solutions for overcoming software incompatibility constraints, sensor synchronization issues, and limitations in real-time perception. Furthermore, the integration of sensing, data fusion, and automation is emphasized as a critical factor in supporting autonomous driving systems in map generation, simulation, and training. Overall, the transition process outlined in this work aims to provide actionable strategies for researchers pursuing DBW-to-ADS conversion. It offers direction for incorporating real-time perception, GNSS-LiDAR-camera integration, and fully ADS-equipped autonomous vehicle operations, thus contributing to the advancement of robust autonomous vehicle technologies.
comment: This updated version includes further implementation details and experimental validation. Accepted for presentation at The 22nd International Conference on Automation Technology (AUTOMATION 2025), Taipei, Taiwan, November 2025
Panoramic Out-of-Distribution Segmentation for Autonomous Driving
Panoramic imaging enables capturing 360{\deg} images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception, which is critical to applications, such as autonomous driving and augmented reality, etc. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to background clutter and pixel distortions. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), with the aim of achieving comprehensive and safe scene understanding. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities and advances the development of panoramic understanding. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.
comment: Code and datasets will be available at https://github.com/MengfeiD/PanOoS
Sim2Real Diffusion: Leveraging Foundation Vision Language Models for Adaptive Automated Driving
Simulation-based design, optimization, and validation of autonomous vehicles have proven to be crucial for their improvement over the years. Nevertheless, the ultimate measure of effectiveness is their successful transition from simulation to reality (sim2real). However, existing sim2real transfer methods struggle to address the autonomy-oriented requirements of balancing: (i) conditioned domain adaptation, (ii) robust performance with limited examples, (iii) modularity in handling multiple domain representations, and (iv) real-time performance. To alleviate these pain points, we present a unified framework for learning cross-domain adaptive representations through conditional latent diffusion for sim2real transferable automated driving. Our framework offers options to leverage: (i) alternate foundation models, (ii) a few-shot fine-tuning pipeline, and (iii) textual as well as image prompts for mapping across given source and target domains. It is also capable of generating diverse high-quality samples when diffusing across parameter spaces such as times of day, weather conditions, seasons, and operational design domains. We systematically analyze the presented framework and report our findings in terms of performance benchmarks and ablation studies. Additionally, we demonstrate its serviceability for autonomous driving using behavioral cloning case studies. Our experiments indicate that the proposed framework is capable of bridging the perceptual sim2real gap by over 40%.
comment: Accepted in IEEE Robotics and Automation Letters (RA-L)
Faster Model Predictive Control via Self-Supervised Initialization Learning
Model Predictive Control (MPC) is widely used in robot control by optimizing a sequence of control outputs over a finite-horizon. Computational approaches for MPC include deterministic methods (e.g., iLQR and COBYLA), as well as sampling-based methods (e.g., MPPI and CEM). However, complex system dynamics and non-convex or non-differentiable cost terms often lead to prohibitive optimization times that limit real-world deployment. Prior efforts to accelerate MPC have limitations on: (i) reusing previous solutions fails under sharp state changes and (ii) pure imitation learning does not target compute efficiency directly and suffers from suboptimality in the training data. To address these, We propose a warm-start framework that learns a policy to generate high-quality initial guesses for MPC solver. The policy is first trained via behavior cloning from expert MPC rollouts and then fine-tuned online with reinforcement learning to directly minimize MPC optimization time. We empirically validate that our approach improves both deterministic and sampling-based MPC methods, achieving up to 21.6% faster optimization and 34.1% more tracking accuracy for deterministic MPC in Formula 1 track path-tracking domain, and improving safety by 100%, path efficiency by 12.8%, and steering smoothness by 7.2% for sampling-based MPC in obstacle-rich navigation domain. These results demonstrate that our framework not only accelerates MPC but also improves overall control performance. Furthermore, it can be applied to a broader range of control algorithms that benefit from good initial guesses.
LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control
Coverage control is the problem of navigating a robot swarm to collaboratively monitor features or a phenomenon of interest not known a priori. The problem is challenging in decentralized settings with robots that have limited communication and sensing capabilities. We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem, wherein a convolutional neural network (CNN) processes localized perception; a graph neural network (GNN) facilitates robot communications; finally, a shallow multi-layer perceptron (MLP) computes robot actions. The GNN enables collaboration in the robot swarm by computing what information to communicate with nearby robots and how to incorporate received information. Evaluations show that the LPAC models -- trained using imitation learning -- outperform standard decentralized and centralized coverage control algorithms. The learned policy generalizes to environments different from the training dataset, transfers to larger environments with more robots, and is robust to noisy position estimates. The results indicate the suitability of LPAC architectures for decentralized navigation in robot swarms to achieve collaborative behavior.
comment: 20 Pages, 20 figures,
ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning NeurIPS 2025
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: NeurIPS 2025
Curvature-Aware Calibration of Tactile Sensors for Accurate Force Estimation on Non-Planar Surfaces
Flexible tactile sensors are increasingly used in real-world applications such as robotic grippers, prosthetic hands, wearable gloves, and assistive devices, where they need to conform to curved and irregular surfaces. However, most existing tactile sensors are calibrated only on flat substrates, and their accuracy and consistency degrade once mounted on curved geometries. This limitation restricts their reliability in practical use. To address this challenge, we develop a calibration model for a widely used resistive tactile sensor design that enables accurate force estimation on one-dimensional curved surfaces. We then train a neural network (a multilayer perceptron) to predict local curvature from baseline sensor outputs recorded under no applied load, achieving an R2 score of 0.91. The proposed approach is validated on five daily objects with varying curvatures under forces from 2 N to 8 N. Results show that the curvature-aware calibration maintains consistent force accuracy across all surfaces, while flat-surface calibration underestimates force as curvature increases. Our results demonstrate that curvature-aware modeling improves the accuracy, consistency, and reliability of flexible tactile sensors, enabling dependable performance across real-world applications.
comment: This work has been submitted to the IEEE for possible publication
ReactEMG: Zero-Shot, Low-Latency Intent Detection via sEMG
Surface electromyography (sEMG) signals show promise for effective human-computer interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly and reliably to user intent, across different subjects and without requiring time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. Unlike traditional gesture recognition models that wait until a gesture is completed before classifying it, our approach uses a segmentation strategy to assign intent labels at every timestep as the gesture unfolds. We introduce a novel masked modeling strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, considering both accuracy and stability for device control, our approach surpasses state-of-the-art performance in zero-shot transfer conditions, demonstrating its potential for wearable robotics and next-generation prosthetic systems. Our project page is available at: https://reactemg.github.io
Vision-Based Online Key Point Estimation of Deformable Robots
The precise control of soft and continuum robots requires knowledge of their shape, which has, in contrast to classical rigid robots, infinite degrees of freedom. To partially reconstruct the shape, proprioceptive techniques use built-in sensors resulting in inaccurate results and increased fabrication complexity. Exteroceptive methods so far rely on expensive tracking systems with reflective markers placed on all components, which are infeasible for deformable robots interacting with the environment due to marker occlusion and damage. Here, a regression approach is presented for 3D key point estimation using a convolutional neural network. The proposed approach takes advantage of data-driven supervised learning and is capable of online marker-less estimation during inference. Two images of a robotic system are taken simultaneously at 25 Hz from two different perspectives, and are fed to the network, which returns for each pair the parameterized key point or PCC shape representations. The proposed approach outperforms marker-less state-of-the-art methods by a maximum of 4.5% in estimation accuracy while at the same time being more robust and requiring no prior knowledge of the shape. Online evaluations on two types of soft robotic arms and a soft robotic fish demonstrate our method's accuracy and versatility on highly deformable systems.
Multiagent Systems
Social learning moderates the tradeoffs between efficiency, stability, and equity in group foraging
Social learning shapes collective search by influencing how individuals use peer information. Empirical and computational studies show that optimal information sharing that is neither too localized nor too diffuse, can enhance resource detection and coordination. Building on these insights, we develop a randomized search model that integrates social learning with area-restricted search (ARS) to investigate how communication distance affects collective foraging. The model includes three behavioral modes: exploration, exploitation, and targeted walk, which are governed by a single parameter, $\rho$, that balances exploration and exploitation at the group level. We quantify how $\rho$ influences group efficiency ($\eta$), temporal variability/burstiness ($B$), and agent variability/equity in resource distribution ($\sigma$), revealing a clear trade-off among these outcomes. When $\rho \to 0$, agents explore independently, maximizing collective exploration. As $\rho$ increases, individuals preferentially exploit patches discovered by others: $\eta$ first rises and then declines, while $B$ shows the opposite trend. Group efficiency is optimized at interior $\rho$ values that balance exploration and exploitation. At the largest $\rho$, equality among agents is highest, but efficiency declines and burstiness is maximized too. Finally, by introducing negative rewards, we examine how social learning mitigates risk.
comment: Code and data: https://github.com/LoneStar97/social-learning-search ; additional simulations: https://www.youtube.com/playlist?list=PLgRFM9nAjJRwoZvCGBAdCIE-BYNgPmSuV
Challenges in Credit Assignment for Multi-Agent Reinforcement Learning in Open Agent Systems
In the rapidly evolving field of multi-agent reinforcement learning (MARL), understanding the dynamics of open systems is crucial. Openness in MARL refers to the dynam-ic nature of agent populations, tasks, and agent types with-in a system. Specifically, there are three types of openness as reported in (Eck et al. 2023) [2]: agent openness, where agents can enter or leave the system at any time; task openness, where new tasks emerge, and existing ones evolve or disappear; and type openness, where the capabil-ities and behaviors of agents change over time. This report provides a conceptual and empirical review, focusing on the interplay between openness and the credit assignment problem (CAP). CAP involves determining the contribution of individual agents to the overall system performance, a task that becomes increasingly complex in open environ-ments. Traditional credit assignment (CA) methods often assume static agent populations, fixed and pre-defined tasks, and stationary types, making them inadequate for open systems. We first conduct a conceptual analysis, in-troducing new sub-categories of openness to detail how events like agent turnover or task cancellation break the assumptions of environmental stationarity and fixed team composition that underpin existing CAP methods. We then present an empirical study using representative temporal and structural algorithms in an open environment. The results demonstrate that openness directly causes credit misattribution, evidenced by unstable loss functions and significant performance degradation.
FinPos: A Position-Aware Trading Agent System for Real Financial Markets
The exceptional potential of large language models (LLMs) in handling text information has garnered significant attention in the field of financial trading. However, current trading agents primarily focus on single-step trading tasks and lack awareness of continuous position management. Therefore, we propose a position-aware trading task designed to simulate a more realistic market. To address this task, we develop a trading agent system, FinPos, optimized for position management. FinPos is able to interpret various types of market information from a professional perspective, providing a reliable basis for positioning decisions. To mitigate the substantial market risks arising from position fluctuations, FinPos employs dual decision agents. Furthermore, the continuous nature of position management necessitates our adoption of multi-timescale rewards, which in turn empowers FinPos to effectively balance short-term fluctuations against long-term trends. Extensive experiments demonstrate that FinPos surpasses state-of-the-art trading agents in the position-aware trading task, which closely mirrors real market conditions. More importantly, our findings reveal that LLM-centered agent systems exhibit a vast, largely unexplored potential in long-term market decision-making.
comment: LLM Applications, LLM Agents, Financial Technology
DCcluster-Opt: Benchmarking Dynamic Multi-Objective Optimization for Geo-Distributed Data Center Workloads NeurIPS 2025
The increasing energy demands and carbon footprint of large-scale AI require intelligent workload management in globally distributed data centers. Yet progress is limited by the absence of benchmarks that realistically capture the interplay of time-varying environmental factors (grid carbon intensity, electricity prices, weather), detailed data center physics (CPUs, GPUs, memory, HVAC energy), and geo-distributed network dynamics (latency and transmission costs). To bridge this gap, we present DCcluster-Opt: an open-source, high-fidelity simulation benchmark for sustainable, geo-temporal task scheduling. DCcluster-Opt combines curated real-world datasets, including AI workload traces, grid carbon intensity, electricity markets, weather across 20 global regions, cloud transmission costs, and empirical network delay parameters with physics-informed models of data center operations, enabling rigorous and reproducible research in sustainable computing. It presents a challenging scheduling problem where a top-level coordinating agent must dynamically reassign or defer tasks that arrive with resource and service-level agreement requirements across a configurable cluster of data centers to optimize multiple objectives. The environment also models advanced components such as heat recovery. A modular reward system enables an explicit study of trade-offs among carbon emissions, energy costs, service level agreements, and water use. It provides a Gymnasium API with baseline controllers, including reinforcement learning and rule-based strategies, to support reproducible ML research and a fair comparison of diverse algorithms. By offering a realistic, configurable, and accessible testbed, DCcluster-Opt accelerates the development and validation of next-generation sustainable computing solutions for geo-distributed data centers.
comment: Submitted to the NeurIPS 2025 conference
LC-Opt: Benchmarking Reinforcement Learning and Agentic AI for End-to-End Liquid Cooling Optimization in Data Centers NeurIPS 2025
Liquid cooling is critical for thermal management in high-density data centers with the rising AI workloads. However, machine learning-based controllers are essential to unlock greater energy efficiency and reliability, promoting sustainability. We present LC-Opt, a Sustainable Liquid Cooling (LC) benchmark environment, for reinforcement learning (RL) control strategies in energy-efficient liquid cooling of high-performance computing (HPC) systems. Built on the baseline of a high-fidelity digital twin of Oak Ridge National Lab's Frontier Supercomputer cooling system, LC-Opt provides detailed Modelica-based end-to-end models spanning site-level cooling towers to data center cabinets and server blade groups. RL agents optimize critical thermal controls like liquid supply temperature, flow rate, and granular valve actuation at the IT cabinet level, as well as cooling tower (CT) setpoints through a Gymnasium interface, with dynamic changes in workloads. This environment creates a multi-objective real-time optimization challenge balancing local thermal regulation and global energy efficiency, and also supports additional components like a heat recovery unit (HRU). We benchmark centralized and decentralized multi-agent RL approaches, demonstrate policy distillation into decision and regression trees for interpretable control, and explore LLM-based methods that explain control actions in natural language through an agentic mesh architecture designed to foster user trust and simplify system management. LC-Opt democratizes access to detailed, customizable liquid cooling models, enabling the ML community, operators, and vendors to develop sustainable data center liquid cooling control solutions.
comment: Submitted to the NeurIPS 2025 conference
GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
comment: This article has been accepted for publication in npj Robotics
Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods
We show that, in many settings, the worst-case performance of a distributed optimization algorithm is independent of the number of agents in the system, and can thus be computed in the fundamental case with just two agents. This result relies on a novel approach that systematically exploits symmetries in worst-case performance computation, framed as Semidefinite Programming (SDP) via the Performance Estimation Problem (PEP) framework. Harnessing agent symmetries in the PEP yields compact problems whose size is independent of the number of agents in the system. When all agents are equivalent in the problem, we establish the explicit conditions under which the resulting worst-case performance is independent of the number of agents and is therefore equivalent to the basic case with two agents. Our compact PEP formulation also allows the consideration of multiple equivalence classes of agents, and its size only depends on the number of equivalence classes. This enables practical and automated performance analysis of distributed algorithms in numerous complex and realistic settings, such as the analysis of the worst agent performance. We leverage this new tool to analyze the performance of the EXTRA algorithm in advanced settings and its scalability with the number of agents, providing a tighter analysis and deeper understanding of the algorithm performance.
comment: submitted to Open Journal of Mathematical Optimization (OJMO)
A Framework for Objective-Driven Dynamical Stochastic Fields
Fields offer a versatile approach for describing complex systems composed of interacting and dynamic components. In particular, some of these dynamical and stochastic systems may exhibit goal-directed behaviors aimed at achieving specific objectives, which we refer to as $\textit{intelligent fields}$. However, due to their inherent complexity, it remains challenging to develop a formal theoretical description of such systems and to effectively translate these descriptions into practical applications. In this paper, we propose three fundamental principles to establish a theoretical framework for understanding intelligent fields: complete configuration, locality, and purposefulness. Moreover, we explore methodologies for designing such fields from the perspective of artificial intelligence applications. This initial investigation aims to lay the groundwork for future theoretical developments and practical advances in understanding and harnessing the potential of such objective-driven dynamical stochastic fields.
CogPlanner: Unveiling the Potential of Agentic Multimodal Retrieval Augmented Generation with Planning SIGIR
Multimodal Retrieval Augmented Generation (MRAG) systems have shown promise in enhancing the generation capabilities of multimodal large language models (MLLMs). However, existing MRAG frameworks primarily adhere to rigid, single-step retrieval strategies that fail to address real-world challenges of information acquisition and query reformulation. In this work, we introduce the task of Multimodal Retrieval Augmented Generation Planning (MRAG Planning) that aims at effective information seeking and integration while minimizing computational overhead. Specifically, we propose CogPlanner, an agentic plug-and-play framework inspired by human cognitive processes, which iteratively determines query reformulation and retrieval strategies to generate accurate and contextually relevant responses. CogPlanner supports parallel and sequential modeling paradigms. Furthermore, we introduce CogBench, a new benchmark designed to rigorously evaluate the MRAG Planning task and facilitate lightweight CogPlanner integration with resource-efficient MLLMs, such as Qwen2-VL-7B-Cog. Experimental results demonstrate that CogPlanner significantly outperforms existing MRAG baselines, offering improvements in both accuracy and efficiency with minimal additional computational costs.
comment: Accepted by SIGIR-AP 2025
PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features
High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.
Adaptive Inference through Bayesian and Inverse Bayesian Inference with Symmetry-Bias in Nonstationary Environments
This study proposes the novel Bayesian and inverse Bayesian (BIB) inference framework that incorporates symmetry bias into the Bayesian updating process to perform both conventional and inverse Bayesian updates concurrently. Conventional Bayesian inference is constrained by a fundamental trade-off between adaptability to abrupt environmental changes and accuracy during stable periods. The BIB framework addresses this limitation by dynamically modulating the learning rate via inverse Bayesian updates, thereby enhancing adaptive flexibility. The BIB model was evaluated in a sequential estimation task involving observations drawn from a Gaussian distribution with a stochastically time-varying mean, where it exhibited spontaneous bursts in the learning rate during environmental transitions, transiently entering high-sensitivity states that facilitated rapid adaptation. This burst-relaxation dynamic serves as a mechanism for balancing adaptability and accuracy. Furthermore, avalanche analysis, detrended fluctuation analysis, and power spectral analysis revealed that the BIB system likely operates near a critical state-a property not observed in standard Bayesian inference. This suggests that the BIB model uniquely achieves a coexistence of computational efficiency and critical dynamics, resolving the adaptability-accuracy trade-off while maintaining scale-free behavior. These findings offer a new computational perspective on scale-free dynamics in natural systems and provide valuable insights for the design of adaptive inference systems in nonstationary environments.
Systems and Control (CS)
Technical Report for Dissipativity Learning in Reproducing Kernel Hilbert Space
This work presents a nonparametric framework for dissipativity learning in reproducing kernel Hilbert spaces, which enables data-driven certification of stability and performance properties for unknown nonlinear systems without requiring an explicit dynamic model. Dissipativity is a fundamental system property that generalizes Lyapunov stability, passivity, and finite L2 gain conditions through an energy balance inequality between a storage function and a supply rate. Unlike prior parametric formulations that approximate these functions using quadratic forms with fixed matrices, the proposed method represents them as Hilbert Schmidt operators acting on canonical kernel features, thereby capturing nonlinearities implicitly while preserving convexity and analytic tractability. The resulting operator optimization problem is formulated in the form of a one-class support vector machine and reduced, via the representer theorem, to a finite dimensional convex program expressed through kernel Gram matrices. Furthermore, statistical learning theory is applied to establish generalization guarantees, including confidence bounds on the dissipation rate and the L2 gain. Numerical results demonstrate that the proposed RKHS based dissipativity learning method effectively identifies nonlinear dissipative behavior directly from input output data, providing a powerful and interpretable framework for model free control analysis and synthesis.
comment: 26 pages, 3 figures
SpecAttn: Speculating Sparse Attention NeurIPS 2025
Large Language Models (LLMs) face significant computational bottlenecks during inference due to the quadratic complexity of self-attention mechanisms, particularly as context lengths increase. We introduce SpecAttn, a novel training-free approach that seamlessly integrates with existing speculative decoding techniques to enable efficient sparse attention in pre-trained transformers. Our key insight is to exploit the attention weights already computed by the draft model during speculative decoding to identify important tokens for the target model, eliminating redundant computation while maintaining output quality. SpecAttn employs three core techniques: KL divergence-based layer alignment between draft and target models, a GPU-optimized sorting-free algorithm for top-p token selection from draft attention patterns, and dynamic key-value cache pruning guided by these predictions. By leveraging the computational work already performed in standard speculative decoding pipelines, SpecAttn achieves over 75% reduction in key-value cache accesses with a mere 15.29% increase in perplexity on the PG-19 dataset, significantly outperforming existing sparse attention methods. Our approach demonstrates that speculative execution can be enhanced to provide approximate verification without significant performance degradation.
comment: Accepted to NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling
Risk-constrained stochastic scheduling of multi-market energy storage systems
Energy storage can promote the integration of renewables by operating with charge and discharge policies that balance an intermittent power supply. This study investigates the scheduling of energy storage assets under energy price uncertainty, with a focus on electricity markets. A two-stage stochastic risk-constrained approach is employed, whereby electricity price trajectories or specific power markets are observed, allowing for recourse in the schedule. Conditional value-at-risk is used to quantify tail risk in the optimization problems; this allows for the explicit specification of a probabilistic risk limit. The proposed approach is tested in an integrated hydrogen system (IHS) and a battery energy storage system (BESS). In the joint design and operation context for the IHS, the risk constraint results in larger installed unit capacities, increasing capital cost but enabling more energy inventory to buffer price uncertainty. As shown in both case studies, there is an operational trade-off between risk and expected reward; this is reflected in higher expected costs (or lower expected profits) with increasing levels of risk aversion. Despite the decrease in expected reward, both systems exhibit substantial benefits of increasing risk aversion. This work provides a general method to address uncertainties in energy storage scheduling, allowing operators to input their level of risk tolerance on asset decisions.
comment: 39 pages, 10 figures, 7 tables
Context-Aware Stochastic Modeling of Consumer Energy Resource Aggregators in Electricity Markets SC
Aggregators of consumer energy resources (CERs) like rooftop solar and battery energy storage (BES) face challenges due to their inherent uncertainties. A sensible approach is to use stochastic optimization to handle such uncertainties, which can lead to infeasible problems or loss in revenues if not chosen appropriately. This paper presents three efficient two-stage stochastic optimization methods: risk-neutral, robust, and chance-constrained, to address the impact of CER uncertainties for aggregators who participate in energy and regulation services markets in the Australian National Electricity Market. Furthermore, these methods utilize the flexibility of BES, considering precise state-of-charge dynamics and complementarity constraints, aiming for scalable performance while managing uncertainty. The problems are formed as two-stage stochastic mixed-integer linear programs, with relaxations adopted for large scenario sets. The solution approach employs scenario-based methodologies and affine recourse policies to obtain tractable reformulations. These methods are evaluated across use cases reflecting diverse operational and market settings, uncertainty characteristics, and decision-making preferences, demonstrating their ability to mitigate uncertainty, enhance profitability, and provide context-aware guidance for aggregators in choosing the most appropriate stochastic optimization method.
comment: Submitted to PSCC 2026
A Switching Strategy for Event-Trigger Control of Spacecraft Rendezvous
This paper presents the design of a state-feedback control law for spacecraft rendezvous, formulated using the Hill-Clohessy-Wiltshire equations. The proposed method introduces an impulsive control strategy to regulate thruster operations. Specifically, a state-dependent switching framework is developed to determine both the control input magnitudes and the precise state conditions that trigger thruster activation. The nonlinear control law is derived using principles from automatic control theory, particularly Lyapunov stability analysis and the Linear Matrix Inequality framework. The resulting closed-loop system is proven to be stable, while simultaneously minimizing the total number of actuation events. The effectiveness of the proposed method is demonstrated through a numerical case study, which includes a comparative analysis with a standard Model Predictive Control scheme, highlighting the advantages and trade-offs of the developed control structure.
comment: Submitted for EuroGNC 2026
Simplifying Preference Elicitation in Local Energy Markets: Combinatorial Clock Exchange
As distributed energy resources (DERs) proliferate, future power system will need new market platforms enabling prosumers to trade various electricity and grid-support products. However, prosumers often exhibit complex, product interdependent preferences and face limited cognitive and computational resources, hindering engagement with complex market structures and bid formats. We address this challenge by introducing a multi-product market that allows prosumers to express complex preferences through an intuitive format, by fusing combinatorial clock exchange and machine learning (ML) techniques. The iterative mechanism only requires prosumers to report their preferred package of products at posted prices, eliminating the need for forecasting product prices or adhering to complex bid formats, while the ML-aided price discovery speeds up convergence. The linear pricing rule further enhances transparency and interpretability. Finally, numerical simulations demonstrate convergence to clearing prices in approximately 15 clock iterations.
Value of Multi-pursuer Single-evader Pursuit-evasion Game with Terminal Cost of Evader's Position: Relaxation of Convexity Condition
In this study, we consider a multi-pursuer single-evader quantitative pursuit-evasion game with payoff function that includes only the terminal cost. The terminal cost is a function related only to the terminal position of the evader. This problem has been extensively studied in target defense games. Here, we prove that a candidate for the value function generated by geometric method is the viscosity solution of the corresponding Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE) Dirichlet problem. Therefore, the value function of the game at each point can be computed by a mathematical program. In our work, the convexity of the terminal cost or the target is not required. The terminal cost only needs to be locally Lipschitz continuous. The cases in which the terminal costs or the targets are not convex are covered. Therefore, our result is more universal than those of previous studies, and the complexity of the proof is improved. We also discuss the optimal strategies in this game and present an intuitive explanation of this value function.
comment: 21 pages, 6 figures
Solving Infinite-Horizon Optimal Control Problems using the Extreme Theory of Functional Connections
This paper presents a physics-informed machine learning approach for synthesizing optimal feedback control policy for infinite-horizon optimal control problems by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation(PDE). The optimal control policy is derived analytically for affine dynamical systems with separable and strictly convex control costs, expressed as a function of the gradient of the value function. The resulting HJB-PDE is then solved by approximating the value function using the Extreme Theory of Functional Connections (X-TFC) - a hybrid approach that combines the Theory of Functional Connections (TFC) with the Extreme Learning Machine (ELM) algorithm. This approach ensures analytical satisfaction of boundary conditions and significantly reduces training cost compared to traditional Physics-Informed Neural Networks (PINNs). We benchmark the method on linear and non-linear systems with known analytical solutions as well as demonstrate its effectiveness on control tasks such as spacecraft optimal de-tumbling control.
comment: Accepted to Indian Control Conference (ICC-11), 6 pages, 12 figures
Optimal BESS Sizing and Placement for Mitigating EV-Induced Voltage Violations: A Scalable Spatio-Temporal Adaptive Targeting Strategy
The escalating adoption of electric vehicles (EVs) and the growing demand for charging solutions are driving a surge in EV charger installations in distribution networks. However, this rising EV load strains the distribution grid, causing severe voltage drops, particularly at feeder extremities. This study proposes a proactive voltage management (PVM) framework that can integrate Monte Carlo-based simulations of varying EV charging loads to (i) identify potential voltage violations through a voltage violation analysis (VVA) model, and (ii) then mitigate those violations with optimally-invested battery energy storage systems (BESS) through an optimal expansion planning (OEP) model. A novel spatio-temporal adaptive targeting (STAT) strategy is proposed to alleviate the computational complexity of the OEP model by defining a targeted OEP (T-OEP) model, solved by applying the OEP model to (i) a reduced set of representative critical time periods and (ii) candidate BESS installation nodes. The efficacy and scalability of the proposed approach are validated on 33-bus, 69-bus, and a large-scale 240-bus system. Results demonstrate that the strategic sizing and placement of BESS not only effectively mitigate voltage violations but also yield substantial cost savings on electricity purchases under time-of-use tariffs. This research offers a cost-effective and scalable solution for integrating high penetrations of EVs, providing crucial insights for future distribution network planning.
Analyzing the Impact of Demand Response on Short-Circuit Current via a Unit Commitment Model
In low-carbon grids, system flexibility can be enhanced through mechanisms such as Demand Response (DR), enabling the efficient utilization of renewable energy. However, as Synchronous Generators (SGs) are being replaced with renewable energy characterized by Inverter-Based Resources (IBR), system stability is severely affected. Due to the limited overload capability of IBR, their Short-Circuit Current (SCC) contribution is much smaller than that of SGs, which may result in protection devices failing to trip during faults. Consequently, the remaining SGs play a key role in offering sufficient SCC volumes. Given that the commitment of SGs is closely related to system load, DR can thus indirectly affect their SCC provision, a relationship that has not been investigated. Therefore, this paper incorporates both DR and SCC constraints into a unit commitment model and conducts studies on an IEEE 30-bus system. The results show that although DR can reduce social costs by lowering power demand, it may also lead to inadequate SCC levels. Nevertheless, the cost increases by only 0.3% when DR is combined with SCC constraints, indicating that DR can actually help achieve a stable system in a cost-effective manner.
comment: 1-5 pages. submitted to PESGM 2026, Canada
Learning a Network Digital Twin as a Hybrid System
Network digital twin (NDT) models are virtual models that replicate the behavior of physical communication networks and are considered a key technology component to enable novel features and capabilities in future 6G networks. In this work, we focus on NDTs that model the communication quality properties of a multi-cell, dynamically changing wireless network over a workspace populated with multiple moving users. We propose an NDT modeled as a hybrid system, where each mode corresponds to a different base station and comprises sub-modes that correspond to areas of the workspace with similar network characteristics. The proposed hybrid NDT is identified and continuously improved through an annealing optimization-based learning algorithm, driven by online data measurements collected by the users. The advantages of the proposed hybrid NDT are studied with respect to memory and computational efficiency, data consumption, and the ability to timely adapt to network changes. Finally, we validate the proposed methodology on real experimental data collected from a two-cell 5G testbed.
Which Top Energy-Intensive Manufacturing Countries Can Compete in a Renewable Energy Future?
In a world increasingly powered by renewables and aiming for greenhouse gas-neutral industrial production, the future competitiveness of todays top manufacturing countries is questioned. This study applies detailed energy system modeling to quantify the Renewable Pull, an incentive for industry relocation exerted by countries with favorable renewable conditions. Results reveal that the Renewable Pull is not a cross-industrial phenomenon but strongly depends on the relationship between energy costs and transport costs. The intensity of the Renewable Pull varies, with China, India, and Japan facing a significantly stronger effect than Germany and the United States. Incorporating national capital cost assumptions proves critical, reducing Germanys Renewable Pull by a factor of six and positioning it as the second least affected top manufacturing country after Saudi Arabia. Using Germany as a case study, the analysis moreover illustrates that targeted import strategies, especially within the EU, can nearly eliminate the Renewable Pull, offering policymakers clear options for risk mitigation.
comment: 29 pages, 16 figures
Multivariable Gradient-Based Extremum Seeking Control with Saturation Constraints
This paper addresses the multivariable gradient-based extremum seeking control (ESC) subject to saturation. Two distinct saturation scenarios are investigated here: saturation acting on the input of the function to be optimized, which is addressed using an anti-windup compensation strategy, and saturation affecting the gradient estimate. In both cases, the unknown Hessian matrix is represented using a polytopic uncertainty description, and sufficient conditions in the form of linear matrix inequalities (LMIs) are derived to design a stabilizing control gain. The proposed conditions guarantee exponential stability of the origin for the average closed-loop system under saturation constraints. With the proposed design conditions, non-diagonal control gain matrices can be obtained, generalizing conventional ESC designs that typically rely on diagonal structures. Stability and convergence are rigorously proven using the Averaging Theory for dynamical systems with Lipschitz continuous right-hand sides. Numerical simulations illustrate the effectiveness of the proposed ESC algorithms, confirming the convergence even in the presence of saturation.
comment: 15 pages, 6 figures
Supply Chain Exploitation of Secure ROS 2 Systems: A Proof-of-Concept on Autonomous Platform Compromise via Keystore Exfiltration
This paper presents a proof-of-concept supply chain attack against the Secure ROS 2 (SROS 2) framework, demonstrated on a Quanser QCar2 autonomous vehicle platform. A Trojan-infected Debian package modifies core ROS 2 security commands to exfiltrate newly generated keystore credentials via DNS in base64-encoded chunks to an attacker-controlled nameserver. Possession of these credentials enables the attacker to rejoin the SROS 2 network as an authenticated participant and publish spoofed control or perception messages without triggering authentication failures. We evaluate this capability on a secure ROS 2 Humble testbed configured for a four-stop-sign navigation routine using an Intel RealSense camera for perception. Experimental results show that control-topic injections can cause forced braking, sustained high-speed acceleration, and continuous turning loops, while perception-topic spoofing can induce phantom stop signs or suppress real detections. The attack generalizes to any data distribution service (DDS)-based robotic system using SROS 2, highlighting the need for both supply chain integrity controls and runtime semantic validation to safeguard autonomous systems against insider and impersonation threats.
comment: Author-accepted version (preprint). Presented at IEEE MILCOM 2025 Workshops, WS07: 2nd Workshop on Security, Resilience, and Robustness of Systems and Software (SRRSS), Los Angeles, Oct 2025. 6 pages. Primary: cs.CR; cross-lists: cs.RO, cs.OS. Program: https://milcom2025.ieee-milcom.org/workshop/ws07-2nd-workshop-security-resilient-and-robustness-systems-and-software/program
DCcluster-Opt: Benchmarking Dynamic Multi-Objective Optimization for Geo-Distributed Data Center Workloads NeurIPS 2025
The increasing energy demands and carbon footprint of large-scale AI require intelligent workload management in globally distributed data centers. Yet progress is limited by the absence of benchmarks that realistically capture the interplay of time-varying environmental factors (grid carbon intensity, electricity prices, weather), detailed data center physics (CPUs, GPUs, memory, HVAC energy), and geo-distributed network dynamics (latency and transmission costs). To bridge this gap, we present DCcluster-Opt: an open-source, high-fidelity simulation benchmark for sustainable, geo-temporal task scheduling. DCcluster-Opt combines curated real-world datasets, including AI workload traces, grid carbon intensity, electricity markets, weather across 20 global regions, cloud transmission costs, and empirical network delay parameters with physics-informed models of data center operations, enabling rigorous and reproducible research in sustainable computing. It presents a challenging scheduling problem where a top-level coordinating agent must dynamically reassign or defer tasks that arrive with resource and service-level agreement requirements across a configurable cluster of data centers to optimize multiple objectives. The environment also models advanced components such as heat recovery. A modular reward system enables an explicit study of trade-offs among carbon emissions, energy costs, service level agreements, and water use. It provides a Gymnasium API with baseline controllers, including reinforcement learning and rule-based strategies, to support reproducible ML research and a fair comparison of diverse algorithms. By offering a realistic, configurable, and accessible testbed, DCcluster-Opt accelerates the development and validation of next-generation sustainable computing solutions for geo-distributed data centers.
comment: Submitted to the NeurIPS 2025 conference
LC-Opt: Benchmarking Reinforcement Learning and Agentic AI for End-to-End Liquid Cooling Optimization in Data Centers NeurIPS 2025
Liquid cooling is critical for thermal management in high-density data centers with the rising AI workloads. However, machine learning-based controllers are essential to unlock greater energy efficiency and reliability, promoting sustainability. We present LC-Opt, a Sustainable Liquid Cooling (LC) benchmark environment, for reinforcement learning (RL) control strategies in energy-efficient liquid cooling of high-performance computing (HPC) systems. Built on the baseline of a high-fidelity digital twin of Oak Ridge National Lab's Frontier Supercomputer cooling system, LC-Opt provides detailed Modelica-based end-to-end models spanning site-level cooling towers to data center cabinets and server blade groups. RL agents optimize critical thermal controls like liquid supply temperature, flow rate, and granular valve actuation at the IT cabinet level, as well as cooling tower (CT) setpoints through a Gymnasium interface, with dynamic changes in workloads. This environment creates a multi-objective real-time optimization challenge balancing local thermal regulation and global energy efficiency, and also supports additional components like a heat recovery unit (HRU). We benchmark centralized and decentralized multi-agent RL approaches, demonstrate policy distillation into decision and regression trees for interpretable control, and explore LLM-based methods that explain control actions in natural language through an agentic mesh architecture designed to foster user trust and simplify system management. LC-Opt democratizes access to detailed, customizable liquid cooling models, enabling the ML community, operators, and vendors to develop sustainable data center liquid cooling control solutions.
comment: Submitted to the NeurIPS 2025 conference
Competitive Equilibrium for Electricity Markets with Spatially Flexible Loads
Electric vehicle charging and geo-distributed datacenters introduce spatially flexible loads (FLs) that couple power, transportation, and datacenter networks. These couplings create a closed-loop feedback between locational marginal prices (LMPs) and decisions of the FL systems, challenging the foundations of conventional competitive equilibrium (CE) in electricity markets. This paper studies a notion of generalized competitive equilibrium (GCE) that aims to capture such price-demand interactions across the interconnected infrastructures. We establish structural conditions under which the GCE preserves key properties of the conventional CE, including existence, uniqueness, and efficiency, without requiring detailed knowledge of decision processes for individual FL systems. The framework generalizes to settings where the grid is coupled with multiple FL systems. Stylized examples and case studies on the New York ISO grid, coupled with the Sioux Falls transportation and distributed datacenter networks, demonstrate the use of our theoretical framework and illustrate the mutual influence among the grid and the studied FL systems.
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
This paper proposes a fully data-driven approach for optimal control of nonlinear control-affine systems represented by a stochastic diffusion. The focus is on the scenario where both the nonlinear dynamics and stage cost functions are unknown, while only a control penalty function and constraints are provided. To this end, we embed state probability densities into a reproducing kernel Hilbert space (RKHS) to leverage recent advances in operator regression, thereby identifying Markov transition operators associated with controlled diffusion processes. This operator learning approach integrates naturally with convex operator-theoretic Hamilton-Jacobi-Bellman recursions that scale linearly with state dimensionality, effectively solving a wide range of nonlinear optimal control problems. Numerical results demonstrate its ability to address diverse nonlinear control tasks, including the depth regulation of an autonomous underwater vehicle.
comment: author-submitted electronic preprint version: 19 pages, 5 figures, 3 tables
Observability for Nonlinear Systems: Connecting Variational Dynamics, Lyapunov Exponents, and Empirical Gramians
Observability quantification is a key problem in dynamic network sciences. While it has been thoroughly studied for linear systems, observability quantification for nonlinear networks is less intuitive and more cumbersome. One common approach to quantify observability for nonlinear systems is via the Empirical Gramian (Empr-Gram) -- a generalized form of the Gramian of linear systems. In this paper, we produce three new results. First, we establish that a variational form of discrete-time autonomous nonlinear systems yields a so-called Variational Gramian (Var-Gram) that is equivalent to the classic Empr-Gram; the former being easier to compute than the latter. Via Lyapunov exponents derived from Lyapunov's direct method, the paper's second result derives connections between existing observability measures and Var-Gram. The third result demonstrates the applicability of these new notions for sensor selection/placement in nonlinear systems. Numerical case studies demonstrate these three developments and their merits.
Partitioning and Observability in Linear Systems via Submodular Optimization
Network partitioning has gained recent attention as a pathway to enable decentralized operation and control in large-scale systems. This paper addresses the interplay between partitioning, observability, and sensor placement (SP) in dynamic networks. The problem, being computationally intractable at scale, is a largely unexplored, open problem in the literature. To that end, the paper's objective is designing scalable partitioning of linear systems while maximizing observability metrics of the subsystems. We show that the partitioning problem can be posed as a submodular maximization problem -- and the SP problem can subsequently be solved over the partitioned network. Consequently, theoretical bounds are derived to compare observability metrics of the original network with those of the resulting partitions, highlighting the impact of partitioning on system observability. Case studies on networks of varying sizes corroborate the derived theoretical bounds.
Analysis and Synthesis of Switched Optimization Algorithms
Deployment of optimization algorithms on networked systems face challenges associated with time delays and corruptions. One particular instance is the presence of time-varying delays arising from factors such as packet drops and irregular sampling. Fixed time delays can destabilize gradient descent algorithms, and this degradation is exacerbated by time-varying delays. This work concentrates on the analysis and creation of discrete-time optimization algorithms with certified exponential convergence rates that are robust against switched uncertainties between the optimizer and the gradient oracle. These optimization algorithms are implemented by a switch-scheduled output feedback controllers. Rate variation and sawtooth behavior (packet drops) in time-varying delays can be imposed through constraining switching sequences. Analysis is accomplished by bisection in the convergence rate to find Zames-Falb filter coefficents. Synthesis is performed by alternating between a filter coefficient search for a fixed controller, and a controller search for fixed multipliers.
Downlink Performance of Cell-Free Massive MIMO for LEO Satellite Mega-Constellation
Low-earth orbit (LEO) satellite communication (SatCom) has emerged as a promising technology to improve wireless connectivity in global areas. Cell-free massive multiple-input multiple-output (CF-mMIMO), an architecture proposed for next-generation networks, has yet to be fully explored for LEO satellites. In this paper, we investigate the downlink performance of a CF-mMIMO LEO SatCom network, where multiple satellite access points (SAPs) simultaneously serve the corresponding ground user terminals (UTs). Using tools from stochastic geometry, we model the locations of SAPs and UTs on surfaces of concentric spheres using Poisson point processes (PPPs) and present expressions on transmit and received signals, signal-to-interference-plus-noise ratio (SINR). Then, we derive the coverage probabilities in fading scenarios, considering significant system parameters such as the Nakagami fading parameter, the number of UTs, the number of SAPs, the orbital altitude, and the service range affected by the dome angle. Finally, the analytical model is verified by extensive Monte Carlo simulations. Simulation results indicate that stronger line-of-sight (LoS) effects and a more comprehensive service range of the UT result in a higher coverage probability, despite the presence of multi-user interference (MUI). Moreover, we found that there exist optimal numbers of UTs that maximize system capacity for different orbital altitudes and dome angles, providing valuable insights for system design.
Prescribed-Time Convergent Distributed Multiobjective Optimization With Dynamic Event-Triggered Communication
This paper addresses distributed constrained multiobjective resource allocation problems (DCMRAPs) in multi-agent networks, where agents face multiple conflicting local objectives under local and global constraints. By reformulating DCMRAPs as single-objective weighted $L_p$ problems, the proposed approach enables distributed solutions without relying on predefined weighting coefficients or centralized decision-making. Leveraging prescribed-time control and dynamic event-triggered mechanisms (ETMs), a novel distributed algorithm is proposed within a prescribed time through sampled communication. Using generalized time-based generators (TBGs), the algorithm provides more flexibility in optimizing solution accuracy and trajectory smoothness without the constraints of initial conditions. Novel dynamic ETMs, integrated with generalized TBGs, improve communication efficiency by adapting to local error metrics and network-based disagreements, while providing enhanced flexibility in balancing solution accuracy and communication frequency. The Zeno behavior is excluded. Validated by Lyapunov analysis and simulation experiments, our method demonstrates superior control performance and efficiency compared to existing methods, advancing distributed optimization across diverse applications.
comment: This work has been accepted and published in IEEE Transactions on Systems, Man, and Cybernetics: Systems
Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning
We introduce a novel topology, called Kernel Mean Embedding Topology, for stochastic kernels, in a weak and strong form. This topology, defined on the spaces of Bochner integrable functions from a signal space to a space of probability measures endowed with a Hilbert space structure, allows for a versatile formulation. This construction allows one to obtain both a strong and weak formulation. (i) For its weak formulation, we highlight the utility on relaxed policy spaces, and investigate connections with the Young narrow topology and Borkar (or \( w^* \))-topology, and establish equivalence properties. We report that, while both the \( w^* \)-topology and kernel mean embedding topology are relatively compact, they are not closed. Conversely, while the Young narrow topology is closed, it lacks relative compactness. (ii) We show that the strong form provides an appropriate formulation for placing topologies on spaces of models characterized by stochastic kernels with explicit robustness and learning theoretic implications on optimal stochastic control under discounted or average cost criteria. (iii) We thus show that this topology possesses several properties making it ideal to study optimality and approximations (under the weak formulation) and robustness (under the strong formulation) for many applications.
comment: 37 pages
Revealing Chaotic Dependence and Degree-Structure Mechanisms in Optimal Pinning Control of Complex Networks
Identifying an optimal set of driver nodes to achieve synchronization via pinning control is a fundamental challenge in complex network science, limited by computational intractability and the lack of general theory. Here, leveraging a degree-based mean-field (annealed) approximation from statistical physics, we analytically reveal how the structural degree distribution systematically governs synchronization performance, and derive an analytic characterization of the globally optimal pinning set and constructive algorithms with linear complexity (dominated by degree sorting, O(N+M). The optimal configuration exhibits a chaotic dependence--a discontinuous sensitivity--on its cardinality, whereby adding a single node can trigger abrupt changes in node composition and control effectiveness. This structural transition fundamentally challenges traditional heuristics that assume monotonic performance gains with budget. Systematic experiments on synthetic and empirical networks confirm that the proposed approach consistently outperforms degree-, betweenness-, and other centrality-based baselines. Furthermore, we quantify how key degree-distribution features--low-degree saturation, high-degree cutoff, and the power-law exponent--govern achievable synchronizability and shape the form of optimal sets. These results offer a systematic understanding of how degree heterogeneity shapes the network controllability. Our work establishes a unified link between degree heterogeneity and spectral controllability, offering both mechanistic insights and practical design rules for optimal driver-node selection in diverse complex systems.
comment: 16 pages, 6 figures; primary: eess.SY; cross-lists: cs.SY, math.OC. Submitted to IEEE TAC
Transformers as Implicit State Estimators: In-Context Learning in Dynamical Systems
Predicting the behavior of a dynamical system from noisy observations of its past outputs is a classical problem encountered across engineering and science. For linear systems with Gaussian inputs, the Kalman filter -- the best linear minimum mean-square error estimator of the state trajectory -- is optimal in the Bayesian sense. For nonlinear systems, Bayesian filtering is typically approached using suboptimal heuristics such as the Extended Kalman Filter (EKF), or numerical methods such as particle filtering (PF). In this work, we show that transformers, employed in an in-context learning (ICL) setting, can implicitly infer hidden states in order to predict the outputs of a wide family of dynamical systems, without test-time gradient updates or explicit knowledge of the system model. Specifically, when provided with a short context of past input-output pairs and, optionally, system parameters, a frozen transformer accurately predicts the current output. In linear-Gaussian regimes, its predictions closely match those of the Kalman filter; in nonlinear regimes, its performance approaches that of EKF and PF. Moreover, prediction accuracy degrades gracefully when key parameters, such as the state-transition matrix, are withheld from the context, demonstrating robustness and implicit parameter inference. These findings suggest that transformer in-context learning provides a flexible, non-parametric alternative for output prediction in dynamical systems, grounded in implicit latent-state estimation.
Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. Added new experiments, figures, and exposition
Privacy Preservation by Local Design in Cooperative Networked Control Systems
In this paper, we study the privacy preservation problem in a cooperative networked control system, which has closed-loop dynamics, working for the task of linear quadratic Guassian (LQG) control. The system consists of a user and a server: the user owns the plant to control, while the server provides computation capability, and the user employs the server to compute control inputs for it. To enable the server's computation, the user needs to provide the measurements of the plant states to the server, who then calculates estimates of the states, based on which the control inputs are computed. However, the user regards the states as privacy, and makes an interesting request: the user wants the server to have "incorrect" knowledge of the state estimates rather than the true values. Regarding that, we propose a novel design methodology for the privacy preservation, in which the privacy scheme is locally equipped at the user side not open to the server, which manages to create a deviation in the server's knowledge of the state estimates from the true values. However, this methodology also raises significant challenges: in a closed-loop dynamic system, when the server's seized knowledge is incorrect, the system's behavior becomes complex to analyze; even the stability of the system becomes questionable, as the incorrectness will accumulate through the closed loop as time evolves. In this paper, we succeed in showing that the performance loss in LQG control caused by the proposed privacy scheme is bounded by rigorous mathematical proofs, which convinces the availability of the proposed design methodology. We also propose an associated novel privacy metric and obtain the analytical result on evaluating the privacy performance. Finally, we study the performance trade-off between privacy and control, where the accordingly proposed optimization problems are solved by numerical methods efficiently.
comment: 14 pages, 7 figures
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity \(L\) and deadline constraints \(T\). The system operates in discrete time, with each arriving truck assigned a deadline of \(T\) slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy \(\pi^\star\) for \(L = 3\), extending insights to arbitrary \(L\). We prove certain monotonicity properties of the optimal policy in the state space \(\mathcal{S}\) and identify classes of unreachable states. Moreover, since the size of \(\mathcal{S}\) grows exponentially with \(L\) and \(T\), we propose heuristics--including conditional and deep-learning based approaches--that exploit these structural insights while maintaining low computational complexity.
Systems and Control (EESS)
Technical Report for Dissipativity Learning in Reproducing Kernel Hilbert Space
This work presents a nonparametric framework for dissipativity learning in reproducing kernel Hilbert spaces, which enables data-driven certification of stability and performance properties for unknown nonlinear systems without requiring an explicit dynamic model. Dissipativity is a fundamental system property that generalizes Lyapunov stability, passivity, and finite L2 gain conditions through an energy balance inequality between a storage function and a supply rate. Unlike prior parametric formulations that approximate these functions using quadratic forms with fixed matrices, the proposed method represents them as Hilbert Schmidt operators acting on canonical kernel features, thereby capturing nonlinearities implicitly while preserving convexity and analytic tractability. The resulting operator optimization problem is formulated in the form of a one-class support vector machine and reduced, via the representer theorem, to a finite dimensional convex program expressed through kernel Gram matrices. Furthermore, statistical learning theory is applied to establish generalization guarantees, including confidence bounds on the dissipation rate and the L2 gain. Numerical results demonstrate that the proposed RKHS based dissipativity learning method effectively identifies nonlinear dissipative behavior directly from input output data, providing a powerful and interpretable framework for model free control analysis and synthesis.
comment: 26 pages, 3 figures
SpecAttn: Speculating Sparse Attention NeurIPS 2025
Large Language Models (LLMs) face significant computational bottlenecks during inference due to the quadratic complexity of self-attention mechanisms, particularly as context lengths increase. We introduce SpecAttn, a novel training-free approach that seamlessly integrates with existing speculative decoding techniques to enable efficient sparse attention in pre-trained transformers. Our key insight is to exploit the attention weights already computed by the draft model during speculative decoding to identify important tokens for the target model, eliminating redundant computation while maintaining output quality. SpecAttn employs three core techniques: KL divergence-based layer alignment between draft and target models, a GPU-optimized sorting-free algorithm for top-p token selection from draft attention patterns, and dynamic key-value cache pruning guided by these predictions. By leveraging the computational work already performed in standard speculative decoding pipelines, SpecAttn achieves over 75% reduction in key-value cache accesses with a mere 15.29% increase in perplexity on the PG-19 dataset, significantly outperforming existing sparse attention methods. Our approach demonstrates that speculative execution can be enhanced to provide approximate verification without significant performance degradation.
comment: Accepted to NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling
Risk-constrained stochastic scheduling of multi-market energy storage systems
Energy storage can promote the integration of renewables by operating with charge and discharge policies that balance an intermittent power supply. This study investigates the scheduling of energy storage assets under energy price uncertainty, with a focus on electricity markets. A two-stage stochastic risk-constrained approach is employed, whereby electricity price trajectories or specific power markets are observed, allowing for recourse in the schedule. Conditional value-at-risk is used to quantify tail risk in the optimization problems; this allows for the explicit specification of a probabilistic risk limit. The proposed approach is tested in an integrated hydrogen system (IHS) and a battery energy storage system (BESS). In the joint design and operation context for the IHS, the risk constraint results in larger installed unit capacities, increasing capital cost but enabling more energy inventory to buffer price uncertainty. As shown in both case studies, there is an operational trade-off between risk and expected reward; this is reflected in higher expected costs (or lower expected profits) with increasing levels of risk aversion. Despite the decrease in expected reward, both systems exhibit substantial benefits of increasing risk aversion. This work provides a general method to address uncertainties in energy storage scheduling, allowing operators to input their level of risk tolerance on asset decisions.
comment: 39 pages, 10 figures, 7 tables
Context-Aware Stochastic Modeling of Consumer Energy Resource Aggregators in Electricity Markets SC
Aggregators of consumer energy resources (CERs) like rooftop solar and battery energy storage (BES) face challenges due to their inherent uncertainties. A sensible approach is to use stochastic optimization to handle such uncertainties, which can lead to infeasible problems or loss in revenues if not chosen appropriately. This paper presents three efficient two-stage stochastic optimization methods: risk-neutral, robust, and chance-constrained, to address the impact of CER uncertainties for aggregators who participate in energy and regulation services markets in the Australian National Electricity Market. Furthermore, these methods utilize the flexibility of BES, considering precise state-of-charge dynamics and complementarity constraints, aiming for scalable performance while managing uncertainty. The problems are formed as two-stage stochastic mixed-integer linear programs, with relaxations adopted for large scenario sets. The solution approach employs scenario-based methodologies and affine recourse policies to obtain tractable reformulations. These methods are evaluated across use cases reflecting diverse operational and market settings, uncertainty characteristics, and decision-making preferences, demonstrating their ability to mitigate uncertainty, enhance profitability, and provide context-aware guidance for aggregators in choosing the most appropriate stochastic optimization method.
comment: Submitted to PSCC 2026
A Switching Strategy for Event-Trigger Control of Spacecraft Rendezvous
This paper presents the design of a state-feedback control law for spacecraft rendezvous, formulated using the Hill-Clohessy-Wiltshire equations. The proposed method introduces an impulsive control strategy to regulate thruster operations. Specifically, a state-dependent switching framework is developed to determine both the control input magnitudes and the precise state conditions that trigger thruster activation. The nonlinear control law is derived using principles from automatic control theory, particularly Lyapunov stability analysis and the Linear Matrix Inequality framework. The resulting closed-loop system is proven to be stable, while simultaneously minimizing the total number of actuation events. The effectiveness of the proposed method is demonstrated through a numerical case study, which includes a comparative analysis with a standard Model Predictive Control scheme, highlighting the advantages and trade-offs of the developed control structure.
comment: Submitted for EuroGNC 2026
Simplifying Preference Elicitation in Local Energy Markets: Combinatorial Clock Exchange
As distributed energy resources (DERs) proliferate, future power system will need new market platforms enabling prosumers to trade various electricity and grid-support products. However, prosumers often exhibit complex, product interdependent preferences and face limited cognitive and computational resources, hindering engagement with complex market structures and bid formats. We address this challenge by introducing a multi-product market that allows prosumers to express complex preferences through an intuitive format, by fusing combinatorial clock exchange and machine learning (ML) techniques. The iterative mechanism only requires prosumers to report their preferred package of products at posted prices, eliminating the need for forecasting product prices or adhering to complex bid formats, while the ML-aided price discovery speeds up convergence. The linear pricing rule further enhances transparency and interpretability. Finally, numerical simulations demonstrate convergence to clearing prices in approximately 15 clock iterations.
Value of Multi-pursuer Single-evader Pursuit-evasion Game with Terminal Cost of Evader's Position: Relaxation of Convexity Condition
In this study, we consider a multi-pursuer single-evader quantitative pursuit-evasion game with payoff function that includes only the terminal cost. The terminal cost is a function related only to the terminal position of the evader. This problem has been extensively studied in target defense games. Here, we prove that a candidate for the value function generated by geometric method is the viscosity solution of the corresponding Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE) Dirichlet problem. Therefore, the value function of the game at each point can be computed by a mathematical program. In our work, the convexity of the terminal cost or the target is not required. The terminal cost only needs to be locally Lipschitz continuous. The cases in which the terminal costs or the targets are not convex are covered. Therefore, our result is more universal than those of previous studies, and the complexity of the proof is improved. We also discuss the optimal strategies in this game and present an intuitive explanation of this value function.
comment: 21 pages, 6 figures
Solving Infinite-Horizon Optimal Control Problems using the Extreme Theory of Functional Connections
This paper presents a physics-informed machine learning approach for synthesizing optimal feedback control policy for infinite-horizon optimal control problems by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation(PDE). The optimal control policy is derived analytically for affine dynamical systems with separable and strictly convex control costs, expressed as a function of the gradient of the value function. The resulting HJB-PDE is then solved by approximating the value function using the Extreme Theory of Functional Connections (X-TFC) - a hybrid approach that combines the Theory of Functional Connections (TFC) with the Extreme Learning Machine (ELM) algorithm. This approach ensures analytical satisfaction of boundary conditions and significantly reduces training cost compared to traditional Physics-Informed Neural Networks (PINNs). We benchmark the method on linear and non-linear systems with known analytical solutions as well as demonstrate its effectiveness on control tasks such as spacecraft optimal de-tumbling control.
comment: Accepted to Indian Control Conference (ICC-11), 6 pages, 12 figures
Optimal BESS Sizing and Placement for Mitigating EV-Induced Voltage Violations: A Scalable Spatio-Temporal Adaptive Targeting Strategy
The escalating adoption of electric vehicles (EVs) and the growing demand for charging solutions are driving a surge in EV charger installations in distribution networks. However, this rising EV load strains the distribution grid, causing severe voltage drops, particularly at feeder extremities. This study proposes a proactive voltage management (PVM) framework that can integrate Monte Carlo-based simulations of varying EV charging loads to (i) identify potential voltage violations through a voltage violation analysis (VVA) model, and (ii) then mitigate those violations with optimally-invested battery energy storage systems (BESS) through an optimal expansion planning (OEP) model. A novel spatio-temporal adaptive targeting (STAT) strategy is proposed to alleviate the computational complexity of the OEP model by defining a targeted OEP (T-OEP) model, solved by applying the OEP model to (i) a reduced set of representative critical time periods and (ii) candidate BESS installation nodes. The efficacy and scalability of the proposed approach are validated on 33-bus, 69-bus, and a large-scale 240-bus system. Results demonstrate that the strategic sizing and placement of BESS not only effectively mitigate voltage violations but also yield substantial cost savings on electricity purchases under time-of-use tariffs. This research offers a cost-effective and scalable solution for integrating high penetrations of EVs, providing crucial insights for future distribution network planning.
Analyzing the Impact of Demand Response on Short-Circuit Current via a Unit Commitment Model
In low-carbon grids, system flexibility can be enhanced through mechanisms such as Demand Response (DR), enabling the efficient utilization of renewable energy. However, as Synchronous Generators (SGs) are being replaced with renewable energy characterized by Inverter-Based Resources (IBR), system stability is severely affected. Due to the limited overload capability of IBR, their Short-Circuit Current (SCC) contribution is much smaller than that of SGs, which may result in protection devices failing to trip during faults. Consequently, the remaining SGs play a key role in offering sufficient SCC volumes. Given that the commitment of SGs is closely related to system load, DR can thus indirectly affect their SCC provision, a relationship that has not been investigated. Therefore, this paper incorporates both DR and SCC constraints into a unit commitment model and conducts studies on an IEEE 30-bus system. The results show that although DR can reduce social costs by lowering power demand, it may also lead to inadequate SCC levels. Nevertheless, the cost increases by only 0.3% when DR is combined with SCC constraints, indicating that DR can actually help achieve a stable system in a cost-effective manner.
comment: 1-5 pages. submitted to PESGM 2026, Canada
Learning a Network Digital Twin as a Hybrid System
Network digital twin (NDT) models are virtual models that replicate the behavior of physical communication networks and are considered a key technology component to enable novel features and capabilities in future 6G networks. In this work, we focus on NDTs that model the communication quality properties of a multi-cell, dynamically changing wireless network over a workspace populated with multiple moving users. We propose an NDT modeled as a hybrid system, where each mode corresponds to a different base station and comprises sub-modes that correspond to areas of the workspace with similar network characteristics. The proposed hybrid NDT is identified and continuously improved through an annealing optimization-based learning algorithm, driven by online data measurements collected by the users. The advantages of the proposed hybrid NDT are studied with respect to memory and computational efficiency, data consumption, and the ability to timely adapt to network changes. Finally, we validate the proposed methodology on real experimental data collected from a two-cell 5G testbed.
Which Top Energy-Intensive Manufacturing Countries Can Compete in a Renewable Energy Future?
In a world increasingly powered by renewables and aiming for greenhouse gas-neutral industrial production, the future competitiveness of todays top manufacturing countries is questioned. This study applies detailed energy system modeling to quantify the Renewable Pull, an incentive for industry relocation exerted by countries with favorable renewable conditions. Results reveal that the Renewable Pull is not a cross-industrial phenomenon but strongly depends on the relationship between energy costs and transport costs. The intensity of the Renewable Pull varies, with China, India, and Japan facing a significantly stronger effect than Germany and the United States. Incorporating national capital cost assumptions proves critical, reducing Germanys Renewable Pull by a factor of six and positioning it as the second least affected top manufacturing country after Saudi Arabia. Using Germany as a case study, the analysis moreover illustrates that targeted import strategies, especially within the EU, can nearly eliminate the Renewable Pull, offering policymakers clear options for risk mitigation.
comment: 29 pages, 16 figures
Multivariable Gradient-Based Extremum Seeking Control with Saturation Constraints
This paper addresses the multivariable gradient-based extremum seeking control (ESC) subject to saturation. Two distinct saturation scenarios are investigated here: saturation acting on the input of the function to be optimized, which is addressed using an anti-windup compensation strategy, and saturation affecting the gradient estimate. In both cases, the unknown Hessian matrix is represented using a polytopic uncertainty description, and sufficient conditions in the form of linear matrix inequalities (LMIs) are derived to design a stabilizing control gain. The proposed conditions guarantee exponential stability of the origin for the average closed-loop system under saturation constraints. With the proposed design conditions, non-diagonal control gain matrices can be obtained, generalizing conventional ESC designs that typically rely on diagonal structures. Stability and convergence are rigorously proven using the Averaging Theory for dynamical systems with Lipschitz continuous right-hand sides. Numerical simulations illustrate the effectiveness of the proposed ESC algorithms, confirming the convergence even in the presence of saturation.
comment: 15 pages, 6 figures
Supply Chain Exploitation of Secure ROS 2 Systems: A Proof-of-Concept on Autonomous Platform Compromise via Keystore Exfiltration
This paper presents a proof-of-concept supply chain attack against the Secure ROS 2 (SROS 2) framework, demonstrated on a Quanser QCar2 autonomous vehicle platform. A Trojan-infected Debian package modifies core ROS 2 security commands to exfiltrate newly generated keystore credentials via DNS in base64-encoded chunks to an attacker-controlled nameserver. Possession of these credentials enables the attacker to rejoin the SROS 2 network as an authenticated participant and publish spoofed control or perception messages without triggering authentication failures. We evaluate this capability on a secure ROS 2 Humble testbed configured for a four-stop-sign navigation routine using an Intel RealSense camera for perception. Experimental results show that control-topic injections can cause forced braking, sustained high-speed acceleration, and continuous turning loops, while perception-topic spoofing can induce phantom stop signs or suppress real detections. The attack generalizes to any data distribution service (DDS)-based robotic system using SROS 2, highlighting the need for both supply chain integrity controls and runtime semantic validation to safeguard autonomous systems against insider and impersonation threats.
comment: Author-accepted version (preprint). Presented at IEEE MILCOM 2025 Workshops, WS07: 2nd Workshop on Security, Resilience, and Robustness of Systems and Software (SRRSS), Los Angeles, Oct 2025. 6 pages. Primary: cs.CR; cross-lists: cs.RO, cs.OS. Program: https://milcom2025.ieee-milcom.org/workshop/ws07-2nd-workshop-security-resilient-and-robustness-systems-and-software/program
DCcluster-Opt: Benchmarking Dynamic Multi-Objective Optimization for Geo-Distributed Data Center Workloads NeurIPS 2025
The increasing energy demands and carbon footprint of large-scale AI require intelligent workload management in globally distributed data centers. Yet progress is limited by the absence of benchmarks that realistically capture the interplay of time-varying environmental factors (grid carbon intensity, electricity prices, weather), detailed data center physics (CPUs, GPUs, memory, HVAC energy), and geo-distributed network dynamics (latency and transmission costs). To bridge this gap, we present DCcluster-Opt: an open-source, high-fidelity simulation benchmark for sustainable, geo-temporal task scheduling. DCcluster-Opt combines curated real-world datasets, including AI workload traces, grid carbon intensity, electricity markets, weather across 20 global regions, cloud transmission costs, and empirical network delay parameters with physics-informed models of data center operations, enabling rigorous and reproducible research in sustainable computing. It presents a challenging scheduling problem where a top-level coordinating agent must dynamically reassign or defer tasks that arrive with resource and service-level agreement requirements across a configurable cluster of data centers to optimize multiple objectives. The environment also models advanced components such as heat recovery. A modular reward system enables an explicit study of trade-offs among carbon emissions, energy costs, service level agreements, and water use. It provides a Gymnasium API with baseline controllers, including reinforcement learning and rule-based strategies, to support reproducible ML research and a fair comparison of diverse algorithms. By offering a realistic, configurable, and accessible testbed, DCcluster-Opt accelerates the development and validation of next-generation sustainable computing solutions for geo-distributed data centers.
comment: Submitted to the NeurIPS 2025 conference
LC-Opt: Benchmarking Reinforcement Learning and Agentic AI for End-to-End Liquid Cooling Optimization in Data Centers NeurIPS 2025
Liquid cooling is critical for thermal management in high-density data centers with the rising AI workloads. However, machine learning-based controllers are essential to unlock greater energy efficiency and reliability, promoting sustainability. We present LC-Opt, a Sustainable Liquid Cooling (LC) benchmark environment, for reinforcement learning (RL) control strategies in energy-efficient liquid cooling of high-performance computing (HPC) systems. Built on the baseline of a high-fidelity digital twin of Oak Ridge National Lab's Frontier Supercomputer cooling system, LC-Opt provides detailed Modelica-based end-to-end models spanning site-level cooling towers to data center cabinets and server blade groups. RL agents optimize critical thermal controls like liquid supply temperature, flow rate, and granular valve actuation at the IT cabinet level, as well as cooling tower (CT) setpoints through a Gymnasium interface, with dynamic changes in workloads. This environment creates a multi-objective real-time optimization challenge balancing local thermal regulation and global energy efficiency, and also supports additional components like a heat recovery unit (HRU). We benchmark centralized and decentralized multi-agent RL approaches, demonstrate policy distillation into decision and regression trees for interpretable control, and explore LLM-based methods that explain control actions in natural language through an agentic mesh architecture designed to foster user trust and simplify system management. LC-Opt democratizes access to detailed, customizable liquid cooling models, enabling the ML community, operators, and vendors to develop sustainable data center liquid cooling control solutions.
comment: Submitted to the NeurIPS 2025 conference
Competitive Equilibrium for Electricity Markets with Spatially Flexible Loads
Electric vehicle charging and geo-distributed datacenters introduce spatially flexible loads (FLs) that couple power, transportation, and datacenter networks. These couplings create a closed-loop feedback between locational marginal prices (LMPs) and decisions of the FL systems, challenging the foundations of conventional competitive equilibrium (CE) in electricity markets. This paper studies a notion of generalized competitive equilibrium (GCE) that aims to capture such price-demand interactions across the interconnected infrastructures. We establish structural conditions under which the GCE preserves key properties of the conventional CE, including existence, uniqueness, and efficiency, without requiring detailed knowledge of decision processes for individual FL systems. The framework generalizes to settings where the grid is coupled with multiple FL systems. Stylized examples and case studies on the New York ISO grid, coupled with the Sioux Falls transportation and distributed datacenter networks, demonstrate the use of our theoretical framework and illustrate the mutual influence among the grid and the studied FL systems.
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
This paper proposes a fully data-driven approach for optimal control of nonlinear control-affine systems represented by a stochastic diffusion. The focus is on the scenario where both the nonlinear dynamics and stage cost functions are unknown, while only a control penalty function and constraints are provided. To this end, we embed state probability densities into a reproducing kernel Hilbert space (RKHS) to leverage recent advances in operator regression, thereby identifying Markov transition operators associated with controlled diffusion processes. This operator learning approach integrates naturally with convex operator-theoretic Hamilton-Jacobi-Bellman recursions that scale linearly with state dimensionality, effectively solving a wide range of nonlinear optimal control problems. Numerical results demonstrate its ability to address diverse nonlinear control tasks, including the depth regulation of an autonomous underwater vehicle.
comment: author-submitted electronic preprint version: 19 pages, 5 figures, 3 tables
Observability for Nonlinear Systems: Connecting Variational Dynamics, Lyapunov Exponents, and Empirical Gramians
Observability quantification is a key problem in dynamic network sciences. While it has been thoroughly studied for linear systems, observability quantification for nonlinear networks is less intuitive and more cumbersome. One common approach to quantify observability for nonlinear systems is via the Empirical Gramian (Empr-Gram) -- a generalized form of the Gramian of linear systems. In this paper, we produce three new results. First, we establish that a variational form of discrete-time autonomous nonlinear systems yields a so-called Variational Gramian (Var-Gram) that is equivalent to the classic Empr-Gram; the former being easier to compute than the latter. Via Lyapunov exponents derived from Lyapunov's direct method, the paper's second result derives connections between existing observability measures and Var-Gram. The third result demonstrates the applicability of these new notions for sensor selection/placement in nonlinear systems. Numerical case studies demonstrate these three developments and their merits.
Partitioning and Observability in Linear Systems via Submodular Optimization
Network partitioning has gained recent attention as a pathway to enable decentralized operation and control in large-scale systems. This paper addresses the interplay between partitioning, observability, and sensor placement (SP) in dynamic networks. The problem, being computationally intractable at scale, is a largely unexplored, open problem in the literature. To that end, the paper's objective is designing scalable partitioning of linear systems while maximizing observability metrics of the subsystems. We show that the partitioning problem can be posed as a submodular maximization problem -- and the SP problem can subsequently be solved over the partitioned network. Consequently, theoretical bounds are derived to compare observability metrics of the original network with those of the resulting partitions, highlighting the impact of partitioning on system observability. Case studies on networks of varying sizes corroborate the derived theoretical bounds.
Analysis and Synthesis of Switched Optimization Algorithms
Deployment of optimization algorithms on networked systems face challenges associated with time delays and corruptions. One particular instance is the presence of time-varying delays arising from factors such as packet drops and irregular sampling. Fixed time delays can destabilize gradient descent algorithms, and this degradation is exacerbated by time-varying delays. This work concentrates on the analysis and creation of discrete-time optimization algorithms with certified exponential convergence rates that are robust against switched uncertainties between the optimizer and the gradient oracle. These optimization algorithms are implemented by a switch-scheduled output feedback controllers. Rate variation and sawtooth behavior (packet drops) in time-varying delays can be imposed through constraining switching sequences. Analysis is accomplished by bisection in the convergence rate to find Zames-Falb filter coefficents. Synthesis is performed by alternating between a filter coefficient search for a fixed controller, and a controller search for fixed multipliers.
Downlink Performance of Cell-Free Massive MIMO for LEO Satellite Mega-Constellation
Low-earth orbit (LEO) satellite communication (SatCom) has emerged as a promising technology to improve wireless connectivity in global areas. Cell-free massive multiple-input multiple-output (CF-mMIMO), an architecture proposed for next-generation networks, has yet to be fully explored for LEO satellites. In this paper, we investigate the downlink performance of a CF-mMIMO LEO SatCom network, where multiple satellite access points (SAPs) simultaneously serve the corresponding ground user terminals (UTs). Using tools from stochastic geometry, we model the locations of SAPs and UTs on surfaces of concentric spheres using Poisson point processes (PPPs) and present expressions on transmit and received signals, signal-to-interference-plus-noise ratio (SINR). Then, we derive the coverage probabilities in fading scenarios, considering significant system parameters such as the Nakagami fading parameter, the number of UTs, the number of SAPs, the orbital altitude, and the service range affected by the dome angle. Finally, the analytical model is verified by extensive Monte Carlo simulations. Simulation results indicate that stronger line-of-sight (LoS) effects and a more comprehensive service range of the UT result in a higher coverage probability, despite the presence of multi-user interference (MUI). Moreover, we found that there exist optimal numbers of UTs that maximize system capacity for different orbital altitudes and dome angles, providing valuable insights for system design.
Prescribed-Time Convergent Distributed Multiobjective Optimization With Dynamic Event-Triggered Communication
This paper addresses distributed constrained multiobjective resource allocation problems (DCMRAPs) in multi-agent networks, where agents face multiple conflicting local objectives under local and global constraints. By reformulating DCMRAPs as single-objective weighted $L_p$ problems, the proposed approach enables distributed solutions without relying on predefined weighting coefficients or centralized decision-making. Leveraging prescribed-time control and dynamic event-triggered mechanisms (ETMs), a novel distributed algorithm is proposed within a prescribed time through sampled communication. Using generalized time-based generators (TBGs), the algorithm provides more flexibility in optimizing solution accuracy and trajectory smoothness without the constraints of initial conditions. Novel dynamic ETMs, integrated with generalized TBGs, improve communication efficiency by adapting to local error metrics and network-based disagreements, while providing enhanced flexibility in balancing solution accuracy and communication frequency. The Zeno behavior is excluded. Validated by Lyapunov analysis and simulation experiments, our method demonstrates superior control performance and efficiency compared to existing methods, advancing distributed optimization across diverse applications.
comment: This work has been accepted and published in IEEE Transactions on Systems, Man, and Cybernetics: Systems
Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning
We introduce a novel topology, called Kernel Mean Embedding Topology, for stochastic kernels, in a weak and strong form. This topology, defined on the spaces of Bochner integrable functions from a signal space to a space of probability measures endowed with a Hilbert space structure, allows for a versatile formulation. This construction allows one to obtain both a strong and weak formulation. (i) For its weak formulation, we highlight the utility on relaxed policy spaces, and investigate connections with the Young narrow topology and Borkar (or \( w^* \))-topology, and establish equivalence properties. We report that, while both the \( w^* \)-topology and kernel mean embedding topology are relatively compact, they are not closed. Conversely, while the Young narrow topology is closed, it lacks relative compactness. (ii) We show that the strong form provides an appropriate formulation for placing topologies on spaces of models characterized by stochastic kernels with explicit robustness and learning theoretic implications on optimal stochastic control under discounted or average cost criteria. (iii) We thus show that this topology possesses several properties making it ideal to study optimality and approximations (under the weak formulation) and robustness (under the strong formulation) for many applications.
comment: 37 pages
Revealing Chaotic Dependence and Degree-Structure Mechanisms in Optimal Pinning Control of Complex Networks
Identifying an optimal set of driver nodes to achieve synchronization via pinning control is a fundamental challenge in complex network science, limited by computational intractability and the lack of general theory. Here, leveraging a degree-based mean-field (annealed) approximation from statistical physics, we analytically reveal how the structural degree distribution systematically governs synchronization performance, and derive an analytic characterization of the globally optimal pinning set and constructive algorithms with linear complexity (dominated by degree sorting, O(N+M). The optimal configuration exhibits a chaotic dependence--a discontinuous sensitivity--on its cardinality, whereby adding a single node can trigger abrupt changes in node composition and control effectiveness. This structural transition fundamentally challenges traditional heuristics that assume monotonic performance gains with budget. Systematic experiments on synthetic and empirical networks confirm that the proposed approach consistently outperforms degree-, betweenness-, and other centrality-based baselines. Furthermore, we quantify how key degree-distribution features--low-degree saturation, high-degree cutoff, and the power-law exponent--govern achievable synchronizability and shape the form of optimal sets. These results offer a systematic understanding of how degree heterogeneity shapes the network controllability. Our work establishes a unified link between degree heterogeneity and spectral controllability, offering both mechanistic insights and practical design rules for optimal driver-node selection in diverse complex systems.
comment: 16 pages, 6 figures; primary: eess.SY; cross-lists: cs.SY, math.OC. Submitted to IEEE TAC
Transformers as Implicit State Estimators: In-Context Learning in Dynamical Systems
Predicting the behavior of a dynamical system from noisy observations of its past outputs is a classical problem encountered across engineering and science. For linear systems with Gaussian inputs, the Kalman filter -- the best linear minimum mean-square error estimator of the state trajectory -- is optimal in the Bayesian sense. For nonlinear systems, Bayesian filtering is typically approached using suboptimal heuristics such as the Extended Kalman Filter (EKF), or numerical methods such as particle filtering (PF). In this work, we show that transformers, employed in an in-context learning (ICL) setting, can implicitly infer hidden states in order to predict the outputs of a wide family of dynamical systems, without test-time gradient updates or explicit knowledge of the system model. Specifically, when provided with a short context of past input-output pairs and, optionally, system parameters, a frozen transformer accurately predicts the current output. In linear-Gaussian regimes, its predictions closely match those of the Kalman filter; in nonlinear regimes, its performance approaches that of EKF and PF. Moreover, prediction accuracy degrades gracefully when key parameters, such as the state-transition matrix, are withheld from the context, demonstrating robustness and implicit parameter inference. These findings suggest that transformer in-context learning provides a flexible, non-parametric alternative for output prediction in dynamical systems, grounded in implicit latent-state estimation.
Action Chunking and Exploratory Data Collection Yield Exponential Improvements in Behavior Cloning for Continuous Control
This paper presents a theoretical analysis of two of the most impactful interventions in modern learning from demonstration in robotics and continuous control: the practice of action-chunking (predicting sequences of actions in open-loop) and exploratory augmentation of expert demonstrations. Though recent results show that learning from demonstration, also known as imitation learning (IL), can suffer errors that compound exponentially with task horizon in continuous settings, we demonstrate that action chunking and exploratory data collection circumvent exponential compounding errors in different regimes. Our results identify control-theoretic stability as the key mechanism underlying the benefits of these interventions. On the empirical side, we validate our predictions and the role of control-theoretic stability through experimentation on popular robot learning benchmarks. On the theoretical side, we demonstrate that the control-theoretic lens provides fine-grained insights into how compounding error arises, leading to tighter statistical guarantees on imitation learning error when these interventions are applied than previous techniques based on information-theoretic considerations alone.
comment: Updated manuscript. Added new experiments, figures, and exposition
Privacy Preservation by Local Design in Cooperative Networked Control Systems
In this paper, we study the privacy preservation problem in a cooperative networked control system, which has closed-loop dynamics, working for the task of linear quadratic Guassian (LQG) control. The system consists of a user and a server: the user owns the plant to control, while the server provides computation capability, and the user employs the server to compute control inputs for it. To enable the server's computation, the user needs to provide the measurements of the plant states to the server, who then calculates estimates of the states, based on which the control inputs are computed. However, the user regards the states as privacy, and makes an interesting request: the user wants the server to have "incorrect" knowledge of the state estimates rather than the true values. Regarding that, we propose a novel design methodology for the privacy preservation, in which the privacy scheme is locally equipped at the user side not open to the server, which manages to create a deviation in the server's knowledge of the state estimates from the true values. However, this methodology also raises significant challenges: in a closed-loop dynamic system, when the server's seized knowledge is incorrect, the system's behavior becomes complex to analyze; even the stability of the system becomes questionable, as the incorrectness will accumulate through the closed loop as time evolves. In this paper, we succeed in showing that the performance loss in LQG control caused by the proposed privacy scheme is bounded by rigorous mathematical proofs, which convinces the availability of the proposed design methodology. We also propose an associated novel privacy metric and obtain the analytical result on evaluating the privacy performance. Finally, we study the performance trade-off between privacy and control, where the accordingly proposed optimization problems are solved by numerical methods efficiently.
comment: 14 pages, 7 figures
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity \(L\) and deadline constraints \(T\). The system operates in discrete time, with each arriving truck assigned a deadline of \(T\) slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy \(\pi^\star\) for \(L = 3\), extending insights to arbitrary \(L\). We prove certain monotonicity properties of the optimal policy in the state space \(\mathcal{S}\) and identify classes of unreachable states. Moreover, since the size of \(\mathcal{S}\) grows exponentially with \(L\) and \(T\), we propose heuristics--including conditional and deep-learning based approaches--that exploit these structural insights while maintaining low computational complexity.
Systems and Control (CS)
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
Time-Optimal Model Predictive Control for Linear Systems with Multiplicative Uncertainties
This paper presents a time-optimal Model Predictive Control (MPC) scheme for linear discrete-time systems subject to multiplicative uncertainties represented by interval matrices. To render the uncertainty propagation computationally tractable, the set-valued error system dynamics are approximated using a matrix-zonotope-based bounding operator. Recursive feasibility and finite-time convergence are ensured through an adaptive terminal constraint mechanism. A key advantage of the proposed approach is that all the necessary bounding sets can be computed offline, substantially reducing the online computational burden. The effectiveness of the method is illustrated via a numerical case study on an orbital rendezvous maneuver between two satellites.
Pareto-Optimal Sampling and Resource Allocation for Timely Communication in Shared-Spectrum Low-Altitude Networks
Guaranteeing stringent data freshness for low-altitude unmanned aerial vehicles (UAVs) in shared spectrum forces a critical trade-off between two operational costs: the UAV's own energy consumption and the occupation of terrestrial channel resources. The core challenge is to satisfy the aerial data freshness while finding a Pareto-optimal balance between these costs. Leveraging predictive channel models and predictive UAV trajectories, we formulate a bi-objective Pareto optimization problem over a long-term planning horizon to jointly optimize the sampling timing for aerial traffic and the power and spectrum allocation for fair coexistence. However, the problem's non-convex, mixed-integer nature renders classical methods incapable of fully characterizing the complete Pareto frontier. Notably, we show monotonicity properties of the frontier, building on which we transform the bi-objective problem into several single-objective problems. We then propose a new graph-based algorithm and prove that it can find the complete set of Pareto optima with low complexity, linear in the horizon and near-quadratic in the resource block (RB) budget. Numerical comparisons show that our approach meets the stringent timeliness requirement and achieves a six-fold reduction in RB utilization or a 6 dB energy saving compared to benchmarks.
Graph approach for observability analysis in power system dynamic state estimation
The proposed approach yields a numerical method that provably executes in linear time with respect to the number of nodes and edges in a graph. The graph, constructed from the power system model, requires only knowledge of the dependencies between state-to-state and output-to-state variables within a state-space framework. While graph-based observability analysis methods exist for power system static-state estimation, the approach presented here is the first for dynamic-state estimation (DSE). We examine decentralized and centralized DSE scenarios and compare our findings with a well-established, albeit non-scalable, observability analysis method in the literature. When compared to the latter in a centralized DSE setting, our method reduced computation time by 1440x.
Statistically Adaptive Differential Protection for AC Microgrids Based on Kullback-Leibler Divergence
The proliferation of inverter-based resources challenges traditional microgrid protection by introducing variable fault currents and complex transients. This paper presents a statistically adaptive differential protection scheme based on Kullback-Leibler divergence, implemented via a Bartlett-corrected G-statistic computed on logarithm-transformed current magnitudes. The method is a multivariate fault detection engine that employs the Mahalanobis distance to distinguish healthy and faulty states, enabling robust detection even in noisy environments. Detection thresholds are statistically derived from a chi-squared distribution for precise control over the false alarm rate. Upon detection, a lightweight classifier identifies the fault type by assessing per-phase G-statistics against dedicated thresholds, enhanced by a temporal persistence filter for security. Extensive simulations on a modified CIGRE 14-bus microgrid show high efficacy: sub-cycle average detection delays, high detection and classification accuracy across operating modes, resilience to high-impedance faults up to 250 Ohms, tolerance to 10 ms communication delay, and noise levels down to a 20 dB signal-to-noise ratio. These findings demonstrate a reproducible and computationally efficient solution for next-generation AC microgrid protection.
Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
comment: 34 pages, 9 figures. Code available at https://github.com/RedaElMakroum/agentic-ai-hems
Optimal Bidding and Coordinated Dispatch of Hybrid Energy Systems in Regulation Markets
The increasing integration of renewable energy sources and distributed energy resources (DER) into modern power systems introduces significant uncertainty, posing challenges for maintaining grid flexibility and reliability. Hybrid energy systems (HES), composed of controllable generators, flexible loads, and battery storage, offer a decentralized solution to enhance flexibility compared to single centralized resources. This paper presents a two-level framework to enable HES participation in frequency regulation markets. The upper level performs a chance-constrained optimization to choose capacity bids based on historical regulation signals. At the lower level, a real-time control strategy disaggregates the regulation power among the constituent resources. This real-time control strategy is then benchmarked against an offline optimal dispatch to evaluate flexibility performance. Additionally, the framework evaluates the profitability of overbidding strategies and identifies thresholds beyond which performance degradation may lead to market penalties or disqualification. The proposed framework also compare the impact of imbalance of power capacities on performance and battery state of charge (SoC) through asymmetric HES configurations.
Two-Timescale Optimization Framework for IAB-Enabled Heterogeneous UAV Networks
In post-disaster scenarios, the rapid deployment of adequate communication infrastructure is essential to support disaster search, rescue, and recovery operations. To achieve this, uncrewed aerial vehicle (UAV) has emerged as a promising solution for emergency communication due to its low cost and deployment flexibility. However, conventional untethered UAV (U-UAV) is constrained by size, weight, and power (SWaP) limitations, making it incapable of maintaining the operation of a macro base station. To address this limitation, we propose a heterogeneous UAV-based framework that integrates tethered UAV (T-UAV) and U-UAVs, where U-UAVs are utilized to enhance the throughput of cell-edge ground user equipments (G-UEs) and guarantee seamless connectivity during G-UEs' mobility to safe zones. It is noted that the integrated access and backhaul (IAB) technique is adopted to support the wireless backhaul of U-UAVs. Accordingly, we formulate a two-timescale joint user scheduling and trajectory control optimization problem, aiming to maximize the downlink throughput under asymmetric traffic demands and G-UEs' mobility. To solve the formulated problem, we proposed a two-timescale multi-agent deep deterministic policy gradient (TTS-MADDPG) algorithm based on the centralized training and distributed execution paradigm. Numerical results show that the proposed algorithm outperforms other benchmarks, including the two-timescale multi-agent proximal policy optimization (TTS-MAPPO) algorithm and MADDPG scheduling method, with robust and higher throughput. Specifically, the proposed algorithm obtains up to 12.2\% average throughput gain compared to the MADDPG scheduling method.
Proxemics and Permeability of the Pedestrian Group
People tend to walk in groups, and interactions with those groups have a significant impact on crowd behavior and pedestrian traffic dynamics. Social norms can be seen as unwritten rules regulating people interactions in social settings. This article studies people interactions with groups and the emergence of group proxemics. Group zones, zone occupancy counts and people clearance from the group are studied using naturalistic data. Analysis indicate potential presence of three different zones in addition to the public zone. People tend to remain in the public zone and only progressively get closer to groups, and those closer approaches happen in a low frequency and for brief periods of time.
Life-cycle Modeling and the Walking Behavior of the Pedestrian-Group as an Emergent Agent: With Empirical Data on the Cohesion of the Group Formation
This article investigates the pedestrian group as an emergent agent. The article explores empirical data to derive emergent agency and formation state spaces and outline recurring patterns of walking behavior. In this analysis, pedestrian trajectories extracted from surveillance videos are used along with manually annotated pedestrian group memberships. We conducted manual expert evaluation of observed groups, produced new manual annotations for relevant events pertaining to group behavior and extracted metrics relevant group formation. This information along with quantitative analysis was used to model the life-cycle and formation of the group agent. Those models give structure to expectations around walking behavior of groups; from pedestrian walking independently to the emergence of a collective intention where group members tended to maintain bounded distance between each other. Disturbances to this bounded distance often happened in association with changes in either their agency or their formation states. We summarized the patterns of behavior along with the sequences of state transitions into abstract patterns, which can aid in the development of more detailed group agents in simulation and in the design of engineering systems to interact with such groups.
Efficient Collision-Avoidance Constraints for Ellipsoidal Obstacles in Optimal Control: Application to Path-Following MPC and UAVs
This article proposes a modular optimal control framework for local three-dimensional ellipsoidal obstacle avoidance, exemplarily applied to model predictive path-following control. Static as well as moving obstacles are considered. Central to the approach is a computationally efficient and continuously differentiable condition for detecting collisions with ellipsoidal obstacles. A novel two-stage optimization approach mitigates numerical issues arising from the structure of the resulting optimal control problem. The effectiveness of the approach is demonstrated through simulations and real-world experiments with the Crazyflie quadrotor. This represents the first hardware demonstration of an MPC controller of this kind for UAVs in a three-dimensional task.
Safety Margins of Inverse Optimal ISSf Controllers
We investigate the gain margin of a general nonlinear system under an inverse optimal input-to-state safe (ISSf) controller of the form u=u0(x)+u*(x,u0), where u0 is the nominal control and u* is the inverse optimal safety filter that minimally modifies the nominal controller's unsafe actions over the infinite horizon. By first establishing a converse ISSf-BF theorem, we reveal the equivalence among the achievability of ISSf by feedback, the achievability of inverse optimality, and the solvability of a Hamilton-Jacobi-Isaacs equation associated with the inverse optimal ISSf gain assignment. Then we develop a collection of safety margin results on the overall control u=u0+u*. In the absence of disturbances, we find that standard inverse optimal safe controllers have a certain degree of gain margin. Specifically, when f(x) acts safely but u0 acts unsafely, the gain can be decreased by up to half; and when f(x) acts unsafely, we establish that, if u0 acts safely, the gain can be increased arbitrarily, whereas if u0 acts unsafely, the control recovers the full gain margin [1/2,inf). It is shown, however, that under control gain variation, the safe set of these controllers is locally asymptotically stable, which implies that their safety is sensitive to large but bounded disturbances. To make inverse optimal ISSf controllers robust to gain variation, we propose a gain margin improvement approach at the expense of an increased control effort. This improvement allows the inverse optimal safe control to inherit the standard gain margin of [1/2,inf) without requiring prior knowledge of whether f(x) or u0 acts safely on the safety boundary, while simultaneously ensuring global asymptotic stability of the resulting safe set. In the presence of disturbances, this improvement idea renders inverse optimal ISSf controllers robust to gain variations with the same gain margin of [1/2,inf).
XWAVE: A Novel Software-Defined Everything Approach for the Manufacturing Industry
The manufacturing sector is moving from rigid, hardware-dependent systems toward flexible, software-driven environments. This transformation is shaped by the convergence of several Software-Defined technologies: Software-Defined Automation virtualizes industrial control, replacing proprietary PLCs with containerized, programmable solutions that enable scalability and interoperability. Software-Defined Compute and Communications provide a means to distribute intelligence seamlessly across devices, networks, and cloud platforms, reducing latency and enabling dynamic reconfiguration. Software-Defined Manufacturing Systems, usually implemented as Digital Twins, are real-time virtual models of machines and processes, allowing predictive analysis, optimization, and closer integration between human operators and intelligent systems. This work presents XWAVE, a project that unites these three Software-Defined paradigms to present a modular, fully software-defined manufacturing system.
Command-filter-based trajectory-tracking control of quadrotor subject to internal and external disturbances
We propose a command-filter backstepping controller that integrates a disturbance observer and a high-gain observer (HGO) to handle unknown internal and external disturbances acting on a quadrotor. To build the controller, we first define tracking errors between the measured and desired quadrotor outputs, which allow the system to be rewritten in a new set of state variables. Using this transformed model, we apply Lyapunov theory to derive a backstepping control law. To avoid repeated differentiation of states and virtual controls, a first-order command filter is introduced, and a nonlinear disturbance observer is added to provide disturbance estimates. Each state in the controller and observer is replaced with its estimate from the HGO. The resulting control law enables the quadrotor to follow its path despite internal and external disturbances, with each subsystem allowed its own disturbance type for realism. A new state transformation and Lyapunov-based derivation prevent the usual explosion of complexity, while the HGO reconstructs unmeasured states and their rates for output feedback. The nonlinear disturbance observer attenuates constant and nonlinear disturbances as well as band-limited white noise. The method reduces dependence on high-precision sensors and mitigates wind, model error, and rotor noise effects during flight. Unlike previous studies that treat either disturbance rejection or partial sensing, this work combines the command filter, disturbance observer, and HGO to address both challenges simultaneously while avoiding the complexity growth typical of backstepping designs.
Cooperative Task Spaces for Multi-Arm Manipulation Control based on Similarity Transformations
Many tasks in human environments require collaborative behavior between multiple kinematic chains, either to provide additional support for carrying big and bulky objects or to enable the dexterity that is required for in-hand manipulation. Since these complex systems often have a very high number of degrees of freedom coordinating their movements is notoriously difficult to model. In this article, we present the derivation of the theoretical foundations for cooperative task spaces of multi-arm robotic systems based on geometric primitives defined using conformal geometric algebra. Based on the similarity transformations of these cooperative geometric primitives, we derive an abstraction of complex robotic systems that enables representing these systems in a way that directly corresponds to single-arm systems. By deriving the associated analytic and geometric Jacobian matrices, we then show the straightforward integration of our approach into classical control techniques rooted in operational space control. We demonstrate this using bimanual manipulators, humanoids and multi-fingered hands in optimal control experiments for reaching desired geometric primitives and in teleoperation experiments using differential kinematics control. We then discuss how the geometric primitives naturally embed nullspace structures into the controllers that can be exploited for introducing secondary control objectives. This work, represents the theoretical foundations of this cooperative manipulation control framework, and thus the experiments are presented in an abstract way, while giving pointers towards potential future applications.
From Embedding to Control: Representations for Stochastic Multi-Object Systems
This paper studies how to achieve accurate modeling and effective control in stochastic nonlinear dynamics with multiple interacting objects. However, non-uniform interactions and random topologies make this task challenging. We address these challenges by proposing \textit{Graph Controllable Embeddings} (GCE), a general framework to learn stochastic multi-object dynamics for linear control. Specifically, GCE is built on Hilbert space embeddings, allowing direct embedding of probability distributions of controlled stochastic dynamics into a reproducing kernel Hilbert space (RKHS), which enables linear operations in its RKHS while retaining nonlinear expressiveness. We provide theoretical guarantees on the existence, convergence, and applicability of GCE. Notably, a mean field approximation technique is adopted to efficiently capture inter-object dependencies and achieve provably low sample complexity. By integrating graph neural networks, we construct data-dependent kernel features that are capable of adapting to dynamic interaction patterns and generalizing to even unseen topologies with only limited training instances. GCE scales seamlessly to multi-object systems of varying sizes and topologies. Leveraging the linearity of Hilbert spaces, GCE also supports simple yet effective control algorithms for synthesizing optimal sequences. Experiments on physical systems, robotics, and power grids validate GCE and demonstrate consistent performance improvement over various competitive embedding methods in both in-distribution and few-shot tests
Design of Orthogonal Phase of Arrival Positioning Scheme Based on 5G PRS and Optimization of TOA Performance
This study analyzes the performance of positioning techniques based on configuration changes of 5G New Radio signals. In 5G networks, a terminal position is determined from the Time of Arrival of Positioning Reference Signals transmitted by base stations. We propose an algorithm that improves TOA accuracy under low sampling rate constraints and implement 5G PRS for positioning in a software defined modem. We also examine how flexible time frequency resource allocation of PRS affects TOA estimation accuracy and discuss optimal PRS configurations for a given signal environment.
Confidential FRIT via Homomorphic Encryption
Edge computing alleviates the computation burden of data-driven control in cyber-physical systems (CPSs) by offloading complex processing to edge servers. However, the increasing sophistication of cyberattacks underscores the need for security measures that go beyond conventional IT protections and address the unique vulnerabilities of CPSs. This study proposes a confidential data-driven gain-tuning framework using homomorphic encryption, such as ElGamal and CKKS encryption schemes, to enhance cybersecurity in gain-tuning processes outsourced to external servers. The idea for realizing confidential FRIT is to replace the matrix inversion operation with a vector summation form, allowing homomorphic operations to be applied. Numerical examples under 128-bit security confirm performance comparable to conventional methods while providing guidelines for selecting suitable encryption schemes for secure CPS.
Green Wireless Network Scaling for Joint Deployment: Multi-BSs or Multi-RISs?
The imminent emergence of sixth-generation (6G) networks faces critical challenges from spatially heterogeneous traffic and escalating energy consumption, necessitating sustainable scaling strategies for network infrastructure such as base stations (BSs) and reconfigurable intelligent surfaces (RISs). This paper establishes fundamental scaling laws for the Integrated Relative Energy Efficiency (IREE) metric under joint multi-BS and multi-RIS deployment in traffic-mismatched scenarios. Specifically, we propose an Alternating Directional Dual-Radial Basis Function (ADD-RBF) framework that models the channels of BSs and RISs as two type of spatially decoupled RBF neurons to maximize IREE through alternative optimization, with proven universal approximation capability and convergence guarantees. Theoretical analysis reveals a scaling dichotomy: BS proliferation drives logarithmic capacity growth $\mathcal{O}(\log N^{BS})$ but only polynomial mismatch reduction $\mathcal{O}(1/\sqrt{N^{BS}})$, whereas RIS deployment achieves exponential mismatch mitigation $\mathcal{O}(\delta_{\text{err}}^{-(N^R+1)})$ despite its sub-logarithmic capacity gains. Simulation results validate that RISs excel in capturing spatial traffic correlations and alleviating hotspots, making them particularly effective when mismatch dominates, while BSs are preferable under capacity shortages. These findings offer practical guidelines for green 6G network design.
A Scenario-Based Approach for Stochastic Economic Model Predictive Control with an Expected Shortfall Constraint
This paper presents a novel approach to stochastic economic model predictive control (SEMPC) that minimizes average economic cost while satisfying an empirical expected shortfall (EES) constraint to manage risk. A new scenario-based problem formulation ensuring controlled risk with high confidence while minimizing the average cost is introduced. The probabilistic guarantees is dependent on the number of support elements over the entire input domain, which is difficult to find for high-dimensional systems. A heuristic algorithm is proposed to find the number of support elements. Finally, an efficient method is presented to reduce the computational complexity of the SEMPC problem with an EES constraint. The approach is validated on a water distribution network, showing its effectiveness in balancing performance and risk.
Competitive Equilibrium for Electricity Markets with Spatially Flexible Load
Electric vehicle charging and geo-distributed datacenters introduce spatially flexible loads (FLs) that couple power, transportation, and datacenter networks. These couplings create a closed-loop feedback between locational marginal prices (LMPs) and decisions of the FL systems, challenging the foundations of conventional competitive equilibrium (CE) in electricity markets. This paper studies a notion of generalized competitive equilibrium (GCE) that aims to capture such price-demand interactions across the interconnected infrastructures. We establish structural conditions under which the GCE preserves key properties of the conventional CE, including existence, uniqueness, and efficiency, without requiring detailed knowledge of decision processes for individual FL systems. The framework generalizes to settings where the grid is coupled with multiple FL systems. Stylized examples and case studies on the New York ISO grid, coupled with the Sioux Falls transportation and distributed datacenter networks, demonstrate the use of our theoretical framework and illustrate the mutual influence among the grid and the studied FL systems.
SUSTAINABLE Platform: Seamless Smart Farming Integration Towards Agronomy Automation SC2
The global agricultural sector is undergoing a transformative shift, driven by increasing food demands, climate variability and the need for sustainable practices. SUSTAINABLE is a smart farming platform designed to integrate IoT, AI, satellite imaging, and role-based task orchestration to enable efficient, traceable, and sustainable agriculture with a pilot usecase in viticulture. This paper explores current smart agriculture solutions, presents a comparative evaluation, and introduces SUSTAINABLE's key features, including satellite index integration, real-time environmental data, and role-aware task management tailored to Mediterranean vineyards.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
Dispatchable Current Source Virtual Oscillator Control Achieving Global Stability
This work introduces a novel dispatchable current source virtual oscillator control (dCVOC) scheme for grid-following (GFL) converters, which exhibits duality with dispatchable virtual oscillator control (dVOC) in two ways: a) the current frequency is generated through reactive power control, similar to a PLL ; b) the current magnitude reference is generated through active power control. We formally prove that our proposed control always admits a steady-state equilibrium and ensures global stability under reasonable conditions on grid and converter parameters, even when considering LVRT and current saturation constraints. Our approach avoids low-voltage transients and weak grid instability, which is not the case for conventional GFL control. The effectiveness of our proposed control is verified through high-fidelity electromagnetic transient simulations.
Quantitative Parameter Conditions for Stability and Coupling in GFM-GFL Converter Hybrid Systems from a Small-Signal Synchronous Perspective
With the development of renewable energy sources, power systems are gradually evolving into a system comprising both grid-forming (GFM) and grid-following (GFL) converters. However, the dynamic interaction between the two types of converters, especially low-inertia GFM converters and GFL converters, remains unclear due to the substantial differences in their synchronization mechanisms. To address this gap, this paper develops a small-signal synchronous stability model for power systems containing GFM and GFL converters, which considers network line dynamics. Based on subspace perturbation theory, we reveal that GFM and GFL subsystems can be effectively decoupled when GFL converters operate near unity power factor or when GFM converters possess sufficiently large inertia or damping, and provide lower bound of control parameters ensuring decoupling. Under the decoupling condition, we propose decentralized and analytical parameter-based stability criteria which have clear physical interpretations: the positive damping of converters compensates for the negative damping of the network. In the case of coupling, we also propose decentralized stability criteria based on the small phase theorem. The effectiveness of the theoretical analysis is validated through simulations in MATLAB/Simulink.
Adaptive Control for a Physics-Informed Model of a Thermal Energy Distribution System: Qualitative Analysis
Integrated energy systems (IES) are complex heterogeneous architectures that typically encompass power sources, hydrogen electrolyzers, energy storage, and heat exchangers. This integration is achieved through operating control strategy optimization. However, the lack of physical understanding as to how these systems evolve over time introduces uncertainties that hinder reliable application thereof. Techniques that can accommodate such uncertainties are fundamental for ensuring proper operation of these systems. Unfortunately, no unifying methodology exists for accommodating uncertainties in this regard. That being said, adaptive control (AC) is a discipline that may allow for accommodating such uncertainties in real-time. In the present work, we derive an AC formulation for linear systems in which all states are observable and apply it to the control of a glycol heat exchanger (GHX) in an IES. Based on prior research in which we quantified the uncertainties of the GHXs system dynamics, we introduced an error of 50% on four terms of the nominal model. In the case where a linear quadratic regulator is used as the nominal control for the reference system, we found that employing AC can reduce the mean absolute error and integral time absolute error by a factor of 30%-75%. This reduction is achieved with minimal computing overhead and control infrastructure, thus underscoring the strength of AC. However, the control effort induced is significant, therefore warranting further study in order to estimate its impact on a physical system. To address further challenges, including partially observable and non-linear dynamics, enhancements of the linear formulation are currently being developed.
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Strength
Grid-forming (GFM) technology is widely regarded as a promising solution for future power systems dominated by power electronics. However, a precise method for quantifying GFM converter behavior and a universally accepted GFM definition remain elusive. Moreover, the impact of GFM on system stability is not precisely quantified, creating a significant disconnect between device and system levels. To address these gaps from a small-signal perspective, at the device level, we introduce a novel metric, the Forming Index (FI) to quantify a converter's response to grid voltage fluctuations. Rather than enumerating various control architectures, the FI provides a metric for the converter's GFM ability by quantifying its sensitivity to grid variations. At the system level, we propose a new quantitative measure of system strength that captures the multi-bus voltage stiffness, which quantifies the voltage and phase angle responses of multiple buses to current or power disturbances. We further extend this concept to grid strength and bus strength to identify weak areas within the system. Finally, we bridge the device and system levels by formally proving that GFM converters enhance system strength. Our proposed framework provides a unified benchmark for GFM converter design, optimal placement, and system stability assessment.
Ferrohydrodynamic Microfluidics for Bioparticle Separation and Single-Cell Phenotyping: Principles, Applications, and Emerging Directions
Ferrohydrodynamic microfluidics relies on magnetic field gradients to manipulate diamagnetic particles in ferrofluid-filled microenvironments. It has emerged as a promising tool for label-free manipulation of bioparticles, including their separation and phenotyping. This perspective reviews recent progress in the development and applications of ferrofluid-based microfluidic platforms for multiscale bioparticle separation, ranging from micron-scale cells to submicron extracellular vesicles. We highlight the fundamental physical principles for ferrohydrodynamic manipulation, including the dominant magnetic buoyancy force resulting from the interaction of ferrofluids and particles. We then describe how these principles enable high-resolution size-based bioparticle separation, subcellular bioparticle enrichment, and phenotypic screening based on physical traits. We also discuss key challenges in ferrohydrodynamic microfluidics from the aspects of ferrofluid biocompatibility, system throughput, and nanoparticle depletion. Finally, we outline future research directions involving machine learning, 3D printing, and multiplexed detection. These insights chart a path for advancing ferrofluid-based technologies in precision biomedicine, diagnostics, and cellular engineering.
Cooperative Integrated Estimation-Guidance for Simultaneous Interception of Moving Targets
This paper proposes a cooperative integrated estimation-guidance framework for simultaneous interception of a non-maneuvering target using a team of unmanned autonomous vehicles, assuming only a subset of vehicles are equipped with dedicated sensors to measure the target's states. Unlike earlier approaches that focus solely on either estimation or guidance design, the proposed framework unifies both within a cooperative architecture. To circumvent the limitation posed by heterogeneity in target observability, sensorless vehicles estimate the target's state by leveraging information exchanged with neighboring agents over a directed communication topology through a prescribed-time observer. The proposed approach employs true proportional navigation guidance (TPNG), which uses an exact time-to-go formulation and is applicable across a wide spectrum of target motions. Furthermore, prescribed-time observer and controller are employed to achieve convergence to true target's state and consensus in time-to-go within set predefined times, respectively. Simulations demonstrate the effectiveness of the proposed framework under various engagement scenarios.
Finite Sample MIMO System Identification with Multisine Excitation: Nonparametric, Direct, and Two-step Parametric Estimators
Multisine excitations are widely used for identifying multi-input multi-output systems due to their periodicity, data compression properties, and control over the input spectrum. Despite their popularity, the finite sample statistical properties of frequency-domain estimators under multisine excitation, for both nonparametric and parametric settings, remain insufficiently understood. This paper develops a finite-sample statistical framework for least-squares estimation of the frequency response function (FRF) and its implications for parametric modeling. First, we derive exact distributional and covariance properties of the FRF estimator, explicitly accounting for aliasing effects under slow sampling regimes, and establish conditions for unbiasedness, uncorrelatedness, and consistency across multiple experiments. Second, we show that the FRF estimate is a sufficient statistic for any parametric model under Gaussian noise, leading to an exact equivalence between optimal two stage frequency-domain methods and time-domain prediction error and maximum likelihood estimation. This equivalence is shown to yield finite-sample concentration bounds for parametric maximum likelihood estimators, enabling rigorous uncertainty quantification, and closed-form prediction error method estimators without iterative optimization. The theoretical results are demonstrated in a representative case study.
comment: 16 pages, 4 figures
Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability
In this work, we study data-driven stabilization of linear time-invariant systems using prior knowledge of system-theoretic properties, specifically stabilizability and controllability. To formalize this, we extend the concept of data informativity by requiring the existence of a controller that stabilizes all systems consistent with the data and the prior knowledge. We show that if the system is controllable, then incorporating this as prior knowledge does not relax the conditions required for data-driven stabilization. Remarkably, however, we show that if the system is stabilizable, then using this as prior knowledge leads to necessary and sufficient conditions that are weaker than those for data-driven stabilization without prior knowledge. In other words, data-driven stabilization is easier if one knows that the underlying system is stabilizable. We also provide new data-driven control design methods in terms of linear matrix inequalities that complement the conditions for informativity.
comment: 6 pages
Decentralized Merging Control of Connected and Automated Vehicles to Enhance Safety and Energy Efficiency using Control Barrier Functions
This paper presents a decentralized Control Barrier Function (CBF) based approach for highway merging of Connected and Automated Vehicles (CAVs). In this control algorithm, each "host" vehicle negotiates with other agents in a control zone of the highway network, and enacts its own action, to perform safe and energy-efficient merge maneuvers. It uses predictor-corrector loops within the robust CBF setting for negotiation and to reconcile disagreements that may arise. There is no explicit order of vehicles and no priority. A notable feature is absence of gridlocks due to instability of the inter-agent system. Results from Monte Carlo simulations show significant improvement in the system-wide energy efficiency and traffic flow compared to a first-in-first-out approach, as well as enhanced robustness of the proposed decentralized controller compared to its centralized counterpart.
comment: This work has been submitted to a conference for possible publication and is under review. Paper summary: 8 pages, 5 figures, 2 tables
Recursive Experiment Design for Closed-Loop Identification with Output Perturbation Limits
In many applications, system identification experiments must be performed under output feedback to ensure safety or to maintain system operation. In this paper, we consider the online design of informative experiments for ARMAX models by applying a bounded perturbation to the input signal generated by a fixed output feedback controller. Specifically, the design constrains the resulting output perturbation within user-specified limits and can be efficiently computed in closed form. We demonstrate the effectiveness of the method in a numerical experiment.
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity $L$ and deadline constraints $T$. The system operates in discrete time, with each arriving truck assigned a deadline of $T$ slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy $\pi^\star$ for $L = 3$, extending insights to arbitrary $L$. We prove certain monotonicity properties of the optimal policy in the state space $\mathcal{S}$ and identify classes of unreachable states. Moreover, since the size of $\mathcal{S}$ grows exponentially with $L$ and $T$, we propose heuristics -- including conditional and deep-learning based approaches -- that exploit these structural insights while maintaining low computational complexity.
Convex computation of regions of attraction from data using Sums-of-Squares programming
The paper concentrates on the analysis of the Region of Attraction (RoA) for unknown autonomous dynamical systems. The aim is to explore a data-driven approach based on moment Sum-of-Squares (SoS) hierarchy, which enables novel RoA outer approximations despite the reduced information on the structure of the dynamics. The main contribution of this work is bypassing the system model and, consequently, the recurring constraint on its polynomial structure. Numerical experimentation showcases the influence of data on learned approximating sets, offering a promising outlook on the potential of this method.
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Reinforcement learning (RL) is a powerful framework for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We address this challenge by incorporating prior model knowledge to guide exploration and accelerate the learning process. Specifically, we assume access to a model set that contains the true transition kernel and reward function. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also prove finite-time convergence to the optimal policy under mild assumptions. We demonstrate the effectiveness of the proposed exploration strategy, which we call BUMEX (Bounded Uncertainty Model-based Exploration), in a simulation study. The results indicate that the proposed method can significantly accelerate learning in benchmark examples. A toolbox is available at https://github.com/JvHulst/BUMEX.
comment: Accepted for Presentation at 64th IEEE Conference on Decision and Control, CDC 2025, Rio de Janeiro, Brazil, 2025
Agile and Cooperative Aerial Manipulation of a Cable-Suspended Load
Quadrotors can carry slung loads to hard-to-reach locations at high speed. Since a single quadrotor has limited payload capacities, using a team of quadrotors to collaboratively manipulate a heavy object is a scalable and promising solution. However, existing control algorithms for multi-lifting systems only enable low-speed and low-acceleration operations due to the complex dynamic coupling between quadrotors and the load, limiting their use in time-critical missions such as search and rescue. In this work, we present a solution to significantly enhance the agility of cable-suspended multi-lifting systems. Unlike traditional cascaded solutions, we introduce a trajectory-based framework that solves the whole-body kinodynamic motion planning problem online, accounting for the dynamic coupling effects and constraints between the quadrotors and the load. The planned trajectory is provided to the quadrotors as a reference in a receding-horizon fashion and is tracked by an onboard controller that observes and compensates for the cable tension. Real-world experiments demonstrate that our framework can achieve at least eight times greater acceleration than state-of-the-art methods to follow agile trajectories. Our method can even perform complex maneuvers such as flying through narrow passages at high speed. Additionally, it exhibits high robustness against load uncertainties and does not require adding any sensors to the load, demonstrating strong practicality.
comment: 38 pages, 11 figures
SafEDMD: A Koopman-based data-driven controller design framework for nonlinear dynamical systems
The Koopman operator serves as the theoretical backbone for machine learning of dynamical control systems, where the operator is heuristically approximated by extended dynamic mode decomposition (EDMD). In this paper, we propose SafEDMD, a novel stability- and feedback-oriented EDMD-based controller design framework. Our approach leverages a reliable surrogate model generated in a data-driven fashion in order to provide closed-loop guarantees. In particular, we establish a controller design based on semi-definite programming with guaranteed stabilization of the underlying nonlinear system. As central ingredient, we derive proportional error bounds that vanish at the origin and are tailored to control tasks. We illustrate the developed method by means of several benchmark examples and highlight the advantages over state-of-the-art methods.
comment: Accepted for publication in Automatica
High Performance Distributed Control for Large-Scale Linear Systems: A Cover-Based Distributed Observer Approach
In recent years, the distributed-observer-based distributed control law has shown powerful ability to arbitrarily approximate the centralized control performance. However, the traditional distributed observer requires each local observer to reconstruct the state information of the whole system, which is unrealistic for large-scale scenarios. To fill this gap, This paper presents a coverage solution algorithm for large-scale systems that accounts for both physical and communication network characteristics, which can significantly reduce the dimension of local observers. Then, the cover-based distributed observer for large-scale systems is proposed to overcome the problem that the system dynamics are difficult to estimate due to the coupling between cover sets. Furthermore, the two-layer Lyapunov analysis method is adopted and the dynamic transformation lemma of compact errors is proved, which solves the problem of analyzing stability of the error dynamic of the cover-based distributed observer. Finally, it is proved that the distributed control law based on the cover-based distributed observer can also arbitrarily approximate the control performance of the centralized control law, and the dimension of the local observer is greatly reduced compared with the traditional method. The simulation results show the validity of the developed theories.
End-to-end guarantees for indirect data-driven control of bilinear systems with finite stochastic data
In this paper we propose an end-to-end algorithm for indirect data-driven control for bilinear systems with stability guarantees. We consider the case where the collected i.i.d. data is affected by probabilistic noise with possibly unbounded support and leverage tools from statistical learning theory to derive finite sample identification error bounds. To this end, we solve the bilinear identification problem by solving a set of linear and affine identification problems, by a particular choice of a control input during the data collection phase. We provide a priori as well as data-dependent finite sample identification error bounds on the individual matrices as well as ellipsoidal bounds, both of which are structurally suitable for control. Further, we integrate the structure of the derived identification error bounds in a robust controller design to obtain an exponentially stable closed-loop. By means of an extensive numerical study we showcase the interplay between the controller design and the derived identification error bounds. Moreover, we note appealing connections of our results to indirect data-driven control of general nonlinear systems through Koopman operator theory and discuss how our results may be applied in this setup.
Game Theoretic Resilience Recommendation Framework for CyberPhysical Microgrids Using Hypergraph MetaLearning
This paper presents a physics-aware cyberphysical resilience framework for radial microgrids under coordinated cyberattacks. The proposed approach models the attacker through a hypergraph neural network (HGNN) enhanced with model agnostic metalearning (MAML) to rapidly adapt to evolving defense strategies and predict high-impact contingencies. The defender is modeled via a bi-level Stackelberg game, where the upper level selects optimal tie-line switching and distributed energy resource (DER) dispatch using an Alternating Direction Method of Multipliers (ADMM) coordinator embedded within the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The framework simultaneously optimizes load served, operational cost, and voltage stability, ensuring all post-defense states satisfy network physics constraints. The methodology is first validated on the IEEE 69-bus distribution test system with 12 DERs, 8 critical loads, and 5 tie-lines, and then extended to higher bus systems including the IEEE 123-bus feeder and a synthetic 300-bus distribution system. Results show that the proposed defense strategy restores nearly full service for 90% of top-ranked attacks, mitigates voltage violations, and identifies Feeder 2 as the principal vulnerability corridor. Actionable operating rules are derived, recommending pre-arming of specific tie-lines to enhance resilience, while higher bus system studies confirm scalability of the framework on the IEEE 123-bus and 300-bus systems.
Climate Science and Control Engineering: Insights, Parallels, and Connections
Climate science is the multidisciplinary field that studies the Earth's climate and its evolution. At the very core of climate science are indispensable climate models that predict future climate scenarios, inform policy decisions, and dictate how a country's economy should change in light of the changing climate. Climate models capture a wide range of interacting dynamic processes via extremely complex ordinary and partial differential equations. To model these large-scale complex processes, climate science leverages supercomputers, advanced simulations, and statistical methods to predict future climate. An area of engineering that is rarely studied in climate science is control engineering. Given that climate systems are inherently dynamic, it is intuitive to analyze them within the framework of dynamic system science. This perspective has been underexplored in the literature. In this manuscript, we provide a tutorial that: (i) introduces the control engineering community to climate dynamics and modeling, including spatiotemporal scales and challenges in climate modeling; (ii) offers a fresh perspective on climate models from a control systems viewpoint; and (iii) explores the relevance and applicability of various advanced graph and network control-based approaches in building a physics-informed framework for learning, control and estimation in climate systems. We also present simple and then more complex climate models, depicting fundamental ideas and processes that are instrumental in building climate change projections. This tutorial also builds parallels and observes connections between various contemporary problems at the forefront of climate science and their control theoretic counterparts. We specifically observe that an abundance of climate science problems can be linguistically reworded and mathematically framed as control theoretic ones.
On the Detection of Shared Data Manipulation in Distributed Optimization
This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive a sufficient condition for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the performance of the detection condition on three data manipulation strategies with various levels of complexity and stealth. The simplest attack sends the target values and each iteration, the second attack uses a feedback loop to find the next target values, and the last attack uses a bilevel optimization to find the target values. We then extend the three data manipulation strategies to avoid detection by the detection conditions and a neural network (NN) detection model. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection condition successfully detects most of the data manipulation attacks. However, the bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack.
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
Understanding the Application of Utility Theory in Robotics and Artificial Intelligence: A Survey
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
comment: I am not sure whether withdrawing this paper is suitable. However, right now this paper has significant changes in its topic and author. So, I do not want to lead to any confusion about this paper. In the future, it will have a new version. I hope people will not have issues and confusion about the older one
Integrated Learning and Optimization to Control Load Demand and Wind Generation for Minimizing Ramping Cost in Real-Time Electricity Market
We developed a new integrated learning and optimization (ILO) methodology to predict context-aware unknown parameters in economic dispatch (ED), a crucial problem in power systems solved to generate optimal power dispatching decisions to serve consumer load. The ED formulation in the current study consists of load and renewable generation as unknown parameters in its constraints predicted using contextual information (e.g., prior load, temperature). The ILO framework train a neural network (NN) to estimate ED parameters by minimizing an application-specific regret function which is a difference between ground truth and NN-driven decisions favouring better ED decisions. We thoroughly analyze the feasible region of ED formulation to understand the impact of load and renewable learning together on the ED decisions. Corresponding to that we developed a new regret function to capture real-time electricity market operations where differences in predicted and true loads are corrected by ramping generators in real-time but at a higher cost than the market price. The proposed regret function when minimized using ILO framework train the NN to guide the load and renewable predictions to generate ED decisions favouring minimum generator ramping costs. This is unlike conventional sequential learning and optimization (SLO) framework which train NN to accurately estimate load and renewable instead of better ED decisions. The combined training of load and renewable using ILO is a new concept and lead to significantly improved ramping costs when compared with SLO based training of load and renewable and SLO trained load with 100% accurate renewable proving its decision-focused capability.
comment: The preprint was submitted to disseminate the idea as soon as possible and was submitted without asking one of the authors listed in the manuscript as he was the supervisor. Moreover, the submitted preprint mentions being submitted in a journal while it has not yet been submitted in a journal yet. The institute thus asked to withdraw the preprint
Systems and Control (EESS)
Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
Time-Optimal Model Predictive Control for Linear Systems with Multiplicative Uncertainties
This paper presents a time-optimal Model Predictive Control (MPC) scheme for linear discrete-time systems subject to multiplicative uncertainties represented by interval matrices. To render the uncertainty propagation computationally tractable, the set-valued error system dynamics are approximated using a matrix-zonotope-based bounding operator. Recursive feasibility and finite-time convergence are ensured through an adaptive terminal constraint mechanism. A key advantage of the proposed approach is that all the necessary bounding sets can be computed offline, substantially reducing the online computational burden. The effectiveness of the method is illustrated via a numerical case study on an orbital rendezvous maneuver between two satellites.
Pareto-Optimal Sampling and Resource Allocation for Timely Communication in Shared-Spectrum Low-Altitude Networks
Guaranteeing stringent data freshness for low-altitude unmanned aerial vehicles (UAVs) in shared spectrum forces a critical trade-off between two operational costs: the UAV's own energy consumption and the occupation of terrestrial channel resources. The core challenge is to satisfy the aerial data freshness while finding a Pareto-optimal balance between these costs. Leveraging predictive channel models and predictive UAV trajectories, we formulate a bi-objective Pareto optimization problem over a long-term planning horizon to jointly optimize the sampling timing for aerial traffic and the power and spectrum allocation for fair coexistence. However, the problem's non-convex, mixed-integer nature renders classical methods incapable of fully characterizing the complete Pareto frontier. Notably, we show monotonicity properties of the frontier, building on which we transform the bi-objective problem into several single-objective problems. We then propose a new graph-based algorithm and prove that it can find the complete set of Pareto optima with low complexity, linear in the horizon and near-quadratic in the resource block (RB) budget. Numerical comparisons show that our approach meets the stringent timeliness requirement and achieves a six-fold reduction in RB utilization or a 6 dB energy saving compared to benchmarks.
Graph approach for observability analysis in power system dynamic state estimation
The proposed approach yields a numerical method that provably executes in linear time with respect to the number of nodes and edges in a graph. The graph, constructed from the power system model, requires only knowledge of the dependencies between state-to-state and output-to-state variables within a state-space framework. While graph-based observability analysis methods exist for power system static-state estimation, the approach presented here is the first for dynamic-state estimation (DSE). We examine decentralized and centralized DSE scenarios and compare our findings with a well-established, albeit non-scalable, observability analysis method in the literature. When compared to the latter in a centralized DSE setting, our method reduced computation time by 1440x.
Statistically Adaptive Differential Protection for AC Microgrids Based on Kullback-Leibler Divergence
The proliferation of inverter-based resources challenges traditional microgrid protection by introducing variable fault currents and complex transients. This paper presents a statistically adaptive differential protection scheme based on Kullback-Leibler divergence, implemented via a Bartlett-corrected G-statistic computed on logarithm-transformed current magnitudes. The method is a multivariate fault detection engine that employs the Mahalanobis distance to distinguish healthy and faulty states, enabling robust detection even in noisy environments. Detection thresholds are statistically derived from a chi-squared distribution for precise control over the false alarm rate. Upon detection, a lightweight classifier identifies the fault type by assessing per-phase G-statistics against dedicated thresholds, enhanced by a temporal persistence filter for security. Extensive simulations on a modified CIGRE 14-bus microgrid show high efficacy: sub-cycle average detection delays, high detection and classification accuracy across operating modes, resilience to high-impedance faults up to 250 Ohms, tolerance to 10 ms communication delay, and noise levels down to a 20 dB signal-to-noise ratio. These findings demonstrate a reproducible and computationally efficient solution for next-generation AC microgrid protection.
Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
comment: 34 pages, 9 figures. Code available at https://github.com/RedaElMakroum/agentic-ai-hems
Optimal Bidding and Coordinated Dispatch of Hybrid Energy Systems in Regulation Markets
The increasing integration of renewable energy sources and distributed energy resources (DER) into modern power systems introduces significant uncertainty, posing challenges for maintaining grid flexibility and reliability. Hybrid energy systems (HES), composed of controllable generators, flexible loads, and battery storage, offer a decentralized solution to enhance flexibility compared to single centralized resources. This paper presents a two-level framework to enable HES participation in frequency regulation markets. The upper level performs a chance-constrained optimization to choose capacity bids based on historical regulation signals. At the lower level, a real-time control strategy disaggregates the regulation power among the constituent resources. This real-time control strategy is then benchmarked against an offline optimal dispatch to evaluate flexibility performance. Additionally, the framework evaluates the profitability of overbidding strategies and identifies thresholds beyond which performance degradation may lead to market penalties or disqualification. The proposed framework also compare the impact of imbalance of power capacities on performance and battery state of charge (SoC) through asymmetric HES configurations.
Two-Timescale Optimization Framework for IAB-Enabled Heterogeneous UAV Networks
In post-disaster scenarios, the rapid deployment of adequate communication infrastructure is essential to support disaster search, rescue, and recovery operations. To achieve this, uncrewed aerial vehicle (UAV) has emerged as a promising solution for emergency communication due to its low cost and deployment flexibility. However, conventional untethered UAV (U-UAV) is constrained by size, weight, and power (SWaP) limitations, making it incapable of maintaining the operation of a macro base station. To address this limitation, we propose a heterogeneous UAV-based framework that integrates tethered UAV (T-UAV) and U-UAVs, where U-UAVs are utilized to enhance the throughput of cell-edge ground user equipments (G-UEs) and guarantee seamless connectivity during G-UEs' mobility to safe zones. It is noted that the integrated access and backhaul (IAB) technique is adopted to support the wireless backhaul of U-UAVs. Accordingly, we formulate a two-timescale joint user scheduling and trajectory control optimization problem, aiming to maximize the downlink throughput under asymmetric traffic demands and G-UEs' mobility. To solve the formulated problem, we proposed a two-timescale multi-agent deep deterministic policy gradient (TTS-MADDPG) algorithm based on the centralized training and distributed execution paradigm. Numerical results show that the proposed algorithm outperforms other benchmarks, including the two-timescale multi-agent proximal policy optimization (TTS-MAPPO) algorithm and MADDPG scheduling method, with robust and higher throughput. Specifically, the proposed algorithm obtains up to 12.2\% average throughput gain compared to the MADDPG scheduling method.
Proxemics and Permeability of the Pedestrian Group
People tend to walk in groups, and interactions with those groups have a significant impact on crowd behavior and pedestrian traffic dynamics. Social norms can be seen as unwritten rules regulating people interactions in social settings. This article studies people interactions with groups and the emergence of group proxemics. Group zones, zone occupancy counts and people clearance from the group are studied using naturalistic data. Analysis indicate potential presence of three different zones in addition to the public zone. People tend to remain in the public zone and only progressively get closer to groups, and those closer approaches happen in a low frequency and for brief periods of time.
Life-cycle Modeling and the Walking Behavior of the Pedestrian-Group as an Emergent Agent: With Empirical Data on the Cohesion of the Group Formation
This article investigates the pedestrian group as an emergent agent. The article explores empirical data to derive emergent agency and formation state spaces and outline recurring patterns of walking behavior. In this analysis, pedestrian trajectories extracted from surveillance videos are used along with manually annotated pedestrian group memberships. We conducted manual expert evaluation of observed groups, produced new manual annotations for relevant events pertaining to group behavior and extracted metrics relevant group formation. This information along with quantitative analysis was used to model the life-cycle and formation of the group agent. Those models give structure to expectations around walking behavior of groups; from pedestrian walking independently to the emergence of a collective intention where group members tended to maintain bounded distance between each other. Disturbances to this bounded distance often happened in association with changes in either their agency or their formation states. We summarized the patterns of behavior along with the sequences of state transitions into abstract patterns, which can aid in the development of more detailed group agents in simulation and in the design of engineering systems to interact with such groups.
Efficient Collision-Avoidance Constraints for Ellipsoidal Obstacles in Optimal Control: Application to Path-Following MPC and UAVs
This article proposes a modular optimal control framework for local three-dimensional ellipsoidal obstacle avoidance, exemplarily applied to model predictive path-following control. Static as well as moving obstacles are considered. Central to the approach is a computationally efficient and continuously differentiable condition for detecting collisions with ellipsoidal obstacles. A novel two-stage optimization approach mitigates numerical issues arising from the structure of the resulting optimal control problem. The effectiveness of the approach is demonstrated through simulations and real-world experiments with the Crazyflie quadrotor. This represents the first hardware demonstration of an MPC controller of this kind for UAVs in a three-dimensional task.
Safety Margins of Inverse Optimal ISSf Controllers
We investigate the gain margin of a general nonlinear system under an inverse optimal input-to-state safe (ISSf) controller of the form u=u0(x)+u*(x,u0), where u0 is the nominal control and u* is the inverse optimal safety filter that minimally modifies the nominal controller's unsafe actions over the infinite horizon. By first establishing a converse ISSf-BF theorem, we reveal the equivalence among the achievability of ISSf by feedback, the achievability of inverse optimality, and the solvability of a Hamilton-Jacobi-Isaacs equation associated with the inverse optimal ISSf gain assignment. Then we develop a collection of safety margin results on the overall control u=u0+u*. In the absence of disturbances, we find that standard inverse optimal safe controllers have a certain degree of gain margin. Specifically, when f(x) acts safely but u0 acts unsafely, the gain can be decreased by up to half; and when f(x) acts unsafely, we establish that, if u0 acts safely, the gain can be increased arbitrarily, whereas if u0 acts unsafely, the control recovers the full gain margin [1/2,inf). It is shown, however, that under control gain variation, the safe set of these controllers is locally asymptotically stable, which implies that their safety is sensitive to large but bounded disturbances. To make inverse optimal ISSf controllers robust to gain variation, we propose a gain margin improvement approach at the expense of an increased control effort. This improvement allows the inverse optimal safe control to inherit the standard gain margin of [1/2,inf) without requiring prior knowledge of whether f(x) or u0 acts safely on the safety boundary, while simultaneously ensuring global asymptotic stability of the resulting safe set. In the presence of disturbances, this improvement idea renders inverse optimal ISSf controllers robust to gain variations with the same gain margin of [1/2,inf).
XWAVE: A Novel Software-Defined Everything Approach for the Manufacturing Industry
The manufacturing sector is moving from rigid, hardware-dependent systems toward flexible, software-driven environments. This transformation is shaped by the convergence of several Software-Defined technologies: Software-Defined Automation virtualizes industrial control, replacing proprietary PLCs with containerized, programmable solutions that enable scalability and interoperability. Software-Defined Compute and Communications provide a means to distribute intelligence seamlessly across devices, networks, and cloud platforms, reducing latency and enabling dynamic reconfiguration. Software-Defined Manufacturing Systems, usually implemented as Digital Twins, are real-time virtual models of machines and processes, allowing predictive analysis, optimization, and closer integration between human operators and intelligent systems. This work presents XWAVE, a project that unites these three Software-Defined paradigms to present a modular, fully software-defined manufacturing system.
Command-filter-based trajectory-tracking control of quadrotor subject to internal and external disturbances
We propose a command-filter backstepping controller that integrates a disturbance observer and a high-gain observer (HGO) to handle unknown internal and external disturbances acting on a quadrotor. To build the controller, we first define tracking errors between the measured and desired quadrotor outputs, which allow the system to be rewritten in a new set of state variables. Using this transformed model, we apply Lyapunov theory to derive a backstepping control law. To avoid repeated differentiation of states and virtual controls, a first-order command filter is introduced, and a nonlinear disturbance observer is added to provide disturbance estimates. Each state in the controller and observer is replaced with its estimate from the HGO. The resulting control law enables the quadrotor to follow its path despite internal and external disturbances, with each subsystem allowed its own disturbance type for realism. A new state transformation and Lyapunov-based derivation prevent the usual explosion of complexity, while the HGO reconstructs unmeasured states and their rates for output feedback. The nonlinear disturbance observer attenuates constant and nonlinear disturbances as well as band-limited white noise. The method reduces dependence on high-precision sensors and mitigates wind, model error, and rotor noise effects during flight. Unlike previous studies that treat either disturbance rejection or partial sensing, this work combines the command filter, disturbance observer, and HGO to address both challenges simultaneously while avoiding the complexity growth typical of backstepping designs.
Cooperative Task Spaces for Multi-Arm Manipulation Control based on Similarity Transformations
Many tasks in human environments require collaborative behavior between multiple kinematic chains, either to provide additional support for carrying big and bulky objects or to enable the dexterity that is required for in-hand manipulation. Since these complex systems often have a very high number of degrees of freedom coordinating their movements is notoriously difficult to model. In this article, we present the derivation of the theoretical foundations for cooperative task spaces of multi-arm robotic systems based on geometric primitives defined using conformal geometric algebra. Based on the similarity transformations of these cooperative geometric primitives, we derive an abstraction of complex robotic systems that enables representing these systems in a way that directly corresponds to single-arm systems. By deriving the associated analytic and geometric Jacobian matrices, we then show the straightforward integration of our approach into classical control techniques rooted in operational space control. We demonstrate this using bimanual manipulators, humanoids and multi-fingered hands in optimal control experiments for reaching desired geometric primitives and in teleoperation experiments using differential kinematics control. We then discuss how the geometric primitives naturally embed nullspace structures into the controllers that can be exploited for introducing secondary control objectives. This work, represents the theoretical foundations of this cooperative manipulation control framework, and thus the experiments are presented in an abstract way, while giving pointers towards potential future applications.
From Embedding to Control: Representations for Stochastic Multi-Object Systems
This paper studies how to achieve accurate modeling and effective control in stochastic nonlinear dynamics with multiple interacting objects. However, non-uniform interactions and random topologies make this task challenging. We address these challenges by proposing \textit{Graph Controllable Embeddings} (GCE), a general framework to learn stochastic multi-object dynamics for linear control. Specifically, GCE is built on Hilbert space embeddings, allowing direct embedding of probability distributions of controlled stochastic dynamics into a reproducing kernel Hilbert space (RKHS), which enables linear operations in its RKHS while retaining nonlinear expressiveness. We provide theoretical guarantees on the existence, convergence, and applicability of GCE. Notably, a mean field approximation technique is adopted to efficiently capture inter-object dependencies and achieve provably low sample complexity. By integrating graph neural networks, we construct data-dependent kernel features that are capable of adapting to dynamic interaction patterns and generalizing to even unseen topologies with only limited training instances. GCE scales seamlessly to multi-object systems of varying sizes and topologies. Leveraging the linearity of Hilbert spaces, GCE also supports simple yet effective control algorithms for synthesizing optimal sequences. Experiments on physical systems, robotics, and power grids validate GCE and demonstrate consistent performance improvement over various competitive embedding methods in both in-distribution and few-shot tests
Design of Orthogonal Phase of Arrival Positioning Scheme Based on 5G PRS and Optimization of TOA Performance
This study analyzes the performance of positioning techniques based on configuration changes of 5G New Radio signals. In 5G networks, a terminal position is determined from the Time of Arrival of Positioning Reference Signals transmitted by base stations. We propose an algorithm that improves TOA accuracy under low sampling rate constraints and implement 5G PRS for positioning in a software defined modem. We also examine how flexible time frequency resource allocation of PRS affects TOA estimation accuracy and discuss optimal PRS configurations for a given signal environment.
Confidential FRIT via Homomorphic Encryption
Edge computing alleviates the computation burden of data-driven control in cyber-physical systems (CPSs) by offloading complex processing to edge servers. However, the increasing sophistication of cyberattacks underscores the need for security measures that go beyond conventional IT protections and address the unique vulnerabilities of CPSs. This study proposes a confidential data-driven gain-tuning framework using homomorphic encryption, such as ElGamal and CKKS encryption schemes, to enhance cybersecurity in gain-tuning processes outsourced to external servers. The idea for realizing confidential FRIT is to replace the matrix inversion operation with a vector summation form, allowing homomorphic operations to be applied. Numerical examples under 128-bit security confirm performance comparable to conventional methods while providing guidelines for selecting suitable encryption schemes for secure CPS.
Green Wireless Network Scaling for Joint Deployment: Multi-BSs or Multi-RISs?
The imminent emergence of sixth-generation (6G) networks faces critical challenges from spatially heterogeneous traffic and escalating energy consumption, necessitating sustainable scaling strategies for network infrastructure such as base stations (BSs) and reconfigurable intelligent surfaces (RISs). This paper establishes fundamental scaling laws for the Integrated Relative Energy Efficiency (IREE) metric under joint multi-BS and multi-RIS deployment in traffic-mismatched scenarios. Specifically, we propose an Alternating Directional Dual-Radial Basis Function (ADD-RBF) framework that models the channels of BSs and RISs as two type of spatially decoupled RBF neurons to maximize IREE through alternative optimization, with proven universal approximation capability and convergence guarantees. Theoretical analysis reveals a scaling dichotomy: BS proliferation drives logarithmic capacity growth $\mathcal{O}(\log N^{BS})$ but only polynomial mismatch reduction $\mathcal{O}(1/\sqrt{N^{BS}})$, whereas RIS deployment achieves exponential mismatch mitigation $\mathcal{O}(\delta_{\text{err}}^{-(N^R+1)})$ despite its sub-logarithmic capacity gains. Simulation results validate that RISs excel in capturing spatial traffic correlations and alleviating hotspots, making them particularly effective when mismatch dominates, while BSs are preferable under capacity shortages. These findings offer practical guidelines for green 6G network design.
A Scenario-Based Approach for Stochastic Economic Model Predictive Control with an Expected Shortfall Constraint
This paper presents a novel approach to stochastic economic model predictive control (SEMPC) that minimizes average economic cost while satisfying an empirical expected shortfall (EES) constraint to manage risk. A new scenario-based problem formulation ensuring controlled risk with high confidence while minimizing the average cost is introduced. The probabilistic guarantees is dependent on the number of support elements over the entire input domain, which is difficult to find for high-dimensional systems. A heuristic algorithm is proposed to find the number of support elements. Finally, an efficient method is presented to reduce the computational complexity of the SEMPC problem with an EES constraint. The approach is validated on a water distribution network, showing its effectiveness in balancing performance and risk.
Competitive Equilibrium for Electricity Markets with Spatially Flexible Load
Electric vehicle charging and geo-distributed datacenters introduce spatially flexible loads (FLs) that couple power, transportation, and datacenter networks. These couplings create a closed-loop feedback between locational marginal prices (LMPs) and decisions of the FL systems, challenging the foundations of conventional competitive equilibrium (CE) in electricity markets. This paper studies a notion of generalized competitive equilibrium (GCE) that aims to capture such price-demand interactions across the interconnected infrastructures. We establish structural conditions under which the GCE preserves key properties of the conventional CE, including existence, uniqueness, and efficiency, without requiring detailed knowledge of decision processes for individual FL systems. The framework generalizes to settings where the grid is coupled with multiple FL systems. Stylized examples and case studies on the New York ISO grid, coupled with the Sioux Falls transportation and distributed datacenter networks, demonstrate the use of our theoretical framework and illustrate the mutual influence among the grid and the studied FL systems.
SUSTAINABLE Platform: Seamless Smart Farming Integration Towards Agronomy Automation SC2
The global agricultural sector is undergoing a transformative shift, driven by increasing food demands, climate variability and the need for sustainable practices. SUSTAINABLE is a smart farming platform designed to integrate IoT, AI, satellite imaging, and role-based task orchestration to enable efficient, traceable, and sustainable agriculture with a pilot usecase in viticulture. This paper explores current smart agriculture solutions, presents a comparative evaluation, and introduces SUSTAINABLE's key features, including satellite index integration, real-time environmental data, and role-aware task management tailored to Mediterranean vineyards.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
Dispatchable Current Source Virtual Oscillator Control Achieving Global Stability
This work introduces a novel dispatchable current source virtual oscillator control (dCVOC) scheme for grid-following (GFL) converters, which exhibits duality with dispatchable virtual oscillator control (dVOC) in two ways: a) the current frequency is generated through reactive power control, similar to a PLL ; b) the current magnitude reference is generated through active power control. We formally prove that our proposed control always admits a steady-state equilibrium and ensures global stability under reasonable conditions on grid and converter parameters, even when considering LVRT and current saturation constraints. Our approach avoids low-voltage transients and weak grid instability, which is not the case for conventional GFL control. The effectiveness of our proposed control is verified through high-fidelity electromagnetic transient simulations.
Quantitative Parameter Conditions for Stability and Coupling in GFM-GFL Converter Hybrid Systems from a Small-Signal Synchronous Perspective
With the development of renewable energy sources, power systems are gradually evolving into a system comprising both grid-forming (GFM) and grid-following (GFL) converters. However, the dynamic interaction between the two types of converters, especially low-inertia GFM converters and GFL converters, remains unclear due to the substantial differences in their synchronization mechanisms. To address this gap, this paper develops a small-signal synchronous stability model for power systems containing GFM and GFL converters, which considers network line dynamics. Based on subspace perturbation theory, we reveal that GFM and GFL subsystems can be effectively decoupled when GFL converters operate near unity power factor or when GFM converters possess sufficiently large inertia or damping, and provide lower bound of control parameters ensuring decoupling. Under the decoupling condition, we propose decentralized and analytical parameter-based stability criteria which have clear physical interpretations: the positive damping of converters compensates for the negative damping of the network. In the case of coupling, we also propose decentralized stability criteria based on the small phase theorem. The effectiveness of the theoretical analysis is validated through simulations in MATLAB/Simulink.
Adaptive Control for a Physics-Informed Model of a Thermal Energy Distribution System: Qualitative Analysis
Integrated energy systems (IES) are complex heterogeneous architectures that typically encompass power sources, hydrogen electrolyzers, energy storage, and heat exchangers. This integration is achieved through operating control strategy optimization. However, the lack of physical understanding as to how these systems evolve over time introduces uncertainties that hinder reliable application thereof. Techniques that can accommodate such uncertainties are fundamental for ensuring proper operation of these systems. Unfortunately, no unifying methodology exists for accommodating uncertainties in this regard. That being said, adaptive control (AC) is a discipline that may allow for accommodating such uncertainties in real-time. In the present work, we derive an AC formulation for linear systems in which all states are observable and apply it to the control of a glycol heat exchanger (GHX) in an IES. Based on prior research in which we quantified the uncertainties of the GHXs system dynamics, we introduced an error of 50% on four terms of the nominal model. In the case where a linear quadratic regulator is used as the nominal control for the reference system, we found that employing AC can reduce the mean absolute error and integral time absolute error by a factor of 30%-75%. This reduction is achieved with minimal computing overhead and control infrastructure, thus underscoring the strength of AC. However, the control effort induced is significant, therefore warranting further study in order to estimate its impact on a physical system. To address further challenges, including partially observable and non-linear dynamics, enhancements of the linear formulation are currently being developed.
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Strength
Grid-forming (GFM) technology is widely regarded as a promising solution for future power systems dominated by power electronics. However, a precise method for quantifying GFM converter behavior and a universally accepted GFM definition remain elusive. Moreover, the impact of GFM on system stability is not precisely quantified, creating a significant disconnect between device and system levels. To address these gaps from a small-signal perspective, at the device level, we introduce a novel metric, the Forming Index (FI) to quantify a converter's response to grid voltage fluctuations. Rather than enumerating various control architectures, the FI provides a metric for the converter's GFM ability by quantifying its sensitivity to grid variations. At the system level, we propose a new quantitative measure of system strength that captures the multi-bus voltage stiffness, which quantifies the voltage and phase angle responses of multiple buses to current or power disturbances. We further extend this concept to grid strength and bus strength to identify weak areas within the system. Finally, we bridge the device and system levels by formally proving that GFM converters enhance system strength. Our proposed framework provides a unified benchmark for GFM converter design, optimal placement, and system stability assessment.
Ferrohydrodynamic Microfluidics for Bioparticle Separation and Single-Cell Phenotyping: Principles, Applications, and Emerging Directions
Ferrohydrodynamic microfluidics relies on magnetic field gradients to manipulate diamagnetic particles in ferrofluid-filled microenvironments. It has emerged as a promising tool for label-free manipulation of bioparticles, including their separation and phenotyping. This perspective reviews recent progress in the development and applications of ferrofluid-based microfluidic platforms for multiscale bioparticle separation, ranging from micron-scale cells to submicron extracellular vesicles. We highlight the fundamental physical principles for ferrohydrodynamic manipulation, including the dominant magnetic buoyancy force resulting from the interaction of ferrofluids and particles. We then describe how these principles enable high-resolution size-based bioparticle separation, subcellular bioparticle enrichment, and phenotypic screening based on physical traits. We also discuss key challenges in ferrohydrodynamic microfluidics from the aspects of ferrofluid biocompatibility, system throughput, and nanoparticle depletion. Finally, we outline future research directions involving machine learning, 3D printing, and multiplexed detection. These insights chart a path for advancing ferrofluid-based technologies in precision biomedicine, diagnostics, and cellular engineering.
Cooperative Integrated Estimation-Guidance for Simultaneous Interception of Moving Targets
This paper proposes a cooperative integrated estimation-guidance framework for simultaneous interception of a non-maneuvering target using a team of unmanned autonomous vehicles, assuming only a subset of vehicles are equipped with dedicated sensors to measure the target's states. Unlike earlier approaches that focus solely on either estimation or guidance design, the proposed framework unifies both within a cooperative architecture. To circumvent the limitation posed by heterogeneity in target observability, sensorless vehicles estimate the target's state by leveraging information exchanged with neighboring agents over a directed communication topology through a prescribed-time observer. The proposed approach employs true proportional navigation guidance (TPNG), which uses an exact time-to-go formulation and is applicable across a wide spectrum of target motions. Furthermore, prescribed-time observer and controller are employed to achieve convergence to true target's state and consensus in time-to-go within set predefined times, respectively. Simulations demonstrate the effectiveness of the proposed framework under various engagement scenarios.
Finite Sample MIMO System Identification with Multisine Excitation: Nonparametric, Direct, and Two-step Parametric Estimators
Multisine excitations are widely used for identifying multi-input multi-output systems due to their periodicity, data compression properties, and control over the input spectrum. Despite their popularity, the finite sample statistical properties of frequency-domain estimators under multisine excitation, for both nonparametric and parametric settings, remain insufficiently understood. This paper develops a finite-sample statistical framework for least-squares estimation of the frequency response function (FRF) and its implications for parametric modeling. First, we derive exact distributional and covariance properties of the FRF estimator, explicitly accounting for aliasing effects under slow sampling regimes, and establish conditions for unbiasedness, uncorrelatedness, and consistency across multiple experiments. Second, we show that the FRF estimate is a sufficient statistic for any parametric model under Gaussian noise, leading to an exact equivalence between optimal two stage frequency-domain methods and time-domain prediction error and maximum likelihood estimation. This equivalence is shown to yield finite-sample concentration bounds for parametric maximum likelihood estimators, enabling rigorous uncertainty quantification, and closed-form prediction error method estimators without iterative optimization. The theoretical results are demonstrated in a representative case study.
comment: 16 pages, 4 figures
Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability
In this work, we study data-driven stabilization of linear time-invariant systems using prior knowledge of system-theoretic properties, specifically stabilizability and controllability. To formalize this, we extend the concept of data informativity by requiring the existence of a controller that stabilizes all systems consistent with the data and the prior knowledge. We show that if the system is controllable, then incorporating this as prior knowledge does not relax the conditions required for data-driven stabilization. Remarkably, however, we show that if the system is stabilizable, then using this as prior knowledge leads to necessary and sufficient conditions that are weaker than those for data-driven stabilization without prior knowledge. In other words, data-driven stabilization is easier if one knows that the underlying system is stabilizable. We also provide new data-driven control design methods in terms of linear matrix inequalities that complement the conditions for informativity.
comment: 6 pages
Decentralized Merging Control of Connected and Automated Vehicles to Enhance Safety and Energy Efficiency using Control Barrier Functions
This paper presents a decentralized Control Barrier Function (CBF) based approach for highway merging of Connected and Automated Vehicles (CAVs). In this control algorithm, each "host" vehicle negotiates with other agents in a control zone of the highway network, and enacts its own action, to perform safe and energy-efficient merge maneuvers. It uses predictor-corrector loops within the robust CBF setting for negotiation and to reconcile disagreements that may arise. There is no explicit order of vehicles and no priority. A notable feature is absence of gridlocks due to instability of the inter-agent system. Results from Monte Carlo simulations show significant improvement in the system-wide energy efficiency and traffic flow compared to a first-in-first-out approach, as well as enhanced robustness of the proposed decentralized controller compared to its centralized counterpart.
comment: This work has been submitted to a conference for possible publication and is under review. Paper summary: 8 pages, 5 figures, 2 tables
Recursive Experiment Design for Closed-Loop Identification with Output Perturbation Limits
In many applications, system identification experiments must be performed under output feedback to ensure safety or to maintain system operation. In this paper, we consider the online design of informative experiments for ARMAX models by applying a bounded perturbation to the input signal generated by a fixed output feedback controller. Specifically, the design constrains the resulting output perturbation within user-specified limits and can be efficiently computed in closed form. We demonstrate the effectiveness of the method in a numerical experiment.
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity $L$ and deadline constraints $T$. The system operates in discrete time, with each arriving truck assigned a deadline of $T$ slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy $\pi^\star$ for $L = 3$, extending insights to arbitrary $L$. We prove certain monotonicity properties of the optimal policy in the state space $\mathcal{S}$ and identify classes of unreachable states. Moreover, since the size of $\mathcal{S}$ grows exponentially with $L$ and $T$, we propose heuristics -- including conditional and deep-learning based approaches -- that exploit these structural insights while maintaining low computational complexity.
Convex computation of regions of attraction from data using Sums-of-Squares programming
The paper concentrates on the analysis of the Region of Attraction (RoA) for unknown autonomous dynamical systems. The aim is to explore a data-driven approach based on moment Sum-of-Squares (SoS) hierarchy, which enables novel RoA outer approximations despite the reduced information on the structure of the dynamics. The main contribution of this work is bypassing the system model and, consequently, the recurring constraint on its polynomial structure. Numerical experimentation showcases the influence of data on learned approximating sets, offering a promising outlook on the potential of this method.
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Reinforcement learning (RL) is a powerful framework for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We address this challenge by incorporating prior model knowledge to guide exploration and accelerate the learning process. Specifically, we assume access to a model set that contains the true transition kernel and reward function. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also prove finite-time convergence to the optimal policy under mild assumptions. We demonstrate the effectiveness of the proposed exploration strategy, which we call BUMEX (Bounded Uncertainty Model-based Exploration), in a simulation study. The results indicate that the proposed method can significantly accelerate learning in benchmark examples. A toolbox is available at https://github.com/JvHulst/BUMEX.
comment: Accepted for Presentation at 64th IEEE Conference on Decision and Control, CDC 2025, Rio de Janeiro, Brazil, 2025
Agile and Cooperative Aerial Manipulation of a Cable-Suspended Load
Quadrotors can carry slung loads to hard-to-reach locations at high speed. Since a single quadrotor has limited payload capacities, using a team of quadrotors to collaboratively manipulate a heavy object is a scalable and promising solution. However, existing control algorithms for multi-lifting systems only enable low-speed and low-acceleration operations due to the complex dynamic coupling between quadrotors and the load, limiting their use in time-critical missions such as search and rescue. In this work, we present a solution to significantly enhance the agility of cable-suspended multi-lifting systems. Unlike traditional cascaded solutions, we introduce a trajectory-based framework that solves the whole-body kinodynamic motion planning problem online, accounting for the dynamic coupling effects and constraints between the quadrotors and the load. The planned trajectory is provided to the quadrotors as a reference in a receding-horizon fashion and is tracked by an onboard controller that observes and compensates for the cable tension. Real-world experiments demonstrate that our framework can achieve at least eight times greater acceleration than state-of-the-art methods to follow agile trajectories. Our method can even perform complex maneuvers such as flying through narrow passages at high speed. Additionally, it exhibits high robustness against load uncertainties and does not require adding any sensors to the load, demonstrating strong practicality.
comment: 38 pages, 11 figures
SafEDMD: A Koopman-based data-driven controller design framework for nonlinear dynamical systems
The Koopman operator serves as the theoretical backbone for machine learning of dynamical control systems, where the operator is heuristically approximated by extended dynamic mode decomposition (EDMD). In this paper, we propose SafEDMD, a novel stability- and feedback-oriented EDMD-based controller design framework. Our approach leverages a reliable surrogate model generated in a data-driven fashion in order to provide closed-loop guarantees. In particular, we establish a controller design based on semi-definite programming with guaranteed stabilization of the underlying nonlinear system. As central ingredient, we derive proportional error bounds that vanish at the origin and are tailored to control tasks. We illustrate the developed method by means of several benchmark examples and highlight the advantages over state-of-the-art methods.
comment: Accepted for publication in Automatica
High Performance Distributed Control for Large-Scale Linear Systems: A Cover-Based Distributed Observer Approach
In recent years, the distributed-observer-based distributed control law has shown powerful ability to arbitrarily approximate the centralized control performance. However, the traditional distributed observer requires each local observer to reconstruct the state information of the whole system, which is unrealistic for large-scale scenarios. To fill this gap, This paper presents a coverage solution algorithm for large-scale systems that accounts for both physical and communication network characteristics, which can significantly reduce the dimension of local observers. Then, the cover-based distributed observer for large-scale systems is proposed to overcome the problem that the system dynamics are difficult to estimate due to the coupling between cover sets. Furthermore, the two-layer Lyapunov analysis method is adopted and the dynamic transformation lemma of compact errors is proved, which solves the problem of analyzing stability of the error dynamic of the cover-based distributed observer. Finally, it is proved that the distributed control law based on the cover-based distributed observer can also arbitrarily approximate the control performance of the centralized control law, and the dimension of the local observer is greatly reduced compared with the traditional method. The simulation results show the validity of the developed theories.
End-to-end guarantees for indirect data-driven control of bilinear systems with finite stochastic data
In this paper we propose an end-to-end algorithm for indirect data-driven control for bilinear systems with stability guarantees. We consider the case where the collected i.i.d. data is affected by probabilistic noise with possibly unbounded support and leverage tools from statistical learning theory to derive finite sample identification error bounds. To this end, we solve the bilinear identification problem by solving a set of linear and affine identification problems, by a particular choice of a control input during the data collection phase. We provide a priori as well as data-dependent finite sample identification error bounds on the individual matrices as well as ellipsoidal bounds, both of which are structurally suitable for control. Further, we integrate the structure of the derived identification error bounds in a robust controller design to obtain an exponentially stable closed-loop. By means of an extensive numerical study we showcase the interplay between the controller design and the derived identification error bounds. Moreover, we note appealing connections of our results to indirect data-driven control of general nonlinear systems through Koopman operator theory and discuss how our results may be applied in this setup.
Game Theoretic Resilience Recommendation Framework for CyberPhysical Microgrids Using Hypergraph MetaLearning
This paper presents a physics-aware cyberphysical resilience framework for radial microgrids under coordinated cyberattacks. The proposed approach models the attacker through a hypergraph neural network (HGNN) enhanced with model agnostic metalearning (MAML) to rapidly adapt to evolving defense strategies and predict high-impact contingencies. The defender is modeled via a bi-level Stackelberg game, where the upper level selects optimal tie-line switching and distributed energy resource (DER) dispatch using an Alternating Direction Method of Multipliers (ADMM) coordinator embedded within the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The framework simultaneously optimizes load served, operational cost, and voltage stability, ensuring all post-defense states satisfy network physics constraints. The methodology is first validated on the IEEE 69-bus distribution test system with 12 DERs, 8 critical loads, and 5 tie-lines, and then extended to higher bus systems including the IEEE 123-bus feeder and a synthetic 300-bus distribution system. Results show that the proposed defense strategy restores nearly full service for 90% of top-ranked attacks, mitigates voltage violations, and identifies Feeder 2 as the principal vulnerability corridor. Actionable operating rules are derived, recommending pre-arming of specific tie-lines to enhance resilience, while higher bus system studies confirm scalability of the framework on the IEEE 123-bus and 300-bus systems.
Climate Science and Control Engineering: Insights, Parallels, and Connections
Climate science is the multidisciplinary field that studies the Earth's climate and its evolution. At the very core of climate science are indispensable climate models that predict future climate scenarios, inform policy decisions, and dictate how a country's economy should change in light of the changing climate. Climate models capture a wide range of interacting dynamic processes via extremely complex ordinary and partial differential equations. To model these large-scale complex processes, climate science leverages supercomputers, advanced simulations, and statistical methods to predict future climate. An area of engineering that is rarely studied in climate science is control engineering. Given that climate systems are inherently dynamic, it is intuitive to analyze them within the framework of dynamic system science. This perspective has been underexplored in the literature. In this manuscript, we provide a tutorial that: (i) introduces the control engineering community to climate dynamics and modeling, including spatiotemporal scales and challenges in climate modeling; (ii) offers a fresh perspective on climate models from a control systems viewpoint; and (iii) explores the relevance and applicability of various advanced graph and network control-based approaches in building a physics-informed framework for learning, control and estimation in climate systems. We also present simple and then more complex climate models, depicting fundamental ideas and processes that are instrumental in building climate change projections. This tutorial also builds parallels and observes connections between various contemporary problems at the forefront of climate science and their control theoretic counterparts. We specifically observe that an abundance of climate science problems can be linguistically reworded and mathematically framed as control theoretic ones.
On the Detection of Shared Data Manipulation in Distributed Optimization
This paper investigates the vulnerability of the Alternating Direction Method of Multipliers (ADMM) algorithm to shared data manipulation, with a focus on solving optimal power flow (OPF) problems. Deliberate data manipulation may cause the ADMM algorithm to converge to suboptimal solutions. We derive a sufficient condition for detecting data manipulation based on the theoretical convergence trajectory of the ADMM algorithm. We evaluate the performance of the detection condition on three data manipulation strategies with various levels of complexity and stealth. The simplest attack sends the target values and each iteration, the second attack uses a feedback loop to find the next target values, and the last attack uses a bilevel optimization to find the target values. We then extend the three data manipulation strategies to avoid detection by the detection conditions and a neural network (NN) detection model. We also propose an adversarial NN training framework to detect shared data manipulation. We illustrate the performance of our data manipulation strategy and detection framework on OPF problems. The results show that the proposed detection condition successfully detects most of the data manipulation attacks. However, the bilevel optimization attack strategy that incorporates the detection methods may avoid being detected. Countering this, our proposed adversarial training framework detects all the instances of the bilevel optimization attack.
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
Understanding the Application of Utility Theory in Robotics and Artificial Intelligence: A Survey
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
comment: I am not sure whether withdrawing this paper is suitable. However, right now this paper has significant changes in its topic and author. So, I do not want to lead to any confusion about this paper. In the future, it will have a new version. I hope people will not have issues and confusion about the older one
Integrated Learning and Optimization to Control Load Demand and Wind Generation for Minimizing Ramping Cost in Real-Time Electricity Market
We developed a new integrated learning and optimization (ILO) methodology to predict context-aware unknown parameters in economic dispatch (ED), a crucial problem in power systems solved to generate optimal power dispatching decisions to serve consumer load. The ED formulation in the current study consists of load and renewable generation as unknown parameters in its constraints predicted using contextual information (e.g., prior load, temperature). The ILO framework train a neural network (NN) to estimate ED parameters by minimizing an application-specific regret function which is a difference between ground truth and NN-driven decisions favouring better ED decisions. We thoroughly analyze the feasible region of ED formulation to understand the impact of load and renewable learning together on the ED decisions. Corresponding to that we developed a new regret function to capture real-time electricity market operations where differences in predicted and true loads are corrected by ramping generators in real-time but at a higher cost than the market price. The proposed regret function when minimized using ILO framework train the NN to guide the load and renewable predictions to generate ED decisions favouring minimum generator ramping costs. This is unlike conventional sequential learning and optimization (SLO) framework which train NN to accurately estimate load and renewable instead of better ED decisions. The combined training of load and renewable using ILO is a new concept and lead to significantly improved ramping costs when compared with SLO based training of load and renewable and SLO trained load with 100% accurate renewable proving its decision-focused capability.
comment: The preprint was submitted to disseminate the idea as soon as possible and was submitted without asking one of the authors listed in the manuscript as he was the supervisor. Moreover, the submitted preprint mentions being submitted in a journal while it has not yet been submitted in a journal yet. The institute thus asked to withdraw the preprint
Robotics
Running VLAs at Real-time Speed
In this paper, we show how to run pi0-level multi-view VLA at 30Hz frame rate and at most 480Hz trajectory frequency using a single consumer GPU. This enables dynamic and real-time tasks that were previously believed to be unattainable by large VLA models. To achieve it, we introduce a bag of strategies to eliminate the overheads in model inference. The real-world experiment shows that the pi0 policy with our strategy achieves a 100% success rate in grasping a falling pen task. Based on the results, we further propose a full streaming inference framework for real-time robot control of VLA. Code is available at https://github.com/Dexmal/realtime-vla.
comment: Code is available at https://github.com/Dexmal/realtime-vla
Hybrid Consistency Policy: Decoupling Multi-Modal Diversity and Real-Time Efficiency in Robotic Manipulation
In visuomotor policy learning, diffusion-based imitation learning has become widely adopted for its ability to capture diverse behaviors. However, approaches built on ordinary and stochastic denoising processes struggle to jointly achieve fast sampling and strong multi-modality. To address these challenges, we propose the Hybrid Consistency Policy (HCP). HCP runs a short stochastic prefix up to an adaptive switch time, and then applies a one-step consistency jump to produce the final action. To align this one-jump generation, HCP performs time-varying consistency distillation that combines a trajectory-consistency objective to keep neighboring predictions coherent and a denoising-matching objective to improve local fidelity. In both simulation and on a real robot, HCP with 25 SDE steps plus one jump approaches the 80-step DDPM teacher in accuracy and mode coverage while significantly reducing latency. These results show that multi-modality does not require slow inference, and a switch time decouples mode retention from speed. It yields a practical accuracy efficiency trade-off for robot policies.
Heuristic Adaptation of Potentially Misspecified Domain Support for Likelihood-Free Inference in Stochastic Dynamical Systems
In robotics, likelihood-free inference (LFI) can provide the domain distribution that adapts a learnt agent in a parametric set of deployment conditions. LFI assumes an arbitrary support for sampling, which remains constant as the initial generic prior is iteratively refined to more descriptive posteriors. However, a potentially misspecified support can lead to suboptimal, yet falsely certain, posteriors. To address this issue, we propose three heuristic LFI variants: EDGE, MODE, and CENTRE. Each interprets the posterior mode shift over inference steps in its own way and, when integrated into an LFI step, adapts the support alongside posterior inference. We first expose the support misspecification issue and evaluate our heuristics using stochastic dynamical benchmarks. We then evaluate the impact of heuristic support adaptation on parameter inference and policy learning for a dynamic deformable linear object (DLO) manipulation task. Inference results in a finer length and stiffness classification for a parametric set of DLOs. When the resulting posteriors are used as domain distributions for sim-based policy learning, they lead to more robust object-centric agent performance.
Hybrid DQN-TD3 Reinforcement Learning for Autonomous Navigation in Dynamic Environments
This paper presents a hierarchical path-planning and control framework that combines a high-level Deep Q-Network (DQN) for discrete sub-goal selection with a low-level Twin Delayed Deep Deterministic Policy Gradient (TD3) controller for continuous actuation. The high-level module selects behaviors and sub-goals; the low-level module executes smooth velocity commands. We design a practical reward shaping scheme (direction, distance, obstacle avoidance, action smoothness, collision penalty, time penalty, and progress), together with a LiDAR-based safety gate that prevents unsafe motions. The system is implemented in ROS + Gazebo (TurtleBot3) and evaluated with PathBench metrics, including success rate, collision rate, path efficiency, and re-planning efficiency, in dynamic and partially observable environments. Experiments show improved success rate and sample efficiency over single-algorithm baselines (DQN or TD3 alone) and rule-based planners, with better generalization to unseen obstacle configurations and reduced abrupt control changes. Code and evaluation scripts are available at the project repository.
comment: 6 pages, 5 figures; ROS+Gazebo (TurtleBot3) implementation; evaluation with PathBench metrics; code (primary): https://github.com/MayaCHEN-github/HierarchicalRL-robot-navigation; mirror (for reproducibility): https://github.com/ShowyHe/DRL-robot-navigation
REALMS2 -- Resilient Exploration And Lunar Mapping System 2 -- A Comprehensive Approach IROS 2025
The European Space Agency (ESA) and the European Space Resources Innovation Centre (ESRIC) created the Space Resources Challenge to invite researchers and companies to propose innovative solutions for Multi-Robot Systems (MRS) space prospection. This paper proposes the Resilient Exploration And Lunar Mapping System 2 (REALMS2), a MRS framework for planetary prospection and mapping. Based on Robot Operating System version 2 (ROS 2) and enhanced with Visual Simultaneous Localisation And Mapping (vSLAM) for map generation, REALMS2 uses a mesh network for a robust ad hoc network. A single graphical user interface (GUI) controls all the rovers, providing a simple overview of the robotic mission. This system is designed for heterogeneous multi-robot exploratory missions, tackling the challenges presented by extraterrestrial environments. REALMS2 was used during the second field test of the ESA-ESRIC Challenge and allowed to map around 60% of the area, using three homogeneous rovers while handling communication delays and blackouts.
comment: 8 Pages, 8 Figures, Submitted and Accepted to IROS 2025
A Sliding-Window Filter for Online Continuous-Time Continuum Robot State Estimation
Stochastic state estimation methods for continuum robots (CRs) often struggle to balance accuracy and computational efficiency. While several recent works have explored sliding-window formulations for CRs, these methods are limited to simplified, discrete-time approximations and do not provide stochastic representations. In contrast, current stochastic filter methods must run at the speed of measurements, limiting their full potential. Recent works in continuous-time estimation techniques for CRs show a principled approach to addressing this runtime constraint, but are currently restricted to offline operation. In this work, we present a sliding-window filter (SWF) for continuous-time state estimation of CRs that improves upon the accuracy of a filter approach while enabling continuous-time methods to operate online, all while running at faster-than-real-time speeds. This represents the first stochastic SWF specifically designed for CRs, providing a promising direction for future research in this area.
comment: 8 pages, 6 figures. Submitted to IEEE-RAS International Conference on Soft Robotics 2026
Spiking Patches: Asynchronous, Sparse, and Efficient Tokens for Event Cameras
We propose tokenization of events and present a tokenizer, Spiking Patches, specifically designed for event cameras. Given a stream of asynchronous and spatially sparse events, our goal is to discover an event representation that preserves these properties. Prior works have represented events as frames or as voxels. However, while these representations yield high accuracy, both frames and voxels are synchronous and decrease the spatial sparsity. Spiking Patches gives the means to preserve the unique properties of event cameras and we show in our experiments that this comes without sacrificing accuracy. We evaluate our tokenizer using a GNN, PCN, and a Transformer on gesture recognition and object detection. Tokens from Spiking Patches yield inference times that are up to 3.4x faster than voxel-based tokens and up to 10.4x faster than frames. We achieve this while matching their accuracy and even surpassing in some cases with absolute improvements up to 3.8 for gesture recognition and up to 1.4 for object detection. Thus, tokenization constitutes a novel direction in event-based vision and marks a step towards methods that preserve the properties of event cameras.
FLYINGTRUST: A Benchmark for Quadrotor Navigation Across Scenarios and Vehicles
Visual navigation algorithms for quadrotors often exhibit a large variation in performance when transferred across different vehicle platforms and scene geometries, which increases the cost and risk of field deployment. To support systematic early-stage evaluation, we introduce FLYINGTRUST, a high-fidelity, configurable benchmarking framework that measures how platform kinodynamics and scenario structure jointly affect navigation robustness. FLYINGTRUST models vehicle capability with two compact, physically interpretable indicators: maximum thrust-to-weight ratio and axis-wise maximum angular acceleration. The benchmark pairs a diverse scenario library with a heterogeneous set of real and virtual platforms and prescribes a standardized evaluation protocol together with a composite scoring method that balances scenario importance, platform importance and performance stability. We use FLYINGTRUST to compare representative optimization-based and learning-based navigation approaches under identical conditions, performing repeated trials per platform-scenario combination and reporting uncertainty-aware metrics. The results reveal systematic patterns: navigation success depends predictably on platform capability and scene geometry, and different algorithms exhibit distinct preferences and failure modes across the evaluated conditions. These observations highlight the practical necessity of incorporating both platform capability and scenario structure into algorithm design, evaluation, and selection, and they motivate future work on methods that remain robust across diverse platforms and scenarios.
Proxemics and Permeability of the Pedestrian Group
People tend to walk in groups, and interactions with those groups have a significant impact on crowd behavior and pedestrian traffic dynamics. Social norms can be seen as unwritten rules regulating people interactions in social settings. This article studies people interactions with groups and the emergence of group proxemics. Group zones, zone occupancy counts and people clearance from the group are studied using naturalistic data. Analysis indicate potential presence of three different zones in addition to the public zone. People tend to remain in the public zone and only progressively get closer to groups, and those closer approaches happen in a low frequency and for brief periods of time.
Adaptive Inverse Kinematics Framework for Learning Variable-Length Tool Manipulation in Robotics
Conventional robots possess a limited understanding of their kinematics and are confined to preprogrammed tasks, hindering their ability to leverage tools efficiently. Driven by the essential components of tool usage - grasping the desired outcome, selecting the most suitable tool, determining optimal tool orientation, and executing precise manipulations - we introduce a pioneering framework. Our novel approach expands the capabilities of the robot's inverse kinematics solver, empowering it to acquire a sequential repertoire of actions using tools of varying lengths. By integrating a simulation-learned action trajectory with the tool, we showcase the practicality of transferring acquired skills from simulation to real-world scenarios through comprehensive experimentation. Remarkably, our extended inverse kinematics solver demonstrates an impressive error rate of less than 1 cm. Furthermore, our trained policy achieves a mean error of 8 cm in simulation. Noteworthy, our model achieves virtually indistinguishable performance when employing two distinct tools of different lengths. This research provides an indication of potential advances in the exploration of all four fundamental aspects of tool usage, enabling robots to master the intricate art of tool manipulation across diverse tasks.
comment: 10 pages, 5 figures. Demonstrates a reinforcement learning framework for adaptive tool manipulation with variable-length extensions
RoboOS-NeXT: A Unified Memory-based Framework for Lifelong, Scalable, and Robust Multi-Robot Collaboration
The proliferation of collaborative robots across diverse tasks and embodiments presents a central challenge: achieving lifelong adaptability, scalable coordination, and robust scheduling in multi-agent systems. Existing approaches, from vision-language-action (VLA) models to hierarchical frameworks, fall short due to their reliance on limited or dividual-agent memory. This fundamentally constrains their ability to learn over long horizons, scale to heterogeneous teams, or recover from failures, highlighting the need for a unified memory representation. To address these limitations, we introduce RoboOS-NeXT, a unified memory-based framework for lifelong, scalable, and robust multi-robot collaboration. At the core of RoboOS-NeXT is the novel Spatio-Temporal-Embodiment Memory (STEM), which integrates spatial scene geometry, temporal event history, and embodiment profiles into a shared representation. This memory-centric design is integrated into a brain-cerebellum framework, where a high-level brain model performs global planning by retrieving and updating STEM, while low-level controllers execute actions locally. This closed loop between cognition, memory, and execution enables dynamic task allocation, fault-tolerant collaboration, and consistent state synchronization. We conduct extensive experiments spanning complex coordination tasks in restaurants, supermarkets, and households. Our results demonstrate that RoboOS-NeXT achieves superior performance across heterogeneous embodiments, validating its effectiveness in enabling lifelong, scalable, and robust multi-robot collaboration. Project website: https://flagopen.github.io/RoboOS/
Efficient Collision-Avoidance Constraints for Ellipsoidal Obstacles in Optimal Control: Application to Path-Following MPC and UAVs
This article proposes a modular optimal control framework for local three-dimensional ellipsoidal obstacle avoidance, exemplarily applied to model predictive path-following control. Static as well as moving obstacles are considered. Central to the approach is a computationally efficient and continuously differentiable condition for detecting collisions with ellipsoidal obstacles. A novel two-stage optimization approach mitigates numerical issues arising from the structure of the resulting optimal control problem. The effectiveness of the approach is demonstrated through simulations and real-world experiments with the Crazyflie quadrotor. This represents the first hardware demonstration of an MPC controller of this kind for UAVs in a three-dimensional task.
Human-in-the-loop Online Rejection Sampling for Robotic Manipulation
Reinforcement learning (RL) is widely used to produce robust robotic manipulation policies, but fine-tuning vision-language-action (VLA) models with RL can be unstable due to inaccurate value estimates and sparse supervision at intermediate steps. In contrast, imitation learning (IL) is easy to train but often underperforms due to its offline nature. In this paper, we propose Hi-ORS, a simple yet effective post-training method that utilizes rejection sampling to achieve both training stability and high robustness. Hi-ORS stabilizes value estimation by filtering out negatively rewarded samples during online fine-tuning, and adopts a reward-weighted supervised training objective to provide dense intermediate-step supervision. For systematic study, we develop an asynchronous inference-training framework that supports flexible online human-in-the-loop corrections, which serve as explicit guidance for learning error-recovery behaviors. Across three real-world tasks and two embodiments, Hi-ORS fine-tunes a pi-base policy to master contact-rich manipulation in just 1.5 hours of real-world training, outperforming RL and IL baselines by a substantial margin in both effectiveness and efficiency. Notably, the fine-tuned policy exhibits strong test-time scalability by reliably executing complex error-recovery behaviors to achieve better performance.
comment: 8 pages
CorVS: Person Identification via Video Trajectory-Sensor Correspondence in a Real-World Warehouse
Worker location data is key to higher productivity in industrial sites. Cameras are a promising tool for localization in logistics warehouses since they also offer valuable environmental contexts such as package status. However, identifying individuals with only visual data is often impractical. Accordingly, several prior studies identified people in videos by comparing their trajectories and wearable sensor measurements. While this approach has advantages such as independence from appearance, the existing methods may break down under real-world conditions. To overcome this challenge, we propose CorVS, a novel data-driven person identification method based on correspondence between visual tracking trajectories and sensor measurements. Firstly, our deep learning model predicts correspondence probabilities and reliabilities for every pair of a trajectory and sensor measurements. Secondly, our algorithm matches the trajectories and sensor measurements over time using the predicted probabilities and reliabilities. We developed a dataset with actual warehouse operations and demonstrated the method's effectiveness for real-world applications.
comment: 7 pages, 3 figures, accepted to IPIN 2025
Towards Reinforcement Learning Based Log Loading Automation
Forestry forwarders play a central role in mechanized timber harvesting by picking up and moving logs from the felling site to a processing area or a secondary transport vehicle. Forwarder operation is challenging and physically and mentally exhausting for the operator who must control the machine in remote areas for prolonged periods of time. Therefore, even partial automation of the process may reduce stress on the operator. This study focuses on continuing previous research efforts in application of reinforcement learning agents in automating log handling process, extending the task from grasping which was studied in previous research to full log loading operation. The resulting agent will be capable to automate a full loading procedure from locating and grappling to transporting and delivering the log to a forestry forwarder bed. To train the agent, a trailer type forestry forwarder simulation model in NVIDIA's Isaac Gym and a virtual environment for a typical log loading scenario were developed. With reinforcement learning agents and a curriculum learning approach, the trained agent may be a stepping stone towards application of reinforcement learning agents in automation of the forestry forwarder. The agent learnt grasping a log in a random position from grapple's random position and transport it to the bed with 94% success rate of the best performing agent.
Cooperative Task Spaces for Multi-Arm Manipulation Control based on Similarity Transformations
Many tasks in human environments require collaborative behavior between multiple kinematic chains, either to provide additional support for carrying big and bulky objects or to enable the dexterity that is required for in-hand manipulation. Since these complex systems often have a very high number of degrees of freedom coordinating their movements is notoriously difficult to model. In this article, we present the derivation of the theoretical foundations for cooperative task spaces of multi-arm robotic systems based on geometric primitives defined using conformal geometric algebra. Based on the similarity transformations of these cooperative geometric primitives, we derive an abstraction of complex robotic systems that enables representing these systems in a way that directly corresponds to single-arm systems. By deriving the associated analytic and geometric Jacobian matrices, we then show the straightforward integration of our approach into classical control techniques rooted in operational space control. We demonstrate this using bimanual manipulators, humanoids and multi-fingered hands in optimal control experiments for reaching desired geometric primitives and in teleoperation experiments using differential kinematics control. We then discuss how the geometric primitives naturally embed nullspace structures into the controllers that can be exploited for introducing secondary control objectives. This work, represents the theoretical foundations of this cooperative manipulation control framework, and thus the experiments are presented in an abstract way, while giving pointers towards potential future applications.
AgriGS-SLAM: Orchard Mapping Across Seasons via Multi-View Gaussian Splatting SLAM
Autonomous robots in orchards require real-time 3D scene understanding despite repetitive row geometry, seasonal appearance changes, and wind-driven foliage motion. We present AgriGS-SLAM, a Visual--LiDAR SLAM framework that couples direct LiDAR odometry and loop closures with multi-camera 3D Gaussian Splatting (3DGS) rendering. Batch rasterization across complementary viewpoints recovers orchard structure under occlusions, while a unified gradient-driven map lifecycle executed between keyframes preserves fine details and bounds memory. Pose refinement is guided by a probabilistic LiDAR-based depth consistency term, back-propagated through the camera projection to tighten geometry-appearance coupling. We deploy the system on a field platform in apple and pear orchards across dormancy, flowering, and harvesting, using a standardized trajectory protocol that evaluates both training-view and novel-view synthesis to reduce 3DGS overfitting in evaluation. Across seasons and sites, AgriGS-SLAM delivers sharper, more stable reconstructions and steadier trajectories than recent state-of-the-art 3DGS-SLAM baselines while maintaining real-time performance on-tractor. While demonstrated in orchard monitoring, the approach can be applied to other outdoor domains requiring robust multimodal perception.
Thor: Towards Human-Level Whole-Body Reactions for Intense Contact-Rich Environments
Humanoids hold great potential for service, industrial, and rescue applications, in which robots must sustain whole-body stability while performing intense, contact-rich interactions with the environment. However, enabling humanoids to generate human-like, adaptive responses under such conditions remains a major challenge. To address this, we propose Thor, a humanoid framework for human-level whole-body reactions in contact-rich environments. Based on the robot's force analysis, we design a force-adaptive torso-tilt (FAT2) reward function to encourage humanoids to exhibit human-like responses during force-interaction tasks. To mitigate the high-dimensional challenges of humanoid control, Thor introduces a reinforcement learning architecture that decouples the upper body, waist, and lower body. Each component shares global observations of the whole body and jointly updates its parameters. Finally, we deploy Thor on the Unitree G1, and it substantially outperforms baselines in force-interaction tasks. Specifically, the robot achieves a peak pulling force of 167.7 N (approximately 48% of the G1's body weight) when moving backward and 145.5 N when moving forward, representing improvements of 68.9% and 74.7%, respectively, compared with the best-performing baseline. Moreover, Thor is capable of pulling a loaded rack (130 N) and opening a fire door with one hand (60 N). These results highlight Thor's effectiveness in enhancing humanoid force-interaction capabilities.
PHUMA: Physically-Grounded Humanoid Locomotion Dataset
Motion imitation is a promising approach for humanoid locomotion, enabling agents to acquire humanlike behaviors. Existing methods typically rely on high-quality motion capture datasets such as AMASS, but these are scarce and expensive, limiting scalability and diversity. Recent studies attempt to scale data collection by converting large-scale internet videos, exemplified by Humanoid-X. However, they often introduce physical artifacts such as floating, penetration, and foot skating, which hinder stable imitation. In response, we introduce PHUMA, a Physically-grounded HUMAnoid locomotion dataset that leverages human video at scale, while addressing physical artifacts through careful data curation and physics-constrained retargeting. PHUMA enforces joint limits, ensures ground contact, and eliminates foot skating, producing motions that are both large-scale and physically reliable. We evaluated PHUMA in two sets of conditions: (i) imitation of unseen motion from self-recorded test videos and (ii) path following with pelvis-only guidance. In both cases, PHUMA-trained policies outperform Humanoid-X and AMASS, achieving significant gains in imitating diverse motions. The code is available at https://davian-robotics.github.io/PHUMA.
Self-localization on a 3D map by fusing global and local features from a monocular camera
Self-localization on a 3D map by using an inexpensive monocular camera is required to realize autonomous driving. Self-localization based on a camera often uses a convolutional neural network (CNN) that can extract local features that are calculated by nearby pixels. However, when dynamic obstacles, such as people, are present, CNN does not work well. This study proposes a new method combining CNN with Vision Transformer, which excels at extracting global features that show the relationship of patches on whole image. Experimental results showed that, compared to the state-of-the-art method (SOTA), the accuracy improvement rate in a CG dataset with dynamic obstacles is 1.5 times higher than that without dynamic obstacles. Moreover, the self-localization error of our method is 20.1% smaller than that of SOTA on public datasets. Additionally, our robot using our method can localize itself with 7.51cm error on average, which is more accurate than SOTA.
Adaptive Trajectory Refinement for Optimization-based Local Planning in Narrow Passages
Trajectory planning for mobile robots in cluttered environments remains a major challenge due to narrow passages, where conventional methods often fail or generate suboptimal paths. To address this issue, we propose the adaptive trajectory refinement algorithm, which consists of two main stages. First, to ensure safety at the path-segment level, a segment-wise conservative collision test is applied, where risk-prone trajectory path segments are recursively subdivided until collision risks are eliminated. Second, to guarantee pose-level safety, pose correction based on penetration direction and line search is applied, ensuring that each pose in the trajectory is collision-free and maximally clear from obstacles. Simulation results demonstrate that the proposed method achieves up to 1.69x higher success rates and up to 3.79x faster planning times than state-of-the-art approaches. Furthermore, real-world experiments confirm that the robot can safely pass through narrow passages while maintaining rapid planning performance.
Kinodynamic Task and Motion Planning using VLM-guided and Interleaved Sampling
Task and Motion Planning (TAMP) integrates high-level task planning with low-level motion feasibility, but existing methods are costly in long-horizon problems due to excessive motion sampling. While LLMs provide commonsense priors, they lack 3D spatial reasoning and cannot ensure geometric or dynamic feasibility. We propose a kinodynamic TAMP framework based on a hybrid state tree that uniformly represents symbolic and numeric states during planning, enabling task and motion decisions to be jointly decided. Kinodynamic constraints embedded in the TAMP problem are verified by an off-the-shelf motion planner and physics simulator, and a VLM guides exploring a TAMP solution and backtracks the search based on visual rendering of the states. Experiments on the simulated domains and in the real world show 32.14% - 1166.67% increased average success rates compared to traditional and LLM-based TAMP planners and reduced planning time on complex problems, with ablations further highlighting the benefits of VLM guidance.
Embodied Intelligence for Advanced Bioinspired Microrobotics: Examples and Insights
The term embodied intelligence (EI) conveys the notion that body morphology, material properties, interaction with the environment, and control strategies can be purposefully integrated into the process of robotic design to generate intelligent behavior; in particular, locomotion and navigation. In this paper, we discuss EI as a design principle for advanced microrobotics, with a particular focus on co-design -- the simultaneous and interdependent development of physical structure and behavioral function. To illustrate the contrast between EI-inspired systems and traditional architectures that decouple sensing, computation, and actuation, we present and discuss a collection of robots developed by the author and his team at the Autonomous Microrobotic Systems Laboratory (AMSL). These robots exhibit intelligent behavior that emerges from their structural dynamics and the physical interaction between their components and with the environment. Platforms such as the Bee++, RoBeetle, SMALLBug, SMARTI, WaterStrider, VLEIBot+, and FRISSHBot exemplify how feedback loops, decision logics, sensing mechanisms, and smart actuation strategies can be embedded into the physical properties of the robotic system itself. Along these lines, we contend that co-design is not only a method for empirical optimization under constraints, but also an enabler of EI, offering a scalable and robust alternative to classical control for robotics at the mm-to-cm-scale.
comment: 8 pages, 7 figures, accepted to ICAR 2025
Exploring Object-Aware Attention Guided Frame Association for RGB-D SLAM
Attention models have recently emerged as a powerful approach, demonstrating significant progress in various fields. Visualization techniques, such as class activation mapping, provide visual insights into the reasoning of convolutional neural networks (CNNs). Using network gradients, it is possible to identify regions where the network pays attention during image recognition tasks. Furthermore, these gradients can be combined with CNN features to localize more generalizable, task-specific attentive (salient) regions within scenes. However, explicit use of this gradient-based attention information integrated directly into CNN representations for semantic object understanding remains limited. Such integration is particularly beneficial for visual tasks like simultaneous localization and mapping (SLAM), where CNN representations enriched with spatially attentive object locations can enhance performance. In this work, we propose utilizing task-specific network attention for RGB-D indoor SLAM. Specifically, we integrate layer-wise attention information derived from network gradients with CNN feature representations to improve frame association performance. Experimental results indicate improved performance compared to baseline methods, particularly for large environments.
comment: double-column 5 pages, 3 figures
Beyond the Uncanny Valley: A Mixed-Method Investigation of Anthropomorphism in Protective Responses to Robot Abuse
Robots with anthropomorphic features are increasingly shaping how humans perceive and morally engage with them. Our research investigates how different levels of anthropomorphism influence protective responses to robot abuse, extending the Computers as Social Actors (CASA) and uncanny valley theories into a moral domain. In an experiment, we invite 201 participants to view videos depicting abuse toward a robot with low (Spider), moderate (Two-Foot), or high (Humanoid) anthropomorphism. To provide a comprehensive analysis, we triangulate three modalities: self-report surveys measuring emotions and uncanniness, physiological data from automated facial expression analysis, and qualitative reflections. Findings indicate that protective responses are not linear. The moderately anthropomorphic Two-Foot robot, rated highest in eeriness and "spine-tingling" sensations consistent with the uncanny valley, elicited the strongest physiological anger expressions. Self-reported anger and guilt are significantly higher for both the Two-Foot and Humanoid robots compared to the Spider. Qualitative findings further reveal that as anthropomorphism increases, moral reasoning shifts from technical assessments of property damage to condemnation of the abuser's character, while governance proposals expand from property law to calls for quasi-animal rights and broader societal responsibility. These results suggest that the uncanny valley does not dampen moral concern but paradoxically heightens protective impulses, offering critical implications for robot design, policy, and future legal frameworks.
I don't Want You to Die: A Shared Responsibility Framework for Safeguarding Child-Robot Companionship
Social robots like Moxie are designed to form strong emotional bonds with children, but their abrupt discontinuation can cause significant struggles and distress to children. When these services end, the resulting harm raises complex questions of who bears responsibility when children's emotional bonds are broken. Using the Moxie shutdown as a case study through a qualitative survey of 72 U.S. participants, our findings show that the responsibility is viewed as a shared duty across the robot company, parents, developers, and government. However, these attributions varied by political ideology and parental status of whether they have children. Participants' perceptions of whether the robot service should continue are highly polarized; supporters propose technical, financial, and governmental pathways for continuity, while opponents cite business realities and risks of unhealthy emotional dependency. Ultimately, this research contributes an empirically grounded shared responsibility framework for safeguarding child-robot companionship by detailing how accountability is distributed and contested, informing concrete design and policy implications to mitigate the emotional harm of robot discontinuation.
Morphology-Aware Graph Reinforcement Learning for Tensegrity Robot Locomotion
Tensegrity robots combine rigid rods and elastic cables, offering high resilience and deployability but posing major challenges for locomotion control due to their underactuated and highly coupled dynamics. This paper introduces a morphology-aware reinforcement learning framework that integrates a graph neural network (GNN) into the Soft Actor-Critic (SAC) algorithm. By representing the robot's physical topology as a graph, the proposed GNN-based policy captures coupling among components, enabling faster and more stable learning than conventional multilayer perceptron (MLP) policies. The method is validated on a physical 3-bar tensegrity robot across three locomotion primitives, including straight-line tracking and bidirectional turning. It shows superior sample efficiency, robustness to noise and stiffness variations, and improved trajectory accuracy. Notably, the learned policies transfer directly from simulation to hardware without fine-tuning, achieving stable real-world locomotion. These results demonstrate the advantages of incorporating structural priors into reinforcement learning for tensegrity robot control.
Accelerating Real-World Overtaking in F1TENTH Racing Employing Reinforcement Learning Methods
While autonomous racing performance in Time-Trial scenarios has seen significant progress and development, autonomous wheel-to-wheel racing and overtaking are still severely limited. These limitations are particularly apparent in real-life driving scenarios where state-of-the-art algorithms struggle to safely or reliably complete overtaking manoeuvres. This is important, as reliable navigation around other vehicles is vital for safe autonomous wheel-to-wheel racing. The F1Tenth Competition provides a useful opportunity for developing wheel-to-wheel racing algorithms on a standardised physical platform. The competition format makes it possible to evaluate overtaking and wheel-to-wheel racing algorithms against the state-of-the-art. This research presents a novel racing and overtaking agent capable of learning to reliably navigate a track and overtake opponents in both simulation and reality. The agent was deployed on an F1Tenth vehicle and competed against opponents running varying competitive algorithms in the real world. The results demonstrate that the agent's training against opponents enables deliberate overtaking behaviours with an overtaking rate of 87% compared 56% for an agent trained just to race.
SpikeATac: A Multimodal Tactile Finger with Taxelized Dynamic Sensing for Dexterous Manipulation
In this work, we introduce SpikeATac, a multimodal tactile finger combining a taxelized and highly sensitive dynamic response (PVDF) with a static transduction method (capacitive) for multimodal touch sensing. Named for its `spiky' response, SpikeATac's 16-taxel PVDF film sampled at 4 kHz provides fast, sensitive dynamic signals to the very onset and breaking of contact. We characterize the sensitivity of the different modalities, and show that SpikeATac provides the ability to stop quickly and delicately when grasping fragile, deformable objects. Beyond parallel grasping, we show that SpikeATac can be used in a learning-based framework to achieve new capabilities on a dexterous multifingered robot hand. We use a learning recipe that combines reinforcement learning from human feedback with tactile-based rewards to fine-tune the behavior of a policy to modulate force. Our hardware platform and learning pipeline together enable a difficult dexterous and contact-rich task that has not previously been achieved: in-hand manipulation of fragile objects. Videos are available at \href{https://roamlab.github.io/spikeatac/}{roamlab.github.io/spikeatac}.
comment: 9 pages, 8 figures, under review
A Multi-Modal Neuro-Symbolic Approach for Spatial Reasoning-Based Visual Grounding in Robotics
Visual reasoning, particularly spatial reasoning, is a challenging cognitive task that requires understanding object relationships and their interactions within complex environments, especially in robotics domain. Existing vision_language models (VLMs) excel at perception tasks but struggle with fine-grained spatial reasoning due to their implicit, correlation-driven reasoning and reliance solely on images. We propose a novel neuro_symbolic framework that integrates both panoramic-image and 3D point cloud information, combining neural perception with symbolic reasoning to explicitly model spatial and logical relationships. Our framework consists of a perception module for detecting entities and extracting attributes, and a reasoning module that constructs a structured scene graph to support precise, interpretable queries. Evaluated on the JRDB-Reasoning dataset, our approach demonstrates superior performance and reliability in crowded, human_built environments while maintaining a lightweight design suitable for robotics and embodied AI applications.
A Hermetic, Transparent Soft Growing Vine Robot System for Pipe Inspection
Rehabilitation of aging pipes requires accurate condition assessment and mapping far into the pipe interiors. Soft growing vine robot systems are particularly promising for navigating confined, sinuous paths such as in pipes, but are currently limited by complex subsystems and a lack of validation in real-world industrial settings. In this paper, we introduce the concept and implementation of a hermetic and transparent vine robot system for visual condition assessment and mapping within non-branching pipes. This design encloses all mechanical and electrical components within the vine robot's soft, airtight, and transparent body, protecting them from environmental interference while enabling visual sensing. Because this approach requires an enclosed mechanism for transporting sensors, we developed, modeled, and tested a passively adapting enclosed tip mount. Finally, we validated the hermetic and transparent vine robot system concept through a real-world condition assessment and mapping task in a wastewater pipe. This work advances the use of soft-growing vine robots in pipe inspection by developing and demonstrating a robust, streamlined, field-validated system suitable for continued development and deployment.
comment: 8 pages, 7 figures
Cooperative Integrated Estimation-Guidance for Simultaneous Interception of Moving Targets
This paper proposes a cooperative integrated estimation-guidance framework for simultaneous interception of a non-maneuvering target using a team of unmanned autonomous vehicles, assuming only a subset of vehicles are equipped with dedicated sensors to measure the target's states. Unlike earlier approaches that focus solely on either estimation or guidance design, the proposed framework unifies both within a cooperative architecture. To circumvent the limitation posed by heterogeneity in target observability, sensorless vehicles estimate the target's state by leveraging information exchanged with neighboring agents over a directed communication topology through a prescribed-time observer. The proposed approach employs true proportional navigation guidance (TPNG), which uses an exact time-to-go formulation and is applicable across a wide spectrum of target motions. Furthermore, prescribed-time observer and controller are employed to achieve convergence to true target's state and consensus in time-to-go within set predefined times, respectively. Simulations demonstrate the effectiveness of the proposed framework under various engagement scenarios.
RepV: Safety-Separable Latent Spaces for Scalable Neurosymbolic Plan Verification
As AI systems migrate to safety-critical domains, verifying that their actions comply with well-defined rules remains a challenge. Formal methods provide provable guarantees but demand hand-crafted temporal-logic specifications, offering limited expressiveness and accessibility. Deep learning approaches enable evaluation of plans against natural-language constraints, yet their opaque decision process invites misclassifications with potentially severe consequences. We introduce RepV, a neurosymbolic verifier that unifies both views by learning a latent space where safe and unsafe plans are linearly separable. Starting from a modest seed set of plans labeled by an off-the-shelf model checker, RepV trains a lightweight projector that embeds each plan, together with a language model-generated rationale, into a low-dimensional space; a frozen linear boundary then verifies compliance for unseen natural-language rules in a single forward pass. Beyond binary classification, RepV provides a probabilistic guarantee on the likelihood of correct verification based on its position in the latent space. This guarantee enables a guarantee-driven refinement of the planner, improving rule compliance without human annotations. Empirical evaluations show that RepV improves compliance prediction accuracy by up to 15% compared to baseline methods while adding fewer than 0.2M parameters. Furthermore, our refinement framework outperforms ordinary fine-tuning baselines across various planning domains. These results show that safety-separable latent spaces offer a scalable, plug-and-play primitive for reliable neurosymbolic plan verification. Code and data are available at: https://repv-project.github.io/.
comment: Code and data are available at: https://repv-project.github.io/
Heterogeneous Robot Collaboration in Unstructured Environments with Grounded Generative Intelligence
Heterogeneous robot teams operating in realistic settings often must accomplish complex missions requiring collaboration and adaptation to information acquired online. Because robot teams frequently operate in unstructured environments -- uncertain, open-world settings without prior maps -- subtasks must be grounded in robot capabilities and the physical world. While heterogeneous teams have typically been designed for fixed specifications, generative intelligence opens the possibility of teams that can accomplish a wide range of missions described in natural language. However, current large language model (LLM)-enabled teaming methods typically assume well-structured and known environments, limiting deployment in unstructured environments. We present SPINE-HT, a framework that addresses these limitations by grounding the reasoning abilities of LLMs in the context of a heterogeneous robot team through a three-stage process. Given language specifications describing mission goals and team capabilities, an LLM generates grounded subtasks which are validated for feasibility. Subtasks are then assigned to robots based on capabilities such as traversability or perception and refined given feedback collected during online operation. In simulation experiments with closed-loop perception and control, our framework achieves nearly twice the success rate compared to prior LLM-enabled heterogeneous teaming approaches. In real-world experiments with a Clearpath Jackal, a Clearpath Husky, a Boston Dynamics Spot, and a high-altitude UAV, our method achieves an 87\% success rate in missions requiring reasoning about robot capabilities and refining subtasks with online feedback. More information is provided at https://zacravichandran.github.io/SPINE-HT.
NaviTrace: Evaluating Embodied Navigation of Vision-Language Models
Vision-language models demonstrate unprecedented performance and generalization across a wide range of tasks and scenarios. Integrating these foundation models into robotic navigation systems opens pathways toward building general-purpose robots. Yet, evaluating these models' navigation capabilities remains constrained by costly real-world trials, overly simplified simulations, and limited benchmarks. We introduce NaviTrace, a high-quality Visual Question Answering benchmark where a model receives an instruction and embodiment type (human, legged robot, wheeled robot, bicycle) and must output a 2D navigation trace in image space. Across 1000 scenarios and more than 3000 expert traces, we systematically evaluate eight state-of-the-art VLMs using a newly introduced semantic-aware trace score. This metric combines Dynamic Time Warping distance, goal endpoint error, and embodiment-conditioned penalties derived from per-pixel semantics and correlates with human preferences. Our evaluation reveals consistent gap to human performance caused by poor spatial grounding and goal localization. NaviTrace establishes a scalable and reproducible benchmark for real-world robotic navigation. The benchmark and leaderboard can be found at https://leggedrobotics.github.io/navitrace_webpage/.
comment: 9 pages, 6 figures, under review at IEEE conference
Design for One, Deploy for Many: Navigating Tree Mazes with Multiple Agents
Maze-like environments, such as cave and pipe networks, pose unique challenges for multiple robots to coordinate, including communication constraints and congestion. To address these challenges, we propose a distributed multi-agent maze traversal algorithm for environments that can be represented by acyclic graphs. It uses a leader-switching mechanism where one agent, assuming a head role, employs any single-agent maze solver while the other agents each choose an agent to follow. The head role gets transferred to neighboring agents where necessary, ensuring it follows the same path as a single agent would. The multi-agent maze traversal algorithm is evaluated in simulations with groups of up to 300 agents, various maze sizes, and multiple single-agent maze solvers. It is compared against strategies that are na\"ive, or assume either global communication or full knowledge of the environment. The algorithm outperforms the na\"ive strategy in terms of makespan and sum-of-fuel. It is superior to the global-communication strategy in terms of makespan but is inferior to it in terms of sum-of-fuel. The findings suggest it is asymptotically equivalent to the full-knowledge strategy with respect to either metric. Moreover, real-world experiments with up to 20 Pi-puck robots confirm the feasibility of the approach.
comment: 7 pages, 7 figures, to be published in MRS 2025
Leveraging Foundation Models for Enhancing Robot Perception and Action
This thesis investigates how foundation models can be systematically leveraged to enhance robotic capabilities, enabling more effective localization, interaction, and manipulation in unstructured environments. The work is structured around four core lines of inquiry, each addressing a fundamental challenge in robotics while collectively contributing to a cohesive framework for semantics-aware robotic intelligence.
comment: Doctoral thesis
CronusVLA: Towards Efficient and Robust Manipulation via Multi-Frame Vision-Language-Action Modeling
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong performance in robotic manipulation. However, these models remain constrained by the single-frame image paradigm and fail to fully leverage the temporal information offered by multi-frame histories, as directly feeding multiple frames into VLM backbones incurs substantial computational overhead and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm. CronusVLA follows a two-stage process: (1) Single-frame pretraining on large-scale embodied datasets with autoregressive prediction of action tokens, establishing an effective embodied vision-language foundation; (2) Multi-frame post-training, which adapts the prediction of the vision-language backbone from discrete tokens to learnable features, and aggregates historical information via feature chunking. CronusVLA effectively addresses the existing challenges of multi-frame modeling while enhancing performance and observational robustness. To evaluate the robustness under temporal and spatial disturbances, we introduce SimplerEnv-OR, a novel benchmark featuring 24 types of observational disturbances and 120 severity levels. Experiments across three embodiments in simulated and real-world environments demonstrate that CronusVLA achieves leading performance and superior robustness, with a 70.9% success rate on SimplerEnv, a 26.8% improvement over OpenVLA on LIBERO, and the highest robustness score on SimplerEnv-OR. These results highlight the potential of efficient multi-frame adaptation in VLA models for more powerful and robust real-world deployment.
comment: 39 pages, 24 figures
Agile and Cooperative Aerial Manipulation of a Cable-Suspended Load
Quadrotors can carry slung loads to hard-to-reach locations at high speed. Since a single quadrotor has limited payload capacities, using a team of quadrotors to collaboratively manipulate a heavy object is a scalable and promising solution. However, existing control algorithms for multi-lifting systems only enable low-speed and low-acceleration operations due to the complex dynamic coupling between quadrotors and the load, limiting their use in time-critical missions such as search and rescue. In this work, we present a solution to significantly enhance the agility of cable-suspended multi-lifting systems. Unlike traditional cascaded solutions, we introduce a trajectory-based framework that solves the whole-body kinodynamic motion planning problem online, accounting for the dynamic coupling effects and constraints between the quadrotors and the load. The planned trajectory is provided to the quadrotors as a reference in a receding-horizon fashion and is tracked by an onboard controller that observes and compensates for the cable tension. Real-world experiments demonstrate that our framework can achieve at least eight times greater acceleration than state-of-the-art methods to follow agile trajectories. Our method can even perform complex maneuvers such as flying through narrow passages at high speed. Additionally, it exhibits high robustness against load uncertainties and does not require adding any sensors to the load, demonstrating strong practicality.
comment: 38 pages, 11 figures
LiGen: GAN-Augmented Spectral Fingerprinting for Indoor Positioning
Accurate and robust indoor localization is critical for smart building applications, yet existing Wi-Fi-based systems are often vulnerable to environmental conditions. This work presents a novel indoor localization system, called LiGen, that leverages the spectral intensity patterns of ambient light as fingerprints, offering a more stable and infrastructure-free alternative to radio signals. To address the limited spectral data, we design a data augmentation framework based on generative adversarial networks (GANs), featuring two variants: PointGAN, which generates fingerprints conditioned on coordinates, and FreeGAN, which uses a weak localization model to label unconditioned samples. Our positioning model, leveraging a Multi-Layer Perceptron (MLP) architecture to train on synthesized data, achieves submeter-level accuracy, outperforming Wi-Fi-based baselines by over 50\%. LiGen also demonstrates strong robustness in cluttered environments. To the best of our knowledge, this is the first system to combine spectral fingerprints with GAN-based data augmentation for indoor localization.
comment: 6 pages, 10 figures
C-NAV: Towards Self-Evolving Continual Object Navigation in Open World NeurIPS 2025
Embodied agents are expected to perform object navigation in dynamic, open-world environments. However, existing approaches typically rely on static trajectories and a fixed set of object categories during training, overlooking the real-world requirement for continual adaptation to evolving scenarios. To facilitate related studies, we introduce the continual object navigation benchmark, which requires agents to acquire navigation skills for new object categories while avoiding catastrophic forgetting of previously learned knowledge. To tackle this challenge, we propose C-Nav, a continual visual navigation framework that integrates two key innovations: (1) A dual-path anti-forgetting mechanism, which comprises feature distillation that aligns multi-modal inputs into a consistent representation space to ensure representation consistency, and feature replay that retains temporal features within the action decoder to ensure policy consistency. (2) An adaptive sampling strategy that selects diverse and informative experiences, thereby reducing redundancy and minimizing memory overhead. Extensive experiments across multiple model architectures demonstrate that C-Nav consistently outperforms existing approaches, achieving superior performance even compared to baselines with full trajectory retention, while significantly lowering memory requirements. The code will be publicly available at https://bigtree765.github.io/C-Nav-project.
comment: Accepted at NeurIPS 2025
Loop Closure from Two Views: Revisiting PGO for Scalable Trajectory Estimation through Monocular Priors
(Visual) Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in enabling autonomous systems to navigate and understand large-scale environments. Traditional SLAM approaches struggle to balance efficiency and accuracy, particularly in large-scale settings where extensive computational resources are required for scene reconstruction and Bundle Adjustment (BA). However, this scene reconstruction, in the form of sparse pointclouds of visual landmarks, is often only used within the SLAM system because navigation and planning methods require different map representations. In this work, we therefore investigate a more scalable Visual SLAM (VSLAM) approach without reconstruction, mainly based on approaches for two-view loop closures. By restricting the map to a sparse keyframed pose graph without dense geometry representations, our `2GO' system achieves efficient optimization with competitive absolute trajectory accuracy. In particular, we find that recent advancements in image matching and monocular depth priors enable very accurate trajectory optimization without BA. We conduct extensive experiments on diverse datasets, including large-scale scenarios, and provide a detailed analysis of the trade-offs between runtime, accuracy, and map size. Our results demonstrate that this streamlined approach supports real-time performance, scales well in map size and trajectory duration, and effectively broadens the capabilities of VSLAM for long-duration deployments to large environments.
Learning to Insert for Constructive Neural Vehicle Routing Solver NeurIPS 2025
Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
comment: Accepted at NeurIPS 2025
SAFE: Multitask Failure Detection for Vision-Language-Action Models NeurIPS 2025
While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out of the box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while generalist VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, $\pi_0$, and $\pi_0$-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results and code can be found at the project webpage: https://vla-safe.github.io/
comment: NeurIPS 2025 camera ready. Project Page: https://vla-safe.github.io/
Towards Predicting Any Human Trajectory In Context NeurIPS 2025
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, the need to fine-tune for each new scenario is often impractical for deployment on edge devices. To address this challenge, we introduce \paper, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables adaptation without fine-tuning on the scenario-specific data at inference time without requiring weight updates. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. Project Page: https://fujiry0.github.io/TrajICL-project-page/.
comment: NeurIPS 2025
FSR-VLN: Fast and Slow Reasoning for Vision-Language Navigation with Hierarchical Multi-modal Scene Graph
Visual-Language Navigation (VLN) is a fundamental challenge in robotic systems, with broad applications for the deployment of embodied agents in real-world environments. Despite recent advances, existing approaches are limited in long-range spatial reasoning, often exhibiting low success rates and high inference latency, particularly in long-range navigation tasks. To address these limitations, we propose FSR-VLN, a vision-language navigation system that combines a Hierarchical Multi-modal Scene Graph (HMSG) with Fast-to-Slow Navigation Reasoning (FSR). The HMSG provides a multi-modal map representation supporting progressive retrieval, from coarse room-level localization to fine-grained goal view and object identification. Building on HMSG, FSR first performs fast matching to efficiently select candidate rooms, views, and objects, then applies VLM-driven refinement for final goal selection. We evaluated FSR-VLN across four comprehensive indoor datasets collected by humanoid robots, utilizing 87 instructions that encompass a diverse range of object categories. FSR-VLN achieves state-of-the-art (SOTA) performance in all datasets, measured by the retrieval success rate (RSR), while reducing the response time by 82% compared to VLM-based methods on tour videos by activating slow reasoning only when fast intuition fails. Furthermore, we integrate FSR-VLN with speech interaction, planning, and control modules on a Unitree-G1 humanoid robot, enabling natural language interaction and real-time navigation.
comment: 8 pages
Human-assisted Robotic Policy Refinement via Action Preference Optimization NeurIPS 2025
Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their reliance on offline expert demonstrations critically limits their capacity for post-deployment refinement. To mitigate this limitation, we introduce Action Preference Optimization (APO), a method designed to refine VLA models by human-assisted preference alignment gathered through interaction with environments. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. However, directly leveraging these interaction trajectories for preference optimization is non-trivial due to the challenges of irreversible robotic actions and token distribution mismatch. To solve this, APO proposes an adaptive reweighting algorithm with binary desirability signals derived from interaction, empowering VLA models effectively suppress failure-prone actions while enhancing corrective action adaptation. Ultimately, APO equips VLA models with the crucial capability to learn from failure, paving the way for their iterative refinement and reliable deployment in dynamic environments. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our human-assisted framework across a variety of manipulation tasks. We believe this work could bring insights for efficient and stable optimization of VLA models through human-robot collaboration. The code and dataset are released at https://github.com/GeWu-Lab/Action-Preference-Optimization
comment: Accepted By NeurIPS 2025
3D Equivariant Visuomotor Policy Learning via Spherical Projection
Equivariant models have recently been shown to improve the data efficiency of diffusion policy by a significant margin. However, prior work that explored this direction focused primarily on point cloud inputs generated by multiple cameras fixed in the workspace. This type of point cloud input is not compatible with the now-common setting where the primary input modality is an eye-in-hand RGB camera like a GoPro. This paper closes this gap by incorporating into the diffusion policy model a process that projects features from the 2D RGB camera image onto a sphere. This enables us to reason about symmetries in $\mathrm{SO}(3)$ without explicitly reconstructing a point cloud. We perform extensive experiments in both simulation and the real world that demonstrate that our method consistently outperforms strong baselines in terms of both performance and sample efficiency. Our work, Image-to-Sphere Policy ($\textbf{ISP}$), is the first $\mathrm{SO}(3)$-equivariant policy learning framework for robotic manipulation that works using only monocular RGB inputs.
Falconry-like palm landing by a flapping-wing drone based on the human gesture interaction and distance-aware flight planning
Flapping-wing drones have attracted significant attention due to their biomimetic flight. They are considered more human-friendly due to their characteristics such as low noise and flexible wings, making them suitable for human-drone interactions. However, few studies have explored the practical interaction between humans and flapping-wing drones. On establishing a physical interaction system with flapping-wing drones, we can acquire inspirations from falconers who guide birds of prey to land on their arms. This interaction interprets the human body as a dynamic landing platform, which can be utilized in various scenarios such as crowded or spatially constrained environments. Thus, in this study, we propose a falconry-like interaction system in which a flapping-wing drone performs a palm landing motion on a human hand. To achieve a safe approach toward humans, we design a trajectory planning method that considers both physical and psychological factors of the human safety such as the drone's velocity and distance from the user. We use a commercial flapping platform with our implemented motion planning and conduct experiments to evaluate the palm landing performance and safety. The results demonstrate that our approach enables safe and smooth hand landing interactions. To the best of our knowledge, it is the first time to achieve a contact-based interaction between flapping-wing drones and humans.
comment: 8 pages, 14 figures
DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
Mechanical Intelligence-Aware Curriculum Reinforcement Learning for Humanoids with Parallel Actuation
Reinforcement learning (RL) has enabled advances in humanoid robot locomotion, yet most learning frameworks do not account for mechanical intelligence embedded in parallel actuation mechanisms due to limitations in simulator support for closed kinematic chains. This omission can lead to inaccurate motion modeling and suboptimal policies, particularly for robots with high actuation complexity. This paper presents general formulations and simulation methods for three types of parallel mechanisms: a differential pulley, a five-bar linkage, and a four-bar linkage, and trains a parallel-mechanism aware policy through an end-to-end curriculum RL framework for BRUCE, a kid-sized humanoid robot. Unlike prior approaches that rely on simplified serial approximations, we simulate all closed-chain constraints natively using GPU-accelerated MuJoCo (MJX), preserving the hardware's mechanical nonlinear properties during training. We benchmark our RL approach against a model predictive controller (MPC), demonstrating better surface generalization and performance in real-world zero-shot deployment. This work highlights the computational approaches and performance benefits of fully simulating parallel mechanisms in end-to-end learning pipelines for legged humanoids. Project codes with parallel mechanisms: https://github.com/alvister88/og_bruce
comment: Proceeding to the IEEE Humanoid Conference 2025
Robust Offline Reinforcement Learning with Linearly Structured f-Divergence Regularization ICML 2025
The Robust Regularized Markov Decision Process (RRMDP) is proposed to learn policies robust to dynamics shifts by adding regularization to the transition dynamics in the value function. Existing methods mostly use unstructured regularization, potentially leading to conservative policies under unrealistic transitions. To address this limitation, we propose a novel framework, the $d$-rectangular linear RRMDP ($d$-RRMDP), which introduces latent structures into both transition kernels and regularization. We focus on offline reinforcement learning, where an agent learns policies from a precollected dataset in the nominal environment. We develop the Robust Regularized Pessimistic Value Iteration (R2PVI) algorithm that employs linear function approximation for robust policy learning in $d$-RRMDPs with $f$-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, demonstrating that these bounds are influenced by how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. We establish information-theoretic lower bounds to verify that our algorithm is near-optimal. Finally, numerical experiments validate that R2PVI learns robust policies and exhibits superior computational efficiency compared to baseline methods.
comment: 41 pages, 3 figures, 2 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
Understanding the Application of Utility Theory in Robotics and Artificial Intelligence: A Survey
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
comment: I am not sure whether withdrawing this paper is suitable. However, right now this paper has significant changes in its topic and author. So, I do not want to lead to any confusion about this paper. In the future, it will have a new version. I hope people will not have issues and confusion about the older one
Object-Centric Kinodynamic Planning for Nonprehensile Robot Rearrangement Manipulation
Nonprehensile actions such as pushing are crucial for addressing multi-object rearrangement problems. Many traditional methods generate robot-centric actions, which differ from intuitive human strategies and are typically inefficient. To this end, we adopt an object-centric planning paradigm and propose a unified framework for addressing a range of large-scale, physics-intensive nonprehensile rearrangement problems challenged by modeling inaccuracies and real-world uncertainties. By assuming each object can actively move without being driven by robot interactions, our planner first computes desired object motions, which are then realized through robot actions generated online via a closed-loop pushing strategy. Through extensive experiments and in comparison with state-of-the-art baselines in both simulation and on a physical robot, we show that our object-centric planning framework can generate more intuitive and task-effective robot actions with significantly improved efficiency. In addition, we propose a benchmarking protocol to standardize and facilitate future research in nonprehensile rearrangement.
PoseDiff: A Unified Diffusion Model Bridging Robot Pose Estimation and Video-to-Action Control
We present PoseDiff, a conditional diffusion model that unifies robot state estimation and control within a single framework. At its core, PoseDiff maps raw visual observations into structured robot states-such as 3D keypoints or joint angles-from a single RGB image, eliminating the need for multi-stage pipelines or auxiliary modalities. Building upon this foundation, PoseDiff extends naturally to video-to-action inverse dynamics: by conditioning on sparse video keyframes generated by world models, it produces smooth and continuous long-horizon action sequences through an overlap-averaging strategy. This unified design enables scalable and efficient integration of perception and control. On the DREAM dataset, PoseDiff achieves state-of-the-art accuracy and real-time performance for pose estimation. On Libero-Object manipulation tasks, it substantially improves success rates over existing inverse dynamics modules, even under strict offline settings. Together, these results show that PoseDiff provides a scalable, accurate, and efficient bridge between perception, planning, and control in embodied AI. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/PoseDiff-project-page/.
comment: The experimental setup and metrics lacks rigor, affecting the fairness of the comparisons
Multiagent Systems
A General Incentives-Based Framework for Fairness in Multi-agent Resource Allocation
We introduce the General Incentives-based Framework for Fairness (GIFF), a novel approach for fair multi-agent resource allocation that infers fair decision-making from standard value functions. In resource-constrained settings, agents optimizing for efficiency often create inequitable outcomes. Our approach leverages the action-value (Q-)function to balance efficiency and fairness without requiring additional training. Specifically, our method computes a local fairness gain for each action and introduces a counterfactual advantage correction term to discourage over-allocation to already well-off agents. This approach is formalized within a centralized control setting, where an arbitrator uses the GIFF-modified Q-values to solve an allocation problem. Empirical evaluations across diverse domains, including dynamic ridesharing, homelessness prevention, and a complex job allocation task-demonstrate that our framework consistently outperforms strong baselines and can discover far-sighted, equitable policies. The framework's effectiveness is supported by a theoretical foundation; we prove its fairness surrogate is a principled lower bound on the true fairness improvement and that its trade-off parameter offers monotonic tuning. Our findings establish GIFF as a robust and principled framework for leveraging standard reinforcement learning components to achieve more equitable outcomes in complex multi-agent systems.
Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
comment: 34 pages, 9 figures. Code available at https://github.com/RedaElMakroum/agentic-ai-hems
Stop Wasting Your Tokens: Towards Efficient Runtime Multi-Agent Systems
While Multi-Agent Systems (MAS) excel at complex tasks, their growing autonomy with operational complexity often leads to critical inefficiencies, such as excessive token consumption and failures arising from misinformation. Existing methods primarily focus on post-hoc failure attribution, lacking proactive, real-time interventions to enhance robustness and efficiency. To this end, we introduce SupervisorAgent, a lightweight and modular framework for runtime, adaptive supervision that operates without altering the base agent's architecture. Triggered by an LLM-free adaptive filter, SupervisorAgent intervenes at critical junctures to proactively correct errors, guide inefficient behaviors, and purify observations. On the challenging GAIA benchmark, SupervisorAgent reduces the token consumption of the Smolagent framework by an average of 29.45% without compromising its success rate. Extensive experiments across five additional benchmarks (math reasoning, code generation, and question answering) and various SoTA foundation models validate the broad applicability and robustness of our approach. The code is available at https://github.com/LINs-lab/SupervisorAgent.
Proxemics and Permeability of the Pedestrian Group
People tend to walk in groups, and interactions with those groups have a significant impact on crowd behavior and pedestrian traffic dynamics. Social norms can be seen as unwritten rules regulating people interactions in social settings. This article studies people interactions with groups and the emergence of group proxemics. Group zones, zone occupancy counts and people clearance from the group are studied using naturalistic data. Analysis indicate potential presence of three different zones in addition to the public zone. People tend to remain in the public zone and only progressively get closer to groups, and those closer approaches happen in a low frequency and for brief periods of time.
Life-cycle Modeling and the Walking Behavior of the Pedestrian-Group as an Emergent Agent: With Empirical Data on the Cohesion of the Group Formation
This article investigates the pedestrian group as an emergent agent. The article explores empirical data to derive emergent agency and formation state spaces and outline recurring patterns of walking behavior. In this analysis, pedestrian trajectories extracted from surveillance videos are used along with manually annotated pedestrian group memberships. We conducted manual expert evaluation of observed groups, produced new manual annotations for relevant events pertaining to group behavior and extracted metrics relevant group formation. This information along with quantitative analysis was used to model the life-cycle and formation of the group agent. Those models give structure to expectations around walking behavior of groups; from pedestrian walking independently to the emergence of a collective intention where group members tended to maintain bounded distance between each other. Disturbances to this bounded distance often happened in association with changes in either their agency or their formation states. We summarized the patterns of behavior along with the sequences of state transitions into abstract patterns, which can aid in the development of more detailed group agents in simulation and in the design of engineering systems to interact with such groups.
Adaptive Context Length Optimization with Low-Frequency Truncation for Multi-Agent Reinforcement Learning
Recently, deep multi-agent reinforcement learning (MARL) has demonstrated promising performance for solving challenging tasks, such as long-term dependencies and non-Markovian environments. Its success is partly attributed to conditioning policies on large fixed context length. However, such large fixed context lengths may lead to limited exploration efficiency and redundant information. In this paper, we propose a novel MARL framework to obtain adaptive and effective contextual information. Specifically, we design a central agent that dynamically optimizes context length via temporal gradient analysis, enhancing exploration to facilitate convergence to global optima in MARL. Furthermore, to enhance the adaptive optimization capability of the context length, we present an efficient input representation for the central agent, which effectively filters redundant information. By leveraging a Fourier-based low-frequency truncation method, we extract global temporal trends across decentralized agents, providing an effective and efficient representation of the MARL environment. Extensive experiments demonstrate that the proposed method achieves state-of-the-art (SOTA) performance on long-term dependency tasks, including PettingZoo, MiniGrid, Google Research Football (GRF), and StarCraft Multi-Agent Challenge v2 (SMACv2).
The Geometry of Dialogue: Graphing Language Models to Reveal Synergistic Teams for Multi-Agent Collaboration
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.
A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
Network-Constrained Policy Optimization for Adaptive Multi-agent Vehicle Routing
Traffic congestion in urban road networks leads to longer trip times and higher emissions, especially during peak periods. While the Shortest Path First (SPF) algorithm is optimal for a single vehicle in a static network, it performs poorly in dynamic, multi-vehicle settings, often worsening congestion by routing all vehicles along identical paths. We address dynamic vehicle routing through a multi-agent reinforcement learning (MARL) framework for coordinated, network-aware fleet navigation. We first propose Adaptive Navigation (AN), a decentralized MARL model where each intersection agent provides routing guidance based on (i) local traffic and (ii) neighborhood state modeled using Graph Attention Networks (GAT). To improve scalability in large networks, we further propose Hierarchical Hub-based Adaptive Navigation (HHAN), an extension of AN that assigns agents only to key intersections (hubs). Vehicles are routed hub-to-hub under agent control, while SPF handles micro-routing within each hub region. For hub coordination, HHAN adopts centralized training with decentralized execution (CTDE) under the Attentive Q-Mixing (A-QMIX) framework, which aggregates asynchronous vehicle decisions via attention. Hub agents use flow-aware state features that combine local congestion and predictive dynamics for proactive routing. Experiments on synthetic grids and real urban maps (Toronto, Manhattan) show that AN reduces average travel time versus SPF and learning baselines, maintaining 100% routing success. HHAN scales to networks with hundreds of intersections, achieving up to 15.9% improvement under heavy traffic. These findings highlight the potential of network-constrained MARL for scalable, coordinated, and congestion-aware routing in intelligent transportation systems.
comment: 29 pages, 12 figures. Fazel Arasteh and Arian Haghparast contributed equally to this research. Submitted to ACM Transactions on Spatial Algorithms and Systems (TSAS). The code for this work is publicly available at https://github.com/Arianhgh/HHAN
Cooperative Integrated Estimation-Guidance for Simultaneous Interception of Moving Targets
This paper proposes a cooperative integrated estimation-guidance framework for simultaneous interception of a non-maneuvering target using a team of unmanned autonomous vehicles, assuming only a subset of vehicles are equipped with dedicated sensors to measure the target's states. Unlike earlier approaches that focus solely on either estimation or guidance design, the proposed framework unifies both within a cooperative architecture. To circumvent the limitation posed by heterogeneity in target observability, sensorless vehicles estimate the target's state by leveraging information exchanged with neighboring agents over a directed communication topology through a prescribed-time observer. The proposed approach employs true proportional navigation guidance (TPNG), which uses an exact time-to-go formulation and is applicable across a wide spectrum of target motions. Furthermore, prescribed-time observer and controller are employed to achieve convergence to true target's state and consensus in time-to-go within set predefined times, respectively. Simulations demonstrate the effectiveness of the proposed framework under various engagement scenarios.
Design for One, Deploy for Many: Navigating Tree Mazes with Multiple Agents
Maze-like environments, such as cave and pipe networks, pose unique challenges for multiple robots to coordinate, including communication constraints and congestion. To address these challenges, we propose a distributed multi-agent maze traversal algorithm for environments that can be represented by acyclic graphs. It uses a leader-switching mechanism where one agent, assuming a head role, employs any single-agent maze solver while the other agents each choose an agent to follow. The head role gets transferred to neighboring agents where necessary, ensuring it follows the same path as a single agent would. The multi-agent maze traversal algorithm is evaluated in simulations with groups of up to 300 agents, various maze sizes, and multiple single-agent maze solvers. It is compared against strategies that are na\"ive, or assume either global communication or full knowledge of the environment. The algorithm outperforms the na\"ive strategy in terms of makespan and sum-of-fuel. It is superior to the global-communication strategy in terms of makespan but is inferior to it in terms of sum-of-fuel. The findings suggest it is asymptotically equivalent to the full-knowledge strategy with respect to either metric. Moreover, real-world experiments with up to 20 Pi-puck robots confirm the feasibility of the approach.
comment: 7 pages, 7 figures, to be published in MRS 2025
The Denario project: Deep knowledge AI agents for scientific discovery
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.
comment: 272 pages. Examples of 11 AI-generated paper drafts from different scientific disciplines. Code publicly available at https://github.com/AstroPilot-AI/Denario
Urban-MAS: Human-Centered Urban Prediction with LLM-Based Multi-Agent System SP
Urban Artificial Intelligence (Urban AI) has advanced human-centered urban tasks such as perception prediction and human dynamics. Large Language Models (LLMs) can integrate multimodal inputs to address heterogeneous data in complex urban systems but often underperform on domain-specific tasks. Urban-MAS, an LLM-based Multi-Agent System (MAS) framework, is introduced for human-centered urban prediction under zero-shot settings. It includes three agent types: Predictive Factor Guidance Agents, which prioritize key predictive factors to guide knowledge extraction and enhance the effectiveness of compressed urban knowledge in LLMs; Reliable UrbanInfo Extraction Agents, which improve robustness by comparing multiple outputs, validating consistency, and re-extracting when conflicts occur; and Multi-UrbanInfo Inference Agents, which integrate extracted multi-source information across dimensions for prediction. Experiments on running-amount prediction and urban perception across Tokyo, Milan, and Seattle demonstrate that Urban-MAS substantially reduces errors compared to single-LLM baselines. Ablation studies indicate that Predictive Factor Guidance Agents are most critical for enhancing predictive performance, positioning Urban-MAS as a scalable paradigm for human-centered urban AI prediction. Code is available on the project website:https://github.com/THETUREHOOHA/UrbanMAS
comment: Accepted to The 3rd ACM SIGSPATIAL International Workshop on Advances in Urban AI (UrbanAI'25)
MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
comment: Accepted by NeurIPS 2025 Datasets & Benchmarks Track
Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
Understanding the Application of Utility Theory in Robotics and Artificial Intelligence: A Survey
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
comment: I am not sure whether withdrawing this paper is suitable. However, right now this paper has significant changes in its topic and author. So, I do not want to lead to any confusion about this paper. In the future, it will have a new version. I hope people will not have issues and confusion about the older one
LAFA: Agentic LLM-Driven Federated Analytics over Decentralized Data Sources
Large Language Models (LLMs) have shown great promise in automating data analytics tasks by interpreting natural language queries and generating multi-operation execution plans. However, existing LLM-agent-based analytics frameworks operate under the assumption of centralized data access, offering little to no privacy protection. In contrast, federated analytics (FA) enables privacy-preserving computation across distributed data sources, but lacks support for natural language input and requires structured, machine-readable queries. In this work, we present LAFA, the first system that integrates LLM-agent-based data analytics with FA. LAFA introduces a hierarchical multi-agent architecture that accepts natural language queries and transforms them into optimized, executable FA workflows. A coarse-grained planner first decomposes complex queries into sub-queries, while a fine-grained planner maps each subquery into a Directed Acyclic Graph of FA operations using prior structural knowledge. To improve execution efficiency, an optimizer agent rewrites and merges multiple DAGs, eliminating redundant operations and minimizing computational and communicational overhead. Our experiments demonstrate that LAFA consistently outperforms baseline prompting strategies by achieving higher execution plan success rates and reducing resource-intensive FA operations by a substantial margin. This work establishes a practical foundation for privacy-preserving, LLM-driven analytics that supports natural language input in the FA setting.
comment: This paper has been accepted by the 16th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2025)
Robotics
STITCH 2.0: Extending Augmented Suturing with EKF Needle Estimation and Thread Management
Surgical suturing is a high-precision task that impacts patient healing and scarring. Suturing skill varies widely between surgeons, highlighting the need for robot assistance. Previous robot suturing works, such as STITCH 1.0 [1], struggle to fully close wounds due to inaccurate needle tracking and poor thread management. To address these challenges, we present STITCH 2.0, an elevated augmented dexterity pipeline with seven improvements including: improved EKF needle pose estimation, new thread untangling methods, and an automated 3D suture alignment algorithm. Experimental results over 15 trials find that STITCH 2.0 on average achieves 74.4% wound closure with 4.87 sutures per trial, representing 66% more sutures in 38% less time compared to the previous baseline. When two human interventions are allowed, STITCH 2.0 averages six sutures with 100% wound closure rate. Project website: https://stitch-2.github.io/
comment: Published in RA-L 2025
GET-USE: Learning Generalized Tool Usage for Bimanual Mobile Manipulation via Simulated Embodiment Extensions
The ability to use random objects as tools in a generalizable manner is a missing piece in robots' intelligence today to boost their versatility and problem-solving capabilities. State-of-the-art robotic tool usage methods focused on procedurally generating or crowd-sourcing datasets of tools for a task to learn how to grasp and manipulate them for that task. However, these methods assume that only one object is provided and that it is possible, with the correct grasp, to perform the task; they are not capable of identifying, grasping, and using the best object for a task when many are available, especially when the optimal tool is absent. In this work, we propose GeT-USE, a two-step procedure that learns to perform real-robot generalized tool usage by learning first to extend the robot's embodiment in simulation and then transferring the learned strategies to real-robot visuomotor policies. Our key insight is that by exploring a robot's embodiment extensions (i.e., building new end-effectors) in simulation, the robot can identify the general tool geometries most beneficial for a task. This learned geometric knowledge can then be distilled to perform generalized tool usage tasks by selecting and using the best available real-world object as tool. On a real robot with 22 degrees of freedom (DOFs), GeT-USE outperforms state-of-the-art methods by 30-60% success rates across three vision-based bimanual mobile manipulation tool-usage tasks.
comment: 8 pages, 7 figures
Modeling Collapse of Steered Vine Robots Under Their Own Weight
Soft, vine-inspired growing robots that move by eversion are highly mobile in confined environments, but, when faced with gaps in the environment, they may collapse under their own weight while navigating a desired path. In this work, we present a comprehensive collapse model that can predict the collapse length of steered robots in any shape using true shape information and tail tension. We validate this model by collapsing several unsteered robots without true shape information. The model accurately predicts the trends of those experiments. We then attempt to collapse a robot steered with a single actuator at different orientations. Our models accurately predict collapse when it occurs. Finally, we demonstrate how this could be used in the field by having a robot attempt a gap-crossing task with and without inflating its actuators. The robot needs its actuators inflated to cross the gap without collapsing, which our model supports. Our model has been specifically tested on straight and series pouch motor-actuated robots made of non-stretchable material, but it could be applied to other robot variations. This work enables us to model the robot's collapse behavior in any open environment and understand the parameters it needs to succeed in 3D navigation tasks.
Robotic Assistant: Completing Collaborative Tasks with Dexterous Vision-Language-Action Models
We adapt a pre-trained Vision-Language-Action (VLA) model (Open-VLA) for dexterous human-robot collaboration with minimal language prompting. Our approach adds (i) FiLM conditioning to visual backbones for task-aware perception, (ii) an auxiliary intent head that predicts collaborator hand pose and target cues, and (iii) action-space post-processing that predicts compact deltas (position/rotation) and PCA-reduced finger joints before mapping to full commands. Using a multi-view, teleoperated Franka and Mimic-hand dataset augmented with MediaPipe hand poses, we demonstrate that delta actions are well-behaved and that four principal components explain ~96% of hand-joint variance. Ablations identify action post-processing as the primary performance driver; auxiliary intent helps, FiLM is mixed, and a directional motion loss is detrimental. A real-time stack (~0.3 s latency on one RTX 4090) composes "pick-up" and "pass" into a long-horizon behavior. We surface "trainer overfitting" to specific demonstrators as the key limitation.
Collision avoidance and path finding in a robotic mobile fulfillment system using multi-objective meta-heuristics
Multi-Agent Path Finding (MAPF) has gained significant attention, with most research focusing on minimizing collisions and travel time. This paper also considers energy consumption in the path planning of automated guided vehicles (AGVs). It addresses two main challenges: i) resolving collisions between AGVs and ii) assigning tasks to AGVs. We propose a new collision avoidance strategy that takes both energy use and travel time into account. For task assignment, we present two multi-objective algorithms: Non-Dominated Sorting Genetic Algorithm (NSGA) and Adaptive Large Neighborhood Search (ALNS). Comparative evaluations show that these proposed methods perform better than existing approaches in both collision avoidance and task assignment.
Learning to Plan & Schedule with Reinforcement-Learned Bimanual Robot Skills
Long-horizon contact-rich bimanual manipulation presents a significant challenge, requiring complex coordination involving a mixture of parallel execution and sequential collaboration between arms. In this paper, we introduce a hierarchical framework that frames this challenge as an integrated skill planning & scheduling problem, going beyond purely sequential decision-making to support simultaneous skill invocation. Our approach is built upon a library of single-arm and bimanual primitive skills, each trained using Reinforcement Learning (RL) in GPU-accelerated simulation. We then train a Transformer-based planner on a dataset of skill compositions to act as a high-level scheduler, simultaneously predicting the discrete schedule of skills as well as their continuous parameters. We demonstrate that our method achieves higher success rates on complex, contact-rich tasks than end-to-end RL approaches and produces more efficient, coordinated behaviors than traditional sequential-only planners.
Don't Blind Your VLA: Aligning Visual Representations for OOD Generalization
The growing success of Vision-Language-Action (VLA) models stems from the promise that pretrained Vision-Language Models (VLMs) can endow agents with transferable world knowledge and vision-language (VL) grounding, laying a foundation for action models with broader generalization. Yet when these VLMs are adapted to the action modality, it remains unclear to what extent their original VL representations and knowledge are preserved. In this work, we conduct a systematic study of representation retention during VLA fine-tuning, showing that naive action fine-tuning leads to degradation of visual representations. To characterize and measure these effects, we probe VLA's hidden representations and analyze attention maps, further, we design a set of targeted tasks and methods that contrast VLA models with their counterpart VLMs, isolating changes in VL capabilities induced by action fine-tuning. We further evaluate a range of strategies for aligning visual representations and introduce a simple yet effective method that mitigates degradation and yields improved generalization to out-of-distribution (OOD) scenarios. Taken together, our analysis clarifies the trade-off between action fine-tuning and the degradation of VL representations and highlights practical approaches to recover inherited VL capabilities. Code is publicly available: https://blind-vla-paper.github.io
comment: 13 pages, 6 figures
Incorporating Social Awareness into Control of Unknown Multi-Agent Systems: A Real-Time Spatiotemporal Tubes Approach
This paper presents a decentralized control framework that incorporates social awareness into multi-agent systems with unknown dynamics to achieve prescribed-time reach-avoid-stay tasks in dynamic environments. Each agent is assigned a social awareness index that quantifies its level of cooperation or self-interest, allowing heterogeneous social behaviors within the system. Building on the spatiotemporal tube (STT) framework, we propose a real-time STT framework that synthesizes tubes online for each agent while capturing its social interactions with others. A closed-form, approximation-free control law is derived to ensure that each agent remains within its evolving STT, thereby avoiding dynamic obstacles while also preventing inter-agent collisions in a socially aware manner, and reaching the target within a prescribed time. The proposed approach provides formal guarantees on safety and timing, and is computationally lightweight, model-free, and robust to unknown disturbances. The effectiveness and scalability of the framework are validated through simulation and hardware experiments on a 2D omnidirectional
Using VLM Reasoning to Constrain Task and Motion Planning ICRA 2026
In task and motion planning, high-level task planning is done over an abstraction of the world to enable efficient search in long-horizon robotics problems. However, the feasibility of these task-level plans relies on the downward refinability of the abstraction into continuous motion. When a domain's refinability is poor, task-level plans that appear valid may ultimately fail during motion planning, requiring replanning and resulting in slower overall performance. Prior works mitigate this by encoding refinement issues as constraints to prune infeasible task plans. However, these approaches only add constraints upon refinement failure, expending significant search effort on infeasible branches. We propose VIZ-COAST, a method of leveraging the common-sense spatial reasoning of large pretrained Vision-Language Models to identify issues with downward refinement a priori, bypassing the need to fix these failures during planning. Experiments on two challenging TAMP domains show that our approach is able to extract plausible constraints from images and domain descriptions, drastically reducing planning times and, in some cases, eliminating downward refinement failures altogether, generalizing to a diverse range of instances from the broader domain.
comment: 8 pages, 7 figures, 1 table. Submitted to ICRA 2026
Octopus-like Reaching Motion: A Perspective Inspired by Whipping
The stereotypical reaching motion of the octopus arm has drawn growing attention for its efficient control of a highly deformable body. Previous studies suggest that its characteristic bend propagation may share underlying principles with the dynamics of a whip. This work investigates whether whip-like passive dynamics in water can reproduce the kinematic features observed in biological reaching and their similarities and differences. Platform-based whipping tests were performed in water and air while systematically varying material stiffness and driving speed. Image-based quantification revealed that the Ecoflex Gel 2 arm driven at 150 rpm (motor speed) reproduced curvature propagation similar to that observed in octopus reaching. However, its bend-point velocity decreased monotonically rather than exhibiting the biological bell-shaped profile, confirming that the octopus reaching movement is not merely a passive whipping behavior. The absence of propagation in air further highlights the critical role of the surrounding medium in forming octopus-like reaching motion. This study provides a new perspective for understand biological reaching movement, and offers a potential platform for future hydrodynamic research.
comment: The first two listed authors contributed equally. Yiyuan Zhang is the corresponding author
Combining Moving Mass Actuators and Manoeuvring Models for Underwater Vehicles: A Lagrangian Approach
In this paper, we present a Newton-Euler formulation of the equations of motion for underwater vehicles with an interntal moving mass actuator. Furthermore, the moving mass dynamics are expressed as an extension to the manoeuvring model for underwater vehicles, originally introduced by Fossen (1991). The influence of the moving mass is described in body-frame and included as states in both an additional kinematic equation and as part of the coupled rigid-body kinetics of the underwater vehicle. The Coriolis-centripetal effects are derived from Kirchhoff's equations and the hydrostatics are derived using first principals. The proposed Newton-Euler model is validated through simulation and compared with the traditional Hamiltonian internal moving mass actuator formulation.
comment: \c{opyright} 2025 Alexander Rambech, Ivar Saksvik and Vahid Hassani. Accepted by IFAC for publication under a Creative Commons License CC-BY-NC-ND
SPADE: Sparsity Adaptive Depth Estimator for Zero-Shot, Real-Time, Monocular Depth Estimation in Underwater Environments
Underwater infrastructure requires frequent inspection and maintenance due to harsh marine conditions. Current reliance on human divers or remotely operated vehicles is limited by perceptual and operational challenges, especially around complex structures or in turbid water. Enhancing the spatial awareness of underwater vehicles is key to reducing piloting risks and enabling greater autonomy. To address these challenges, we present SPADE: SParsity Adaptive Depth Estimator, a monocular depth estimation pipeline that combines pre-trained relative depth estimator with sparse depth priors to produce dense, metric scale depth maps. Our two-stage approach first scales the relative depth map with the sparse depth points, then refines the final metric prediction with our proposed Cascade Conv-Deformable Transformer blocks. Our approach achieves improved accuracy and generalisation over state-of-the-art baselines and runs efficiently at over 15 FPS on embedded hardware, promising to support practical underwater inspection and intervention. This work has been submitted to IEEE Journal of Oceanic Engineering Special Issue of AUV 2026.
Solving the Right Problem with Multi-Robot Formations
Formation control simplifies minimizing multi-robot cost functions by encoding a cost function as a shape the robots maintain. However, by reducing complex cost functions to formations, discrepancies arise between maintaining the shape and minimizing the original cost function. For example, a Diamond or Box formation shape is often used for protecting all members of the formation. When more information about the surrounding environment becomes available, a static shape often no longer minimizes the original protection cost. We propose a formation planner to reduce mismatch between a formation and the cost function while still leveraging efficient formation controllers. Our formation planner is a two-step optimization problem that identifies desired relative robot positions. We first solve a constrained problem to estimate non-linear and non-differentiable costs with a weighted sum of surrogate cost functions. We theoretically analyze this problem and identify situations where weights do not need to be updated. The weighted, surrogate cost function is then minimized using relative positions between robots. The desired relative positions are realized using a non-cooperative formation controller derived from Lyapunov's direct approach. We then demonstrate the efficacy of this approach for military-like costs such as protection and obstacle avoidance. In simulations, we show a formation planner can reduce a single cost by over 75%. When minimizing a variety of cost functions simultaneously, using a formation planner with adaptive weights can reduce the cost by 20-40%. Formation planning provides better performance by minimizing a surrogate cost function that closely approximates the original cost function instead of relying on a shape abstraction.
comment: Submitted to SAE WCX 2026
Sim-to-Real Gentle Manipulation of Deformable and Fragile Objects with Stress-Guided Reinforcement Learning
Robotic manipulation of deformable and fragile objects presents significant challenges, as excessive stress can lead to irreversible damage to the object. While existing solutions rely on accurate object models or specialized sensors and grippers, this adds complexity and often lacks generalization. To address this problem, we present a vision-based reinforcement learning approach that incorporates a stress-penalized reward to discourage damage to the object explicitly. In addition, to bootstrap learning, we incorporate offline demonstrations as well as a designed curriculum progressing from rigid proxies to deformables. We evaluate the proposed method in both simulated and real-world scenarios, showing that the policy learned in simulation can be transferred to the real world in a zero-shot manner, performing tasks such as picking up and pushing tofu. Our results show that the learned policies exhibit a damage-aware, gentle manipulation behavior, demonstrating their effectiveness by decreasing the stress applied to fragile objects by 36.5% while achieving the task goals, compared to vanilla RL policies.
comment: Under review
Integrating Legal and Logical Specifications in Perception, Prediction, and Planning for Automated Driving: A Survey of Methods
This survey provides an analysis of current methodologies integrating legal and logical specifications into the perception, prediction, and planning modules of automated driving systems. We systematically explore techniques ranging from logic-based frameworks to computational legal reasoning approaches, emphasizing their capability to ensure regulatory compliance and interpretability in dynamic and uncertain driving environments. A central finding is that significant challenges arise at the intersection of perceptual reliability, legal compliance, and decision-making justifiability. To systematically analyze these challenges, we introduce a taxonomy categorizing existing approaches by their theoretical foundations, architectural implementations, and validation strategies. We particularly focus on methods that address perceptual uncertainty and incorporate explicit legal norms, facilitating decisions that are both technically robust and legally defensible. The review covers neural-symbolic integration methods for perception, logic-driven rule representation, and norm-aware prediction strategies, all contributing toward transparent and accountable autonomous vehicle operation. We highlight critical open questions and practical trade-offs that must be addressed, offering multidisciplinary insights from engineering, logic, and law to guide future developments in legally compliant autonomous driving systems.
comment: Accepted to 2025 IEEE International Automated Vehicle Validation Conference (IAVVC)
Geometric Robot Calibration Using a Calibration Plate
In this paper a new method for geometric robot calibration is introduced, which uses a calibration plate with precisely known distances between its measuring points. The relative measurement between two points on the calibration plate is used to determine predefined error parameters of the system. In comparison to conventional measurement methods, like laser tracker or motion capture systems, the calibration plate provides a more mechanically robust and cheaper alternative, which is furthermore easier to transport due to its small size. The calibration method, the plate design, the mathematical description of the error system as well as the identification of the parameters are described in detail. For identifying the error parameters, the least squares method and a constrained optimization problem are used. The functionality of this method was demonstrated in experiments that led to promising results, correlated with one of a laser tracker calibration. The modeling and identification of the error parameters is done for a gantry machine, but is not restricted to that type of robot.
comment: pp 309-317
An approach for combining transparency and motion assistance of a lower body exoskeleton
In this paper, an approach for gait assistance with a lower body exoskeleton is described. Two concepts, transparency and motion assistance, are combined. The transparent mode, where the system is following the user's free motion with a minimum of perceived interaction forces, is realized by exploiting the gear backlash of the actuation units. During walking a superimposed assistance mode applies an additional torque guiding the legs to their estimated future position. The concept of adaptive oscillators is utilized to learn the quasi-periodic signals typical for locomotion. First experiments showed promising results.
comment: 8 pages
Seeing Clearly and Deeply: An RGBD Imaging Approach with a Bio-inspired Monocentric Design
Achieving high-fidelity, compact RGBD imaging presents a dual challenge: conventional compact optics struggle with RGB sharpness across the entire depth-of-field, while software-only Monocular Depth Estimation (MDE) is an ill-posed problem reliant on unreliable semantic priors. While deep optics with elements like DOEs can encode depth, they introduce trade-offs in fabrication complexity and chromatic aberrations, compromising simplicity. To address this, we first introduce a novel bio-inspired all-spherical monocentric lens, around which we build the Bionic Monocentric Imaging (BMI) framework, a holistic co-design. This optical design naturally encodes depth into its depth-varying Point Spread Functions (PSFs) without requiring complex diffractive or freeform elements. We establish a rigorous physically-based forward model to generate a synthetic dataset by precisely simulating the optical degradation process. This simulation pipeline is co-designed with a dual-head, multi-scale reconstruction network that employs a shared encoder to jointly recover a high-fidelity All-in-Focus (AiF) image and a precise depth map from a single coded capture. Extensive experiments validate the state-of-the-art performance of the proposed framework. In depth estimation, the method attains an Abs Rel of 0.026 and an RMSE of 0.130, markedly outperforming leading software-only approaches and other deep optics systems. For image restoration, the system achieves an SSIM of 0.960 and a perceptual LPIPS score of 0.082, thereby confirming a superior balance between image fidelity and depth accuracy. This study illustrates that the integration of bio-inspired, fully spherical optics with a joint reconstruction algorithm constitutes an effective strategy for addressing the intrinsic challenges in high-performance compact RGBD imaging. Source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI.
comment: The source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI
Development of Implicit-Explicit Control Based Amphibious Centipede-Type Robot and Evaluation of its Mobile Performance
Multi-legged mobile robots possess high mobility performance in rough terrain environments, stemming from their high postural stability, joint flexibility, and the redundancy provided by multiple legs. In prior research on navigating between different environments such as land and water, the primary strategy employed involves switching to a controller that generates an appropriate gait for the new environment upon entering it. However, designing appropriate gaits for each complex and diverse environment and accurately determining controller switching for each environment is challenging. Therefore, this research develops a centipede-type mobile robot that navigates both aquatic and terrestrial environments with a simple, unified control scheme, based on the implicit-explicit control philosophy and by ingeniously designing the robot's body structure. In this research, we developed the robot featuring flexible joints and left and right legs on each body segment and focused on the leg structure which has extensive contact with the environment. This paper evaluates the locomotion performance on land and water using the three developed leg structures, using the robot's leg slip rate and actuator energy consumption as evaluation metrics. The experimental results confirmed the existence of an appropriate leg structure capable of navigating both aquatic and terrestrial environments under identical control.
SynHLMA:Synthesizing Hand Language Manipulation for Articulated Object with Discrete Human Object Interaction Representation
Generating hand grasps with language instructions is a widely studied topic that benefits from embodied AI and VR/AR applications. While transferring into hand articulatied object interaction (HAOI), the hand grasps synthesis requires not only object functionality but also long-term manipulation sequence along the object deformation. This paper proposes a novel HAOI sequence generation framework SynHLMA, to synthesize hand language manipulation for articulated objects. Given a complete point cloud of an articulated object, we utilize a discrete HAOI representation to model each hand object interaction frame. Along with the natural language embeddings, the representations are trained by an HAOI manipulation language model to align the grasping process with its language description in a shared representation space. A joint-aware loss is employed to ensure hand grasps follow the dynamic variations of articulated object joints. In this way, our SynHLMA achieves three typical hand manipulation tasks for articulated objects of HAOI generation, HAOI prediction and HAOI interpolation. We evaluate SynHLMA on our built HAOI-lang dataset and experimental results demonstrate the superior hand grasp sequence generation performance comparing with state-of-the-art. We also show a robotics grasp application that enables dexterous grasps execution from imitation learning using the manipulation sequence provided by our SynHLMA. Our codes and datasets will be made publicly available.
Time-Optimal Transport of Loosely Placed Liquid Filled Cups along Prescribed Paths
Handling loosely placed objects with robotic manipulators is a difficult task from the point of view of trajectory planning and control. This becomes even more challenging when the object to be handled is a container filled with liquid. This paper addresses the task of transporting a liquid-filled cup placed on a tray along a prescribed path in shortest time. The objective is to minimize swapping, thus avoiding spillage of the fluid. To this end, the sloshing dynamics is incorporated into the dynamic model used within the optimal control problem formulation. The optimization problem is solved using a direct multiple shooting approach.
One-shot Humanoid Whole-body Motion Learning
Whole-body humanoid motion represents a cornerstone challenge in robotics, integrating balance, coordination, and adaptability to enable human-like behaviors. However, existing methods typically require multiple training samples per motion category, rendering the collection of high-quality human motion datasets both labor-intensive and costly. To address this, we propose a novel approach that trains effective humanoid motion policies using only a single non-walking target motion sample alongside readily available walking motions. The core idea lies in leveraging order-preserving optimal transport to compute distances between walking and non-walking sequences, followed by interpolation along geodesics to generate new intermediate pose skeletons, which are then optimized for collision-free configurations and retargeted to the humanoid before integration into a simulated environment for policy training via reinforcement learning. Experimental evaluations on the CMU MoCap dataset demonstrate that our method consistently outperforms baselines, achieving superior performance across metrics. Code will be released upon acceptance.
comment: 10 pages, 3 figures, 5 tables
Hybrid Vision Servoing with Depp Alignment and GRU-Based Occlusion Recovery
Vision-based control systems, such as image-based visual servoing (IBVS), have been extensively explored for precise robot manipulation. A persistent challenge, however, is maintaining robust target tracking under partial or full occlusions. Classical methods like Lucas-Kanade (LK) offer lightweight tracking but are fragile to occlusion and drift, while deep learning-based approaches often require continuous visibility and intensive computation. To address these gaps, we propose a hybrid visual tracking framework that bridges advanced perception with real-time servo control. First, a fast global template matcher constrains the pose search region; next, a deep-feature Lucas-Kanade module operating on early VGG layers refines alignment to sub-pixel accuracy (<2px); then, a lightweight residual regressor corrects local misalignments caused by texture degradation or partial occlusion. When visual confidence falls below a threshold, a GRU-based predictor seamlessly extrapolates pose updates from recent motion history. Crucially, the pipeline's final outputs-translation, rotation, and scale deltas-are packaged as direct control signals for 30Hz image-based servo loops. Evaluated on handheld video sequences with up to 90% occlusion, our system sustains under 2px tracking error, demonstrating the robustness and low-latency precision essential for reliable real-world robot vision applications.
RoadSens-4M: A Multimodal Smartphone & Camera Dataset for Holistic Road-way Analysis
It's important to monitor road issues such as bumps and potholes to enhance safety and improve road conditions. Smartphones are equipped with various built-in sensors that offer a cost-effective and straightforward way to assess road quality. However, progress in this area has been slow due to the lack of high-quality, standardized datasets. This paper discusses a new dataset created by a mobile app that collects sensor data from devices like GPS, accelerometers, gyroscopes, magnetometers, gravity sensors, and orientation sensors. This dataset is one of the few that integrates Geographic Information System (GIS) data with weather information and video footage of road conditions, providing a comprehensive understanding of road issues with geographic context. The dataset allows for a clearer analysis of road conditions by compiling essential data, including vehicle speed, acceleration, rotation rates, and magnetic field intensity, along with the visual and spatial context provided by GIS, weather, and video data. Its goal is to provide funding for initiatives that enhance traffic management, infrastructure development, road safety, and urban planning. Additionally, the dataset will be publicly accessible to promote further research and innovation in smart transportation systems.
SoraNav: Adaptive UAV Task-Centric Navigation via Zeroshot VLM Reasoning
Interpreting visual observations and natural language instructions for complex task execution remains a key challenge in robotics and AI. Despite recent advances, language-driven navigation is still difficult, particularly for UAVs in small-scale 3D environments. Existing Vision-Language Navigation (VLN) approaches are mostly designed for ground robots and struggle to generalize to aerial tasks that require full 3D spatial reasoning. The emergence of large Vision-Language Models (VLMs), such as GPT and Claude, enables zero-shot semantic reasoning from visual and textual inputs. However, these models lack spatial grounding and are not directly applicable to navigation. To address these limitations, SoraNav is introduced, an adaptive UAV navigation framework that integrates zero-shot VLM reasoning with geometry-aware decision-making. Geometric priors are incorporated into image annotations to constrain the VLM action space and improve decision quality. A hybrid switching strategy leverages navigation history to alternate between VLM reasoning and geometry-based exploration, mitigating dead-ends and redundant revisits. A PX4-based hardware-software platform, comprising both a digital twin and a physical micro-UAV, enables reproducible evaluation. Experimental results show that in 2.5D scenarios, our method improves Success Rate (SR) by 25.7% and Success weighted by Path Length (SPL) by 17%. In 3D scenarios, it improves SR by 29.5% and SPL by 18.5% relative to the baseline.
Learning Spatial-Aware Manipulation Ordering NeurIPS 2025
Manipulation in cluttered environments is challenging due to spatial dependencies among objects, where an improper manipulation order can cause collisions or blocked access. Existing approaches often overlook these spatial relationships, limiting their flexibility and scalability. To address these limitations, we propose OrderMind, a unified spatial-aware manipulation ordering framework that directly learns object manipulation priorities based on spatial context. Our architecture integrates a spatial context encoder with a temporal priority structuring module. We construct a spatial graph using k-Nearest Neighbors to aggregate geometric information from the local layout and encode both object-object and object-manipulator interactions to support accurate manipulation ordering in real-time. To generate physically and semantically plausible supervision signals, we introduce a spatial prior labeling method that guides a vision-language model to produce reasonable manipulation orders for distillation. We evaluate OrderMind on our Manipulation Ordering Benchmark, comprising 163,222 samples of varying difficulty. Extensive experiments in both simulation and real-world environments demonstrate that our method significantly outperforms prior approaches in effectiveness and efficiency, enabling robust manipulation in cluttered scenes.
comment: Accepted to NeurIPS 2025
NanoVLA: Routing Decoupled Vision-Language Understanding for Nano-sized Generalist Robotic Policies
Vision-language-action (VLA) models have significantly advanced robotic manipulation by integrating vision-language models (VLMs), and action decoders into a unified architecture. However, their deployment on resource-constrained edge devices, such as mobile robots or embedded systems (e.g., Jetson Orin Nano), remains challenging due to high computational demands, especially in real-world scenarios where power, latency, and computational resources are critical. To close this gap, we introduce Nano-scale Vision-Language Action (NanoVLA), a family of lightweight VLA architectures that achieve high performance with minimal resources. Our core innovations include: (1) vision-language decoupling that moves conventional early vision and language inputs fusion in VLM to late stage, achieving better performance while enabling caching and reduce inference overhead and latency; (2) long-short action chunking to ensure smooth, coherent multi-step planning without sacrificing real-time responsiveness; (3) dynamic routing that adaptively assigns lightweight or heavy backbones based on task complexity, further optimizing inference efficiency. Experimental results on several benchmarks, as well as real-world deployments, demonstrate that NanoVLA achieves up to 52x faster inference on edge devices compared to previous state-of-the-art VLA models, with 98% less parameters while maintaining or surpassing their task accuracy and generalization. Ablation studies confirm that our decoupling strategy preserves cross-task transferability, and the routing module enhances cost-performance trade-offs, enabling practical, high-precision robotic manipulation on resource-constrained hardware.
Mean-Shift Theory and Its Applications in Swarm Robotics: A New Way to Enhance the Efficiency of Multi-Robot Collaboration
Swarms evolving from collective behaviors among multiple individuals are commonly seen in nature, which enables biological systems to exhibit more efficient and robust collaboration. Creating similar swarm intelligence in engineered robots poses challenges to the design of collaborative algorithms that can be programmed at large scales. The assignment-based method has played an eminent role for a very long time in solving collaboration problems of robot swarms. However, it faces fundamental limitations in terms of efficiency and robustness due to its unscalability to swarm variants. This article presents a tutorial review on recent advances in assignment-free collaboration of robot swarms, focusing on the problem of shape formation. A key theoretical component is the recently developed \emph{mean-shift exploration} strategy, which improves the collaboration efficiency of large-scale swarms by dozens of times. Further, the efficiency improvement is more significant as the swarm scale increases. Finally, this article discusses three important applications of the mean-shift exploration strategy, including precise shape formation, area coverage formation, and maneuvering formation, as well as their corresponding industrial scenarios in smart warehousing, area exploration, and cargo transportation.
Non-Invasive Calibration Of A Stewart Platform By Photogrammetry
Accurate calibration of a Stewart platform is important for their precise and efficient operation. However, the calibration of these platforms using forward kinematics is a challenge for researchers because forward kinematics normally generates multiple feasible and unfeasible solutions for any pose of the moving platform. The complex kinematic relations among the six actuator paths connecting the fixed base to the moving platform further compound the difficulty in establishing a straightforward and efficient calibration method. The authors developed a new forward kinematics-based calibration method using Denavit-Hartenberg convention and used the Stewart platform Tiger 66.1 developed in their lab for experimenting with the photogrammetry-based calibration strategies described in this paper. This system became operational upon completion of construction, marking its inaugural use. The authors used their calibration model for estimating the errors in the system and adopted three compensation options or strategies as per Least Square method to improve the accuracy of the system. These strategies leveraged a high-resolution digital camera and off-the-shelf software to capture the poses of the moving platform's center. This process is non-invasive and does not need any additional equipment to be attached to the hexapod or any alteration of the hexapod hardware. This photogrammetry-based calibration process involves multiple high-resolution images from different angles to measure the position and orientation of the platform center in the three-dimensional space. The Target poses and Actual poses are then compared, and the error compensations are estimated using the Least-Squared methods to calculate the Predicted poses. Results from each of the three compensation approaches demonstrated noticeable enhancements in platform pose accuracies, suggesting room for further improvements.
comment: The International Journal of Advanced Manufacturing Technology, 2024
Scalable predictive processing framework for multitask caregiving robots
The rapid aging of societies is intensifying demand for autonomous care robots; however, most existing systems are task-specific and rely on handcrafted preprocessing, limiting their ability to generalize across diverse scenarios. A prevailing theory in cognitive neuroscience proposes that the human brain operates through hierarchical predictive processing, which underlies flexible cognition and behavior by integrating multimodal sensory signals. Inspired by this principle, we introduce a hierarchical multimodal recurrent neural network grounded in predictive processing under the free-energy principle, capable of directly integrating over 30,000-dimensional visuo-proprioceptive inputs without dimensionality reduction. The model was able to learn two representative caregiving tasks, rigid-body repositioning and flexible-towel wiping, without task-specific feature engineering. We demonstrate three key properties: (i) self-organization of hierarchical latent dynamics that regulate task transitions, capture variability in uncertainty, and infer occluded states; (ii) robustness to degraded vision through visuo-proprioceptive integration; and (iii) asymmetric interference in multitask learning, where the more variable wiping task had little influence on repositioning, whereas learning the repositioning task led to a modest reduction in wiping performance, while the model maintained overall robustness. Although the evaluation was limited to simulation, these results establish predictive processing as a universal and scalable computational principle, pointing toward robust, flexible, and autonomous caregiving robots while offering theoretical insight into the human brain's ability to achieve flexible adaptation in uncertain real-world environments.
Large Language Model-assisted Autonomous Vehicle Recovery from Immobilization
Despite significant advancements in recent decades, autonomous vehicles (AVs) continue to face challenges in navigating certain traffic scenarios where human drivers excel. In such situations, AVs often become immobilized, disrupting overall traffic flow. Current recovery solutions, such as remote intervention (which is costly and inefficient) and manual takeover (which excludes non-drivers and limits AV accessibility), are inadequate. This paper introduces StuckSolver, a novel Large Language Model (LLM) driven recovery framework that enables AVs to resolve immobilization scenarios through self-reasoning and/or passenger-guided decision-making. StuckSolver is designed as a plug-in add-on module that operates on top of the AV's existing perception-planning-control stack, requiring no modification to its internal architecture. Instead, it interfaces with standard sensor data streams to detect immobilization states, interpret environmental context, and generate high-level recovery commands that can be executed by the AV's native planner. We evaluate StuckSolver on the Bench2Drive benchmark and in custom-designed uncertainty scenarios. Results show that StuckSolver achieves near-state-of-the-art performance through autonomous self-reasoning alone and exhibits further improvements when passenger guidance is incorporated.
comment: 8 pages
RADRON: Cooperative Localization of Ionizing Radiation Sources by MAVs with Compton Cameras
We present a novel approach to localizing radioactive material by cooperating Micro Aerial Vehicles (MAVs). Our approach utilizes a state-of-the-art single-detector Compton camera as a highly sensitive, yet miniature detector of ionizing radiation. The detector's exceptionally low weight (40 g) opens up new possibilities of radiation detection by a team of cooperating agile MAVs. We propose a new fundamental concept of fusing the Compton camera measurements to estimate the position of the radiation source in real time even from extremely sparse measurements. The data readout and processing are performed directly onboard and the results are used in a dynamic feedback to drive the motion of the vehicles. The MAVs are stabilized in a tightly cooperating swarm to maximize the information gained by the Compton cameras, rapidly locate the radiation source, and even track a moving radiation source.
comment: 8 pages, 9 figures, submitted for review to IEEE RA-L
DARTS: A Drone-Based AI-Powered Real-Time Traffic Incident Detection System
Rapid and reliable incident detection is critical for reducing crash-related fatalities, injuries, and congestion. However, conventional methods, such as closed-circuit television, dashcam footage, and sensor-based detection, separate detection from verification, suffer from limited flexibility, and require dense infrastructure or high penetration rates, restricting adaptability and scalability to shifting incident hotspots. To overcome these challenges, we developed DARTS, a drone-based, AI-powered real-time traffic incident detection system. DARTS integrates drones' high mobility and aerial perspective for adaptive surveillance, thermal imaging for better low-visibility performance and privacy protection, and a lightweight deep learning framework for real-time vehicle trajectory extraction and incident detection. The system achieved 99% detection accuracy on a self-collected dataset and supports simultaneous online visual verification, severity assessment, and incident-induced congestion propagation monitoring via a web-based interface. In a field test on Interstate 75 in Florida, DARTS detected and verified a rear-end collision 12 minutes earlier than the local transportation management center and monitored incident-induced congestion propagation, suggesting potential to support faster emergency response and enable proactive traffic control to reduce congestion and secondary crash risk. Crucially, DARTS's flexible deployment architecture reduces dependence on frequent physical patrols, indicating potential scalability and cost-effectiveness for use in remote areas and resource-constrained settings. This study presents a promising step toward a more flexible and integrated real-time traffic incident detection system, with significant implications for the operational efficiency and responsiveness of modern transportation management.
comment: Preprint version. This manuscript is currently under review at Transportation Research Part C: Emerging Technologies. The PDF corresponds to the version submitted in June 2025. The main findings of this work were recognized with the Best Intelligent Transportation Systems Paper Award at the 2025 TRB Annual Meeting
A New Type of Axis-Angle Attitude Control Law for Rotational Systems: Synthesis, Analysis, and Experiments
Over the past few decades, continuous quaternion-based attitude control has been proven highly effective for driving rotational systems that can be modeled as rigid bodies, such as satellites and drones. However, methods rooted in this approach do not enforce the existence of a unique closed-loop (CL) equilibrium attitude-error quaternion (AEQ); and, for rotational errors about the attitude-error Euler axis larger than {\pi}rad, their proportional-control effect diminishes as the system state moves away from the stable equilibrium of the CL rotational dynamics. In this paper, we introduce a new type of attitude control law that more effectively leverages the attitude-error Euler axis-angle information to guarantee a unique CL equilibrium AEQ and to provide greater flexibility in the use of proportional-control efforts. Furthermore, using two different control laws as examples-through the construction of a strict Lyapunov function for the CL dynamics-we demonstrate that the resulting unique equilibrium of the CL rotational system can be enforced to be uniformly asymptotically stable. To assess and demonstrate the functionality and performance of the proposed approach, we performed numerical simulations and executed dozens of real-time tumble-recovery maneuvers using a small quadrotor. These simulations and flight tests compellingly demonstrate that the proposed axis-angle-based method achieves superior flight performance-compared with that obtained using a high-performance quaternion-based controller-in terms of stabilization time.
comment: 2025 International Conference on Advanced Robotics (ICAR)
Curvature-Aware Calibration of Tactile Sensors for Accurate Force Estimation on Non-Planar Surfaces
Flexible tactile sensors are increasingly used in real-world applications such as robotic grippers, prosthetic hands, wearable gloves, and assistive devices, where they need to conform to curved and irregular surfaces. However, most existing tactile sensors are calibrated only on flat substrates, and their accuracy and consistency degrade once mounted on curved geometries. This limitation restricts their reliability in practical use. To address this challenge, we develop a calibration model for a widely used resistive tactile sensor design that enables accurate force estimation on one-dimensional curved surfaces. We then train a neural network (a multilayer perceptron) to predict local curvature from baseline sensor outputs recorded under no applied load, achieving an R2 score of 0.91. The proposed approach is validated on five daily objects with varying curvatures under forces from 2 N to 8 N. Results show that the curvature-aware calibration maintains consistent force accuracy across all surfaces, while flat-surface calibration underestimates force as curvature increases. Our results demonstrate that curvature-aware modeling improves the accuracy, consistency, and reliability of flexible tactile sensors, enabling dependable performance across real-world applications.
comment: This work has been submitted to the IEEE for possible publication
WaveVerif: Acoustic Side-Channel based Verification of Robotic Workflows
In this paper, we present a framework that uses acoustic side-channel analysis (ASCA) to monitor and verify whether a robot correctly executes its intended commands. We develop and evaluate a machine-learning-based workflow verification system that uses acoustic emissions generated by robotic movements. The system can determine whether real-time behavior is consistent with expected commands. The evaluation takes into account movement speed, direction, and microphone distance. The results show that individual robot movements can be validated with over 80% accuracy under baseline conditions using four different classifiers: Support Vector Machine (SVM), Deep Neural Network (DNN), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN). Additionally, workflows such as pick-and-place and packing could be identified with similarly high confidence. Our findings demonstrate that acoustic signals can support real-time, low-cost, passive verification in sensitive robotic environments without requiring hardware modifications.
comment: 11 pages, 3 figures, Corresponding Author: Prof. Shishir Nagaraja (shishir.nagaraja@newcastle.ac.uk)
Risk-Aware Safety Filters with Poisson Safety Functions and Laplace Guidance Fields
Robotic systems navigating in real-world settings require a semantic understanding of their environment to properly determine safe actions. This work aims to develop the mathematical underpinnings of such a representation -- specifically, the goal is to develop safety filters that are risk-aware. To this end, we take a two step approach: encoding an understanding of the environment via Poisson's equation, and associated risk via Laplace guidance fields. That is, we first solve a Dirichlet problem for Poisson's equation to generate a safety function that encodes system safety as its 0-superlevel set. We then separately solve a Dirichlet problem for Laplace's equation to synthesize a safe \textit{guidance field} that encodes variable levels of caution around obstacles -- by enforcing a tunable flux boundary condition. The safety function and guidance fields are then combined to define a safety constraint and used to synthesize a risk-aware safety filter which, given a semantic understanding of an environment with associated risk levels of environmental features, guarantees safety while prioritizing avoidance of higher risk obstacles. We demonstrate this method in simulation and discuss how \textit{a priori} understandings of obstacle risk can be directly incorporated into the safety filter to generate safe behaviors that are risk-aware.
BikeScenes: Online LiDAR Semantic Segmentation for Bicycles
The vulnerability of cyclists, exacerbated by the rising popularity of faster e-bikes, motivates adapting automotive perception technologies for bicycle safety. We use our multi-sensor 'SenseBike' research platform to develop and evaluate a 3D LiDAR segmentation approach tailored to bicycles. To bridge the automotive-to-bicycle domain gap, we introduce the novel BikeScenes-lidarseg Dataset, comprising 3021 consecutive LiDAR scans around the university campus of the TU Delft, semantically annotated for 29 dynamic and static classes. By evaluating model performance, we demonstrate that fine-tuning on our BikeScenes dataset achieves a mean Intersection-over-Union (mIoU) of 63.6%, significantly outperforming the 13.8% obtained with SemanticKITTI pre-training alone. This result underscores the necessity and effectiveness of domain-specific training. We highlight key challenges specific to bicycle-mounted, hardware-constrained perception systems and contribute the BikeScenes dataset as a resource for advancing research in cyclist-centric LiDAR segmentation.
Debate2Create: Robot Co-design via Large Language Model Debates
Automating the co-design of a robot's morphology and control is a long-standing challenge due to the vast design space and the tight coupling between body and behavior. We introduce Debate2Create (D2C), a framework in which large language model (LLM) agents engage in a structured dialectical debate to jointly optimize a robot's design and its reward function. In each round, a design agent proposes targeted morphological modifications, and a control agent devises a reward function tailored to exploit the new design. A panel of pluralistic judges then evaluates the design-control pair in simulation and provides feedback that guides the next round of debate. Through iterative debates, the agents progressively refine their proposals, producing increasingly effective robot designs. Notably, D2C yields diverse and specialized morphologies despite no explicit diversity objective. On a quadruped locomotion benchmark, D2C discovers designs that travel 73% farther than the default, demonstrating that structured LLM-based debate can serve as a powerful mechanism for emergent robot co-design. Our results suggest that multi-agent debate, when coupled with physics-grounded feedback, is a promising new paradigm for automated robot design.
Enhancing Underwater Object Detection through Spatio-Temporal Analysis and Spatial Attention Networks
This study examines the effectiveness of spatio-temporal modeling and the integration of spatial attention mechanisms in deep learning models for underwater object detection. Specifically, in the first phase, the performance of temporal-enhanced YOLOv5 variant T-YOLOv5 is evaluated, in comparison with the standard YOLOv5. For the second phase, an augmented version of T-YOLOv5 is developed, through the addition of a Convolutional Block Attention Module (CBAM). By examining the effectiveness of the already pre-existing YOLOv5 and T-YOLOv5 models and of the newly developed T-YOLOv5 with CBAM. With CBAM, the research highlights how temporal modeling improves detection accuracy in dynamic marine environments, particularly under conditions of sudden movements, partial occlusions, and gradual motion. The testing results showed that YOLOv5 achieved a mAP@50-95 of 0.563, while T-YOLOv5 and T-YOLOv5 with CBAM outperformed with mAP@50-95 scores of 0.813 and 0.811, respectively, highlighting their superior accuracy and generalization in detecting complex objects. The findings demonstrate that T-YOLOv5 significantly enhances detection reliability compared to the standard model, while T-YOLOv5 with CBAM further improves performance in challenging scenarios, although there is a loss of accuracy when it comes to simpler scenarios.
Force Characterization of Insect-Scale Aquatic Propulsion Based on Fluid-Structure Interaction
We present force characterizations of two newly developed insect-scale propulsors--one single-tailed and one double-tailed--for microrobotic swimmers that leverage fluid-structure interaction (FSI) to generate thrust. The designs of these two devices were inspired by anguilliform swimming and are driven by soft tails excited by high-work-density (HWD) actuators powered by shape-memory alloy (SMA) wires. While these propulsors have been demonstrated to be suitable for microrobotic aquatic locomotion and controllable with simple architectures for trajectory tracking in the two-dimensional (2D) space, the characteristics and magnitudes of the associated forces have not been studied systematically. In the research presented here, we adopted a theoretical framework based on the notion of reactive forces and obtained experimental data for characterization using a custom-built micro-N-resolution force sensor. We measured maximum and cycle-averaged force values with multi-test means of respectively 0.45 mN and 2.97 micro-N, for the tested single-tail propulsor. For the dual-tail propulsor, we measured maximum and cycle-averaged force values with multi-test means of 0.61 mN and 22.6 micro-N, respectively. These results represent the first measurements of the instantaneous thrust generated by insect-scale propulsors of this type and provide insights into FSI for efficient microrobotic propulsion.
comment: To be presented at ICAR 2025 in San Juan, Argentina
Taxonomy and Trends in Reinforcement Learning for Robotics and Control Systems: A Structured Review
Reinforcement learning (RL) has become a foundational approach for enabling intelligent robotic behavior in dynamic and uncertain environments. This work presents an in-depth review of RL principles, advanced deep reinforcement learning (DRL) algorithms, and their integration into robotic and control systems. Beginning with the formalism of Markov Decision Processes (MDPs), the study outlines essential elements of the agent-environment interaction and explores core algorithmic strategies including actor-critic methods, value-based learning, and policy gradients. Emphasis is placed on modern DRL techniques such as DDPG, TD3, PPO, and SAC, which have shown promise in solving high-dimensional, continuous control tasks. A structured taxonomy is introduced to categorize RL applications across domains such as locomotion, manipulation, multi-agent coordination, and human-robot interaction, along with training methodologies and deployment readiness levels. The review synthesizes recent research efforts, highlighting technical trends, design patterns, and the growing maturity of RL in real-world robotics. Overall, this work aims to bridge theoretical advances with practical implementations, providing a consolidated perspective on the evolving role of RL in autonomous robotic systems.
RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
Optimal Kinematic Synthesis and Prototype Development of Knee Exoskeleton
The range of rotation (RoR) in a knee exoskeleton is a critical factor in rehabilitation, as it directly influences joint mobility, muscle activation, and recovery outcomes. A well-designed RoR ensures that patients achieve near-natural knee kinematics, which is essential for restoring gait patterns and preventing compensatory movements. This paper presents optimal design of one degree of freedom knee exoskeleton. In kinematic analysis, the existing design being represented by nonlinear and nonconvex mathematical functions. To obtain feasible and optimum measurement of the links of knee exoskeleton, an optimization problem is formulated based on the kinematic analysis and average human's leg measurement. The optimized solution increases the range of motion of knee exoskeleton during sit to stand motion by $24 \%$ as compared with inspired design. Furthermore, misalignment study is conducted by comparing the trajectory of human's knee and exoskeleton's knee during sit to stand motion. The joint movement is calculated using marker and camera system. Finally, a prototype of the knee joint exoskeleton is being developed based on optimal dimensions which validate the maximum range of motion achieved during simulation.
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behaviour classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviours such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioural analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
Credit assignmen, disentangling each agent's contribution to a shared reward, is a critical challenge in cooperative multi-agent reinforcement learning (MARL). To be effective, credit assignment methods must preserve the environment's optimal policy. Some recent approaches attempt this by enforcing return equivalence, where the sum of distributed rewards must equal the team reward. However, their guarantees are conditional on a learned model's regression accuracy, making them unreliable in practice. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), an approach that decouples credit modeling from this constraint. A neural network learns unnormalized contribution scores, while a separate, deterministic normalization step enforces return equivalence by construction. We demonstrate that this method is equivalent to a valid Potential-Based Reward Shaping (PBRS), which guarantees the optimal policy is preserved regardless of model accuracy. Empirically, on challenging SMACLite and Google Research Football (GRF) benchmarks, TAR$^2$ accelerates learning and achieves higher final performance than strong baselines. These results establish our method as an effective solution for the agent-temporal credit assignment problem.
comment: 16 pages, 4 figures, 4 tables
Multi-robot Motion Planning based on Nets-within-Nets Modeling and Simulation
This paper focuses on designing motion plans for a heterogeneous team of robots that must cooperate to fulfill a global mission. Robots move in an environment that contains some regions of interest, while the specification for the entire team can include avoidance, visits, or sequencing of these regions of interest. The mission is expressed in terms of a Petri net corresponding to an automaton, while each robot is also modeled by a state machine Petri net. The current work brings about the following contributions with respect to existing solutions for related problems. First, we propose a novel model, denoted High-Level robot team Petri Net (HLrtPN) system, to incorporate the specification and robot models into the Nets-within-Nets paradigm. A guard function, named Global Enabling Function, is designed to synchronize the firing of transitions so that robot motions do not violate the specification. Then, the solution is found by simulating the HLrtPN system in a specific software tool that accommodates Nets-within-Nets. Illustrative examples based on Linear Temporal Logic missions support the computational feasibility of the proposed framework.
comment: [Note for readers] This paper has been extended from a previous submission to 62nd IEEE Conference on Decision and Control, Dec. 13-15, 2023. This work has been submitted to the IEEE for possible publication
Control Modes of Teleoperated Surgical Robotic System's Tools in Ophthalmic Surgery
The introduction of a teleoperated surgical robotic system designed for minimally invasive procedures enables the emulation of two distinct control modes through a dedicated input device of the surgical console: (1) Inside Control Mode, which emulates tool manipulation near the distal end as if the surgeon was holding the tip of the instrument inside the patient's body; (2) Outside Control Mode, which emulates manipulation near the proximal end as if the surgeon was holding the tool externally. The aim of this research is to compare the surgeon's performance on these two modes of operation along with various scaling factors in a simulated vitreoretinal surgical setting. The console of Intraocular Robotic Interventional Surgical System (IRISS) was utilized but the surgical robot itself and the human eye anatomy was simulated by a virtual environment projected microscope view of an intraocular setup to a VR headset. Five experienced vitreoretinal surgeons and five subjects with no surgical experience used the system to perform four fundamental tool/tissue tasks common to vitreoretinal surgery: touch and reset; grasp and drop; inject; circular tracking. Results indicate that Inside Control outperforms Outside Control across multiple tasks and metrics. Higher scaling factors generally performed better, particularly for reducing trajectory errors and tissue damage. This improvement suggests that larger scaling factors enable more precise control, making them the preferred option for fine manipulation. However, completion time was not consistently reduced across all conditions, indicating that surgeons need to balance speed and accuracy based on surgical requirements. By optimizing control dynamics and user interface, robotic teleoperation has the potential to reduce complications, enhance dexterity, and expand the accessibility of high precision procedures to a broader range of practitioners.
comment: 10 pages, 11 figures
RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation NeurIPS 2025
Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.
comment: 25 pages, 18 figures, Accepted by NeurIPS 2025
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: Accepted to IEEE Robotics and Automation Letters
A Constrained Saddle Search Approach for Constructing Singular and Flexible Bar Frameworks
Singularity analysis is essential in robot kinematics, as singular configurations cause loss of control and kinematic indeterminacy. This paper models singularities in bar frameworks as saddle points on constrained manifolds. Given an under-constrained, non-singular bar framework, by allowing one edge to vary its length while fixing lengths of others, we define the squared length of the free edge as an energy functional and show that its local saddle points correspond to singular and flexible frameworks. Using our constrained saddle search approach, we identify previously unknown singular and flexible bar frameworks, providing new insights into singular robotics design and analysis.
comment: 9 pages, 3 figures
STATE-NAV: Stability-Aware Traversability Estimation for Bipedal Navigation on Rough Terrain
Bipedal robots have advantages in maneuvering human-centered environments, but face greater failure risk compared to other stable mobile plarforms such as wheeled or quadrupedal robots. While learning-based traversability has been widely studied for these platforms, bipedal traversability has instead relied on manually designed rules with limited consideration of locomotion stability on rough terrain. In this work, we present the first learning-based traversability estimation and risk-sensitive navigation framework for bipedal robots operating in diverse, uneven environments. TravFormer, a transformer-based neural network, is trained to predict bipedal instability with uncertainty, enabling risk-aware and adaptive planning. Based on the network, we define traversability as stability-aware command velocity-the fastest command velocity that keeps instability below a user-defined limit. This velocity-based traversability is integrated into a hierarchical planner that combines traversability-informed Rapid Random Tree Star (TravRRT*) for time-efficient planning and Model Predictive Control (MPC) for safe execution. We validate our method in MuJoCo simulation and the real world, demonstrating improved navigation performance, with enhanced robustness and time efficiency across varying terrains compared to existing methods.
SARM: Stage-Aware Reward Modeling for Long Horizon Robot Manipulation
Large-scale robot learning has recently shown promise for enabling robots to perform complex tasks by integrating perception, control, and language understanding. Yet, it struggles with long-horizon, contact-rich manipulation such as deformable object handling, where demonstration quality is inconsistent. Reward modeling offers a natural solution: by providing grounded progress signals, it transforms noisy demonstrations into stable supervision that generalizes across diverse trajectories. We introduce a stage-aware, video-based reward modeling framework that jointly predicts high-level task stages and fine-grained progress. Reward labels are automatically derived from natural language subtask annotations, ensuring consistent progress estimation across variable-length demonstrations. This design overcomes frame-index labeling, which fails in variable-duration tasks like folding a T-shirt. Our reward model demonstrates robustness to variability, generalization to out-of-distribution settings, and strong utility for policy training. Building on it, we propose Reward-Aligned Behavior Cloning (RA-BC), which filters high-quality data and reweights samples by reward. Experiments show the reward model alone outperforms baselines on validation and real robot rollouts. Integrated into RA-BC, our approach achieves 83% success on folding T-shirts from the flattened state and 67% from the crumpled state -- far surpassing vanilla behavior cloning, which attains only 8% and 0% success. Overall, our results highlight reward modeling as a key enabler for scalable, annotation-efficient, and robust imitation learning in long-horizon manipulation.
Multiagent Systems
Counterfactual-based Agent Influence Ranker for Agentic AI Workflows EMNLP 2025
An Agentic AI Workflow (AAW), also known as an LLM-based multi-agent system, is an autonomous system that assembles several LLM-based agents to work collaboratively towards a shared goal. The high autonomy, widespread adoption, and growing interest in such AAWs highlight the need for a deeper understanding of their operations, from both quality and security aspects. To this day, there are no existing methods to assess the influence of each agent on the AAW's final output. Adopting techniques from related fields is not feasible since existing methods perform only static structural analysis, which is unsuitable for inference time execution. We present Counterfactual-based Agent Influence Ranker (CAIR) - the first method for assessing the influence level of each agent on the AAW's output and determining which agents are the most influential. By performing counterfactual analysis, CAIR provides a task-agnostic analysis that can be used both offline and at inference time. We evaluate CAIR using an AAWs dataset of our creation, containing 30 different use cases with 230 different functionalities. Our evaluation showed that CAIR produces consistent rankings, outperforms baseline methods, and can easily enhance the effectiveness and relevancy of downstream tasks.
comment: Accepted to EMNLP 2025, 27 pages, 6 figures
Solving the Right Problem with Multi-Robot Formations
Formation control simplifies minimizing multi-robot cost functions by encoding a cost function as a shape the robots maintain. However, by reducing complex cost functions to formations, discrepancies arise between maintaining the shape and minimizing the original cost function. For example, a Diamond or Box formation shape is often used for protecting all members of the formation. When more information about the surrounding environment becomes available, a static shape often no longer minimizes the original protection cost. We propose a formation planner to reduce mismatch between a formation and the cost function while still leveraging efficient formation controllers. Our formation planner is a two-step optimization problem that identifies desired relative robot positions. We first solve a constrained problem to estimate non-linear and non-differentiable costs with a weighted sum of surrogate cost functions. We theoretically analyze this problem and identify situations where weights do not need to be updated. The weighted, surrogate cost function is then minimized using relative positions between robots. The desired relative positions are realized using a non-cooperative formation controller derived from Lyapunov's direct approach. We then demonstrate the efficacy of this approach for military-like costs such as protection and obstacle avoidance. In simulations, we show a formation planner can reduce a single cost by over 75%. When minimizing a variety of cost functions simultaneously, using a formation planner with adaptive weights can reduce the cost by 20-40%. Formation planning provides better performance by minimizing a surrogate cost function that closely approximates the original cost function instead of relying on a shape abstraction.
comment: Submitted to SAE WCX 2026
Multi-party Agent Relation Sampling for Multi-party Ad Hoc Teamwork
Multi-agent reinforcement learning (MARl) has achieved strong results in cooperative tasks but typically assumes fixed, fully controlled teams. Ad hoc teamwork (AHT) relaxes this by allowing collaboration with unknown partners, yet existing variants still presume shared conventions. We introduce Multil-party Ad Hoc Teamwork (MAHT), where controlled agents must coordinate with multiple mutually unfamiliar groups of uncontrolled teammates. To address this, we propose MARs, which builds a sparse skeleton graph and applies relational modeling to capture cross-group dvnamics. Experiments on MPE and starCralt ll show that MARs outperforms MARL and AHT baselines while converging faster.
Collaborative Scheduling of Time-dependent UAVs,Vehicles and Workers for Crowdsensing in Disaster Response
Frequent natural disasters cause significant losses to human society, and timely, efficient collection of post-disaster environmental information is the foundation for effective rescue operations. Due to the extreme complexity of post-disaster environments, existing sensing technologies such as mobile crowdsensing suffer from weak environmental adaptability, insufficient professional sensing capabilities, and poor practicality of sensing solutions. Therefore, this paper explores a heterogeneous multi-agent online collaborative scheduling algorithm, HoCs-MPQ, to achieve efficient collection of post-disaster environmental information. HoCs-MPQ models collaboration and conflict relationships among multiple elements through weighted undirected graph construction, and iteratively solves the maximum weight independent set based on multi-priority queues, ultimately achieving collaborative sensing scheduling of time-dependent UA Vs, vehicles, and workers. Specifically, (1) HoCs-MPQ constructs weighted undirected graph nodes based on collaborative relationships among multiple elements and quantifies their weights, then models the weighted undirected graph based on conflict relationships between nodes; (2) HoCs-MPQ solves the maximum weight independent set based on iterated local search, and accelerates the solution process using multi-priority queues. Finally, we conducted detailed experiments based on extensive real-world and simulated data. The experiments show that, compared to baseline methods (e.g., HoCs-GREEDY, HoCs-K-WTA, HoCs-MADL, and HoCs-MARL), HoCs-MPQ improves task completion rates by an average of 54.13%, 23.82%, 14.12%, and 12.89% respectively, with computation time for single online autonomous scheduling decisions not exceeding 3 seconds.
On Robust Popular Matchings with Tie-Bounded Preferences and Stable Matchings with Two-Sided Ties
We are given a bipartite graph $G = \left( A \cup B, E \right)$. In the one-sided model, every $a \in A$ (often called agents) ranks its neighbours $z \in N_{a}$ strictly, and no $b \in B$ has any preference order over its neighbours $y \in N_{b}$, and vertices in $B$ abstain from casting their votes to matchings. In the two-sided model with one-sided ties, every $a \in A$ ranks its neighbours $z \in N_{a}$ strictly, and every $b \in B$ puts all of its neighbours into a single large tie, i.e., $b \in B$ prefers every $y \in N_{b}$ equally. In this two-sided model with one-sided ties, when two matchings compete in a majority election, $b \in B$ abstains from casting its vote for a matching when both the matchings saturate $b$ or both leave $b$ unsaturated; else $b$ prefers the matching where it is saturated. A popular matching $M$ is \emph{robust} if it remains popular among multiple instances. We have analysed the cases when a robust popular matching exists in the one-sided model where only one agent alters her preference order among the instances, and we have proposed a polynomial-time algorithm to decide if there exists a robust popular matching when instances differ only with respect to the preference orders of a single agent. We give a simple characterisation of popular matchings in the two-sided model with one-sided ties. We show that in the two-sided model with one-sided ties, if the input instances differ only with respect to the preference orders of a single agent, there is a polynomial-time algorithm to decide whether there exists a robust popular matching. We have been able to decide the stable matching problem in bipartite graphs $G = (A \cup B, E)$ where \textit{both} sides have weak preferences (ties allowed), with the restriction that every tie has length at most $k$.
Machine Learning and CPU (Central Processing Unit) Scheduling Co-Optimization over a Network of Computing Centers
In the rapidly evolving research on artificial intelligence (AI) the demand for fast, computationally efficient, and scalable solutions has increased in recent years. The problem of optimizing the computing resources for distributed machine learning (ML) and optimization is considered in this paper. Given a set of data distributed over a network of computing-nodes/servers, the idea is to optimally assign the CPU (central processing unit) usage while simultaneously training each computing node locally via its own share of data. This formulates the problem as a co-optimization setup to (i) optimize the data processing and (ii) optimally allocate the computing resources. The information-sharing network among the nodes might be time-varying, but with balanced weights to ensure consensus-type convergence of the algorithm. The algorithm is all-time feasible, which implies that the computing resource-demand balance constraint holds at all iterations of the proposed solution. Moreover, the solution allows addressing possible log-scale quantization over the information-sharing channels to exchange log-quantized data. For some example applications, distributed support-vector-machine (SVM) and regression are considered as the ML training models. Results from perturbation theory, along with Lyapunov stability and eigen-spectrum analysis, are used to prove the convergence towards the optimal case. As compared to existing CPU scheduling solutions, the proposed algorithm improves the cost optimality gap by more than $50\%$.
comment: EAAI Journal
The Iceberg Index: Measuring Workforce Exposure Across the AI Economy
Artificial Intelligence is reshaping America's \$9.4 trillion labor market, with cascading effects that extend far beyond visible technology sectors. When AI transforms quality control tasks in automotive plants, consequences spread through logistics networks, supply chains, and local service economies. Yet traditional workforce metrics cannot capture these ripple effects: they measure employment outcomes after disruption occurs, not where AI capabilities overlap with human skills before adoption crystallizes. Project Iceberg addresses this gap using Large Population Models to simulate the human-AI labor market, representing 151 million workers as autonomous agents executing over 32,000 skills and interacting with thousands of AI tools. It introduces the Iceberg Index, a skills-centered metric that measures the wage value of skills AI systems can perform within each occupation. The Index captures technical exposure, where AI can perform occupational tasks, not displacement outcomes or adoption timelines. Analysis shows that visible AI adoption concentrated in computing and technology (2.2% of wage value, approx \$211 billion) represents only the tip of the iceberg. Technical capability extends far below the surface through cognitive automation spanning administrative, financial, and professional services (11.7%, approx \$1.2 trillion). This exposure is fivefold larger and geographically distributed across all states rather than confined to coastal hubs. Traditional indicators such as GDP, income, and unemployment explain less than 5% of this skills-based variation, underscoring why new indices are needed to capture exposure in the AI economy. By simulating how these capabilities may spread under scenarios, Iceberg enables policymakers and business leaders to identify exposure hotspots, prioritize investments, and test interventions before committing billions to implementation
comment: iceberg.mit.edu
SeeingEye: Agentic Information Flow Unlocks Multimodal Reasoning In Text-only LLMs
Recent advances in text-only large language models (LLMs), such as DeepSeek-R1, demonstrate remarkable reasoning ability. However, these models remain fragile or entirely incapable when extended to multi-modal tasks. Existing approaches largely rely on single-form captions, which lack diversity and often fail to adapt across different types of Visual Question Answering (VQA) benchmarks. As a result, they provide no principled or efficient channel for transmitting fine-grained visual information. We introduce Seeing Eye, a modular framework that unlocks multimodal reasoning in text-only LLMs through an agent-based small VLM translator. This translator acts as a perception agent: it can invoke specialized tools (e.g., OCR and crop) and iteratively distill multimodal inputs into structured intermediate representations (SIRs) tailored to the question. These SIRs are then passed to the text-only LLM, which serves as a reasoning agent. Crucially, the translator and reasoner engage in multi-round feedback and interaction, enabling the extraction of targeted visual details and yielding more confident answers. Experiments on knowledge-intensive VQA benchmarks, including MMMU and MIA-Bench, demonstrate that Seeing Eye not only reduces inference cost but also surpasses much larger end-to-end VLMs. For example, an instantiation combining a 3B-parameter vision translator with an 8B-parameter language reasoner outperforms a monolithic 32B VLM on challenging knowledge-based questions. Our results highlight that decoupling perception from reasoning via agent information flow offers a scalable and plug-and-play pathway to multimodal reasoning, allowing strong text-only LLMs to fully leverage their reasoning capabilities. Code is available at: https://github.com/ulab-uiuc/SeeingEye
Multi-Agent Reinforcement Learning for Market Making: Competition without Collusion
Algorithmic collusion has emerged as a central question in AI: Will the interaction between different AI agents deployed in markets lead to collusion? More generally, understanding how emergent behavior, be it a cartel or market dominance from more advanced bots, affects the market overall is an important research question. We propose a hierarchical multi-agent reinforcement learning framework to study algorithmic collusion in market making. The framework includes a self-interested market maker (Agent~A), which is trained in an uncertain environment shaped by an adversary, and three bottom-layer competitors: the self-interested Agent~B1 (whose objective is to maximize its own PnL), the competitive Agent~B2 (whose objective is to minimize the PnL of its opponent), and the hybrid Agent~B$^\star$, which can modulate between the behavior of the other two. To analyze how these agents shape the behavior of each other and affect market outcomes, we propose interaction-level metrics that quantify behavioral asymmetry and system-level dynamics, while providing signals potentially indicative of emergent interaction patterns. Experimental results show that Agent~B2 secures dominant performance in a zero-sum setting against B1, aggressively capturing order flow while tightening average spreads, thus improving market execution efficiency. In contrast, Agent~B$^\star$ exhibits a self-interested inclination when co-existing with other profit-seeking agents, securing dominant market share through adaptive quoting, yet exerting a milder adverse impact on the rewards of Agents~A and B1 compared to B2. These findings suggest that adaptive incentive control supports more sustainable strategic co-existence in heterogeneous agent environments and offers a structured lens for evaluating behavioral design in algorithmic trading systems.
Debate2Create: Robot Co-design via Large Language Model Debates
Automating the co-design of a robot's morphology and control is a long-standing challenge due to the vast design space and the tight coupling between body and behavior. We introduce Debate2Create (D2C), a framework in which large language model (LLM) agents engage in a structured dialectical debate to jointly optimize a robot's design and its reward function. In each round, a design agent proposes targeted morphological modifications, and a control agent devises a reward function tailored to exploit the new design. A panel of pluralistic judges then evaluates the design-control pair in simulation and provides feedback that guides the next round of debate. Through iterative debates, the agents progressively refine their proposals, producing increasingly effective robot designs. Notably, D2C yields diverse and specialized morphologies despite no explicit diversity objective. On a quadruped locomotion benchmark, D2C discovers designs that travel 73% farther than the default, demonstrating that structured LLM-based debate can serve as a powerful mechanism for emergent robot co-design. Our results suggest that multi-agent debate, when coupled with physics-grounded feedback, is a promising new paradigm for automated robot design.
Kalman-Bucy Filtering with Randomized Sensing: Fundamental Limits and Sensor Network Design for Field Estimation
Stability analysis of the Kalman filter under randomly lost measurements has been widely studied. We revisit this problem in a general continuous-time framework, where both the measurement matrix and noise covariance evolve as random processes, capturing variability in sensing locations. Within this setting, we derive a closed-form upper bound on the expected estimation covariance for continuous-time Kalman filtering. We then apply this framework to spatiotemporal field estimation, where the field is modeled as a Gaussian process observed by randomly located, noisy sensors. Using clarity, introduced in our earlier work as a rescaled form of the differential entropy of a random variable, we establish a grid-independent lower bound on the spatially averaged expected clarity. This result exposes fundamental performance limits through a composite sensing parameter that jointly captures the effects of the number of sensors, noise level, and measurement frequency. Simulations confirm that the proposed bound is tight for the discrete-time Kalman filter, approaching it as the measurement rate decreases, while avoiding the recursive computations required in the discrete-time formulation. Most importantly, the derived limits provide principled and efficient guidelines for sensor network design problem prior to deployment.
HyperMARL: Adaptive Hypernetworks for Multi-Agent RL NeurIPS 2025
Adaptive cooperation in multi-agent reinforcement learning (MARL) requires policies to express homogeneous, specialised, or mixed behaviours, yet achieving this adaptivity remains a critical challenge. While parameter sharing (PS) is standard for efficient learning, it notoriously suppresses the behavioural diversity required for specialisation. This failure is largely due to cross-agent gradient interference, a problem we find is surprisingly exacerbated by the common practice of coupling agent IDs with observations. Existing remedies typically add complexity through altered objectives, manual preset diversity levels, or sequential updates -- raising a fundamental question: can shared policies adapt without these intricacies? We propose a solution built on a key insight: an agent-conditioned hypernetwork can generate agent-specific parameters and decouple observation- and agent-conditioned gradients, directly countering the interference from coupling agent IDs with observations. Our resulting method, HyperMARL, avoids the complexities of prior work and empirically reduces policy gradient variance. Across diverse MARL benchmarks (22 scenarios, up to 30 agents), HyperMARL achieves performance competitive with six key baselines while preserving behavioural diversity comparable to non-parameter sharing methods, establishing it as a versatile and principled approach for adaptive MARL. The code is publicly available at https://github.com/KaleabTessera/HyperMARL.
comment: To appear at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). A preliminary version of this work was presented at the CoCoMARL workshop, RLC 2025
Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
Credit assignmen, disentangling each agent's contribution to a shared reward, is a critical challenge in cooperative multi-agent reinforcement learning (MARL). To be effective, credit assignment methods must preserve the environment's optimal policy. Some recent approaches attempt this by enforcing return equivalence, where the sum of distributed rewards must equal the team reward. However, their guarantees are conditional on a learned model's regression accuracy, making them unreliable in practice. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), an approach that decouples credit modeling from this constraint. A neural network learns unnormalized contribution scores, while a separate, deterministic normalization step enforces return equivalence by construction. We demonstrate that this method is equivalent to a valid Potential-Based Reward Shaping (PBRS), which guarantees the optimal policy is preserved regardless of model accuracy. Empirically, on challenging SMACLite and Google Research Football (GRF) benchmarks, TAR$^2$ accelerates learning and achieves higher final performance than strong baselines. These results establish our method as an effective solution for the agent-temporal credit assignment problem.
comment: 16 pages, 4 figures, 4 tables
Binary Decision Process in Pre-Evacuation Behavior
In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
comment: 5 pages
Systems and Control (CS)
Over 3 kV and Ultra-Low leakage Vertical (011) \b{eta}-Ga2O3 Power Diodes with Engineered Schottky Contact and High-permittivity Dielectric Field Plate
We report over 3 kV breakdown voltage and ultra-low leakage (011) \b{eta}-Ga2O3 power devices utilizing Schottky barrier engineering and high-permittivity (\k{appa}) dielectric (ZrO2) field plate. The (011) orientation of \b{eta}-Ga2O3 enabled low background doping and thick drift layers which are promising to support kV-class vertical \b{eta}-Ga2O3 power switches. The Schottky barrier engineering was performed with a composite Pt cap/PtOx/Pt (1.5 nm) anode contact to take advantage of the enhanced reverse blocking capabilities enabled by PtOx while allowing low turn-on voltage by the interfacing thin Pt layer. We also performed a systematic study using a co-processed Pt/(011) \b{eta}-Ga2O3 Schottky barrier diodes (SBDs) on the same wafer. The bare SBDs revealed a breakdown voltage of ~1.5 kV, while the field-plate Pt/(011) \b{eta}-Ga2O3 SBDs achieved an increased breakdown voltage of 2.75 kV owing to the edge field management. Further enhancement of the breakdown voltage was achieved by tunneling leakage management using composite Pt cap/PtOx/Pt (1.5 nm) Schottky contacts that ultimately enabled breakdown voltage of 3.7 kV for the field-plate diodes. Remarkably, the Pt cap/PtOx/Pt (1.5 nm) Schottky contacts maintained similar turn-on voltage as the Pt/(011) \b{eta}-Ga2O3 SBDs. The combination of efficient tunneling leakage management by composite Pt cap/PtOx/Pt (1.5 nm) contacts with similar turn-on voltage, edge field reduction by high-\k{appa} dielectric ZrO2 field plate, as well as the advantageous material properties offered by (011) \b{eta}-Ga2O3 demonstrate a promising strategy for developing ultra-low leakage and multi-kV class vertical (011) \b{eta}-Ga2O3 power devices.
An OPF-based Control Framework for Hybrid AC-MTDC Power Systems under Uncertainty
The increasing integration of renewable energy, particularly offshore wind, introduces significant uncertainty into hybrid AC-HVDC systems due to forecast errors and power fluctuations. Conventional control strategies typically rely on fixed setpoints and neglect frequency deviations, which can compromise system stability under rapid renewable variations. To address this challenge, this paper presents a forecast-integrated, optimal power flow (OPF)-based adaptive control framework. Wind speed forecasts generated using a Random Forest model are incorporated into a time-coupled OPF to determine baseline converter setpoints in anticipation of wind fluctuations, which are further adjusted in real time based on actual operating conditions. An adaptive droop control scheme is developed that jointly considers DC voltage and AC frequency deviations. The effectiveness of the proposed control framework is validated through hardware-in-the-loop (HIL) simulations, demonstrating its capability to ensure stable and robust operation of hybrid AC-HVDC systems under high penetration of renewable energy.
Incorporating Social Awareness into Control of Unknown Multi-Agent Systems: A Real-Time Spatiotemporal Tubes Approach
This paper presents a decentralized control framework that incorporates social awareness into multi-agent systems with unknown dynamics to achieve prescribed-time reach-avoid-stay tasks in dynamic environments. Each agent is assigned a social awareness index that quantifies its level of cooperation or self-interest, allowing heterogeneous social behaviors within the system. Building on the spatiotemporal tube (STT) framework, we propose a real-time STT framework that synthesizes tubes online for each agent while capturing its social interactions with others. A closed-form, approximation-free control law is derived to ensure that each agent remains within its evolving STT, thereby avoiding dynamic obstacles while also preventing inter-agent collisions in a socially aware manner, and reaching the target within a prescribed time. The proposed approach provides formal guarantees on safety and timing, and is computationally lightweight, model-free, and robust to unknown disturbances. The effectiveness and scalability of the framework are validated through simulation and hardware experiments on a 2D omnidirectional
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity $L$ and deadline constraints $T$. The system operates in discrete time, with each arriving truck assigned a deadline of $T$ slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy $\pi^\star$ for $L = 3$, extending insights to arbitrary $L$. We prove that the $\pi^\star$ is monotone in the state space $\mathcal{S}$ and identify classes of unreachable states. Moreover, since $\mathcal{S}$ grows exponentially with $L$ and $T$, we propose heuristics-including conditional and deep-learning based approaches-that exploit these structural insights while maintaining low computational complexity.
Deep Reinforcement Learning-Based Cooperative Rate Splitting for Satellite-to-Underground Communication Networks
Reliable downlink communication in satellite-to-underground networks remains challenging due to severe signal attenuation caused by underground soil and refraction in the air-soil interface. To address this, we propose a novel cooperative rate-splitting (CRS)-aided transmission framework, where an aboveground relay decodes and forwards the common stream to underground devices (UDs). Based on this framework, we formulate a max-min fairness optimization problem that jointly optimizes power allocation, message splitting, and time slot scheduling to maximize the minimum achievable rate across UDs. To solve this high-dimensional non-convex problem under uncertain channels, we develop a deep reinforcement learning solution framework based on the proximal policy optimization (PPO) algorithm that integrates distribution-aware action modeling and a multi-branch actor network. Simulation results under a realistic underground pipeline monitoring scenario demonstrate that the proposed approach achieves average max-min rate gains exceeding $167\%$ over conventional benchmark strategies across various numbers of UDs and underground conditions.
comment: 6 pages, 3 figures, 1 table, and submitted to IEEE TVT
Sum-of-Squares Certificates for Almost-Sure Reachability of Stochastic Polynomial Systems
In this paper, we present a computational approach to certify almost sure reachability for discrete-time polynomial stochastic systems by turning drift--variant criteria into sum-of-squares (SOS) programs solved with standard semidefinite solvers. Specifically, we provide an SOS method based on two complementary certificates: (i) a drift certificate that enforces a radially unbounded function to be non-increasing in expectation outside a compact set of states; and (ii) a variant certificate that guarantees a one-step decrease with positive probability and ensures the target contains its nonpositive sublevel set. We transform these conditions to SOS constraints. For the variant condition, we enforce a robust decrease over a parameterized disturbance ball with nonzero probability and encode the constraints via an S-procedure with polynomial multipliers. The resulting bilinearities are handled by an alternating scheme that alternates between optimizing multipliers and updating the variant and radius until a positive slack is obtained. Two case studies illustrate the workflow and certifies almost-sure reachability.
comment: 8 Pages, 8 Figs
A New Neural Network Paradigm for Scalable and Generalizable Stability Analysis of Power Systems
This paper presents a new neural network (NN) paradigm for scalable and generalizable stability analysis of power systems. The paradigm consists of two parts: the neural stability descriptor and the sample-augmented iterative training scheme. The first part, based on system decomposition, constructs the object (such as a stability function or condition) for stability analysis as a scalable aggregation of multiple NNs. These NNs remain fixed across varying power system structures and parameters, and are repeatedly shared within each system instance defined by these variations, thereby enabling the generalization of the neural stability descriptor across a class of power systems. The second part learns the neural stability descriptor by iteratively training the NNs with sample augmentation, guided by the tailored conservativeness-aware loss function. The training set is strategically constructed to promote the descriptor's generalizability, which is systematically evaluated by verification and validation during the training process. Specifically, the proposed NN paradigm is implemented for large-disturbance stability analysis of the bulk power grid and small-disturbance stability conditions of the microgrid system. Finally, numerical studies for the two implementations demonstrate the applicability and effectiveness of the proposed NN paradigm.
Combining Moving Mass Actuators and Manoeuvring Models for Underwater Vehicles: A Lagrangian Approach
In this paper, we present a Newton-Euler formulation of the equations of motion for underwater vehicles with an interntal moving mass actuator. Furthermore, the moving mass dynamics are expressed as an extension to the manoeuvring model for underwater vehicles, originally introduced by Fossen (1991). The influence of the moving mass is described in body-frame and included as states in both an additional kinematic equation and as part of the coupled rigid-body kinetics of the underwater vehicle. The Coriolis-centripetal effects are derived from Kirchhoff's equations and the hydrostatics are derived using first principals. The proposed Newton-Euler model is validated through simulation and compared with the traditional Hamiltonian internal moving mass actuator formulation.
comment: \c{opyright} 2025 Alexander Rambech, Ivar Saksvik and Vahid Hassani. Accepted by IFAC for publication under a Creative Commons License CC-BY-NC-ND
Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability
In this work, we study data-driven stabilization of linear time-invariant systems using prior knowledge of system-theoretic properties, specifically stabilizability and controllability. To formalize this, we extend the concept of data informativity by requiring the existence of a controller that stabilizes all systems consistent with the data and the prior knowledge. We show that if the system is controllable, then incorporating this as prior knowledge does not relax the conditions required for data-driven stabilization. Remarkably, however, we show that if the system is stabilizable, then using this as prior knowledge leads to necessary and sufficient conditions that are weaker than those for data-driven stabilization without prior knowledge. In other words, data-driven stabilization is easier if one knows that the underlying system is stabilizable. We also provide new data-driven control design methods in terms of linear matrix inequalities that complement the conditions for informativity.
comment: 6 pages
Quantum-Resilient Threat Modelling for Secure RIS-Assisted ISAC in 6G UAV Corridors
The rapid deployment of unmanned aerial vehicle (UAV) corridors in sixth-generation (6G) networks requires safe, intelligence-driven integrated sensing and communications (ISAC). Reconfigurable intelligent surfaces (RIS) enhance spectrum efficiency, localisation accuracy, and situational awareness, while introducing new vulnerabilities. The rise of quantum computing increases the risks associated with harvest-now-decrypt-later strategies and quantum-enhanced spoofing. We propose a Quantum-Resilient Threat Modelling (QRTM) framework for RIS-assisted ISAC in UAV corridors to address these challenges. QRTM integrates classical, quantum-ready, and quantum-aided adversaries, countered using post-quantum cryptographic (PQC) primitives: ML-KEM for key establishment and Falcon for authentication, both embedded within RIS control signalling and UAV coordination. To strengthen security sensing, the framework introduces RIS-coded scene watermarking validated through a generalised likelihood ratio test (GLRT), with its detection probability characterised by the Marcum Q function. Furthermore, a Secure ISAC Utility (SIU) jointly optimises secrecy rate, spoofing detection, and throughput under RIS constraints, enabled by a scheduler with computational complexity of O(n^2). Monte Carlo evaluations using 3GPP Release 19 mid-band urban-canyon models (7-15 GHz) demonstrate a spoof-detection probability approaching 0.99 at a false-alarm rate of 1e-3, secrecy-rate retention exceeding 90 percent against quantum-capable adversaries, and signal-interference utilisation improvements of about 25 percent compared with baselines. These results show a standards-compliant path towards reliable, quantum-resilient ISAC for UAV corridors in smart cities and non-terrestrial networks.
comment: 6 Pages, 5figures
Integrating Legal and Logical Specifications in Perception, Prediction, and Planning for Automated Driving: A Survey of Methods
This survey provides an analysis of current methodologies integrating legal and logical specifications into the perception, prediction, and planning modules of automated driving systems. We systematically explore techniques ranging from logic-based frameworks to computational legal reasoning approaches, emphasizing their capability to ensure regulatory compliance and interpretability in dynamic and uncertain driving environments. A central finding is that significant challenges arise at the intersection of perceptual reliability, legal compliance, and decision-making justifiability. To systematically analyze these challenges, we introduce a taxonomy categorizing existing approaches by their theoretical foundations, architectural implementations, and validation strategies. We particularly focus on methods that address perceptual uncertainty and incorporate explicit legal norms, facilitating decisions that are both technically robust and legally defensible. The review covers neural-symbolic integration methods for perception, logic-driven rule representation, and norm-aware prediction strategies, all contributing toward transparent and accountable autonomous vehicle operation. We highlight critical open questions and practical trade-offs that must be addressed, offering multidisciplinary insights from engineering, logic, and law to guide future developments in legally compliant autonomous driving systems.
comment: Accepted to 2025 IEEE International Automated Vehicle Validation Conference (IAVVC)
Lightweight Federated Learning in Mobile Edge Computing with Statistical and Device Heterogeneity Awareness
Federated learning enables collaborative machine learning while preserving data privacy, but high communication and computation costs, exacerbated by statistical and device heterogeneity, limit its practicality in mobile edge computing. Existing compression methods like sparsification and pruning reduce per-round costs but may increase training rounds and thus the total training cost, especially under heterogeneous environments. We propose a lightweight personalized FL framework built on parameter decoupling, which separates the model into shared and private subspaces, enabling us to uniquely apply gradient sparsification to the shared component and model pruning to the private one. This structural separation confines communication compression to global knowledge exchange and computation reduction to local personalization, protecting personalization quality while adapting to heterogeneous client resources. We theoretically analyze convergence under the combined effects of sparsification and pruning, revealing a sparsity-pruning trade-off that links to the iteration complexity. Guided by this analysis, we formulate a joint optimization that selects per-client sparsity and pruning rates and wireless bandwidth to reduce end-to-end training time. Simulation results demonstrate faster convergence and substantial reductions in overall communication and computation costs with negligible accuracy loss, validating the benefits of coordinated and resource-aware personalization in resource-constrained heterogeneous environments.
Tight Collision Avoidance for Stochastic Optimal Control: with Applications in Learning-based, Interactive Motion Planning
Trajectory planning in dense, interactive traffic scenarios presents significant challenges for autonomous vehicles, primarily due to the uncertainty of human driver behavior and the non-convex nature of collision avoidance constraints. This paper introduces a stochastic optimal control framework to address these issues simultaneously, without excessively conservative approximations. We opt to model human driver decisions as a Markov Decision Process and propose a method for handling collision avoidance between non-convex vehicle shapes by imposing a positive distance constraint between compact sets. In this framework, we investigate three alternative chance constraint formulations. To ensure computational tractability, we introduce tight, continuously differentiable reformulations of both the non-convex distance constraints and the chance constraints. The efficacy of our approach is demonstrated through simulation studies of two challenging interactive scenarios: an unregulated intersection crossing and a highway lane change in dense traffic.
comment: Preprint article, submitted for publication
Data-Enabled Predictive Control and Guidance for Autonomous Underwater Vehicles
This paper presents a fully data-driven control framework for autonomous underwater vehicles (AUVs) based on Data-Enabled Predictive Control (DeePC). The approach eliminates the need for explicit hydrodynamic modeling by exploiting measured input-output data to predict and optimize future system behavior. Classic DeePC was employed in the heading control, while a cascaded DeePC architecture is proposed for depth regulation, incorporating a loop-frequency separation to handle the different dynamic modes of input and output. For 3-D waypoint path following, the Adaptive Line-of-Sight algorithm is extended to a predictive formulation and integrated with DeePC. All methods are validated in extensive simulation on the REMUS 100 AUV and compared with classical PI/PID control. The results demonstrate superior tracking performance and robustness of DeePC under ocean-current disturbances and nonlinear operating conditions, while significantly reducing modeling effort.
comment: 12 pages, 6 figures
Shared Control for Vehicle Lane-Changing with Uncertain Driver Behaviors
Lane changes are common yet challenging driving maneuvers that require continuous decision-making and dynamic interaction with surrounding vehicles. Relying solely on human drivers for lane-changing can lead to traffic disturbances due to the stochastic nature of human behavior and its variability under different task demands. Such uncertainties may significantly degrade traffic string stability, which is critical for suppressing disturbance propagation and ensuring smooth merging of the lane-changing vehicles. This paper presents a human-automation shared lane-changing control framework that preserves driver authority while allowing automated assistance to achieve stable maneuvers in the presence of driver's behavioral uncertainty. Human driving behavior is modeled as a Markov jump process with transitions driven by task difficulty, providing a tractable representation of stochastic state switching. Based on this model, we first design a nominal stabilizing controller that guarantees stochastic ${L}_2$ string stability under imperfect mode estimation. To further balance performance and automated effort, we then develop a Minimal Intervention Controller (MIC) that retains acceptable stability while limiting automation. Simulations using lane-changing data from the NGSIM dataset verify that the nominal controller reduces speed perturbations and shorten lane-changing time, while the MIC further reduces automated effort and enhances comfort but with moderate stability and efficiency loss. Validations on the TGSIM dataset with SAE Level 2 vehicles show that the MIC enables earlier lane changes than Level 2 control while preserving driver authority with a slight stability compromise. These findings highlight the potential of shared control strategies to balance stability, efficiency, and driver acceptance.
Photoacoustics on the go: An Embedded Photoacoustic Sensing Platform
Several centimeters below the skin lie multiple biomarkers, such as glucose, oxygenation, and blood flow. Monitoring these biomarkers regularly and in a non-invasive manner would enable early insight into metabolic status and vascular health. Currently, there are only a handful of non-invasive monitoring systems. Optical methods offer molecular specificity (i.e., multi-biomarker monitoring) but have shallow reach (a few millimeters); ultrasound penetrates deeper but lacks specificity; and MRI is large, slow, and costly. Photoacoustic (PA) sensing combines the best of optical and ultrasound methods. A laser transmitter emits pulses that are absorbed by different molecules, providing specificity. These light pulses generate pressure changes that are captured by an ultrasound receiver, providing depth. Photoacoustic sensing is promising, but the current platforms are bulky, complex, and costly. We propose the first embedded PA platform. Our contributions are fourfold. First, inspired by LiDAR technology, we propose a novel transmitter that emits pulses similar to those in the state-of-the-art (SoA), but instead of using high-voltage sources and complex electronic interfaces, we use a simple low-power microcontroller (MCU). Second, we carry out a thorough analysis of our custom transmitter and a commercial system. Third, we build a basic ultrasound receiver that is able to process the faint signal generated by our transmitter. Lastly, we compare the performance of our platform against a SoA commercial system, and show that we can detect glucose and (de)oxygenated hemoglobin in two controlled solution studies. The resulting signal characteristics indicate a plausible path toward noninvasive, real-time, at-home sensing relevant to diabetes care. More broadly, this platform lays the groundwork for translating the promise of PA sensing into a broader practical reality.
Minimum time consensus for damped second order agents using Gröbner basis
A problem of achieving minimum time consensus for a set of $N$ second-order LTI system agents with bounded inputs and fuel constraints is considered. Unlike our other works, here the damping effect in agent dynamics is included. First, the attainable set for each agent with fuel budget constraints is characterized, and its boundary equations are derived. Then, using the convexity property, the minimum time at which attainable sets of all agents have a non-empty intersection is computed. By applying Helly's theorem, the computation reduces to finding the minimum time to consensus and the corresponding consensus point for each of the triplets separately.
Silicon-based Josephson junction field-effect transistors enabling cryogenic logic and quantum technologies
The continuous miniaturisation of metal-oxide-semiconductor field-effect transistors (MOSFETs) from long- to short-channel architectures has advanced beyond the predictions of Moore's Law. Continued advances in semiconductor electronics, even near current scaling and performance boundaries under cryogenic conditions, are driving the development of innovative device paradigms that enable ultra-low-power and high-speed functionality. Among emerging candidates, the Josephson Junction Field-Effect Transistor (JJFET or JoFET) provides an alternative by integrating superconducting source and drain electrodes for efficient, phase-coherent operation at ultra-low temperatures. These hybrid devices have the potential to bridge conventional semiconductor electronics with cryogenic logic and quantum circuits, enabling energy-efficient and high-coherence signal processing across temperature domains. This review traces the evolution from Josephson junctions to field-effect transistors, emphasising the structural and functional innovations that underpin modern device scalability. The performance and material compatibility of JJFETs fabricated on Si, GaAs, and InGaAs substrates are analysed, alongside an assessment of their switching dynamics and material compatibility. Particular attention is given to superconductor-silicon-superconductor Josephson junctions as the active core of JJFET architectures. By unfolding more than four decades of experimental progress, this work highlights the promise of JJFETs as foundational building blocks for next-generation cryogenic logic and quantum electronic systems.
Machine Learning and CPU (Central Processing Unit) Scheduling Co-Optimization over a Network of Computing Centers
In the rapidly evolving research on artificial intelligence (AI) the demand for fast, computationally efficient, and scalable solutions has increased in recent years. The problem of optimizing the computing resources for distributed machine learning (ML) and optimization is considered in this paper. Given a set of data distributed over a network of computing-nodes/servers, the idea is to optimally assign the CPU (central processing unit) usage while simultaneously training each computing node locally via its own share of data. This formulates the problem as a co-optimization setup to (i) optimize the data processing and (ii) optimally allocate the computing resources. The information-sharing network among the nodes might be time-varying, but with balanced weights to ensure consensus-type convergence of the algorithm. The algorithm is all-time feasible, which implies that the computing resource-demand balance constraint holds at all iterations of the proposed solution. Moreover, the solution allows addressing possible log-scale quantization over the information-sharing channels to exchange log-quantized data. For some example applications, distributed support-vector-machine (SVM) and regression are considered as the ML training models. Results from perturbation theory, along with Lyapunov stability and eigen-spectrum analysis, are used to prove the convergence towards the optimal case. As compared to existing CPU scheduling solutions, the proposed algorithm improves the cost optimality gap by more than $50\%$.
comment: EAAI Journal
The Waterbed Effect on Quasiperiodic Disturbance Observer: Avoidance of Sensitivity Tradeoff with Time Delays
In linear time-invariant systems, the sensitivity function to disturbances is designed under a sensitivity tradeoff known as the waterbed effect. To compensate for a quasiperiodic disturbance, a quasiperiodic disturbance observer using time delays was proposed. Its sensitivity function avoids the sensitivity tradeoff, achieving wideband harmonic suppression without amplifying aperiodic disturbances or shifting harmonic suppression frequencies. However, its open-loop transfer function is not rational and does not satisfy the assumptions of existing Bode sensitivity integrals due to its time delays. This paper provides Bode-like sensitivity integrals for the quasiperiodic disturbance observer in both continuous-time and discrete-time representations and clarifies the avoided sensitivity tradeoff with time delays.
Stochastic Long-Term Joint Decarbonization Planning for Power Systems and Data Centers: A Case Study in PJM
With the rapid growth of artificial intelligence (AI) and cloud services, data centers have become critical infrastructures driving digital economies, with increasing energy demand heightening concerns over electricity use and carbon emissions, emphasizing the need for carbon-aware infrastructure planning. Most studies assume static power systems, focus only on operational emissions, and overlook co-optimization. This paper proposes a dynamic joint planning framework that co-optimizes long-term data center and power system development over 15 years. The model determines siting, capacity, and type of data centers alongside power generation expansion, storage deployment, and retirements, accounting for both operational and embodied emissions. To handle multi-scale uncertainty, a large-scale two-stage stochastic program is formulated and solved via an enhanced Benders decomposition. Applied to the PJM Interconnection, with curated datasets released on GitHub, results show the system can support up to 55 GW peak data center demand, with Virginia (DOM) and Northern Illinois (ComEd) as optimal hosts. Compared to non-joint planning, the framework cuts investment cost by 12.6%, operational cost by 8.25%, and emissions by 5.63%. Including lifecycle emissions further raises renewable deployment by 25.5%, highlighting embodied carbon's role in deeper decarbonization.
Control Synthesis with Reinforcement Learning: A Modeling Perspective
Controllers designed with reinforcement learning can be sensitive to model mismatch. We demonstrate that designing such controllers in a virtual simulation environment with an inaccurate model is not suitable for deployment in a physical setup. Controllers designed using an accurate model is robust against disturbance and small mismatch between the physical setup and the mathematical model derived from first principles; while a poor model results in a controller that performs well in simulation but fails in physical experiments. Sensitivity analysis is used to justify these discrepancies and an empirical region of attraction estimation help us visualize their robustness.
A Parallelized Cutting-Plane Algorithm for Computationally Efficient Modelling to Generate Alternatives
Contemporary macro energy systems modelling is characterized by the need to represent strategic and operational decisions with high temporal and spatial resolution and represent discrete investment and retirement decisions. This drive towards greater fidelity, however, conflicts with a simultaneous push towards greater model representation of inherent complexity in decision making, including methods like Modelling to Generate Alternatives (MGA). MGA aims to map the feasible space of a model within a cost slack by varying investment parameters without changing the operational constraints, a process which frequently requires hundreds of solutions. For large, detailed energy system models this is impossible with traditional methods, leading researchers to reduce complexity with linearized investments and zonal or temporal aggregation. This research presents a new solution method for MGA type problems using cutting-plane methods based on a tailored reformulation of Benders Decomposition. We accelerate the algorithm by sharing cuts between MGA master problems and grouping MGA objectives. We find that our new solution method consistently solves MGA problems times faster and requires less memory than existing monolithic Modelling to Generate Alternatives solution methods on linear problems, enabling rapid computation of a greater number of solutions to highly resolved models. We also show that our novel cutting-plane algorithm enables the solution of very large MGA problems with integer investment decisions.
A New Type of Axis-Angle Attitude Control Law for Rotational Systems: Synthesis, Analysis, and Experiments
Over the past few decades, continuous quaternion-based attitude control has been proven highly effective for driving rotational systems that can be modeled as rigid bodies, such as satellites and drones. However, methods rooted in this approach do not enforce the existence of a unique closed-loop (CL) equilibrium attitude-error quaternion (AEQ); and, for rotational errors about the attitude-error Euler axis larger than {\pi}rad, their proportional-control effect diminishes as the system state moves away from the stable equilibrium of the CL rotational dynamics. In this paper, we introduce a new type of attitude control law that more effectively leverages the attitude-error Euler axis-angle information to guarantee a unique CL equilibrium AEQ and to provide greater flexibility in the use of proportional-control efforts. Furthermore, using two different control laws as examples-through the construction of a strict Lyapunov function for the CL dynamics-we demonstrate that the resulting unique equilibrium of the CL rotational system can be enforced to be uniformly asymptotically stable. To assess and demonstrate the functionality and performance of the proposed approach, we performed numerical simulations and executed dozens of real-time tumble-recovery maneuvers using a small quadrotor. These simulations and flight tests compellingly demonstrate that the proposed axis-angle-based method achieves superior flight performance-compared with that obtained using a high-performance quaternion-based controller-in terms of stabilization time.
comment: 2025 International Conference on Advanced Robotics (ICAR)
Risk-Aware Safety Filters with Poisson Safety Functions and Laplace Guidance Fields
Robotic systems navigating in real-world settings require a semantic understanding of their environment to properly determine safe actions. This work aims to develop the mathematical underpinnings of such a representation -- specifically, the goal is to develop safety filters that are risk-aware. To this end, we take a two step approach: encoding an understanding of the environment via Poisson's equation, and associated risk via Laplace guidance fields. That is, we first solve a Dirichlet problem for Poisson's equation to generate a safety function that encodes system safety as its 0-superlevel set. We then separately solve a Dirichlet problem for Laplace's equation to synthesize a safe \textit{guidance field} that encodes variable levels of caution around obstacles -- by enforcing a tunable flux boundary condition. The safety function and guidance fields are then combined to define a safety constraint and used to synthesize a risk-aware safety filter which, given a semantic understanding of an environment with associated risk levels of environmental features, guarantees safety while prioritizing avoidance of higher risk obstacles. We demonstrate this method in simulation and discuss how \textit{a priori} understandings of obstacle risk can be directly incorporated into the safety filter to generate safe behaviors that are risk-aware.
Targeted Resilient Zoning for High Impact Events via Multi Circuit Polelines
The increasing frequency and severity of High Impact and Low Probability events such as hurricanes and windstorms pose significant challenges to the resilience of electrical power distribution systems, particularly in regions of New England where there is a significant amount of overhead infrastructure in areas where vegetation is predominant. Traditional reliability-focused planning is insufficient to address the systemic vulnerabilities exposed by such extreme events. This paper presents a novel risk based framework for long term resilience planning of active overhead distribution systems, with a specific focus on mitigating the impacts of high wind and hurricane induced outages.
Distribution System Reconfiguration to Mitigate Load Altering Attacks via Stackelberg Games
The widespread integration of IoT-controllable devices (e.g., smart EV charging stations and heat pumps) into modern power systems enhances capabilities but introduces critical cybersecurity risks. Specifically, these devices are susceptible to load-altering attacks (LAAs) that can compromise power system safety. This paper quantifies the impact of LAAs on nodal voltage constraint violations in distribution networks (DNs). We first present closed-form expressions to analytically characterize LAA effects and quantify the minimum number of compromised devices for a successful LAA. Based on these insights, we propose a reactive defense mechanism that mitigates LAAs through DN reconfiguration. To address strategic adversaries, we then formulate defense strategies using a non-cooperative sequential game, which models the knowledgeable and strategic attacker, accounting for the worst-case scenario and enabling the reactive defender to devise an efficient and robust defense. Further, our formulation also accounts for uncertainties in attack localization. A novel Bayesian optimization approach is introduced to compute the Stackelberg equilibrium, significantly reducing computational burden efficiently. The game-theoretic strategy effectively mitigates the attack's impact while ensuring minimal system reconfiguration.
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
Continuity Conditions for Piecewise Quadratic Functions on Simplicial Conic Partitions are Equivalent
Analysis of continuous-time piecewise linear systems based on piecewise quadratic (PWQ) Lyapunov functions typically requires continuity of these functions over a partition of the state space. Several conditions for guaranteeing continuity of PWQ functions over state space partitions can be found in the literature. In this technical note, we show that these continuity conditions are equivalent over so-called simplicial conic partitions. As a consequence, the choice of which condition to impose can be based solely on practical considerations such as specific application or numerical aspects, without introducing additional conservatism in the analysis.
comment: 8 pages, 3 figures
Binary Decision Process in Pre-Evacuation Behavior
In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
comment: 5 pages
Multi-robot Motion Planning based on Nets-within-Nets Modeling and Simulation
This paper focuses on designing motion plans for a heterogeneous team of robots that must cooperate to fulfill a global mission. Robots move in an environment that contains some regions of interest, while the specification for the entire team can include avoidance, visits, or sequencing of these regions of interest. The mission is expressed in terms of a Petri net corresponding to an automaton, while each robot is also modeled by a state machine Petri net. The current work brings about the following contributions with respect to existing solutions for related problems. First, we propose a novel model, denoted High-Level robot team Petri Net (HLrtPN) system, to incorporate the specification and robot models into the Nets-within-Nets paradigm. A guard function, named Global Enabling Function, is designed to synchronize the firing of transitions so that robot motions do not violate the specification. Then, the solution is found by simulating the HLrtPN system in a specific software tool that accommodates Nets-within-Nets. Illustrative examples based on Linear Temporal Logic missions support the computational feasibility of the proposed framework.
comment: [Note for readers] This paper has been extended from a previous submission to 62nd IEEE Conference on Decision and Control, Dec. 13-15, 2023. This work has been submitted to the IEEE for possible publication
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: Accepted to IEEE Robotics and Automation Letters
Privacy Preservation by Local Design in Cooperative Networked Control Systems
In this paper, we study the privacy preservation problem in a cooperative networked control system, which has closed-loop dynamics, working for the task of linear quadratic Guassian (LQG) control. The system consists of a user and a server: the user owns the plant to control, while the server provides computation capability, and the user employs the server to compute control inputs for it. To enable the server's computation, the user needs to provide the measurements of the plant states to the server, who then calculates estimates of the states, based on which the control inputs are computed. However, the user regards the states as privacy, and makes an interesting request: the user wants the server to have "incorrect" knowledge of the state estimates rather than the true values. Regarding that, we propose a novel design methodology for the privacy preservation, in which the privacy scheme is locally equipped at the user side not open to the server, which manages to create a deviation in the server's knowledge of the state estimates from the true values. However, this methodology also raises significant challenges: in a closed-loop dynamic system, when the server's seized knowledge is incorrect, the system's behavior becomes complex to analyze; even the stability of the system becomes questionable, as the incorrectness will accumulate through the closed loop as time evolves. In this paper, we succeed in showing that the performance loss in LQG control caused by the proposed privacy scheme is bounded by rigorous mathematical proofs, which convinces the availability of the proposed design methodology. We also propose an associated novel privacy metric and obtain the analytical result on evaluating the privacy performance. Finally, we study the performance trade-off between privacy and control, where the accordingly proposed optimization problems are solved by numerical methods efficiently.
comment: 14 pages, 7 figures
Cryo-CMOS Antenna for Wireless Communications within a Quantum Computer Cryostat
Scaling quantum computers from a few qubits to large numbers remains one of the critical challenges in realizing practical quantum advantage. Multi-core quantum architectures have emerged as a promising solution, enabling scalability through distributed quantum processing units (QPUs) interconnected via classical and quantum links. However, the bottleneck of wired connections persists, as densely packed wired interconnects, both vertically across temperature stages and horizontally within the same layer, introduce spatial constraints, power dissipation, and latency, which could hinder performance as the number of QPUs increases. To overcome these limitations, this work proposes a cryo-compatible on-chip differential dipole antenna operating at 28 GHz to enable short-range wireless communication within a quantum computer cryostat. Temperature-dependent material properties are incorporated to accurately capture antenna behavior at 4 K. Moreover, by embedding the antenna in a realistic cryostat structure, we evaluate the feasibility of antenna operation within the cryogenic environment. The proposed antenna achieves a reflection coefficient of -20.8 dB in free space and -18.38 dB within the cryostat, demonstrating efficient impedance matching.
Data-Efficient Excavation Force Estimation for Wheel Loaders
Accurate prediction of excavation forces is critical for enabling autonomous operation and optimizing control strategies in earthmoving machinery. Conventional approaches often depend on extensive data collection or computationally expensive simulations across multiple soil types, which limits their scalability and adaptability. This study presents a data-efficient framework that calibrates soil parameters using force measurements from the preceding bucket-loading cycle. The proposed method is based on an analytical soil-tool interaction model formulated through the fundamental earthmoving equation, and employs a multi-stage optimization procedure during the loading phase to identify relevant soil parameters. These estimated parameters are then used to predict excavation forces in the subsequent cycle, allowing the system to adapt its control inputs without relying on large-scale datasets or machine learning model training. The framework is validated through high-fidelity simulations in the Algoryx Dynamics engine under different soil types and excavation trajectories, achieving root-mean-square prediction errors between 10% and 15%. This cycle-to-cycle adaptation demonstrates strong potential for scalable, online force estimation and efficient path planning in wheel loader operations.
Systems and Control (EESS)
Over 3 kV and Ultra-Low leakage Vertical (011) \b{eta}-Ga2O3 Power Diodes with Engineered Schottky Contact and High-permittivity Dielectric Field Plate
We report over 3 kV breakdown voltage and ultra-low leakage (011) \b{eta}-Ga2O3 power devices utilizing Schottky barrier engineering and high-permittivity (\k{appa}) dielectric (ZrO2) field plate. The (011) orientation of \b{eta}-Ga2O3 enabled low background doping and thick drift layers which are promising to support kV-class vertical \b{eta}-Ga2O3 power switches. The Schottky barrier engineering was performed with a composite Pt cap/PtOx/Pt (1.5 nm) anode contact to take advantage of the enhanced reverse blocking capabilities enabled by PtOx while allowing low turn-on voltage by the interfacing thin Pt layer. We also performed a systematic study using a co-processed Pt/(011) \b{eta}-Ga2O3 Schottky barrier diodes (SBDs) on the same wafer. The bare SBDs revealed a breakdown voltage of ~1.5 kV, while the field-plate Pt/(011) \b{eta}-Ga2O3 SBDs achieved an increased breakdown voltage of 2.75 kV owing to the edge field management. Further enhancement of the breakdown voltage was achieved by tunneling leakage management using composite Pt cap/PtOx/Pt (1.5 nm) Schottky contacts that ultimately enabled breakdown voltage of 3.7 kV for the field-plate diodes. Remarkably, the Pt cap/PtOx/Pt (1.5 nm) Schottky contacts maintained similar turn-on voltage as the Pt/(011) \b{eta}-Ga2O3 SBDs. The combination of efficient tunneling leakage management by composite Pt cap/PtOx/Pt (1.5 nm) contacts with similar turn-on voltage, edge field reduction by high-\k{appa} dielectric ZrO2 field plate, as well as the advantageous material properties offered by (011) \b{eta}-Ga2O3 demonstrate a promising strategy for developing ultra-low leakage and multi-kV class vertical (011) \b{eta}-Ga2O3 power devices.
An OPF-based Control Framework for Hybrid AC-MTDC Power Systems under Uncertainty
The increasing integration of renewable energy, particularly offshore wind, introduces significant uncertainty into hybrid AC-HVDC systems due to forecast errors and power fluctuations. Conventional control strategies typically rely on fixed setpoints and neglect frequency deviations, which can compromise system stability under rapid renewable variations. To address this challenge, this paper presents a forecast-integrated, optimal power flow (OPF)-based adaptive control framework. Wind speed forecasts generated using a Random Forest model are incorporated into a time-coupled OPF to determine baseline converter setpoints in anticipation of wind fluctuations, which are further adjusted in real time based on actual operating conditions. An adaptive droop control scheme is developed that jointly considers DC voltage and AC frequency deviations. The effectiveness of the proposed control framework is validated through hardware-in-the-loop (HIL) simulations, demonstrating its capability to ensure stable and robust operation of hybrid AC-HVDC systems under high penetration of renewable energy.
Incorporating Social Awareness into Control of Unknown Multi-Agent Systems: A Real-Time Spatiotemporal Tubes Approach
This paper presents a decentralized control framework that incorporates social awareness into multi-agent systems with unknown dynamics to achieve prescribed-time reach-avoid-stay tasks in dynamic environments. Each agent is assigned a social awareness index that quantifies its level of cooperation or self-interest, allowing heterogeneous social behaviors within the system. Building on the spatiotemporal tube (STT) framework, we propose a real-time STT framework that synthesizes tubes online for each agent while capturing its social interactions with others. A closed-form, approximation-free control law is derived to ensure that each agent remains within its evolving STT, thereby avoiding dynamic obstacles while also preventing inter-agent collisions in a socially aware manner, and reaching the target within a prescribed time. The proposed approach provides formal guarantees on safety and timing, and is computationally lightweight, model-free, and robust to unknown disturbances. The effectiveness and scalability of the framework are validated through simulation and hardware experiments on a 2D omnidirectional
Optimal and Heuristic Approaches for Platooning Systems with Deadlines
Efficient truck platooning is a key strategy for reducing freight costs, lowering fuel consumption, and mitigating emissions. Deadlines are critical in this context, as trucks must depart within specific time windows to meet delivery requirements and avoid penalties. In this paper, we investigate the optimal formation and dispatch of truck platoons at a highway station with finite capacity $L$ and deadline constraints $T$. The system operates in discrete time, with each arriving truck assigned a deadline of $T$ slot units. The objective is to leverage the efficiency gains from forming large platoons while accounting for waiting costs and deadline violations. We formulate the problem as a Markov decision process and analyze the structure of the optimal policy $\pi^\star$ for $L = 3$, extending insights to arbitrary $L$. We prove that the $\pi^\star$ is monotone in the state space $\mathcal{S}$ and identify classes of unreachable states. Moreover, since $\mathcal{S}$ grows exponentially with $L$ and $T$, we propose heuristics-including conditional and deep-learning based approaches-that exploit these structural insights while maintaining low computational complexity.
Deep Reinforcement Learning-Based Cooperative Rate Splitting for Satellite-to-Underground Communication Networks
Reliable downlink communication in satellite-to-underground networks remains challenging due to severe signal attenuation caused by underground soil and refraction in the air-soil interface. To address this, we propose a novel cooperative rate-splitting (CRS)-aided transmission framework, where an aboveground relay decodes and forwards the common stream to underground devices (UDs). Based on this framework, we formulate a max-min fairness optimization problem that jointly optimizes power allocation, message splitting, and time slot scheduling to maximize the minimum achievable rate across UDs. To solve this high-dimensional non-convex problem under uncertain channels, we develop a deep reinforcement learning solution framework based on the proximal policy optimization (PPO) algorithm that integrates distribution-aware action modeling and a multi-branch actor network. Simulation results under a realistic underground pipeline monitoring scenario demonstrate that the proposed approach achieves average max-min rate gains exceeding $167\%$ over conventional benchmark strategies across various numbers of UDs and underground conditions.
comment: 6 pages, 3 figures, 1 table, and submitted to IEEE TVT
Sum-of-Squares Certificates for Almost-Sure Reachability of Stochastic Polynomial Systems
In this paper, we present a computational approach to certify almost sure reachability for discrete-time polynomial stochastic systems by turning drift--variant criteria into sum-of-squares (SOS) programs solved with standard semidefinite solvers. Specifically, we provide an SOS method based on two complementary certificates: (i) a drift certificate that enforces a radially unbounded function to be non-increasing in expectation outside a compact set of states; and (ii) a variant certificate that guarantees a one-step decrease with positive probability and ensures the target contains its nonpositive sublevel set. We transform these conditions to SOS constraints. For the variant condition, we enforce a robust decrease over a parameterized disturbance ball with nonzero probability and encode the constraints via an S-procedure with polynomial multipliers. The resulting bilinearities are handled by an alternating scheme that alternates between optimizing multipliers and updating the variant and radius until a positive slack is obtained. Two case studies illustrate the workflow and certifies almost-sure reachability.
comment: 8 Pages, 8 Figs
A New Neural Network Paradigm for Scalable and Generalizable Stability Analysis of Power Systems
This paper presents a new neural network (NN) paradigm for scalable and generalizable stability analysis of power systems. The paradigm consists of two parts: the neural stability descriptor and the sample-augmented iterative training scheme. The first part, based on system decomposition, constructs the object (such as a stability function or condition) for stability analysis as a scalable aggregation of multiple NNs. These NNs remain fixed across varying power system structures and parameters, and are repeatedly shared within each system instance defined by these variations, thereby enabling the generalization of the neural stability descriptor across a class of power systems. The second part learns the neural stability descriptor by iteratively training the NNs with sample augmentation, guided by the tailored conservativeness-aware loss function. The training set is strategically constructed to promote the descriptor's generalizability, which is systematically evaluated by verification and validation during the training process. Specifically, the proposed NN paradigm is implemented for large-disturbance stability analysis of the bulk power grid and small-disturbance stability conditions of the microgrid system. Finally, numerical studies for the two implementations demonstrate the applicability and effectiveness of the proposed NN paradigm.
Combining Moving Mass Actuators and Manoeuvring Models for Underwater Vehicles: A Lagrangian Approach
In this paper, we present a Newton-Euler formulation of the equations of motion for underwater vehicles with an interntal moving mass actuator. Furthermore, the moving mass dynamics are expressed as an extension to the manoeuvring model for underwater vehicles, originally introduced by Fossen (1991). The influence of the moving mass is described in body-frame and included as states in both an additional kinematic equation and as part of the coupled rigid-body kinetics of the underwater vehicle. The Coriolis-centripetal effects are derived from Kirchhoff's equations and the hydrostatics are derived using first principals. The proposed Newton-Euler model is validated through simulation and compared with the traditional Hamiltonian internal moving mass actuator formulation.
comment: \c{opyright} 2025 Alexander Rambech, Ivar Saksvik and Vahid Hassani. Accepted by IFAC for publication under a Creative Commons License CC-BY-NC-ND
Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability
In this work, we study data-driven stabilization of linear time-invariant systems using prior knowledge of system-theoretic properties, specifically stabilizability and controllability. To formalize this, we extend the concept of data informativity by requiring the existence of a controller that stabilizes all systems consistent with the data and the prior knowledge. We show that if the system is controllable, then incorporating this as prior knowledge does not relax the conditions required for data-driven stabilization. Remarkably, however, we show that if the system is stabilizable, then using this as prior knowledge leads to necessary and sufficient conditions that are weaker than those for data-driven stabilization without prior knowledge. In other words, data-driven stabilization is easier if one knows that the underlying system is stabilizable. We also provide new data-driven control design methods in terms of linear matrix inequalities that complement the conditions for informativity.
comment: 6 pages
Quantum-Resilient Threat Modelling for Secure RIS-Assisted ISAC in 6G UAV Corridors
The rapid deployment of unmanned aerial vehicle (UAV) corridors in sixth-generation (6G) networks requires safe, intelligence-driven integrated sensing and communications (ISAC). Reconfigurable intelligent surfaces (RIS) enhance spectrum efficiency, localisation accuracy, and situational awareness, while introducing new vulnerabilities. The rise of quantum computing increases the risks associated with harvest-now-decrypt-later strategies and quantum-enhanced spoofing. We propose a Quantum-Resilient Threat Modelling (QRTM) framework for RIS-assisted ISAC in UAV corridors to address these challenges. QRTM integrates classical, quantum-ready, and quantum-aided adversaries, countered using post-quantum cryptographic (PQC) primitives: ML-KEM for key establishment and Falcon for authentication, both embedded within RIS control signalling and UAV coordination. To strengthen security sensing, the framework introduces RIS-coded scene watermarking validated through a generalised likelihood ratio test (GLRT), with its detection probability characterised by the Marcum Q function. Furthermore, a Secure ISAC Utility (SIU) jointly optimises secrecy rate, spoofing detection, and throughput under RIS constraints, enabled by a scheduler with computational complexity of O(n^2). Monte Carlo evaluations using 3GPP Release 19 mid-band urban-canyon models (7-15 GHz) demonstrate a spoof-detection probability approaching 0.99 at a false-alarm rate of 1e-3, secrecy-rate retention exceeding 90 percent against quantum-capable adversaries, and signal-interference utilisation improvements of about 25 percent compared with baselines. These results show a standards-compliant path towards reliable, quantum-resilient ISAC for UAV corridors in smart cities and non-terrestrial networks.
comment: 6 Pages, 5figures
Integrating Legal and Logical Specifications in Perception, Prediction, and Planning for Automated Driving: A Survey of Methods
This survey provides an analysis of current methodologies integrating legal and logical specifications into the perception, prediction, and planning modules of automated driving systems. We systematically explore techniques ranging from logic-based frameworks to computational legal reasoning approaches, emphasizing their capability to ensure regulatory compliance and interpretability in dynamic and uncertain driving environments. A central finding is that significant challenges arise at the intersection of perceptual reliability, legal compliance, and decision-making justifiability. To systematically analyze these challenges, we introduce a taxonomy categorizing existing approaches by their theoretical foundations, architectural implementations, and validation strategies. We particularly focus on methods that address perceptual uncertainty and incorporate explicit legal norms, facilitating decisions that are both technically robust and legally defensible. The review covers neural-symbolic integration methods for perception, logic-driven rule representation, and norm-aware prediction strategies, all contributing toward transparent and accountable autonomous vehicle operation. We highlight critical open questions and practical trade-offs that must be addressed, offering multidisciplinary insights from engineering, logic, and law to guide future developments in legally compliant autonomous driving systems.
comment: Accepted to 2025 IEEE International Automated Vehicle Validation Conference (IAVVC)
Lightweight Federated Learning in Mobile Edge Computing with Statistical and Device Heterogeneity Awareness
Federated learning enables collaborative machine learning while preserving data privacy, but high communication and computation costs, exacerbated by statistical and device heterogeneity, limit its practicality in mobile edge computing. Existing compression methods like sparsification and pruning reduce per-round costs but may increase training rounds and thus the total training cost, especially under heterogeneous environments. We propose a lightweight personalized FL framework built on parameter decoupling, which separates the model into shared and private subspaces, enabling us to uniquely apply gradient sparsification to the shared component and model pruning to the private one. This structural separation confines communication compression to global knowledge exchange and computation reduction to local personalization, protecting personalization quality while adapting to heterogeneous client resources. We theoretically analyze convergence under the combined effects of sparsification and pruning, revealing a sparsity-pruning trade-off that links to the iteration complexity. Guided by this analysis, we formulate a joint optimization that selects per-client sparsity and pruning rates and wireless bandwidth to reduce end-to-end training time. Simulation results demonstrate faster convergence and substantial reductions in overall communication and computation costs with negligible accuracy loss, validating the benefits of coordinated and resource-aware personalization in resource-constrained heterogeneous environments.
Tight Collision Avoidance for Stochastic Optimal Control: with Applications in Learning-based, Interactive Motion Planning
Trajectory planning in dense, interactive traffic scenarios presents significant challenges for autonomous vehicles, primarily due to the uncertainty of human driver behavior and the non-convex nature of collision avoidance constraints. This paper introduces a stochastic optimal control framework to address these issues simultaneously, without excessively conservative approximations. We opt to model human driver decisions as a Markov Decision Process and propose a method for handling collision avoidance between non-convex vehicle shapes by imposing a positive distance constraint between compact sets. In this framework, we investigate three alternative chance constraint formulations. To ensure computational tractability, we introduce tight, continuously differentiable reformulations of both the non-convex distance constraints and the chance constraints. The efficacy of our approach is demonstrated through simulation studies of two challenging interactive scenarios: an unregulated intersection crossing and a highway lane change in dense traffic.
comment: Preprint article, submitted for publication
Data-Enabled Predictive Control and Guidance for Autonomous Underwater Vehicles
This paper presents a fully data-driven control framework for autonomous underwater vehicles (AUVs) based on Data-Enabled Predictive Control (DeePC). The approach eliminates the need for explicit hydrodynamic modeling by exploiting measured input-output data to predict and optimize future system behavior. Classic DeePC was employed in the heading control, while a cascaded DeePC architecture is proposed for depth regulation, incorporating a loop-frequency separation to handle the different dynamic modes of input and output. For 3-D waypoint path following, the Adaptive Line-of-Sight algorithm is extended to a predictive formulation and integrated with DeePC. All methods are validated in extensive simulation on the REMUS 100 AUV and compared with classical PI/PID control. The results demonstrate superior tracking performance and robustness of DeePC under ocean-current disturbances and nonlinear operating conditions, while significantly reducing modeling effort.
comment: 12 pages, 6 figures
Shared Control for Vehicle Lane-Changing with Uncertain Driver Behaviors
Lane changes are common yet challenging driving maneuvers that require continuous decision-making and dynamic interaction with surrounding vehicles. Relying solely on human drivers for lane-changing can lead to traffic disturbances due to the stochastic nature of human behavior and its variability under different task demands. Such uncertainties may significantly degrade traffic string stability, which is critical for suppressing disturbance propagation and ensuring smooth merging of the lane-changing vehicles. This paper presents a human-automation shared lane-changing control framework that preserves driver authority while allowing automated assistance to achieve stable maneuvers in the presence of driver's behavioral uncertainty. Human driving behavior is modeled as a Markov jump process with transitions driven by task difficulty, providing a tractable representation of stochastic state switching. Based on this model, we first design a nominal stabilizing controller that guarantees stochastic ${L}_2$ string stability under imperfect mode estimation. To further balance performance and automated effort, we then develop a Minimal Intervention Controller (MIC) that retains acceptable stability while limiting automation. Simulations using lane-changing data from the NGSIM dataset verify that the nominal controller reduces speed perturbations and shorten lane-changing time, while the MIC further reduces automated effort and enhances comfort but with moderate stability and efficiency loss. Validations on the TGSIM dataset with SAE Level 2 vehicles show that the MIC enables earlier lane changes than Level 2 control while preserving driver authority with a slight stability compromise. These findings highlight the potential of shared control strategies to balance stability, efficiency, and driver acceptance.
Photoacoustics on the go: An Embedded Photoacoustic Sensing Platform
Several centimeters below the skin lie multiple biomarkers, such as glucose, oxygenation, and blood flow. Monitoring these biomarkers regularly and in a non-invasive manner would enable early insight into metabolic status and vascular health. Currently, there are only a handful of non-invasive monitoring systems. Optical methods offer molecular specificity (i.e., multi-biomarker monitoring) but have shallow reach (a few millimeters); ultrasound penetrates deeper but lacks specificity; and MRI is large, slow, and costly. Photoacoustic (PA) sensing combines the best of optical and ultrasound methods. A laser transmitter emits pulses that are absorbed by different molecules, providing specificity. These light pulses generate pressure changes that are captured by an ultrasound receiver, providing depth. Photoacoustic sensing is promising, but the current platforms are bulky, complex, and costly. We propose the first embedded PA platform. Our contributions are fourfold. First, inspired by LiDAR technology, we propose a novel transmitter that emits pulses similar to those in the state-of-the-art (SoA), but instead of using high-voltage sources and complex electronic interfaces, we use a simple low-power microcontroller (MCU). Second, we carry out a thorough analysis of our custom transmitter and a commercial system. Third, we build a basic ultrasound receiver that is able to process the faint signal generated by our transmitter. Lastly, we compare the performance of our platform against a SoA commercial system, and show that we can detect glucose and (de)oxygenated hemoglobin in two controlled solution studies. The resulting signal characteristics indicate a plausible path toward noninvasive, real-time, at-home sensing relevant to diabetes care. More broadly, this platform lays the groundwork for translating the promise of PA sensing into a broader practical reality.
Minimum time consensus for damped second order agents using Gröbner basis
A problem of achieving minimum time consensus for a set of $N$ second-order LTI system agents with bounded inputs and fuel constraints is considered. Unlike our other works, here the damping effect in agent dynamics is included. First, the attainable set for each agent with fuel budget constraints is characterized, and its boundary equations are derived. Then, using the convexity property, the minimum time at which attainable sets of all agents have a non-empty intersection is computed. By applying Helly's theorem, the computation reduces to finding the minimum time to consensus and the corresponding consensus point for each of the triplets separately.
Silicon-based Josephson junction field-effect transistors enabling cryogenic logic and quantum technologies
The continuous miniaturisation of metal-oxide-semiconductor field-effect transistors (MOSFETs) from long- to short-channel architectures has advanced beyond the predictions of Moore's Law. Continued advances in semiconductor electronics, even near current scaling and performance boundaries under cryogenic conditions, are driving the development of innovative device paradigms that enable ultra-low-power and high-speed functionality. Among emerging candidates, the Josephson Junction Field-Effect Transistor (JJFET or JoFET) provides an alternative by integrating superconducting source and drain electrodes for efficient, phase-coherent operation at ultra-low temperatures. These hybrid devices have the potential to bridge conventional semiconductor electronics with cryogenic logic and quantum circuits, enabling energy-efficient and high-coherence signal processing across temperature domains. This review traces the evolution from Josephson junctions to field-effect transistors, emphasising the structural and functional innovations that underpin modern device scalability. The performance and material compatibility of JJFETs fabricated on Si, GaAs, and InGaAs substrates are analysed, alongside an assessment of their switching dynamics and material compatibility. Particular attention is given to superconductor-silicon-superconductor Josephson junctions as the active core of JJFET architectures. By unfolding more than four decades of experimental progress, this work highlights the promise of JJFETs as foundational building blocks for next-generation cryogenic logic and quantum electronic systems.
Machine Learning and CPU (Central Processing Unit) Scheduling Co-Optimization over a Network of Computing Centers
In the rapidly evolving research on artificial intelligence (AI) the demand for fast, computationally efficient, and scalable solutions has increased in recent years. The problem of optimizing the computing resources for distributed machine learning (ML) and optimization is considered in this paper. Given a set of data distributed over a network of computing-nodes/servers, the idea is to optimally assign the CPU (central processing unit) usage while simultaneously training each computing node locally via its own share of data. This formulates the problem as a co-optimization setup to (i) optimize the data processing and (ii) optimally allocate the computing resources. The information-sharing network among the nodes might be time-varying, but with balanced weights to ensure consensus-type convergence of the algorithm. The algorithm is all-time feasible, which implies that the computing resource-demand balance constraint holds at all iterations of the proposed solution. Moreover, the solution allows addressing possible log-scale quantization over the information-sharing channels to exchange log-quantized data. For some example applications, distributed support-vector-machine (SVM) and regression are considered as the ML training models. Results from perturbation theory, along with Lyapunov stability and eigen-spectrum analysis, are used to prove the convergence towards the optimal case. As compared to existing CPU scheduling solutions, the proposed algorithm improves the cost optimality gap by more than $50\%$.
comment: EAAI Journal
The Waterbed Effect on Quasiperiodic Disturbance Observer: Avoidance of Sensitivity Tradeoff with Time Delays
In linear time-invariant systems, the sensitivity function to disturbances is designed under a sensitivity tradeoff known as the waterbed effect. To compensate for a quasiperiodic disturbance, a quasiperiodic disturbance observer using time delays was proposed. Its sensitivity function avoids the sensitivity tradeoff, achieving wideband harmonic suppression without amplifying aperiodic disturbances or shifting harmonic suppression frequencies. However, its open-loop transfer function is not rational and does not satisfy the assumptions of existing Bode sensitivity integrals due to its time delays. This paper provides Bode-like sensitivity integrals for the quasiperiodic disturbance observer in both continuous-time and discrete-time representations and clarifies the avoided sensitivity tradeoff with time delays.
Stochastic Long-Term Joint Decarbonization Planning for Power Systems and Data Centers: A Case Study in PJM
With the rapid growth of artificial intelligence (AI) and cloud services, data centers have become critical infrastructures driving digital economies, with increasing energy demand heightening concerns over electricity use and carbon emissions, emphasizing the need for carbon-aware infrastructure planning. Most studies assume static power systems, focus only on operational emissions, and overlook co-optimization. This paper proposes a dynamic joint planning framework that co-optimizes long-term data center and power system development over 15 years. The model determines siting, capacity, and type of data centers alongside power generation expansion, storage deployment, and retirements, accounting for both operational and embodied emissions. To handle multi-scale uncertainty, a large-scale two-stage stochastic program is formulated and solved via an enhanced Benders decomposition. Applied to the PJM Interconnection, with curated datasets released on GitHub, results show the system can support up to 55 GW peak data center demand, with Virginia (DOM) and Northern Illinois (ComEd) as optimal hosts. Compared to non-joint planning, the framework cuts investment cost by 12.6%, operational cost by 8.25%, and emissions by 5.63%. Including lifecycle emissions further raises renewable deployment by 25.5%, highlighting embodied carbon's role in deeper decarbonization.
Control Synthesis with Reinforcement Learning: A Modeling Perspective
Controllers designed with reinforcement learning can be sensitive to model mismatch. We demonstrate that designing such controllers in a virtual simulation environment with an inaccurate model is not suitable for deployment in a physical setup. Controllers designed using an accurate model is robust against disturbance and small mismatch between the physical setup and the mathematical model derived from first principles; while a poor model results in a controller that performs well in simulation but fails in physical experiments. Sensitivity analysis is used to justify these discrepancies and an empirical region of attraction estimation help us visualize their robustness.
A Parallelized Cutting-Plane Algorithm for Computationally Efficient Modelling to Generate Alternatives
Contemporary macro energy systems modelling is characterized by the need to represent strategic and operational decisions with high temporal and spatial resolution and represent discrete investment and retirement decisions. This drive towards greater fidelity, however, conflicts with a simultaneous push towards greater model representation of inherent complexity in decision making, including methods like Modelling to Generate Alternatives (MGA). MGA aims to map the feasible space of a model within a cost slack by varying investment parameters without changing the operational constraints, a process which frequently requires hundreds of solutions. For large, detailed energy system models this is impossible with traditional methods, leading researchers to reduce complexity with linearized investments and zonal or temporal aggregation. This research presents a new solution method for MGA type problems using cutting-plane methods based on a tailored reformulation of Benders Decomposition. We accelerate the algorithm by sharing cuts between MGA master problems and grouping MGA objectives. We find that our new solution method consistently solves MGA problems times faster and requires less memory than existing monolithic Modelling to Generate Alternatives solution methods on linear problems, enabling rapid computation of a greater number of solutions to highly resolved models. We also show that our novel cutting-plane algorithm enables the solution of very large MGA problems with integer investment decisions.
A New Type of Axis-Angle Attitude Control Law for Rotational Systems: Synthesis, Analysis, and Experiments
Over the past few decades, continuous quaternion-based attitude control has been proven highly effective for driving rotational systems that can be modeled as rigid bodies, such as satellites and drones. However, methods rooted in this approach do not enforce the existence of a unique closed-loop (CL) equilibrium attitude-error quaternion (AEQ); and, for rotational errors about the attitude-error Euler axis larger than {\pi}rad, their proportional-control effect diminishes as the system state moves away from the stable equilibrium of the CL rotational dynamics. In this paper, we introduce a new type of attitude control law that more effectively leverages the attitude-error Euler axis-angle information to guarantee a unique CL equilibrium AEQ and to provide greater flexibility in the use of proportional-control efforts. Furthermore, using two different control laws as examples-through the construction of a strict Lyapunov function for the CL dynamics-we demonstrate that the resulting unique equilibrium of the CL rotational system can be enforced to be uniformly asymptotically stable. To assess and demonstrate the functionality and performance of the proposed approach, we performed numerical simulations and executed dozens of real-time tumble-recovery maneuvers using a small quadrotor. These simulations and flight tests compellingly demonstrate that the proposed axis-angle-based method achieves superior flight performance-compared with that obtained using a high-performance quaternion-based controller-in terms of stabilization time.
comment: 2025 International Conference on Advanced Robotics (ICAR)
Risk-Aware Safety Filters with Poisson Safety Functions and Laplace Guidance Fields
Robotic systems navigating in real-world settings require a semantic understanding of their environment to properly determine safe actions. This work aims to develop the mathematical underpinnings of such a representation -- specifically, the goal is to develop safety filters that are risk-aware. To this end, we take a two step approach: encoding an understanding of the environment via Poisson's equation, and associated risk via Laplace guidance fields. That is, we first solve a Dirichlet problem for Poisson's equation to generate a safety function that encodes system safety as its 0-superlevel set. We then separately solve a Dirichlet problem for Laplace's equation to synthesize a safe \textit{guidance field} that encodes variable levels of caution around obstacles -- by enforcing a tunable flux boundary condition. The safety function and guidance fields are then combined to define a safety constraint and used to synthesize a risk-aware safety filter which, given a semantic understanding of an environment with associated risk levels of environmental features, guarantees safety while prioritizing avoidance of higher risk obstacles. We demonstrate this method in simulation and discuss how \textit{a priori} understandings of obstacle risk can be directly incorporated into the safety filter to generate safe behaviors that are risk-aware.
Targeted Resilient Zoning for High Impact Events via Multi Circuit Polelines
The increasing frequency and severity of High Impact and Low Probability events such as hurricanes and windstorms pose significant challenges to the resilience of electrical power distribution systems, particularly in regions of New England where there is a significant amount of overhead infrastructure in areas where vegetation is predominant. Traditional reliability-focused planning is insufficient to address the systemic vulnerabilities exposed by such extreme events. This paper presents a novel risk based framework for long term resilience planning of active overhead distribution systems, with a specific focus on mitigating the impacts of high wind and hurricane induced outages.
Distribution System Reconfiguration to Mitigate Load Altering Attacks via Stackelberg Games
The widespread integration of IoT-controllable devices (e.g., smart EV charging stations and heat pumps) into modern power systems enhances capabilities but introduces critical cybersecurity risks. Specifically, these devices are susceptible to load-altering attacks (LAAs) that can compromise power system safety. This paper quantifies the impact of LAAs on nodal voltage constraint violations in distribution networks (DNs). We first present closed-form expressions to analytically characterize LAA effects and quantify the minimum number of compromised devices for a successful LAA. Based on these insights, we propose a reactive defense mechanism that mitigates LAAs through DN reconfiguration. To address strategic adversaries, we then formulate defense strategies using a non-cooperative sequential game, which models the knowledgeable and strategic attacker, accounting for the worst-case scenario and enabling the reactive defender to devise an efficient and robust defense. Further, our formulation also accounts for uncertainties in attack localization. A novel Bayesian optimization approach is introduced to compute the Stackelberg equilibrium, significantly reducing computational burden efficiently. The game-theoretic strategy effectively mitigates the attack's impact while ensuring minimal system reconfiguration.
Dual-Regularized Riccati Recursions for Interior-Point Optimal Control
We derive closed-form extensions of Riccati's recursions (both sequential and parallel) for solving dual-regularized LQR problems. We show how these methods can be used to solve general constrained, non-convex, discrete-time optimal control problems via a regularized interior point method, while guaranteeing that each step is a descent direction of an Augmented Barrier-Lagrangian merit function. We provide MIT-licensed implementations of our methods in C++ and JAX.
Continuity Conditions for Piecewise Quadratic Functions on Simplicial Conic Partitions are Equivalent
Analysis of continuous-time piecewise linear systems based on piecewise quadratic (PWQ) Lyapunov functions typically requires continuity of these functions over a partition of the state space. Several conditions for guaranteeing continuity of PWQ functions over state space partitions can be found in the literature. In this technical note, we show that these continuity conditions are equivalent over so-called simplicial conic partitions. As a consequence, the choice of which condition to impose can be based solely on practical considerations such as specific application or numerical aspects, without introducing additional conservatism in the analysis.
comment: 8 pages, 3 figures
Binary Decision Process in Pre-Evacuation Behavior
In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
comment: 5 pages
Multi-robot Motion Planning based on Nets-within-Nets Modeling and Simulation
This paper focuses on designing motion plans for a heterogeneous team of robots that must cooperate to fulfill a global mission. Robots move in an environment that contains some regions of interest, while the specification for the entire team can include avoidance, visits, or sequencing of these regions of interest. The mission is expressed in terms of a Petri net corresponding to an automaton, while each robot is also modeled by a state machine Petri net. The current work brings about the following contributions with respect to existing solutions for related problems. First, we propose a novel model, denoted High-Level robot team Petri Net (HLrtPN) system, to incorporate the specification and robot models into the Nets-within-Nets paradigm. A guard function, named Global Enabling Function, is designed to synchronize the firing of transitions so that robot motions do not violate the specification. Then, the solution is found by simulating the HLrtPN system in a specific software tool that accommodates Nets-within-Nets. Illustrative examples based on Linear Temporal Logic missions support the computational feasibility of the proposed framework.
comment: [Note for readers] This paper has been extended from a previous submission to 62nd IEEE Conference on Decision and Control, Dec. 13-15, 2023. This work has been submitted to the IEEE for possible publication
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: Accepted to IEEE Robotics and Automation Letters
Privacy Preservation by Local Design in Cooperative Networked Control Systems
In this paper, we study the privacy preservation problem in a cooperative networked control system, which has closed-loop dynamics, working for the task of linear quadratic Guassian (LQG) control. The system consists of a user and a server: the user owns the plant to control, while the server provides computation capability, and the user employs the server to compute control inputs for it. To enable the server's computation, the user needs to provide the measurements of the plant states to the server, who then calculates estimates of the states, based on which the control inputs are computed. However, the user regards the states as privacy, and makes an interesting request: the user wants the server to have "incorrect" knowledge of the state estimates rather than the true values. Regarding that, we propose a novel design methodology for the privacy preservation, in which the privacy scheme is locally equipped at the user side not open to the server, which manages to create a deviation in the server's knowledge of the state estimates from the true values. However, this methodology also raises significant challenges: in a closed-loop dynamic system, when the server's seized knowledge is incorrect, the system's behavior becomes complex to analyze; even the stability of the system becomes questionable, as the incorrectness will accumulate through the closed loop as time evolves. In this paper, we succeed in showing that the performance loss in LQG control caused by the proposed privacy scheme is bounded by rigorous mathematical proofs, which convinces the availability of the proposed design methodology. We also propose an associated novel privacy metric and obtain the analytical result on evaluating the privacy performance. Finally, we study the performance trade-off between privacy and control, where the accordingly proposed optimization problems are solved by numerical methods efficiently.
comment: 14 pages, 7 figures
Cryo-CMOS Antenna for Wireless Communications within a Quantum Computer Cryostat
Scaling quantum computers from a few qubits to large numbers remains one of the critical challenges in realizing practical quantum advantage. Multi-core quantum architectures have emerged as a promising solution, enabling scalability through distributed quantum processing units (QPUs) interconnected via classical and quantum links. However, the bottleneck of wired connections persists, as densely packed wired interconnects, both vertically across temperature stages and horizontally within the same layer, introduce spatial constraints, power dissipation, and latency, which could hinder performance as the number of QPUs increases. To overcome these limitations, this work proposes a cryo-compatible on-chip differential dipole antenna operating at 28 GHz to enable short-range wireless communication within a quantum computer cryostat. Temperature-dependent material properties are incorporated to accurately capture antenna behavior at 4 K. Moreover, by embedding the antenna in a realistic cryostat structure, we evaluate the feasibility of antenna operation within the cryogenic environment. The proposed antenna achieves a reflection coefficient of -20.8 dB in free space and -18.38 dB within the cryostat, demonstrating efficient impedance matching.
Data-Efficient Excavation Force Estimation for Wheel Loaders
Accurate prediction of excavation forces is critical for enabling autonomous operation and optimizing control strategies in earthmoving machinery. Conventional approaches often depend on extensive data collection or computationally expensive simulations across multiple soil types, which limits their scalability and adaptability. This study presents a data-efficient framework that calibrates soil parameters using force measurements from the preceding bucket-loading cycle. The proposed method is based on an analytical soil-tool interaction model formulated through the fundamental earthmoving equation, and employs a multi-stage optimization procedure during the loading phase to identify relevant soil parameters. These estimated parameters are then used to predict excavation forces in the subsequent cycle, allowing the system to adapt its control inputs without relying on large-scale datasets or machine learning model training. The framework is validated through high-fidelity simulations in the Algoryx Dynamics engine under different soil types and excavation trajectories, achieving root-mean-square prediction errors between 10% and 15%. This cycle-to-cycle adaptation demonstrates strong potential for scalable, online force estimation and efficient path planning in wheel loader operations.
Robotics
Embodying Physical Computing into Soft Robots
Softening and onboarding computers and controllers is one of the final frontiers in soft robotics towards their robustness and intelligence for everyday use. In this regard, embodying soft and physical computing presents exciting potential. Physical computing seeks to encode inputs into a mechanical computing kernel and leverage the internal interactions among this kernel's constituent elements to compute the output. Moreover, such input-to-output evolution can be re-programmable. This perspective paper proposes a framework for embodying physical computing into soft robots and discusses three unique strategies in the literature: analog oscillators, physical reservoir computing, and physical algorithmic computing. These embodied computers enable the soft robot to perform complex behaviors that would otherwise require CMOS-based electronics -- including coordinated locomotion with obstacle avoidance, payload weight and orientation classification, and programmable operation based on logical rules. This paper will detail the working principles of these embodied physical computing methods, survey the current state-of-the-art, and present a perspective for future development.
A Framework for the Systematic Evaluation of Obstacle Avoidance and Object-Aware Controllers
Real-time control is an essential aspect of safe robot operation in the real world with dynamic objects. We present a framework for the analysis of object-aware controllers, methods for altering a robot's motion to anticipate and avoid possible collisions. This framework is focused on three design considerations: kinematics, motion profiles, and virtual constraints. Additionally, the analysis in this work relies on verification of robot behaviors using fundamental robot-obstacle experimental scenarios. To showcase the effectiveness of our method we compare three representative object-aware controllers. The comparison uses metrics originating from the design considerations. From the analysis, we find that the design of object-aware controllers often lacks kinematic considerations, continuity of control points, and stability in movement profiles. We conclude that this framework can be used in the future to design, compare, and benchmark obstacle avoidance methods.
Fare: Failure Resilience in Learned Visual Navigation Control
While imitation learning (IL) enables effective visual navigation, IL policies are prone to unpredictable failures in out-of-distribution (OOD) scenarios. We advance the notion of failure-resilient policies, which not only detect failures but also recover from them automatically. Failure recognition that identifies the factors causing failure is key to informing recovery: e.g. pinpointing image regions triggering failure detections can provide cues to guide recovery. We present Fare, a framework to construct failure-resilient IL policies, embedding OOD-detection and recognition in them without using explicit failure data, and pairing them with recovery heuristics. Real-world experiments show that Fare enables failure recovery across two different policy architectures, enabling robust long-range navigation in complex environments.
Feature Matching-Based Gait Phase Prediction for Obstacle Crossing Control of Powered Transfemoral Prosthesis
For amputees with powered transfemoral prosthetics, navigating obstacles or complex terrain remains challenging. This study addresses this issue by using an inertial sensor on the sound ankle to guide obstacle-crossing movements. A genetic algorithm computes the optimal neural network structure to predict the required angles of the thigh and knee joints. A gait progression prediction algorithm determines the actuation angle index for the prosthetic knee motor, ultimately defining the necessary thigh and knee angles and gait progression. Results show that when the standard deviation of Gaussian noise added to the thigh angle data is less than 1, the method can effectively eliminate noise interference, achieving 100\% accuracy in gait phase estimation under 150 Hz, with thigh angle prediction error being 8.71\% and knee angle prediction error being 6.78\%. These findings demonstrate the method's ability to accurately predict gait progression and joint angles, offering significant practical value for obstacle negotiation in powered transfemoral prosthetics.
comment: 6 pages, conference
Multi-Agent Scenario Generation in Roundabouts with a Transformer-enhanced Conditional Variational Autoencoder
With the increasing integration of intelligent driving functions into serial-produced vehicles, ensuring their functionality and robustness poses greater challenges. Compared to traditional road testing, scenario-based virtual testing offers significant advantages in terms of time and cost efficiency, reproducibility, and exploration of edge cases. We propose a Transformer-enhanced Conditional Variational Autoencoder (CVAE-T) model for generating multi-agent traffic scenarios in roundabouts, which are characterized by high vehicle dynamics and complex layouts, yet remain relatively underexplored in current research. The results show that the proposed model can accurately reconstruct original scenarios and generate realistic, diverse synthetic scenarios. Besides, two Key-Performance-Indicators (KPIs) are employed to evaluate the interactive behavior in the generated scenarios. Analysis of the latent space reveals partial disentanglement, with several latent dimensions exhibiting distinct and interpretable effects on scenario attributes such as vehicle entry timing, exit timing, and velocity profiles. The results demonstrate the model's capability to generate scenarios for the validation of intelligent driving functions involving multi-agent interactions, as well as to augment data for their development and iterative improvement.
GroundLoc: Efficient Large-Scale Outdoor LiDAR-Only Localization
In this letter, we introduce GroundLoc, a LiDAR-only localization pipeline designed to localize a mobile robot in large-scale outdoor environments using prior maps. GroundLoc employs a Bird's-Eye View (BEV) image projection focusing on the perceived ground area and utilizes the place recognition network R2D2, or alternatively, the non-learning approach Scale-Invariant Feature Transform (SIFT), to identify and select keypoints for BEV image map registration. Our results demonstrate that GroundLoc outperforms state-of-the-art methods on the SemanticKITTI and HeLiPR datasets across various sensors. In the multi-session localization evaluation, GroundLoc reaches an Average Trajectory Error (ATE) well below 50 cm on all Ouster OS2 128 sequences while meeting online runtime requirements. The system supports various sensor models, as evidenced by evaluations conducted with Velodyne HDL-64E, Ouster OS2 128, Aeva Aeries II, and Livox Avia sensors. The prior maps are stored as 2D raster image maps, which can be created from a single drive and require only 4 MB of storage per square kilometer. The source code is available at https://github.com/dcmlr/groundloc.
Towards Quadrupedal Jumping and Walking for Dynamic Locomotion using Reinforcement Learning
This paper presents a curriculum-based reinforcement learning framework for training precise and high-performance jumping policies for the robot `Olympus'. Separate policies are developed for vertical and horizontal jumps, leveraging a simple yet effective strategy. First, we densify the inherently sparse jumping reward using the laws of projectile motion. Next, a reference state initialization scheme is employed to accelerate the exploration of dynamic jumping behaviors without reliance on reference trajectories. We also present a walking policy that, when combined with the jumping policies, unlocks versatile and dynamic locomotion capabilities. Comprehensive testing validates walking on varied terrain surfaces and jumping performance that exceeds previous works, effectively crossing the Sim2Real gap. Experimental validation demonstrates horizontal jumps up to 1.25 m with centimeter accuracy and vertical jumps up to 1.0 m. Additionally, we show that with only minor modifications, the proposed method can be used to learn omnidirectional jumping.
comment: 8 pages
Spatiotemporal Calibration of Doppler Velocity Logs for Underwater Robots
The calibration of extrinsic parameters and clock offsets between sensors for high-accuracy performance in underwater SLAM systems remains insufficiently explored. Existing methods for Doppler Velocity Log (DVL) calibration are either constrained to specific sensor configurations or rely on oversimplified assumptions, and none jointly estimate translational extrinsics and time offsets. We propose a Unified Iterative Calibration (UIC) framework for general DVL sensor setups, formulated as a Maximum A Posteriori (MAP) estimation with a Gaussian Process (GP) motion prior for high-fidelity motion interpolation. UIC alternates between efficient GP-based motion state updates and gradient-based calibration variable updates, supported by a provably statistically consistent sequential initialization scheme. The proposed UIC can be applied to IMU, cameras and other modalities as co-sensors. We release an open-source DVL-camera calibration toolbox. Beyond underwater applications, several aspects of UIC-such as the integration of GP priors for MAP-based calibration and the design of provably reliable initialization procedures-are broadly applicable to other multi-sensor calibration problems. Finally, simulations and real-world tests validate our approach.
An Adaptive Inspection Planning Approach Towards Routine Monitoring in Uncertain Environments ICRA 2026
In this work, we present a hierarchical framework designed to support robotic inspection under environment uncertainty. By leveraging a known environment model, existing methods plan and safely track inspection routes to visit points of interest. However, discrepancies between the model and actual site conditions, caused by either natural or human activities, can alter the surface morphology or introduce path obstructions. To address this challenge, the proposed framework divides the inspection task into: (a) generating the initial global view-plan for region of interests based on a historical map and (b) local view replanning to adapt to the current morphology of the inspection scene. The proposed hierarchy preserves global coverage objectives while enabling reactive adaptation to the local surface morphology. This enables the local autonomy to remain robust against environment uncertainty and complete the inspection tasks. We validate the approach through deployments in real-world subterranean mines using quadrupedal robot.
comment: Submitted for ICRA 2026
GeVI-SLAM: Gravity-Enhanced Stereo Visua Inertial SLAM for Underwater Robots
Accurate visual inertial simultaneous localization and mapping (VI SLAM) for underwater robots remains a significant challenge due to frequent visual degeneracy and insufficient inertial measurement unit (IMU) motion excitation. In this paper, we present GeVI-SLAM, a gravity-enhanced stereo VI SLAM system designed to address these issues. By leveraging the stereo camera's direct depth estimation ability, we eliminate the need to estimate scale during IMU initialization, enabling stable operation even under low acceleration dynamics. With precise gravity initialization, we decouple the pitch and roll from the pose estimation and solve a 4 degrees of freedom (DOF) Perspective-n-Point (PnP) problem for pose tracking. This allows the use of a minimal 3-point solver, which significantly reduces computational time to reject outliers within a Random Sample Consensus framework. We further propose a bias-eliminated 4-DOF PnP estimator with provable consistency, ensuring the relative pose converges to the true value as the feature number increases. To handle dynamic motion, we refine the full 6-DOF pose while jointly estimating the IMU covariance, enabling adaptive weighting of the gravity prior. Extensive experiments on simulated and real-world data demonstrate that GeVI-SLAM achieves higher accuracy and greater stability compared to state-of-the-art methods.
Stochastic Prize-Collecting Games: Strategic Planning in Multi-Robot Systems
The Team Orienteering Problem (TOP) generalizes many real-world multi-robot scheduling and routing tasks that occur in autonomous mobility, aerial logistics, and surveillance applications. While many flavors of the TOP exist for planning in multi-robot systems, they assume that all the robots cooperate toward a single objective; thus, they do not extend to settings where the robots compete in reward-scarce environments. We propose Stochastic Prize-Collecting Games (SPCG) as an extension of the TOP to plan in the presence of self-interested robots operating on a graph, under energy constraints and stochastic transitions. A theoretical study on complete and star graphs establishes that there is a unique pure Nash equilibrium in SPCGs that coincides with the optimal routing solution of an equivalent TOP given a rank-based conflict resolution rule. This work proposes two algorithms: Ordinal Rank Search (ORS) to obtain the ''ordinal rank'' --one's effective rank in temporarily-formed local neighborhoods during the games' stages, and Fictitious Ordinal Response Learning (FORL) to obtain best-response policies against one's senior-rank opponents. Empirical evaluations conducted on road networks and synthetic graphs under both dynamic and stationary prize distributions show that 1) the state-aliasing induced by OR-conditioning enables learning policies that scale more efficiently to large team sizes than those trained with the global index, and 2) Policies trained with FORL generalize better to imbalanced prize distributions than those with other multi-agent training methods. Finally, the learned policies in the SPCG achieved between 87% and 95% optimality compared to an equivalent TOP solution obtained by mixed-integer linear programming.
comment: Submitted to IEEE Robotics and Automation Letters
Supervisory Measurement-Guided Noise Covariance Estimation
Reliable state estimation hinges on accurate specification of sensor noise covariances, which weigh heterogeneous measurements. In practice, these covariances are difficult to identify due to environmental variability, front-end preprocessing, and other reasons. We address this by formulating noise covariance estimation as a bilevel optimization that, from a Bayesian perspective, factorizes the joint likelihood of so-called odometry and supervisory measurements, thereby balancing information utilization with computational efficiency. The factorization converts the nested Bayesian dependency into a chain structure, enabling efficient parallel computation: at the lower level, an invariant extended Kalman filter with state augmentation estimates trajectories, while a derivative filter computes analytical gradients in parallel for upper-level gradient updates. The upper level refines the covariance to guide the lower-level estimation. Experiments on synthetic and real-world datasets show that our method achieves higher efficiency over existing baselines.
Sample-efficient and Scalable Exploration in Continuous-Time RL
Reinforcement learning algorithms are typically designed for discrete-time dynamics, even though the underlying real-world control systems are often continuous in time. In this paper, we study the problem of continuous-time reinforcement learning, where the unknown system dynamics are represented using nonlinear ordinary differential equations (ODEs). We leverage probabilistic models, such as Gaussian processes and Bayesian neural networks, to learn an uncertainty-aware model of the underlying ODE. Our algorithm, COMBRL, greedily maximizes a weighted sum of the extrinsic reward and model epistemic uncertainty. This yields a scalable and sample-efficient approach to continuous-time model-based RL. We show that COMBRL achieves sublinear regret in the reward-driven setting, and in the unsupervised RL setting (i.e., without extrinsic rewards), we provide a sample complexity bound. In our experiments, we evaluate COMBRL in both standard and unsupervised RL settings and demonstrate that it scales better, is more sample-efficient than prior methods, and outperforms baselines across several deep RL tasks.
comment: 26 pages, 6 figures, 6 tables
Adaptive Surrogate Gradients for Sequential Reinforcement Learning in Spiking Neural Networks
Neuromorphic computing systems are set to revolutionize energy-constrained robotics by achieving orders-of-magnitude efficiency gains, while enabling native temporal processing. Spiking Neural Networks (SNNs) represent a promising algorithmic approach for these systems, yet their application to complex control tasks faces two critical challenges: (1) the non-differentiable nature of spiking neurons necessitates surrogate gradients with unclear optimization properties, and (2) the stateful dynamics of SNNs require training on sequences, which in reinforcement learning (RL) is hindered by limited sequence lengths during early training, preventing the network from bridging its warm-up period. We address these challenges by systematically analyzing surrogate gradient slope settings, showing that shallower slopes increase gradient magnitude in deeper layers but reduce alignment with true gradients. In supervised learning, we find no clear preference for fixed or scheduled slopes. The effect is much more pronounced in RL settings, where shallower slopes or scheduled slopes lead to a 2.1x improvement in both training and final deployed performance. Next, we propose a novel training approach that leverages a privileged guiding policy to bootstrap the learning process, while still exploiting online environment interactions with the spiking policy. Combining our method with an adaptive slope schedule for a real-world drone position control task, we achieve an average return of 400 points, substantially outperforming prior techniques, including Behavioral Cloning and TD3BC, which achieve at most --200 points under the same conditions. This work advances both the theoretical understanding of surrogate gradient learning in SNNs and practical training methodologies for neuromorphic controllers demonstrated in real-world robotic systems.
Flatness-based trajectory planning for 3D overhead cranes with friction compensation and collision avoidance
This paper presents an optimal trajectory generation method for 3D overhead cranes by leveraging differential flatness. This framework enables the direct inclusion of complex physical and dynamic constraints, such as nonlinear friction and collision avoidance for both payload and rope. Our approach allows for aggressive movements by constraining payload swing only at the final point. A comparative simulation study validates our approach, demonstrating that neglecting dry friction leads to actuator saturation and collisions. The results show that friction modeling is a fundamental requirement for fast and safe crane trajectories.
comment: 8 pages, 11 figures
A Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
GenTrack: A New Generation of Multi-Object Tracking
This paper introduces a novel multi-object tracking (MOT) method, dubbed GenTrack, whose main contributions include: a hybrid tracking approach employing both stochastic and deterministic manners to robustly handle unknown and time-varying numbers of targets, particularly in maintaining target identity (ID) consistency and managing nonlinear dynamics, leveraging particle swarm optimization (PSO) with some proposed fitness measures to guide stochastic particles toward their target distribution modes, enabling effective tracking even with weak and noisy object detectors, integration of social interactions among targets to enhance PSO-guided particles as well as improve continuous updates of both strong (matched) and weak (unmatched) tracks, thereby reducing ID switches and track loss, especially during occlusions, a GenTrack-based redefined visual MOT baseline incorporating a comprehensive state and observation model based on space consistency, appearance, detection confidence, track penalties, and social scores for systematic and efficient target updates, and the first-ever publicly available source-code reference implementation with minimal dependencies, featuring three variants, including GenTrack Basic, PSO, and PSO-Social, facilitating flexible reimplementation. Experimental results have shown that GenTrack provides superior performance on standard benchmarks and real-world scenarios compared to state-of-the-art trackers, with integrated implementations of baselines for fair comparison. Potential directions for future work are also discussed. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack
comment: This work has been submitted to the IEEE for possible publication
NVSim: Novel View Synthesis Simulator for Large Scale Indoor Navigation
We present NVSim, a framework that automatically constructs large-scale, navigable indoor simulators from only common image sequences, overcoming the cost and scalability limitations of traditional 3D scanning. Our approach adapts 3D Gaussian Splatting to address visual artifacts on sparsely observed floors a common issue in robotic traversal data. We introduce Floor-Aware Gaussian Splatting to ensure a clean, navigable ground plane, and a novel mesh-free traversability checking algorithm that constructs a topological graph by directly analyzing rendered views. We demonstrate our system's ability to generate valid, large-scale navigation graphs from real-world data. A video demonstration is avilable at https://youtu.be/tTiIQt6nXC8
comment: 9 pages, 10 figures
Global-State-Free Obstacle Avoidance for Quadrotor Control in Air-Ground Cooperation
CoNi-MPC provides an efficient framework for UAV control in air-ground cooperative tasks by relying exclusively on relative states, eliminating the need for global state estimation. However, its lack of environmental information poses significant challenges for obstacle avoidance. To address this issue, we propose a novel obstacle avoidance algorithm, Cooperative Non-inertial frame-based Obstacle Avoidance (CoNi-OA), designed explicitly for UAV-UGV cooperative scenarios without reliance on global state estimation or obstacle prediction. CoNi-OA uniquely utilizes a single frame of raw LiDAR data from the UAV to generate a modulation matrix, which directly adjusts the quadrotor's velocity to achieve obstacle avoidance. This modulation-based method enables real-time generation of collision-free trajectories within the UGV's non-inertial frame, significantly reducing computational demands (less than 5 ms per iteration) while maintaining safety in dynamic and unpredictable environments. The key contributions of this work include: (1) a modulation-based obstacle avoidance algorithm specifically tailored for UAV-UGV cooperation in non-inertial frames without global states; (2) rapid, real-time trajectory generation based solely on single-frame LiDAR data, removing the need for obstacle modeling or prediction; and (3) adaptability to both static and dynamic environments, thus extending applicability to featureless or unknown scenarios.
DynaRend: Learning 3D Dynamics via Masked Future Rendering for Robotic Manipulation NeurIPS 2025
Learning generalizable robotic manipulation policies remains a key challenge due to the scarcity of diverse real-world training data. While recent approaches have attempted to mitigate this through self-supervised representation learning, most either rely on 2D vision pretraining paradigms such as masked image modeling, which primarily focus on static semantics or scene geometry, or utilize large-scale video prediction models that emphasize 2D dynamics, thus failing to jointly learn the geometry, semantics, and dynamics required for effective manipulation. In this paper, we present DynaRend, a representation learning framework that learns 3D-aware and dynamics-informed triplane features via masked reconstruction and future prediction using differentiable volumetric rendering. By pretraining on multi-view RGB-D video data, DynaRend jointly captures spatial geometry, future dynamics, and task semantics in a unified triplane representation. The learned representations can be effectively transferred to downstream robotic manipulation tasks via action value map prediction. We evaluate DynaRend on two challenging benchmarks, RLBench and Colosseum, as well as in real-world robotic experiments, demonstrating substantial improvements in policy success rate, generalization to environmental perturbations, and real-world applicability across diverse manipulation tasks.
comment: Accepted to NeurIPS 2025
Can LLMs Translate Human Instructions into a Reinforcement Learning Agent's Internal Emergent Symbolic Representation?
Emergent symbolic representations are critical for enabling developmental learning agents to plan and generalize across tasks. In this work, we investigate whether large language models (LLMs) can translate human natural language instructions into the internal symbolic representations that emerge during hierarchical reinforcement learning. We apply a structured evaluation framework to measure the translation performance of commonly seen LLMs -- GPT, Claude, Deepseek and Grok -- across different internal symbolic partitions generated by a hierarchical reinforcement learning algorithm in the Ant Maze and Ant Fall environments. Our findings reveal that although LLMs demonstrate some ability to translate natural language into a symbolic representation of the environment dynamics, their performance is highly sensitive to partition granularity and task complexity. The results expose limitations in current LLMs capacity for representation alignment, highlighting the need for further research on robust alignment between language and internal agent representations.
Manipulate as Human: Learning Task-oriented Manipulation Skills by Adversarial Motion Priors
In recent years, there has been growing interest in developing robots and autonomous systems that can interact with human in a more natural and intuitive way. One of the key challenges in achieving this goal is to enable these systems to manipulate objects and tools in a manner that is similar to that of humans. In this paper, we propose a novel approach for learning human-style manipulation skills by using adversarial motion priors, which we name HMAMP. The approach leverages adversarial networks to model the complex dynamics of tool and object manipulation, as well as the aim of the manipulation task. The discriminator is trained using a combination of real-world data and simulation data executed by the agent, which is designed to train a policy that generates realistic motion trajectories that match the statistical properties of human motion. We evaluated HMAMP on one challenging manipulation task: hammering, and the results indicate that HMAMP is capable of learning human-style manipulation skills that outperform current baseline methods. Additionally, we demonstrate that HMAMP has potential for real-world applications by performing real robot arm hammering tasks. In general, HMAMP represents a significant step towards developing robots and autonomous systems that can interact with humans in a more natural and intuitive way, by learning to manipulate tools and objects in a manner similar to how humans do.
Blindfolded Experts Generalize Better: Insights from Robotic Manipulation and Videogames
Behavioral cloning is a simple yet effective technique for learning sequential decision-making from demonstrations. Recently, it has gained prominence as the core of foundation models for the physical world, where achieving generalization requires countless demonstrations of a multitude of tasks. Typically, a human expert with full information on the task demonstrates a (nearly) optimal behavior. In this paper, we propose to hide some of the task's information from the demonstrator. This ``blindfolded'' expert is compelled to employ non-trivial exploration to solve the task. We show that cloning the blindfolded expert generalizes better to unseen tasks than its fully-informed counterpart. We conduct experiments of real-world robot peg insertion tasks with (limited) human demonstrations, alongside videogames from the Procgen benchmark. Additionally, we support our findings with theoretical analysis, which confirms that the generalization error scales with $\sqrt{I/m}$, where $I$ measures the amount of task information available to the demonstrator, and $m$ is the number of demonstrated tasks. Both theory and practice indicate that cloning blindfolded experts generalizes better with fewer demonstrated tasks. Project page with videos and code: https://sites.google.com/view/blindfoldedexperts/home
BLM$_1$: A Boundless Large Model for Cross-Space, Cross-Task, and Cross-Embodiment Learning
Multimodal large language models (MLLMs) have advanced vision-language reasoning and are increasingly deployed in embodied agents. However, significant limitations remain: MLLMs generalize poorly across digital-physical spaces and embodiments; vision-language-action models (VLAs) produce low-level actions yet lack robust high-level embodied reasoning; and most embodied large language models (ELLMs) are constrained to digital-space with poor generalization to the physical world. Thus, unified models that operate seamlessly across digital and physical spaces while generalizing across embodiments and tasks remain absent. We introduce the \textbf{Boundless Large Model (BLM$_1$)}, a multimodal spatial foundation model that preserves instruction following and reasoning, incorporates embodied knowledge, and supports robust cross-embodiment control. BLM$_1$ integrates three key capabilities -- \textit{cross-space transfer, cross-task learning, and cross-embodiment generalization} -- via a two-stage training paradigm. Stage I injects embodied knowledge into the MLLM through curated digital corpora while maintaining language competence. Stage II trains a policy module through an intent-bridging interface that extracts high-level semantics from the MLLM to guide control, without fine-tuning the MLLM backbone. This process is supported by a self-collected cross-embodiment demonstration suite spanning four robot embodiments and six progressively challenging tasks. Evaluations across digital and physical benchmarks show that a single BLM$_1$ instance outperforms four model families -- MLLMs, ELLMs, VLAs, and GMLMs -- achieving $\sim\!\textbf{6%}$ gains in digital tasks and $\sim\!\textbf{3%}$ in physical tasks.
LagMemo: Language 3D Gaussian Splatting Memory for Multi-modal Open-vocabulary Multi-goal Visual Navigation
Navigating to a designated goal using visual information is a fundamental capability for intelligent robots. Most classical visual navigation methods are restricted to single-goal, single-modality, and closed set goal settings. To address the practical demands of multi-modal, open-vocabulary goal queries and multi-goal visual navigation, we propose LagMemo, a navigation system that leverages a language 3D Gaussian Splatting memory. During exploration, LagMemo constructs a unified 3D language memory. With incoming task goals, the system queries the memory, predicts candidate goal locations, and integrates a local perception-based verification mechanism to dynamically match and validate goals during navigation. For fair and rigorous evaluation, we curate GOAT-Core, a high-quality core split distilled from GOAT-Bench tailored to multi-modal open-vocabulary multi-goal visual navigation. Experimental results show that LagMemo's memory module enables effective multi-modal open-vocabulary goal localization, and that LagMemo outperforms state-of-the-art methods in multi-goal visual navigation. Project page: https://weekgoodday.github.io/lagmemo
PFEA: An LLM-based High-Level Natural Language Planning and Feedback Embodied Agent for Human-Centered AI
The rapid advancement of Large Language Models (LLMs) has marked a significant breakthrough in Artificial Intelligence (AI), ushering in a new era of Human-centered Artificial Intelligence (HAI). HAI aims to better serve human welfare and needs, thereby placing higher demands on the intelligence level of robots, particularly in aspects such as natural language interaction, complex task planning, and execution. Intelligent agents powered by LLMs have opened up new pathways for realizing HAI. However, existing LLM-based embodied agents often lack the ability to plan and execute complex natural language control tasks online. This paper explores the implementation of intelligent robotic manipulating agents based on Vision-Language Models (VLMs) in the physical world. We propose a novel embodied agent framework for robots, which comprises a human-robot voice interaction module, a vision-language agent module and an action execution module. The vision-language agent itself includes a vision-based task planner, a natural language instruction converter, and a task performance feedback evaluator. Experimental results demonstrate that our agent achieves a 28\% higher average task success rate in both simulated and real environments compared to approaches relying solely on LLM+CLIP, significantly improving the execution success rate of high-level natural language instruction tasks.
ZTRS: Zero-Imitation End-to-end Autonomous Driving with Trajectory Scoring
End-to-end autonomous driving maps raw sensor inputs directly into ego-vehicle trajectories to avoid cascading errors from perception modules and to leverage rich semantic cues. Existing frameworks largely rely on Imitation Learning (IL), which can be limited by sub-optimal expert demonstrations and covariate shift during deployment. On the other hand, Reinforcement Learning (RL) has recently shown potential in scaling up with simulations, but is typically confined to low-dimensional symbolic inputs (e.g. 3D objects and maps), falling short of full end-to-end learning from raw sensor data. We introduce ZTRS (Zero-Imitation End-to-End Autonomous Driving with Trajectory Scoring), a framework that combines the strengths of both worlds: sensor inputs without losing information and RL training for robust planning. To the best of our knowledge, ZTRS is the first framework that eliminates IL entirely by only learning from rewards while operating directly on high-dimensional sensor data. ZTRS utilizes offline reinforcement learning with our proposed Exhaustive Policy Optimization (EPO), a variant of policy gradient tailored for enumerable actions and rewards. ZTRS demonstrates strong performance across three benchmarks: Navtest (generic real-world open-loop planning), Navhard (open-loop planning in challenging real-world and synthetic scenarios), and HUGSIM (simulated closed-loop driving). Specifically, ZTRS achieves the state-of-the-art result on Navhard and outperforms IL-based baselines on HUGSIM. Code will be available at https://github.com/woxihuanjiangguo/ZTRS.
Learning Parameterized Skills from Demonstrations
We present DEPS, an end-to-end algorithm for discovering parameterized skills from expert demonstrations. Our method learns parameterized skill policies jointly with a meta-policy that selects the appropriate discrete skill and continuous parameters at each timestep. Using a combination of temporal variational inference and information-theoretic regularization methods, we address the challenge of degeneracy common in latent variable models, ensuring that the learned skills are temporally extended, semantically meaningful, and adaptable. We empirically show that learning parameterized skills from multitask expert demonstrations significantly improves generalization to unseen tasks. Our method outperforms multitask as well as skill learning baselines on both LIBERO and MetaWorld benchmarks. We also demonstrate that DEPS discovers interpretable parameterized skills, such as an object grasping skill whose continuous arguments define the grasp location.
comment: Neurips 2025
Dynamically-Consistent Trajectory Optimization for Legged Robots via Contact Point Decomposition
To generate reliable motion for legged robots through trajectory optimization, it is crucial to simultaneously compute the robot's path and contact sequence, as well as accurately consider the dynamics in the problem formulation. In this paper, we present a phase-based trajectory optimization that ensures the feasibility of translational dynamics and friction cone constraints throughout the entire trajectory. Specifically, our approach leverages the superposition properties of linear differential equations to decouple the translational dynamics for each contact point, which operates under different phase sequences. Furthermore, we utilize the differentiation matrix of B{\'e}zier polynomials to derive an analytical relationship between the robot's position and force, thereby ensuring the consistent satisfaction of translational dynamics. Additionally, by exploiting the convex closure property of B{\'e}zier polynomials, our method ensures compliance with friction cone constraints. Using the aforementioned approach, the proposed trajectory optimization framework can generate dynamically reliable motions with various gait sequences for legged robots. We validate our framework using a quadruped robot model, focusing on the feasibility of dynamics and motion generation.
comment: 8 pages, 4 figures, IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2025
Balanced Collaborative Exploration via Distributed Topological Graph Voronoi Partition
This work addresses the collaborative multi-robot autonomous online exploration problem, particularly focusing on distributed exploration planning for dynamically balanced exploration area partition and task allocation among a team of mobile robots operating in obstacle-dense non-convex environments. We present a novel topological map structure that simultaneously characterizes both spatial connectivity and global exploration completeness of the environment. The topological map is updated incrementally to utilize known spatial information for updating reachable spaces, while exploration targets are planned in a receding horizon fashion under global coverage guidance. A distributed weighted topological graph Voronoi algorithm is introduced implementing balanced graph space partitions of the fused topological maps. Theoretical guarantees are provided for distributed consensus convergence and equitable graph space partitions with constant bounds. A local planner optimizes the visitation sequence of exploration targets within the balanced partitioned graph space to minimize travel distance, while generating safe, smooth, and dynamically feasible motion trajectories. Comprehensive benchmarking against state-of-the-art methods demonstrates significant improvements in exploration efficiency, completeness, and workload balance across the robot team.
Language-Conditioned Representations and Mixture-of-Experts Policy for Robust Multi-Task Robotic Manipulation
Perceptual ambiguity and task conflict limit multitask robotic manipulation via imitation learning. We propose a framework combining a Language-Conditioned Visual Representation (LCVR) module and a Language-conditioned Mixture-ofExperts Density Policy (LMoE-DP). LCVR resolves perceptual ambiguities by grounding visual features with language instructions, enabling differentiation between visually similar tasks. To mitigate task conflict, LMoE-DP uses a sparse expert architecture to specialize in distinct, multimodal action distributions, stabilized by gradient modulation. On real-robot benchmarks, LCVR boosts Action Chunking with Transformers (ACT) and Diffusion Policy (DP) success rates by 33.75% and 25%, respectively. The full framework achieves a 79% average success, outperforming the advanced baseline by 21%. Our work shows that combining semantic grounding and expert specialization enables robust, efficient multi-task manipulation
comment: 8 pages
SynAD: Enhancing Real-World End-to-End Autonomous Driving Models through Synthetic Data Integration
Recent advancements in deep learning and the availability of high-quality real-world driving datasets have propelled end-to-end autonomous driving. Despite this progress, relying solely on real-world data limits the variety of driving scenarios for training. Synthetic scenario generation has emerged as a promising solution to enrich the diversity of training data; however, its application within E2E AD models remains largely unexplored. This is primarily due to the absence of a designated ego vehicle and the associated sensor inputs, such as camera or LiDAR, typically provided in real-world scenarios. To address this gap, we introduce SynAD, the first framework designed to enhance real-world E2E AD models using synthetic data. Our method designates the agent with the most comprehensive driving information as the ego vehicle in a multi-agent synthetic scenario. We further project path-level scenarios onto maps and employ a newly developed Map-to-BEV Network to derive bird's-eye-view features without relying on sensor inputs. Finally, we devise a training strategy that effectively integrates these map-based synthetic data with real driving data. Experimental results demonstrate that SynAD effectively integrates all components and notably enhances safety performance. By bridging synthetic scenario generation and E2E AD, SynAD paves the way for more comprehensive and robust autonomous driving models.
Improved Accuracy of Robot Localization Using 3-D LiDAR in a Hippocampus-Inspired Model
Boundary Vector Cells (BVCs) are a class of neurons in the brains of vertebrates that encode environmental boundaries at specific distances and allocentric directions, playing a central role in forming place fields in the hippocampus. Most computational BVC models are restricted to two-dimensional (2D) environments, making them prone to spatial ambiguities in the presence of horizontal symmetries in the environment. To address this limitation, we incorporate vertical angular sensitivity into the BVC framework, thereby enabling robust boundary detection in three dimensions, and leading to significantly more accurate spatial localization in a biologically-inspired robot model. The proposed model processes LiDAR data to capture vertical contours, thereby disambiguating locations that would be indistinguishable under a purely 2D representation. Experimental results show that in environments with minimal vertical variation, the proposed 3D model matches the performance of a 2D baseline; yet, as 3D complexity increases, it yields substantially more distinct place fields and markedly reduces spatial aliasing. These findings show that adding a vertical dimension to BVC-based localization can significantly enhance navigation and mapping in real-world 3D spaces while retaining performance parity in simpler, near-planar scenarios.
comment: 8 pages, 9 figures, Presented at the 2025 International Joint Conference on Neural Networks, Rome, July 2025
VOCALoco: Viability-Optimized Cost-aware Adaptive Locomotion
Recent advancements in legged robot locomotion have facilitated traversal over increasingly complex terrains. Despite this progress, many existing approaches rely on end-to-end deep reinforcement learning (DRL), which poses limitations in terms of safety and interpretability, especially when generalizing to novel terrains. To overcome these challenges, we introduce VOCALoco, a modular skill-selection framework that dynamically adapts locomotion strategies based on perceptual input. Given a set of pre-trained locomotion policies, VOCALoco evaluates their viability and energy-consumption by predicting both the safety of execution and the anticipated cost of transport over a fixed planning horizon. This joint assessment enables the selection of policies that are both safe and energy-efficient, given the observed local terrain. We evaluate our approach on staircase locomotion tasks, demonstrating its performance in both simulated and real-world scenarios using a quadrupedal robot. Empirical results show that VOCALoco achieves improved robustness and safety during stair ascent and descent compared to a conventional end-to-end DRL policy
comment: Accepted in IEEE Robotics and Automation Letters (RAL), 2025. 8 pages, 9 figures
A Survey on Collaborative SLAM with 3D Gaussian Splatting
This survey comprehensively reviews the evolving field of multi-robot collaborative Simultaneous Localization and Mapping (SLAM) using 3D Gaussian Splatting (3DGS). As an explicit scene representation, 3DGS has enabled unprecedented real-time, high-fidelity rendering, ideal for robotics. However, its use in multi-robot systems introduces significant challenges in maintaining global consistency, managing communication, and fusing data from heterogeneous sources. We systematically categorize approaches by their architecture -- centralized, distributed -- and analyze core components like multi-agent consistency and alignment, communication-efficient, Gaussian representation, semantic distillation, fusion and pose optimization, and real-time scalability. In addition, a summary of critical datasets and evaluation metrics is provided to contextualize performance. Finally, we identify key open challenges and chart future research directions, including lifelong mapping, semantic association and mapping, multi-model for robustness, and bridging the Sim2Real gap.
Adaptive-twist Soft Finger Mechanism for Grasping by Wrapping
This paper presents a soft robot finger capable of adaptive-twist deformation to grasp objects by wrapping them. For a soft hand to grasp and pick-up one object from densely contained multiple objects, a soft finger requires the adaptive-twist deformation function in both in-plane and out-of-plane directions. The function allows the finger to be inserted deeply into a limited gap among objects. Once inserted, the soft finger requires appropriate control of grasping force normal to contact surface, thereby maintaining the twisted deformation. In this paper, we refer to this type of grasping as grasping by wrapping. To achieve these two functions by a single actuation source, we propose a variable stiffness mechanism that can adaptively change the stiffness as the pressure is higher. We conduct a finite element analysis (FEA) on the proposed mechanism and determine its design parameter based on the FEA result. Using the developed soft finger, we report basic experimental results and demonstrations on grasping various objects.
A Comprehensive General Model of Tendon-Actuated Concentric Tube Robots with Multiple Tubes and Tendons
Tendon-actuated concentric tube mechanisms combine the advantages of tendon-driven continuum robots and concentric tube robots while addressing their respective limitations. They overcome the restricted degrees of freedom often seen in tendon-driven designs, and mitigate issues such as snapping instability associated with concentric tube robots. However, a complete and general mechanical model for these systems remains an open problem. In this work, we propose a Cosserat rod-based framework for modeling the general case of $n$ concentric tubes, each actuated by $m_i$ tendons, where $i = \{1, \ldots, n\}$. The model allows each tube to twist and elongate while enforcing a shared centerline for bending. We validate the proposed framework through experiments with two-tube and three tube assemblies under various tendon routing configurations, achieving tip prediction errors $<4\%$ of the robot's total length. We further demonstrate the model's generality by applying it to existing robots in the field, where maximum tip deviations remain around $5\%$ of the total length. This model provides a foundation for accurate shape estimation and control of advanced tendon-actuated concentric tube robots.
Defect Mitigation for Robot Arm-based Additive Manufacturing Utilizing Intelligent Control and IOT
This paper presents an integrated robotic fused deposition modeling additive manufacturing system featuring closed-loop thermal control and intelligent in-situ defect correction using a 6-degree of freedom robotic arm and an Oak-D camera. The robot arm end effector was modified to mount an E3D hotend thermally regulated by an IoT microcontroller, enabling precise temperature control through real-time feedback. Filament extrusion system was synchronized with robotic motion, coordinated via ROS2, ensuring consistent deposition along complex trajectories. A vision system based on OpenCV detects layer-wise defects position, commanding autonomous re-extrusion at identified sites. Experimental validation demonstrated successful defect mitigation in printing operations. The integrated system effectively addresses challenges real-time quality assurance. Inverse kinematics were used for motion planning, while homography transformations corrected camera perspectives for accurate defect localization. The intelligent system successfully mitigated surface anomalies without interrupting the print process. By combining real-time thermal regulation, motion control, and intelligent defect detection & correction, this architecture establishes a scalable and adaptive robotic additive manufacturing framework suitable for aerospace, biomedical, and industrial applications.
comment: This Paper Has Accepted at ASME 2025 International Mechanical Engineering Congress and Exposition (IMECE 2025)
Smooth path planning with safety margins using Piece-Wise Bezier curves
In this paper, we propose a computationally efficient quadratic programming (QP) approach for generating smooth, $C^1$ continuous paths for mobile robots using piece-wise quadratic Bezier (PWB) curves. Our method explicitly incorporates safety margins within a structured optimization framework, balancing trajectory smoothness and robustness with manageable numerical complexity suitable for real-time and embedded applications. Comparative simulations demonstrate clear advantages over traditional piece-wise linear (PWL) path planning methods, showing reduced trajectory deviations, enhanced robustness, and improved overall path quality. These benefits are validated through simulations using a Pure-Pursuit controller in representative scenarios, highlighting the practical effectiveness and scalability of our approach for safe navigation.
SCOUT: A Lightweight Framework for Scenario Coverage Assessment in Autonomous Driving
Assessing scenario coverage is crucial for evaluating the robustness of autonomous agents, yet existing methods rely on expensive human annotations or computationally intensive Large Vision-Language Models (LVLMs). These approaches are impractical for large-scale deployment due to cost and efficiency constraints. To address these shortcomings, we propose SCOUT (Scenario Coverage Oversight and Understanding Tool), a lightweight surrogate model designed to predict scenario coverage labels directly from an agent's latent sensor representations. SCOUT is trained through a distillation process, learning to approximate LVLM-generated coverage labels while eliminating the need for continuous LVLM inference or human annotation. By leveraging precomputed perception features, SCOUT avoids redundant computations and enables fast, scalable scenario coverage estimation. We evaluate our method across a large dataset of real-life autonomous navigation scenarios, demonstrating that it maintains high accuracy while significantly reducing computational cost. Our results show that SCOUT provides an effective and practical alternative for large-scale coverage analysis. While its performance depends on the quality of LVLM-generated training labels, SCOUT represents a major step toward efficient scenario coverage oversight in autonomous systems.
A Humanoid Visual-Tactile-Action Dataset for Contact-Rich Manipulation
Contact-rich manipulation has become increasingly important in robot learning. However, previous studies on robot learning datasets have focused on rigid objects and underrepresented the diversity of pressure conditions for real-world manipulation. To address this gap, we present a humanoid visual-tactile-action dataset designed for manipulating deformable soft objects. The dataset was collected via teleoperation using a humanoid robot equipped with dexterous hands, capturing multi-modal interactions under varying pressure conditions. This work also motivates future research on models with advanced optimization strategies capable of effectively leveraging the complexity and diversity of tactile signals.
HyPerNav: Hybrid Perception for Object-Oriented Navigation in Unknown Environment
Objective-oriented navigation(ObjNav) enables robot to navigate to target object directly and autonomously in an unknown environment. Effective perception in navigation in unknown environment is critical for autonomous robots. While egocentric observations from RGB-D sensors provide abundant local information, real-time top-down maps offer valuable global context for ObjNav. Nevertheless, the majority of existing studies focus on a single source, seldom integrating these two complementary perceptual modalities, despite the fact that humans naturally attend to both. With the rapid advancement of Vision-Language Models(VLMs), we propose Hybrid Perception Navigation (HyPerNav), leveraging VLMs' strong reasoning and vision-language understanding capabilities to jointly perceive both local and global information to enhance the effectiveness and intelligence of navigation in unknown environments. In both massive simulation evaluation and real-world validation, our methods achieved state-of-the-art performance against popular baselines. Benefiting from hybrid perception approach, our method captures richer cues and finds the objects more effectively, by simultaneously leveraging information understanding from egocentric observations and the top-down map. Our ablation study further proved that either of the hybrid perception contributes to the navigation performance.
comment: under review
Look and Tell: A Dataset for Multimodal Grounding Across Egocentric and Exocentric Views NeurIPS 2025
We introduce Look and Tell, a multimodal dataset for studying referential communication across egocentric and exocentric perspectives. Using Meta Project Aria smart glasses and stationary cameras, we recorded synchronized gaze, speech, and video as 25 participants instructed a partner to identify ingredients in a kitchen. Combined with 3D scene reconstructions, this setup provides a benchmark for evaluating how different spatial representations (2D vs. 3D; ego vs. exo) affect multimodal grounding. The dataset contains 3.67 hours of recordings, including 2,707 richly annotated referential expressions, and is designed to advance the development of embodied agents that can understand and engage in situated dialogue.
comment: 10 pages, 6 figures, 2 tables. Accepted to the NeurIPS 2025 Workshop on SPACE in Vision, Language, and Embodied AI (SpaVLE). Dataset: https://huggingface.co/datasets/annadeichler/KTH-ARIA-referential
FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
comment: Webpage: https://fieldgen.github.io/
Performance evaluation of a ROS2 based Automated Driving System
Automated driving is currently a prominent area of scientific work. In the future, highly automated driving and new Advanced Driver Assistance Systems will become reality. While Advanced Driver Assistance Systems and automated driving functions for certain domains are already commercially available, ubiquitous automated driving in complex scenarios remains a subject of ongoing research. Contrarily to single-purpose Electronic Control Units, the software for automated driving is often executed on high performance PCs. The Robot Operating System 2 (ROS2) is commonly used to connect components in an automated driving system. Due to the time critical nature of automated driving systems, the performance of the framework is especially important. In this paper, a thorough performance evaluation of ROS2 is conducted, both in terms of timeliness and error rate. The results show that ROS2 is a suitable framework for automated driving systems.
comment: Published and presented at VEHITS 2024, Proceedings of the 10th International Conference on Vehicle Technology and Intelligent Transport Systems - VEHITS; 2024
Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Vision-Language-Action (VLA) models adapt large vision-language backbones to map images and instructions into robot actions. However, prevailing VLAs either generate actions auto-regressively in a fixed left-to-right order or attach separate MLP or diffusion heads outside the backbone, leading to fragmented information pathways and specialized training requirements that hinder a unified, scalable architecture. We present Discrete Diffusion VLA, a unified-transformer policy that models discretized action chunks with discrete diffusion. The design retains diffusion's progressive refinement paradigm while remaining natively compatible with the discrete token interface of VLMs. Our method achieves an adaptive decoding order that resolves easy action elements before harder ones and uses secondary re-masking to revisit uncertain predictions across refinement rounds, which improves consistency and enables robust error correction. This unified decoder preserves pre-trained vision-language priors, supports parallel decoding, breaks the autoregressive bottleneck, and reduces the number of function evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on SimplerEnv-Bridge, improving over autoregressive, MLP decoder and continuous diffusion baselines. These findings indicate that discrete-diffusion VLA supports precise action modeling and consistent training, laying groundwork for scaling VLA to larger models and datasets. Our project page is https://github.com/Liang-ZX/DiscreteDiffusionVLA
comment: 16 pages
Robust Point Cloud Reinforcement Learning via PCA-Based Canonicalization
Reinforcement Learning (RL) from raw visual input has achieved impressive successes in recent years, yet it remains fragile to out-of-distribution variations such as changes in lighting, color, and viewpoint. Point Cloud Reinforcement Learning (PC-RL) offers a promising alternative by mitigating appearance-based brittleness, but its sensitivity to camera pose mismatches continues to undermine reliability in realistic settings. To address this challenge, we propose PCA Point Cloud (PPC), a canonicalization framework specifically tailored for downstream robotic control. PPC maps point clouds under arbitrary rigid-body transformations to a unique canonical pose, aligning observations to a consistent frame, thereby substantially decreasing viewpoint-induced inconsistencies. In our experiments, we show that PPC improves robustness to unseen camera poses across challenging robotic tasks, providing a principled alternative to domain randomization.
Procedural Generation of Articulated Simulation-Ready Assets
We introduce Infinigen-Articulated, a toolkit for generating realistic, procedurally generated articulated assets for robotics simulation. We include procedural generators for 18 common articulated object categories along with high-level utilities for use creating custom articulated assets in Blender. We also provide an export pipeline to integrate the resulting assets along with their physical properties into common robotics simulators. Experiments demonstrate that assets sampled from these generators are effective for movable object segmentation, training generalizable reinforcement learning policies, and sim-to-real transfer of imitation learning policies.
comment: Updated to include information on newly implemented assets, new experimental results (both simulation and real world), and additional features including material and dynamics parameters
Concurrent-Allocation Task Execution for Multi-Robot Path-Crossing-Minimal Navigation in Obstacle Environments
Reducing undesirable path crossings among trajectories of different robots is vital in multi-robot navigation missions, which not only reduces detours and conflict scenarios, but also enhances navigation efficiency and boosts productivity. Despite recent progress in multi-robot path-crossing-minimal (MPCM) navigation, the majority of approaches depend on the minimal squared-distance reassignment of suitable desired points to robots directly. However, if obstacles occupy the passing space, calculating the actual robot-point distances becomes complex or intractable, which may render the MPCM navigation in obstacle environments inefficient or even infeasible. In this paper, the concurrent-allocation task execution (CATE) algorithm is presented to address this problem (i.e., MPCM navigation in obstacle environments). First, the path-crossing-related elements in terms of (i) robot allocation, (ii) desired-point convergence, and (iii) collision and obstacle avoidance are encoded into integer and control barrier function (CBF) constraints. Then, the proposed constraints are used in an online constrained optimization framework, which implicitly yet effectively minimizes the possible path crossings and trajectory length in obstacle environments by minimizing the desired point allocation cost and slack variables in CBF constraints simultaneously. In this way, the MPCM navigation in obstacle environments can be achieved with flexible spatial orderings. Note that the feasibility of solutions and the asymptotic convergence property of the proposed CATE algorithm in obstacle environments are both guaranteed, and the calculation burden is also reduced by concurrently calculating the optimal allocation and the control input directly without the path planning process.
comment: Accepted in IEEE Transactions on Robotics
Robot Cell Modeling via Exploratory Robot Motions: A Novel and Accessible Data-Driven Approach
Generating a collision-free robot motion is crucial for safe applications in real-world settings. This requires an accurate model of all obstacle shapes within the constrained robot cell, which is particularly challenging and time-consuming. The difficulty is heightened in flexible production lines, where the environment model must be updated each time the robot cell is modified. Furthermore, sensor-based methods often necessitate costly hardware and calibration procedures and can be influenced by environmental factors (e.g., light conditions or reflections). To address these challenges, we present a novel data-driven approach to modeling a cluttered workspace, leveraging solely the robot internal joint encoders to capture exploratory motions. By computing the corresponding swept volume (SV), we generate a (conservative) mesh of the environment that is subsequently used for collision checking within established path planning and control methods. Our method significantly reduces the complexity and cost of classical environment modeling by removing the need for computer-aided design (CAD) files and external sensors. We validate the approach with the KUKA LBR iisy collaborative robot in a pick-and-place scenario. In less than three minutes of exploratory robot motions and less than four additional minutes of computation time, we obtain an accurate model that enables collision-free motions. Our approach is intuitive and easy to use, making it accessible to users without specialized technical knowledge. It is applicable to all types of industrial robots or cobots.
comment: 8 pages, 9 figures
Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion NeurIPS 2025
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimates of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their frameworks. In this work, we propose a novel two-stage training framework to jointly synthesize a controller and a Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training-data sampling strategy and a domain-updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10{,}000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.
comment: NeurIPS 2025
Acoustic Neural 3D Reconstruction Under Pose Drift IROS
We consider the problem of optimizing neural implicit surfaces for 3D reconstruction using acoustic images collected with drifting sensor poses. The accuracy of current state-of-the-art 3D acoustic modeling algorithms is highly dependent on accurate pose estimation; small errors in sensor pose can lead to severe reconstruction artifacts. In this paper, we propose an algorithm that jointly optimizes the neural scene representation and sonar poses. Our algorithm does so by parameterizing the 6DoF poses as learnable parameters and backpropagating gradients through the neural renderer and implicit representation. We validated our algorithm on both real and simulated datasets. It produces high-fidelity 3D reconstructions even under significant pose drift.
comment: 8 pages, 8 figures. This paper is accepted by 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Autonomous Horizon-based Asteroid Navigation With Observability-constrained Maneuvers
Small body exploration is a pertinent challenge due to low gravity environments and strong sensitivity to perturbations like Solar Radiation Pressure (SRP). Thus, autonomous methods are being developed to enable safe navigation and control around small bodies. These methods often involve using Optical Navigation (OpNav) to determine the spacecraft's location. Ensuring OpNav reliability would allow the spacecraft to maintain an accurate state estimate throughout its mission. This research presents an observability-constrained Lyapunov controller that steers a spacecraft to a desired target orbit while guaranteeing continuous OpNav observability. We design observability path constraints to avoid regions where horizon-based OpNav methods exhibit poor performance, ensuring control input that maintains good observability. This controller is implemented with a framework that simulates small body dynamics, synthetic image generation, edge detection, horizon-based OpNav, and filtering. We evaluate the approach in two representative scenarios, orbit maintenance and approach with circularization, around spherical and ellipsoidal target bodies. In Monte Carlo simulations, the proposed approach improves the rate of attaining target orbits without observability violations by up to 94% compared to an unconstrained Lyapunov baseline, demonstrating improved robustness over conventional methods.
comment: 52 pages, 18 figures, published in the Journal of the Astronautical Sciences
Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-Aware View Planning (TAVP), a framework designed to overcome these challenges by integrating active view planning with task-specific representation learning. TAVP employs an efficient exploration policy, accelerated by a novel pseudo-environment, to actively acquire informative views. Furthermore, we introduce a Mixture-of-Experts (MoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TAVP generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. Extensive experiments on RLBench tasks show that our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.
comment: 14 pages, 8 figures, project page: https://hcplab-sysu.github.io/TAVP
DynaFlow: Dynamics-embedded Flow Matching for Physically Consistent Motion Generation from State-only Demonstrations
This paper introduces DynaFlow, a novel framework that embeds a differentiable simulator directly into a flow matching model. By generating trajectories in the action space and mapping them to dynamically feasible state trajectories via the simulator, DynaFlow ensures all outputs are physically consistent by construction. This end-to-end differentiable architecture enables training on state-only demonstrations, allowing the model to simultaneously generate physically consistent state trajectories while inferring the underlying action sequences required to produce them. We demonstrate the effectiveness of our approach through quantitative evaluations and showcase its real-world applicability by deploying the generated actions onto a physical Go1 quadruped robot. The robot successfully reproduces diverse gait present in the dataset, executes long-horizon motions in open-loop control and translates infeasible kinematic demonstrations into dynamically executable, stylistic behaviors. These hardware experiments validate that DynaFlow produces deployable, highly effective motions on real-world hardware from state-only demonstrations, effectively bridging the gap between kinematic data and real-world execution.
comment: 8 pages
GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving NeurIPS2025
Multi-sensor fusion is crucial for improving the performance and robustness of end-to-end autonomous driving systems. Existing methods predominantly adopt either attention-based flatten fusion or bird's eye view fusion through geometric transformations. However, these approaches often suffer from limited interpretability or dense computational overhead. In this paper, we introduce GaussianFusion, a Gaussian-based multi-sensor fusion framework for end-to-end autonomous driving. Our method employs intuitive and compact Gaussian representations as intermediate carriers to aggregate information from diverse sensors. Specifically, we initialize a set of 2D Gaussians uniformly across the driving scene, where each Gaussian is parameterized by physical attributes and equipped with explicit and implicit features. These Gaussians are progressively refined by integrating multi-modal features. The explicit features capture rich semantic and spatial information about the traffic scene, while the implicit features provide complementary cues beneficial for trajectory planning. To fully exploit rich spatial and semantic information in Gaussians, we design a cascade planning head that iteratively refines trajectory predictions through interactions with Gaussians. Extensive experiments on the NAVSIM and Bench2Drive benchmarks demonstrate the effectiveness and robustness of the proposed GaussianFusion framework. The source code will be released at https://github.com/Say2L/GaussianFusion.
comment: Accepted at NeurIPS2025 (Spotlight)
Radar and Event Camera Fusion for Agile Robot Ego-Motion Estimation
Achieving reliable ego motion estimation for agile robots, e.g., aerobatic aircraft, remains challenging because most robot sensors fail to respond timely and clearly to highly dynamic robot motions, often resulting in measurement blurring, distortion, and delays. In this paper, we propose an IMU-free and feature-association-free framework to achieve aggressive ego-motion velocity estimation of a robot platform in highly dynamic scenarios by combining two types of exteroceptive sensors, an event camera and a millimeter wave radar, First, we used instantaneous raw events and Doppler measurements to derive rotational and translational velocities directly. Without a sophisticated association process between measurement frames, the proposed method is more robust in texture-less and structureless environments and is more computationally efficient for edge computing devices. Then, in the back-end, we propose a continuous-time state-space model to fuse the hybrid time-based and event-based measurements to estimate the ego-motion velocity in a fixed-lagged smoother fashion. In the end, we validate our velometer framework extensively in self-collected experiment datasets. The results indicate that our IMU-free and association-free ego motion estimation framework can achieve reliable and efficient velocity output in challenging environments. The source code, illustrative video and dataset are available at https://github.com/ZzhYgwh/TwistEstimator.
comment: 2025.10.28 version v2 for TwistEstimator
Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model IROS 2025
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Accepted at IROS 2025. Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
GRS: Generating Robotic Simulation Tasks from Real-World Images
We introduce GRS (Generating Robotic Simulation tasks), a system addressing real-to-sim for robotic simulations. GRS creates digital twin simulations from single RGB-D observations with solvable tasks for virtual agent training. Using vision-language models (VLMs), our pipeline operates in three stages: 1) scene comprehension with SAM2 for segmentation and object description, 2) matching objects with simulation-ready assets, and 3) generating appropriate tasks. We ensure simulation-task alignment through generated test suites and introduce a router that iteratively refines both simulation and test code. Experiments demonstrate our system's effectiveness in object correspondence and task environment generation through our novel router mechanism.
SimpleVSF: VLM-Scoring Fusion for Trajectory Prediction of End-to-End Autonomous Driving
End-to-end autonomous driving has emerged as a promising paradigm for achieving robust and intelligent driving policies. However, existing end-to-end methods still face significant challenges, such as suboptimal decision-making in complex scenarios. In this paper,we propose SimpleVSF (Simple VLM-Scoring Fusion), a novel framework that enhances end-to-end planning by leveraging the cognitive capabilities of Vision-Language Models (VLMs) and advanced trajectory fusion techniques. We utilize the conventional scorers and the novel VLM-enhanced scorers. And we leverage a robust weight fusioner for quantitative aggregation and a powerful VLM-based fusioner for qualitative, context-aware decision-making. As the leading approach in the ICCV 2025 NAVSIM v2 End-to-End Driving Challenge, our SimpleVSF framework demonstrates state-of-the-art performance, achieving a superior balance between safety, comfort, and efficiency.
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks
This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH, screwing, and surface wiping tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles. The experimental videos can be found on the project website: https://sites.google.com/berkeley.edu/equicontact
comment: Submitted to RA-L
Quantum Machine Learning and Grover's Algorithm for Quantum Optimization of Robotic Manipulators
Optimizing high-degree of freedom robotic manipulators requires searching complex, high-dimensional configuration spaces, a task that is computationally challenging for classical methods. This paper introduces a quantum native framework that integrates quantum machine learning with Grover's algorithm to solve kinematic optimization problems efficiently. A parameterized quantum circuit is trained to approximate the forward kinematics model, which then constructs an oracle to identify optimal configurations. Grover's algorithm leverages this oracle to provide a quadratic reduction in search complexity. Demonstrated on simulated 1-DoF, 2-DoF, and dual-arm manipulator tasks, the method achieves significant speedups-up to 93x over classical optimizers like Nelder Mead as problem dimensionality increases. This work establishes a foundational, quantum-native framework for robot kinematic optimization, effectively bridging quantum computing and robotics problems.
CAT-RRT: Motion Planning that Admits Contact One Link at a Time
Current motion planning approaches rely on binary collision checking to evaluate the validity of a state and thereby dictate where the robot is allowed to move. This approach leaves little room for robots to engage in contact with an object, as is often necessary when operating in densely cluttered spaces. In this work, we propose an alternative method that considers contact states as high-cost states that the robot should avoid but can traverse if necessary to complete a task. More specifically, we introduce Contact Admissible Transition-based Rapidly exploring Random Trees (CAT-RRT), a planner that uses a novel per-link cost heuristic to find a path by traversing high-cost obstacle regions. Through extensive testing, we find that state-of-the-art optimization planners tend to over-explore low-cost states, which leads to slow and inefficient convergence to contact regions. Conversely, CAT-RRT searches both low and high-cost regions simultaneously with an adaptive thresholding mechanism carried out at each robot link. This leads to paths with a balance between efficiency, path length, and contact cost.
Efficient Path Planning and Task Allocation Algorithm for Boolean Specifications
This paper presents a novel path-planning and task assignment algorithm for multi-robot systems that should fulfill a global Boolean specification. The proposed method is based on Integer Linear Programming (ILP) formulations, which are combined with structural insights from Petri nets to improve scalability and computational efficiency. By proving that the \emph{constraint matrix} is totally unimodular (TU) for certain classes of problems, the ILP formulation can be relaxed into a Linear Programming (LP) problem without losing the integrality of the solution. This relaxation eliminates complex combinatorial techniques, significantly reducing computational overhead and thus ensuring scalability for large-scale systems. Using the approach proposed in this paper, we can solve path-planning problems for teams made up to 500 robots. The method guarantees computational tractability, handles collision avoidance and reduces computational demands through iterative LP optimization techniques. Case studies demonstrate the efficiency of the algorithm in generating scalable, collision-free paths for large robot teams navigating in complex environments. While the conservative nature of collision avoidance introduces additional constraints, and thus, computational requirements, the solution remains practical and impactful for diverse applications. The algorithm is particularly applicable to real-world scenarios, including warehouse logistics where autonomous robots must efficiently coordinate tasks or search-and-rescue operations in various environments. This work contributes both theoretically and practically to scalable multi-robot path planning and task allocation, offering an efficient framework for coordinating autonomous agents in shared environments.
Federated Deep Reinforcement Learning for Privacy-Preserving Robotic-Assisted Surgery
The integration of Reinforcement Learning (RL) into robotic-assisted surgery (RAS) holds significant promise for advancing surgical precision, adaptability, and autonomous decision-making. However, the development of robust RL models in clinical settings is hindered by key challenges, including stringent patient data privacy regulations, limited access to diverse surgical datasets, and high procedural variability. To address these limitations, this paper presents a Federated Deep Reinforcement Learning (FDRL) framework that enables decentralized training of RL models across multiple healthcare institutions without exposing sensitive patient information. A central innovation of the proposed framework is its dynamic policy adaptation mechanism, which allows surgical robots to select and tailor patient-specific policies in real-time, thereby ensuring personalized and Optimised interventions. To uphold rigorous privacy standards while facilitating collaborative learning, the FDRL framework incorporates secure aggregation, differential privacy, and homomorphic encryption techniques. Experimental results demonstrate a 60\% reduction in privacy leakage compared to conventional methods, with surgical precision maintained within a 1.5\% margin of a centralized baseline. This work establishes a foundational approach for adaptive, secure, and patient-centric AI-driven surgical robotics, offering a pathway toward clinical translation and scalable deployment across diverse healthcare environments.
comment: 11 pages, 7 figures, conference
On Robustness of Vision-Language-Action Model against Multi-Modal Perturbations
In Vision-Language-Action (VLA) models, robustness to real-world perturbations is critical for deployment. Existing methods target simple visual disturbances, overlooking the broader multi-modal perturbations that arise in actions, instructions, environments, and observations. Here, we first evaluate the robustness of mainstream VLAs under 17 perturbations across four modalities. We find (1) actions as the most fragile modality, (2) Existing visual-robust VLA do not gain robustness in other modality, and (3) pi0 demonstrates superior robustness with a diffusion-based action head. To build multi-modal robust VLAs, we propose RobustVLA against perturbations in VLA inputs and outputs. For output robustness, we perform offline robust optimization against worst-case action noise that maximizes mismatch in flow matching objective. This can be seen as adversarial training, label smoothing, and outlier penalization. For input robustness, we enforce consistent actions across input variations that preserve task semantics. To account for multiple perturbations, we formulate robustness as a multi-armed bandit problem and apply an upper confidence bound algorithm to automatically identify the most harmful noise. Experiments on LIBERO demonstrate our RobustVLA delivers absolute gains over baselines of 12.6% on the pi0 backbone and 10.4% on the OpenVLA backbone across all 17 perturbations, achieving 50.6x faster inference than existing visual-robust VLAs, and a 10.4% gain under mixed perturbations. Our RobustVLA is particularly effective on real-world FR5 robot with limited demonstrations, showing absolute gains by 65.6% under perturbations of four modalities.
Multiagent Systems
Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
Local Performance vs. Out-of-Distribution Generalization: An Empirical Analysis of Personalized Federated Learning in Heterogeneous Data Environments
In the context of Federated Learning with heterogeneous data environments, local models tend to converge to their own local model optima during local training steps, deviating from the overall data distributions. Aggregation of these local updates, e.g., with FedAvg, often does not align with the global model optimum (client drift), resulting in an update that is suboptimal for most clients. Personalized Federated Learning approaches address this challenge by exclusively focusing on the average local performances of clients' models on their own data distribution. Generalization to out-of-distribution samples, which is a substantial benefit of FedAvg and represents a significant component of robustness, appears to be inadequately incorporated into the assessment and evaluation processes. This study involves a thorough evaluation of Federated Learning approaches, encompassing both their local performance and their generalization capabilities. Therefore, we examine different stages within a single communication round to enable a more nuanced understanding of the considered metrics. Furthermore, we propose and incorporate a modified approach of FedAvg, designated as Federated Learning with Individualized Updates (FLIU), extending the algorithm by a straightforward individualization step with an adaptive personalization factor. We evaluate and compare the approaches empirically using MNIST and CIFAR-10 under various distributional conditions, including benchmark IID and pathological non-IID, as well as additional novel test environments with Dirichlet distribution specifically developed to stress the algorithms on complex data heterogeneity.
Affordance Representation and Recognition for Autonomous Agents
The autonomy of software agents is fundamentally dependent on their ability to construct an actionable internal world model from the structured data that defines their digital environment, such as the Document Object Model (DOM) of web pages and the semantic descriptions of web services. However, constructing this world model from raw structured data presents two critical challenges: the verbosity of raw HTML makes it computationally intractable for direct use by foundation models, while the static nature of hardcoded API integrations prevents agents from adapting to evolving services. This paper introduces a pattern language for world modeling from structured data, presenting two complementary architectural patterns. The DOM Transduction Pattern addresses the challenge of web page complexity by distilling} a verbose, raw DOM into a compact, task-relevant representation or world model optimized for an agent's reasoning core. Concurrently, the Hypermedia Affordances Recognition Pattern enables the agent to dynamically enrich its world model by parsing standardized semantic descriptions to discover and integrate the capabilities of unknown web services at runtime. Together, these patterns provide a robust framework for engineering agents that can efficiently construct and maintain an accurate world model, enabling scalable, adaptive, and interoperable automation across the web and its extended resources.
Law in Silico: Simulating Legal Society with LLM-Based Agents
Since real-world legal experiments are often costly or infeasible, simulating legal societies with Artificial Intelligence (AI) systems provides an effective alternative for verifying and developing legal theory, as well as supporting legal administration. Large Language Models (LLMs), with their world knowledge and role-playing capabilities, are strong candidates to serve as the foundation for legal society simulation. However, the application of LLMs to simulate legal systems remains underexplored. In this work, we introduce Law in Silico, an LLM-based agent framework for simulating legal scenarios with individual decision-making and institutional mechanisms of legislation, adjudication, and enforcement. Our experiments, which compare simulated crime rates with real-world data, demonstrate that LLM-based agents can largely reproduce macro-level crime trends and provide insights that align with real-world observations. At the same time, micro-level simulations reveal that a well-functioning, transparent, and adaptive legal system offers better protection of the rights of vulnerable individuals.
Can LLMs Write Faithfully? An Agent-Based Evaluation of LLM-generated Islamic Content NeurIPS 2025
Large language models are increasingly used for Islamic guidance, but risk misquoting texts, misapplying jurisprudence, or producing culturally inconsistent responses. We pilot an evaluation of GPT-4o, Ansari AI, and Fanar on prompts from authentic Islamic blogs. Our dual-agent framework uses a quantitative agent for citation verification and six-dimensional scoring (e.g., Structure, Islamic Consistency, Citations) and a qualitative agent for five-dimensional side-by-side comparison (e.g., Tone, Depth, Originality). GPT-4o scored highest in Islamic Accuracy (3.93) and Citation (3.38), Ansari AI followed (3.68, 3.32), and Fanar lagged (2.76, 1.82). Despite relatively strong performance, models still fall short in reliably producing accurate Islamic content and citations -- a paramount requirement in faith-sensitive writing. GPT-4o had the highest mean quantitative score (3.90/5), while Ansari AI led qualitative pairwise wins (116/200). Fanar, though trailing, introduces innovations for Islamic and Arabic contexts. This study underscores the need for community-driven benchmarks centering Muslim perspectives, offering an early step toward more reliable AI in Islamic knowledge and other high-stakes domains such as medicine, law, and journalism.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: 5th Muslims in Machine Learning (MusIML) Workshop
Policy Cards: Machine-Readable Runtime Governance for Autonomous AI Agents
Policy Cards are introduced as a machine-readable, deployment-layer standard for expressing operational, regulatory, and ethical constraints for AI agents. The Policy Card sits with the agent and enables it to follow required constraints at runtime. It tells the agent what it must and must not do. As such, it becomes an integral part of the deployed agent. Policy Cards extend existing transparency artifacts such as Model, Data, and System Cards by defining a normative layer that encodes allow/deny rules, obligations, evidentiary requirements, and crosswalk mappings to assurance frameworks including NIST AI RMF, ISO/IEC 42001, and the EU AI Act. Each Policy Card can be validated automatically, version-controlled, and linked to runtime enforcement or continuous-audit pipelines. The framework enables verifiable compliance for autonomous agents, forming a foundation for distributed assurance in multi-agent ecosystems. Policy Cards provide a practical mechanism for integrating high-level governance with hands-on engineering practice and enabling accountable autonomy at scale.
comment: First published on 19/10/2025. Canonical archived record and DOI: 10.5281/zenodo.17391796
Human Machine Social Hybrid Intelligence:A Collaborative Decision Making Framework for Large Model Agent Groups and Human Experts
The rapid advancements in large foundation models and multi-agent systems offer unprecedented capabilities, yet current Human-in-the-Loop (HiTL) paradigms inadequately integrate human expertise, often leading to cognitive overload and decision-making bottlenecks in complex, high-stakes environments. We propose the "Human-Machine Social Hybrid Intelligence" (HMS-HI) framework, a novel architecture designed for deep, collaborative decision-making between groups of human experts and LLM-powered AI agents. HMS-HI is built upon three core pillars: (1) a \textbf{Shared Cognitive Space (SCS)} for unified, multi-modal situational awareness and structured world modeling; (2) a \textbf{Dynamic Role and Task Allocation (DRTA)} module that adaptively assigns tasks to the most suitable agent (human or AI) based on capabilities and workload; and (3) a \textbf{Cross-Species Trust Calibration (CSTC)} protocol that fosters transparency, accountability, and mutual adaptation through explainable declarations and structured feedback. Validated in a high-fidelity urban emergency response simulation, HMS-HI significantly reduced civilian casualties by 72\% and cognitive load by 70\% compared to traditional HiTL approaches, demonstrating superior decision quality, efficiency, and human-AI trust. An ablation study confirms the critical contribution of each module, highlighting that engineered trust and shared context are foundational for scalable, synergistic human-AI collaboration.
Emergent Coordinated Behaviors in Networked LLM Agents: Modeling the Strategic Dynamics of Information Operations
Generative agents are rapidly advancing in sophistication, raising urgent questions about how they might coordinate when deployed in online ecosystems. This is particularly consequential in information operations (IOs), influence campaigns that aim to manipulate public opinion on social media. While traditional IOs have been orchestrated by human operators and relied on manually crafted tactics, agentic AI promises to make campaigns more automated, adaptive, and difficult to detect. This work presents the first systematic study of emergent coordination among generative agents in simulated IO campaigns. Using generative agent-based modeling, we instantiate IO and organic agents in a simulated environment and evaluate coordination across operational regimes, from simple goal alignment to team knowledge and collective decision-making. As operational regimes become more structured, IO networks become denser and more clustered, interactions more reciprocal and positive, narratives more homogeneous, amplification more synchronized, and hashtag adoption faster and more sustained. Remarkably, simply revealing to agents which other agents share their goals can produce coordination levels nearly equivalent to those achieved through explicit deliberation and collective voting. Overall, we show that generative agents, even without human guidance, can reproduce coordination strategies characteristic of real-world IOs, underscoring the societal risks posed by increasingly automated, self-organizing IOs.
Trust Dynamics in Strategic Coopetition: Computational Foundations for Requirements Engineering in Multi-Agent Systems
Requirements engineering increasingly occurs in multi-stakeholder environments where organizations simultaneously cooperate and compete, creating coopetitive relationships in which trust evolves dynamically based on observed behavior over repeated interactions. While conceptual modeling languages like i* represent trust relationships qualitatively, they lack computational mechanisms for analyzing how trust changes with behavioral evidence. Conversely, computational trust models from multi-agent systems provide algorithmic updating but lack grounding in requirements engineering contexts and conceptual models. This technical report bridges this gap by developing a computational trust model that extends game-theoretic foundations for strategic coopetition with dynamic trust evolution. We introduce trust as a two-layer system with immediate trust responding to current behavior and reputation tracking violation history. Trust evolves through asymmetric updating where cooperation builds trust gradually while violations erode it sharply, creating hysteresis effects and trust ceilings that constrain relationship recovery. We develop a structured translation framework enabling requirements engineers to instantiate computational trust models from i* dependency networks and organizational contexts. Comprehensive experimental validation across 78,125 parameter configurations establishes robust emergence of negativity bias, hysteresis effects, and cumulative damage amplification. Empirical validation using the Renault-Nissan Alliance case study (1999-2025) achieves 49 out of 60 validation points (81.7%), successfully reproducing documented trust evolution across five distinct relationship phases including crisis and recovery periods. This technical report builds upon its foundational companion work in arXiv:2510.18802.
comment: 62 pages, 20 figures, This technical report is the second in a research program and should be read in conjunction with its foundational companion work arXiv:2510.18802. It builds on the frameworks established in that prior work and also adapts and extends material on trustworthiness first presented in the doctoral dissertation 'Modeling Strategic Coopetition' (Pant, 2021, University of Toronto)
MASPRM: Multi-Agent System Process Reward Model
Practical deployment of Multi-Agent Systems (MAS) demands strong test-time performance, motivating methods that guide inference-time search and selectively spend compute to improve quality. We present the Multi-Agent System Process Reward Model (MASPRM). It assigns per-action, per-agent values to partial inter-agent transcripts and acts as an inference-time controller. MASPRM is trained from multi-agent Monte Carlo Tree Search (MCTS) rollouts without requiring step-level human annotations, by propagating returns to local targets. At inference, MASPRM guides step-level beam search and MCTS, focusing computation on promising branches and pruning early. On GSM8K and MATH, MASPRM-guided decoding with an outcome reward model (ORM) applied to the final answer, improves exact match (EM) over a single straight-through MAS pass by $+30.7$ and $+22.9$ points, respectively. A MASPRM trained on GSM8K transfers zero-shot to MATH without retraining, adding $8.4$ EM points at the same budget. MASPRM is a plug-in value model that estimates per-agent progress and complements verifier-style decoders, enabling more reliable, compute-aware multi-agent reasoning. Code: https://github.com/milad1378yz/MASPRM
From Narrative to Action: A Hierarchical LLM-Agent Framework for Human Mobility Generation
Understanding and replicating human mobility requires not only spatial-temporal accuracy but also an awareness of the cognitive hierarchy underlying real-world travel decisions. Traditional agent-based or deep learning models can reproduce statistical patterns of movement but fail to capture the semantic coherence and causal logic of human behavior. Large language models (LLMs) show potential, but struggle to balance creative reasoning with strict structural compliance. This study proposes a Hierarchical LLM-Agent Framework, termed Narrative-to-Action, that integrates high-level narrative reasoning, mid-level reflective planning, and low-level behavioral execution within a unified cognitive hierarchy. At the macro level, one agent is employed as a "creative writer" to produce diary-style narratives rich in motivation and context, then uses another agent as a "structural parser" to convert narratives into machine-readable plans. A dynamic execution module further grounds agents in geographic environments and enables adaptive behavioral adjustments guided by a novel occupation-aware metric, Mobility Entropy by Occupation (MEO), which captures heterogeneous schedule flexibility across different occupational personalities. At the micro level, the agent executes concrete actions-selecting locations, transportation modes, and time intervals-through interaction with an environmental simulation. By embedding this multi-layer cognitive process, the framework produces not only synthetic trajectories that align closely with real-world patterns but also interpretable representations of human decision logic. This research advances synthetic mobility generation from a data-driven paradigm to a cognition-driven simulation, providing a scalable pathway for understanding, predicting, and synthesizing complex urban mobility behaviors through hierarchical LLM agents.
comment: 47 pages, 3 figures
Central Bank Digital Currency, Flight-to-Quality, and Bank-Runs in an Agent-Based Model
We analyse financial stability and welfare impacts associated with the introduction of a Central Bank Digital Currency (CBDC) in a macroeconomic agent-based model. The model considers firms, banks, and households interacting on labour, goods, credit, and interbank markets. Households move their liquidity from deposits to CBDC based on the perceived riskiness of their banks. We find that the introduction of CBDC exacerbates bank-runs and may lead to financial instability phenomena. The effect can be changed by introducing a limit on CBDC holdings. The adoption of CBDC has little effect on macroeconomic variables but the interest rate on loans to firms goes up and credit goes down in a limited way. CBDC leads to a redistribution of wealth from firms and banks to households with a higher bank default rate. CBDC may have negative welfare effects, but a bound on holding enables a welfare improvement.
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
A cutting-surface consensus approach for distributed robust optimization of multi-agent systems
A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, an approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints to ensure tractability and restricting the right-hand side of the constraints with a positive parameter to ensure a feasible solution for (DRCP) can be obtained. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and gradient projected operations. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed local feasibility for each agent. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and adding the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.
comment: 16 pages, 8 figures, published to IEEE TAC
Partially Observable Multi-Agent Reinforcement Learning with Information Sharing ICML 2023
We study provable multi-agent reinforcement learning (RL) in the general framework of partially observable stochastic games (POSGs). To circumvent the known hardness results and the use of computationally intractable oracles, we advocate leveraging the potential \emph{information-sharing} among agents, a common practice in empirical multi-agent RL, and a standard model for multi-agent control systems with communication. We first establish several computational complexity results to justify the necessity of information-sharing, as well as the observability assumption that has enabled quasi-polynomial time and sample single-agent RL with partial observations, for tractably solving POSGs. Inspired by the inefficiency of planning in the ground-truth model, we then propose to further \emph{approximate} the shared common information to construct an approximate model of the POSG, in which an approximate \emph{equilibrium} (of the original POSG) can be found in quasi-polynomial-time, under the aforementioned assumptions. Furthermore, we develop a partially observable multi-agent RL algorithm whose time and sample complexities are \emph{both} quasi-polynomial. Finally, beyond equilibrium learning, we extend our algorithmic framework to finding the \emph{team-optimal solution} in cooperative POSGs, i.e., decentralized partially observable Markov decision processes, a more challenging goal. We establish concrete computational and sample complexities under several structural assumptions of the model. We hope our study could open up the possibilities of leveraging and even designing different \emph{information structures}, a well-studied notion in control theory, for developing both sample- and computation-efficient partially observable multi-agent RL.
comment: Journal extension of the conference version at ICML 2023 accepted to SIAM Journal on Control and Optimization (SICON)
HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in agents that lack initiative and cannot interact with the physical scene. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance generated by HAMLET, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences.
Systems and Control (CS)
Feature Matching-Based Gait Phase Prediction for Obstacle Crossing Control of Powered Transfemoral Prosthesis
For amputees with powered transfemoral prosthetics, navigating obstacles or complex terrain remains challenging. This study addresses this issue by using an inertial sensor on the sound ankle to guide obstacle-crossing movements. A genetic algorithm computes the optimal neural network structure to predict the required angles of the thigh and knee joints. A gait progression prediction algorithm determines the actuation angle index for the prosthetic knee motor, ultimately defining the necessary thigh and knee angles and gait progression. Results show that when the standard deviation of Gaussian noise added to the thigh angle data is less than 1, the method can effectively eliminate noise interference, achieving 100\% accuracy in gait phase estimation under 150 Hz, with thigh angle prediction error being 8.71\% and knee angle prediction error being 6.78\%. These findings demonstrate the method's ability to accurately predict gait progression and joint angles, offering significant practical value for obstacle negotiation in powered transfemoral prosthetics.
comment: 6 pages, conference
Learning to Drive Safely with Hybrid Options
Out of the many deep reinforcement learning approaches for autonomous driving, only few make use of the options (or skills) framework. That is surprising, as this framework is naturally suited for hierarchical control applications in general, and autonomous driving tasks in specific. Therefore, in this work the options framework is applied and tailored to autonomous driving tasks on highways. More specifically, we define dedicated options for longitudinal and lateral manoeuvres with embedded safety and comfort constraints. This way, prior domain knowledge can be incorporated into the learning process and the learned driving behaviour can be constrained more easily. We propose several setups for hierarchical control with options and derive practical algorithms following state-of-the-art reinforcement learning techniques. By separately selecting actions for longitudinal and lateral control, the introduced policies over combined and hybrid options obtain the same expressiveness and flexibility that human drivers have, while being easier to interpret than classical policies over continuous actions. Of all the investigated approaches, these flexible policies over hybrid options perform the best under varying traffic conditions, outperforming the baseline policies over actions.
Efficient Network Reconfiguration by Randomized Switching
We present an algorithm that efficiently computes nearly-optimal solutions to a class of combinatorial reconfiguration problems on weighted, undirected graphs. Inspired by societally relevant applications in networked infrastructure systems, these problems consist of simultaneously finding an unreweighted sparsified graph and nodal potentials that satisfy fixed demands, where the objective is to minimize some congestion criterion, e.g., a Laplacian quadratic form. These are mixed-integer nonlinear programming problems that are NP-hard in general. To circumvent these challenges, instead of solving for a single best configuration, the proposed randomized switching algorithm seeks to design a distribution of configurations that, when sampled, ensures that congestion concentrates around its optimum. We show that the proposed congestion metric is a generalized self-concordant function in the space of switching probabilities, which enables the use of efficient and simple conditional gradient methods. We implement our algorithm and show that it outperforms a state-of-the-art commercial mixed-integer second-order cone programming (MISOCP) solver by orders of magnitude over a large range of problem sizes.
Flatness-based trajectory planning for 3D overhead cranes with friction compensation and collision avoidance
This paper presents an optimal trajectory generation method for 3D overhead cranes by leveraging differential flatness. This framework enables the direct inclusion of complex physical and dynamic constraints, such as nonlinear friction and collision avoidance for both payload and rope. Our approach allows for aggressive movements by constraining payload swing only at the final point. A comparative simulation study validates our approach, demonstrating that neglecting dry friction leads to actuator saturation and collisions. The results show that friction modeling is a fundamental requirement for fast and safe crane trajectories.
comment: 8 pages, 11 figures
Analyzing Parametric Oscillator Ising Machines through the Kuramoto Lens
Networks of coupled nonlinear oscillators are emerging as powerful physical platforms for implementing Ising machines. Yet the relationship between parametric-oscillator implementations and traditional oscillator-based Ising machines remains underexplored. In this work, we develop a Kuramoto-style, canonical phase description of parametric oscillator Ising machines by starting from the Stuart-Landau oscillator model -- the canonical normal form near a Hopf bifurcation, and a natural reduced description for many parametric oscillator implementations such as the degenerate optical parametric oscillator (DOPO) among others. The resulting phase dynamics combine the usual phase-difference coupling observed in the standard Kuramoto model along with an intrinsic phase sum term that is generated when conjugate coupling is considered. Moreover, our formulation helps explain why explicit second-harmonic driving is unnecessary in parametric oscillators and also reveals how quasi-steady amplitude heterogeneity scales the original strength of the spin interaction with potentially adverse impacts on the solution quality. Our work helps develop a unifying view of the oscillator-based approach to designing Ising machines.
Contributions to Semialgebraic-Set-Based Stability Verification of Dynamical Systems with Neural-Network-Based Controllers
Neural-network-based controllers (NNCs) can represent complex, highly nonlinear control laws, but verifying the closed-loop stability of dynamical systems using them remains challenging. This work presents contributions to a state-of-the-art stability verification procedure for NNC-controlled systems which relies on semialgebraic-set-based input-output modeling to pose the search for a Lyapunov function as an optimization problem. Specifically, this procedure's conservatism when analyzing NNCs using transcendental activation functions and the restriction to feedforward NNCs are addressed by a) introducing novel semialgebraic activation functions that preserve key properties of common transcendental activations and b) proving compatibility of NNCs from the broader class of recurrent equilibrium networks (RENs) with this procedure. Furthermore, the indirect optimization of a local region of attraction (RoA) estimate using a restricted set of candidate Lyapunov functions is greatly improved via c) the introduction of a richer parameterization of candidate Lyapunov functions than previously reported and d) the formulation of novel semidefinite programs (SDPs) that directly optimize the resulting RoA estimate. The value of these contributions is highlighted in two numerical examples.
comment: Submitted to the IEEE for possible publication, 16 pages, 6 figures
Development of a Digital Twin for an Electric Vehicle Emulator Modeling, Control, and Experimental Validation
This paper presents the development and validation of a digital twin for a scaled-down electric vehicle (EV) emulator, designed to replicate longitudinal vehicle dynamics under diverse operating conditions. The emulator integrates a separately excited DC motor (SEDCM), a four-quadrant DC-DC converter, a battery emulator, and a mechanical load emulator. The system models tractive effort, aerodynamic drag, and gradient resistance using Newton's second law. In contrast to conventional graphical modeling tools (e.g., block diagrams and bond graphs), the adopted Energetic Macroscopic Representation (EMR) framework offers clear advantages by explicitly representing energy interactions and facilitating the systematic derivation of control structures. A control strategy developed within this framework governs energy flow across the powertrain, enabling accurate speed control via armature voltage regulation. Experimental tests conducted on a Lucas-Nulle test bench show strong correlation with simulation results. The study also introduces a methodology to compute the maximum admissible vehicle mass - determined to be 13.5 kg for a 180 W motor operating at 1900 rpm - based on acceleration and slope constraints. Furthermore, a switching algorithm for the bidirectional converter ensures reliable four quadrant operation. Overall, the proposed framework provides a scalable and effective approach for EV emulation, control design, and energy management validation.
comment: 6 pages, Accepted at CODIT 2025 (Conference on Decision and Control in Intelligent Technology)
Mechanism-Guided Residual Lifting and Control Consistent Modeling for Pneumatic Drying Processes
Pneumatic drying processes in industries such as agriculture, chemicals,and pharmaceuticals are notoriously difficult to model and control due to multi-source disturbances,coupled stage dynamics, and significant measurement delays. Traditional modeling paradigms often fail to simultaneously deliver accuracy, interpretability, and closed-loop applicability. To address this challenge, this paper introduces a unified hybrid modeling framework, termed Physics-Guided Residual Lifting with Control-Consistent Correction,which integrates a transient mechanistic model with a stability-constrained data-driven component. The framework covers the complete process chain of drying, transport, and winnowing. On the mechanistic level, the model unifies mass transfer dynamics using the partial pressure difference of water vapor, incorporates water activity clamping and latent heat corrections for bound water, and ensures energy closure with moisture-dependent specific heat. On the data-driven level,we propose an orthogonal residual learning scheme. It leverages intermediate states from the mechanistic model as proxy variables to construct a physics-inspired dictionary, preventing parameter compensation and overfitting during ridge regression. Furthermore, to ensure suitability for predictive control, a Control-Consistent Extended Dynamic Mode Decomposition with stability constraints is employed to learn the residual dynamics, for which we provide boundedness proofs and stability guarantees. The framework was validated on 10 industrial batches, comprising 63,000 samples. On unseen test data, the hybrid model achieved a Mean Absolute Error of 0.016% for outlet moisture and 0.015 {\deg}C for outlet temperature, with values improving to 0.986 and 0.995, respectively. The resulting prediction residuals exhibit white-noise characteristics, with significantly reduced spectral energy at low frequencies.
comment: 6figs,4tables
An N-of-1 Artificial Intelligence Ecosystem for Precision Medicine
Artificial intelligence in medicine is built to serve the average patient. By minimizing error across large datasets, most systems deliver strong aggregate accuracy yet falter at the margins: patients with rare variants, multimorbidity, or underrepresented demographics. This average patient fallacy erodes both equity and trust. We propose a different design: a multi-agent ecosystem for N-of-1 decision support. In this environment, agents clustered by organ systems, patient populations, and analytic modalities draw on a shared library of models and evidence synthesis tools. Their results converge in a coordination layer that weighs reliability, uncertainty, and data density before presenting the clinician with a decision-support packet: risk estimates bounded by confidence ranges, outlier flags, and linked evidence. Validation shifts from population averages to individual reliability, measured by error in low-density regions, calibration in the small, and risk--coverage trade-offs. Anticipated challenges include computational demands, automation bias, and regulatory fit, addressed through caching strategies, consensus checks, and adaptive trial frameworks. By moving from monolithic models to orchestrated intelligence, this approach seeks to align medical AI with the first principle of medicine: care that is transparent, equitable, and centered on the individual.
comment: This study has been supported by grants from the National Institutes of Health: The National Institute on Aging R01AG074372 and The National Institute of Allergy and Infectious Diseases R01AI165535
Survey and Tutorial of Reinforcement Learning Methods in Process Systems Engineering
Sequential decision making under uncertainty is central to many Process Systems Engineering (PSE) challenges, where traditional methods often face limitations related to controlling and optimizing complex and stochastic systems. Reinforcement Learning (RL) offers a data-driven approach to derive control policies for such challenges. This paper presents a survey and tutorial on RL methods, tailored for the PSE community. We deliver a tutorial on RL, covering fundamental concepts and key algorithmic families including value-based, policy-based and actor-critic methods. Subsequently, we survey existing applications of these RL techniques across various PSE domains, such as in fed-batch and continuous process control, process optimization, and supply chains. We conclude with PSE focused discussion of specialized techniques and emerging directions. By synthesizing the current state of RL algorithm development and implications for PSE this work identifies successes, challenges, trends, and outlines avenues for future research at the interface of these fields.
A comparison between joint and dual UKF implementations for state estimation and leak localization in water distribution networks
The sustainability of modern cities highly depends on efficient water distribution management, including effective pressure control and leak detection and localization. Accurate information about the network hydraulic state is therefore essential. This article presents a comparison between two data-driven state estimation methods based on the Unscented Kalman Filter (UKF), fusing pressure, demand and flow data for head and flow estimation. One approach uses a joint state vector with a single estimator, while the other uses a dual-estimator scheme. We analyse their main characteristics, discussing differences, advantages and limitations, and compare them theoretically in terms of accuracy and complexity. Finally, we show several estimation results for the L-TOWN benchmark, allowing to discuss their properties in a real implementation.
comment: This work has been submitted to ECC2026 for review. It has 7 pages and 2 figures
Sample-based Moving Horizon Estimation
In this paper, we propose a sample-based moving horizon estimation (MHE) scheme for general nonlinear systems to estimate the current system state using irregularly and/or infrequently available measurements. The cost function of the MHE optimization problem is suitably designed to accommodate these irregular output sequences. We also establish that, under a suitable sample-based detectability condition known as sample-based incremental input/output-to-state stability (i-IOSS), the proposed sample-based MHE achieves robust global exponential stability (RGES). Additionally, for the case of linear systems, we draw connections between sample-based observability and sample-based i-IOSS. This demonstrates that previously established conditions for linear systems to be sample-based observable can be utilized to verify or design sampling strategies that satisfy the conditions to guarantee RGES of the sample-based MHE. Finally, the effectiveness of the proposed sample-based MHE is illustrated through a simulation example.
Improved Accuracy of Robot Localization Using 3-D LiDAR in a Hippocampus-Inspired Model
Boundary Vector Cells (BVCs) are a class of neurons in the brains of vertebrates that encode environmental boundaries at specific distances and allocentric directions, playing a central role in forming place fields in the hippocampus. Most computational BVC models are restricted to two-dimensional (2D) environments, making them prone to spatial ambiguities in the presence of horizontal symmetries in the environment. To address this limitation, we incorporate vertical angular sensitivity into the BVC framework, thereby enabling robust boundary detection in three dimensions, and leading to significantly more accurate spatial localization in a biologically-inspired robot model. The proposed model processes LiDAR data to capture vertical contours, thereby disambiguating locations that would be indistinguishable under a purely 2D representation. Experimental results show that in environments with minimal vertical variation, the proposed 3D model matches the performance of a 2D baseline; yet, as 3D complexity increases, it yields substantially more distinct place fields and markedly reduces spatial aliasing. These findings show that adding a vertical dimension to BVC-based localization can significantly enhance navigation and mapping in real-world 3D spaces while retaining performance parity in simpler, near-planar scenarios.
comment: 8 pages, 9 figures, Presented at the 2025 International Joint Conference on Neural Networks, Rome, July 2025
Defect Mitigation for Robot Arm-based Additive Manufacturing Utilizing Intelligent Control and IOT
This paper presents an integrated robotic fused deposition modeling additive manufacturing system featuring closed-loop thermal control and intelligent in-situ defect correction using a 6-degree of freedom robotic arm and an Oak-D camera. The robot arm end effector was modified to mount an E3D hotend thermally regulated by an IoT microcontroller, enabling precise temperature control through real-time feedback. Filament extrusion system was synchronized with robotic motion, coordinated via ROS2, ensuring consistent deposition along complex trajectories. A vision system based on OpenCV detects layer-wise defects position, commanding autonomous re-extrusion at identified sites. Experimental validation demonstrated successful defect mitigation in printing operations. The integrated system effectively addresses challenges real-time quality assurance. Inverse kinematics were used for motion planning, while homography transformations corrected camera perspectives for accurate defect localization. The intelligent system successfully mitigated surface anomalies without interrupting the print process. By combining real-time thermal regulation, motion control, and intelligent defect detection & correction, this architecture establishes a scalable and adaptive robotic additive manufacturing framework suitable for aerospace, biomedical, and industrial applications.
comment: This Paper Has Accepted at ASME 2025 International Mechanical Engineering Congress and Exposition (IMECE 2025)
A Hamilton-Jacobi Reachability Framework with Soft Constraints for Safety-Critical Systems
Traditional reachability methods provide formal guarantees of safety under bounded disturbances. However, they strictly enforce state constraints as inviolable, which can result in overly conservative or infeasible solutions in complex operational scenarios. Many constraints encountered in practice, such as bounds on battery state of charge in electric vehicles, recommended speed envelopes, and comfort constraints in passenger-carrying vehicles, are inherently soft. Soft constraints allow temporary violations within predefined safety margins to accommodate uncertainty and competing operational demands, albeit at a cost such as increased wear or higher operational expenses. This paper introduces a novel soft-constrained reachability framework that extends Hamilton-Jacobi reachability analysis for the formal verification of safety-critical systems subject to both hard and soft constraints. Specifically, the framework characterizes a subset of the state space, referred to as the soft-constrained reach-avoid set, from which the system is guaranteed to reach a desired set safely, under worst-case disturbances, while ensuring that cumulative soft-constraint violations remain within a user-specified budget. The framework comprises two principal components: (i) an augmented-state model with an auxiliary budget state that tracks soft-constraint violations, and (ii) a regularization-based approximation of the discontinuous Hamilton-Jacobi value function associated with the reach-avoid differential game studied herein. The effectiveness of the proposed framework is demonstrated through numerical examples involving the landing of a simple point-mass model and a fixed-wing aircraft executing an emergency descent, both under wind disturbances. The simulation results validate the framework's ability to simultaneously manage both hard and soft constraints in safety-critical settings
Delay Tolerant Control for Autonomous Driving Using CDOB
With the rapid growth of autonomous vehicle technologies, effective path-tracking control has become a critical component in ensuring safety and efficiency in complex traffic scenarios. When a high level decision making agent generates a collision free path, a robust low level controller is required to precisely follow this trajectory. However, connected autonomous vehicles (CAV) are inherently affected by communication delays and computation delays, which significantly degrade the performance of conventional controllers such as PID or other more advanced controllers like disturbance observers (DOB). While DOB-based designs have shown effectiveness in rejecting disturbances under nominal conditions, their performance deteriorates considerably in the presence of unknown time delays. To address this challenge, this paper proposes a delay-tolerant communication disturbance observer (CDOB) framework for path-tracking control in delayed systems. The proposed CDOB compensates for the adverse effects of time delays, maintaining accurate trajectory tracking even under uncertain and varying delay conditions. It is shown through a simulation study that the proposed control architecture maintains close alignment with the reference trajectory across various scenarios, including single lane change, double-= lane change, and Elastic Band generated collision avoidance paths under various time delays. Simulation results further demonstrate that the proposed method outperforms conventional approaches in both tracking accuracy and delay robustness, making it well suited for autonomous driving applications.
Decentralized Merging Control of Connected and Automated Vehicles to Enhance Safety and Energy Efficiency using Control Barrier Functions
This paper presents a decentralized Control Barrier Function (CBF) based approach for highway merging of Connected and Automated Vehicles (CAVs). In this control algorithm, each "host" vehicle negotiates with other agents in a control zone of the highway network, and enacts its own action, to perform safe and energy-efficient merge maneuvers. It uses predictor-corrector loops within the robust CBF setting for negotiation and to reconcile disagreements that may arise. There is no explicit order of vehicles and no priority. A notable feature is absence of gridlocks due to instability of the inter-agent system. Results from Monte Carlo simulations show significant improvement in the system-wide energy efficiency and traffic flow compared to a first-in-first-out approach, as well as enhanced robustness of the proposed decentralized controller compared to its centralized counterpart.
comment: This work has been submitted to a conference for possible publication and is under review. Paper summary: 8 pages, 5 figures, 2 tables
Deep Reinforcement Learning Approach to QoSAware Load Balancing in 5G Cellular Networks under User Mobility and Observation Uncertainty
Efficient mobility management and load balancing are critical to sustaining Quality of Service (QoS) in dense, highly dynamic 5G radio access networks. We present a deep reinforcement learning framework based on Proximal Policy Optimization (PPO) for autonomous, QoS-aware load balancing implemented end-to-end in a lightweight, pure-Python simulation environment. The control problem is formulated as a Markov Decision Process in which the agent periodically adjusts Cell Individual Offset (CIO) values to steer user-cell associations. A multi-objective reward captures key performance indicators (aggregate throughput, latency, jitter, packet loss rate, Jain's fairness index, and handover count), so the learned policy explicitly balances efficiency and stability under user mobility and noisy observations. The PPO agent uses an actor-critic neural network trained from trajectories generated by the Python simulator with configurable mobility (e.g., Gauss-Markov) and stochastic measurement noise. Across 500+ training episodes and stress tests with increasing user density, the PPO policy consistently improves KPI trends (higher throughput and fairness, lower delay, jitter, packet loss, and handovers) and exhibits rapid, stable convergence. Comparative evaluations show that PPO outperforms rule-based ReBuHa and A3 as well as the learning-based CDQL baseline across all KPIs while maintaining smoother learning dynamics and stronger generalization as load increases. These results indicate that PPO's clipped policy updates and advantage-based training yield robust, deployable control for next-generation RAN load balancing using an entirely Python-based toolchain.
NeuroDOB: A Deep Neural Observer-Based Controller for Vehicle Lateral Dynamics
This paper proposes NeuroDOB, a deep neural network based observer controller for vehicle lateral dynamics, which replaces the conventional disturbance observer (DOB) with a deep neural network (DNN) to enhance personalized lateral control. Unlike conventional DOBs that compensate for general disturbances such as road friction variation and crosswind, NeuroDOB explicitly addresses unmodeled vehicle dynamics and driver-specific behaviors by learning the steering compensation signal from driver-in-the-loop simulations using CarSim's embedded controller as a surrogate driver. The proposed architecture integrates NeuroDOB with a linear quadratic regulator (LQR), where the DNN outputs a delta error correction added to the baseline LQR steering input to produce the final control command. Input features to the DNN include lateral position and yaw angle errors, and the LQR control input. Experimental validation using a lateral dynamic bicycle model within CarSim demonstrates that NeuroDOB effectively adapts to individual driving habits, improving lateral control performance beyond what conventional LQR controllers achieve. The results indicate the potential of deep neural network based observer to enable personalized and adaptive autonomous vehicle control. In cognitive terms, the proposed architecture can be viewed as a dual-system control structure. The baseline LQR corresponds to System 1, a model-based, fast, and analytic reasoning layer ensuring stability. The NeuroDOB acts as System 2, a reflective, data-driven layer that learns compensation from experience and corrects the analytical bias of System 1. Together, they form an integrated decision process analogous to human intuition-reflection interaction, enabling both stability and adaptability in lateral control.
comment: 12 pages, 16 figures
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
Assessment of Power System Stability Considering Multiple Time-Scale Dynamics: Insights into Hopf Bifurcations in Presence of GFL and GFM IBRs
Real power systems exhibit dynamics that evolve across a wide range of time scales, from very fast to very slow phenomena. Historically, incorporating these wide-ranging dynamics into a single model has been impractical. As a result, power engineers rely on time-scale decomposition to simplify models. When fast phenomena are evaluated, slow dynamics are neglected (assumed stable), and vice versa. This paper challenges this paradigm by showing the importance of assessing power system stability while considering multiple time scales simultaneously. Using the concept of Hopf bifurcations, it exemplifies instability issues that would be missed if multi-time-scale dynamics are not considered. Although this work employs both grid-following and grid-forming inverter-based resource models, it is not a direct comparison. Instead, it presents a case study demonstrating how one technology can complement the other from a multi time-scale dynamics perspective.
comment: 7 pages
Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion NeurIPS 2025
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimates of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their frameworks. In this work, we propose a novel two-stage training framework to jointly synthesize a controller and a Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training-data sampling strategy and a domain-updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10{,}000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.
comment: NeurIPS 2025
MathBode: Understanding LLM Reasoning with Dynamical Systems
This paper presents MathBode, a dynamic diagnostic for mathematical reasoning in large language models (LLMs). Instead of one-shot accuracy, MathBode treats each parametric problem as a system: we drive a single parameter sinusoidally and fit first-harmonic responses of model outputs and exact solutions. This yields interpretable, frequency-resolved metrics -- gain (amplitude tracking) and phase (lag) -- that form Bode-style fingerprints. Across five closed-form families (linear solve, ratio/saturation, compound interest, 2x2 linear systems, similar triangles), the diagnostic surfaces systematic low-pass behavior and growing phase lag that accuracy alone obscures. We compare several models against a symbolic baseline that calibrates the instrument ($G \approx 1$, $\phi \approx 0$). Results separate frontier from mid-tier models on dynamics, providing a compact, reproducible protocol that complements standard benchmarks with actionable measurements of reasoning fidelity and consistency. We open-source the dataset and code to enable further research and adoption.
Learning Wireless Interference Patterns: Decoupled GNN for Throughput Prediction in Heterogeneous Multi-Hop p-CSMA Networks
The p-persistent CSMA protocol is central to random-access MAC analysis, but predicting saturation throughput in heterogeneous multi-hop wireless networks remains a hard problem. Simplified models that assume a single, shared interference domain can underestimate throughput by 48-62% in sparse topologies. Exact Markov-chain analyses are accurate but scale exponentially in computation time, making them impractical for large networks. These computational barriers motivate structural machine learning approaches like GNNs for scalable throughput prediction in general network topologies. Yet off-the-shelf GNNs struggle here: a standard GCN yields 63.94% normalized mean absolute error (NMAE) on heterogeneous networks because symmetric normalization conflates a node's direct interference with higher-order, cascading effects that pertain to how interference propagates over the network graph. Building on these insights, we propose the Decoupled Graph Convolutional Network (D-GCN), a novel architecture that explicitly separates processing of a node's own transmission probability from neighbor interference effects. D-GCN replaces mean aggregation with learnable attention, yielding interpretable, per-neighbor contribution weights while capturing complex multihop interference patterns. D-GCN attains 3.3% NMAE, outperforms strong baselines, remains tractable even when exact analytical methods become computationally infeasible, and enables gradient-based network optimization that achieves within 1% of theoretical optima.
Flight-Ready Precise and Robust Carrier-Phase GNSS Navigation Software for Distributed Space Systems
This paper presents the full requirements analysis, design, development, and testing of high-precision navigation flight software for Distributed Space Systems (DSS) using Carrier Phase Differential GNSS (CDGNSS). Five main contributions are made. First, a survey of flown and upcoming DSS missions with stringent precision requirements is conducted, from which a thorough requirements analysis is distilled to guide development and testing. Second, a real-time navigation functional architecture is designed, and adopts a sparse and regularized Consider Kalman Filter with options for numerical stability in-flight. The filter rigorously accounts for uncertainties in process noise, measurement noise, and biases. It tracks float ambiguities with integer resolution where possible. The covariance correlation structure is preserved under all navigation modes, including contingencies and outages. Third, a lightweight, memoryless Fault Detection, Isolation, and Recovery (FDIR) module is developed to guard against anomalous measurements, providing statistical screening and ensuring robust navigation. Fourth, the software architecture is proposed for ease of integration, with strategies presented for modularity and computational efficiency tailored to constrained flight systems. Fifth, a comprehensive test campaign is conducted, mapped to a requirements verification matrix, spanning unit, interface, software-in-the-loop, and real-time hardware-in-the-loop tests, emphasizing gradual test fidelity for efficient fault isolation. Finally, flight-like results are demonstrated using the VISORS mission, due to the generalizability of the VISORS navigation operations, and the stringency which demands sub-centimeter relative position and sub-millimeter-per-second velocity accuracy. This architecture aims to serve as a reference for next-generation DSS missions adopting CDGNSS.
A Volumetric Privacy Measure for Dynamical Systems With Bounded Disturbance
In this paper, we first present a volumetric privacy measure for dynamical systems with bounded disturbances, wherein the states of the system contain private information and an adversary with access to sensor measurements attempts to infer the set of potential values of the private information. Under the proposed privacy measure, the volume of the uncertainty set of the adversary given the sensor measurements is considered as the privacy level of the system. We next characteristic the time evolution of the proposed privacy measure and study its properties for a particular system with both public and private states, where a set containing the public state is shared as the observation. Approximate set-membership estimation techniques are developed to compute the private-state uncertainty set, and the properties of the privacy measure are analyzed, demonstrating that the uncertainty reduction of the adversary is bounded by the information gain from the observation set. Furthermore, an optimization-based privacy filter design problem is formulated, employing randomization and linear programming to enhance the privacy level. The effectiveness of the proposed approach is validated through a production-inventory case study. Results show that the optimal privacy filter significantly improves robustness against inference attacks and outperforms two baseline mechanisms based on additive noise and quantization.
A cutting-surface consensus approach for distributed robust optimization of multi-agent systems
A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, an approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints to ensure tractability and restricting the right-hand side of the constraints with a positive parameter to ensure a feasible solution for (DRCP) can be obtained. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and gradient projected operations. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed local feasibility for each agent. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and adding the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.
comment: 16 pages, 8 figures, published to IEEE TAC
Operational Risks in Grid Integration of Large Data Center Loads: Characteristics, Stability Assessments, and Sensitivity Studies
This paper investigates the dynamic interactions between large-scale data centers and the power grid, focusing on reliability challenges arising from sudden fluctuations in demand. With the rapid growth of AI-driven workloads, such fluctuations, along with fast ramp patterns, are expected to exacerbate stressed grid conditions and system instabilities. We consider a few open-source AI data center consumption profiles from the MIT supercloud datasets, along with generating a few experimental HPC job-distribution-based inference profiles. Subsequently, we develop analytical methodologies for real-time assessment of grid stability, focusing on both transient and small-signal stability assessments. Energy-flow-like metrics for nonlinear transient stability, formulated by computing localized data center bus kinetic-like flows and coupling interactions with neighboring buses over varying time windows, help provide operators with real-time assessments of the regional grid stress in the data center hubs. On the other hand, small-signal stability metrics, constructed from analytical state matrices under variable operating conditions during a fast ramping period, enable snapshot-based assessments of data center load fluctuations and provide enhanced observability into evolving grid conditions. By quantifying the stability impacts of large data center clusters, studies conducted in the modified IEEE benchmark $68-$bus model support improved operator situational awareness to capture risks in reliable integration of large data center loads.
comment: 13 pages, 8 figures, 3 tables
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
Efficient Path Planning and Task Allocation Algorithm for Boolean Specifications
This paper presents a novel path-planning and task assignment algorithm for multi-robot systems that should fulfill a global Boolean specification. The proposed method is based on Integer Linear Programming (ILP) formulations, which are combined with structural insights from Petri nets to improve scalability and computational efficiency. By proving that the \emph{constraint matrix} is totally unimodular (TU) for certain classes of problems, the ILP formulation can be relaxed into a Linear Programming (LP) problem without losing the integrality of the solution. This relaxation eliminates complex combinatorial techniques, significantly reducing computational overhead and thus ensuring scalability for large-scale systems. Using the approach proposed in this paper, we can solve path-planning problems for teams made up to 500 robots. The method guarantees computational tractability, handles collision avoidance and reduces computational demands through iterative LP optimization techniques. Case studies demonstrate the efficiency of the algorithm in generating scalable, collision-free paths for large robot teams navigating in complex environments. While the conservative nature of collision avoidance introduces additional constraints, and thus, computational requirements, the solution remains practical and impactful for diverse applications. The algorithm is particularly applicable to real-world scenarios, including warehouse logistics where autonomous robots must efficiently coordinate tasks or search-and-rescue operations in various environments. This work contributes both theoretically and practically to scalable multi-robot path planning and task allocation, offering an efficient framework for coordinating autonomous agents in shared environments.
Systems and Control (EESS)
Feature Matching-Based Gait Phase Prediction for Obstacle Crossing Control of Powered Transfemoral Prosthesis
For amputees with powered transfemoral prosthetics, navigating obstacles or complex terrain remains challenging. This study addresses this issue by using an inertial sensor on the sound ankle to guide obstacle-crossing movements. A genetic algorithm computes the optimal neural network structure to predict the required angles of the thigh and knee joints. A gait progression prediction algorithm determines the actuation angle index for the prosthetic knee motor, ultimately defining the necessary thigh and knee angles and gait progression. Results show that when the standard deviation of Gaussian noise added to the thigh angle data is less than 1, the method can effectively eliminate noise interference, achieving 100\% accuracy in gait phase estimation under 150 Hz, with thigh angle prediction error being 8.71\% and knee angle prediction error being 6.78\%. These findings demonstrate the method's ability to accurately predict gait progression and joint angles, offering significant practical value for obstacle negotiation in powered transfemoral prosthetics.
comment: 6 pages, conference
Learning to Drive Safely with Hybrid Options
Out of the many deep reinforcement learning approaches for autonomous driving, only few make use of the options (or skills) framework. That is surprising, as this framework is naturally suited for hierarchical control applications in general, and autonomous driving tasks in specific. Therefore, in this work the options framework is applied and tailored to autonomous driving tasks on highways. More specifically, we define dedicated options for longitudinal and lateral manoeuvres with embedded safety and comfort constraints. This way, prior domain knowledge can be incorporated into the learning process and the learned driving behaviour can be constrained more easily. We propose several setups for hierarchical control with options and derive practical algorithms following state-of-the-art reinforcement learning techniques. By separately selecting actions for longitudinal and lateral control, the introduced policies over combined and hybrid options obtain the same expressiveness and flexibility that human drivers have, while being easier to interpret than classical policies over continuous actions. Of all the investigated approaches, these flexible policies over hybrid options perform the best under varying traffic conditions, outperforming the baseline policies over actions.
Efficient Network Reconfiguration by Randomized Switching
We present an algorithm that efficiently computes nearly-optimal solutions to a class of combinatorial reconfiguration problems on weighted, undirected graphs. Inspired by societally relevant applications in networked infrastructure systems, these problems consist of simultaneously finding an unreweighted sparsified graph and nodal potentials that satisfy fixed demands, where the objective is to minimize some congestion criterion, e.g., a Laplacian quadratic form. These are mixed-integer nonlinear programming problems that are NP-hard in general. To circumvent these challenges, instead of solving for a single best configuration, the proposed randomized switching algorithm seeks to design a distribution of configurations that, when sampled, ensures that congestion concentrates around its optimum. We show that the proposed congestion metric is a generalized self-concordant function in the space of switching probabilities, which enables the use of efficient and simple conditional gradient methods. We implement our algorithm and show that it outperforms a state-of-the-art commercial mixed-integer second-order cone programming (MISOCP) solver by orders of magnitude over a large range of problem sizes.
Flatness-based trajectory planning for 3D overhead cranes with friction compensation and collision avoidance
This paper presents an optimal trajectory generation method for 3D overhead cranes by leveraging differential flatness. This framework enables the direct inclusion of complex physical and dynamic constraints, such as nonlinear friction and collision avoidance for both payload and rope. Our approach allows for aggressive movements by constraining payload swing only at the final point. A comparative simulation study validates our approach, demonstrating that neglecting dry friction leads to actuator saturation and collisions. The results show that friction modeling is a fundamental requirement for fast and safe crane trajectories.
comment: 8 pages, 11 figures
Analyzing Parametric Oscillator Ising Machines through the Kuramoto Lens
Networks of coupled nonlinear oscillators are emerging as powerful physical platforms for implementing Ising machines. Yet the relationship between parametric-oscillator implementations and traditional oscillator-based Ising machines remains underexplored. In this work, we develop a Kuramoto-style, canonical phase description of parametric oscillator Ising machines by starting from the Stuart-Landau oscillator model -- the canonical normal form near a Hopf bifurcation, and a natural reduced description for many parametric oscillator implementations such as the degenerate optical parametric oscillator (DOPO) among others. The resulting phase dynamics combine the usual phase-difference coupling observed in the standard Kuramoto model along with an intrinsic phase sum term that is generated when conjugate coupling is considered. Moreover, our formulation helps explain why explicit second-harmonic driving is unnecessary in parametric oscillators and also reveals how quasi-steady amplitude heterogeneity scales the original strength of the spin interaction with potentially adverse impacts on the solution quality. Our work helps develop a unifying view of the oscillator-based approach to designing Ising machines.
Contributions to Semialgebraic-Set-Based Stability Verification of Dynamical Systems with Neural-Network-Based Controllers
Neural-network-based controllers (NNCs) can represent complex, highly nonlinear control laws, but verifying the closed-loop stability of dynamical systems using them remains challenging. This work presents contributions to a state-of-the-art stability verification procedure for NNC-controlled systems which relies on semialgebraic-set-based input-output modeling to pose the search for a Lyapunov function as an optimization problem. Specifically, this procedure's conservatism when analyzing NNCs using transcendental activation functions and the restriction to feedforward NNCs are addressed by a) introducing novel semialgebraic activation functions that preserve key properties of common transcendental activations and b) proving compatibility of NNCs from the broader class of recurrent equilibrium networks (RENs) with this procedure. Furthermore, the indirect optimization of a local region of attraction (RoA) estimate using a restricted set of candidate Lyapunov functions is greatly improved via c) the introduction of a richer parameterization of candidate Lyapunov functions than previously reported and d) the formulation of novel semidefinite programs (SDPs) that directly optimize the resulting RoA estimate. The value of these contributions is highlighted in two numerical examples.
comment: Submitted to the IEEE for possible publication, 16 pages, 6 figures
Development of a Digital Twin for an Electric Vehicle Emulator Modeling, Control, and Experimental Validation
This paper presents the development and validation of a digital twin for a scaled-down electric vehicle (EV) emulator, designed to replicate longitudinal vehicle dynamics under diverse operating conditions. The emulator integrates a separately excited DC motor (SEDCM), a four-quadrant DC-DC converter, a battery emulator, and a mechanical load emulator. The system models tractive effort, aerodynamic drag, and gradient resistance using Newton's second law. In contrast to conventional graphical modeling tools (e.g., block diagrams and bond graphs), the adopted Energetic Macroscopic Representation (EMR) framework offers clear advantages by explicitly representing energy interactions and facilitating the systematic derivation of control structures. A control strategy developed within this framework governs energy flow across the powertrain, enabling accurate speed control via armature voltage regulation. Experimental tests conducted on a Lucas-Nulle test bench show strong correlation with simulation results. The study also introduces a methodology to compute the maximum admissible vehicle mass - determined to be 13.5 kg for a 180 W motor operating at 1900 rpm - based on acceleration and slope constraints. Furthermore, a switching algorithm for the bidirectional converter ensures reliable four quadrant operation. Overall, the proposed framework provides a scalable and effective approach for EV emulation, control design, and energy management validation.
comment: 6 pages, Accepted at CODIT 2025 (Conference on Decision and Control in Intelligent Technology)
Mechanism-Guided Residual Lifting and Control Consistent Modeling for Pneumatic Drying Processes
Pneumatic drying processes in industries such as agriculture, chemicals,and pharmaceuticals are notoriously difficult to model and control due to multi-source disturbances,coupled stage dynamics, and significant measurement delays. Traditional modeling paradigms often fail to simultaneously deliver accuracy, interpretability, and closed-loop applicability. To address this challenge, this paper introduces a unified hybrid modeling framework, termed Physics-Guided Residual Lifting with Control-Consistent Correction,which integrates a transient mechanistic model with a stability-constrained data-driven component. The framework covers the complete process chain of drying, transport, and winnowing. On the mechanistic level, the model unifies mass transfer dynamics using the partial pressure difference of water vapor, incorporates water activity clamping and latent heat corrections for bound water, and ensures energy closure with moisture-dependent specific heat. On the data-driven level,we propose an orthogonal residual learning scheme. It leverages intermediate states from the mechanistic model as proxy variables to construct a physics-inspired dictionary, preventing parameter compensation and overfitting during ridge regression. Furthermore, to ensure suitability for predictive control, a Control-Consistent Extended Dynamic Mode Decomposition with stability constraints is employed to learn the residual dynamics, for which we provide boundedness proofs and stability guarantees. The framework was validated on 10 industrial batches, comprising 63,000 samples. On unseen test data, the hybrid model achieved a Mean Absolute Error of 0.016% for outlet moisture and 0.015 {\deg}C for outlet temperature, with values improving to 0.986 and 0.995, respectively. The resulting prediction residuals exhibit white-noise characteristics, with significantly reduced spectral energy at low frequencies.
comment: 6figs,4tables
An N-of-1 Artificial Intelligence Ecosystem for Precision Medicine
Artificial intelligence in medicine is built to serve the average patient. By minimizing error across large datasets, most systems deliver strong aggregate accuracy yet falter at the margins: patients with rare variants, multimorbidity, or underrepresented demographics. This average patient fallacy erodes both equity and trust. We propose a different design: a multi-agent ecosystem for N-of-1 decision support. In this environment, agents clustered by organ systems, patient populations, and analytic modalities draw on a shared library of models and evidence synthesis tools. Their results converge in a coordination layer that weighs reliability, uncertainty, and data density before presenting the clinician with a decision-support packet: risk estimates bounded by confidence ranges, outlier flags, and linked evidence. Validation shifts from population averages to individual reliability, measured by error in low-density regions, calibration in the small, and risk--coverage trade-offs. Anticipated challenges include computational demands, automation bias, and regulatory fit, addressed through caching strategies, consensus checks, and adaptive trial frameworks. By moving from monolithic models to orchestrated intelligence, this approach seeks to align medical AI with the first principle of medicine: care that is transparent, equitable, and centered on the individual.
comment: This study has been supported by grants from the National Institutes of Health: The National Institute on Aging R01AG074372 and The National Institute of Allergy and Infectious Diseases R01AI165535
Survey and Tutorial of Reinforcement Learning Methods in Process Systems Engineering
Sequential decision making under uncertainty is central to many Process Systems Engineering (PSE) challenges, where traditional methods often face limitations related to controlling and optimizing complex and stochastic systems. Reinforcement Learning (RL) offers a data-driven approach to derive control policies for such challenges. This paper presents a survey and tutorial on RL methods, tailored for the PSE community. We deliver a tutorial on RL, covering fundamental concepts and key algorithmic families including value-based, policy-based and actor-critic methods. Subsequently, we survey existing applications of these RL techniques across various PSE domains, such as in fed-batch and continuous process control, process optimization, and supply chains. We conclude with PSE focused discussion of specialized techniques and emerging directions. By synthesizing the current state of RL algorithm development and implications for PSE this work identifies successes, challenges, trends, and outlines avenues for future research at the interface of these fields.
A comparison between joint and dual UKF implementations for state estimation and leak localization in water distribution networks
The sustainability of modern cities highly depends on efficient water distribution management, including effective pressure control and leak detection and localization. Accurate information about the network hydraulic state is therefore essential. This article presents a comparison between two data-driven state estimation methods based on the Unscented Kalman Filter (UKF), fusing pressure, demand and flow data for head and flow estimation. One approach uses a joint state vector with a single estimator, while the other uses a dual-estimator scheme. We analyse their main characteristics, discussing differences, advantages and limitations, and compare them theoretically in terms of accuracy and complexity. Finally, we show several estimation results for the L-TOWN benchmark, allowing to discuss their properties in a real implementation.
comment: This work has been submitted to ECC2026 for review. It has 7 pages and 2 figures
Sample-based Moving Horizon Estimation
In this paper, we propose a sample-based moving horizon estimation (MHE) scheme for general nonlinear systems to estimate the current system state using irregularly and/or infrequently available measurements. The cost function of the MHE optimization problem is suitably designed to accommodate these irregular output sequences. We also establish that, under a suitable sample-based detectability condition known as sample-based incremental input/output-to-state stability (i-IOSS), the proposed sample-based MHE achieves robust global exponential stability (RGES). Additionally, for the case of linear systems, we draw connections between sample-based observability and sample-based i-IOSS. This demonstrates that previously established conditions for linear systems to be sample-based observable can be utilized to verify or design sampling strategies that satisfy the conditions to guarantee RGES of the sample-based MHE. Finally, the effectiveness of the proposed sample-based MHE is illustrated through a simulation example.
Improved Accuracy of Robot Localization Using 3-D LiDAR in a Hippocampus-Inspired Model
Boundary Vector Cells (BVCs) are a class of neurons in the brains of vertebrates that encode environmental boundaries at specific distances and allocentric directions, playing a central role in forming place fields in the hippocampus. Most computational BVC models are restricted to two-dimensional (2D) environments, making them prone to spatial ambiguities in the presence of horizontal symmetries in the environment. To address this limitation, we incorporate vertical angular sensitivity into the BVC framework, thereby enabling robust boundary detection in three dimensions, and leading to significantly more accurate spatial localization in a biologically-inspired robot model. The proposed model processes LiDAR data to capture vertical contours, thereby disambiguating locations that would be indistinguishable under a purely 2D representation. Experimental results show that in environments with minimal vertical variation, the proposed 3D model matches the performance of a 2D baseline; yet, as 3D complexity increases, it yields substantially more distinct place fields and markedly reduces spatial aliasing. These findings show that adding a vertical dimension to BVC-based localization can significantly enhance navigation and mapping in real-world 3D spaces while retaining performance parity in simpler, near-planar scenarios.
comment: 8 pages, 9 figures, Presented at the 2025 International Joint Conference on Neural Networks, Rome, July 2025
Defect Mitigation for Robot Arm-based Additive Manufacturing Utilizing Intelligent Control and IOT
This paper presents an integrated robotic fused deposition modeling additive manufacturing system featuring closed-loop thermal control and intelligent in-situ defect correction using a 6-degree of freedom robotic arm and an Oak-D camera. The robot arm end effector was modified to mount an E3D hotend thermally regulated by an IoT microcontroller, enabling precise temperature control through real-time feedback. Filament extrusion system was synchronized with robotic motion, coordinated via ROS2, ensuring consistent deposition along complex trajectories. A vision system based on OpenCV detects layer-wise defects position, commanding autonomous re-extrusion at identified sites. Experimental validation demonstrated successful defect mitigation in printing operations. The integrated system effectively addresses challenges real-time quality assurance. Inverse kinematics were used for motion planning, while homography transformations corrected camera perspectives for accurate defect localization. The intelligent system successfully mitigated surface anomalies without interrupting the print process. By combining real-time thermal regulation, motion control, and intelligent defect detection & correction, this architecture establishes a scalable and adaptive robotic additive manufacturing framework suitable for aerospace, biomedical, and industrial applications.
comment: This Paper Has Accepted at ASME 2025 International Mechanical Engineering Congress and Exposition (IMECE 2025)
A Hamilton-Jacobi Reachability Framework with Soft Constraints for Safety-Critical Systems
Traditional reachability methods provide formal guarantees of safety under bounded disturbances. However, they strictly enforce state constraints as inviolable, which can result in overly conservative or infeasible solutions in complex operational scenarios. Many constraints encountered in practice, such as bounds on battery state of charge in electric vehicles, recommended speed envelopes, and comfort constraints in passenger-carrying vehicles, are inherently soft. Soft constraints allow temporary violations within predefined safety margins to accommodate uncertainty and competing operational demands, albeit at a cost such as increased wear or higher operational expenses. This paper introduces a novel soft-constrained reachability framework that extends Hamilton-Jacobi reachability analysis for the formal verification of safety-critical systems subject to both hard and soft constraints. Specifically, the framework characterizes a subset of the state space, referred to as the soft-constrained reach-avoid set, from which the system is guaranteed to reach a desired set safely, under worst-case disturbances, while ensuring that cumulative soft-constraint violations remain within a user-specified budget. The framework comprises two principal components: (i) an augmented-state model with an auxiliary budget state that tracks soft-constraint violations, and (ii) a regularization-based approximation of the discontinuous Hamilton-Jacobi value function associated with the reach-avoid differential game studied herein. The effectiveness of the proposed framework is demonstrated through numerical examples involving the landing of a simple point-mass model and a fixed-wing aircraft executing an emergency descent, both under wind disturbances. The simulation results validate the framework's ability to simultaneously manage both hard and soft constraints in safety-critical settings
Delay Tolerant Control for Autonomous Driving Using CDOB
With the rapid growth of autonomous vehicle technologies, effective path-tracking control has become a critical component in ensuring safety and efficiency in complex traffic scenarios. When a high level decision making agent generates a collision free path, a robust low level controller is required to precisely follow this trajectory. However, connected autonomous vehicles (CAV) are inherently affected by communication delays and computation delays, which significantly degrade the performance of conventional controllers such as PID or other more advanced controllers like disturbance observers (DOB). While DOB-based designs have shown effectiveness in rejecting disturbances under nominal conditions, their performance deteriorates considerably in the presence of unknown time delays. To address this challenge, this paper proposes a delay-tolerant communication disturbance observer (CDOB) framework for path-tracking control in delayed systems. The proposed CDOB compensates for the adverse effects of time delays, maintaining accurate trajectory tracking even under uncertain and varying delay conditions. It is shown through a simulation study that the proposed control architecture maintains close alignment with the reference trajectory across various scenarios, including single lane change, double-= lane change, and Elastic Band generated collision avoidance paths under various time delays. Simulation results further demonstrate that the proposed method outperforms conventional approaches in both tracking accuracy and delay robustness, making it well suited for autonomous driving applications.
Decentralized Merging Control of Connected and Automated Vehicles to Enhance Safety and Energy Efficiency using Control Barrier Functions
This paper presents a decentralized Control Barrier Function (CBF) based approach for highway merging of Connected and Automated Vehicles (CAVs). In this control algorithm, each "host" vehicle negotiates with other agents in a control zone of the highway network, and enacts its own action, to perform safe and energy-efficient merge maneuvers. It uses predictor-corrector loops within the robust CBF setting for negotiation and to reconcile disagreements that may arise. There is no explicit order of vehicles and no priority. A notable feature is absence of gridlocks due to instability of the inter-agent system. Results from Monte Carlo simulations show significant improvement in the system-wide energy efficiency and traffic flow compared to a first-in-first-out approach, as well as enhanced robustness of the proposed decentralized controller compared to its centralized counterpart.
comment: This work has been submitted to a conference for possible publication and is under review. Paper summary: 8 pages, 5 figures, 2 tables
Deep Reinforcement Learning Approach to QoSAware Load Balancing in 5G Cellular Networks under User Mobility and Observation Uncertainty
Efficient mobility management and load balancing are critical to sustaining Quality of Service (QoS) in dense, highly dynamic 5G radio access networks. We present a deep reinforcement learning framework based on Proximal Policy Optimization (PPO) for autonomous, QoS-aware load balancing implemented end-to-end in a lightweight, pure-Python simulation environment. The control problem is formulated as a Markov Decision Process in which the agent periodically adjusts Cell Individual Offset (CIO) values to steer user-cell associations. A multi-objective reward captures key performance indicators (aggregate throughput, latency, jitter, packet loss rate, Jain's fairness index, and handover count), so the learned policy explicitly balances efficiency and stability under user mobility and noisy observations. The PPO agent uses an actor-critic neural network trained from trajectories generated by the Python simulator with configurable mobility (e.g., Gauss-Markov) and stochastic measurement noise. Across 500+ training episodes and stress tests with increasing user density, the PPO policy consistently improves KPI trends (higher throughput and fairness, lower delay, jitter, packet loss, and handovers) and exhibits rapid, stable convergence. Comparative evaluations show that PPO outperforms rule-based ReBuHa and A3 as well as the learning-based CDQL baseline across all KPIs while maintaining smoother learning dynamics and stronger generalization as load increases. These results indicate that PPO's clipped policy updates and advantage-based training yield robust, deployable control for next-generation RAN load balancing using an entirely Python-based toolchain.
NeuroDOB: A Deep Neural Observer-Based Controller for Vehicle Lateral Dynamics
This paper proposes NeuroDOB, a deep neural network based observer controller for vehicle lateral dynamics, which replaces the conventional disturbance observer (DOB) with a deep neural network (DNN) to enhance personalized lateral control. Unlike conventional DOBs that compensate for general disturbances such as road friction variation and crosswind, NeuroDOB explicitly addresses unmodeled vehicle dynamics and driver-specific behaviors by learning the steering compensation signal from driver-in-the-loop simulations using CarSim's embedded controller as a surrogate driver. The proposed architecture integrates NeuroDOB with a linear quadratic regulator (LQR), where the DNN outputs a delta error correction added to the baseline LQR steering input to produce the final control command. Input features to the DNN include lateral position and yaw angle errors, and the LQR control input. Experimental validation using a lateral dynamic bicycle model within CarSim demonstrates that NeuroDOB effectively adapts to individual driving habits, improving lateral control performance beyond what conventional LQR controllers achieve. The results indicate the potential of deep neural network based observer to enable personalized and adaptive autonomous vehicle control. In cognitive terms, the proposed architecture can be viewed as a dual-system control structure. The baseline LQR corresponds to System 1, a model-based, fast, and analytic reasoning layer ensuring stability. The NeuroDOB acts as System 2, a reflective, data-driven layer that learns compensation from experience and corrects the analytical bias of System 1. Together, they form an integrated decision process analogous to human intuition-reflection interaction, enabling both stability and adaptability in lateral control.
comment: 12 pages, 16 figures
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
Assessment of Power System Stability Considering Multiple Time-Scale Dynamics: Insights into Hopf Bifurcations in Presence of GFL and GFM IBRs
Real power systems exhibit dynamics that evolve across a wide range of time scales, from very fast to very slow phenomena. Historically, incorporating these wide-ranging dynamics into a single model has been impractical. As a result, power engineers rely on time-scale decomposition to simplify models. When fast phenomena are evaluated, slow dynamics are neglected (assumed stable), and vice versa. This paper challenges this paradigm by showing the importance of assessing power system stability while considering multiple time scales simultaneously. Using the concept of Hopf bifurcations, it exemplifies instability issues that would be missed if multi-time-scale dynamics are not considered. Although this work employs both grid-following and grid-forming inverter-based resource models, it is not a direct comparison. Instead, it presents a case study demonstrating how one technology can complement the other from a multi time-scale dynamics perspective.
comment: 7 pages
Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion NeurIPS 2025
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimates of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their frameworks. In this work, we propose a novel two-stage training framework to jointly synthesize a controller and a Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training-data sampling strategy and a domain-updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10{,}000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.
comment: NeurIPS 2025
MathBode: Understanding LLM Reasoning with Dynamical Systems
This paper presents MathBode, a dynamic diagnostic for mathematical reasoning in large language models (LLMs). Instead of one-shot accuracy, MathBode treats each parametric problem as a system: we drive a single parameter sinusoidally and fit first-harmonic responses of model outputs and exact solutions. This yields interpretable, frequency-resolved metrics -- gain (amplitude tracking) and phase (lag) -- that form Bode-style fingerprints. Across five closed-form families (linear solve, ratio/saturation, compound interest, 2x2 linear systems, similar triangles), the diagnostic surfaces systematic low-pass behavior and growing phase lag that accuracy alone obscures. We compare several models against a symbolic baseline that calibrates the instrument ($G \approx 1$, $\phi \approx 0$). Results separate frontier from mid-tier models on dynamics, providing a compact, reproducible protocol that complements standard benchmarks with actionable measurements of reasoning fidelity and consistency. We open-source the dataset and code to enable further research and adoption.
Learning Wireless Interference Patterns: Decoupled GNN for Throughput Prediction in Heterogeneous Multi-Hop p-CSMA Networks
The p-persistent CSMA protocol is central to random-access MAC analysis, but predicting saturation throughput in heterogeneous multi-hop wireless networks remains a hard problem. Simplified models that assume a single, shared interference domain can underestimate throughput by 48-62% in sparse topologies. Exact Markov-chain analyses are accurate but scale exponentially in computation time, making them impractical for large networks. These computational barriers motivate structural machine learning approaches like GNNs for scalable throughput prediction in general network topologies. Yet off-the-shelf GNNs struggle here: a standard GCN yields 63.94% normalized mean absolute error (NMAE) on heterogeneous networks because symmetric normalization conflates a node's direct interference with higher-order, cascading effects that pertain to how interference propagates over the network graph. Building on these insights, we propose the Decoupled Graph Convolutional Network (D-GCN), a novel architecture that explicitly separates processing of a node's own transmission probability from neighbor interference effects. D-GCN replaces mean aggregation with learnable attention, yielding interpretable, per-neighbor contribution weights while capturing complex multihop interference patterns. D-GCN attains 3.3% NMAE, outperforms strong baselines, remains tractable even when exact analytical methods become computationally infeasible, and enables gradient-based network optimization that achieves within 1% of theoretical optima.
Flight-Ready Precise and Robust Carrier-Phase GNSS Navigation Software for Distributed Space Systems
This paper presents the full requirements analysis, design, development, and testing of high-precision navigation flight software for Distributed Space Systems (DSS) using Carrier Phase Differential GNSS (CDGNSS). Five main contributions are made. First, a survey of flown and upcoming DSS missions with stringent precision requirements is conducted, from which a thorough requirements analysis is distilled to guide development and testing. Second, a real-time navigation functional architecture is designed, and adopts a sparse and regularized Consider Kalman Filter with options for numerical stability in-flight. The filter rigorously accounts for uncertainties in process noise, measurement noise, and biases. It tracks float ambiguities with integer resolution where possible. The covariance correlation structure is preserved under all navigation modes, including contingencies and outages. Third, a lightweight, memoryless Fault Detection, Isolation, and Recovery (FDIR) module is developed to guard against anomalous measurements, providing statistical screening and ensuring robust navigation. Fourth, the software architecture is proposed for ease of integration, with strategies presented for modularity and computational efficiency tailored to constrained flight systems. Fifth, a comprehensive test campaign is conducted, mapped to a requirements verification matrix, spanning unit, interface, software-in-the-loop, and real-time hardware-in-the-loop tests, emphasizing gradual test fidelity for efficient fault isolation. Finally, flight-like results are demonstrated using the VISORS mission, due to the generalizability of the VISORS navigation operations, and the stringency which demands sub-centimeter relative position and sub-millimeter-per-second velocity accuracy. This architecture aims to serve as a reference for next-generation DSS missions adopting CDGNSS.
A Volumetric Privacy Measure for Dynamical Systems With Bounded Disturbance
In this paper, we first present a volumetric privacy measure for dynamical systems with bounded disturbances, wherein the states of the system contain private information and an adversary with access to sensor measurements attempts to infer the set of potential values of the private information. Under the proposed privacy measure, the volume of the uncertainty set of the adversary given the sensor measurements is considered as the privacy level of the system. We next characteristic the time evolution of the proposed privacy measure and study its properties for a particular system with both public and private states, where a set containing the public state is shared as the observation. Approximate set-membership estimation techniques are developed to compute the private-state uncertainty set, and the properties of the privacy measure are analyzed, demonstrating that the uncertainty reduction of the adversary is bounded by the information gain from the observation set. Furthermore, an optimization-based privacy filter design problem is formulated, employing randomization and linear programming to enhance the privacy level. The effectiveness of the proposed approach is validated through a production-inventory case study. Results show that the optimal privacy filter significantly improves robustness against inference attacks and outperforms two baseline mechanisms based on additive noise and quantization.
A cutting-surface consensus approach for distributed robust optimization of multi-agent systems
A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, an approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints to ensure tractability and restricting the right-hand side of the constraints with a positive parameter to ensure a feasible solution for (DRCP) can be obtained. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and gradient projected operations. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed local feasibility for each agent. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and adding the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.
comment: 16 pages, 8 figures, published to IEEE TAC
Operational Risks in Grid Integration of Large Data Center Loads: Characteristics, Stability Assessments, and Sensitivity Studies
This paper investigates the dynamic interactions between large-scale data centers and the power grid, focusing on reliability challenges arising from sudden fluctuations in demand. With the rapid growth of AI-driven workloads, such fluctuations, along with fast ramp patterns, are expected to exacerbate stressed grid conditions and system instabilities. We consider a few open-source AI data center consumption profiles from the MIT supercloud datasets, along with generating a few experimental HPC job-distribution-based inference profiles. Subsequently, we develop analytical methodologies for real-time assessment of grid stability, focusing on both transient and small-signal stability assessments. Energy-flow-like metrics for nonlinear transient stability, formulated by computing localized data center bus kinetic-like flows and coupling interactions with neighboring buses over varying time windows, help provide operators with real-time assessments of the regional grid stress in the data center hubs. On the other hand, small-signal stability metrics, constructed from analytical state matrices under variable operating conditions during a fast ramping period, enable snapshot-based assessments of data center load fluctuations and provide enhanced observability into evolving grid conditions. By quantifying the stability impacts of large data center clusters, studies conducted in the modified IEEE benchmark $68-$bus model support improved operator situational awareness to capture risks in reliable integration of large data center loads.
comment: 13 pages, 8 figures, 3 tables
Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
Efficient Path Planning and Task Allocation Algorithm for Boolean Specifications
This paper presents a novel path-planning and task assignment algorithm for multi-robot systems that should fulfill a global Boolean specification. The proposed method is based on Integer Linear Programming (ILP) formulations, which are combined with structural insights from Petri nets to improve scalability and computational efficiency. By proving that the \emph{constraint matrix} is totally unimodular (TU) for certain classes of problems, the ILP formulation can be relaxed into a Linear Programming (LP) problem without losing the integrality of the solution. This relaxation eliminates complex combinatorial techniques, significantly reducing computational overhead and thus ensuring scalability for large-scale systems. Using the approach proposed in this paper, we can solve path-planning problems for teams made up to 500 robots. The method guarantees computational tractability, handles collision avoidance and reduces computational demands through iterative LP optimization techniques. Case studies demonstrate the efficiency of the algorithm in generating scalable, collision-free paths for large robot teams navigating in complex environments. While the conservative nature of collision avoidance introduces additional constraints, and thus, computational requirements, the solution remains practical and impactful for diverse applications. The algorithm is particularly applicable to real-world scenarios, including warehouse logistics where autonomous robots must efficiently coordinate tasks or search-and-rescue operations in various environments. This work contributes both theoretically and practically to scalable multi-robot path planning and task allocation, offering an efficient framework for coordinating autonomous agents in shared environments.