MyArxiv
Robotics
A Real-time Anomaly Detection Method for Robots based on a Flexible and Sparse Latent Space
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoders model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code will be made publicly available after acceptance.
comment: 20 pages, 11 figures
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
Systems and Control (CS)
Robust MPC for Uncertain Linear Systems -- Combining Model Adaptation and Iterative Learning
This paper presents a robust adaptive learning Model Predictive Control (MPC) framework for linear systems with parametric uncertainties and additive disturbances performing iterative tasks. The approach iteratively refines the parameter estimates using set membership estimation. Performance enhancement over iterations is achieved by learning the terminal cost from data. Safety is enforced using a terminal set, which is also learned iteratively. The proposed method guarantees recursive feasibility, constraint satisfaction, and a robust bound on the closed-loop cost. Numerical simulations on a mass-spring-damper system demonstrate improved computational efficiency and control performance compared to an existing robust adaptive MPC approach.
comment: Github link to the example: https://github.com/HannesPetrenz/RALMPC_Linear_Uncertain_Systems
Distributed Optimization with Gradient Tracking over Heterogeneous Delay-Prone Directed Networks
In this paper, we address the distributed optimization problem over unidirectional networks with possibly time-invariant heterogeneous bounded transmission delays. In particular, we propose a modified version of the Accelerated Distributed Directed OPTimization (ADD-OPT) algorithm, herein called Robustified ADD-OPT (R-ADD-OPT), which is able to solve the distributed optimization problem, even when the communication links suffer from heterogeneous but bounded transmission delays. We show that if the gradient step-size of the R-ADD-OPT algorithm is within a certain range, which also depends on the maximum time delay in the network, then the nodes are guaranteed to converge to the optimal solution of the distributed optimization problem. The range of the gradient step-size that guarantees convergence can be computed a priori based on the maximum time delay in the network.
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
Systems and Control (EESS)
Robust MPC for Uncertain Linear Systems -- Combining Model Adaptation and Iterative Learning
This paper presents a robust adaptive learning Model Predictive Control (MPC) framework for linear systems with parametric uncertainties and additive disturbances performing iterative tasks. The approach iteratively refines the parameter estimates using set membership estimation. Performance enhancement over iterations is achieved by learning the terminal cost from data. Safety is enforced using a terminal set, which is also learned iteratively. The proposed method guarantees recursive feasibility, constraint satisfaction, and a robust bound on the closed-loop cost. Numerical simulations on a mass-spring-damper system demonstrate improved computational efficiency and control performance compared to an existing robust adaptive MPC approach.
comment: Github link to the example: https://github.com/HannesPetrenz/RALMPC_Linear_Uncertain_Systems
Distributed Optimization with Gradient Tracking over Heterogeneous Delay-Prone Directed Networks
In this paper, we address the distributed optimization problem over unidirectional networks with possibly time-invariant heterogeneous bounded transmission delays. In particular, we propose a modified version of the Accelerated Distributed Directed OPTimization (ADD-OPT) algorithm, herein called Robustified ADD-OPT (R-ADD-OPT), which is able to solve the distributed optimization problem, even when the communication links suffer from heterogeneous but bounded transmission delays. We show that if the gradient step-size of the R-ADD-OPT algorithm is within a certain range, which also depends on the maximum time delay in the network, then the nodes are guaranteed to converge to the optimal solution of the distributed optimization problem. The range of the gradient step-size that guarantees convergence can be computed a priori based on the maximum time delay in the network.
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
Robotics
A Clean Slate for Offline Reinforcement Learning
Progress in offline reinforcement learning (RL) has been impeded by ambiguous problem definitions and entangled algorithmic designs, resulting in inconsistent implementations, insufficient ablations, and unfair evaluations. Although offline RL explicitly avoids environment interaction, prior methods frequently employ extensive, undocumented online evaluation for hyperparameter tuning, complicating method comparisons. Moreover, existing reference implementations differ significantly in boilerplate code, obscuring their core algorithmic contributions. We address these challenges by first introducing a rigorous taxonomy and a transparent evaluation protocol that explicitly quantifies online tuning budgets. To resolve opaque algorithmic design, we provide clean, minimalistic, single-file implementations of various model-free and model-based offline RL methods, significantly enhancing clarity and achieving substantial speed-ups. Leveraging these streamlined implementations, we propose Unifloral, a unified algorithm that encapsulates diverse prior approaches within a single, comprehensive hyperparameter space, enabling algorithm development in a shared hyperparameter space. Using Unifloral with our rigorous evaluation protocol, we develop two novel algorithms - TD3-AWR (model-free) and MoBRAC (model-based) - which substantially outperform established baselines. Our implementation is publicly available at https://github.com/EmptyJackson/unifloral.
Improving Swimming Performance in Soft Robotic Fish with Distributed Muscles and Embedded Kinematic Sensing
Bio-inspired underwater vehicles could yield improved efficiency, maneuverability, and environmental compatibility over conventional propeller-driven underwater vehicles. However, to realize the swimming performance of biology, there is a need for soft robotic swimmers with both distributed muscles and kinematic feedback. This study presents the design and swimming performance of a soft robotic fish with independently controllable muscles and embedded kinematic sensing distributed along the body. The soft swimming robot consists of an interior flexible spine, three axially distributed sets of HASEL artificial muscles, embedded strain gauges, a streamlined silicone body, and off-board electronics. In a fixed configuration, the soft robot generates a maximum thrust of 7.9 mN when excited near its first resonant frequency (2 Hz) with synchronized antagonistic actuation of all muscles. When excited near its second resonant frequency (8 Hz), synchronized muscle actuation generates 5.0 mN of thrust. By introducing a sequential phase offset into the muscle actuation, the thrust at the second resonant frequency increases to 7.2 mN, a 44% increase from simple antagonistic activation. The sequential muscle activation improves the thrust by increasing 1) the tail-beat velocity and 2) traveling wave content in the swimming kinematics by four times. Further, the second resonant frequency (8 Hz) generates nearly as much thrust as the first resonance (2 Hz) while requiring only $\approx25$% of the tail displacement, indicating that higher resonant frequencies have benefits for swimming in confined environments where a smaller kinematic envelope is necessary. These results demonstrate the performance benefits of independently controllable muscles and distributed kinematic sensing, and this type of soft robotic swimmer provides a platform to address the open challenge of sensorimotor control.
comment: 7 pages, 5 figures. To be published in the Proceedings of the 8th IEEE - RAS International Conference on Soft Robotics
Next-Future: Sample-Efficient Policy Learning for Robotic-Arm Tasks
Hindsight Experience Replay (HER) is widely regarded as the state-of-the-art algorithm for achieving sample-efficient multi-goal reinforcement learning (RL) in robotic manipulation tasks with binary rewards. HER facilitates learning from failed attempts by replaying trajectories with redefined goals. However, it relies on a heuristic-based replay method that lacks a principled framework. To address this limitation, we introduce a novel replay strategy, "Next-Future", which focuses on rewarding single-step transitions. This approach significantly enhances sample efficiency and accuracy in learning multi-goal Markov decision processes (MDPs), particularly under stringent accuracy requirements -- a critical aspect for performing complex and precise robotic-arm tasks. We demonstrate the efficacy of our method by highlighting how single-step learning enables improved value approximation within the multi-goal RL framework. The performance of the proposed replay strategy is evaluated across eight challenging robotic manipulation tasks, using ten random seeds for training. Our results indicate substantial improvements in sample efficiency for seven out of eight tasks and higher success rates in six tasks. Furthermore, real-world experiments validate the practical feasibility of the learned policies, demonstrating the potential of "Next-Future" in solving complex robotic-arm tasks.
comment: 10 pages, 9 figures, 6 tables
CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
A Real-time Anomaly Detection Method for Robots based on a Flexible and Sparse Latent Space
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoders model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code will be made publicly available after acceptance.
comment: 20 pages, 11 figures
The Robotability Score: Enabling Harmonious Robot Navigation on Urban Streets
This paper introduces the Robotability Score ($R$), a novel metric that quantifies the suitability of urban environments for autonomous robot navigation. Through expert interviews and surveys, we identify and weigh key features contributing to R for wheeled robots on urban streets. Our findings reveal that pedestrian density, crowd dynamics and pedestrian flow are the most critical factors, collectively accounting for 28% of the total score. Computing robotability across New York City yields significant variation; the area of highest R is 3.0 times more "robotable" than the area of lowest R. Deployments of a physical robot on high and low robotability areas show the adequacy of the score in anticipating the ease of robot navigation. This new framework for evaluating urban landscapes aims to reduce uncertainty in robot deployment while respecting established mobility patterns and urban planning principles, contributing to the discourse on harmonious human-robot environments.
comment: Accepted to CHI '25
FreeDOM: Online Dynamic Object Removal Framework for Static Map Construction Based on Conservative Free Space Estimation
Online map construction is essential for autonomous robots to navigate in unknown environments. However, the presence of dynamic objects may introduce artifacts into the map, which can significantly degrade the performance of localization and path planning. To tackle this problem, a novel online dynamic object removal framework for static map construction based on conservative free space estimation (FreeDOM) is proposed, consisting of a scan-removal front-end and a map-refinement back-end. First, we propose a multi-resolution map structure for fast computation and effective map representation. In the scan-removal front-end, we employ raycast enhancement to improve free space estimation and segment the LiDAR scan based on the estimated free space. In the map-refinement back-end, we further eliminate residual dynamic objects in the map by leveraging incremental free space information. As experimentally verified on SemanticKITTI, HeLiMOS, and indoor datasets with various sensors, our proposed framework overcomes the limitations of visibility-based methods and outperforms state-of-the-art methods with an average F1-score improvement of 9.7%.
A Multi-UAV Formation Obstacle Avoidance Method Combined Improved Simulated Annealing and Adaptive Artificial Potential Field
The traditional Artificial Potential Field (APF) method exhibits limitations in its force distribution: excessive attraction when UAVs are far from the target may cause collisions with obstacles, while insufficient attraction near the goal often results in failure to reach the target. Furthermore, APF is highly susceptible to local minima, compromising motion reliability in complex environments. To address these challenges, this paper presents a novel hybrid obstacle avoidance algorithm-Deflected Simulated Annealing-Adaptive Artificial Potential Field (DSA-AAPF)-which combines an improved simulated annealing mechanism with an enhanced APF model. The proposed approach integrates a Leader-Follower distributed formation strategy with the APF framework, where the resultant force formulation is redefined to smooth UAV trajectories. An adaptive gravitational gain function is introduced to dynamically adjust UAV velocity based on environmental context, and a fast-converging controller ensures accurate and efficient convergence to the target. Moreover, a directional deflection mechanism is embedded within the simulated annealing process, enabling UAVs to escape local minima caused by semi-enclosed obstacles through continuous rotational motion. The simulation results, covering formation reconfiguration, complex obstacle avoidance, and entrapment escape, demonstrate the feasibility, robustness, and superiority of the proposed DSA-AAPF algorithm.
Neural Control Barrier Functions from Physics Informed Neural Networks
As autonomous systems become increasingly prevalent in daily life, ensuring their safety is paramount. Control Barrier Functions (CBFs) have emerged as an effective tool for guaranteeing safety; however, manually designing them for specific applications remains a significant challenge. With the advent of deep learning techniques, recent research has explored synthesizing CBFs using neural networks-commonly referred to as neural CBFs. This paper introduces a novel class of neural CBFs that leverages a physics-inspired neural network framework by incorporating Zubov's Partial Differential Equation (PDE) within the context of safety. This approach provides a scalable methodology for synthesizing neural CBFs applicable to high-dimensional systems. Furthermore, by utilizing reciprocal CBFs instead of zeroing CBFs, the proposed framework allows for the specification of flexible, user-defined safe regions. To validate the effectiveness of the approach, we present case studies on three different systems: an inverted pendulum, autonomous ground navigation, and aerial navigation in obstacle-laden environments.
comment: 8 pages, 5 figures
Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
Accurate intrinsic and extrinsic camera calibration can be an important prerequisite for robotic applications that rely on vision as input. While there is ongoing research on enabling camera calibration using natural images, many systems in practice still rely on using designated calibration targets with e.g. checkerboard patterns or April tag grids. Once calibration images from different perspectives have been acquired and feature descriptors detected, those are typically used in an optimization process to minimize the geometric reprojection error. For this optimization to converge, input images need to be of sufficient quality and particularly sharpness; they should neither contain motion blur nor rolling-shutter artifacts that can arise when the calibration board was not static during image capture. In this work, we present a novel calibration image acquisition technique controlled via voice commands recorded with a clip-on microphone, that can be more robust and user-friendly than e.g. triggering capture with a remote control, or filtering out blurry frames from a video sequence in postprocessing. To achieve this, we use a state-of-the-art speech-to-text transcription model with accurate per-word timestamping to capture trigger words with precise temporal alignment. Our experiments show that the proposed method improves user experience by being fast and efficient, allowing us to successfully calibrate complex multi-camera setups.
comment: 8 pages, 6 figures
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
A Sublinear Algorithm for Path Feasibility Among Rectangular Obstacles
The problem of finding a path between two points while avoiding obstacles is critical in robotic path planning. We focus on the feasibility problem: determining whether such a path exists. We model the robot as a query-specific rectangular object capable of moving parallel to its sides. The obstacles are axis-aligned, rectangular, and may overlap. Most previous works only consider nondisjoint rectangular objects and point-sized or statically sized robots. Our approach introduces a novel technique leveraging generalized Gabriel graphs and constructs a data structure to facilitate online queries regarding path feasibility with varying robot sizes in sublinear time. To efficiently handle feasibility queries, we propose an online algorithm utilizing sweep line to construct a generalized Gabriel graph under the $L_\infty$ norm, capturing key gap constraints between obstacles. We utilize a persistent disjoint-set union data structure to efficiently determine feasibility queries in $\mathcal{O}(\log n)$ time and $\mathcal{O}(n)$ total space.
ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping CVPR 2025
Robotic grasping is a cornerstone capability of embodied systems. Many methods directly output grasps from partial information without modeling the geometry of the scene, leading to suboptimal motion and even collisions. To address these issues, we introduce ZeroGrasp, a novel framework that simultaneously performs 3D reconstruction and grasp pose prediction in near real-time. A key insight of our method is that occlusion reasoning and modeling the spatial relationships between objects is beneficial for both accurate reconstruction and grasping. We couple our method with a novel large-scale synthetic dataset, which comprises 1M photo-realistic images, high-resolution 3D reconstructions and 11.3B physically-valid grasp pose annotations for 12K objects from the Objaverse-LVIS dataset. We evaluate ZeroGrasp on the GraspNet-1B benchmark as well as through real-world robot experiments. ZeroGrasp achieves state-of-the-art performance and generalizes to novel real-world objects by leveraging synthetic data.
comment: Published at CVPR 2025, Webpage: https://sh8.io/#/zerograsp
Hallucination-Aware Generative Pretrained Transformer for Cooperative Aerial Mobility Control
This paper proposes SafeGPT, a two-tiered framework that integrates generative pretrained transformers (GPTs) with reinforcement learning (RL) for efficient and reliable unmanned aerial vehicle (UAV) last-mile deliveries. In the proposed design, a Global GPT module assigns high-level tasks such as sector allocation, while an On-Device GPT manages real-time local route planning. An RL-based safety filter monitors each GPT decision and overrides unsafe actions that could lead to battery depletion or duplicate visits, effectively mitigating hallucinations. Furthermore, a dual replay buffer mechanism helps both the GPT modules and the RL agent refine their strategies over time. Simulation results demonstrate that SafeGPT achieves higher delivery success rates compared to a GPT-only baseline, while substantially reducing battery consumption and travel distance. These findings validate the efficacy of combining GPT-based semantic reasoning with formal safety guarantees, contributing a viable solution for robust and energy-efficient UAV logistics.
Following Is All You Need: Robot Crowd Navigation Using People As Planners
Navigating in crowded environments requires the robot to be equipped with high-level reasoning and planning techniques. Existing works focus on developing complex and heavyweight planners while ignoring the role of human intelligence. Since humans are highly capable agents who are also widely available in a crowd navigation setting, we propose an alternative scheme where the robot utilises people as planners to benefit from their effective planning decisions and social behaviours. Through a set of rule-based evaluations, we identify suitable human leaders who exhibit the potential to guide the robot towards its goal. Using a simple base planner, the robot follows the selected leader through shorthorizon subgoals that are designed to be straightforward to achieve. We demonstrate through both simulated and real-world experiments that our novel framework generates safe and efficient robot plans compared to existing planners, even without predictive or data-driven modules. Our method also brings human-like robot behaviours without explicitly defining traffic rules and social norms. Code will be available at https://github.com/centiLinda/PeopleAsPlanner.git.
E2E Parking Dataset: An Open Benchmark for End-to-End Autonomous Parking
End-to-end learning has shown great potential in autonomous parking, yet the lack of publicly available datasets limits reproducibility and benchmarking. While prior work introduced a visual-based parking model and a pipeline for data generation, training, and close-loop test, the dataset itself was not released. To bridge this gap, we create and open-source a high-quality dataset for end-to-end autonomous parking. Using the original model, we achieve an overall success rate of 85.16% with lower average position and orientation errors (0.24 meters and 0.34 degrees).
ATLASv2: LLM-Guided Adaptive Landmark Acquisition and Navigation on the Edge
Autonomous systems deployed on edge devices face significant challenges, including resource constraints, real-time processing demands, and adapting to dynamic environments. This work introduces ATLASv2, a novel system that integrates a fine-tuned TinyLLM, real-time object detection, and efficient path planning to enable hierarchical, multi-task navigation and manipulation all on the edge device, Jetson Nano. ATLASv2 dynamically expands its navigable landmarks by detecting and localizing objects in the environment which are saved to its internal knowledge base to be used for future task execution. We evaluate ATLASv2 in real-world environments, including a handcrafted home and office setting constructed with diverse objects and landmarks. Results show that ATLASv2 effectively interprets natural language instructions, decomposes them into low-level actions, and executes tasks with high success rates. By leveraging generative AI in a fully on-board framework, ATLASv2 achieves optimized resource utilization with minimal prompting latency and power consumption, bridging the gap between simulated environments and real-world applications.
Superfast Configuration-Space Convex Set Computation on GPUs for Online Motion Planning
In this work, we leverage GPUs to construct probabilistically collision-free convex sets in robot configuration space on the fly. This extends the use of modern motion planning algorithms that leverage such representations to changing environments. These planners rapidly and reliably optimize high-quality trajectories, without the burden of challenging nonconvex collision-avoidance constraints. We present an algorithm that inflates collision-free piecewise linear paths into sequences of convex sets (SCS) that are probabilistically collision-free using massive parallelism. We then integrate this algorithm into a motion planning pipeline, which leverages dynamic roadmaps to rapidly find one or multiple collision-free paths, and inflates them. We then optimize the trajectory through the probabilistically collision-free sets, simultaneously using the candidate trajectory to detect and remove collisions from the sets. We demonstrate the efficacy of our approach on a simulation benchmark and a KUKA iiwa 7 robot manipulator with perception in the loop. On our benchmark, our approach runs 17.1 times faster and yields a 27.9% increase in reliability over the nonlinear trajectory optimization baseline, while still producing high-quality motion plans.
comment: 14 pages, 7 figures
Constraint-Aware Zero-Shot Vision-Language Navigation in Continuous Environments
We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
Train Robots in a JIF: Joint Inverse and Forward Dynamics with Human and Robot Demonstrations
Pre-training on large datasets of robot demonstrations is a powerful technique for learning diverse manipulation skills but is often limited by the high cost and complexity of collecting robot-centric data, especially for tasks requiring tactile feedback. This work addresses these challenges by introducing a novel method for pre-training with multi-modal human demonstrations. Our approach jointly learns inverse and forward dynamics to extract latent state representations, towards learning manipulation specific representations. This enables efficient fine-tuning with only a small number of robot demonstrations, significantly improving data efficiency. Furthermore, our method allows for the use of multi-modal data, such as combination of vision and touch for manipulation. By leveraging latent dynamics modeling and tactile sensing, this approach paves the way for scalable robot manipulation learning based on human demonstrations.
comment: 9 pages, 8 figures, submission to RSS 2025
RoboComm: A DID-based scalable and privacy-preserving Robot-to-Robot interaction over state channels
In a multi robot system establishing trust amongst untrusted robots from different organisations while preserving a robot's privacy is a challenge. Recently decentralized technologies such as smart contract and blockchain are being explored for applications in robotics. However, the limited transaction processing and high maintenance cost hinder the widespread adoption of such approaches. Moreover, blockchain transactions be they on public or private permissioned blockchain are publically readable which further fails to preserve the confidentiality of the robot's data and privacy of the robot. In this work, we propose RoboComm a Decentralized Identity based approach for privacy-preserving interaction between robots. With DID a component of Self-Sovereign Identity; robots can authenticate each other independently without relying on any third-party service. Verifiable Credentials enable private data associated with a robot to be stored within the robot's hardware, unlike existing blockchain based approaches where the data has to be on the blockchain. We improve throughput by allowing message exchange over state channels. Being a blockchain backed solution RoboComm provides a trustworthy system without relying on a single party. Moreover, we implement our proposed approach to demonstrate the feasibility of our solution.
comment: resolved overlapping text from another article
HAS-RRT: RRT-based Motion Planning using Topological Guidance
We present a hierarchical RRT-based motion planning strategy, Hierarchical Annotated-Skeleton Guided RRT (HAS-RRT), guided by a workspace skeleton, to solve motion planning problems. HAS-RRT provides up to a 91% runtime reduction and builds a tree at least 30% smaller than competitors while still finding competitive-cost paths. This is because our strategy prioritizes paths indicated by the workspace guidance to efficiently find a valid motion plan for the robot. Existing methods either rely too heavily on workspace guidance or have difficulty finding narrow passages. By taking advantage of the assumptions that the workspace skeleton provides, HAS-RRT is able to build a smaller tree and find a path faster than its competitors. Additionally, we show that HAS-RRT is robust to the quality of workspace guidance provided and that, in a worst-case scenario where the workspace skeleton provides no additional insight, our method performs comparably to an unguided method.
comment: 8 pages; Accepted at RA-L, April 2025
"A Good Bot Always Knows Its Limitations": Assessing Autonomous System Decision-making Competencies through Factorized Machine Self-confidence
How can intelligent machines assess their competency to complete a task? This question has come into focus for autonomous systems that algorithmically make decisions under uncertainty. We argue that machine self-confidence -- a form of meta-reasoning based on self-assessments of system knowledge about the state of the world, itself, and ability to reason about and execute tasks -- leads to many computable and useful competency indicators for such agents. This paper presents our body of work, so far, on this concept in the form of the Factorized Machine Self-confidence (FaMSeC) framework, which holistically considers several major factors driving competency in algorithmic decision-making: outcome assessment, solver quality, model quality, alignment quality, and past experience. In FaMSeC, self-confidence indicators are derived via 'problem-solving statistics' embedded in Markov decision process solvers and related approaches. These statistics come from evaluating probabilistic exceedance margins in relation to certain outcomes and associated competency standards specified by an evaluator. Once designed, and evaluated, the statistics can be easily incorporated into autonomous agents and serve as indicators of competency. We include detailed descriptions and examples for Markov decision process agents, and show how outcome assessment and solver quality factors can be found for a range of tasking contexts through novel use of meta-utility functions, behavior simulations, and surrogate prediction models. Numerical evaluations are performed to demonstrate that FaMSeC indicators perform as desired (references to human subject studies beyond the scope of this paper are provided).
comment: 63 pages, 22 figures, version accepted to ACM THRI
GarmentTracking: Category-Level Garment Pose Tracking CVPR 2023
Garments are important to humans. A visual system that can estimate and track the complete garment pose can be useful for many downstream tasks and real-world applications. In this work, we present a complete package to address the category-level garment pose tracking task: (1) A recording system VR-Garment, with which users can manipulate virtual garment models in simulation through a VR interface. (2) A large-scale dataset VR-Folding, with complex garment pose configurations in manipulation like flattening and folding. (3) An end-to-end online tracking framework GarmentTracking, which predicts complete garment pose both in canonical space and task space given a point cloud sequence. Extensive experiments demonstrate that the proposed GarmentTracking achieves great performance even when the garment has large non-rigid deformation. It outperforms the baseline approach on both speed and accuracy. We hope our proposed solution can serve as a platform for future research. Codes and datasets are available in https://garment-tracking.robotflow.ai.
comment: CVPR 2023
MonoRollBot: 3-DOF Spherical Robot with Underactuated Single Compliant Actuator Design
Spherical rolling robots have garnered significant attention in the field of mobile robotics for applications such as inspection and space exploration. Designing underactuated rolling robots poses challenges in achieving multi-directional propulsion with high degrees of freedom while utilizing a limited number of actuators. This paper presents the MonoRollBot, a novel 3-degree-of-freedom (DOF) spherical robot that utilizes an underactuated mechanism driven by only a single spring-motor system. Unlike conventional spherical robots, MonoRollBot employs a minimalist actuation approach, relying on only one motor and a passive spring to control its locomotion. The robot achieves 3-DOF motion through an innovative coupling of spring dynamics and motor control. In this work, we detail the design of the MonoRollBot and evaluate its motion capabilities through design studies. We also do studies on its locomotion behaviours based on changes in rotating mass and stiffness properties.
comment: 6 pages, 11 figures, accepted at IEEE RoboSoft 2025
PIP-Loco: A Proprioceptive Infinite Horizon Planning Framework for Quadrupedal Robot Locomotion ICRA
A core strength of Model Predictive Control (MPC) for quadrupedal locomotion has been its ability to enforce constraints and provide interpretability of the sequence of commands over the horizon. However, despite being able to plan, MPC struggles to scale with task complexity, often failing to achieve robust behavior on rapidly changing surfaces. On the other hand, model-free Reinforcement Learning (RL) methods have outperformed MPC on multiple terrains, showing emergent motions but inherently lack any ability to handle constraints or perform planning. To address these limitations, we propose a framework that integrates proprioceptive planning with RL, allowing for agile and safe locomotion behaviors through the horizon. Inspired by MPC, we incorporate an internal model that includes a velocity estimator and a Dreamer module. During training, the framework learns an expert policy and an internal model that are co-dependent, facilitating exploration for improved locomotion behaviors. During deployment, the Dreamer module solves an infinite-horizon MPC problem, adapting actions and velocity commands to respect the constraints. We validate the robustness of our training framework through ablation studies on internal model components and demonstrate improved robustness to training noise. Finally, we evaluate our approach across multi-terrain scenarios in both simulation and hardware.
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA) 2025
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving
Existing learning-based autonomous driving (AD) systems face challenges in comprehending high-level information, generalizing to rare events, and providing interpretability. To address these problems, this work employs Large Language Models (LLMs) as a decision-making component for complex AD scenarios that require human commonsense understanding. We devise cognitive pathways to enable comprehensive reasoning with LLMs, and develop algorithms for translating LLM decisions into actionable driving commands. Through this approach, LLM decisions are seamlessly integrated with low-level controllers by guided parameter matrix adaptation. Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination, thanks to the commonsense reasoning capabilities of LLMs. This paper presents an initial step toward leveraging LLMs as effective decision-makers for intricate AD scenarios in terms of safety, efficiency, generalizability, and interoperability. We aspire for it to serve as inspiration for future research in this field. Project page: https://sites.google.com/view/llm-mpc
Multiagent Systems
TextArena
TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.
comment: work in progress; 5 pages, 3 figures
A Multi-UAV Formation Obstacle Avoidance Method Combined Improved Simulated Annealing and Adaptive Artificial Potential Field
The traditional Artificial Potential Field (APF) method exhibits limitations in its force distribution: excessive attraction when UAVs are far from the target may cause collisions with obstacles, while insufficient attraction near the goal often results in failure to reach the target. Furthermore, APF is highly susceptible to local minima, compromising motion reliability in complex environments. To address these challenges, this paper presents a novel hybrid obstacle avoidance algorithm-Deflected Simulated Annealing-Adaptive Artificial Potential Field (DSA-AAPF)-which combines an improved simulated annealing mechanism with an enhanced APF model. The proposed approach integrates a Leader-Follower distributed formation strategy with the APF framework, where the resultant force formulation is redefined to smooth UAV trajectories. An adaptive gravitational gain function is introduced to dynamically adjust UAV velocity based on environmental context, and a fast-converging controller ensures accurate and efficient convergence to the target. Moreover, a directional deflection mechanism is embedded within the simulated annealing process, enabling UAVs to escape local minima caused by semi-enclosed obstacles through continuous rotational motion. The simulation results, covering formation reconfiguration, complex obstacle avoidance, and entrapment escape, demonstrate the feasibility, robustness, and superiority of the proposed DSA-AAPF algorithm.
LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that enables agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA offers a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA establishes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains.
comment: 4 Figures, 1 Table
Reinforcing Clinical Decision Support through Multi-Agent Systems and Ethical AI Governance
Recent advances in the data-driven medicine approach, which integrates ethically managed and explainable artificial intelligence into clinical decision support systems (CDSS), are critical to ensure reliable and effective patient care. This paper focuses on comparing novel agent system designs that use modular agents to analyze laboratory results, vital signs, and clinical context, and to predict and validate results. We implement our agent system with the eICU database, including running lab analysis, vitals-only interpreters, and contextual reasoners agents first, then sharing the memory into the integration agent, prediction agent, transparency agent, and a validation agent. Our results suggest that the multi-agent system (MAS) performed better than the single-agent system (SAS) with mortality prediction accuracy (59%, 56%) and the mean error for length of stay (LOS)(4.37 days, 5.82 days), respectively. However, the transparency score for the SAS (86.21) is slightly better than the transparency score for MAS (85.5). Finally, this study suggests that our agent-based framework not only improves process transparency and prediction accuracy but also strengthens trustworthy AI-assisted decision support in an intensive care setting.
Breaking the Pre-Planning Barrier: Adaptive Real-Time Coordination of Heterogeneous UAVs
Unmanned Aerial Vehicles (UAVs) offer significant potential in dynamic, perception-intensive tasks such as search and rescue and environmental monitoring; however, their effectiveness is severely restricted by conventional pre-planned routing methods, which lack the flexibility to respond in real-time to evolving task demands, unexpected disturbances, and localized view limitations in real-world scenarios. To address this fundamental limitation, we introduce a novel multi-agent reinforcement learning framework named \textbf{H}eterogeneous \textbf{G}raph \textbf{A}ttention \textbf{M}ulti-agent Deep Deterministic Policy Gradient (HGAM), uniquely designed to enable adaptive real-time coordination between mission UAVs (MUAVs) and charging UAVs (CUAVs). HGAM specifically addresses the previously unsolved challenge of enabling precise, decentralized continuous-action coordination solely based on local, heterogeneous graph-based observations. Extensive simulations demonstrate that HGAM substantially surpasses existing methods, achieving, for example, a 30\% improvement in data collection coverage and a 20\% increase in charging efficiency, providing crucial insights and foundations for the future deployment of intelligent, flexible UAV networks in complex, dynamic environments.
Systems and Control (CS)
eXplainable AI for data driven control: an inverse optimal control approach
Understanding the behavior of black-box data-driven controllers is a key challenge in modern control design. In this work, we propose an eXplainable AI (XAI) methodology based on Inverse Optimal Control (IOC) to obtain local explanations for the behavior of a controller operating around a given region. Specifically, we extract the weights assigned to tracking errors and control effort in the implicit cost function that a black-box controller is optimizing, offering a more transparent and interpretable representation of the controller's underlying objectives. This approach presents connections with well-established XAI techniques, such as Local Interpretable Model-agnostic Explanations (LIME) since it is still based on a local approximation of the control policy. However, rather being limited to a standard sensitivity analysis, the explanation provided by our method relies on the solution of an inverse Linear Quadratic (LQ) problem, offering a structured and more control-relevant perspective. Numerical examples demonstrate that the inferred cost function consistently provides a deeper understanding of the controller's decision-making process, shedding light on otherwise counterintuitive or unexpected phenomena.
comment: Submitted to CDC 2025
HeatSense: Intelligent Thermal Anomaly Detection for Securing NoC-Enabled MPSoCs
Multi-Processor System-on-Chips (MPSoCs) are highly vulnerable to thermal attacks that manipulate dynamic thermal management systems. To counter this, we propose an adaptive real-time monitoring mechanism that detects abnormal thermal patterns in chip tiles. Our design space exploration helped identify key thermal features for an efficient anomaly detection module to be implemented at routers of network-enabled MPSoCs. To minimize hardware overhead, we employ weighted moving average (WMA) calculations and bit-shift operations, ensuring a lightweight yet effective implementation. By defining a spectrum of abnormal behaviors, our system successfully detects and mitigates malicious temperature fluctuations, reducing severe cases from 3.00{\deg}C to 1.9{\deg}C. The anomaly detection module achieves up to 82% of accuracy in detecting thermal attacks, which is only 10-15% less than top-performing machine learning (ML) models like Random Forest. However, our approach reduces hardware usage by up to 75% for logic resources and 100% for specialized resources, making it significantly more efficient than ML-based solutions. This method provides a practical, low-cost solution for resource-constrained environments, ensuring resilience against thermal attacks while maintaining system performance.
comment: 14 pages,
A Winner-Takes-All Mechanism for Event Generation
We present a novel framework for central pattern generator design that leverages the intrinsic rebound excitability of neurons in combination with winner-takes-all computation. Our approach unifies decision-making and rhythmic pattern generation within a simple yet powerful network architecture that employs all-to-all inhibitory connections enhanced by designable excitatory interactions. This design offers significant advantages regarding ease of implementation, adaptability, and robustness. We demonstrate its efficacy through a ring oscillator model, which exhibits adaptive phase and frequency modulation, making the framework particularly promising for applications in neuromorphic systems and robotics.
A Review of Traffic Wave Suppression Strategies: Variable Speed Limit vs. Jam-Absorption Driving
The main form of freeway traffic congestion is the familiar stop-and-go wave, characterized by wide moving jams that propagate indefinitely upstream provided enough traffic demand. They cause severe, long-lasting adverse effects, such as reduced traffic efficiency, increased driving risks, and higher vehicle emissions. This underscores the crucial importance of artificial intervention in the propagation of stop-and-go waves. Over the past two decades, two prominent strategies for stop-and-go wave suppression have emerged: variable speed limit (VSL) and jam-absorption driving (JAD). Although they share similar research motivations, objectives, and theoretical foundations, the development of these strategies has remained relatively disconnected. To synthesize fragmented advances and drive the field forward, this paper first provides a comprehensive review of the achievements in the stop-and-go wave suppression-oriented VSL and JAD, respectively. It then focuses on bridging the two areas and identifying research opportunities from the following perspectives: fundamental diagrams, traffic dynamics modeling, traffic state estimation and prediction, stochasticity, scenarios for strategy validation, and field tests and practical deployment. We expect that through this review, one area can effectively address its limitations by identifying and leveraging the strengths of the other, thus promoting the overall research goal of freeway stop-and-go wave suppression.
Neural Networks for on-chip Model Predictive Control: a Method to Build Optimized Training Datasets and its application to Type-1 Diabetes
Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices. By collecting large amounts of input-output data, where inputs represent system states and outputs are MPC-generated control actions, NNs can be trained to replicate MPC behavior at a fraction of the computational cost. However, although the composition of the training data critically influences the final NN accuracy, methods for systematically optimizing it remain underexplored. In this paper, we introduce the concept of Optimally-Sampled Datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them. An OSD is a parametrized subset of all the available data that (i) preserves existing MPC information up to a certain numerical resolution, (ii) avoids duplicate or near-duplicate states, and (iii) becomes saturated or complete. We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes, achieving a four-fold improvement in final accuracy. Notably, two OSD-trained NNs received regulatory clearance for clinical testing as the first NN-based control algorithm for direct human insulin dosing. This methodology opens new pathways for implementing advanced optimizations on resource-constrained embedded platforms, potentially revolutionizing how complex algorithms are deployed.
Sensitivity Analysis of State Space Models for Scrap Composition Estimation in EAF and BOF
This study develops and analyzes linear and nonlinear state space models for estimating the elemental composition of scrap steel used in steelmaking, with applications to Electric Arc Furnace (EAF) and Basic Oxygen Furnace (BOF) processes. The models incorporate mass balance equations and are fitted using a modified Kalman filter for linear cases and the Unscented Kalman Filter (UKF) for nonlinear cases. Using Cu and Cr as representative elements, we assess the sensitivity of model predictions to measurement noise in key process variables, including steel mass, steel composition, scrap input mass, slag mass, and iron oxide fraction in slag. Results show that the models are robust to moderate noise levels in most variables, particularly when errors are below $10\%$. However, accuracy significantly deteriorates with noise in slag mass estimation. These findings highlight the practical feasibility and limitations of applying state space models for real-time scrap composition estimation in industrial settings.
Balancing hydrogen delivery in national energy systems: impact of the temporal flexibility of hydrogen delivery on export prices
Hydrogen is expected to play a key role in the energy transition. Analyses exploring the price of hydrogen usually calculate average or marginal production costs regardless of the time of delivery. A key factor that affects the price of hydrogen is the balancing costs, which we define as the expense of ensuring a steady schedule of hydrogen delivery. We explore the effect of delivering hydrogen to the export ports at different schedules, ranging from fully flexible to moderately stable with a daily and weekly buffer, to fully stable. We quantify the rise in hydrogen price with strict balancing constraint in three countries: Brazil, Morocco and Turkey, and three export volumes: 10, 50 and 200 TWh. The price difference between the flexible and stable schedules was found to reach a maximum of 36% in Brazil, 47% in Morocco and 18% in Turkey across the different export volumes.
comment: 6 pages, 3 figures, 2 tables
Robust MPC for Uncertain Linear Systems -- Combining Model Adaptation and Iterative Learning
This paper presents a robust adaptive learning Model Predictive Control (MPC) framework for linear systems with parametric uncertainties and additive disturbances performing iterative tasks. The approach iteratively refines the parameter estimates using set membership estimation. Performance enhancement over iterations is achieved by learning the terminal cost from data. Safety is enforced using a terminal set, which is also learned iteratively. The proposed method guarantees recursive feasibility, constraint satisfaction, and a robust bound on the closed-loop cost. Numerical simulations on a mass-spring-damper system demonstrate improved computational efficiency and control performance compared to an existing robust adaptive MPC approach.
comment: Github link to the example: https://github.com/HannesPetrenz/RALMPC_Linear_Uncertain_Systems
A mixed-integer framework for analyzing neural network-based controllers for piecewise affine systems with bounded disturbances
We present a method for representing the closed-loop dynamics of piecewise affine (PWA) systems with bounded additive disturbances and neural network-based controllers as mixed-integer (MI) linear constraints. We show that such representations enable the computation of robustly positively invariant (RPI) sets for the specified system class by solving MI linear programs. These RPI sets can subsequently be used to certify stability and constraint satisfaction. Furthermore, the approach allows to handle non-linear systems based on suitable PWA approximations and corresponding error bounds, which can be interpreted as the bounded disturbances from above.
comment: 8 pages, 3 figures, to be published in the proceedings of the 23rd European Control Conference (2025)
Steering Feedback in Dynamic Driving Simulators: Road-Induced and Non-Road-Induced Harshness
Steering feedback plays a substantial role in the validity of driving simulators for the virtual development of modern vehicles. Established objective steering characteristics typically assess the feedback behavior in the frequency range of up to 30 Hz while factors such as steering wheel and vehicle body vibrations at higher frequencies are mainly approached as comfort issues. This work investigates the influence of steering wheel and vehicle body excitations in the frequency range between 30 and 100 Hz on the subjective evaluation of steering feedback in a dynamic driving simulator. A controlled subject study with 42 participants was performed to compare a reference vehicle with an electrical power steering system to four variants of its virtual representation on a dynamic driving simulator. The effects of road-induced excitations were investigated by comparing a semi-empirical and a physics-based tire model, while the influence of non-road-induced excitations was investigated by implementing engine and wheel orders. The simulator variants were evaluated in comparison to the reference vehicle during closed-loop driving on a country road in a single-blind within-subjects design. The subjective evaluation focused on the perception of road feedback compared to the reference vehicle. The statistical analysis of subjective results shows that there is a strong effect of non-road-induced steering and vehicle body excitations, while the effect of road-induced excitations is considerably less pronounced.
comment: 11 pages, 5 figures, 5 tables, submitted to the IEEE Transactions on Intelligent Vehicles. arXiv admin note: substantial text overlap with arXiv:2403.17800
A Multi-UAV Formation Obstacle Avoidance Method Combined Improved Simulated Annealing and Adaptive Artificial Potential Field
The traditional Artificial Potential Field (APF) method exhibits limitations in its force distribution: excessive attraction when UAVs are far from the target may cause collisions with obstacles, while insufficient attraction near the goal often results in failure to reach the target. Furthermore, APF is highly susceptible to local minima, compromising motion reliability in complex environments. To address these challenges, this paper presents a novel hybrid obstacle avoidance algorithm-Deflected Simulated Annealing-Adaptive Artificial Potential Field (DSA-AAPF)-which combines an improved simulated annealing mechanism with an enhanced APF model. The proposed approach integrates a Leader-Follower distributed formation strategy with the APF framework, where the resultant force formulation is redefined to smooth UAV trajectories. An adaptive gravitational gain function is introduced to dynamically adjust UAV velocity based on environmental context, and a fast-converging controller ensures accurate and efficient convergence to the target. Moreover, a directional deflection mechanism is embedded within the simulated annealing process, enabling UAVs to escape local minima caused by semi-enclosed obstacles through continuous rotational motion. The simulation results, covering formation reconfiguration, complex obstacle avoidance, and entrapment escape, demonstrate the feasibility, robustness, and superiority of the proposed DSA-AAPF algorithm.
Neural Control Barrier Functions from Physics Informed Neural Networks
As autonomous systems become increasingly prevalent in daily life, ensuring their safety is paramount. Control Barrier Functions (CBFs) have emerged as an effective tool for guaranteeing safety; however, manually designing them for specific applications remains a significant challenge. With the advent of deep learning techniques, recent research has explored synthesizing CBFs using neural networks-commonly referred to as neural CBFs. This paper introduces a novel class of neural CBFs that leverages a physics-inspired neural network framework by incorporating Zubov's Partial Differential Equation (PDE) within the context of safety. This approach provides a scalable methodology for synthesizing neural CBFs applicable to high-dimensional systems. Furthermore, by utilizing reciprocal CBFs instead of zeroing CBFs, the proposed framework allows for the specification of flexible, user-defined safe regions. To validate the effectiveness of the approach, we present case studies on three different systems: an inverted pendulum, autonomous ground navigation, and aerial navigation in obstacle-laden environments.
comment: 8 pages, 5 figures
Distributed Optimization with Gradient Tracking over Heterogeneous Delay-Prone Directed Networks
In this paper, we address the distributed optimization problem over unidirectional networks with possibly time-invariant heterogeneous bounded transmission delays. In particular, we propose a modified version of the Accelerated Distributed Directed OPTimization (ADD-OPT) algorithm, herein called Robustified ADD-OPT (R-ADD-OPT), which is able to solve the distributed optimization problem, even when the communication links suffer from heterogeneous but bounded transmission delays. We show that if the gradient step-size of the R-ADD-OPT algorithm is within a certain range, which also depends on the maximum time delay in the network, then the nodes are guaranteed to converge to the optimal solution of the distributed optimization problem. The range of the gradient step-size that guarantees convergence can be computed a priori based on the maximum time delay in the network.
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
A Linear Push-Pull Average Consensus Algorithm for Delay-Prone Networks
In this paper, we address the average consensus problem of multi-agent systems for possibly unbalanced and delay-prone networks with directional information flow. We propose a linear distributed algorithm (referred to as RPPAC) that handles asynchronous updates and time-varying heterogeneous information delays. Our proposed distributed algorithm utilizes a surplus-consensus mechanism and information regarding the number of incoming and outgoing links to guarantee state averaging, despite the imbalanced and delayed information flow in directional networks. The convergence of the RPPAC algorithm is examined using key properties of the backward product of time-varying matrices that correspond to different snapshots of the directional augmented network.
Offset-free Nonlinear MPC with Koopman-based Surrogate Models
In this paper, we design offset-free nonlinear Model Predictive Control (MPC) for surrogate models based on Extended Dynamic Mode Decomposition (EDMD). The model used for prediction in MPC is augmented with a disturbance term, that is estimated by an observer. If the full information about the equilibrium of the real system is not available, a reference calculator is introduced in the algorithm to compute the MPC state and input references. The control algorithm guarantees offset-free tracking of the controlled output under the assumption that the modeling errors are asymptotically constant. The effectiveness of the proposed approach is showcased with numerical simulations for two popular benchmark systems: the van-der-Pol oscillator and the four-tanks process.
comment: 10 pages, 3 figures
Virtual Contraction Approach to Decentralized Adaptive Stabilization of Nonlinear Time-Delayed Networks
In this paper, we utilize a diagonally dominant structure for the decentralized stabilization of unknown nonlinear time-delayed networks. Generalizing the idea of virtual contraction analysis to time-delayed systems, we demonstrate that nonlinear time-delayed networks can be stabilized by diagonal high-gains if the input matrices possess certain generalized (column/row) diagonally dominant properties. To achieve stabilization of unknown networks, we further propose a distributed adaptive tuning rule for each individual gain function, ensuring that all closed-loop trajectories converge to the origin. The effectiveness of the proposed decentralized adaptive control is verified in a case study on epidemic spreading control in SIS networks with transmission delays.
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
comment: European Control Conference 2025 (ECC), Thessaloniki, Greece
Large problems are not necessarily hard: A case study on distributed NMPC paying off
A key motivation in the development of Distributed Model Predictive Control (DMPC) is to accelerate centralized Model Predictive Control (MPC) for large-scale systems. DMPC has the prospect of scaling well by parallelizing computations among subsystems. However, communication delays may deteriorate the performance of decentralized optimization, if excessively many iterations are required per control step. Moreover, centralized solvers often exhibit faster asymptotic convergence rates and, by parallelizing costly linear algebra operations, they can also benefit from modern multicore computing architectures. On this canvas, we study the computational performance of cooperative DMPC for linear and nonlinear systems. To this end, we apply a tailored decentralized real-time iteration scheme to frequency control for power systems. DMPC scales well for the considered linear and nonlinear benchmarks, as the iteration number does not depend on the number of subsystems. Comparisons with multi-threaded centralized solvers demonstrate competitive performance of the proposed decentralized optimization algorithms.
Kernel Modelling of Fading Memory Systems
The paper is a follow-up of the recently introduced kernel-based framework to identify nonlinear input-output systems regularized by desirable input-output incremental properties. Assuming that the system has fading memory, we propose to learn the functional that maps the past input to the present output rather than the operator mapping input trajectories to output trajectories. While retaining the benefits of the previously proposed framework, this modification simplifies the selection of the kernel, enforces causality, and enables temporal simulation.
The Pitfalls of Imitation Learning when Actions are Continuous
We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics satisfy a control-theoretic property called exponentially stability (i.e. the effects of perturbations decay exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to any algorithm which learns solely from expert data, including both behavior cloning and offline-RL algorithms, unless the algorithm produces highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
comment: 98 pages, 2 figures, updated proof sketch
Balancing Forecast Accuracy and Switching Costs in Online Optimization of Energy Management Systems
This study investigates the integration of forecasting and optimization in energy management systems, with a focus on the role of switching costs -- penalties incurred from frequent operational adjustments. We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs in online decision-making settings. Our analysis spans both deterministic and stochastic optimization approaches, using point and probabilistic forecasts. A novel metric for measuring temporal consistency in probabilistic forecasts is introduced, and the framework is validated in a real-world battery scheduling case based on the CityLearn 2022 challenge. Results show that switching costs significantly alter the trade-off between forecast accuracy and stability, and that more stable forecasts can reduce the performance loss due to switching. Contrary to common practice, the findings suggest that, under non-negligible switching costs, longer commitment periods may lead to better overall outcomes. These insights have practical implications for the design of intelligent, forecast-aware energy management systems.
comment: 34 pages, contains the Appendix with a comment on KPIs, MPC formulation, Theoretical analysis of the MPC performance bounds and extra results on the in-sample performance
An AI-driven multimodal smart home platform for continuous monitoring and intelligent assistance in post-stroke patients
At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse monitoring and assistance needs in home environments complicates recovery efforts. Here, we present a multimodal smart home platform designed for continuous, at-home rehabilitation of post-stroke patients, integrating wearable sensing, ambient monitoring, and adaptive automation. A plantar pressure insole equipped with a machine learning pipeline classifies users into motor recovery stages with up to 94% accuracy, enabling quantitative tracking of walking patterns. A head-mounted eye-tracking module supports cognitive assessments and hands-free control of household devices, while ambient sensors ensure sub-second response times for interaction. These data streams are fused locally via a hierarchical Internet of Things (IoT) architecture, protecting privacy and minimizing latency. An embedded large language model (LLM) agent, Auto-Care, continuously interprets multimodal data to provide real-time interventions-issuing personalized reminders, adjusting environmental conditions, and notifying caregivers. Implemented in a post-stroke context, this integrated smart home platform increases overall user satisfaction by an average of 115% (p<0.01) compared to traditional home environment. Beyond stroke, the system offers a scalable framework for patient-centered, long-term care in broader neurorehabilitation and aging-in-place applications.
comment: 5 figures, 41 references
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
Inference and estimation are fundamental aspects of statistics, system identification and machine learning. For most inference problems, prior knowledge is available on the system to be modeled, and Bayesian analysis is a natural framework to impose such prior information in the form of a prior distribution. However, in many situations, coming out with a fully specified prior distribution is not easy, as prior knowledge might be too vague, so practitioners prefer to use a prior distribution that is as `ignorant' or `uninformative' as possible, in the sense of not imposing subjective beliefs, while still supporting reliable statistical analysis. Jeffreys prior is an appealing uninformative prior because it offers two important benefits: (i) it is invariant under any re-parameterization of the model, (ii) it encodes the intrinsic geometric structure of the parameter space through the Fisher information matrix, which in turn enhances the diversity of parameter samples. Despite these benefits, drawing samples from Jeffreys prior is a challenging task. In this paper, we propose a general sampling scheme using the Metropolis-Adjusted Langevin Algorithm that enables sampling of parameter values from Jeffreys prior, and provide numerical illustrations of our approach through several examples.
comment: 7 pages
Steering Feedback in Dynamic Driving Simulators: The Influence of Steering Wheel Vibration and Vehicle Motion Frequency
The validity of the subjective evaluation of steering feedback in driving simulators is crucial for modern vehicle development. Although there are established objective steering characteristics for the assessment of both stationary and dynamic feedback behaviour, factors such as steering wheel vibrations and vehicle body motion, particularly in high-frequency ranges, present challenges in simulator fidelity. This work investigates the influence of steering wheel vibration and vehicle body motion frequency content on the subjective evaluation of steering feedback during closed-loop driving in a dynamic driving simulator. A controlled subject study with 30 participants consisting of a back-to-back comparison of a reference vehicle with an electrical power steering system and three variants of its virtual representation on a dynamic driving simulator was performed. Subjective evaluation focused on the representation of road feedback in comparison to the reference vehicle. The statistical analysis of subjective results show that there is a significant influence of the frequency content of both steering wheel torque and vehicle motion on the subjective evaluation of steering feedback in a dynamic driving simulator. The results suggest an influence of frequency content on the subjective evaluation quality of steering feedback characteristics that are not associated with the dynamic feedback behaviour in the context of established performance indicators.
comment: 12 pages, 7 figures, 9 tables, submitted to the IEEE Transactions on Intelligent Vehicles
Optimal Intraday Power Trading for Single-Price Balancing Markets: An Adaptive Risk-Averse Strategy using Mixture Models
Efficient markets are characterised by profit-driven participants continuously refining their positions towards the latest insights. Margins for profit generation are generally small, shaping a difficult landscape for automated trading strategies. This paper introduces a novel intraday power trading strategy tailored for single-price balancing markets. The strategy relies on a strategically devised mixture model to forecast future system imbalance prices and is formulated as a stochastic optimization problem with decision-dependent distributions to address two primary challenges: (i) the impact of trading positions on the system imbalance price and (ii) the uncertainty inherent in the model. The first challenge is tackled by adjusting the model to account for price changes after taking a position. For the second challenge, a coherent risk measure is added to the cost function to take additional uncertainties into account. This paper introduces a methodology to select the tuning parameter of this risk measure adaptively by continuously quantifying the performance of the strategy on a window of recently observed data. The strategy is validated with a simulation on the Belgian electricity market using real-time market data. The adaptive tuning approach leads to higher absolute profits, while also reducing the number of trades.
comment: Accepted in Applied Energy [Elsevier]
Systems and Control (EESS)
eXplainable AI for data driven control: an inverse optimal control approach
Understanding the behavior of black-box data-driven controllers is a key challenge in modern control design. In this work, we propose an eXplainable AI (XAI) methodology based on Inverse Optimal Control (IOC) to obtain local explanations for the behavior of a controller operating around a given region. Specifically, we extract the weights assigned to tracking errors and control effort in the implicit cost function that a black-box controller is optimizing, offering a more transparent and interpretable representation of the controller's underlying objectives. This approach presents connections with well-established XAI techniques, such as Local Interpretable Model-agnostic Explanations (LIME) since it is still based on a local approximation of the control policy. However, rather being limited to a standard sensitivity analysis, the explanation provided by our method relies on the solution of an inverse Linear Quadratic (LQ) problem, offering a structured and more control-relevant perspective. Numerical examples demonstrate that the inferred cost function consistently provides a deeper understanding of the controller's decision-making process, shedding light on otherwise counterintuitive or unexpected phenomena.
comment: Submitted to CDC 2025
HeatSense: Intelligent Thermal Anomaly Detection for Securing NoC-Enabled MPSoCs
Multi-Processor System-on-Chips (MPSoCs) are highly vulnerable to thermal attacks that manipulate dynamic thermal management systems. To counter this, we propose an adaptive real-time monitoring mechanism that detects abnormal thermal patterns in chip tiles. Our design space exploration helped identify key thermal features for an efficient anomaly detection module to be implemented at routers of network-enabled MPSoCs. To minimize hardware overhead, we employ weighted moving average (WMA) calculations and bit-shift operations, ensuring a lightweight yet effective implementation. By defining a spectrum of abnormal behaviors, our system successfully detects and mitigates malicious temperature fluctuations, reducing severe cases from 3.00{\deg}C to 1.9{\deg}C. The anomaly detection module achieves up to 82% of accuracy in detecting thermal attacks, which is only 10-15% less than top-performing machine learning (ML) models like Random Forest. However, our approach reduces hardware usage by up to 75% for logic resources and 100% for specialized resources, making it significantly more efficient than ML-based solutions. This method provides a practical, low-cost solution for resource-constrained environments, ensuring resilience against thermal attacks while maintaining system performance.
comment: 14 pages,
A Winner-Takes-All Mechanism for Event Generation
We present a novel framework for central pattern generator design that leverages the intrinsic rebound excitability of neurons in combination with winner-takes-all computation. Our approach unifies decision-making and rhythmic pattern generation within a simple yet powerful network architecture that employs all-to-all inhibitory connections enhanced by designable excitatory interactions. This design offers significant advantages regarding ease of implementation, adaptability, and robustness. We demonstrate its efficacy through a ring oscillator model, which exhibits adaptive phase and frequency modulation, making the framework particularly promising for applications in neuromorphic systems and robotics.
A Review of Traffic Wave Suppression Strategies: Variable Speed Limit vs. Jam-Absorption Driving
The main form of freeway traffic congestion is the familiar stop-and-go wave, characterized by wide moving jams that propagate indefinitely upstream provided enough traffic demand. They cause severe, long-lasting adverse effects, such as reduced traffic efficiency, increased driving risks, and higher vehicle emissions. This underscores the crucial importance of artificial intervention in the propagation of stop-and-go waves. Over the past two decades, two prominent strategies for stop-and-go wave suppression have emerged: variable speed limit (VSL) and jam-absorption driving (JAD). Although they share similar research motivations, objectives, and theoretical foundations, the development of these strategies has remained relatively disconnected. To synthesize fragmented advances and drive the field forward, this paper first provides a comprehensive review of the achievements in the stop-and-go wave suppression-oriented VSL and JAD, respectively. It then focuses on bridging the two areas and identifying research opportunities from the following perspectives: fundamental diagrams, traffic dynamics modeling, traffic state estimation and prediction, stochasticity, scenarios for strategy validation, and field tests and practical deployment. We expect that through this review, one area can effectively address its limitations by identifying and leveraging the strengths of the other, thus promoting the overall research goal of freeway stop-and-go wave suppression.
Neural Networks for on-chip Model Predictive Control: a Method to Build Optimized Training Datasets and its application to Type-1 Diabetes
Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices. By collecting large amounts of input-output data, where inputs represent system states and outputs are MPC-generated control actions, NNs can be trained to replicate MPC behavior at a fraction of the computational cost. However, although the composition of the training data critically influences the final NN accuracy, methods for systematically optimizing it remain underexplored. In this paper, we introduce the concept of Optimally-Sampled Datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them. An OSD is a parametrized subset of all the available data that (i) preserves existing MPC information up to a certain numerical resolution, (ii) avoids duplicate or near-duplicate states, and (iii) becomes saturated or complete. We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes, achieving a four-fold improvement in final accuracy. Notably, two OSD-trained NNs received regulatory clearance for clinical testing as the first NN-based control algorithm for direct human insulin dosing. This methodology opens new pathways for implementing advanced optimizations on resource-constrained embedded platforms, potentially revolutionizing how complex algorithms are deployed.
Sensitivity Analysis of State Space Models for Scrap Composition Estimation in EAF and BOF
This study develops and analyzes linear and nonlinear state space models for estimating the elemental composition of scrap steel used in steelmaking, with applications to Electric Arc Furnace (EAF) and Basic Oxygen Furnace (BOF) processes. The models incorporate mass balance equations and are fitted using a modified Kalman filter for linear cases and the Unscented Kalman Filter (UKF) for nonlinear cases. Using Cu and Cr as representative elements, we assess the sensitivity of model predictions to measurement noise in key process variables, including steel mass, steel composition, scrap input mass, slag mass, and iron oxide fraction in slag. Results show that the models are robust to moderate noise levels in most variables, particularly when errors are below $10\%$. However, accuracy significantly deteriorates with noise in slag mass estimation. These findings highlight the practical feasibility and limitations of applying state space models for real-time scrap composition estimation in industrial settings.
Balancing hydrogen delivery in national energy systems: impact of the temporal flexibility of hydrogen delivery on export prices
Hydrogen is expected to play a key role in the energy transition. Analyses exploring the price of hydrogen usually calculate average or marginal production costs regardless of the time of delivery. A key factor that affects the price of hydrogen is the balancing costs, which we define as the expense of ensuring a steady schedule of hydrogen delivery. We explore the effect of delivering hydrogen to the export ports at different schedules, ranging from fully flexible to moderately stable with a daily and weekly buffer, to fully stable. We quantify the rise in hydrogen price with strict balancing constraint in three countries: Brazil, Morocco and Turkey, and three export volumes: 10, 50 and 200 TWh. The price difference between the flexible and stable schedules was found to reach a maximum of 36% in Brazil, 47% in Morocco and 18% in Turkey across the different export volumes.
comment: 6 pages, 3 figures, 2 tables
Robust MPC for Uncertain Linear Systems -- Combining Model Adaptation and Iterative Learning
This paper presents a robust adaptive learning Model Predictive Control (MPC) framework for linear systems with parametric uncertainties and additive disturbances performing iterative tasks. The approach iteratively refines the parameter estimates using set membership estimation. Performance enhancement over iterations is achieved by learning the terminal cost from data. Safety is enforced using a terminal set, which is also learned iteratively. The proposed method guarantees recursive feasibility, constraint satisfaction, and a robust bound on the closed-loop cost. Numerical simulations on a mass-spring-damper system demonstrate improved computational efficiency and control performance compared to an existing robust adaptive MPC approach.
comment: Github link to the example: https://github.com/HannesPetrenz/RALMPC_Linear_Uncertain_Systems
A mixed-integer framework for analyzing neural network-based controllers for piecewise affine systems with bounded disturbances
We present a method for representing the closed-loop dynamics of piecewise affine (PWA) systems with bounded additive disturbances and neural network-based controllers as mixed-integer (MI) linear constraints. We show that such representations enable the computation of robustly positively invariant (RPI) sets for the specified system class by solving MI linear programs. These RPI sets can subsequently be used to certify stability and constraint satisfaction. Furthermore, the approach allows to handle non-linear systems based on suitable PWA approximations and corresponding error bounds, which can be interpreted as the bounded disturbances from above.
comment: 8 pages, 3 figures, to be published in the proceedings of the 23rd European Control Conference (2025)
Steering Feedback in Dynamic Driving Simulators: Road-Induced and Non-Road-Induced Harshness
Steering feedback plays a substantial role in the validity of driving simulators for the virtual development of modern vehicles. Established objective steering characteristics typically assess the feedback behavior in the frequency range of up to 30 Hz while factors such as steering wheel and vehicle body vibrations at higher frequencies are mainly approached as comfort issues. This work investigates the influence of steering wheel and vehicle body excitations in the frequency range between 30 and 100 Hz on the subjective evaluation of steering feedback in a dynamic driving simulator. A controlled subject study with 42 participants was performed to compare a reference vehicle with an electrical power steering system to four variants of its virtual representation on a dynamic driving simulator. The effects of road-induced excitations were investigated by comparing a semi-empirical and a physics-based tire model, while the influence of non-road-induced excitations was investigated by implementing engine and wheel orders. The simulator variants were evaluated in comparison to the reference vehicle during closed-loop driving on a country road in a single-blind within-subjects design. The subjective evaluation focused on the perception of road feedback compared to the reference vehicle. The statistical analysis of subjective results shows that there is a strong effect of non-road-induced steering and vehicle body excitations, while the effect of road-induced excitations is considerably less pronounced.
comment: 11 pages, 5 figures, 5 tables, submitted to the IEEE Transactions on Intelligent Vehicles. arXiv admin note: substantial text overlap with arXiv:2403.17800
A Multi-UAV Formation Obstacle Avoidance Method Combined Improved Simulated Annealing and Adaptive Artificial Potential Field
The traditional Artificial Potential Field (APF) method exhibits limitations in its force distribution: excessive attraction when UAVs are far from the target may cause collisions with obstacles, while insufficient attraction near the goal often results in failure to reach the target. Furthermore, APF is highly susceptible to local minima, compromising motion reliability in complex environments. To address these challenges, this paper presents a novel hybrid obstacle avoidance algorithm-Deflected Simulated Annealing-Adaptive Artificial Potential Field (DSA-AAPF)-which combines an improved simulated annealing mechanism with an enhanced APF model. The proposed approach integrates a Leader-Follower distributed formation strategy with the APF framework, where the resultant force formulation is redefined to smooth UAV trajectories. An adaptive gravitational gain function is introduced to dynamically adjust UAV velocity based on environmental context, and a fast-converging controller ensures accurate and efficient convergence to the target. Moreover, a directional deflection mechanism is embedded within the simulated annealing process, enabling UAVs to escape local minima caused by semi-enclosed obstacles through continuous rotational motion. The simulation results, covering formation reconfiguration, complex obstacle avoidance, and entrapment escape, demonstrate the feasibility, robustness, and superiority of the proposed DSA-AAPF algorithm.
Neural Control Barrier Functions from Physics Informed Neural Networks
As autonomous systems become increasingly prevalent in daily life, ensuring their safety is paramount. Control Barrier Functions (CBFs) have emerged as an effective tool for guaranteeing safety; however, manually designing them for specific applications remains a significant challenge. With the advent of deep learning techniques, recent research has explored synthesizing CBFs using neural networks-commonly referred to as neural CBFs. This paper introduces a novel class of neural CBFs that leverages a physics-inspired neural network framework by incorporating Zubov's Partial Differential Equation (PDE) within the context of safety. This approach provides a scalable methodology for synthesizing neural CBFs applicable to high-dimensional systems. Furthermore, by utilizing reciprocal CBFs instead of zeroing CBFs, the proposed framework allows for the specification of flexible, user-defined safe regions. To validate the effectiveness of the approach, we present case studies on three different systems: an inverted pendulum, autonomous ground navigation, and aerial navigation in obstacle-laden environments.
comment: 8 pages, 5 figures
Distributed Optimization with Gradient Tracking over Heterogeneous Delay-Prone Directed Networks
In this paper, we address the distributed optimization problem over unidirectional networks with possibly time-invariant heterogeneous bounded transmission delays. In particular, we propose a modified version of the Accelerated Distributed Directed OPTimization (ADD-OPT) algorithm, herein called Robustified ADD-OPT (R-ADD-OPT), which is able to solve the distributed optimization problem, even when the communication links suffer from heterogeneous but bounded transmission delays. We show that if the gradient step-size of the R-ADD-OPT algorithm is within a certain range, which also depends on the maximum time delay in the network, then the nodes are guaranteed to converge to the optimal solution of the distributed optimization problem. The range of the gradient step-size that guarantees convergence can be computed a priori based on the maximum time delay in the network.
$π$-MPPI: A Projection-based Model Predictive Path Integral Scheme for Smooth Optimal Control of Fixed-Wing Aerial Vehicles
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive Control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a key issue with MPPI is the non-smoothness of the optimal control sequence, leading to oscillations in systems like fixed-wing aerial vehicles (FWVs). Existing solutions use post-hoc smoothing, which fails to bound control derivatives. This paper introduces a new approach: we add a projection filter $\pi$ to minimally correct control samples, ensuring bounds on control magnitude and higher-order derivatives. The filtered samples are then averaged using MPPI, leading to our $\pi$-MPPI approach. We minimize computational overhead by using a neural accelerated custom optimizer for the projection filter. $\pi$-MPPI offers a simple way to achieve arbitrary smoothness in control sequences. While we focus on FWVs, this projection filter can be integrated into any MPPI pipeline. Applied to FWVs, $\pi$-MPPI is easier to tune than the baseline, resulting in smoother, more robust performance.
comment: 8 pages, 4 figures, submitted to IEEE RA-L
A Linear Push-Pull Average Consensus Algorithm for Delay-Prone Networks
In this paper, we address the average consensus problem of multi-agent systems for possibly unbalanced and delay-prone networks with directional information flow. We propose a linear distributed algorithm (referred to as RPPAC) that handles asynchronous updates and time-varying heterogeneous information delays. Our proposed distributed algorithm utilizes a surplus-consensus mechanism and information regarding the number of incoming and outgoing links to guarantee state averaging, despite the imbalanced and delayed information flow in directional networks. The convergence of the RPPAC algorithm is examined using key properties of the backward product of time-varying matrices that correspond to different snapshots of the directional augmented network.
Offset-free Nonlinear MPC with Koopman-based Surrogate Models
In this paper, we design offset-free nonlinear Model Predictive Control (MPC) for surrogate models based on Extended Dynamic Mode Decomposition (EDMD). The model used for prediction in MPC is augmented with a disturbance term, that is estimated by an observer. If the full information about the equilibrium of the real system is not available, a reference calculator is introduced in the algorithm to compute the MPC state and input references. The control algorithm guarantees offset-free tracking of the controlled output under the assumption that the modeling errors are asymptotically constant. The effectiveness of the proposed approach is showcased with numerical simulations for two popular benchmark systems: the van-der-Pol oscillator and the four-tanks process.
comment: 10 pages, 3 figures
Virtual Contraction Approach to Decentralized Adaptive Stabilization of Nonlinear Time-Delayed Networks
In this paper, we utilize a diagonally dominant structure for the decentralized stabilization of unknown nonlinear time-delayed networks. Generalizing the idea of virtual contraction analysis to time-delayed systems, we demonstrate that nonlinear time-delayed networks can be stabilized by diagonal high-gains if the input matrices possess certain generalized (column/row) diagonally dominant properties. To achieve stabilization of unknown networks, we further propose a distributed adaptive tuning rule for each individual gain function, ensuring that all closed-loop trajectories converge to the origin. The effectiveness of the proposed decentralized adaptive control is verified in a case study on epidemic spreading control in SIS networks with transmission delays.
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
comment: European Control Conference 2025 (ECC), Thessaloniki, Greece
Large problems are not necessarily hard: A case study on distributed NMPC paying off
A key motivation in the development of Distributed Model Predictive Control (DMPC) is to accelerate centralized Model Predictive Control (MPC) for large-scale systems. DMPC has the prospect of scaling well by parallelizing computations among subsystems. However, communication delays may deteriorate the performance of decentralized optimization, if excessively many iterations are required per control step. Moreover, centralized solvers often exhibit faster asymptotic convergence rates and, by parallelizing costly linear algebra operations, they can also benefit from modern multicore computing architectures. On this canvas, we study the computational performance of cooperative DMPC for linear and nonlinear systems. To this end, we apply a tailored decentralized real-time iteration scheme to frequency control for power systems. DMPC scales well for the considered linear and nonlinear benchmarks, as the iteration number does not depend on the number of subsystems. Comparisons with multi-threaded centralized solvers demonstrate competitive performance of the proposed decentralized optimization algorithms.
Kernel Modelling of Fading Memory Systems
The paper is a follow-up of the recently introduced kernel-based framework to identify nonlinear input-output systems regularized by desirable input-output incremental properties. Assuming that the system has fading memory, we propose to learn the functional that maps the past input to the present output rather than the operator mapping input trajectories to output trajectories. While retaining the benefits of the previously proposed framework, this modification simplifies the selection of the kernel, enforces causality, and enables temporal simulation.
The Pitfalls of Imitation Learning when Actions are Continuous
We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics satisfy a control-theoretic property called exponentially stability (i.e. the effects of perturbations decay exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to any algorithm which learns solely from expert data, including both behavior cloning and offline-RL algorithms, unless the algorithm produces highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
comment: 98 pages, 2 figures, updated proof sketch
Balancing Forecast Accuracy and Switching Costs in Online Optimization of Energy Management Systems
This study investigates the integration of forecasting and optimization in energy management systems, with a focus on the role of switching costs -- penalties incurred from frequent operational adjustments. We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs in online decision-making settings. Our analysis spans both deterministic and stochastic optimization approaches, using point and probabilistic forecasts. A novel metric for measuring temporal consistency in probabilistic forecasts is introduced, and the framework is validated in a real-world battery scheduling case based on the CityLearn 2022 challenge. Results show that switching costs significantly alter the trade-off between forecast accuracy and stability, and that more stable forecasts can reduce the performance loss due to switching. Contrary to common practice, the findings suggest that, under non-negligible switching costs, longer commitment periods may lead to better overall outcomes. These insights have practical implications for the design of intelligent, forecast-aware energy management systems.
comment: 34 pages, contains the Appendix with a comment on KPIs, MPC formulation, Theoretical analysis of the MPC performance bounds and extra results on the in-sample performance
An AI-driven multimodal smart home platform for continuous monitoring and intelligent assistance in post-stroke patients
At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse monitoring and assistance needs in home environments complicates recovery efforts. Here, we present a multimodal smart home platform designed for continuous, at-home rehabilitation of post-stroke patients, integrating wearable sensing, ambient monitoring, and adaptive automation. A plantar pressure insole equipped with a machine learning pipeline classifies users into motor recovery stages with up to 94% accuracy, enabling quantitative tracking of walking patterns. A head-mounted eye-tracking module supports cognitive assessments and hands-free control of household devices, while ambient sensors ensure sub-second response times for interaction. These data streams are fused locally via a hierarchical Internet of Things (IoT) architecture, protecting privacy and minimizing latency. An embedded large language model (LLM) agent, Auto-Care, continuously interprets multimodal data to provide real-time interventions-issuing personalized reminders, adjusting environmental conditions, and notifying caregivers. Implemented in a post-stroke context, this integrated smart home platform increases overall user satisfaction by an average of 115% (p<0.01) compared to traditional home environment. Beyond stroke, the system offers a scalable framework for patient-centered, long-term care in broader neurorehabilitation and aging-in-place applications.
comment: 5 figures, 41 references
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
Inference and estimation are fundamental aspects of statistics, system identification and machine learning. For most inference problems, prior knowledge is available on the system to be modeled, and Bayesian analysis is a natural framework to impose such prior information in the form of a prior distribution. However, in many situations, coming out with a fully specified prior distribution is not easy, as prior knowledge might be too vague, so practitioners prefer to use a prior distribution that is as `ignorant' or `uninformative' as possible, in the sense of not imposing subjective beliefs, while still supporting reliable statistical analysis. Jeffreys prior is an appealing uninformative prior because it offers two important benefits: (i) it is invariant under any re-parameterization of the model, (ii) it encodes the intrinsic geometric structure of the parameter space through the Fisher information matrix, which in turn enhances the diversity of parameter samples. Despite these benefits, drawing samples from Jeffreys prior is a challenging task. In this paper, we propose a general sampling scheme using the Metropolis-Adjusted Langevin Algorithm that enables sampling of parameter values from Jeffreys prior, and provide numerical illustrations of our approach through several examples.
comment: 7 pages
Steering Feedback in Dynamic Driving Simulators: The Influence of Steering Wheel Vibration and Vehicle Motion Frequency
The validity of the subjective evaluation of steering feedback in driving simulators is crucial for modern vehicle development. Although there are established objective steering characteristics for the assessment of both stationary and dynamic feedback behaviour, factors such as steering wheel vibrations and vehicle body motion, particularly in high-frequency ranges, present challenges in simulator fidelity. This work investigates the influence of steering wheel vibration and vehicle body motion frequency content on the subjective evaluation of steering feedback during closed-loop driving in a dynamic driving simulator. A controlled subject study with 30 participants consisting of a back-to-back comparison of a reference vehicle with an electrical power steering system and three variants of its virtual representation on a dynamic driving simulator was performed. Subjective evaluation focused on the representation of road feedback in comparison to the reference vehicle. The statistical analysis of subjective results show that there is a significant influence of the frequency content of both steering wheel torque and vehicle motion on the subjective evaluation of steering feedback in a dynamic driving simulator. The results suggest an influence of frequency content on the subjective evaluation quality of steering feedback characteristics that are not associated with the dynamic feedback behaviour in the context of established performance indicators.
comment: 12 pages, 7 figures, 9 tables, submitted to the IEEE Transactions on Intelligent Vehicles
Optimal Intraday Power Trading for Single-Price Balancing Markets: An Adaptive Risk-Averse Strategy using Mixture Models
Efficient markets are characterised by profit-driven participants continuously refining their positions towards the latest insights. Margins for profit generation are generally small, shaping a difficult landscape for automated trading strategies. This paper introduces a novel intraday power trading strategy tailored for single-price balancing markets. The strategy relies on a strategically devised mixture model to forecast future system imbalance prices and is formulated as a stochastic optimization problem with decision-dependent distributions to address two primary challenges: (i) the impact of trading positions on the system imbalance price and (ii) the uncertainty inherent in the model. The first challenge is tackled by adjusting the model to account for price changes after taking a position. For the second challenge, a coherent risk measure is added to the cost function to take additional uncertainties into account. This paper introduces a methodology to select the tuning parameter of this risk measure adaptively by continuously quantifying the performance of the strategy on a window of recently observed data. The strategy is validated with a simulation on the Belgian electricity market using real-time market data. The adaptive tuning approach leads to higher absolute profits, while also reducing the number of trades.
comment: Accepted in Applied Energy [Elsevier]
Robotics
Co-optimizing Physical Reconfiguration Parameters and Controllers for an Origami-inspired Reconfigurable Manipulator
Reconfigurable robots that can change their physical configuration post-fabrication have demonstrate their potential in adapting to different environments or tasks. However, it is challenging to determine how to optimally adjust reconfigurable parameters for a given task, especially when the controller depends on the robot's configuration. In this paper, we address this problem using a tendon-driven reconfigurable manipulator composed of multiple serially connected origami-inspired modules as an example. Under tendon actuation, these modules can achieve different shapes and motions, governed by joint stiffnesses (reconfiguration parameters) and the tendon displacements (control inputs). We leverage recent advances in co-optimization of design and control for robotic system to treat reconfiguration parameters as design variables and optimize them using reinforcement learning techniques. We first establish a forward model based on the minimum potential energy method to predict the shape of the manipulator under tendon actuations. Using the forward model as the environment dynamics, we then co-optimize the control policy (on the tendon displacements) and joint stiffnesses of the modules for goal reaching tasks while ensuring collision avoidance. Through co-optimization, we obtain optimized joint stiffness and the corresponding optimal control policy to enable the manipulator to accomplish the task that would be infeasible with fixed reconfiguration parameters (i.e., fixed joint stiffness). We envision the co-optimization framework can be extended to other reconfigurable robotic systems, enabling them to optimally adapt their configuration and behavior for diverse tasks and environments.
MonoDiff9D: Monocular Category-Level 9D Object Pose Estimation via Diffusion Model ICRA'25
Object pose estimation is a core means for robots to understand and interact with their environment. For this task, monocular category-level methods are attractive as they require only a single RGB camera. However, current methods rely on shape priors or CAD models of the intra-class known objects. We propose a diffusion-based monocular category-level 9D object pose generation method, MonoDiff9D. Our motivation is to leverage the probabilistic nature of diffusion models to alleviate the need for shape priors, CAD models, or depth sensors for intra-class unknown object pose estimation. We first estimate coarse depth via DINOv2 from the monocular image in a zero-shot manner and convert it into a point cloud. We then fuse the global features of the point cloud with the input image and use the fused features along with the encoded time step to condition MonoDiff9D. Finally, we design a transformer-based denoiser to recover the object pose from Gaussian noise. Extensive experiments on two popular benchmark datasets show that MonoDiff9D achieves state-of-the-art monocular category-level 9D object pose estimation accuracy without the need for shape priors or CAD models at any stage. Our code will be made public at https://github.com/CNJianLiu/MonoDiff9D.
comment: Accepted by ICRA'25
Region Based SLAM-Aware Exploration: Efficient and Robust Autonomous Mapping Strategy That Can Scale
Autonomous exploration for mapping unknown large scale environments is a fundamental challenge in robotics, with efficiency in time, stability against map corruption and computational resources being crucial. This paper presents a novel approach to indoor exploration that addresses these key issues in existing methods. We introduce a Simultaneous Localization and Mapping (SLAM)-aware region-based exploration strategy that partitions the environment into discrete regions, allowing the robot to incrementally explore and stabilize each region before moving to the next one. This approach significantly reduces redundant exploration and improves overall efficiency. As the device finishes exploring a region and stabilizes it, we also perform SLAM keyframe marginalization, a technique which reduces problem complexity by eliminating variables, while preserving their essential information. To improves robustness and further enhance efficiency, we develop a check- point system that enables the robot to resume exploration from the last stable region in case of failures, eliminating the need for complete re-exploration. Our method, tested in real homes, office and simulations, outperforms state-of-the-art approaches. The improvements demonstrate substantial enhancements in various real world environments, with significant reductions in keyframe usage (85%), submap usage (50% office, 32% home), pose graph optimization time (78-80%), and exploration duration (10-15%). This region-based strategy with keyframe marginalization offers an efficient solution for autonomous robotic mapping.
comment: 8 pages, 9 figures
Teacher Motion Priors: Enhancing Robot Locomotion over Challenging Terrain
Achieving robust locomotion on complex terrains remains a challenge due to high dimensional control and environmental uncertainties. This paper introduces a teacher prior framework based on the teacher student paradigm, integrating imitation and auxiliary task learning to improve learning efficiency and generalization. Unlike traditional paradigms that strongly rely on encoder-based state embeddings, our framework decouples the network design, simplifying the policy network and deployment. A high performance teacher policy is first trained using privileged information to acquire generalizable motion skills. The teacher's motion distribution is transferred to the student policy, which relies only on noisy proprioceptive data, via a generative adversarial mechanism to mitigate performance degradation caused by distributional shifts. Additionally, auxiliary task learning enhances the student policy's feature representation, speeding up convergence and improving adaptability to varying terrains. The framework is validated on a humanoid robot, showing a great improvement in locomotion stability on dynamic terrains and significant reductions in development costs. This work provides a practical solution for deploying robust locomotion strategies in humanoid robots.
comment: 8 pages, 6 figures, 6 tables
Flying Hand: End-Effector-Centric Framework for Versatile Aerial Manipulation Teleoperation and Policy Learning
Aerial manipulation has recently attracted increasing interest from both industry and academia. Previous approaches have demonstrated success in various specific tasks. However, their hardware design and control frameworks are often tightly coupled with task specifications, limiting the development of cross-task and cross-platform algorithms. Inspired by the success of robot learning in tabletop manipulation, we propose a unified aerial manipulation framework with an end-effector-centric interface that decouples high-level platform-agnostic decision-making from task-agnostic low-level control. Our framework consists of a fully-actuated hexarotor with a 4-DoF robotic arm, an end-effector-centric whole-body model predictive controller, and a high-level policy. The high-precision end-effector controller enables efficient and intuitive aerial teleoperation for versatile tasks and facilitates the development of imitation learning policies. Real-world experiments show that the proposed framework significantly improves end-effector tracking accuracy, and can handle multiple aerial teleoperation and imitation learning tasks, including writing, peg-in-hole, pick and place, changing light bulbs, etc. We believe the proposed framework provides one way to standardize and unify aerial manipulation into the general manipulation community and to advance the field. Project website: https://lecar-lab.github.io/flying_hand/.
comment: accepted by RSS 2025
Siamese Network with Dual Attention for EEG-Driven Social Learning: Bridging the Human-Robot Gap in Long-Tail Autonomous Driving
Robots with wheeled, quadrupedal, or humanoid forms are increasingly integrated into built environments. However, unlike human social learning, they lack a critical pathway for intrinsic cognitive development, namely, learning from human feedback during interaction. To understand human ubiquitous observation, supervision, and shared control in dynamic and uncertain environments, this study presents a brain-computer interface (BCI) framework that enables classification of Electroencephalogram (EEG) signals to detect cognitively demanding and safety-critical events. As a timely and motivating co-robotic engineering application, we simulate a human-in-the-loop scenario to flag risky events in semi-autonomous robotic driving-representative of long-tail cases that pose persistent bottlenecks to the safety performance of smart mobility systems and robotic vehicles. Drawing on recent advances in few-shot learning, we propose a dual-attention Siamese convolutional network paired with Dynamic Time Warping Barycenter Averaging approach to generate robust EEG-encoded signal representations. Inverse source localization reveals activation in Broadman areas 4 and 9, indicating perception-action coupling during task-relevant mental imagery. The model achieves 80% classification accuracy under data-scarce conditions and exhibits a nearly 100% increase in the utility of salient features compared to state-of-the-art methods, as measured through integrated gradient attribution. Beyond performance, this study contributes to our understanding of the cognitive architecture required for BCI agents-particularly the role of attention and memory mechanisms-in categorizing diverse mental states and supporting both inter- and intra-subject adaptation. Overall, this research advances the development of cognitive robotics and socially guided learning for service robots in complex built environments.
comment: 50 pages, 18 figures
Ankle Exoskeletons in Walking and Load-Carrying Tasks: Insights into Biomechanics and Human-Robot Interaction
Background: Lower limb exoskeletons can enhance quality of life, but widespread adoption is limited by the lack of frameworks to assess their biomechanical and human-robot interaction effects, which are essential for developing adaptive and personalized control strategies. Understanding impacts on kinematics, muscle activity, and HRI dynamics is key to achieve improved usability of wearable robots. Objectives: We propose a systematic methodology evaluate an ankle exoskeleton's effects on human movement during walking and load-carrying (10 kg front pack), focusing on joint kinematics, muscle activity, and HRI torque signals. Materials and Methods: Using Xsens MVN (inertial motion capture), Delsys EMG, and a unilateral exoskeleton, three experiments were conducted: (1) isolated dorsiflexion/plantarflexion; (2) gait analysis (two subjects, passive/active modes); and (3) load-carrying under assistance. Results and Conclusions: The first experiment confirmed that the HRI sensor captured both voluntary and involuntary torques, providing directional torque insights. The second experiment showed that the device slightly restricted ankle range of motion (RoM) but supported normal gait patterns across all assistance modes. The exoskeleton reduced muscle activity, particularly in active mode. HRI torque varied according to gait phases and highlighted reduced synchronization, suggesting a need for improved support. The third experiment revealed that load-carrying increased GM and TA muscle activity, but the device partially mitigated user effort by reducing muscle activity compared to unassisted walking. HRI increased during load-carrying, providing insights into user-device dynamics. These results demonstrate the importance of tailoring exoskeleton evaluation methods to specific devices and users, while offering a framework for future studies on exoskeleton biomechanics and HRI.
Look-to-Touch: A Vision-Enhanced Proximity and Tactile Sensor for Distance and Geometry Perception in Robotic Manipulation
Camera-based tactile sensors provide robots with a high-performance tactile sensing approach for environment perception and dexterous manipulation. However, achieving comprehensive environmental perception still requires cooperation with additional sensors, which makes the system bulky and limits its adaptability to unstructured environments. In this work, we present a vision-enhanced camera-based dual-modality sensor, which realizes full-scale distance sensing from 50 cm to -3 mm while simultaneously keeping ultra-high-resolution texture sensing and reconstruction capabilities. Unlike conventional designs with fixed opaque gel layers, our sensor features a partially transparent sliding window, enabling mechanical switching between tactile and visual modes. For each sensing mode, a dynamic distance sensing model and a contact geometry reconstruction model are proposed. Through integration with soft robotic fingers, we systematically evaluate the performance of each mode, as well as in their synergistic operation. Experimental results show robust distance tracking across various speeds, nanometer-scale roughness detection, and sub-millimeter 3D texture reconstruction. The combination of both modalities improves the robot's efficiency in executing grasping tasks. Furthermore, the embedded mechanical transmission in the sensor allows for fine-grained intra-hand adjustments and precise manipulation, unlocking new capabilities for soft robotic hands.
Vision based driving agent for race car simulation environments
In recent years, autonomous driving has become a popular field of study. As control at tire grip limit is essential during emergency situations, algorithms developed for racecars are useful for road cars too. This paper examines the use of Deep Reinforcement Learning (DRL) to solve the problem of grip limit driving in a simulated environment. Proximal Policy Optimization (PPO) method is used to train an agent to control the steering wheel and pedals of the vehicle, using only visual inputs to achieve professional human lap times. The paper outlines the formulation of the task of time optimal driving on a race track as a deep reinforcement learning problem, and explains the chosen observations, actions, and reward functions. The results demonstrate human-like learning and driving behavior that utilize maximum tire grip potential.
comment: Submitted to ICMCE 2024 (https://icmce.org/2024.html)
A Quasi-Steady-State Black Box Simulation Approach for the Generation of g-g-g-v Diagrams
The classical g-g diagram, representing the achievable acceleration space for a vehicle, is commonly used as a constraint in trajectory planning and control due to its computational simplicity. To address non-planar road geometries, this concept can be extended to incorporate g-g constraints as a function of vehicle speed and vertical acceleration, commonly referred to as g-g-g-v diagrams. However, the estimation of g-g-g-v diagrams is an open problem. Existing simulation-based approaches struggle to isolate non-transient, open-loop stable states across all combinations of speed and acceleration, while optimization-based methods often require simplified vehicle equations and have potential convergence issues. In this paper, we present a novel, open-source, quasi-steady-state black box simulation approach that applies a virtual inertial force in the longitudinal direction. The method emulates the load conditions associated with a specified longitudinal acceleration while maintaining constant vehicle speed, enabling open-loop steering ramps in a purely QSS manner. Appropriate regulation of the ramp steer rate inherently mitigates transient vehicle dynamics when determining the maximum feasible lateral acceleration. Moreover, treating the vehicle model as a black box eliminates model mismatch issues, allowing the use of high-fidelity or proprietary vehicle dynamics models typically unsuited for optimization approaches. An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams
comment: An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams
Shoulder Range of Motion Rehabilitation Robot Incorporating Scapulohumeral Rhythm for Frozen Shoulder
This paper presents a novel rehabilitation robot designed to address the challenges of passive range of motion (PROM) exercises for frozen shoulder patients by integrating advanced scapulohumeral rhythm stabilization. Frozen shoulder is characterized by limited glenohumeral motion and disrupted scapulohumeral rhythm, with therapist-assisted interventions being highly effective for restoring normal shoulder function. While existing robotic solutions replicate natural shoulder biomechanics, they lack the ability to stabilize compensatory movements, such as shoulder shrugging, which are critical for effective rehabilitation. Our proposed device features a 6 degrees of freedom (DoF) mechanism, including 5 DoF for shoulder motion and an innovative 1 DoF Joint press for scapular stabilization. The robot employs a personalized two-phase operation: recording normal shoulder movement patterns from the unaffected side and applying them to guide the affected side. Experimental results demonstrated the robot's ability to replicate recorded motion patterns with high precision, with root mean square error (RMSE) values consistently below 1 degree. In simulated frozen shoulder conditions, the robot effectively suppressed scapular elevation, delaying the onset of compensatory movements and guiding the affected shoulder to move more closely in alignment with normal shoulder motion, particularly during arm elevation movements such as abduction and flexion. These findings confirm the robot's potential as a rehabilitation tool capable of automating PROM exercises while correcting compensatory movements. The system provides a foundation for advanced, personalized rehabilitation for patients with frozen shoulders.
comment: This is a preprint of a manuscript that has been submitted for publication
A Human-Sensitive Controller: Adapting to Human Ergonomics and Physical Constraints via Reinforcement Learning
Work-Related Musculoskeletal Disorders continue to be a major challenge in industrial environments, leading to reduced workforce participation, increased healthcare costs, and long-term disability. This study introduces a human-sensitive robotic system aimed at reintegrating individuals with a history of musculoskeletal disorders into standard job roles, while simultaneously optimizing ergonomic conditions for the broader workforce. This research leverages reinforcement learning to develop a human-aware control strategy for collaborative robots, focusing on optimizing ergonomic conditions and preventing pain during task execution. Two RL approaches, Q-Learning and Deep Q-Network (DQN), were implemented and tested to personalize control strategies based on individual user characteristics. Although experimental results revealed a simulation-to-real gap, a fine-tuning phase successfully adapted the policies to real-world conditions. DQN outperformed Q-Learning by completing tasks faster while maintaining zero pain risk and safe ergonomic levels. The structured testing protocol confirmed the system's adaptability to diverse human anthropometries, underscoring the potential of RL-driven cobots to enable safer, more inclusive workplaces.
A Framework for Adaptive Load Redistribution in Human-Exoskeleton-Cobot Systems
Wearable devices like exoskeletons are designed to reduce excessive loads on specific joints of the body. Specifically, single- or two-degrees-of-freedom (DOF) upper-body industrial exoskeletons typically focus on compensating for the strain on the elbow and shoulder joints. However, during daily activities, there is no assurance that external loads are correctly aligned with the supported joints. Optimizing work processes to ensure that external loads are primarily (to the extent that they can be compensated by the exoskeleton) directed onto the supported joints can significantly enhance the overall usability of these devices and the ergonomics of their users. Collaborative robots (cobots) can play a role in this optimization, complementing the collaborative aspects of human work. In this study, we propose an adaptive and coordinated control system for the human-cobot-exoskeleton interaction. This system adjusts the task coordinates to maximize the utilization of the supported joints. When the torque limits of the exoskeleton are exceeded, the framework continuously adapts the task frame, redistributing excessive loads to non-supported body joints to prevent overloading the supported ones. We validated our approach in an equivalent industrial painting task involving a single-DOF elbow exoskeleton, a cobot, and four subjects, each tested in four different initial arm configurations with five distinct optimisation weight matrices and two different payloads.
comment: Accepted to be published in IEEE Robotics and Automation Letters
Joint Action Language Modelling for Transparent Policy Execution
An agent's intention often remains hidden behind the black-box nature of embodied policies. Communication using natural language statements that describe the next action can provide transparency towards the agent's behavior. We aim to insert transparent behavior directly into the learning process, by transforming the problem of policy learning into a language generation problem and combining it with traditional autoregressive modelling. The resulting model produces transparent natural language statements followed by tokens representing the specific actions to solve long-horizon tasks in the Language-Table environment. Following previous work, the model is able to learn to produce a policy represented by special discretized tokens in an autoregressive manner. We place special emphasis on investigating the relationship between predicting actions and producing high-quality language for a transparent agent. We find that in many cases both the quality of the action trajectory and the transparent statement increase when they are generated simultaneously.
Prior Does Matter: Visual Navigation via Denoising Diffusion Bridge Models
Recent advancements in diffusion-based imitation learning, which show impressive performance in modeling multimodal distributions and training stability, have led to substantial progress in various robot learning tasks. In visual navigation, previous diffusion-based policies typically generate action sequences by initiating from denoising Gaussian noise. However, the target action distribution often diverges significantly from Gaussian noise, leading to redundant denoising steps and increased learning complexity. Additionally, the sparsity of effective action distributions makes it challenging for the policy to generate accurate actions without guidance. To address these issues, we propose a novel, unified visual navigation framework leveraging the denoising diffusion bridge models named NaviBridger. This approach enables action generation by initiating from any informative prior actions, enhancing guidance and efficiency in the denoising process. We explore how diffusion bridges can enhance imitation learning in visual navigation tasks and further examine three source policies for generating prior actions. Extensive experiments in both simulated and real-world indoor and outdoor scenarios demonstrate that NaviBridger accelerates policy inference and outperforms the baselines in generating target action sequences. Code is available at https://github.com/hren20/NaiviBridger.
EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control
This paper introduces EmbodiedAgent, a hierarchical framework for heterogeneous multi-robot control. EmbodiedAgent addresses critical limitations of hallucination in impractical tasks. Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills while dynamically validating actions against environmental constraints. We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios, including a subset of impractical cases to mitigate hallucination. To evaluate performance, we propose the Robot Planning Assessment Schema (RPAS), combining automated metrics with LLM-aided expert grading. Experiments demonstrate EmbodiedAgent's superiority over state-of-the-art models, achieving 71.85% RPAS score. Real-world validation in an office service task highlights its ability to coordinate heterogeneous robots for long-horizon objectives.
KeyMPs: One-Shot Vision-Language Guided Motion Generation by Sequencing DMPs for Occlusion-Rich Tasks
Dynamic Movement Primitives (DMPs) provide a flexible framework wherein smooth robotic motions are encoded into modular parameters. However, they face challenges in integrating multimodal inputs commonly used in robotics like vision and language into their framework. To fully maximize DMPs' potential, enabling them to handle multimodal inputs is essential. In addition, we also aim to extend DMPs' capability to handle object-focused tasks requiring one-shot complex motion generation, as observation occlusion could easily happen mid-execution in such tasks (e.g., knife occlusion in cake icing, hand occlusion in dough kneading, etc.). A promising approach is to leverage Vision-Language Models (VLMs), which process multimodal data and can grasp high-level concepts. However, they typically lack enough knowledge and capabilities to directly infer low-level motion details and instead only serve as a bridge between high-level instructions and low-level control. To address this limitation, we propose Keyword Labeled Primitive Selection and Keypoint Pairs Generation Guided Movement Primitives (KeyMPs), a framework that combines VLMs with sequencing of DMPs. KeyMPs use VLMs' high-level reasoning capability to select a reference primitive through keyword labeled primitive selection and VLMs' spatial awareness to generate spatial scaling parameters used for sequencing DMPs by generalizing the overall motion through keypoint pairs generation, which together enable one-shot vision-language guided motion generation that aligns with the intent expressed in the multimodal input. We validate our approach through an occlusion-rich manipulation task, specifically object cutting experiments in both simulated and real-world environments, demonstrating superior performance over other DMP-based methods that integrate VLMs support.
comment: 17 pages, Submitted to IEEE Access April 9th 2025
NaviDiffusor: Cost-Guided Diffusion Model for Visual Navigation
Visual navigation, a fundamental challenge in mobile robotics, demands versatile policies to handle diverse environments. Classical methods leverage geometric solutions to minimize specific costs, offering adaptability to new scenarios but are prone to system errors due to their multi-modular design and reliance on hand-crafted rules. Learning-based methods, while achieving high planning success rates, face difficulties in generalizing to unseen environments beyond the training data and often require extensive training. To address these limitations, we propose a hybrid approach that combines the strengths of learning-based methods and classical approaches for RGB-only visual navigation. Our method first trains a conditional diffusion model on diverse path-RGB observation pairs. During inference, it integrates the gradients of differentiable scene-specific and task-level costs, guiding the diffusion model to generate valid paths that meet the constraints. This approach alleviates the need for retraining, offering a plug-and-play solution. Extensive experiments in both indoor and outdoor settings, across simulated and real-world scenarios, demonstrate zero-shot transfer capability of our approach, achieving higher success rates and fewer collisions compared to baseline methods. Code will be released at https://github.com/SYSU-RoboticsLab/NaviD.
FLoRA: Sample-Efficient Preference-based RL via Low-Rank Style Adaptation of Reward Functions ICRA
Preference-based reinforcement learning (PbRL) is a suitable approach for style adaptation of pre-trained robotic behavior: adapting the robot's policy to follow human user preferences while still being able to perform the original task. However, collecting preferences for the adaptation process in robotics is often challenging and time-consuming. In this work we explore the adaptation of pre-trained robots in the low-preference-data regime. We show that, in this regime, recent adaptation approaches suffer from catastrophic reward forgetting (CRF), where the updated reward model overfits to the new preferences, leading the agent to become unable to perform the original task. To mitigate CRF, we propose to enhance the original reward model with a small number of parameters (low-rank matrices) responsible for modeling the preference adaptation. Our evaluation shows that our method can efficiently and effectively adjust robotic behavior to human preferences across simulation benchmark tasks and multiple real-world robotic tasks.
comment: Accepted at 2025 IEEE International Conference on Robotics & Automation (ICRA). We provide videos of our results and source code at https://sites.google.com/view/preflora/
GenTe: Generative Real-world Terrains for General Legged Robot Locomotion Control
Developing bipedal robots capable of traversing diverse real-world terrains presents a fundamental robotics challenge, as existing methods using predefined height maps and static environments fail to address the complexity of unstructured landscapes. To bridge this gap, we propose GenTe, a framework for generating physically realistic and adaptable terrains to train generalizable locomotion policies. GenTe constructs an atomic terrain library that includes both geometric and physical terrains, enabling curriculum training for reinforcement learning-based locomotion policies. By leveraging function-calling techniques and reasoning capabilities of Vision-Language Models (VLMs), GenTe generates complex, contextually relevant terrains from textual and graphical inputs. The framework introduces realistic force modeling for terrain interactions, capturing effects such as soil sinkage and hydrodynamic resistance. To the best of our knowledge, GenTe is the first framework that systemically generates simulation environments for legged robot locomotion control. Additionally, we introduce a benchmark of 100 generated terrains. Experiments demonstrate improved generalization and robustness in bipedal robot locomotion.
Efficient Task-specific Conditional Diffusion Policies: Shortcut Model Acceleration and SO(3) Optimization CVPR 2025
Imitation learning, particularly Diffusion Policies based methods, has recently gained significant traction in embodied AI as a powerful approach to action policy generation. These models efficiently generate action policies by learning to predict noise. However, conventional Diffusion Policy methods rely on iterative denoising, leading to inefficient inference and slow response times, which hinder real-time robot control. To address these limitations, we propose a Classifier-Free Shortcut Diffusion Policy (CF-SDP) that integrates classifier-free guidance with shortcut-based acceleration, enabling efficient task-specific action generation while significantly improving inference speed. Furthermore, we extend diffusion modeling to the SO(3) manifold in shortcut model, defining the forward and reverse processes in its tangent space with an isotropic Gaussian distribution. This ensures stable and accurate rotational estimation, enhancing the effectiveness of diffusion-based control. Our approach achieves nearly 5x acceleration in diffusion inference compared to DDIM-based Diffusion Policy while maintaining task performance. Evaluations both on the RoboTwin simulation platform and real-world scenarios across various tasks demonstrate the superiority of our method.
comment: Accepted to CVPR 2025 Workshop on 2nd MEIS
LangPert: Detecting and Handling Task-level Perturbations for Robust Object Rearrangement
Task execution for object rearrangement could be challenged by Task-Level Perturbations (TLP), i.e., unexpected object additions, removals, and displacements that can disrupt underlying visual policies and fundamentally compromise task feasibility and progress. To address these challenges, we present LangPert, a language-based framework designed to detect and mitigate TLP situations in tabletop rearrangement tasks. LangPert integrates a Visual Language Model (VLM) to comprehensively monitor policy's skill execution and environmental TLP, while leveraging the Hierarchical Chain-of-Thought (HCoT) reasoning mechanism to enhance the Large Language Model (LLM)'s contextual understanding and generate adaptive, corrective skill-execution plans. Our experimental results demonstrate that LangPert handles diverse TLP situations more effectively than baseline methods, achieving higher task completion rates, improved execution efficiency, and potential generalization to unseen scenarios.
SIO-Mapper: A Framework for Lane-Level HD Map Construction Using Satellite Images and OpenStreetMap with No On-Site Visits
High-definition (HD) maps, particularly those containing lane-level information regarded as ground truth, are crucial for vehicle localization research. Traditionally, constructing HD maps requires highly accurate sensor measurements collection from the target area, followed by manual annotation to assign semantic information. Consequently, HD maps are limited in terms of geographic coverage. To tackle this problem, in this paper, we propose SIO-Mapper, a novel lane-level HD map construction framework that constructs city-scale maps without physical site visits by utilizing satellite images and OpenStreetmap data. One of the key contributions of SIO-Mapper is its ability to extract lane information more accurately by introducing SIO-Net, a novel deep learning network that integrates features from satellite image and OpenStreetmap using both Transformer-based and convolution-based encoders. Furthermore, to overcome challenges in merging lanes over large areas, we introduce a novel lane integration methodology that combines cluster-based and graph-based approaches. This algorithm ensures the seamless aggregation of lane segments with high accuracy and coverage, even in complex road environments. We validated SIO-Mapper on the Naver Labs Open Dataset and NuScenes dataset, demonstrating better performance in various environments including Korea, the United States, and Singapore compared to the state-of-the-art lane-level HD mapconstruction methods.
NeRF-Based Transparent Object Grasping Enhanced by Shape Priors
Transparent object grasping remains a persistent challenge in robotics, largely due to the difficulty of acquiring precise 3D information. Conventional optical 3D sensors struggle to capture transparent objects, and machine learning methods are often hindered by their reliance on high-quality datasets. Leveraging NeRF's capability for continuous spatial opacity modeling, our proposed architecture integrates a NeRF-based approach for reconstructing the 3D information of transparent objects. Despite this, certain portions of the reconstructed 3D information may remain incomplete. To address these deficiencies, we introduce a shape-prior-driven completion mechanism, further refined by a geometric pose estimation method we have developed. This allows us to obtain a complete and reliable 3D information of transparent objects. Utilizing this refined data, we perform scene-level grasp prediction and deploy the results in real-world robotic systems. Experimental validation demonstrates the efficacy of our architecture, showcasing its capability to reliably capture 3D information of various transparent objects in cluttered scenes, and correspondingly, achieve high-quality, stables, and executable grasp predictions.
ST-Booster: An Iterative SpatioTemporal Perception Booster for Vision-and-Language Navigation in Continuous Environments
Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to navigate unknown, continuous spaces based on natural language instructions. Compared to discrete settings, VLN-CE poses two core perception challenges. First, the absence of predefined observation points leads to heterogeneous visual memories and weakened global spatial correlations. Second, cumulative reconstruction errors in three-dimensional scenes introduce structural noise, impairing local feature perception. To address these challenges, this paper proposes ST-Booster, an iterative spatiotemporal booster that enhances navigation performance through multi-granularity perception and instruction-aware reasoning. ST-Booster consists of three key modules -- Hierarchical SpatioTemporal Encoding (HSTE), Multi-Granularity Aligned Fusion (MGAF), and ValueGuided Waypoint Generation (VGWG). HSTE encodes long-term global memory using topological graphs and captures shortterm local details via grid maps. MGAF aligns these dualmap representations with instructions through geometry-aware knowledge fusion. The resulting representations are iteratively refined through pretraining tasks. During reasoning, VGWG generates Guided Attention Heatmaps (GAHs) to explicitly model environment-instruction relevance and optimize waypoint selection. Extensive comparative experiments and performance analyses are conducted, demonstrating that ST-Booster outperforms existing state-of-the-art methods, particularly in complex, disturbance-prone environments.
comment: 11 pages, 7 figures
Score Matching Diffusion Based Feedback Control and Planning of Nonlinear Systems
We propose a novel control-theoretic framework that leverages principles from generative modeling -- specifically, Denoising Diffusion Probabilistic Models (DDPMs) -- to stabilize control-affine systems with nonholonomic constraints. Unlike traditional stochastic approaches, which rely on noise-driven dynamics in both forward and reverse processes, our method crucially eliminates the need for noise in the reverse phase, making it particularly relevant for control applications. We introduce two formulations: one where noise perturbs all state dimensions during the forward phase while the control system enforces time reversal deterministically, and another where noise is restricted to the control channels, embedding system constraints directly into the forward process. For controllable nonlinear drift-free systems, we prove that deterministic feedback laws can exactly reverse the forward process, ensuring that the system's probability density evolves correctly without requiring artificial diffusion in the reverse phase. Furthermore, for linear time-invariant systems, we establish a time-reversal result under the second formulation. By eliminating noise in the backward process, our approach provides a more practical alternative to machine learning-based denoising methods, which are unsuitable for control applications due to the presence of stochasticity. We validate our results through numerical simulations on benchmark systems, including a unicycle model in a domain with obstacles, a driftless five-dimensional system, and a four-dimensional linear system, demonstrating the potential for applying diffusion-inspired techniques in linear, nonlinear, and settings with state space constraints.
PreCi: Pretraining and Continual Improvement of Humanoid Locomotion via Model-Assumption-Based Regularization
Humanoid locomotion is a challenging task due to its inherent complexity and high-dimensional dynamics, as well as the need to adapt to diverse and unpredictable environments. In this work, we introduce a novel learning framework for effectively training a humanoid locomotion policy that imitates the behavior of a model-based controller while extending its capabilities to handle more complex locomotion tasks, such as more challenging terrain and higher velocity commands. Our framework consists of three key components: pre-training through imitation of the model-based controller, fine-tuning via reinforcement learning, and model-assumption-based regularization (MAR) during fine-tuning. In particular, MAR aligns the policy with actions from the model-based controller only in states where the model assumption holds to prevent catastrophic forgetting. We evaluate the proposed framework through comprehensive simulation tests and hardware experiments on a full-size humanoid robot, Digit, demonstrating a forward speed of 1.5 m/s and robust locomotion across diverse terrains, including slippery, sloped, uneven, and sandy terrains.
RoboCup Rescue 2025 Team Description Paper UruBots
This paper describes the approach used by Team UruBots for participation in the 2025 RoboCup Rescue Robot League competition. Our team aims to participate for the first time in this competition at RoboCup, using experience learned from previous competitions and research. We present our vehicle and our approach to tackle the task of detecting and finding victims in search and rescue environments. Our approach contains known topics in robotics, such as ROS, SLAM, Human Robot Interaction and segmentation and perception. Our proposed approach is open source, available to the RoboCup Rescue community, where we aim to learn and contribute to the league.
SeeTree -- A modular, open-source system for tree detection and orchard localization
Accurate localization is an important functional requirement for precision orchard management. However, there are few off-the-shelf commercial solutions available to growers. In this paper, we present SeeTree, a modular, open source embedded system for tree trunk detection and orchard localization that is deployable on any vehicle. Building on our prior work on vision-based in-row localization using particle filters, SeeTree includes several new capabilities. First, it provides capacity for full orchard localization including out-of-row headland turning. Second, it includes the flexibility to integrate either visual, GNSS, or wheel odometry in the motion model. During field experiments in a commercial orchard, the system converged to the correct location 99% of the time over 800 trials, even when starting with large uncertainty in the initial particle locations. When turning out of row, the system correctly tracked 99% of the turns (860 trials representing 43 unique row changes). To help support adoption and future research and development, we make our dataset, design files, and source code freely available to the community.
comment: 26 pages, 12 figures
ReasonDrive: Efficient Visual Question Answering for Autonomous Vehicles with Reasoning-Enhanced Small Vision-Language Models
Vision-language models (VLMs) show promise for autonomous driving but often lack transparent reasoning capabilities that are critical for safety. We investigate whether explicitly modeling reasoning during fine-tuning enhances VLM performance on driving decision tasks. Using GPT-4o, we generate structured reasoning chains for driving scenarios from the DriveLM benchmark with category-specific prompting strategies. We compare reasoning-based fine-tuning, answer-only fine-tuning, and baseline instruction-tuned models across multiple small VLM families (Llama 3.2, Llava 1.5, and Qwen 2.5VL). Our results demonstrate that reasoning-based fine-tuning consistently outperforms alternatives, with Llama3.2-11B-reason achieving the highest performance. Models fine-tuned with reasoning show substantial improvements in accuracy and text generation quality, suggesting explicit reasoning enhances internal representations for driving decisions. These findings highlight the importance of transparent decision processes in safety-critical domains and offer a promising direction for developing more interpretable autonomous driving systems.
Communication-aware Hierarchical Map Compression of Time-Varying Environments for Mobile Robots
In this paper, we develop a systematic framework for the time-sequential compression of dynamic probabilistic occupancy grids. Our approach leverages ideas from signal compression theory to formulate an optimization problem that searches for a multi-resolution hierarchical encoder that balances the quality of the compressed map (distortion) with its description size, the latter of which relates to the bandwidth required to reliably transmit the map to other agents or to store map estimates in on-board memory. The resulting optimization problem allows for multi-resolution map compressions to be obtained that satisfy available communication or memory resources, and does not require knowledge of the occupancy map dynamics. We develop an algorithm to solve our problem, and demonstrate the utility of the proposed framework in simulation on both static (i.e., non-time varying) and dynamic (time-varying) occupancy maps.
Real-time Seafloor Segmentation and Mapping
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
CleanMAP: Distilling Multimodal LLMs for Confidence-Driven Crowdsourced HD Map Updates CVPR
The rapid growth of intelligent connected vehicles (ICVs) and integrated vehicle-road-cloud systems has increased the demand for accurate, real-time HD map updates. However, ensuring map reliability remains challenging due to inconsistencies in crowdsourced data, which suffer from motion blur, lighting variations, adverse weather, and lane marking degradation. This paper introduces CleanMAP, a Multimodal Large Language Model (MLLM)-based distillation framework designed to filter and refine crowdsourced data for high-confidence HD map updates. CleanMAP leverages an MLLM-driven lane visibility scoring model that systematically quantifies key visual parameters, assigning confidence scores (0-10) based on their impact on lane detection. A novel dynamic piecewise confidence-scoring function adapts scores based on lane visibility, ensuring strong alignment with human evaluations while effectively filtering unreliable data. To further optimize map accuracy, a confidence-driven local map fusion strategy ranks and selects the top-k highest-scoring local maps within an optimal confidence range (best score minus 10%), striking a balance between data quality and quantity. Experimental evaluations on a real-world autonomous vehicle dataset validate CleanMAP's effectiveness, demonstrating that fusing the top three local maps achieves the lowest mean map update error of 0.28m, outperforming the baseline (0.37m) and meeting stringent accuracy thresholds (<= 0.32m). Further validation with real-vehicle data confirms 84.88% alignment with human evaluators, reinforcing the model's robustness and reliability. This work establishes CleanMAP as a scalable and deployable solution for crowdsourced HD map updates, ensuring more precise and reliable autonomous navigation. The code will be available at https://Ankit-Zefan.github.io/CleanMap/
comment: Kun Jiang, Mengmeng Yang and Diange Yang are Corresponding Author. The main paper and supplementary material are both included here, total 23 pages (main paper is 10 pages and supplementary material is 13 pages), total 17 figures (6 figures in main paper and 11 figures in supplementary material), this paper is Accepted to CVPR WDFM-AD Workshop 2025, The code will be available at https://Ankit-Zefan.github.io/CleanMap/
HyRRT-Connect: Bidirectional Motion Planning for Hybrid Dynamical Systems
This paper proposes a bidirectional rapidly-exploring random trees (RRT) algorithm to solve the motion planning problem for hybrid systems. The proposed algorithm, called HyRRT-Connect, propagates in both forward and backward directions in hybrid time until an overlap between the forward and backward propagation results is detected. Then, HyRRT-Connect constructs a motion plan through the reversal and concatenation of functions defined on hybrid time domains, ensuring that the motion plan satisfies the given hybrid dynamics. To address the potential discontinuity along the flow caused by tolerating some distance between the forward and backward partial motion plans, we reconstruct the backward partial motion plan by a forward-in-hybrid-time simulation from the final state of the forward partial motion plan. effectively eliminating the discontinuity. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot example to highlight its computational improvement.
comment: 59 pages, 9 figures, submitted to IJRR. arXiv admin note: substantial text overlap with arXiv:2403.18413; text overlap with arXiv:2406.01802
Intelligent Framework for Human-Robot Collaboration: Dynamic Ergonomics and Adaptive Decision-Making
The integration of collaborative robots into industrial environments has improved productivity, but has also highlighted significant challenges related to operator safety and ergonomics. This paper proposes an innovative framework that integrates advanced visual perception, continuous ergonomic monitoring, and adaptive Behaviour Tree decision-making to overcome the limitations of traditional methods that typically operate as isolated components. Our approach synthesizes deep learning models, advanced tracking algorithms, and dynamic ergonomic assessments into a modular, scalable, and adaptive system. Experimental validation demonstrates the framework's superiority over existing solutions across multiple dimensions: the visual perception module outperformed previous detection models with 72.4% mAP@50:95; the system achieved high accuracy in recognizing operator intentions (92.5%); it promptly classified ergonomic risks with minimal latency (0.57 seconds); and it dynamically managed robotic interventions with exceptionally responsive decision-making capabilities (0.07 seconds), representing a 56% improvement over benchmark systems. This comprehensive solution provides a robust platform for enhancing human-robot collaboration in industrial environments by prioritizing ergonomic safety, operational efficiency, and real-time adaptability.
comment: 15 pagine, 8figure, 3 tabelle, formato conferenza IEEE
RINGO: Real-time Navigation with a Guiding Trajectory for Aerial Manipulators in Unknown Environments
Motion planning for aerial manipulators in constrained environments has typically been limited to known environments or simplified to that of multi-rotors, which leads to poor adaptability and overly conservative trajectories. This paper presents RINGO: Real-time Navigation with a Guiding Trajectory, a novel planning framework that enables aerial manipulators to navigate unknown environments in real time. The proposed method simultaneously considers the positions of both the multi-rotor and the end-effector. A pre-obtained multi-rotor trajectory serves as a guiding reference, allowing the end-effector to generate a smooth, collision-free, and workspace-compatible trajectory. Leveraging the convex hull property of B-spline curves, we theoretically guarantee that the trajectory remains within the reachable workspace. To the best of our knowledge, this is the first work that enables real-time navigation of aerial manipulators in unknown environments. The simulation and experimental results show the effectiveness of the proposed method. The proposed method generates less conservative trajectories than approaches that consider only the multi-rotor.
comment: 9 pages, 15 figures
A Comprehensive Review on Traffic Datasets and Simulators for Autonomous Vehicles
Autonomous driving has rapidly evolved through synergistic developments in hardware and artificial intelligence. This comprehensive review investigates traffic datasets and simulators as dual pillars supporting autonomous vehicle (AV) development. Unlike prior surveys that examine these resources independently, we present an integrated analysis spanning the entire AV pipeline-perception, localization, prediction, planning, and control. We evaluate annotation practices and quality metrics while examining how geographic diversity and environmental conditions affect system reliability. Our analysis includes detailed characterizations of datasets organized by functional domains and an in-depth examination of traffic simulators categorized by their specialized contributions to research and development. The paper explores emerging trends, including novel architecture frameworks, multimodal AI integration, and advanced data generation techniques that address critical edge cases. By highlighting the interconnections between real-world data collection and simulation environments, this review offers researchers a roadmap for developing more robust and resilient autonomous systems equipped to handle the diverse challenges encountered in real-world driving environments.
Motion Control in Multi-Rotor Aerial Robots Using Deep Reinforcement Learning
This paper investigates the application of Deep Reinforcement (DRL) Learning to address motion control challenges in drones for additive manufacturing (AM). Drone-based additive manufacturing promises flexible and autonomous material deposition in large-scale or hazardous environments. However, achieving robust real-time control of a multi-rotor aerial robot under varying payloads and potential disturbances remains challenging. Traditional controllers like PID often require frequent parameter re-tuning, limiting their applicability in dynamic scenarios. We propose a DRL framework that learns adaptable control policies for multi-rotor drones performing waypoint navigation in AM tasks. We compare Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) within a curriculum learning scheme designed to handle increasing complexity. Our experiments show TD3 consistently balances training stability, accuracy, and success, particularly when mass variability is introduced. These findings provide a scalable path toward robust, autonomous drone control in additive manufacturing.
A Smooth Analytical Formulation of Collision Detection and Rigid Body Dynamics With Contact
Generating intelligent robot behavior in contact-rich settings is a research problem where zeroth-order methods currently prevail. A major contributor to the success of such methods is their robustness in the face of non-smooth and discontinuous optimization landscapes that are characteristic of contact interactions, yet zeroth-order methods remain computationally inefficient. It is therefore desirable to develop methods for perception, planning and control in contact-rich settings that can achieve further efficiency by making use of first and second order information (i.e., gradients and Hessians). To facilitate this, we present a joint formulation of collision detection and contact modelling which, compared to existing differentiable simulation approaches, provides the following benefits: i) it results in forward and inverse dynamics that are entirely analytical (i.e. do not require solving optimization or root-finding problems with iterative methods) and smooth (i.e. twice differentiable), ii) it supports arbitrary collision geometries without needing a convex decomposition, and iii) its runtime is independent of the number of contacts. Through simulation experiments, we demonstrate the validity of the proposed formulation as a "physics for inference" that can facilitate future development of efficient methods to generate intelligent contact-rich behavior.
comment: Added references to point-based implicit surface representations
STLCCP: Efficient Convex Optimization-based Framework for Signal Temporal Logic Specifications
Signal temporal logic (STL) is a powerful formalism for specifying various temporal properties in dynamical systems. However, existing methods, such as mixed-integer programming and nonlinear programming, often struggle to efficiently solve control problems with complex, long-horizon STL specifications. This study introduces \textit{STLCCP}, a novel convex optimization-based framework that leverages key structural properties of STL: monotonicity of the robustness function, its hierarchical tree structure, and correspondence between convexity/concavity in optimizations and conjunctiveness/disjunctiveness in specifications. The framework begins with a structure-aware decomposition of STL formulas, transforming the problem into an equivalent difference of convex (DC) programs. This is then solved sequentially as a convex quadratic program using an improved version of the convex-concave procedure (CCP). To further enhance efficiency, we develop a smooth approximation of the robustness function using a function termed the \textit{mellowmin} function, specifically tailored to the proposed framework. Numerical experiments on motion planning benchmarks demonstrate that \textit{STLCCP} can efficiently handle complex scenarios over long horizons, outperforming existing methods.
comment: 32 pages
MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
Learning-based Observer for Coupled Disturbance
Achieving high-precision control for robotic systems is hindered by the low-fidelity dynamical model and external disturbances. Especially, the intricate coupling between internal uncertainties and external disturbances further exacerbates this challenge. This study introduces an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Concretely, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures dependent on system state and external disturbance respectively. A regularized least squares algorithm is subsequently formalized to learn the parameter matrix using historical time-series data. Finally, a polynomial disturbance observer is specifically devised to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The proposed algorithm is evaluated through extensive simulations and real flight tests. We believe this work can offer a new pathway to integrate learning approaches into control frameworks for addressing longstanding challenges in robotic applications.
comment: 17 pages, 9 figures
Velocity-free task-space regulator for robot manipulators with external disturbances
This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.
Walk along: An Experiment on Controlling the Mobile Robot 'Spot' with Voice and Gestures
Robots are becoming more capable and can autonomously perform tasks such as navigating between locations. However, human oversight remains crucial. This study compared two touchless methods for directing mobile robots: voice control and gesture control, to investigate the efficiency of the methods and the preference of users. We tested these methods in two conditions: one in which participants remained stationary and one in which they walked freely alongside the robot. We hypothesized that walking alongside the robot would result in higher intuitiveness ratings and improved task performance, based on the idea that walking promotes spatial alignment and reduces the effort required for mental rotation. In a 2x2 within-subject design, 218 participants guided the quadruped robot Spot along a circuitous route with multiple 90-degree turns using rotate left, rotate right, and walk forward commands. After each trial, participants rated the intuitiveness of the command mapping, while post-experiment interviews were used to gather the participants' preferences. Results showed that voice control combined with walking with Spot was the most favored and intuitive, whereas gesture control while standing caused confusion for left/right commands. Nevertheless, 29% of participants preferred gesture control, citing increased task engagement and visual congruence as reasons. An odometry-based analysis revealed that participants often followed behind Spot, particularly in the gesture control condition, when they were allowed to walk. In conclusion, voice control with walking produced the best outcomes. Improving physical ergonomics and adjusting gesture types could make gesture control more effective.
Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
Being able to use tools is a widely recognised indicator of intelligence across species. Humans, for instance, have demonstrated mastery of tool use for over two million years. The ability to use tools is invaluable as it extends an organism's reach and enhances its capacity to interact with objects and the environment. Being able to understand the geometric-mechanical relations between the tools-objects-environments allows certain species (e.g., apes and crows) to reach food in narrow constrained spaces. The same principles of physical augmentation and its associated non-prehensile manipulation capabilities also apply to robotic systems. For example, by instrumenting them with different types of end-effectors, robots can (in principle) dexterously interact (e.g., push and flip) with objects of various shapes and masses akin to its biological counterpart. However, developing this type of manipulation skill is still an open research problem. Furthermore, the complexity of planning tool-object manipulation tasks, particularly in coordinating the actions of dual-arm robots, presents significant challenges. To address these complexities, we propose integrating Large Language Models (LLMs) to assist in planning and executing these intricate manipulations, thereby enhancing the robot's ability to perform in diverse scenarios.
Real-World Evaluation of two Cooperative Intersection Management Approaches
Cooperative maneuver planning promises to significantly improve traffic efficiency at unsignalized intersections by leveraging connected automated vehicles. Previous works on this topic have been mostly developed for completely automated traffic in a simple simulated environment. In contrast, our previously introduced planning approaches are specifically designed to handle real-world mixed traffic. The two methods are based on multi-scenario prediction and graph-based reinforcement learning, respectively. This is the first study to perform evaluations in a novel mixed traffic simulation framework as well as real-world drives with prototype connected automated vehicles in public traffic. The simulation features the same connected automated driving software stack as deployed on one of the automated vehicles. Our quantitative evaluations show that cooperative maneuver planning achieves a substantial reduction in crossing times and the number of stops. In a realistic environment with few automated vehicles, there are noticeable efficiency gains with only slightly increasing criticality metrics.
comment: M. Klimke and M. B. Mertens are both first authors with equal contribution. 10 pages, 9 figures, 3 tables, submitted to IEEE Intelligent Transportation Systems Magazine
Towards Developing Socially Compliant Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs' compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An informal expert interview was also conducted to discuss the literature review results and identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 58 pages, 13 figures, accepted by the Journal of Communications in Transportation Research
ConRFT: A Reinforced Fine-tuning Method for VLA Models via Consistency Policy
Vision-Language-Action (VLA) models have shown substantial potential in real-world robotic manipulation. However, fine-tuning these models through supervised learning struggles to achieve robust performance due to limited, inconsistent demonstrations, especially in contact-rich environments. In this paper, we propose a reinforced fine-tuning approach for VLA models, named ConRFT, which consists of offline and online fine-tuning with a unified consistency-based training objective, to address these challenges. In the offline stage, our method integrates behavior cloning and Q-learning to effectively extract policy from a small set of demonstrations and stabilize value estimating. In the online stage, the VLA model is further fine-tuned via consistency policy, with human interventions to ensure safe exploration and high sample efficiency. We evaluate our approach on eight diverse real-world manipulation tasks. It achieves an average success rate of 96.3% within 45-90 minutes of online fine-tuning, outperforming prior supervised methods with a 144% improvement in success rate and 1.9x shorter episode length. This work highlights the potential of integrating reinforcement learning to enhance the performance of VLA models for real-world robotic applications. Videos and code are available at our project website https://cccedric.github.io/conrft/.
Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling human movement in real-world tasks is a fundamental goal for motor control, biomechanics, and rehabilitation engineering. However, existing models of essential tasks like locomotion are not applicable across varying terrain, mechanical conditions, and sensory contexts. This is at least in part due to simplifying assumptions like linear and fixed timescales mappings between inputs and future actions, which may not be broadly applicable. Here, we develop a deep learning-based framework for action prediction, outperforming traditional models across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, visual gaze). We find that neural network architectures with flexible input history-dependence, like GRU and Transformer, and with architecture-dependent trial embeddings perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. These analyses reveal that there is greater reliance on fast-timescale predictions in complex terrain, gaze predicts future foot placement before body states, and the full-body state predictions precede those by center-of-mass states. This deep learning framework for human action prediction provides quantifiable insights into the control of real-world locomotion and can be extended to other actions, contexts, and populations.
MambaXCTrack: Mamba-based Tracker with SSM Cross-correlation and Motion Prompt for Ultrasound Needle Tracking
Ultrasound (US)-guided needle insertion is widely employed in percutaneous interventions. However, providing feedback on the needle tip position via US imaging presents challenges due to noise, artifacts, and the thin imaging plane of US, which degrades needle features and leads to intermittent tip visibility. In this paper, a Mamba-based US needle tracker MambaXCTrack utilizing structured state space models cross-correlation (SSMX-Corr) and implicit motion prompt is proposed, which is the first application of Mamba in US needle tracking. The SSMX-Corr enhances cross-correlation by long-range modeling and global searching of distant semantic features between template and search maps, benefiting the tracking under noise and artifacts by implicitly learning potential distant semantic cues. By combining with cross-map interleaved scan (CIS), local pixel-wise interaction with positional inductive bias can also be introduced to SSMX-Corr. The implicit low-level motion descriptor is proposed as a non-visual prompt to enhance tracking robustness, addressing the intermittent tip visibility problem. Extensive experiments on a dataset with motorized needle insertion in both phantom and tissue samples demonstrate that the proposed tracker outperforms other state-of-the-art trackers while ablation studies further highlight the effectiveness of each proposed tracking module.
comment: Accepted by RAL
Planning Shorter Paths in Graphs of Convex Sets by Undistorting Parametrized Configuration Spaces
Optimization based motion planning provides a useful modeling framework through various costs and constraints. Using Graph of Convex Sets (GCS) for trajectory optimization gives guarantees of feasibility and optimality by representing configuration space as the finite union of convex sets. Nonlinear parametrizations can be used to extend this technique to handle cases such as kinematic loops, but this distorts distances, such that solving with convex objectives will yield paths that are suboptimal in the original space. We present a method to extend GCS to nonconvex objectives, allowing us to "undistort" the optimization landscape while maintaining feasibility guarantees. We demonstrate our method's efficacy on three different robotic planning domains: a bimanual robot moving an object with both arms, the set of 3D rotations using Euler angles, and a rational parametrization of kinematics that enables certifying regions as collision free. Across the board, our method significantly improves path length and trajectory duration with only a minimal increase in runtime. Website: https://shrutigarg914.github.io/pgd-gcs-results/
comment: 8 pages, 6 figures, accepted to Robotics and Automation Letters in April 2025
EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera
Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that includes events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. To address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-Temporal Shift Module (BSTM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further establish the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy tested on unseen subjects with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high inter-personal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 97.0% on the DVS128 Gesture, demonstrating the effectiveness and generalization capability of our method on public datasets. The dataset and models are made available at https://github.com/3190105222/EgoEv_Gesture.
comment: The dataset and models are made available at https://github.com/3190105222/EgoEv_Gesture
Constraint-Aware Zero-Shot Vision-Language Navigation in Continuous Environments
We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
Dynamic-Dark SLAM: RGB-Thermal Cooperative Robot Vision Strategy for Multi-Person Tracking in Both Well-Lit and Low-Light Scenes
In robot vision, thermal cameras hold great potential for recognizing humans even in complete darkness. However, their application to multi-person tracking (MPT) has been limited due to data scarcity and the inherent difficulty of distinguishing individuals. In this study, we propose a cooperative MPT system that utilizes co-located RGB and thermal cameras, where pseudo-annotations (bounding boxes and person IDs) are used to train both RGB and thermal trackers. Evaluation experiments demonstrate that the thermal tracker performs robustly in both bright and dark environments. Moreover, the results suggest that a tracker-switching strategy -- guided by a binary brightness classifier -- is more effective for information integration than a tracker-fusion approach. As an application example, we present an image change pattern recognition (ICPR) method, the ``human-as-landmark,'' which combines two key properties: the thermal recognizability of humans in dark environments and the rich landmark characteristics -- appearance, geometry, and semantics -- of static objects (occluders). Whereas conventional SLAM focuses on mapping static landmarks in well-lit environments, the present study takes a first step toward a new Human-Only SLAM paradigm, ``DD-SLAM,'' which aims to map even dynamic landmarks in complete darkness.
comment: 10 pages, 9 figures, technical report
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models ICRA 2025
Curriculum learning is a training mechanism in reinforcement learning (RL) that facilitates the achievement of complex policies by progressively increasing the task difficulty during training. However, designing effective curricula for a specific task often requires extensive domain knowledge and human intervention, which limits its applicability across various domains. Our core idea is that large language models (LLMs), with their extensive training on diverse language data and ability to encapsulate world knowledge, present significant potential for efficiently breaking down tasks and decomposing skills across various robotics environments. Additionally, the demonstrated success of LLMs in translating natural language into executable code for RL agents strengthens their role in generating task curricula. In this work, we propose CurricuLLM, which leverages the high-level planning and programming capabilities of LLMs for curriculum design, thereby enhancing the efficient learning of complex target tasks. CurricuLLM consists of: (Step 1) Generating sequence of subtasks that aid target task learning in natural language form, (Step 2) Translating natural language description of subtasks in executable task code, including the reward code and goal distribution code, and (Step 3) Evaluating trained policies based on trajectory rollout and subtask description. We evaluate CurricuLLM in various robotics simulation environments, ranging from manipulation, navigation, and locomotion, to show that CurricuLLM can aid learning complex robot control tasks. In addition, we validate humanoid locomotion policy learned through CurricuLLM in real-world. Project website is https://iconlab.negarmehr.com/CurricuLLM/
comment: Accepted to ICRA 2025
Flying Calligrapher: Contact-Aware Motion and Force Planning and Control for Aerial Manipulation ICRA 2025
Aerial manipulation has gained interest in completing high-altitude tasks that are challenging for human workers, such as contact inspection and defect detection, etc. Previous research has focused on maintaining static contact points or forces. This letter addresses a more general and dynamic task: simultaneously tracking time-varying contact force in the surface normal direction and motion trajectories on tangential surfaces. We propose a pipeline that includes a contact-aware trajectory planner to generate dynamically feasible trajectories, and a hybrid motion-force controller to track such trajectories. We demonstrate the approach in an aerial calligraphy task using a novel sponge pen design as the end-effector, whose stroke width is positively related to the contact force. Additionally, we develop a touchscreen interface for flexible user input. Experiments show our method can effectively draw diverse letters, achieving an IoU of 0.59 and an end-effector position (force) tracking RMSE of 2.9 cm (0.7 N). Website: https://xiaofeng-guo.github.io/flying-calligrapher/
comment: 8 pages, 9 figures, 1 table. This paper is accepted by RAL and is presented at ICRA 2025
Multiagent Systems
PestMA: LLM-based Multi-Agent System for Informed Pest Management
Effective pest management is complex due to the need for accurate, context-specific decisions. Recent advancements in large language models (LLMs) open new possibilities for addressing these challenges by providing sophisticated, adaptive knowledge acquisition and reasoning. However, existing LLM-based pest management approaches often rely on a single-agent paradigm, which can limit their capacity to incorporate diverse external information, engage in systematic validation, and address complex, threshold-driven decisions. To overcome these limitations, we introduce PestMA, an LLM-based multi-agent system (MAS) designed to generate reliable and evidence-based pest management advice. Building on an editorial paradigm, PestMA features three specialized agents, an Editor for synthesizing pest management recommendations, a Retriever for gathering relevant external data, and a Validator for ensuring correctness. Evaluations on real-world pest scenarios demonstrate that PestMA achieves an initial accuracy of 86.8% for pest management decisions, which increases to 92.6% after validation. These results underscore the value of collaborative agent-based workflows in refining and validating decisions, highlighting the potential of LLM-based multi-agent systems to automate and enhance pest management processes.
comment: 10 pages
Communication-aware Hierarchical Map Compression of Time-Varying Environments for Mobile Robots
In this paper, we develop a systematic framework for the time-sequential compression of dynamic probabilistic occupancy grids. Our approach leverages ideas from signal compression theory to formulate an optimization problem that searches for a multi-resolution hierarchical encoder that balances the quality of the compressed map (distortion) with its description size, the latter of which relates to the bandwidth required to reliably transmit the map to other agents or to store map estimates in on-board memory. The resulting optimization problem allows for multi-resolution map compressions to be obtained that satisfy available communication or memory resources, and does not require knowledge of the occupancy map dynamics. We develop an algorithm to solve our problem, and demonstrate the utility of the proposed framework in simulation on both static (i.e., non-time varying) and dynamic (time-varying) occupancy maps.
Achieving Optimal Tissue Repair Through MARL with Reward Shaping and Curriculum Learning
In this paper, we present a multi-agent reinforcement learning (MARL) framework for optimizing tissue repair processes using engineered biological agents. Our approach integrates: (1) stochastic reaction-diffusion systems modeling molecular signaling, (2) neural-like electrochemical communication with Hebbian plasticity, and (3) a biologically informed reward function combining chemical gradient tracking, neural synchronization, and robust penalties. A curriculum learning scheme guides the agent through progressively complex repair scenarios. In silico experiments demonstrate emergent repair strategies, including dynamic secretion control and spatial coordination.
comment: 14 pages, 4 figures, submitted to the 10th International Conference on Information and Communication Technology for Intelligent Systems (ICTIS)
Attention-Augmented Inverse Reinforcement Learning with Graph Convolutions for Multi-Agent Task Allocation
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Multi-agent task allocation (MATA) plays a vital role in cooperative multi-agent systems, with significant implications for applications such as logistics, search and rescue, and robotic coordination. Although traditional deep reinforcement learning (DRL) methods have been shown to be promising, their effectiveness is hindered by a reliance on manually designed reward functions and inefficiencies in dynamic environments. In this paper, an inverse reinforcement learning (IRL)-based framework is proposed, in which multi-head self-attention (MHSA) and graph attention mechanisms are incorporated to enhance reward function learning and task execution efficiency. Expert demonstrations are utilized to infer optimal reward densities, allowing dependence on handcrafted designs to be reduced and adaptability to be improved. Extensive experiments validate the superiority of the proposed method over widely used multi-agent reinforcement learning (MARL) algorithms in terms of both cumulative rewards and task execution efficiency.
comment: This version includes changes made to meet the submission requirements of IEEE Transactions on Vehicular Technology (TVT): author biographies and IEEE copyright footer removed; acknowledgment anonymized; author footnotes updated; a co-author added for figure illustration and minor edits
Towards Developing Socially Compliant Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs' compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An informal expert interview was also conducted to discuss the literature review results and identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 58 pages, 13 figures, accepted by the Journal of Communications in Transportation Research
Steering No-Regret Agents in MFGs under Model Uncertainty AISTATS 2025
Incentive design is a popular framework for guiding agents' learning dynamics towards desired outcomes by providing additional payments beyond intrinsic rewards. However, most existing works focus on a finite, small set of agents or assume complete knowledge of the game, limiting their applicability to real-world scenarios involving large populations and model uncertainty. To address this gap, we study the design of steering rewards in Mean-Field Games (MFGs) with density-independent transitions, where both the transition dynamics and intrinsic reward functions are unknown. This setting presents non-trivial challenges, as the mediator must incentivize the agents to explore for its model learning under uncertainty, while simultaneously steer them to converge to desired behaviors without incurring excessive incentive payments. Assuming agents exhibit no(-adaptive) regret behaviors, we contribute novel optimistic exploration algorithms. Theoretically, we establish sub-linear regret guarantees for the cumulative gaps between the agents' behaviors and the desired ones. In terms of the steering cost, we demonstrate that our total incentive payments incur only sub-linear excess, competing with a baseline steering strategy that stabilizes the target policy as an equilibrium. Our work presents an effective framework for steering agents behaviors in large-population systems under uncertainty.
comment: AISTATS 2025; 34 Pages
Systems and Control (CS)
Layered Multirate Control of Constrained Linear Systems
Layered control architectures have been a standard paradigm for efficiently managing complex constrained systems. A typical architecture consists of: i) a higher layer, where a low-frequency planner controls a simple model of the system, and ii) a lower layer, where a high-frequency tracking controller guides a detailed model of the system toward the output of the higher-layer model. A fundamental problem in this layered architecture is the design of planners and tracking controllers that guarantee both higher- and lower-layer system constraints are satisfied. Toward addressing this problem, we introduce a principled approach for layered multirate control of linear systems subject to output and input constraints. Inspired by discrete-time simulation functions, we propose a streamlined control design that guarantees the lower-layer system tracks the output of the higher-layer system with computable precision. Using this design, we derive conditions and present a method for propagating the constraints of the lower-layer system to the higher-layer system. The propagated constraints are integrated into the design of an arbitrary planner that can handle higher-layer system constraints. Our framework ensures that the output constraints of the lower-layer system are satisfied at all high-level time steps, while respecting its input constraints at all low-level time steps. We apply our approach in a scenario of motion planning, highlighting its critical role in ensuring collision avoidance.
Bayesian Analysis of Interpretable Aging across Thousands of Lithium-ion Battery Cycles
The Doyle-Fuller-Newman (DFN) model is a common mechanistic model for lithium-ion batteries. The reaction rate constant and diffusivity within the DFN model are key parameters that directly affect the movement of lithium ions, thereby offering explanations for cell aging. This work investigates the ability to uniquely estimate each electrode's diffusion coefficients and reaction rate constants of 95 Tesla Model 3 cells with a nickel cobalt aluminum oxide (NCA) cathode and silicon oxide--graphite (LiC$_\text{6}$--SiO$_{\text{x}}$) anode. The parameters are estimated at intermittent diagnostic cycles over the lifetime of each cell. The four parameters are estimated using Markov chain Monte Carlo (MCMC) for uncertainty quantification (UQ) for a total of 7776 cycles at discharge C-rates of C/5, 1C, and 2C. While one or more anode parameters are uniquely identifiable over every cell's lifetime, cathode parameters become identifiable at mid- to end-of-life, indicating measurable resistive growth in the cathode. The contribution of key parameters to the state of health (SOH) is expressed as a power law. This model for SOH shows a high consistency with the MCMC results performed over the overall lifespan of each cell. Our approach suggests that effective diagnosis of aging can be achieved by predicting the trajectories of the parameters contributing to cell aging. As such, extending our analysis with more physically accurate models building on DFN may lead to more identifiable parameters and further improved aging predictions.
comment: 28 pages, 7 figures
Model Order Reduction of Linear Systems via $(γ,δ)$-Similarity
Model order reduction aims to determine a low-order approximation of high-order models with least possible approximation errors. For application to physical systems, it is crucial that the reduced order model (ROM) is robust to any disturbance that acts on the full order model (FOM) -- in the sense that the output of the ROM remains a good approximation of that of the FOM, even in the presence of such disturbances. In this work, we present a framework for model order reduction for a class of continuous-time linear systems that ensures this property for any $L_2$ disturbance. Apart from robustness to disturbances in this sense, the proposed framework also displays other desirable properties for model order reduction: (1) a provable bound on the error defined as the $L_2$ norm of the difference between the output of the ROM and FOM, (2) preservation of stability, (3) compositionality properties and a provable error bound for arbitrary interconnected systems, (4) a provable bound on the output of the FOM when the controller designed for the ROM is used with the FOM, and finally, (5) compatibility with existing approaches such as balanced truncation and moment matching. Property (4) does not require computation of any gap metric and property (5) is beneficial as existing approaches can also be equipped with some of the preceding properties. The theoretical results are corroborated on numerical case studies, including on a building model.
A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
Combinatorial optimization problems are funda- mental for various fields ranging from finance to wireless net- works. This work presents a simulated bifurcation (SB) Ising solver in CMOS for NP-hard optimization problems. Analog domain computing led to a superior implementation of this algorithm as inherent and injected noise is required in SB Ising solvers. The architecture novelties include the use of SRAM compute-in-memory (CIM) to accelerate bifurcation as well as the generation and injection of optimal decaying noise in the analog domain. We propose a novel 10-T SRAM cell capable of performing ternary multiplication. When measured with 60- node, 50% density, random, binary MAXCUT graphs, this all- to-all connected Ising solver reliably achieves above 93% of the ground state solution in 0.6us with 10.8mW average power in TSMC 180nm CMOS. Our chip achieves an order of magnitude improvement in time-to-solution and power compared to previously proposed Ising solvers in CMOS and other platforms.
Reactive power flow optimization in AC drive systems
This paper explores a limit avoidance approach in the case of input (modulation) and output (current) constraints with the aim of enhancing system availability of AC drives. Drawing on the observation that, in a certain range of reactive power, there exists a trade-off between current and modulation magnitude, we exploit this freedom and define a constrained optimization problem. We propose two approaches, one in the form of an activation-function which drives the reactive power set-point towards safety, and an approach which uses online feedback optimization to set the reactive power dynamically. Both methods compromise reactive power tracking accuracy for increased system robustness. Through a high fidelity simulation, we compare the benefits of the two methods, highlighting their effectiveness in industrial applications.
comment: Submitted to the Conference on Decision and Control, 2025
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
A New Paradigm in IBR Modeling for Power Flow and Short Circuit Analysis
The fault characteristics of inverter-based resources (IBRs) are different from conventional synchronous generators. The fault response of IBRs is non-linear due to saturation states and mainly determined by fault ride through (FRT) strategies of the associated voltage source converter (VSC). This results in prohibitively large solution times for power flows considering these short circuit characteristics, especially when the power system states change fast due to uncertainty in IBR generations. To overcome this, a phasor-domain steady state (SS) short circuit (SC) solver for IBR dominated power systems is proposed in this paper, and subsequently the developed IBR models are incorporated with a novel Jacobian-based Power Flow (PF) solver. In this multiphase PF solver, any power system components can be modeled by considering their original non-linear or linear mathematical representations. Moreover, two novel FRT strategies are proposed to fully utilize the converter capacity and to comply with IEEE-2800 2022 std and German grid code. The results are compared with the Electromagnetic Transient (EMT) simulation on the IEEE 34 test network and the 120 kV EPRI benchmark system. The developed IBR sequence domain PF model demonstrates more accurate behavior compared to the classical IBR generator model. The error in calculating the short circuit current with the proposed SC solver is less than 3%, while achieving significant speed improvements of three order of magnitudes.
comment: 12 Pages, First Revision Submitted
Exploiting Structure in MIMO Scaled Graph Analysis
Scaled graphs offer a graphical tool for analysis of nonlinear feedback systems. Although recently substantial progress has been made in scaled graph analysis, at present their use in multivariable feedback systems is limited by conservatism. In this paper, we aim to reduce this conservatism by introducing multipliers and exploit system structure in the analysis with scaled graphs. In particular, we use weighted inner products to arrive at a weighted scaled graph and combine this with a commutation property to formulate a stability result for multivariable feedback systems. We present a method for computing the weighted scaled graph of Lur'e systems based on solving sets of linear matrix inequalities, and demonstrate a significant reduction in conservatism through an example.
A Human-Sensitive Controller: Adapting to Human Ergonomics and Physical Constraints via Reinforcement Learning
Work-Related Musculoskeletal Disorders continue to be a major challenge in industrial environments, leading to reduced workforce participation, increased healthcare costs, and long-term disability. This study introduces a human-sensitive robotic system aimed at reintegrating individuals with a history of musculoskeletal disorders into standard job roles, while simultaneously optimizing ergonomic conditions for the broader workforce. This research leverages reinforcement learning to develop a human-aware control strategy for collaborative robots, focusing on optimizing ergonomic conditions and preventing pain during task execution. Two RL approaches, Q-Learning and Deep Q-Network (DQN), were implemented and tested to personalize control strategies based on individual user characteristics. Although experimental results revealed a simulation-to-real gap, a fine-tuning phase successfully adapted the policies to real-world conditions. DQN outperformed Q-Learning by completing tasks faster while maintaining zero pain risk and safe ergonomic levels. The structured testing protocol confirmed the system's adaptability to diverse human anthropometries, underscoring the potential of RL-driven cobots to enable safer, more inclusive workplaces.
Gradient modelling of memristive systems
We introduce a gradient modeling framework for memristive systems. Our focus is on memristive systems as they appear in neurophysiology and neuromorphic systems. Revisiting the original definition of Chua, we regard memristive elements as gradient operators of quadratic functionals with respect to a metric determined by the memristance. We explore the consequences of gradient properties for the analysis and design of neuromorphic circuits.
comment: Submitted to 64th IEEE Control on Decision and Control (CDC2025)
Towards Resilient Tracking in Autonomous Vehicles: A Distributionally Robust Input and State Estimation Approach
This paper proposes a novel framework for the distributionally robust input and state estimation (DRISE) for autonomous vehicles operating under model uncertainties and measurement outliers. The proposed framework improves the input and state estimation (ISE) approach by integrating distributional robustness, enhancing the estimator's resilience and robustness to adversarial inputs and unmodeled dynamics. Moment-based ambiguity sets capture probabilistic uncertainties in both system dynamics and measurement noise, offering analytical tractability and efficiently handling uncertainties in mean and covariance. In particular, the proposed framework minimizes the worst-case estimation error, ensuring robustness against deviations from nominal distributions. The effectiveness of the proposed approach is validated through simulations conducted in the CARLA autonomous driving simulator, demonstrating improved performance in state estimation accuracy and robustness in dynamic and uncertain environments.
Fully-Adaptive and Semi-Adaptive Frequency Sweep Algorithm Exploiting Loewner-State Model for EM Simulation of Multiport Systems
This paper employs a fully adaptive and semi-adaptive frequency sweep algorithm using the Loewner matrix-based state model for the electromagnetic simulation. The proposed algorithms use two Loewner matrix models with different or the same orders with small frequency perturbation for adaptive frequency selection. The error between the two models is calculated in each iteration, and the next frequency points are selected to minimize maximum error. With the help of memory, the algorithm terminates when the error between the model and the simulation result is reached within the specified error tolerance. In the fully adaptive frequency sweep algorithm, the method starts with the minimum and maximum frequency of simulation. In the semi-adaptive algorithm, a novel approach has been proposed to determine the initial number of frequency points necessary for system interpolation based on the electrical size of the structure. The proposed algorithms have been compared with the Stoer-Bulirsch algorithm and Pradovera's minimal sampling algorithm for electromagnetic simulation. Four examples are presented using MATLAB R2024b. The results show that the proposed methods offer better performance in terms of speed, accuracy and the requirement of the minimum number of frequency samples. The proposed method shows remarkable consistency with full-wave simulation data, and the algorithm can be effectively applicable to electromagnetic simulations.
comment: 16 pages, 10 figures, This work has been accepted by the IEEE Transactions on Microwave Theory and Techniques (https://doi.org/10.1109/TMTT.2025.3557208) for possible publication
Markov Clustering based Fully Automated Nonblocking Hierarchical Supervisory Control of Large-Scale Discrete-Event Systems
In this paper we revisit the abstraction-based approach to synthesize a hierarchy of decentralized supervisors and coordinators for nonblocking control of large-scale discrete-event systems (DES), and augment it with a new clustering method for automatic and flexible grouping of relevant components during the hierarchical synthesis process. This method is known as Markov clustering, which not only automatically performs grouping but also allows flexible tuning the sizes of the resulting clusters using a single parameter. Compared to the existing abstraction-based approach that lacks effective grouping method for general cases, our proposed approach based on Markov clustering provides a fully automated and effective hierarchical synthesis procedure applicable to general large-scale DES. Moreover, it is proved that the resulting hierarchy of supervisors and coordinators collectively achieves global nonblocking (and maximally permissive) controlled behavior under the same conditions as those in the existing abstraction-based approach. Finally, a benchmark case study is conducted to empirically demonstrate the effectiveness of our approach.
comment: 7 pages, 1 figure, 1 Tables
Modelling & Steady State Compliance Testing of an Improved Time Synchronized Phasor Measurement Unit Based on IEEE Standard C37.118.1
Synchrophasor technology is an emerging and developing technology for monitoring and control of wide area measurement systems (WAMS). In an elementary WAMS, two identical phasors measured at two different locations have difference in the phase angles measured since their reference waveforms are not synchronized with each other. Phasor measurement units (PMUs) measure input phasors with respect to a common reference wave based on the atomic clock pulses received from global positioning system (GPS) satellites, eliminating variation in the measured phase angles due to distant locations of the measurement nodes. This has found tremendous applications in quick fault detection, fault location analysis, accurate current, voltage, frequency and phase angle measurements in WAMS. Commercially available PMU models are often proven to be expensive for research and development as well as for grid integration projects. This research article proposes an economic PMU model optimized for accurate steadystate performance based on recursive discrete Fourier transform (DFT) and provides results and detailed analysis of the proposed PMU model as per the steady state compliance specifications of IEEE standard C37.118.1. Results accurate up to 13 digits after decimal point are obtained through the developed PMU model for both nominal and off-nominal frequency inputs in steady state.
Score Matching Diffusion Based Feedback Control and Planning of Nonlinear Systems
We propose a novel control-theoretic framework that leverages principles from generative modeling -- specifically, Denoising Diffusion Probabilistic Models (DDPMs) -- to stabilize control-affine systems with nonholonomic constraints. Unlike traditional stochastic approaches, which rely on noise-driven dynamics in both forward and reverse processes, our method crucially eliminates the need for noise in the reverse phase, making it particularly relevant for control applications. We introduce two formulations: one where noise perturbs all state dimensions during the forward phase while the control system enforces time reversal deterministically, and another where noise is restricted to the control channels, embedding system constraints directly into the forward process. For controllable nonlinear drift-free systems, we prove that deterministic feedback laws can exactly reverse the forward process, ensuring that the system's probability density evolves correctly without requiring artificial diffusion in the reverse phase. Furthermore, for linear time-invariant systems, we establish a time-reversal result under the second formulation. By eliminating noise in the backward process, our approach provides a more practical alternative to machine learning-based denoising methods, which are unsuitable for control applications due to the presence of stochasticity. We validate our results through numerical simulations on benchmark systems, including a unicycle model in a domain with obstacles, a driftless five-dimensional system, and a four-dimensional linear system, demonstrating the potential for applying diffusion-inspired techniques in linear, nonlinear, and settings with state space constraints.
Computationally Efficient State and Model Estimation via Interval Observers for Partially Unknown Systems
This paper addresses the synthesis of interval observers for partially unknown nonlinear systems subject to bounded noise, aiming to simultaneously estimate system states and learn a model of the unknown dynamics. Our approach leverages Jacobian sign-stable (JSS) decompositions, tight decomposition functions for nonlinear systems, and a data-driven over-approximation framework to construct interval estimates that provably enclose the true augmented states. By recursively computing tight and tractable bounds for the unknown dynamics based on current and past interval framers, we systematically integrate these bounds into the observer design. Additionally, we formulate semi-definite programs (SDP) for observer gain synthesis, ensuring input-to-state stability and optimality of the proposed framework. Finally, simulation results demonstrate the computational efficiency of our approach compared to a method previously proposed by the authors.
comment: submitted to CDC'25
Robust Output-Feedback MPC for Nonlinear Systems with Applications to Robotic Exploration
This paper introduces a novel method for robust output-feedback model predictive control (MPC) for a class of nonlinear discrete-time systems. We propose a novel interval-valued predictor which, given an initial estimate of the state, produces intervals which are guaranteed to contain the future trajectory of the system. By parameterizing the control input with an initial stabilizing feedback term, we are able to reduce the width of the predicted state intervals compared to existing methods. We demonstrate this through a numerical comparison where we show that our controller performs better in the presence of large amounts of noise. Finally, we present a simulation study of a robot navigation scenario, where we incorporate a time-varying entropy term into the cost function in order to autonomously explore an uncertain area.
comment: Accepted for publication in L-CSS
Adaptive Synaptogenesis Implemented on a Nanomagnetic Platform
The human brain functions very differently from artificial neural networks (ANN) and possesses unique features that are absent in ANN. An important one among them is "adaptive synaptogenesis" that modifies synaptic weights when needed to avoid catastrophic forgetting and promote lifelong learning. The key aspect of this algorithm is supervised Hebbian learning, where weight modifications in the neocortex driven by temporal coincidence are further accepted or vetoed by an added control mechanism from the hippocampus during the training cycle, to make distant synaptic connections highly sparse and strategic. In this work, we discuss various algorithmic aspects of adaptive synaptogenesis tailored to edge computing, demonstrate its function using simulations, and design nanomagnetic hardware accelerators for specific functions of synaptogenesis.
Vehicle Dynamics Control for Simultaneous Optimization of Tire Emissions and Performance in EVs
In recent years, Electric Vehicles (EVs) have seen widespread public adoption. While EVs produce zero tailpipe emissions, they contribute to an increase in another type of vehicular emission: tire emissions. Battery-operated EVs are generally heavier than their combustion-engine counterparts and require greater acceleration forces, which their high-torque electric motors provide. This combination of increased weight and traction forces leads to higher tire emissions, which possess various adverse health and environmental effects. Here, we propose a control solution with promising results in mitigating tire wear in all-wheel-drive EVs. The idea is to utilize different tire profiles on each drive axis: a low-wear, low-traction axis and a high-wear, high-traction axis. Derived from detailed mathematical analyses, we propose a simple control scheme to counteract the performance difference from using the low-traction tires. The proposed control mechanism then distributes torque optimally between the two axes, maximizing usage from the low-wear axis and simultaneously maintaining stability and performance by leveraging high-traction tires. Through detailed numerical simulations, we demonstrate that the developed model significantly reduces tire emissions and maintains vehicle drivability and performance.
comment: 25 pages, 12 figures
HyRRT-Connect: Bidirectional Motion Planning for Hybrid Dynamical Systems
This paper proposes a bidirectional rapidly-exploring random trees (RRT) algorithm to solve the motion planning problem for hybrid systems. The proposed algorithm, called HyRRT-Connect, propagates in both forward and backward directions in hybrid time until an overlap between the forward and backward propagation results is detected. Then, HyRRT-Connect constructs a motion plan through the reversal and concatenation of functions defined on hybrid time domains, ensuring that the motion plan satisfies the given hybrid dynamics. To address the potential discontinuity along the flow caused by tolerating some distance between the forward and backward partial motion plans, we reconstruct the backward partial motion plan by a forward-in-hybrid-time simulation from the final state of the forward partial motion plan. effectively eliminating the discontinuity. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot example to highlight its computational improvement.
comment: 59 pages, 9 figures, submitted to IJRR. arXiv admin note: substantial text overlap with arXiv:2403.18413; text overlap with arXiv:2406.01802
Spectrum Sharing in STAR-RIS-assisted UAV with NOMA for Cognitive Radio Networks
As an emerging technology, the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) can improve the spectrum efficiency (SE) of primary users (PUs) and secondary users (SUs) in cognitive radio (CR) networks by mitigating the interference of the incident signals. The STAR-RIS-assisted unmanned aerial vehicle (UAV) can fully cover the dynamic environment through high mobility and fast deployment. According to the dynamic air-to-ground channels, the STAR-RIS-assisted UAV may face a challenge configuring their elements' coefficients (i.e., reflecting and transmitting the amplitude and phases). Hence, to meet the requirements of dynamic channel determination with the SE approach, this paper proposes the sum rate maximization of both PUs and SUs through non-orthogonal multiple access in CR network to jointly optimize the trajectory and transmission-reflection beamforming design of the STAR-RIS-assisted UAV, and power allocation. Since the non-convex joint optimization problem includes coupled optimization variables, we develop an alternative optimization algorithm. Simulation results study the impact of: 1) the significant parameters, 2) the performance of different intelligence surface modes and STAR-RIS operating protocols, 3) the joint trajectory and beamforming design with fixed and mobile users, and 4) STAR-RIS capabilities such as mitigating the interference, and how variations in the roles of elements dynamically.
Transfer Learning Assisted XgBoost For Adaptable Cyberattack Detection In Battery Packs
Optimal charging of electric vehicle (EVs) depends heavily on reliable sensor measurements from the battery pack to the cloud-controller of the smart charging station. However, an adversary could corrupt the voltage sensor data during transmission, potentially causing local to wide-scale disruptions. Therefore, it is essential to detect sensor cyberattacks in real-time to ensure secure EV charging, and the developed algorithms must be readily adaptable to variations, including pack configurations. To tackle these challenges, we propose adaptable fine-tuning of an XgBoost-based cell-level model using limited pack-level data to use for voltage prediction and residual generation. We used battery cell and pack data from high-fidelity charging experiments in PyBaMM and `liionpack' package to train and test the detection algorithm. The algorithm's performance has been evaluated for two large-format battery packs under sensor swapping and replay attacks. The simulation results also highlight the adaptability and efficacy of our proposed detection algorithm.
comment: 9 pages, 5 figures
Secure Estimation of Battery Voltage Under Sensor Attacks: A Self-Learning Koopman Approach
Cloud-based battery management system (BMS) requires accurate terminal voltage measurement data to ensure optimal and safe charging of Lithium-ion batteries. Unfortunately, an adversary can corrupt the battery terminal voltage data as it passes from the local-BMS to the cloud-BMS through the communication network, with the objective of under- or over-charging the battery. To ensure accurate terminal voltage data under such malicious sensor attacks, this paper investigates a Koopman-based secure terminal voltage estimation scheme using a two-stage error-compensated self-learning feedback. During the first stage of error correction, the potential Koopman prediction error is estimated to compensate for the error accumulation due to the linear approximation of Koopman operator. The second stage of error compensation aims to recover the error amassing from the higher-order dynamics of the Lithium-ion batteries missed by the self-learning strategy. Specifically, we have proposed two different methods for this second stage error compensation. First, an interpretable empirical correction strategy has been obtained using the open circuit voltage to state-of-charge mapping for the battery. Second, a Gaussian process regression-based data-driven method has been explored. Finally, we demonstrate the efficacy of the proposed secure estimator using both empirical and data-driven corrections.
comment: 10 pages, 5 figures
Secondary Safety Control for Systems with Sector Bounded Nonlinearities [Extended Version]
We consider the problem of safety verification and safety-aware controller synthesis for systems with sector bounded nonlinearities. We aim to keep the states of the system within a given safe set under potential actuator and sensor attacks. Specifically, we adopt the setup that a controller has already been designed to stabilize the plant. Using invariant sets and barrier certificate theory, we first give sufficient conditions to verify the safety of the closed-loop system under attacks. Furthermore, by using a subset of sensors that are assumed to be free of attacks, we provide a synthesis method for a secondary controller that enhances the safety of the system. The sufficient conditions to verify safety are derived using Lyapunov-based tools and the S-procedure. Using the projection lemma, the conditions are then formulated as linear matrix inequality (LMI) problems which can be solved efficiently. Lastly, our theoretical results are illustrated through numerical simulations.
comment: Supplementary material for the Automatica submission
Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
comment: This manuscript of 11 pages, 2 tables and 3 figures is a preprint under review with a conference
A Hybrid Algorithm for Iterative Adaptation of Feedforward Controllers: an Application on Electromechanical Switches
Electromechanical switching devices such as relays, solenoid valves, and contactors offer several technical and economic advantages that make them widely used in industry. However, uncontrolled operations result in undesirable impact-related phenomena at the end of the stroke. As a solution, different soft-landing controls have been proposed. Among them, feedforward control with iterative techniques that adapt its parameters is a solution when real-time feedback is not available. However, these techniques typically require a large number of operations to converge or are computationally intensive, which limits a real implementation. In this paper, we present a new algorithm for the iterative adaptation that is able to eventually adapt the search coordinate system and to reduce the search dimensional size in order to accelerate convergence. Moreover, it automatically toggles between a derivative-free and a gradient-based method to balance exploration and exploitation. To demonstrate the high potential of the proposal, each novel part of the algorithm is compared with a state-of-the-art approach via simulation.
comment: 7 pages, 5 figures. Minor changes. Final version, after peer review and acceptance, submitted to the 23rd European Control Conference (ECC)
Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
Probabilistic Reachable Set Estimation for Saturated Systems with Unbounded Additive Disturbances
In this paper, we present an analytical approach for the synthesis of ellipsoidal probabilistic reachable sets of saturated systems subject to unbounded additive noise. Using convex optimization methods, we compute a contraction factor of the saturated error dynamics that allows us to tightly bound its evolution and therefore construct accurate reachable sets. The proposed approach is applicable to independent, zero mean disturbances with a known covariance. A numerical example illustrates the applicability and effectiveness of the proposed design.
STLCCP: Efficient Convex Optimization-based Framework for Signal Temporal Logic Specifications
Signal temporal logic (STL) is a powerful formalism for specifying various temporal properties in dynamical systems. However, existing methods, such as mixed-integer programming and nonlinear programming, often struggle to efficiently solve control problems with complex, long-horizon STL specifications. This study introduces \textit{STLCCP}, a novel convex optimization-based framework that leverages key structural properties of STL: monotonicity of the robustness function, its hierarchical tree structure, and correspondence between convexity/concavity in optimizations and conjunctiveness/disjunctiveness in specifications. The framework begins with a structure-aware decomposition of STL formulas, transforming the problem into an equivalent difference of convex (DC) programs. This is then solved sequentially as a convex quadratic program using an improved version of the convex-concave procedure (CCP). To further enhance efficiency, we develop a smooth approximation of the robustness function using a function termed the \textit{mellowmin} function, specifically tailored to the proposed framework. Numerical experiments on motion planning benchmarks demonstrate that \textit{STLCCP} can efficiently handle complex scenarios over long horizons, outperforming existing methods.
comment: 32 pages
InstructMPC: A Human-LLM-in-the-Loop Framework for Context-Aware Control
Model Predictive Control (MPC) is a powerful control strategy widely utilized in domains like energy management, building control, and autonomous systems. However, its effectiveness in real-world settings is challenged by the need to incorporate context-specific predictions and expert instructions, which traditional MPC often neglects. We propose InstructMPC, a novel framework that addresses this gap by integrating real-time human instructions through a Large Language Model (LLM) to produce context-aware predictions for MPC. Our method employs a Language-to-Distribution (L2D) module to translate contextual information into predictive disturbance trajectories, which are then incorporated into the MPC optimization. Unlike existing context-aware and language-based MPC models, InstructMPC enables dynamic human-LLM interaction and fine-tunes the L2D module in a closed loop with theoretical performance guarantees, achieving a regret bound of $O(\sqrt{T\log T})$ for linear dynamics when optimized via advanced fine-tuning methods such as Direct Preference Optimization (DPO) using a tailored loss function.
Towards safe Bayesian optimization with Wiener kernel regression
Bayesian Optimization (BO) is a data-driven strategy for minimizing/maximizing black-box functions based on probabilistic surrogate models. In the presence of safety constraints, the performance of BO crucially relies on tight probabilistic error bounds related to the uncertainty surrounding the surrogate model. For the case of Gaussian Process surrogates and Gaussian measurement noise, we present a novel error bound based on the recently proposed Wiener kernel regression. We prove that under rather mild assumptions, the proposed error bound is tighter than bounds previously documented in the literature, leading to enlarged safety regions. We draw upon a numerical example to demonstrate the efficacy of the proposed error bound in safe BO.
Learning-based Observer for Coupled Disturbance
Achieving high-precision control for robotic systems is hindered by the low-fidelity dynamical model and external disturbances. Especially, the intricate coupling between internal uncertainties and external disturbances further exacerbates this challenge. This study introduces an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Concretely, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures dependent on system state and external disturbance respectively. A regularized least squares algorithm is subsequently formalized to learn the parameter matrix using historical time-series data. Finally, a polynomial disturbance observer is specifically devised to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The proposed algorithm is evaluated through extensive simulations and real flight tests. We believe this work can offer a new pathway to integrate learning approaches into control frameworks for addressing longstanding challenges in robotic applications.
comment: 17 pages, 9 figures
Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve finite-horizon optimal control problems in mixed-logical dynamical systems efficiently. Optimization-based control of such systems with discrete and continuous decision variables entails the online solution of mixed-integer linear programs, which suffer from the curse of dimensionality. Our approach aims to mitigate this issue by decoupling the decision on the discrete variables from the decision on the continuous variables. In the proposed approach, reinforcement learning determines the discrete decision variables and simplifies the online optimization problem of the MPC controller from a mixed-integer linear program to a linear program, significantly reducing the computational time. A fundamental contribution of this work is the definition of the decoupled Q-function, which plays a crucial role in making the learning problem tractable in a combinatorial action space. We motivate the use of recurrent neural networks to approximate the decoupled Q-function and show how they can be employed in a reinforcement learning setting. Simulation experiments on a microgrid system using real-world data demonstrate that the proposed method substantially reduces the online computation time of MPC while maintaining high feasibility and low suboptimality.
Velocity-free task-space regulator for robot manipulators with external disturbances
This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.
GRAMC: General-purpose and reconfigurable analog matrix computing architecture DATE 2025
In-memory analog matrix computing (AMC) with resistive random-access memory (RRAM) represents a highly promising solution that solves matrix problems in one step. However, the existing AMC circuits each have a specific connection topology to implement a single computing function, lack of the universality as a matrix processor. In this work, we design a reconfigurable AMC macro for general-purpose matrix computations, which is achieved by configuring proper connections between memory array and amplifier circuits. Based on this macro, we develop a hybrid system that incorporates an on-chip write-verify scheme and digital functional modules, to deliver a general-purpose AMC solver for various applications.
comment: This paper has been accepted to DATE 2025
Bridging Impulse Control of Piecewise Deterministic Markov Processes and Markov Decision Processes: Frameworks, Extensions, and Open Challenges
Control theory plays a pivotal role in understanding and optimizing the behavior of complex dynamical systems across various scientific and engineering disciplines. Two key frameworks that have emerged for modeling and solving control problems in stochastic systems are piecewise deterministic Markov processes (PDMPs) and Markov decision processes (MDPs). Each framework has its unique strengths, and their intersection offers promising opportunities for tackling a broad class of problems, particularly in the context of impulse controls and decision-making in complex systems. The relationship between PDMPs and MDPs is a natural subject of exploration, as embedding impulse control problems for PDMPs into the MDP framework could open new avenues for their analysis and resolution. Specifically, this integration would allow leveraging the computational and theoretical tools developed for MDPs to address the challenges inherent in PDMPs. On the other hand, PDMPs can offer a versatile and simple paradigm to model continuous time problems that are often described as discrete-time MDPs parametrized by complex transition kernels. This transformation has the potential to bridge the gap between the two frameworks, enabling solutions to previously intractable problems and expanding the scope of both fields. This paper presents a comprehensive review of two research domains, illustrated through a recurring medical example. The example is revisited and progressively formalized within the framework of thevarious concepts and objects introduced
Towards Developing Socially Compliant Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs' compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An informal expert interview was also conducted to discuss the literature review results and identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 58 pages, 13 figures, accepted by the Journal of Communications in Transportation Research
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
We consider policy gradient methods for stochastic optimal control problem in continuous time. In particular, we analyze the gradient flow for the control, viewed as a continuous time limit of the policy gradient method. We prove the global convergence of the gradient flow and establish a convergence rate under some regularity assumptions. The main novelty in the analysis is the notion of local optimal control function, which is introduced to characterize the local optimality of the iterate.
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models ICRA 2025
Curriculum learning is a training mechanism in reinforcement learning (RL) that facilitates the achievement of complex policies by progressively increasing the task difficulty during training. However, designing effective curricula for a specific task often requires extensive domain knowledge and human intervention, which limits its applicability across various domains. Our core idea is that large language models (LLMs), with their extensive training on diverse language data and ability to encapsulate world knowledge, present significant potential for efficiently breaking down tasks and decomposing skills across various robotics environments. Additionally, the demonstrated success of LLMs in translating natural language into executable code for RL agents strengthens their role in generating task curricula. In this work, we propose CurricuLLM, which leverages the high-level planning and programming capabilities of LLMs for curriculum design, thereby enhancing the efficient learning of complex target tasks. CurricuLLM consists of: (Step 1) Generating sequence of subtasks that aid target task learning in natural language form, (Step 2) Translating natural language description of subtasks in executable task code, including the reward code and goal distribution code, and (Step 3) Evaluating trained policies based on trajectory rollout and subtask description. We evaluate CurricuLLM in various robotics simulation environments, ranging from manipulation, navigation, and locomotion, to show that CurricuLLM can aid learning complex robot control tasks. In addition, we validate humanoid locomotion policy learned through CurricuLLM in real-world. Project website is https://iconlab.negarmehr.com/CurricuLLM/
comment: Accepted to ICRA 2025
SHIELD: Secure Host-Independent Extensible Logging for Tamper-Proof Detection and Real-Time Mitigation of Ransomware Threats
Ransomware's escalating sophistication necessitates tamper-resistant, off-host detection solutions that capture deep disk activity beyond the reach of a compromised operating system while overcoming evasion and obfuscation techniques. To address this, we introduce SHIELD: a metric acquisition framework leveraging low-level filesystem monitoring and Network Block Device (NBD) technology to provide off-host, tamper-proof measurements for continuous observation of disk activity exhibited by software executing on a target device. We employ Shield within a detection architecture leveraging deep filesystem features along with simplified metrics aggregated based on frequency of disk actions, making the metrics impervious to obfuscation while avoiding reliance on vulnerable host-based logs. We evaluate the efficacy of these metrics through extensive experiments with both binary (benign vs. malicious behavior) and multiclass (ransomware strain identification) classifiers and confirm that our metrics yield high accuracy across diverse threat profiles, including intermittent or partial encryption. In a proof-of-concept deployment, we demonstrate real-time mitigation using models trained on these metrics by halting malicious disk operations after ransomware detection with minimum file loss and memory corruption. We also show that hardware-only features collected independently of OS or network stack retain high detection effectiveness, verifying feasibility of embedding the proposed pipeline in a SATA controller ASIC or FPGA for next-generation, disk-centric defenses that combine filesystem insight with inherent off-host isolation.
Systems and Control (EESS)
Layered Multirate Control of Constrained Linear Systems
Layered control architectures have been a standard paradigm for efficiently managing complex constrained systems. A typical architecture consists of: i) a higher layer, where a low-frequency planner controls a simple model of the system, and ii) a lower layer, where a high-frequency tracking controller guides a detailed model of the system toward the output of the higher-layer model. A fundamental problem in this layered architecture is the design of planners and tracking controllers that guarantee both higher- and lower-layer system constraints are satisfied. Toward addressing this problem, we introduce a principled approach for layered multirate control of linear systems subject to output and input constraints. Inspired by discrete-time simulation functions, we propose a streamlined control design that guarantees the lower-layer system tracks the output of the higher-layer system with computable precision. Using this design, we derive conditions and present a method for propagating the constraints of the lower-layer system to the higher-layer system. The propagated constraints are integrated into the design of an arbitrary planner that can handle higher-layer system constraints. Our framework ensures that the output constraints of the lower-layer system are satisfied at all high-level time steps, while respecting its input constraints at all low-level time steps. We apply our approach in a scenario of motion planning, highlighting its critical role in ensuring collision avoidance.
Bayesian Analysis of Interpretable Aging across Thousands of Lithium-ion Battery Cycles
The Doyle-Fuller-Newman (DFN) model is a common mechanistic model for lithium-ion batteries. The reaction rate constant and diffusivity within the DFN model are key parameters that directly affect the movement of lithium ions, thereby offering explanations for cell aging. This work investigates the ability to uniquely estimate each electrode's diffusion coefficients and reaction rate constants of 95 Tesla Model 3 cells with a nickel cobalt aluminum oxide (NCA) cathode and silicon oxide--graphite (LiC$_\text{6}$--SiO$_{\text{x}}$) anode. The parameters are estimated at intermittent diagnostic cycles over the lifetime of each cell. The four parameters are estimated using Markov chain Monte Carlo (MCMC) for uncertainty quantification (UQ) for a total of 7776 cycles at discharge C-rates of C/5, 1C, and 2C. While one or more anode parameters are uniquely identifiable over every cell's lifetime, cathode parameters become identifiable at mid- to end-of-life, indicating measurable resistive growth in the cathode. The contribution of key parameters to the state of health (SOH) is expressed as a power law. This model for SOH shows a high consistency with the MCMC results performed over the overall lifespan of each cell. Our approach suggests that effective diagnosis of aging can be achieved by predicting the trajectories of the parameters contributing to cell aging. As such, extending our analysis with more physically accurate models building on DFN may lead to more identifiable parameters and further improved aging predictions.
comment: 28 pages, 7 figures
Model Order Reduction of Linear Systems via $(γ,δ)$-Similarity
Model order reduction aims to determine a low-order approximation of high-order models with least possible approximation errors. For application to physical systems, it is crucial that the reduced order model (ROM) is robust to any disturbance that acts on the full order model (FOM) -- in the sense that the output of the ROM remains a good approximation of that of the FOM, even in the presence of such disturbances. In this work, we present a framework for model order reduction for a class of continuous-time linear systems that ensures this property for any $L_2$ disturbance. Apart from robustness to disturbances in this sense, the proposed framework also displays other desirable properties for model order reduction: (1) a provable bound on the error defined as the $L_2$ norm of the difference between the output of the ROM and FOM, (2) preservation of stability, (3) compositionality properties and a provable error bound for arbitrary interconnected systems, (4) a provable bound on the output of the FOM when the controller designed for the ROM is used with the FOM, and finally, (5) compatibility with existing approaches such as balanced truncation and moment matching. Property (4) does not require computation of any gap metric and property (5) is beneficial as existing approaches can also be equipped with some of the preceding properties. The theoretical results are corroborated on numerical case studies, including on a building model.
A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
Combinatorial optimization problems are funda- mental for various fields ranging from finance to wireless net- works. This work presents a simulated bifurcation (SB) Ising solver in CMOS for NP-hard optimization problems. Analog domain computing led to a superior implementation of this algorithm as inherent and injected noise is required in SB Ising solvers. The architecture novelties include the use of SRAM compute-in-memory (CIM) to accelerate bifurcation as well as the generation and injection of optimal decaying noise in the analog domain. We propose a novel 10-T SRAM cell capable of performing ternary multiplication. When measured with 60- node, 50% density, random, binary MAXCUT graphs, this all- to-all connected Ising solver reliably achieves above 93% of the ground state solution in 0.6us with 10.8mW average power in TSMC 180nm CMOS. Our chip achieves an order of magnitude improvement in time-to-solution and power compared to previously proposed Ising solvers in CMOS and other platforms.
Reactive power flow optimization in AC drive systems
This paper explores a limit avoidance approach in the case of input (modulation) and output (current) constraints with the aim of enhancing system availability of AC drives. Drawing on the observation that, in a certain range of reactive power, there exists a trade-off between current and modulation magnitude, we exploit this freedom and define a constrained optimization problem. We propose two approaches, one in the form of an activation-function which drives the reactive power set-point towards safety, and an approach which uses online feedback optimization to set the reactive power dynamically. Both methods compromise reactive power tracking accuracy for increased system robustness. Through a high fidelity simulation, we compare the benefits of the two methods, highlighting their effectiveness in industrial applications.
comment: Submitted to the Conference on Decision and Control, 2025
A moving horizon estimator for aquifer thermal energy storages
Aquifer thermal energy storages (ATES) represent groundwater saturated aquifers that store thermal energy in the form of heated or cooled groundwater. Combining two ATES, one can harness excess thermal energy from summer (heat) and winter (cold) to support the building's heating, ventilation, and air conditioning (HVAC) technology. In general, a dynamic operation of ATES throughout the year is beneficial to avoid using fossil fuel-based HVAC technology and maximize the ``green use'' of ATES. Model predictive control (MPC) with an appropriate system model may become a crucial control approach for ATES systems. Consequently, the MPC model should reflect spatial temperature profiles around ATES' boreholes to predict extracted groundwater temperatures accurately. However, meaningful predictions require the estimation of the current state of the system, as measurements are usually only at the borehole of the ATES. In control, this is often realized by model-based observers. Still, observing the state of an ATES system is non-trivial, since the model is typically hybrid. We show how to exploit the specific structure of the hybrid ATES model and design an easy-to-solve moving horizon estimator based on a quadratic program.
A New Paradigm in IBR Modeling for Power Flow and Short Circuit Analysis
The fault characteristics of inverter-based resources (IBRs) are different from conventional synchronous generators. The fault response of IBRs is non-linear due to saturation states and mainly determined by fault ride through (FRT) strategies of the associated voltage source converter (VSC). This results in prohibitively large solution times for power flows considering these short circuit characteristics, especially when the power system states change fast due to uncertainty in IBR generations. To overcome this, a phasor-domain steady state (SS) short circuit (SC) solver for IBR dominated power systems is proposed in this paper, and subsequently the developed IBR models are incorporated with a novel Jacobian-based Power Flow (PF) solver. In this multiphase PF solver, any power system components can be modeled by considering their original non-linear or linear mathematical representations. Moreover, two novel FRT strategies are proposed to fully utilize the converter capacity and to comply with IEEE-2800 2022 std and German grid code. The results are compared with the Electromagnetic Transient (EMT) simulation on the IEEE 34 test network and the 120 kV EPRI benchmark system. The developed IBR sequence domain PF model demonstrates more accurate behavior compared to the classical IBR generator model. The error in calculating the short circuit current with the proposed SC solver is less than 3%, while achieving significant speed improvements of three order of magnitudes.
comment: 12 Pages, First Revision Submitted
Exploiting Structure in MIMO Scaled Graph Analysis
Scaled graphs offer a graphical tool for analysis of nonlinear feedback systems. Although recently substantial progress has been made in scaled graph analysis, at present their use in multivariable feedback systems is limited by conservatism. In this paper, we aim to reduce this conservatism by introducing multipliers and exploit system structure in the analysis with scaled graphs. In particular, we use weighted inner products to arrive at a weighted scaled graph and combine this with a commutation property to formulate a stability result for multivariable feedback systems. We present a method for computing the weighted scaled graph of Lur'e systems based on solving sets of linear matrix inequalities, and demonstrate a significant reduction in conservatism through an example.
A Human-Sensitive Controller: Adapting to Human Ergonomics and Physical Constraints via Reinforcement Learning
Work-Related Musculoskeletal Disorders continue to be a major challenge in industrial environments, leading to reduced workforce participation, increased healthcare costs, and long-term disability. This study introduces a human-sensitive robotic system aimed at reintegrating individuals with a history of musculoskeletal disorders into standard job roles, while simultaneously optimizing ergonomic conditions for the broader workforce. This research leverages reinforcement learning to develop a human-aware control strategy for collaborative robots, focusing on optimizing ergonomic conditions and preventing pain during task execution. Two RL approaches, Q-Learning and Deep Q-Network (DQN), were implemented and tested to personalize control strategies based on individual user characteristics. Although experimental results revealed a simulation-to-real gap, a fine-tuning phase successfully adapted the policies to real-world conditions. DQN outperformed Q-Learning by completing tasks faster while maintaining zero pain risk and safe ergonomic levels. The structured testing protocol confirmed the system's adaptability to diverse human anthropometries, underscoring the potential of RL-driven cobots to enable safer, more inclusive workplaces.
Gradient modelling of memristive systems
We introduce a gradient modeling framework for memristive systems. Our focus is on memristive systems as they appear in neurophysiology and neuromorphic systems. Revisiting the original definition of Chua, we regard memristive elements as gradient operators of quadratic functionals with respect to a metric determined by the memristance. We explore the consequences of gradient properties for the analysis and design of neuromorphic circuits.
comment: Submitted to 64th IEEE Control on Decision and Control (CDC2025)
Towards Resilient Tracking in Autonomous Vehicles: A Distributionally Robust Input and State Estimation Approach
This paper proposes a novel framework for the distributionally robust input and state estimation (DRISE) for autonomous vehicles operating under model uncertainties and measurement outliers. The proposed framework improves the input and state estimation (ISE) approach by integrating distributional robustness, enhancing the estimator's resilience and robustness to adversarial inputs and unmodeled dynamics. Moment-based ambiguity sets capture probabilistic uncertainties in both system dynamics and measurement noise, offering analytical tractability and efficiently handling uncertainties in mean and covariance. In particular, the proposed framework minimizes the worst-case estimation error, ensuring robustness against deviations from nominal distributions. The effectiveness of the proposed approach is validated through simulations conducted in the CARLA autonomous driving simulator, demonstrating improved performance in state estimation accuracy and robustness in dynamic and uncertain environments.
Fully-Adaptive and Semi-Adaptive Frequency Sweep Algorithm Exploiting Loewner-State Model for EM Simulation of Multiport Systems
This paper employs a fully adaptive and semi-adaptive frequency sweep algorithm using the Loewner matrix-based state model for the electromagnetic simulation. The proposed algorithms use two Loewner matrix models with different or the same orders with small frequency perturbation for adaptive frequency selection. The error between the two models is calculated in each iteration, and the next frequency points are selected to minimize maximum error. With the help of memory, the algorithm terminates when the error between the model and the simulation result is reached within the specified error tolerance. In the fully adaptive frequency sweep algorithm, the method starts with the minimum and maximum frequency of simulation. In the semi-adaptive algorithm, a novel approach has been proposed to determine the initial number of frequency points necessary for system interpolation based on the electrical size of the structure. The proposed algorithms have been compared with the Stoer-Bulirsch algorithm and Pradovera's minimal sampling algorithm for electromagnetic simulation. Four examples are presented using MATLAB R2024b. The results show that the proposed methods offer better performance in terms of speed, accuracy and the requirement of the minimum number of frequency samples. The proposed method shows remarkable consistency with full-wave simulation data, and the algorithm can be effectively applicable to electromagnetic simulations.
comment: 16 pages, 10 figures, This work has been accepted by the IEEE Transactions on Microwave Theory and Techniques (https://doi.org/10.1109/TMTT.2025.3557208) for possible publication
Markov Clustering based Fully Automated Nonblocking Hierarchical Supervisory Control of Large-Scale Discrete-Event Systems
In this paper we revisit the abstraction-based approach to synthesize a hierarchy of decentralized supervisors and coordinators for nonblocking control of large-scale discrete-event systems (DES), and augment it with a new clustering method for automatic and flexible grouping of relevant components during the hierarchical synthesis process. This method is known as Markov clustering, which not only automatically performs grouping but also allows flexible tuning the sizes of the resulting clusters using a single parameter. Compared to the existing abstraction-based approach that lacks effective grouping method for general cases, our proposed approach based on Markov clustering provides a fully automated and effective hierarchical synthesis procedure applicable to general large-scale DES. Moreover, it is proved that the resulting hierarchy of supervisors and coordinators collectively achieves global nonblocking (and maximally permissive) controlled behavior under the same conditions as those in the existing abstraction-based approach. Finally, a benchmark case study is conducted to empirically demonstrate the effectiveness of our approach.
comment: 7 pages, 1 figure, 1 Tables
Modelling & Steady State Compliance Testing of an Improved Time Synchronized Phasor Measurement Unit Based on IEEE Standard C37.118.1
Synchrophasor technology is an emerging and developing technology for monitoring and control of wide area measurement systems (WAMS). In an elementary WAMS, two identical phasors measured at two different locations have difference in the phase angles measured since their reference waveforms are not synchronized with each other. Phasor measurement units (PMUs) measure input phasors with respect to a common reference wave based on the atomic clock pulses received from global positioning system (GPS) satellites, eliminating variation in the measured phase angles due to distant locations of the measurement nodes. This has found tremendous applications in quick fault detection, fault location analysis, accurate current, voltage, frequency and phase angle measurements in WAMS. Commercially available PMU models are often proven to be expensive for research and development as well as for grid integration projects. This research article proposes an economic PMU model optimized for accurate steadystate performance based on recursive discrete Fourier transform (DFT) and provides results and detailed analysis of the proposed PMU model as per the steady state compliance specifications of IEEE standard C37.118.1. Results accurate up to 13 digits after decimal point are obtained through the developed PMU model for both nominal and off-nominal frequency inputs in steady state.
Score Matching Diffusion Based Feedback Control and Planning of Nonlinear Systems
We propose a novel control-theoretic framework that leverages principles from generative modeling -- specifically, Denoising Diffusion Probabilistic Models (DDPMs) -- to stabilize control-affine systems with nonholonomic constraints. Unlike traditional stochastic approaches, which rely on noise-driven dynamics in both forward and reverse processes, our method crucially eliminates the need for noise in the reverse phase, making it particularly relevant for control applications. We introduce two formulations: one where noise perturbs all state dimensions during the forward phase while the control system enforces time reversal deterministically, and another where noise is restricted to the control channels, embedding system constraints directly into the forward process. For controllable nonlinear drift-free systems, we prove that deterministic feedback laws can exactly reverse the forward process, ensuring that the system's probability density evolves correctly without requiring artificial diffusion in the reverse phase. Furthermore, for linear time-invariant systems, we establish a time-reversal result under the second formulation. By eliminating noise in the backward process, our approach provides a more practical alternative to machine learning-based denoising methods, which are unsuitable for control applications due to the presence of stochasticity. We validate our results through numerical simulations on benchmark systems, including a unicycle model in a domain with obstacles, a driftless five-dimensional system, and a four-dimensional linear system, demonstrating the potential for applying diffusion-inspired techniques in linear, nonlinear, and settings with state space constraints.
Computationally Efficient State and Model Estimation via Interval Observers for Partially Unknown Systems
This paper addresses the synthesis of interval observers for partially unknown nonlinear systems subject to bounded noise, aiming to simultaneously estimate system states and learn a model of the unknown dynamics. Our approach leverages Jacobian sign-stable (JSS) decompositions, tight decomposition functions for nonlinear systems, and a data-driven over-approximation framework to construct interval estimates that provably enclose the true augmented states. By recursively computing tight and tractable bounds for the unknown dynamics based on current and past interval framers, we systematically integrate these bounds into the observer design. Additionally, we formulate semi-definite programs (SDP) for observer gain synthesis, ensuring input-to-state stability and optimality of the proposed framework. Finally, simulation results demonstrate the computational efficiency of our approach compared to a method previously proposed by the authors.
comment: submitted to CDC'25
Robust Output-Feedback MPC for Nonlinear Systems with Applications to Robotic Exploration
This paper introduces a novel method for robust output-feedback model predictive control (MPC) for a class of nonlinear discrete-time systems. We propose a novel interval-valued predictor which, given an initial estimate of the state, produces intervals which are guaranteed to contain the future trajectory of the system. By parameterizing the control input with an initial stabilizing feedback term, we are able to reduce the width of the predicted state intervals compared to existing methods. We demonstrate this through a numerical comparison where we show that our controller performs better in the presence of large amounts of noise. Finally, we present a simulation study of a robot navigation scenario, where we incorporate a time-varying entropy term into the cost function in order to autonomously explore an uncertain area.
comment: Accepted for publication in L-CSS
Adaptive Synaptogenesis Implemented on a Nanomagnetic Platform
The human brain functions very differently from artificial neural networks (ANN) and possesses unique features that are absent in ANN. An important one among them is "adaptive synaptogenesis" that modifies synaptic weights when needed to avoid catastrophic forgetting and promote lifelong learning. The key aspect of this algorithm is supervised Hebbian learning, where weight modifications in the neocortex driven by temporal coincidence are further accepted or vetoed by an added control mechanism from the hippocampus during the training cycle, to make distant synaptic connections highly sparse and strategic. In this work, we discuss various algorithmic aspects of adaptive synaptogenesis tailored to edge computing, demonstrate its function using simulations, and design nanomagnetic hardware accelerators for specific functions of synaptogenesis.
Vehicle Dynamics Control for Simultaneous Optimization of Tire Emissions and Performance in EVs
In recent years, Electric Vehicles (EVs) have seen widespread public adoption. While EVs produce zero tailpipe emissions, they contribute to an increase in another type of vehicular emission: tire emissions. Battery-operated EVs are generally heavier than their combustion-engine counterparts and require greater acceleration forces, which their high-torque electric motors provide. This combination of increased weight and traction forces leads to higher tire emissions, which possess various adverse health and environmental effects. Here, we propose a control solution with promising results in mitigating tire wear in all-wheel-drive EVs. The idea is to utilize different tire profiles on each drive axis: a low-wear, low-traction axis and a high-wear, high-traction axis. Derived from detailed mathematical analyses, we propose a simple control scheme to counteract the performance difference from using the low-traction tires. The proposed control mechanism then distributes torque optimally between the two axes, maximizing usage from the low-wear axis and simultaneously maintaining stability and performance by leveraging high-traction tires. Through detailed numerical simulations, we demonstrate that the developed model significantly reduces tire emissions and maintains vehicle drivability and performance.
comment: 25 pages, 12 figures
HyRRT-Connect: Bidirectional Motion Planning for Hybrid Dynamical Systems
This paper proposes a bidirectional rapidly-exploring random trees (RRT) algorithm to solve the motion planning problem for hybrid systems. The proposed algorithm, called HyRRT-Connect, propagates in both forward and backward directions in hybrid time until an overlap between the forward and backward propagation results is detected. Then, HyRRT-Connect constructs a motion plan through the reversal and concatenation of functions defined on hybrid time domains, ensuring that the motion plan satisfies the given hybrid dynamics. To address the potential discontinuity along the flow caused by tolerating some distance between the forward and backward partial motion plans, we reconstruct the backward partial motion plan by a forward-in-hybrid-time simulation from the final state of the forward partial motion plan. effectively eliminating the discontinuity. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot example to highlight its computational improvement.
comment: 59 pages, 9 figures, submitted to IJRR. arXiv admin note: substantial text overlap with arXiv:2403.18413; text overlap with arXiv:2406.01802
Spectrum Sharing in STAR-RIS-assisted UAV with NOMA for Cognitive Radio Networks
As an emerging technology, the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) can improve the spectrum efficiency (SE) of primary users (PUs) and secondary users (SUs) in cognitive radio (CR) networks by mitigating the interference of the incident signals. The STAR-RIS-assisted unmanned aerial vehicle (UAV) can fully cover the dynamic environment through high mobility and fast deployment. According to the dynamic air-to-ground channels, the STAR-RIS-assisted UAV may face a challenge configuring their elements' coefficients (i.e., reflecting and transmitting the amplitude and phases). Hence, to meet the requirements of dynamic channel determination with the SE approach, this paper proposes the sum rate maximization of both PUs and SUs through non-orthogonal multiple access in CR network to jointly optimize the trajectory and transmission-reflection beamforming design of the STAR-RIS-assisted UAV, and power allocation. Since the non-convex joint optimization problem includes coupled optimization variables, we develop an alternative optimization algorithm. Simulation results study the impact of: 1) the significant parameters, 2) the performance of different intelligence surface modes and STAR-RIS operating protocols, 3) the joint trajectory and beamforming design with fixed and mobile users, and 4) STAR-RIS capabilities such as mitigating the interference, and how variations in the roles of elements dynamically.
Transfer Learning Assisted XgBoost For Adaptable Cyberattack Detection In Battery Packs
Optimal charging of electric vehicle (EVs) depends heavily on reliable sensor measurements from the battery pack to the cloud-controller of the smart charging station. However, an adversary could corrupt the voltage sensor data during transmission, potentially causing local to wide-scale disruptions. Therefore, it is essential to detect sensor cyberattacks in real-time to ensure secure EV charging, and the developed algorithms must be readily adaptable to variations, including pack configurations. To tackle these challenges, we propose adaptable fine-tuning of an XgBoost-based cell-level model using limited pack-level data to use for voltage prediction and residual generation. We used battery cell and pack data from high-fidelity charging experiments in PyBaMM and `liionpack' package to train and test the detection algorithm. The algorithm's performance has been evaluated for two large-format battery packs under sensor swapping and replay attacks. The simulation results also highlight the adaptability and efficacy of our proposed detection algorithm.
comment: 9 pages, 5 figures
Secure Estimation of Battery Voltage Under Sensor Attacks: A Self-Learning Koopman Approach
Cloud-based battery management system (BMS) requires accurate terminal voltage measurement data to ensure optimal and safe charging of Lithium-ion batteries. Unfortunately, an adversary can corrupt the battery terminal voltage data as it passes from the local-BMS to the cloud-BMS through the communication network, with the objective of under- or over-charging the battery. To ensure accurate terminal voltage data under such malicious sensor attacks, this paper investigates a Koopman-based secure terminal voltage estimation scheme using a two-stage error-compensated self-learning feedback. During the first stage of error correction, the potential Koopman prediction error is estimated to compensate for the error accumulation due to the linear approximation of Koopman operator. The second stage of error compensation aims to recover the error amassing from the higher-order dynamics of the Lithium-ion batteries missed by the self-learning strategy. Specifically, we have proposed two different methods for this second stage error compensation. First, an interpretable empirical correction strategy has been obtained using the open circuit voltage to state-of-charge mapping for the battery. Second, a Gaussian process regression-based data-driven method has been explored. Finally, we demonstrate the efficacy of the proposed secure estimator using both empirical and data-driven corrections.
comment: 10 pages, 5 figures
Secondary Safety Control for Systems with Sector Bounded Nonlinearities [Extended Version]
We consider the problem of safety verification and safety-aware controller synthesis for systems with sector bounded nonlinearities. We aim to keep the states of the system within a given safe set under potential actuator and sensor attacks. Specifically, we adopt the setup that a controller has already been designed to stabilize the plant. Using invariant sets and barrier certificate theory, we first give sufficient conditions to verify the safety of the closed-loop system under attacks. Furthermore, by using a subset of sensors that are assumed to be free of attacks, we provide a synthesis method for a secondary controller that enhances the safety of the system. The sufficient conditions to verify safety are derived using Lyapunov-based tools and the S-procedure. Using the projection lemma, the conditions are then formulated as linear matrix inequality (LMI) problems which can be solved efficiently. Lastly, our theoretical results are illustrated through numerical simulations.
comment: Supplementary material for the Automatica submission
Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
comment: This manuscript of 11 pages, 2 tables and 3 figures is a preprint under review with a conference
A Hybrid Algorithm for Iterative Adaptation of Feedforward Controllers: an Application on Electromechanical Switches
Electromechanical switching devices such as relays, solenoid valves, and contactors offer several technical and economic advantages that make them widely used in industry. However, uncontrolled operations result in undesirable impact-related phenomena at the end of the stroke. As a solution, different soft-landing controls have been proposed. Among them, feedforward control with iterative techniques that adapt its parameters is a solution when real-time feedback is not available. However, these techniques typically require a large number of operations to converge or are computationally intensive, which limits a real implementation. In this paper, we present a new algorithm for the iterative adaptation that is able to eventually adapt the search coordinate system and to reduce the search dimensional size in order to accelerate convergence. Moreover, it automatically toggles between a derivative-free and a gradient-based method to balance exploration and exploitation. To demonstrate the high potential of the proposal, each novel part of the algorithm is compared with a state-of-the-art approach via simulation.
comment: 7 pages, 5 figures. Minor changes. Final version, after peer review and acceptance, submitted to the 23rd European Control Conference (ECC)
Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
Probabilistic Reachable Set Estimation for Saturated Systems with Unbounded Additive Disturbances
In this paper, we present an analytical approach for the synthesis of ellipsoidal probabilistic reachable sets of saturated systems subject to unbounded additive noise. Using convex optimization methods, we compute a contraction factor of the saturated error dynamics that allows us to tightly bound its evolution and therefore construct accurate reachable sets. The proposed approach is applicable to independent, zero mean disturbances with a known covariance. A numerical example illustrates the applicability and effectiveness of the proposed design.
STLCCP: Efficient Convex Optimization-based Framework for Signal Temporal Logic Specifications
Signal temporal logic (STL) is a powerful formalism for specifying various temporal properties in dynamical systems. However, existing methods, such as mixed-integer programming and nonlinear programming, often struggle to efficiently solve control problems with complex, long-horizon STL specifications. This study introduces \textit{STLCCP}, a novel convex optimization-based framework that leverages key structural properties of STL: monotonicity of the robustness function, its hierarchical tree structure, and correspondence between convexity/concavity in optimizations and conjunctiveness/disjunctiveness in specifications. The framework begins with a structure-aware decomposition of STL formulas, transforming the problem into an equivalent difference of convex (DC) programs. This is then solved sequentially as a convex quadratic program using an improved version of the convex-concave procedure (CCP). To further enhance efficiency, we develop a smooth approximation of the robustness function using a function termed the \textit{mellowmin} function, specifically tailored to the proposed framework. Numerical experiments on motion planning benchmarks demonstrate that \textit{STLCCP} can efficiently handle complex scenarios over long horizons, outperforming existing methods.
comment: 32 pages
InstructMPC: A Human-LLM-in-the-Loop Framework for Context-Aware Control
Model Predictive Control (MPC) is a powerful control strategy widely utilized in domains like energy management, building control, and autonomous systems. However, its effectiveness in real-world settings is challenged by the need to incorporate context-specific predictions and expert instructions, which traditional MPC often neglects. We propose InstructMPC, a novel framework that addresses this gap by integrating real-time human instructions through a Large Language Model (LLM) to produce context-aware predictions for MPC. Our method employs a Language-to-Distribution (L2D) module to translate contextual information into predictive disturbance trajectories, which are then incorporated into the MPC optimization. Unlike existing context-aware and language-based MPC models, InstructMPC enables dynamic human-LLM interaction and fine-tunes the L2D module in a closed loop with theoretical performance guarantees, achieving a regret bound of $O(\sqrt{T\log T})$ for linear dynamics when optimized via advanced fine-tuning methods such as Direct Preference Optimization (DPO) using a tailored loss function.
Towards safe Bayesian optimization with Wiener kernel regression
Bayesian Optimization (BO) is a data-driven strategy for minimizing/maximizing black-box functions based on probabilistic surrogate models. In the presence of safety constraints, the performance of BO crucially relies on tight probabilistic error bounds related to the uncertainty surrounding the surrogate model. For the case of Gaussian Process surrogates and Gaussian measurement noise, we present a novel error bound based on the recently proposed Wiener kernel regression. We prove that under rather mild assumptions, the proposed error bound is tighter than bounds previously documented in the literature, leading to enlarged safety regions. We draw upon a numerical example to demonstrate the efficacy of the proposed error bound in safe BO.
Learning-based Observer for Coupled Disturbance
Achieving high-precision control for robotic systems is hindered by the low-fidelity dynamical model and external disturbances. Especially, the intricate coupling between internal uncertainties and external disturbances further exacerbates this challenge. This study introduces an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Concretely, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures dependent on system state and external disturbance respectively. A regularized least squares algorithm is subsequently formalized to learn the parameter matrix using historical time-series data. Finally, a polynomial disturbance observer is specifically devised to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The proposed algorithm is evaluated through extensive simulations and real flight tests. We believe this work can offer a new pathway to integrate learning approaches into control frameworks for addressing longstanding challenges in robotic applications.
comment: 17 pages, 9 figures
Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve finite-horizon optimal control problems in mixed-logical dynamical systems efficiently. Optimization-based control of such systems with discrete and continuous decision variables entails the online solution of mixed-integer linear programs, which suffer from the curse of dimensionality. Our approach aims to mitigate this issue by decoupling the decision on the discrete variables from the decision on the continuous variables. In the proposed approach, reinforcement learning determines the discrete decision variables and simplifies the online optimization problem of the MPC controller from a mixed-integer linear program to a linear program, significantly reducing the computational time. A fundamental contribution of this work is the definition of the decoupled Q-function, which plays a crucial role in making the learning problem tractable in a combinatorial action space. We motivate the use of recurrent neural networks to approximate the decoupled Q-function and show how they can be employed in a reinforcement learning setting. Simulation experiments on a microgrid system using real-world data demonstrate that the proposed method substantially reduces the online computation time of MPC while maintaining high feasibility and low suboptimality.
Velocity-free task-space regulator for robot manipulators with external disturbances
This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.
GRAMC: General-purpose and reconfigurable analog matrix computing architecture DATE 2025
In-memory analog matrix computing (AMC) with resistive random-access memory (RRAM) represents a highly promising solution that solves matrix problems in one step. However, the existing AMC circuits each have a specific connection topology to implement a single computing function, lack of the universality as a matrix processor. In this work, we design a reconfigurable AMC macro for general-purpose matrix computations, which is achieved by configuring proper connections between memory array and amplifier circuits. Based on this macro, we develop a hybrid system that incorporates an on-chip write-verify scheme and digital functional modules, to deliver a general-purpose AMC solver for various applications.
comment: This paper has been accepted to DATE 2025
Bridging Impulse Control of Piecewise Deterministic Markov Processes and Markov Decision Processes: Frameworks, Extensions, and Open Challenges
Control theory plays a pivotal role in understanding and optimizing the behavior of complex dynamical systems across various scientific and engineering disciplines. Two key frameworks that have emerged for modeling and solving control problems in stochastic systems are piecewise deterministic Markov processes (PDMPs) and Markov decision processes (MDPs). Each framework has its unique strengths, and their intersection offers promising opportunities for tackling a broad class of problems, particularly in the context of impulse controls and decision-making in complex systems. The relationship between PDMPs and MDPs is a natural subject of exploration, as embedding impulse control problems for PDMPs into the MDP framework could open new avenues for their analysis and resolution. Specifically, this integration would allow leveraging the computational and theoretical tools developed for MDPs to address the challenges inherent in PDMPs. On the other hand, PDMPs can offer a versatile and simple paradigm to model continuous time problems that are often described as discrete-time MDPs parametrized by complex transition kernels. This transformation has the potential to bridge the gap between the two frameworks, enabling solutions to previously intractable problems and expanding the scope of both fields. This paper presents a comprehensive review of two research domains, illustrated through a recurring medical example. The example is revisited and progressively formalized within the framework of thevarious concepts and objects introduced
Towards Developing Socially Compliant Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs' compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An informal expert interview was also conducted to discuss the literature review results and identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 58 pages, 13 figures, accepted by the Journal of Communications in Transportation Research
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
We consider policy gradient methods for stochastic optimal control problem in continuous time. In particular, we analyze the gradient flow for the control, viewed as a continuous time limit of the policy gradient method. We prove the global convergence of the gradient flow and establish a convergence rate under some regularity assumptions. The main novelty in the analysis is the notion of local optimal control function, which is introduced to characterize the local optimality of the iterate.
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models ICRA 2025
Curriculum learning is a training mechanism in reinforcement learning (RL) that facilitates the achievement of complex policies by progressively increasing the task difficulty during training. However, designing effective curricula for a specific task often requires extensive domain knowledge and human intervention, which limits its applicability across various domains. Our core idea is that large language models (LLMs), with their extensive training on diverse language data and ability to encapsulate world knowledge, present significant potential for efficiently breaking down tasks and decomposing skills across various robotics environments. Additionally, the demonstrated success of LLMs in translating natural language into executable code for RL agents strengthens their role in generating task curricula. In this work, we propose CurricuLLM, which leverages the high-level planning and programming capabilities of LLMs for curriculum design, thereby enhancing the efficient learning of complex target tasks. CurricuLLM consists of: (Step 1) Generating sequence of subtasks that aid target task learning in natural language form, (Step 2) Translating natural language description of subtasks in executable task code, including the reward code and goal distribution code, and (Step 3) Evaluating trained policies based on trajectory rollout and subtask description. We evaluate CurricuLLM in various robotics simulation environments, ranging from manipulation, navigation, and locomotion, to show that CurricuLLM can aid learning complex robot control tasks. In addition, we validate humanoid locomotion policy learned through CurricuLLM in real-world. Project website is https://iconlab.negarmehr.com/CurricuLLM/
comment: Accepted to ICRA 2025
SHIELD: Secure Host-Independent Extensible Logging for Tamper-Proof Detection and Real-Time Mitigation of Ransomware Threats
Ransomware's escalating sophistication necessitates tamper-resistant, off-host detection solutions that capture deep disk activity beyond the reach of a compromised operating system while overcoming evasion and obfuscation techniques. To address this, we introduce SHIELD: a metric acquisition framework leveraging low-level filesystem monitoring and Network Block Device (NBD) technology to provide off-host, tamper-proof measurements for continuous observation of disk activity exhibited by software executing on a target device. We employ Shield within a detection architecture leveraging deep filesystem features along with simplified metrics aggregated based on frequency of disk actions, making the metrics impervious to obfuscation while avoiding reliance on vulnerable host-based logs. We evaluate the efficacy of these metrics through extensive experiments with both binary (benign vs. malicious behavior) and multiclass (ransomware strain identification) classifiers and confirm that our metrics yield high accuracy across diverse threat profiles, including intermittent or partial encryption. In a proof-of-concept deployment, we demonstrate real-time mitigation using models trained on these metrics by halting malicious disk operations after ransomware detection with minimum file loss and memory corruption. We also show that hardware-only features collected independently of OS or network stack retain high detection effectiveness, verifying feasibility of embedding the proposed pipeline in a SATA controller ASIC or FPGA for next-generation, disk-centric defenses that combine filesystem insight with inherent off-host isolation.
Robotics
UruBots RoboCup Work Team Description Paper
This work presents a team description paper for the RoboCup Work League. Our team, UruBots, has been developing robots and projects for research and competitions in the last three years, attending robotics competitions in Uruguay and around the world. In this instance, we aim to participate and contribute to the RoboCup Work category, hopefully making our debut in this prestigious competition. For that, we present an approach based on the Limo robot, whose main characteristic is its hybrid locomotion system with wheels and tracks, with some extras added by the team to complement the robot's functionalities. Overall, our approach allows the robot to efficiently and autonomously navigate a Work scenario, with the ability to manipulate objects, perform autonomous navigation, and engage in a simulated industrial environment.
comment: 6 pages, 5 figures, submitted to RoboCup 2025
Adapting Robot's Explanation for Failures Based on Observed Human Behavior in Human-Robot Collaboration IROS 2025
This work aims to interpret human behavior to anticipate potential user confusion when a robot provides explanations for failure, allowing the robot to adapt its explanations for more natural and efficient collaboration. Using a dataset that included facial emotion detection, eye gaze estimation, and gestures from 55 participants in a user study, we analyzed how human behavior changed in response to different types of failures and varying explanation levels. Our goal is to assess whether human collaborators are ready to accept less detailed explanations without inducing confusion. We formulate a data-driven predictor to predict human confusion during robot failure explanations. We also propose and evaluate a mechanism, based on the predictor, to adapt the explanation level according to observed human behavior. The promising results from this evaluation indicate the potential of this research in adapting a robot's explanations for failures to enhance the collaborative experience.
comment: Under review, Manuscript in submission for IROS 2025
From Movement Primitives to Distance Fields to Dynamical Systems
Developing autonomous robots capable of learning and reproducing complex motions from demonstrations remains a fundamental challenge in robotics. On the one hand, movement primitives (MPs) provide a compact and modular representation of continuous trajectories. On the other hand, autonomous systems provide control policies that are time independent. We propose in this paper a simple and flexible approach that gathers the advantages of both representations by transforming MPs into autonomous systems. The key idea is to transform the explicit representation of a trajectory as an implicit shape encoded as a distance field. This conversion from a time-dependent motion to a spatial representation enables the definition of an autonomous dynamical system with modular reactions to perturbation. Asymptotic stability guarantees are provided by using Bernstein basis functions in the MPs, representing trajectories as concatenated quadratic B\'ezier curves, which provide an analytical method for computing distance fields. This approach bridges conventional MPs with distance fields, ensuring smooth and precise motion encoding, while maintaining a continuous spatial representation. By simply leveraging the analytic gradients of the curve and its distance field, a stable dynamical system can be computed to reproduce the demonstrated trajectories while handling perturbations, without requiring a model of the dynamical system to be estimated. Numerical simulations and real-world robotic experiments validate our method's ability to encode complex motion patterns while ensuring trajectory stability, together with the flexibility of designing the desired reaction to perturbations. An interactive project page demonstrating our approach is available at https://mp-df-ds.github.io/.
comment: 7 pages, 7 Figures
A highly maneuverable flying squirrel drone with agility-improving foldable wings
Drones, like most airborne aerial vehicles, face inherent disadvantages in achieving agile flight due to their limited thrust capabilities. These physical constraints cannot be fully addressed through advancements in control algorithms alone. Drawing inspiration from the winged flying squirrel, this paper proposes a highly maneuverable drone equipped with agility-enhancing foldable wings. By leveraging collaborative control between the conventional propeller system and the foldable wings-coordinated through the Thrust-Wing Coordination Control (TWCC) framework-the controllable acceleration set is expanded, enabling the generation of abrupt vertical forces that are unachievable with traditional wingless drones. The complex aerodynamics of the foldable wings are modeled using a physics-assisted recurrent neural network (paRNN), which calibrates the angle of attack (AOA) to align with the real aerodynamic behavior of the wings. The additional air resistance generated by appropriately deploying these wings significantly improves the tracking performance of the proposed "flying squirrel" drone. The model is trained on real flight data and incorporates flat-plate aerodynamic principles. Experimental results demonstrate that the proposed flying squirrel drone achieves a 13.1% improvement in tracking performance, as measured by root mean square error (RMSE), compared to a conventional wingless drone. A demonstration video is available on YouTube: https://youtu.be/O8nrip18azY.
comment: Accepted to IEEE Robotics and Automation Letters Youtube : https://youtu.be/tckIF3KCJig?si=s-N2VRNThV23y9xQ
GeoNav: Empowering MLLMs with Explicit Geospatial Reasoning Abilities for Language-Goal Aerial Navigation
Language-goal aerial navigation is a critical challenge in embodied AI, requiring UAVs to localize targets in complex environments such as urban blocks based on textual specification. Existing methods, often adapted from indoor navigation, struggle to scale due to limited field of view, semantic ambiguity among objects, and lack of structured spatial reasoning. In this work, we propose GeoNav, a geospatially aware multimodal agent to enable long-range navigation. GeoNav operates in three phases-landmark navigation, target search, and precise localization-mimicking human coarse-to-fine spatial strategies. To support such reasoning, it dynamically builds two different types of spatial memory. The first is a global but schematic cognitive map, which fuses prior textual geographic knowledge and embodied visual cues into a top-down, annotated form for fast navigation to the landmark region. The second is a local but delicate scene graph representing hierarchical spatial relationships between blocks, landmarks, and objects, which is used for definite target localization. On top of this structured representation, GeoNav employs a spatially aware, multimodal chain-of-thought prompting mechanism to enable multimodal large language models with efficient and interpretable decision-making across stages. On the CityNav urban navigation benchmark, GeoNav surpasses the current state-of-the-art by up to 12.53% in success rate and significantly improves navigation efficiency, even in hard-level tasks. Ablation studies highlight the importance of each module, showcasing how geospatial representations and coarse-to-fine reasoning enhance UAV navigation.
AirVista-II: An Agentic System for Embodied UAVs Toward Dynamic Scene Semantic Understanding
Unmanned Aerial Vehicles (UAVs) are increasingly important in dynamic environments such as logistics transportation and disaster response. However, current tasks often rely on human operators to monitor aerial videos and make operational decisions. This mode of human-machine collaboration suffers from significant limitations in efficiency and adaptability. In this paper, we present AirVista-II -- an end-to-end agentic system for embodied UAVs, designed to enable general-purpose semantic understanding and reasoning in dynamic scenes. The system integrates agent-based task identification and scheduling, multimodal perception mechanisms, and differentiated keyframe extraction strategies tailored for various temporal scenarios, enabling the efficient capture of critical scene information. Experimental results demonstrate that the proposed system achieves high-quality semantic understanding across diverse UAV-based dynamic scenarios under a zero-shot setting.
Embodied Chain of Action Reasoning with Multi-Modal Foundation Model for Humanoid Loco-manipulation
Enabling humanoid robots to autonomously perform loco-manipulation tasks in complex, unstructured environments poses significant challenges. This entails equipping robots with the capability to plan actions over extended horizons while leveraging multi-modality to bridge gaps between high-level planning and actual task execution. Recent advancements in multi-modal foundation models have showcased substantial potential in enhancing planning and reasoning abilities, particularly in the comprehension and processing of semantic information for robotic control tasks. In this paper, we introduce a novel framework based on foundation models that applies the embodied chain of action reasoning methodology to autonomously plan actions from textual instructions for humanoid loco-manipulation. Our method integrates humanoid-specific chain of thought methodology, including detailed affordance and body movement analysis, which provides a breakdown of the task into a sequence of locomotion and manipulation actions. Moreover, we incorporate spatial reasoning based on the observation and target object properties to effectively navigate where target position may be unseen or occluded. Through rigorous experimental setups on object rearrangement, manipulations and loco-manipulation tasks on a real-world environment, we evaluate our method's efficacy on the decoupled upper and lower body control and demonstrate the effectiveness of the chain of robotic action reasoning strategies in comprehending human instructions.
RoboComm: A DID-based scalable and privacy-preserving Robot-to-Robot interaction over state channels
In a multi robot system establishing trust amongst untrusted robots from different organisations while preserving a robot's privacy is a challenge. Recently decentralized technologies such as smart contract and blockchain are being explored for applications in robotics. However, the limited transaction processing and high maintenance cost hinder the widespread adoption of such approaches. Moreover, blockchain transactions be they on public or private permissioned blockchain are publically readable which further fails to preserve the confidentiality of the robot's data and privacy of the robot. In this work, we propose RoboComm a Decentralized Identity based approach for privacy-preserving interaction between robots. With DID a component of Self-Sovereign Identity; robots can authenticate each other independently without relying on any third-party service. Verifiable Credentials enable private data associated with a robot to be stored within the robot's hardware, unlike existing blockchain based approaches where the data has to be on the blockchain. We improve throughput by allowing message exchange over state channels. Being a blockchain backed solution RoboComm provides a trustworthy system without relying on a single party. Moreover, we implement our proposed approach to demonstrate the feasibility of our solution.
comment: arXiv admin note: text overlap with arXiv:2405.02476 by other authors
Towards Intuitive Drone Operation Using a Handheld Motion Controller
We present an intuitive human-drone interaction system that utilizes a gesture-based motion controller to enhance the drone operation experience in real and simulated environments. The handheld motion controller enables natural control of the drone through the movements of the operator's hand, thumb, and index finger: the trigger press manages the throttle, the tilt of the hand adjusts pitch and roll, and the thumbstick controls yaw rotation. Communication with drones is facilitated via the ExpressLRS radio protocol, ensuring robust connectivity across various frequencies. The user evaluation of the flight experience with the designed drone controller using the UEQ-S survey showed high scores for both Pragmatic (mean=2.2, SD = 0.8) and Hedonic (mean=2.3, SD = 0.9) Qualities. This versatile control interface supports applications such as research, drone racing, and training programs in real and simulated environments, thereby contributing to advances in the field of human-drone interaction.
comment: HRI'25: Proceedings of the 2025 ACM/IEEE International Conference on Human-Robot Interaction, 5 pages, 5 figures
Debiasing 6-DOF IMU via Hierarchical Learning of Continuous Bias Dynamics
This paper develops a deep learning approach to the online debiasing of IMU gyroscopes and accelerometers. Most existing methods rely on implicitly learning a bias term to compensate for raw IMU data. Explicit bias learning has recently shown its potential as a more interpretable and motion-independent alternative. However, it remains underexplored and faces challenges, particularly the need for ground truth bias data, which is rarely available. To address this, we propose a neural ordinary differential equation (NODE) framework that explicitly models continuous bias dynamics, requiring only pose ground truth, often available in datasets. This is achieved by extending the canonical NODE framework to the matrix Lie group for IMU kinematics with a hierarchical training strategy. The validation on two public datasets and one real-world experiment demonstrates significant accuracy improvements in IMU measurements, reducing errors in both pure IMU integration and visual-inertial odometry.
comment: Accepted by Robotics: Science and Systems, 2025
A highly maneuverable flying squirrel drone with controllable foldable wings IROS
Typical drones with multi rotors are generally less maneuverable due to unidirectional thrust, which may be unfavorable to agile flight in very narrow and confined spaces. This paper suggests a new bio-inspired drone that is empowered with high maneuverability in a lightweight and easy-to-carry way. The proposed flying squirrel inspired drone has controllable foldable wings to cover a wider range of flight attitudes and provide more maneuverable flight capability with stable tracking performance. The wings of a drone are fabricated with silicone membranes and sophisticatedly controlled by reinforcement learning based on human-demonstrated data. Specially, such learning based wing control serves to capture even the complex aerodynamics that are often impossible to model mathematically. It is shown through experiment that the proposed flying squirrel drone intentionally induces aerodynamic drag and hence provides the desired additional repulsive force even under saturated mechanical thrust. This work is very meaningful in demonstrating the potential of biomimicry and machine learning for realizing an animal-like agile drone.
comment: Accepted at 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Project Page : https://jgkang1210.github.io/fsdrone/ , Video : https://youtu.be/Cfc-llDb3_k?si=Cal5beZw6f3HZ2ZW , Jun-Gill Kang and Dohyeon Lee are co-authors
ADDT -- A Digital Twin Framework for Proactive Safety Validation in Autonomous Driving Systems
Autonomous driving systems continue to face safety-critical failures, often triggered by rare and unpredictable corner cases that evade conventional testing. We present the Autonomous Driving Digital Twin (ADDT) framework, a high-fidelity simulation platform designed to proactively identify hidden faults, evaluate real-time performance, and validate safety before deployment. ADDT combines realistic digital models of driving environments, vehicle dynamics, sensor behavior, and fault conditions to enable scalable, scenario-rich stress-testing under diverse and adverse conditions. It supports adaptive exploration of edge cases using reinforcement-driven techniques, uncovering failure modes that physical road testing often misses. By shifting from reactive debugging to proactive simulation-driven validation, ADDT enables a more rigorous and transparent approach to autonomous vehicle safety engineering. To accelerate adoption and facilitate industry-wide safety improvements, the entire ADDT framework has been released as open-source software, providing developers with an accessible and extensible tool for comprehensive safety testing at scale.
Bi-directional Momentum-based Haptic Feedback and Control System for In-Hand Dexterous Telemanipulation
In-hand dexterous telemanipulation requires not only precise remote motion control of the robot but also effective haptic feedback to the human operator to ensure stable and intuitive interactions between them. Most existing haptic devices for dexterous telemanipulation focus on force feedback and lack effective torque rendering, which is essential for tasks involving object rotation. While some torque feedback solutions in virtual reality applications-such as those based on geared motors or mechanically coupled actuators-have been explored, they often rely on bulky mechanical designs, limiting their use in portable or in-hand applications. In this paper, we propose a Bi-directional Momentum-based Haptic Feedback and Control (Bi-Hap) system that utilizes a palm-sized momentum-actuated mechanism to enable real-time haptic and torque feedback. The Bi-Hap system also integrates an Inertial Measurement Unit (IMU) to extract the human's manipulation command to establish a closed-loop learning-based telemanipulation framework. Furthermore, an error-adaptive feedback strategy is introduced to enhance operator perception and task performance in different error categories. Experimental evaluations demonstrate that Bi-Hap achieved feedback capability with low command following latency (Delay < 0.025 s) and highly accurate torque feedback (RMSE < 0.010 Nm).
comment: This work has been submitted to the IEEE for possible publication
FUSION: Frequency-guided Underwater Spatial Image recOnstructioN
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
Hybrid Feedback Control for Global Navigation with Locally Optimal Obstacle Avoidance in n-Dimensional Spaces
We present a hybrid feedback control framework for autonomous robot navigation in n-dimensional Euclidean spaces cluttered with spherical obstacles. The proposed approach ensures safe navigation and global asymptotic stability (GAS) of the target location by dynamically switching between two operational modes: motion-to-destination and locally optimal obstacle-avoidance. It produces continuous velocity inputs, ensures collision-free trajectories and generates locally optimal obstacle avoidance maneuvers. Unlike existing methods, the proposed framework is compatible with range sensors, enabling navigation in both a priori known and unknown environments. Extensive simulations in 2D and 3D settings, complemented by experimental validation on a TurtleBot 4 platform, confirm the efficacy and robustness of the approach. Our results demonstrate shorter paths and smoother trajectories compared to state-of-the-art methods, while maintaining computational efficiency and real-world feasibility.
Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
Communication and Energy-Aware Multi-UAV Coverage Path Planning for Networked Operations
This paper presents a communication and energy-aware Multi-UAV Coverage Path Planning (mCPP) method for scenarios requiring continuous inter-UAV communication, such as cooperative search and rescue and surveillance missions. Unlike existing mCPP solutions that focus on energy, time, or coverage efficiency, our approach generates coverage paths that require minimal the communication range to maintain inter-UAV connectivity while also optimizing energy consumption. The mCPP problem is formulated as a multi-objective optimization task, aiming to minimize both the communication range requirement and energy consumption. Our approach significantly reduces the communication range needed for maintaining connectivity while ensuring energy efficiency, outperforming state-of-the-art methods. Its effectiveness is validated through simulations on complex and arbitrary shaped regions of interests, including scenarios with no-fly zones. Additionally, real-world experiment demonstrate its high accuracy, achieving 99\% consistency between the estimated and actual communication range required during a multi-UAV coverage mission involving three UAVs.
comment: 9 pages, 5 figures, supplementary material: video and code
Diffusion-Based Approximate MPC: Fast and Consistent Imitation of Multi-Modal Action Distributions
Approximating model predictive control (MPC) using imitation learning (IL) allows for fast control without solving expensive optimization problems online. However, methods that use neural networks in a simple L2-regression setup fail to approximate multi-modal (set-valued) solution distributions caused by local optima found by the numerical solver or non-convex constraints, such as obstacles, significantly limiting the applicability of approximate MPC in practice. We solve this issue by using diffusion models to accurately represent the complete solution distribution (i.e., all modes) at high control rates (more than 1000 Hz). This work shows that diffusion based AMPC significantly outperforms L2-regression-based approximate MPC for multi-modal action distributions. In contrast to most earlier work on IL, we also focus on running the diffusion-based controller at a higher rate and in joint space instead of end-effector space. Additionally, we propose the use of gradient guidance during the denoising process to consistently pick the same mode in closed loop to prevent switching between solutions. We propose using the cost and constraint satisfaction of the original MPC problem during parallel sampling of solutions from the diffusion model to pick a better mode online. We evaluate our method on the fast and accurate control of a 7-DoF robot manipulator both in simulation and on hardware deployed at 250 Hz, achieving a speedup of more than 70 times compared to solving the MPC problem online and also outperforming the numerical optimization (used for training) in success ratio. Project website: https://paumarquez.github.io/diffusion-ampc.
A ROS2-based software library for inverse dynamics computation
Inverse dynamics computation is a critical component in robot control, planning and simulation, enabling the calculation of joint torques required to achieve a desired motion. This paper presents a ROS2-based software library designed to solve the inverse dynamics problem for robotic systems. The library is built around an abstract class with three concrete implementations: one for simulated robots and two for real UR10 and Franka robots. This contribution aims to provide a flexible, extensible, robot-agnostic solution to inverse dynamics, suitable for both simulation and real-world scenarios involving planning and control applications. The related software is available at https://github.com/unisa-acg/inverse-dynamics-solver/tree/rap.
comment: 6 pages, 8 figures
Weakly-Supervised Learning via Multi-Lateral Decoder Branching for Tool Segmentation in Robot-Assisted Cardiovascular Catheterization
Robot-assisted catheterization has garnered a good attention for its potentials in treating cardiovascular diseases. However, advancing surgeon-robot collaboration still requires further research, particularly on task-specific automation. For instance, automated tool segmentation can assist surgeons in visualizing and tracking of endovascular tools during cardiac procedures. While learning-based models have demonstrated state-of-the-art segmentation performances, generating ground-truth labels for fully-supervised methods is both labor-intensive time consuming, and costly. In this study, we propose a weakly-supervised learning method with multi-lateral pseudo labeling for tool segmentation in cardiovascular angiogram datasets. The method utilizes a modified U-Net architecture featuring one encoder and multiple laterally branched decoders. The decoders generate diverse pseudo labels under different perturbations, augmenting available partial labels. The pseudo labels are self-generated using a mixed loss function with shared consistency across the decoders. The weakly-supervised model was trained end-to-end and validated using partially annotated angiogram data from three cardiovascular catheterization procedures. Validation results show that the model could perform closer to fully-supervised models. Also, the proposed weakly-supervised multi-lateral method outperforms three well known methods used for weakly-supervised learning, offering the highest segmentation performance across the three angiogram datasets. Furthermore, numerous ablation studies confirmed the model's consistent performance under different parameters. Finally, the model was applied for tool segmentation in a robot-assisted catheterization experiments. The model enhanced visualization with high connectivity indices for guidewire and catheter, and a mean processing time of 35 ms per frame.
A Visual-Inertial Motion Prior SLAM for Dynamic Environments
The Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) algorithms which are mostly based on static assumption are widely used in fields such as robotics, UAVs, VR, and autonomous driving. To overcome the localization risks caused by dynamic landmarks in most VI-SLAM systems, a robust visual-inertial motion prior SLAM system, named IDY-VINS, is proposed in this paper which effectively handles dynamic landmarks using inertial motion prior for dynamic environments to varying degrees. Specifically, potential dynamic landmarks are preprocessed during the feature tracking phase by the probabilistic model of landmarks' minimum projection errors which are obtained from inertial motion prior and epipolar constraint. Subsequently, a robust and self-adaptive bundle adjustment residual is proposed considering the minimum projection error prior for dynamic candidate landmarks. This residual is integrated into a sliding window based nonlinear optimization process to estimate camera poses, IMU states and landmark positions while minimizing the impact of dynamic candidate landmarks that deviate from the motion prior. Finally, a clean point cloud map without `ghosting effect' is obtained that contains only static landmarks. Experimental results demonstrate that our proposed system outperforms state-of-the-art methods in terms of localization accuracy and time cost by robustly mitigating the influence of dynamic landmarks.
GraspGF: Learning Score-based Grasping Primitive for Human-assisting Dexterous Grasping NeurIPS 2023
The use of anthropomorphic robotic hands for assisting individuals in situations where human hands may be unavailable or unsuitable has gained significant importance. In this paper, we propose a novel task called human-assisting dexterous grasping that aims to train a policy for controlling a robotic hand's fingers to assist users in grasping objects. Unlike conventional dexterous grasping, this task presents a more complex challenge as the policy needs to adapt to diverse user intentions, in addition to the object's geometry. We address this challenge by proposing an approach consisting of two sub-modules: a hand-object-conditional grasping primitive called Grasping Gradient Field~(GraspGF), and a history-conditional residual policy. GraspGF learns `how' to grasp by estimating the gradient from a success grasping example set, while the residual policy determines `when' and at what speed the grasping action should be executed based on the trajectory history. Experimental results demonstrate the superiority of our proposed method compared to baselines, highlighting the user-awareness and practicality in real-world applications. The codes and demonstrations can be viewed at "https://sites.google.com/view/graspgf".
comment: NeurIPS 2023
Multiagent Systems
Dominated Actions in Imperfect-Information Games
Dominance is a fundamental concept in game theory. In strategic-form games dominated strategies can be identified in polynomial time. As a consequence, iterative removal of dominated strategies can be performed efficiently as a preprocessing step for reducing the size of a game before computing a Nash equilibrium. For imperfect-information games in extensive form, we could convert the game to strategic form and then iteratively remove dominated strategies in the same way; however, this conversion may cause an exponential blowup in game size. In this paper we define and study the concept of dominated actions in imperfect-information games. Our main result is a polynomial-time algorithm for determining whether an action is dominated (strictly or weakly) by any mixed strategy in n-player games, which can be extended to an algorithm for iteratively removing dominated actions. This allows us to efficiently reduce the size of the game tree as a preprocessing step for Nash equilibrium computation. We explore the role of dominated actions empirically in the "All In or Fold" No-Limit Texas Hold'em poker variant.
AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
Multi-agent large language model simulations have the potential to model complex human behaviors and interactions. If the mechanics are set up properly, unanticipated and valuable social dynamics can surface. However, it is challenging to consistently enforce simulation mechanics while still allowing for notable and emergent dynamics. We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics. AgentDynEx uses LLMs to guide users through a Configuration Matrix to identify core mechanics and define milestones to track dynamics. It also introduces a method called \textit{nudging}, where the system dynamically reflects on simulation progress and gently intervenes if it begins to deviate from intended outcomes. A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging. We discuss the importance of nudging as a technique for balancing mechanics and dynamics of multi-agent simulations.
Metropolis-Hastings Captioning Game: Knowledge Fusion of Vision Language Models via Decentralized Bayesian Inference
We propose the Metropolis-Hastings Captioning Game (MHCG), a method to fuse knowledge of multiple vision-language models (VLMs) by learning from each other. Although existing methods that combine multiple models suffer from inference costs and architectural constraints, MHCG avoids these problems by performing decentralized Bayesian inference through a process resembling a language game. The knowledge fusion process establishes communication between two VLM agents alternately captioning images and learning from each other. We conduct two image-captioning experiments with two VLMs, each pre-trained on a different dataset. The first experiment demonstrates that MHCG achieves consistent improvement in reference-free evaluation metrics. The second experiment investigates how MHCG contributes to sharing VLMs' category-level vocabulary by observing the occurrence of the vocabulary in the generated captions.
Unification of Consensus-Based Multi-Objective Optimization and Multi-Robot Path Planning
Multi-agent systems seeking consensus may also have other objective functions to optimize, requiring the research of multi-objective optimization in consensus. Several recent publications have explored this domain using various methods such as weighted-sum optimization and penalization methods. This paper reviews the state of the art for consensus-based multi-objective optimization, poses a multi-agent lunar rover exploration problem seeking consensus and maximization of explored area, and achieves optimal edge weights and steering angles by applying SQP algorithms.
The Problem of Social Cost in Multi-Agent General Reinforcement Learning: Survey and Synthesis
The AI safety literature is full of examples of powerful AI agents that, in blindly pursuing a specific and usually narrow objective, ends up with unacceptable and even catastrophic collateral damage to others. In this paper, we consider the problem of social harms that can result from actions taken by learning and utility-maximising agents in a multi-agent environment. The problem of measuring social harms or impacts in such multi-agent settings, especially when the agents are artificial generally intelligent (AGI) agents, was listed as an open problem in Everitt et al, 2018. We attempt a partial answer to that open problem in the form of market-based mechanisms to quantify and control the cost of such social harms. The proposed setup captures many well-studied special cases and is more general than existing formulations of multi-agent reinforcement learning with mechanism design in two ways: (i) the underlying environment is a history-based general reinforcement learning environment like in AIXI; (ii) the reinforcement-learning agents participating in the environment can have different learning strategies and planning horizons. To demonstrate the practicality of the proposed setup, we survey some key classes of learning algorithms and present a few applications, including a discussion of the Paperclips problem and pollution control with a cap-and-trade system.
comment: 67 pages
Systems and Control (CS)
Hybrid Lyapunov and Barrier Function-Based Control with Stabilization Guarantees
Control Lyapunov Functions (CLFs) and Control Barrier Functions (CBFs) can be combined, typically by means of Quadratic Programs (QPs), to design controllers that achieve performance and safety objectives. However, a significant limitation of this framework is the introduction of asymptotically stable equilibrium points besides the minimizer of the CLF, leading to deadlock situations even for simple systems and bounded convex unsafe sets. To address this problem, we propose a hybrid CLF-CBF control framework with global asymptotic stabilization and safety guarantees, offering a more flexible and systematic design methodology compared to current alternatives available in the literature. We further extend this framework to higher-order systems via a recursive procedure based on a joint CLF-CBF backstepping approach. The proposed solution is assessed through several simulation examples.
UruBots RoboCup Work Team Description Paper
This work presents a team description paper for the RoboCup Work League. Our team, UruBots, has been developing robots and projects for research and competitions in the last three years, attending robotics competitions in Uruguay and around the world. In this instance, we aim to participate and contribute to the RoboCup Work category, hopefully making our debut in this prestigious competition. For that, we present an approach based on the Limo robot, whose main characteristic is its hybrid locomotion system with wheels and tracks, with some extras added by the team to complement the robot's functionalities. Overall, our approach allows the robot to efficiently and autonomously navigate a Work scenario, with the ability to manipulate objects, perform autonomous navigation, and engage in a simulated industrial environment.
comment: 6 pages, 5 figures, submitted to RoboCup 2025
Learning-based decentralized control with collision avoidance for multi-agent systems
In this paper, we present a learning-based tracking controller based on Gaussian processes (GP) for collision avoidance of multi-agent systems where the agents evolve in the special Euclidean group in the space SE(3). In particular, we use GPs to estimate certain uncertainties that appear in the dynamics of the agents. The control algorithm is designed to learn and mitigate these uncertainties by using GPs as a learning-based model for the predictions. In particular, the presented approach guarantees that the tracking error remains bounded with high probability. We present some simulation results to show how the control algorithm is implemented.
comment: 9 pages
Simultaneous Input and State Estimation under Output Quantization: A Gaussian Mixture approach
Simultaneous Input and State Estimation (SISE) enables the reconstruction of unknown inputs and internal states in dynamical systems, with applications in fault detection, robotics, and control. While various methods exist for linear systems, extensions to systems with output quantization are scarce, and formal connections to limit Kalman filters in this context are lacking. This work addresses these gaps by proposing a novel SISE algorithm for linear systems with quantized output measurements that is based on a Gaussian mixture model formulation. The observation model is represented as a Gaussian sum density, leading to closed-form recursive equations in the form of a Gaussian sum filter. In the absence of input prior knowledge, the recursions converge to a limit-case SISE algorithm, implementable as a bank of linear SISE filters running in parallel. A simulation example is presented to illustrate the effectiveness of the proposed approach.
comment: 6 pages, 3 figures
Nonlinear Online Optimization for Vehicle-Home-Grid Integration including Household Load Prediction and Battery Degradation
This paper investigates the economic impact of vehicle-home-grid integration, by proposing an online energy management algorithm that optimizes energy flows between an electric vehicle (EV), a household, and the electrical grid. The algorithm leverages vehicle-to-home (V2H) for self-consumption and vehicle-to-grid (V2G) for energy trading, adapting to real-time conditions through a hybrid long short-term memory (LSTM) neural network for accurate household load prediction, alongside a comprehensive nonlinear battery degradation model accounting for both cycle and calendar aging. Simulation results reveal significant economic advantages: compared to smart unidirectional charging, the proposed method yields an annual economic benefit of up to EUR 3046.81, despite a modest 1.96% increase in battery degradation. Even under unfavorable market conditions, where V2G energy selling generates no revenue, V2H alone ensures yearly savings of EUR 425.48. A systematic sensitivity analysis investigates how variations in battery capacity, household load, and price ratios affect economic outcomes, confirming the consistent benefits of bidirectional energy exchange. These findings highlight the potential of EVs as active energy nodes, enabling sustainable energy management and cost-effective battery usage in real-world conditions.
comment: Submitted to the 2025 IEEE Conference on Decision and Control (CDC)
HBS -- Hardware Build System: A Tcl-based, minimal common abstraction approach for build system for hardware designs
Build systems become an indispensable part of the software implementation and deployment process. New programming languages are released with the build system integrated into the language tools, for example, Go, Rust, or Zig. However, in the hardware description domain, no official build systems have been released with the predominant Hardware Description Languages (HDL) such as VHDL or SystemVerilog. Moreover, hardware design projects are often multilanguage. The paper proposes a new build system for the hardware description domain. The system is called the Hardware Build System (HBS). The main goals of the system include simplicity, readability, a minimal number of dependencies, and ease of integration with the existing Electronic Design Automation (EDA) tools. The system proposes a novel, minimal common abstraction approach, whose particular implications are described in the article. All the core functionalities are implemented in Tcl. Only the EDA tool's independent features, such as dependency graph generation, are implemented in a Python wrapper.
Data-Driven Two-Stage Distributionally Robust Dispatch of Multi-Energy Microgrid
This paper studies adaptive distributionally robust dispatch (DRD) of the multi-energy microgrid under supply and demand uncertainties. A Wasserstein ambiguity set is constructed to support data-driven decision-making. By fully leveraging the special structure of worst-case expectation from the primal perspective, a novel and high-efficient decomposition algorithm under the framework of column-and-constraint generation is customized and developed to address the computational burden. Numerical studies demonstrate the effectiveness of our DRD approach, and shed light on the interrelationship of it with the traditional dispatch approaches through stochastic programming and robust optimization schemes. Also, comparisons with popular algorithms in the literature for two-stage distributionally robust optimization verify the powerful capacity of our algorithm in computing the DRD problem.
Ensemble-Enhanced Graph Autoencoder with GAT and Transformer-Based Encoders for Robust Fault Diagnosis
Fault classification in industrial machinery is vital for enhancing reliability and reducing downtime, yet it remains challenging due to the variability of vibration patterns across diverse operating conditions. This study introduces a novel graph-based framework for fault classification, converting time-series vibration data from machinery operating at varying horsepower levels into a graph representation. We utilize Shannon's entropy to determine the optimal window size for data segmentation, ensuring each segment captures significant temporal patterns, and employ Dynamic Time Warping (DTW) to define graph edges based on segment similarity. A Graph Auto Encoder (GAE) with a deep graph transformer encoder, decoder, and ensemble classifier is developed to learn latent graph representations and classify faults across various categories. The GAE's performance is evaluated on the Case Western Reserve University (CWRU) dataset, with cross-dataset generalization assessed on the HUST dataset. Results show that GAE achieves a mean F1-score of 0.99 on the CWRU dataset, significantly outperforming baseline models-CNN, LSTM, RNN, GRU, and Bi-LSTM (F1-scores: 0.94-0.97, p < 0.05, Wilcoxon signed-rank test for Bi-LSTM: p < 0.05) -- particularly in challenging classes (e.g., Class 8: 0.99 vs. 0.71 for Bi-LSTM). Visualization of dataset characteristics reveals that datasets with amplified vibration patterns and diverse fault dynamics enhance generalization. This framework provides a robust solution for fault diagnosis under varying conditions, offering insights into dataset impacts on model performance.
Appointed-Time Fault-Tolerant Control for Flexible Hypersonic Vehicles with Unmeasurable States Independent of Initial Errors
This article aims to derive a practical tracking control algorithm for flexible air-breathing hypersonic vehicles (FAHVs) with lumped disturbances, unmeasurable states and actuator failures. Based on the framework of the backstepping technique, an appointed-time fault-tolerant protocol independent of initial errors is proposed. Firstly, a new type of a state observer is constructed to reconstruct the unmeasurable states. Then, an error transformation function is designed to achieve prescribed performance control that does not depend on the initial tracking error. To deal with the actuator failures, practical fixed-time neural network observers are established to provide the estimation of the lumped disturbances. Finally, the proposed control strategy can ensure the practical fixed-time convergence of the closed-loop system, thereby greatly enhancing the transient performance. The proposed method addresses the challenges of ensuring real-time measurement accuracy for angle of attack and flight path angle in hypersonic vehicles, coupled with potential sudden actuator failures, effectively overcoming the drawback of prescribed performance control that requires knowledge of initial tracking errors. Some simulation results are provided to demonstrate the feasibility and the effectiveness of the proposed strategy
Expressivity of Quadratic Neural ODEs
This work focuses on deriving quantitative approximation error bounds for neural ordinary differential equations having at most quadratic nonlinearities in the dynamics. The simple dynamics of this model form demonstrates how expressivity can be derived primarily from iteratively composing many basic elementary operations, versus from the complexity of those elementary operations themselves. Like the analog differential analyzer and universal polynomial DAEs, the expressivity is derived instead primarily from the "depth" of the model. These results contribute to our understanding of what depth specifically imparts to the capabilities of deep learning architectures.
comment: 9 pages, 1 figure
Modeling Scrap Composition in Electric Arc and Basic Oxygen Furnaces
This article aims to determine the composition of scrap (recycled material) used in an Electric Arc Furnace (EAF) or basic Oxygen Furnace (BOF) based on the assumption of mass balance. Accurate knowledge of this composition can increase the usage of recycled material to produce steel, reducing the need for raw ore extraction and minimizing environmental impact by conserving natural resources and lowering carbon emissions. The study develops two models to describe the behavior of elements in the EAF or BOF process. A linear state space model is used for elements transferring completely from scrap to steel, while a non-linear state space model is applied to elements moving into both steel and slag. The Kalman filter and unscented Kalman filter are employed to approximate these models, respectively. Importantly, the models leverage only data already collected as part of the standard production process, avoiding the need for additional measurements that are often costly. This article outlines the formulation of both models, the algorithms used, and discusses the hyperparameters involved. We provide practical suggestions on how to choose appropriate hyperparameters based on expert knowledge and historical data. The models are applied to real BOF data. Cu and Cr are chosen as examples for linear and non-linear models, respectively. The results show that both models can reconstruct the composition of scrap for these elements. The findings provide valuable insights for improving process control and ensuring product quality in steelmaking.
comment: 31 pages, 4 figures
Online-Score-Aided Federated Learning: Taming the Resource Constraints in Wireless Networks
While federated learning (FL) is a widely popular distributed machine learning (ML) strategy that protects data privacy, time-varying wireless network parameters and heterogeneous configurations of the wireless devices pose significant challenges. Although the limited radio and computational resources of the network and the clients, respectively, are widely acknowledged, two critical yet often ignored aspects are (a) wireless devices can only dedicate a small chunk of their limited storage for the FL task and (b) new training samples may arrive in an online manner in many practical wireless applications. Therefore, we propose a new FL algorithm called online-score-aided federated learning (OSAFL), specifically designed to learn tasks relevant to wireless applications under these practical considerations. Since clients' local training steps differ under resource constraints, which may lead to client drift under statistically heterogeneous data distributions, we leverage normalized gradient similarities and exploit weighting clients' updates based on optimized scores that facilitate the convergence rate of the proposed OSAFL algorithm without incurring any communication overheads to the clients or requiring any statistical data information from them. Our extensive simulation results on two different datasets with four popular ML models validate the effectiveness of OSAFL compared to five modified state-of-the-art FL baselines.
comment: Under review for possible publication in IEEE Transactions on Communications
Optimizing wheel loader performance -- an end-to-end approach
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. This task presents a challenging optimization problem since each loading's performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and transportation costs between the pile and load receivers. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case.
comment: 25 pages, 11 figures
Hybrid Feedback Control for Global Navigation with Locally Optimal Obstacle Avoidance in n-Dimensional Spaces
We present a hybrid feedback control framework for autonomous robot navigation in n-dimensional Euclidean spaces cluttered with spherical obstacles. The proposed approach ensures safe navigation and global asymptotic stability (GAS) of the target location by dynamically switching between two operational modes: motion-to-destination and locally optimal obstacle-avoidance. It produces continuous velocity inputs, ensures collision-free trajectories and generates locally optimal obstacle avoidance maneuvers. Unlike existing methods, the proposed framework is compatible with range sensors, enabling navigation in both a priori known and unknown environments. Extensive simulations in 2D and 3D settings, complemented by experimental validation on a TurtleBot 4 platform, confirm the efficacy and robustness of the approach. Our results demonstrate shorter paths and smoother trajectories compared to state-of-the-art methods, while maintaining computational efficiency and real-world feasibility.
Efficient Simulation of Singularly Perturbed Systems Using a Stabilized Multirate Explicit Scheme
Singularly perturbed systems (SPSs) are prevalent in engineering applications, where numerically solving their initial value problems (IVPs) is challenging due to stiffness arising from multiple time scales. Classical explicit methods require impractically small time steps for stability, while implicit methods developed for SPSs are computationally intensive and less efficient for strongly nonlinear systems. This paper introduces a Stabilized Multirate Explicit Scheme (SMES) that stabilizes classical explicit methods without the need for small time steps or implicit formulations. By employing a multirate approach with variable time steps, SMES allows the fast dynamics to rapidly converge to their equilibrium manifold while slow dynamics evolve with larger steps. Analysis shows that SMES achieves numerical stability with significantly reduced computational effort and controlled error. Its effectiveness is illustrated with a numerical example.
comment: Accepted by ECC 2025
Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
Secure Filtering against Spatio-Temporal False Data Attacks under Asynchronous Sampling
This paper addresses the secure state estimation problem for continuous linear time-invariant systems with non-periodic and asynchronous sampled measurements, where the sensors need to transmit not only measurements but also sampling time-stamps to the fusion center. This measurement and communication setup is well-suited for operating large-scale control systems and, at the same time, introduces new vulnerabilities that can be exploited by adversaries through (i) manipulation of measurements, (ii) manipulation of time-stamps, (iii) elimination of measurements, (iv) generation of completely new false measurements, or a combination of these attacks. To mitigate these attacks, we propose a decentralized estimation algorithm in which each sensor maintains its local state estimate asynchronously based on its measurements. The local states are synchronized through time prediction and fused after time-stamp alignment. In the absence of attacks, state estimates are proven to recover the optimal Kalman estimates by solving a weighted least square problem. In the presence of attacks, solving this weighted least square problem with the aid of $\ell_1$ regularization provides secure state estimates with uniformly bounded error under an observability redundancy assumption. The effectiveness of the proposed algorithm is demonstrated using a benchmark example of the IEEE 14-bus system.
comment: 9 pages and 6 figures. arXiv admin note: text overlap with arXiv:2303.17514
LEAD: Towards Learning-Based Equity-Aware Decarbonization in Ridesharing Platforms
Ridesharing platforms such as Uber, Lyft, and DiDi have grown in popularity due to their on-demand availability, ease of use, and commute cost reductions, among other benefits. However, not all ridesharing promises have panned out. Recent studies demonstrate that the expected drop in traffic congestion and reduction in greenhouse gas (GHG) emissions have not materialized. This is primarily due to the substantial distances traveled by the ridesharing vehicles without passengers between rides, known as deadhead miles. Recent work has focused on reducing the impact of deadhead miles while considering additional metrics such as rider waiting time, GHG emissions from deadhead miles, or driver earnings. However, most prior studies consider these environmental and equity-based metrics individually despite them being interrelated. In this paper, we propose a Learning-based Equity-Aware Decarabonization approach, LEAD, for ridesharing platforms. LEAD targets minimizing emissions while ensuring that the driver's utility, defined as the difference between the trip distance and the deadhead miles, is fairly distributed. LEAD uses reinforcement learning to match riders with drivers based on the expected future utility of drivers and the expected carbon emissions of the platform without increasing the rider waiting times. Extensive experiments based on a real-world ridesharing dataset show that LEAD improves the defined notion of fairness by 150% when compared to emission-aware ride-assignment and reduces emissions by 14.6% while ensuring fairness within 28--52% of the fairness-focused baseline. It also reduces the rider wait time, by at least 32.1%, compared to a fairness-focused baseline.
Systems and Control (EESS)
Hybrid Lyapunov and Barrier Function-Based Control with Stabilization Guarantees
Control Lyapunov Functions (CLFs) and Control Barrier Functions (CBFs) can be combined, typically by means of Quadratic Programs (QPs), to design controllers that achieve performance and safety objectives. However, a significant limitation of this framework is the introduction of asymptotically stable equilibrium points besides the minimizer of the CLF, leading to deadlock situations even for simple systems and bounded convex unsafe sets. To address this problem, we propose a hybrid CLF-CBF control framework with global asymptotic stabilization and safety guarantees, offering a more flexible and systematic design methodology compared to current alternatives available in the literature. We further extend this framework to higher-order systems via a recursive procedure based on a joint CLF-CBF backstepping approach. The proposed solution is assessed through several simulation examples.
UruBots RoboCup Work Team Description Paper
This work presents a team description paper for the RoboCup Work League. Our team, UruBots, has been developing robots and projects for research and competitions in the last three years, attending robotics competitions in Uruguay and around the world. In this instance, we aim to participate and contribute to the RoboCup Work category, hopefully making our debut in this prestigious competition. For that, we present an approach based on the Limo robot, whose main characteristic is its hybrid locomotion system with wheels and tracks, with some extras added by the team to complement the robot's functionalities. Overall, our approach allows the robot to efficiently and autonomously navigate a Work scenario, with the ability to manipulate objects, perform autonomous navigation, and engage in a simulated industrial environment.
comment: 6 pages, 5 figures, submitted to RoboCup 2025
Learning-based decentralized control with collision avoidance for multi-agent systems
In this paper, we present a learning-based tracking controller based on Gaussian processes (GP) for collision avoidance of multi-agent systems where the agents evolve in the special Euclidean group in the space SE(3). In particular, we use GPs to estimate certain uncertainties that appear in the dynamics of the agents. The control algorithm is designed to learn and mitigate these uncertainties by using GPs as a learning-based model for the predictions. In particular, the presented approach guarantees that the tracking error remains bounded with high probability. We present some simulation results to show how the control algorithm is implemented.
comment: 9 pages
Simultaneous Input and State Estimation under Output Quantization: A Gaussian Mixture approach
Simultaneous Input and State Estimation (SISE) enables the reconstruction of unknown inputs and internal states in dynamical systems, with applications in fault detection, robotics, and control. While various methods exist for linear systems, extensions to systems with output quantization are scarce, and formal connections to limit Kalman filters in this context are lacking. This work addresses these gaps by proposing a novel SISE algorithm for linear systems with quantized output measurements that is based on a Gaussian mixture model formulation. The observation model is represented as a Gaussian sum density, leading to closed-form recursive equations in the form of a Gaussian sum filter. In the absence of input prior knowledge, the recursions converge to a limit-case SISE algorithm, implementable as a bank of linear SISE filters running in parallel. A simulation example is presented to illustrate the effectiveness of the proposed approach.
comment: 6 pages, 3 figures
Nonlinear Online Optimization for Vehicle-Home-Grid Integration including Household Load Prediction and Battery Degradation
This paper investigates the economic impact of vehicle-home-grid integration, by proposing an online energy management algorithm that optimizes energy flows between an electric vehicle (EV), a household, and the electrical grid. The algorithm leverages vehicle-to-home (V2H) for self-consumption and vehicle-to-grid (V2G) for energy trading, adapting to real-time conditions through a hybrid long short-term memory (LSTM) neural network for accurate household load prediction, alongside a comprehensive nonlinear battery degradation model accounting for both cycle and calendar aging. Simulation results reveal significant economic advantages: compared to smart unidirectional charging, the proposed method yields an annual economic benefit of up to EUR 3046.81, despite a modest 1.96% increase in battery degradation. Even under unfavorable market conditions, where V2G energy selling generates no revenue, V2H alone ensures yearly savings of EUR 425.48. A systematic sensitivity analysis investigates how variations in battery capacity, household load, and price ratios affect economic outcomes, confirming the consistent benefits of bidirectional energy exchange. These findings highlight the potential of EVs as active energy nodes, enabling sustainable energy management and cost-effective battery usage in real-world conditions.
comment: Submitted to the 2025 IEEE Conference on Decision and Control (CDC)
HBS -- Hardware Build System: A Tcl-based, minimal common abstraction approach for build system for hardware designs
Build systems become an indispensable part of the software implementation and deployment process. New programming languages are released with the build system integrated into the language tools, for example, Go, Rust, or Zig. However, in the hardware description domain, no official build systems have been released with the predominant Hardware Description Languages (HDL) such as VHDL or SystemVerilog. Moreover, hardware design projects are often multilanguage. The paper proposes a new build system for the hardware description domain. The system is called the Hardware Build System (HBS). The main goals of the system include simplicity, readability, a minimal number of dependencies, and ease of integration with the existing Electronic Design Automation (EDA) tools. The system proposes a novel, minimal common abstraction approach, whose particular implications are described in the article. All the core functionalities are implemented in Tcl. Only the EDA tool's independent features, such as dependency graph generation, are implemented in a Python wrapper.
Data-Driven Two-Stage Distributionally Robust Dispatch of Multi-Energy Microgrid
This paper studies adaptive distributionally robust dispatch (DRD) of the multi-energy microgrid under supply and demand uncertainties. A Wasserstein ambiguity set is constructed to support data-driven decision-making. By fully leveraging the special structure of worst-case expectation from the primal perspective, a novel and high-efficient decomposition algorithm under the framework of column-and-constraint generation is customized and developed to address the computational burden. Numerical studies demonstrate the effectiveness of our DRD approach, and shed light on the interrelationship of it with the traditional dispatch approaches through stochastic programming and robust optimization schemes. Also, comparisons with popular algorithms in the literature for two-stage distributionally robust optimization verify the powerful capacity of our algorithm in computing the DRD problem.
Ensemble-Enhanced Graph Autoencoder with GAT and Transformer-Based Encoders for Robust Fault Diagnosis
Fault classification in industrial machinery is vital for enhancing reliability and reducing downtime, yet it remains challenging due to the variability of vibration patterns across diverse operating conditions. This study introduces a novel graph-based framework for fault classification, converting time-series vibration data from machinery operating at varying horsepower levels into a graph representation. We utilize Shannon's entropy to determine the optimal window size for data segmentation, ensuring each segment captures significant temporal patterns, and employ Dynamic Time Warping (DTW) to define graph edges based on segment similarity. A Graph Auto Encoder (GAE) with a deep graph transformer encoder, decoder, and ensemble classifier is developed to learn latent graph representations and classify faults across various categories. The GAE's performance is evaluated on the Case Western Reserve University (CWRU) dataset, with cross-dataset generalization assessed on the HUST dataset. Results show that GAE achieves a mean F1-score of 0.99 on the CWRU dataset, significantly outperforming baseline models-CNN, LSTM, RNN, GRU, and Bi-LSTM (F1-scores: 0.94-0.97, p < 0.05, Wilcoxon signed-rank test for Bi-LSTM: p < 0.05) -- particularly in challenging classes (e.g., Class 8: 0.99 vs. 0.71 for Bi-LSTM). Visualization of dataset characteristics reveals that datasets with amplified vibration patterns and diverse fault dynamics enhance generalization. This framework provides a robust solution for fault diagnosis under varying conditions, offering insights into dataset impacts on model performance.
Appointed-Time Fault-Tolerant Control for Flexible Hypersonic Vehicles with Unmeasurable States Independent of Initial Errors
This article aims to derive a practical tracking control algorithm for flexible air-breathing hypersonic vehicles (FAHVs) with lumped disturbances, unmeasurable states and actuator failures. Based on the framework of the backstepping technique, an appointed-time fault-tolerant protocol independent of initial errors is proposed. Firstly, a new type of a state observer is constructed to reconstruct the unmeasurable states. Then, an error transformation function is designed to achieve prescribed performance control that does not depend on the initial tracking error. To deal with the actuator failures, practical fixed-time neural network observers are established to provide the estimation of the lumped disturbances. Finally, the proposed control strategy can ensure the practical fixed-time convergence of the closed-loop system, thereby greatly enhancing the transient performance. The proposed method addresses the challenges of ensuring real-time measurement accuracy for angle of attack and flight path angle in hypersonic vehicles, coupled with potential sudden actuator failures, effectively overcoming the drawback of prescribed performance control that requires knowledge of initial tracking errors. Some simulation results are provided to demonstrate the feasibility and the effectiveness of the proposed strategy
Expressivity of Quadratic Neural ODEs
This work focuses on deriving quantitative approximation error bounds for neural ordinary differential equations having at most quadratic nonlinearities in the dynamics. The simple dynamics of this model form demonstrates how expressivity can be derived primarily from iteratively composing many basic elementary operations, versus from the complexity of those elementary operations themselves. Like the analog differential analyzer and universal polynomial DAEs, the expressivity is derived instead primarily from the "depth" of the model. These results contribute to our understanding of what depth specifically imparts to the capabilities of deep learning architectures.
comment: 9 pages, 1 figure
Modeling Scrap Composition in Electric Arc and Basic Oxygen Furnaces
This article aims to determine the composition of scrap (recycled material) used in an Electric Arc Furnace (EAF) or basic Oxygen Furnace (BOF) based on the assumption of mass balance. Accurate knowledge of this composition can increase the usage of recycled material to produce steel, reducing the need for raw ore extraction and minimizing environmental impact by conserving natural resources and lowering carbon emissions. The study develops two models to describe the behavior of elements in the EAF or BOF process. A linear state space model is used for elements transferring completely from scrap to steel, while a non-linear state space model is applied to elements moving into both steel and slag. The Kalman filter and unscented Kalman filter are employed to approximate these models, respectively. Importantly, the models leverage only data already collected as part of the standard production process, avoiding the need for additional measurements that are often costly. This article outlines the formulation of both models, the algorithms used, and discusses the hyperparameters involved. We provide practical suggestions on how to choose appropriate hyperparameters based on expert knowledge and historical data. The models are applied to real BOF data. Cu and Cr are chosen as examples for linear and non-linear models, respectively. The results show that both models can reconstruct the composition of scrap for these elements. The findings provide valuable insights for improving process control and ensuring product quality in steelmaking.
comment: 31 pages, 4 figures
Online-Score-Aided Federated Learning: Taming the Resource Constraints in Wireless Networks
While federated learning (FL) is a widely popular distributed machine learning (ML) strategy that protects data privacy, time-varying wireless network parameters and heterogeneous configurations of the wireless devices pose significant challenges. Although the limited radio and computational resources of the network and the clients, respectively, are widely acknowledged, two critical yet often ignored aspects are (a) wireless devices can only dedicate a small chunk of their limited storage for the FL task and (b) new training samples may arrive in an online manner in many practical wireless applications. Therefore, we propose a new FL algorithm called online-score-aided federated learning (OSAFL), specifically designed to learn tasks relevant to wireless applications under these practical considerations. Since clients' local training steps differ under resource constraints, which may lead to client drift under statistically heterogeneous data distributions, we leverage normalized gradient similarities and exploit weighting clients' updates based on optimized scores that facilitate the convergence rate of the proposed OSAFL algorithm without incurring any communication overheads to the clients or requiring any statistical data information from them. Our extensive simulation results on two different datasets with four popular ML models validate the effectiveness of OSAFL compared to five modified state-of-the-art FL baselines.
comment: Under review for possible publication in IEEE Transactions on Communications
Optimizing wheel loader performance -- an end-to-end approach
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. This task presents a challenging optimization problem since each loading's performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and transportation costs between the pile and load receivers. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case.
comment: 25 pages, 11 figures
Hybrid Feedback Control for Global Navigation with Locally Optimal Obstacle Avoidance in n-Dimensional Spaces
We present a hybrid feedback control framework for autonomous robot navigation in n-dimensional Euclidean spaces cluttered with spherical obstacles. The proposed approach ensures safe navigation and global asymptotic stability (GAS) of the target location by dynamically switching between two operational modes: motion-to-destination and locally optimal obstacle-avoidance. It produces continuous velocity inputs, ensures collision-free trajectories and generates locally optimal obstacle avoidance maneuvers. Unlike existing methods, the proposed framework is compatible with range sensors, enabling navigation in both a priori known and unknown environments. Extensive simulations in 2D and 3D settings, complemented by experimental validation on a TurtleBot 4 platform, confirm the efficacy and robustness of the approach. Our results demonstrate shorter paths and smoother trajectories compared to state-of-the-art methods, while maintaining computational efficiency and real-world feasibility.
Efficient Simulation of Singularly Perturbed Systems Using a Stabilized Multirate Explicit Scheme
Singularly perturbed systems (SPSs) are prevalent in engineering applications, where numerically solving their initial value problems (IVPs) is challenging due to stiffness arising from multiple time scales. Classical explicit methods require impractically small time steps for stability, while implicit methods developed for SPSs are computationally intensive and less efficient for strongly nonlinear systems. This paper introduces a Stabilized Multirate Explicit Scheme (SMES) that stabilizes classical explicit methods without the need for small time steps or implicit formulations. By employing a multirate approach with variable time steps, SMES allows the fast dynamics to rapidly converge to their equilibrium manifold while slow dynamics evolve with larger steps. Analysis shows that SMES achieves numerical stability with significantly reduced computational effort and controlled error. Its effectiveness is illustrated with a numerical example.
comment: Accepted by ECC 2025
Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
Secure Filtering against Spatio-Temporal False Data Attacks under Asynchronous Sampling
This paper addresses the secure state estimation problem for continuous linear time-invariant systems with non-periodic and asynchronous sampled measurements, where the sensors need to transmit not only measurements but also sampling time-stamps to the fusion center. This measurement and communication setup is well-suited for operating large-scale control systems and, at the same time, introduces new vulnerabilities that can be exploited by adversaries through (i) manipulation of measurements, (ii) manipulation of time-stamps, (iii) elimination of measurements, (iv) generation of completely new false measurements, or a combination of these attacks. To mitigate these attacks, we propose a decentralized estimation algorithm in which each sensor maintains its local state estimate asynchronously based on its measurements. The local states are synchronized through time prediction and fused after time-stamp alignment. In the absence of attacks, state estimates are proven to recover the optimal Kalman estimates by solving a weighted least square problem. In the presence of attacks, solving this weighted least square problem with the aid of $\ell_1$ regularization provides secure state estimates with uniformly bounded error under an observability redundancy assumption. The effectiveness of the proposed algorithm is demonstrated using a benchmark example of the IEEE 14-bus system.
comment: 9 pages and 6 figures. arXiv admin note: text overlap with arXiv:2303.17514
LEAD: Towards Learning-Based Equity-Aware Decarbonization in Ridesharing Platforms
Ridesharing platforms such as Uber, Lyft, and DiDi have grown in popularity due to their on-demand availability, ease of use, and commute cost reductions, among other benefits. However, not all ridesharing promises have panned out. Recent studies demonstrate that the expected drop in traffic congestion and reduction in greenhouse gas (GHG) emissions have not materialized. This is primarily due to the substantial distances traveled by the ridesharing vehicles without passengers between rides, known as deadhead miles. Recent work has focused on reducing the impact of deadhead miles while considering additional metrics such as rider waiting time, GHG emissions from deadhead miles, or driver earnings. However, most prior studies consider these environmental and equity-based metrics individually despite them being interrelated. In this paper, we propose a Learning-based Equity-Aware Decarabonization approach, LEAD, for ridesharing platforms. LEAD targets minimizing emissions while ensuring that the driver's utility, defined as the difference between the trip distance and the deadhead miles, is fairly distributed. LEAD uses reinforcement learning to match riders with drivers based on the expected future utility of drivers and the expected carbon emissions of the platform without increasing the rider waiting times. Extensive experiments based on a real-world ridesharing dataset show that LEAD improves the defined notion of fairness by 150% when compared to emission-aware ride-assignment and reduces emissions by 14.6% while ensuring fairness within 28--52% of the fairness-focused baseline. It also reduces the rider wait time, by at least 32.1%, compared to a fairness-focused baseline.
Robotics
DoorBot: Closed-Loop Task Planning and Manipulation for Door Opening in the Wild with Haptic Feedback ICRA 2025
Robots operating in unstructured environments face significant challenges when interacting with everyday objects like doors. They particularly struggle to generalize across diverse door types and conditions. Existing vision-based and open-loop planning methods often lack the robustness to handle varying door designs, mechanisms, and push/pull configurations. In this work, we propose a haptic-aware closed-loop hierarchical control framework that enables robots to explore and open different unseen doors in the wild. Our approach leverages real-time haptic feedback, allowing the robot to adjust its strategy dynamically based on force feedback during manipulation. We test our system on 20 unseen doors across different buildings, featuring diverse appearances and mechanical types. Our framework achieves a 90% success rate, demonstrating its ability to generalize and robustly handle varied door-opening tasks. This scalable solution offers potential applications in broader open-world articulated object manipulation tasks.
comment: In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2025)
Adaptive Planning Framework for UAV-Based Surface Inspection in Partially Unknown Indoor Environments
Inspecting indoor environments such as tunnels, industrial facilities, and construction sites is essential for infrastructure monitoring and maintenance. While manual inspection in these environments is often time-consuming and potentially hazardous, Unmanned Aerial Vehicles (UAVs) can improve efficiency by autonomously handling inspection tasks. Such inspection tasks usually rely on reference maps for coverage planning. However, in industrial applications, only the floor plans are typically available. The unforeseen obstacles not included in the floor plans will result in outdated reference maps and inefficient or unsafe inspection trajectories. In this work, we propose an adaptive inspection framework that integrates global coverage planning with local reactive adaptation to improve the coverage and efficiency of UAV-based inspection in partially unknown indoor environments. Experimental results in structured indoor scenarios demonstrate the effectiveness of the proposed approach in inspection efficiency and achieving high coverage rates with adaptive obstacle handling, highlighting its potential for enhancing the efficiency of indoor facility inspection.
REALM: Real-Time Estimates of Assistance for Learned Models in Human-Robot Interaction
There are a variety of mechanisms (i.e., input types) for real-time human interaction that can facilitate effective human-robot teaming. For example, previous works have shown how teleoperation, corrective, and discrete (i.e., preference over a small number of choices) input can enable robots to complete complex tasks. However, few previous works have looked at combining different methods, and in particular, opportunities for a robot to estimate and elicit the most effective form of assistance given its understanding of a task. In this paper, we propose a method for estimating the value of different human assistance mechanisms based on the action uncertainty of a robot policy. Our key idea is to construct mathematical expressions for the expected post-interaction differential entropy (i.e., uncertainty) of a stochastic robot policy to compare the expected value of different interactions. As each type of human input imposes a different requirement for human involvement, we demonstrate how differential entropy estimates can be combined with a likelihood penalization approach to effectively balance feedback informational needs with the level of required input. We demonstrate evidence of how our approach interfaces with emergent learning models (e.g., a diffusion model) to produce accurate assistance value estimates through both simulation and a robot user study. Our user study results indicate that the proposed approach can enable task completion with minimal human feedback for uncertain robot behaviors.
comment: IEEE Robotics and Automation Letters
Development of a PPO-Reinforcement Learned Walking Tripedal Soft-Legged Robot using SOFA
Rigid robots were extensively researched, whereas soft robotics remains an underexplored field. Utilizing soft-legged robots in performing tasks as a replacement for human beings is an important stride to take, especially under harsh and hazardous conditions over rough terrain environments. For the demand to teach any robot how to behave in different scenarios, a real-time physical and visual simulation is essential. When it comes to soft robots specifically, a simulation framework is still an arduous problem that needs to be disclosed. Using the simulation open framework architecture (SOFA) is an advantageous step. However, neither SOFA's manual nor prior public SOFA projects show its maximum capabilities the users can reach. So, we resolved this by establishing customized settings and handling the framework components appropriately. Settling on perfect, fine-tuned SOFA parameters has stimulated our motivation towards implementing the state-of-the-art (SOTA) reinforcement learning (RL) method of proximal policy optimization (PPO). The final representation is a well-defined, ready-to-deploy walking, tripedal, soft-legged robot based on PPO-RL in a SOFA environment. Robot navigation performance is a key metric to be considered for measuring the success resolution. Although in the simulated soft robots case, an 82\% success rate in reaching a single goal is a groundbreaking output, we pushed the boundaries to further steps by evaluating the progress under assigning a sequence of goals. While trailing the platform steps, outperforming discovery has been observed with an accumulative squared error deviation of 19 mm. The full code is publicly available at \href{https://github.com/tarekshohdy/PPO_SOFA_Soft_Legged_Robot.git}{github.com/tarekshohdy/PPO$\textunderscore$SOFA$\textunderscore$Soft$\textunderscore$Legged$\textunderscore$ Robot.git}
Concurrent-Allocation Task Execution for Multi-Robot Path-Crossing-Minimal Navigation in Obstacle Environments
Reducing undesirable path crossings among trajectories of different robots is vital in multi-robot navigation missions, which not only reduces detours and conflict scenarios, but also enhances navigation efficiency and boosts productivity. Despite recent progress in multi-robot path-crossing-minimal (MPCM) navigation, the majority of approaches depend on the minimal squared-distance reassignment of suitable desired points to robots directly. However, if obstacles occupy the passing space, calculating the actual robot-point distances becomes complex or intractable, which may render the MPCM navigation in obstacle environments inefficient or even infeasible. In this paper, the concurrent-allocation task execution (CATE) algorithm is presented to address this problem (i.e., MPCM navigation in obstacle environments). First, the path-crossing-related elements in terms of (i) robot allocation, (ii) desired-point convergence, and (iii) collision and obstacle avoidance are encoded into integer and control barrier function (CBF) constraints. Then, the proposed constraints are used in an online constrained optimization framework, which implicitly yet effectively minimizes the possible path crossings and trajectory length in obstacle environments by minimizing the desired point allocation cost and slack variables in CBF constraints simultaneously. In this way, the MPCM navigation in obstacle environments can be achieved with flexible spatial orderings. Note that the feasibility of solutions and the asymptotic convergence property of the proposed CATE algorithm in obstacle environments are both guaranteed, and the calculation burden is also reduced by concurrently calculating the optimal allocation and the control input directly without the path planning process.
Compliant Explicit Reference Governor for Contact Friendly Robotic Manipulators
This paper introduces the Compliant Explicit Reference Governor (C-ERG), an extension of the Explicit Reference Governor that allows the robot to operate safely while in contact with the environment. The C-ERG is an intermediate layer that can be placed between a high-level planner and a low-level controller: its role is to enforce operational constraints and to enable the smooth transition between free-motion and contact operations. The C-ERG ensures safety by limiting the total energy available to the robotic arm at the time of contact. In the absence of contact, however, the C-ERG does not penalize the system performance. Numerical examples showcase the behavior of the C-ERG for increasingly complex systems.
Steady-State Drifting Equilibrium Analysis of Single-Track Two-Wheeled Robots for Controller Design
Drifting is an advanced driving technique where the wheeled robot's tire-ground interaction breaks the common non-holonomic pure rolling constraint. This allows high-maneuverability tasks like quick cornering, and steady-state drifting control enhances motion stability under lateral slip conditions. While drifting has been successfully achieved in four-wheeled robot systems, its application to single-track two-wheeled (STTW) robots, such as unmanned motorcycles or bicycles, has not been thoroughly studied. To bridge this gap, this paper extends the drifting equilibrium theory to STTW robots and reveals the mechanism behind the steady-state drifting maneuver. Notably, the counter-steering drifting technique used by skilled motorcyclists is explained through this theory. In addition, an analytical algorithm based on intrinsic geometry and kinematics relationships is proposed, reducing the computation time by four orders of magnitude while maintaining less than 6% error compared to numerical methods. Based on equilibrium analysis, a model predictive controller (MPC) is designed to achieve steady-state drifting and equilibrium points transition, with its effectiveness and robustness validated through simulations.
Haptic Perception via the Dynamics of Flexible Body Inspired by an Ostrich's Neck
In biological systems, haptic perception is achieved through both flexible skin and flexible body. In fully soft robots, the fragility of their bodies and the time delays in sensory processing pose significant challenges. The musculoskeletal system possesses both the deformability inherent in soft materials and the durability of rigid-body robots. Additionally, by outsourcing part of the intelligent information processing to the morphology of the musculoskeletal system, applications for dynamic tasks are expected. This study focuses on the pecking movements of birds, which achieve precise haptic perception through the musculoskeletal system of their flexible neck. Physical reservoir computing is applied to flexible structures inspired by an ostrich neck to analyze the relationship between haptic perception and physical characteristics. Combined experiments using both an actual robot and simulations demonstrate that, under appropriate body viscoelasticity, the flexible structure can distinguish objects of varying softness and memorize this information as behaviors. Drawing on these findings and anatomical insights from the ostrich neck, a haptic sensing system is proposed that possesses separability and this behavioral memory in flexible structures, enabling rapid learning and real-time inference. The results demonstrate that through the dynamics of flexible structures, diverse functions can emerge beyond their original design as manipulators.
comment: This paper includes a figure of a dissected ostrich. As the ostrich was processed for food, its use does not raise any ethical concerns
IMPACT: Behavioral Intention-aware Multimodal Trajectory Prediction with Adaptive Context Trimming
While most prior research has focused on improving the precision of multimodal trajectory predictions, the explicit modeling of multimodal behavioral intentions (e.g., yielding, overtaking) remains relatively underexplored. This paper proposes a unified framework that jointly predicts both behavioral intentions and trajectories to enhance prediction accuracy, interpretability, and efficiency. Specifically, we employ a shared context encoder for both intention and trajectory predictions, thereby reducing structural redundancy and information loss. Moreover, we address the lack of ground-truth behavioral intention labels in mainstream datasets (Waymo, Argoverse) by auto-labeling these datasets, thus advancing the community's efforts in this direction. We further introduce a vectorized occupancy prediction module that infers the probability of each map polyline being occupied by the target vehicle's future trajectory. By leveraging these intention and occupancy prediction priors, our method conducts dynamic, modality-dependent pruning of irrelevant agents and map polylines in the decoding stage, effectively reducing computational overhead and mitigating noise from non-critical elements. Our approach ranks first among LiDAR-free methods on the Waymo Motion Dataset and achieves first place on the Waymo Interactive Prediction Dataset. Remarkably, even without model ensembling, our single-model framework improves the soft mean average precision (softmAP) by 10 percent compared to the second-best method in the Waymo Interactive Prediction Leaderboard. Furthermore, the proposed framework has been successfully deployed on real vehicles, demonstrating its practical effectiveness in real-world applications.
comment: under review
agriFrame: Agricultural framework to remotely control a rover inside a greenhouse environment
The growing demand for innovation in agriculture is essential for food security worldwide and more implicit in developing countries. With growing demand comes a reduction in rapid development time. Data collection and analysis are essential in agriculture. However, considering a given crop, its cycle comes once a year, and researchers must wait a few months before collecting more data for the given crop. To overcome this hurdle, researchers are venturing into digital twins for agriculture. Toward this effort, we present an agricultural framework(agriFrame). Here, we introduce a simulated greenhouse environment for testing and controlling a robot and remotely controlling/implementing the algorithms in the real-world greenhouse setup. This work showcases the importance/interdependence of network setup, remotely controllable rover, and messaging protocol. The sophisticated yet simple-to-use agriFrame has been optimized for the simulator on minimal laptop/desktop specifications.
Multi-Robot Coordination with Adversarial Perception
This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data from Visual-Inertial Odometry (VIO) and the learned perception model for robust relative localization and state estimation in the presence of adversarially sporadic and spurious measurements. The framework allows for quantifying the degradation in system observability and stability in relation to the success rate of adversarial perception. Finally, experimental results on a multi-robot platform demonstrate the real-world applicability of our methodology for resource-constrained robotic platforms.
comment: to appear at the 2025 Int'l Conference on Unmanned Aircraft Systems (ICUAS)
Nonconvex Obstacle Avoidance using Efficient Sampling-Based Distance Functions
We consider nonconvex obstacle avoidance where a robot described by nonlinear dynamics and a nonconvex shape has to avoid nonconvex obstacles. Obstacle avoidance is a fundamental problem in robotics and well studied in control. However, existing solutions are computationally expensive (e.g., model predictive controllers), neglect nonlinear dynamics (e.g., graph-based planners), use diffeomorphic transformations into convex domains (e.g., for star shapes), or are conservative due to convex overapproximations. The key challenge here is that the computation of the distance between the shapes of the robot and the obstacles is a nonconvex problem. We propose efficient computation of this distance via sampling-based distance functions. We quantify the sampling error and show that, for certain systems, such sampling-based distance functions are valid nonsmooth control barrier functions. We also study how to deal with disturbances on the robot dynamics in our setting. Finally, we illustrate our method on a robot navigation task involving an omnidirectional robot and nonconvex obstacles. We also analyze performance and computational efficiency of our controller as a function of the number of samples.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
Training Human-Robot Teams by Improving Transparency Through a Virtual Spectator Interface ICRA 2025
After-action reviews (AARs) are professional discussions that help operators and teams enhance their task performance by analyzing completed missions with peers and professionals. Previous studies that compared different formats of AARs have mainly focused on human teams. However, the inclusion of robotic teammates brings along new challenges in understanding teammate intent and communication. Traditional AAR between human teammates may not be satisfactory for human-robot teams. To address this limitation, we propose a new training review (TR) tool, called the Virtual Spectator Interface (VSI), to enhance human-robot team performance and situational awareness (SA) in a simulated search mission. The proposed VSI primarily utilizes visual feedback to review subjects' behavior. To examine the effectiveness of VSI, we took elements from AAR to conduct our own TR, designed a 1 x 3 between-subjects experiment with experimental conditions: TR with (1) VSI, (2) screen recording, and (3) non-technology (only verbal descriptions). The results of our experiments demonstrated that the VSI did not result in significantly better team performance than other conditions. However, the TR with VSI led to more improvement in the subjects SA over the other conditions.
comment: 7 pages, 4 figures, Accepted to ICRA 2025
Automating Transfer of Robot Task Plans using Functorial Data Migrations
This paper introduces a novel approach to ontology-based robot plan transfer by leveraging functorial data migrations, a structured mapping method derived from category theory. Functors provide structured maps between planning domain ontologies which enables the transfer of task plans without the need for replanning. Unlike methods tailored to specific plans, our framework applies universally within the source domain once a structured map is defined. We demonstrate this approach by transferring a task plan from the canonical Blocksworld domain to one compatible with the AI2-THOR Kitchen environment. Additionally, we discuss practical limitations, propose benchmarks for evaluating symbolic plan transfer methods, and outline future directions for scaling this approach.
Are Open-Vocabulary Models Ready for Detection of MEP Elements on Construction Sites
The construction industry has long explored robotics and computer vision, yet their deployment on construction sites remains very limited. These technologies have the potential to revolutionize traditional workflows by enhancing accuracy, efficiency, and safety in construction management. Ground robots equipped with advanced vision systems could automate tasks such as monitoring mechanical, electrical, and plumbing (MEP) systems. The present research evaluates the applicability of open-vocabulary vision-language models compared to fine-tuned, lightweight, closed-set object detectors for detecting MEP components using a mobile ground robotic platform. A dataset collected with cameras mounted on a ground robot was manually annotated and analyzed to compare model performance. The results demonstrate that, despite the versatility of vision-language models, fine-tuned lightweight models still largely outperform them in specialized environments and for domain-specific tasks.
comment: 4 pages, 3 figures, Accepted for presentation at the 42nd International Symposium on Automation and Robotics in Construction
A Unified and General Humanoid Whole-Body Controller for Versatile Locomotion
Locomotion is a fundamental skill for humanoid robots. However, most existing works make locomotion a single, tedious, unextendable, and unconstrained movement. This limits the kinematic capabilities of humanoid robots. In contrast, humans possess versatile athletic abilities-running, jumping, hopping, and finely adjusting gait parameters such as frequency and foot height. In this paper, we investigate solutions to bring such versatility into humanoid locomotion and thereby propose HugWBC: a unified and general humanoid whole-body controller for versatile locomotion. By designing a general command space in the aspect of tasks and behaviors, along with advanced techniques like symmetrical loss and intervention training for learning a whole-body humanoid controlling policy in simulation, HugWBC enables real-world humanoid robots to produce various natural gaits, including walking, jumping, standing, and hopping, with customizable parameters such as frequency, foot swing height, further combined with different body height, waist rotation, and body pitch. Beyond locomotion, HugWBC also supports real-time interventions from external upper-body controllers like teleoperation, enabling loco-manipulation with precision under any locomotive behavior. Extensive experiments validate the high tracking accuracy and robustness of HugWBC with/without upper-body intervention for all commands, and we further provide an in-depth analysis of how the various commands affect humanoid movement and offer insights into the relationships between these commands. To our knowledge, HugWBC is the first humanoid whole-body controller that supports such versatile locomotion behaviors with high robustness and flexibility.
comment: Published at RSS 2025. The first two authors contribute equally. Project page: https://hugwbc.github.io/
Motion Before Action: Diffusing Object Motion as Manipulation Condition
Inferring object motion representations from observations enhances the performance of robotic manipulation tasks. This paper introduces a new paradigm for robot imitation learning that generates action sequences by reasoning about object motion from visual observations. We propose MBA (Motion Before Action), a novel module that employs two cascaded diffusion processes for object motion generation and robot action generation under object motion guidance. MBA first predicts the future pose sequence of the object based on observations, then uses this sequence as a condition to guide robot action generation. Designed as a plug-and-play component, MBA can be flexibly integrated into existing robotic manipulation policies with diffusion action heads. Extensive experiments in both simulated and real-world environments demonstrate that our approach substantially improves the performance of existing policies across a wide range of manipulation tasks. Project page: https://selen-suyue.github.io/MBApage/
Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
comment: 8 pages,6 figures
Systems and Control (CS)
Computationally Efficient Signal Detection with Unknown Bandwidths
Signal detection in environments with unknown signal bandwidth and time intervals is a basic problem in adversarial and spectrum-sharing scenarios. This paper addresses the problem of detecting signals occupying unknown degrees of freedom from non-coherent power measurements where the signal is constrained to an interval in one dimension or hypercube in multiple dimensions. A Generalized Likelihood Ratio Test (GLRT) is derived, resulting in a straightforward metric involving normalized average signal energy on each candidate signal set. We present bounds on false alarm and missed detection probabilities, demonstrating their dependence on signal-to-noise ratios (SNR) and signal set sizes. To overcome the inherent computational complexity of exhaustive searches, we propose a computationally efficient binary search method, reducing the complexity from O(N2) to O(N) for one-dimensional cases. Simulations indicate that the method maintains performance near exhaustive searches and achieves asymptotic consistency, with interval-of-overlap converging to one under constant SNR as measurement size increases. The simulation studies also demonstrate superior performance and reduced complexity compared to contemporary neural network-based approaches, specifically outperforming custom-trained U-Net models in spectrum detection tasks.
comment: Submitted to the IEEE Open Journal of the Communications Society
Efficient Implementation of Reinforcement Learning over Homomorphic Encryption
We investigate encrypted control policy synthesis over the cloud. While encrypted control implementations have been studied previously, we focus on the less explored paradigm of privacy-preserving control synthesis, which can involve heavier computations ideal for cloud outsourcing. We classify control policy synthesis into model-based, simulator-driven, and data-driven approaches and examine their implementation over fully homomorphic encryption (FHE) for privacy enhancements. A key challenge arises from comparison operations (min or max) in standard reinforcement learning algorithms, which are difficult to execute over encrypted data. This observation motivates our focus on Relative-Entropy-regularized reinforcement learning (RL) problems, which simplifies encrypted evaluation of synthesis algorithms due to their comparison-free structures. We demonstrate how linearly solvable value iteration, path integral control, and Z-learning can be readily implemented over FHE. We conduct a case study of our approach through numerical simulations of encrypted Z-learning in a grid world environment using the CKKS encryption scheme, showing convergence with acceptable approximation error. Our work suggests the potential for secure and efficient cloud-based reinforcement learning.
comment: 6 pages, 3 figures
Asymptotic stabilization under homomorphic encryption: A re-encryption free method
In this paper, we propose methods to encrypted a pre-given dynamic controller with homomorphic encryption, without re-encrypting the control inputs. We first present a preliminary result showing that the coefficients in a pre-given dynamic controller can be scaled up into integers by the zooming-in factor in dynamic quantization, without utilizing re-encryption. However, a sufficiently small zooming-in factor may not always exist because it requires that the convergence speed of the pre-given closed-loop system should be sufficiently fast. Then, as the main result, we design a new controller approximating the pre-given dynamic controller, in which the zooming-in factor is decoupled from the convergence rate of the pre-given closed-loop system. Therefore, there always exist a (sufficiently small) zooming-in factor of dynamic quantization scaling up all the controller's coefficients to integers, and a finite modulus preventing overflow in cryptosystems. The process is asymptotically stable and the quantizer is not saturated.
Compliant Explicit Reference Governor for Contact Friendly Robotic Manipulators
This paper introduces the Compliant Explicit Reference Governor (C-ERG), an extension of the Explicit Reference Governor that allows the robot to operate safely while in contact with the environment. The C-ERG is an intermediate layer that can be placed between a high-level planner and a low-level controller: its role is to enforce operational constraints and to enable the smooth transition between free-motion and contact operations. The C-ERG ensures safety by limiting the total energy available to the robotic arm at the time of contact. In the absence of contact, however, the C-ERG does not penalize the system performance. Numerical examples showcase the behavior of the C-ERG for increasingly complex systems.
HARQ-based Quantized Average Consensus over Unreliable Directed Network Topologies
In this paper, we propose a distributed algorithm (herein called HARQ-QAC) that enables nodes to calculate the average of their initial states by exchanging quantized messages over a directed communication network. In our setting, we assume that our communication network consists of unreliable communication links (i.e., links suffering from packet drops). For countering link unreliability our algorithm leverages narrowband error-free feedback channels for acknowledging whether a packet transmission between nodes was successful. Additionally, we show that the feedback channels play a crucial role in enabling our algorithm to exhibit finite-time convergence. We analyze our algorithm and demonstrate its operation via an example, where we illustrate its operational advantages. Finally, simulations corroborate that our proposed algorithm converges to the average of the initial quantized values in a finite number of steps, despite the packet losses. This is the first quantized consensus algorithm in the literature that can handle packet losses and converge to the average. Additionally, the use of the retransmission mechanism allows for accelerating the convergence.
Sample Efficient Algorithms for Linear System Identification under Noisy Observations
In this paper, we focus on learning linear dynamical systems under noisy observations. In this setting, existing algorithms either yield biased parameter estimates, or suffer from large sample complexities. To address these issues, we adapt the instrumental variable method and the bias compensation method, originally proposed for error-in-variables models, to our setting and provide refined non-asymptotic analysis. Under mild conditions, our algorithms achieve superior sample complexities that match the best-known sample complexity for learning a fully observable system without observation noise.
Multi-Robot Coordination with Adversarial Perception
This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data from Visual-Inertial Odometry (VIO) and the learned perception model for robust relative localization and state estimation in the presence of adversarially sporadic and spurious measurements. The framework allows for quantifying the degradation in system observability and stability in relation to the success rate of adversarial perception. Finally, experimental results on a multi-robot platform demonstrate the real-world applicability of our methodology for resource-constrained robotic platforms.
comment: to appear at the 2025 Int'l Conference on Unmanned Aircraft Systems (ICUAS)
Nonconvex Obstacle Avoidance using Efficient Sampling-Based Distance Functions
We consider nonconvex obstacle avoidance where a robot described by nonlinear dynamics and a nonconvex shape has to avoid nonconvex obstacles. Obstacle avoidance is a fundamental problem in robotics and well studied in control. However, existing solutions are computationally expensive (e.g., model predictive controllers), neglect nonlinear dynamics (e.g., graph-based planners), use diffeomorphic transformations into convex domains (e.g., for star shapes), or are conservative due to convex overapproximations. The key challenge here is that the computation of the distance between the shapes of the robot and the obstacles is a nonconvex problem. We propose efficient computation of this distance via sampling-based distance functions. We quantify the sampling error and show that, for certain systems, such sampling-based distance functions are valid nonsmooth control barrier functions. We also study how to deal with disturbances on the robot dynamics in our setting. Finally, we illustrate our method on a robot navigation task involving an omnidirectional robot and nonconvex obstacles. We also analyze performance and computational efficiency of our controller as a function of the number of samples.
InterQ: A DQN Framework for Optimal Intermittent Control
In this letter, we explore the communication-control co-design of discrete-time stochastic linear systems through reinforcement learning. Specifically, we examine a closed-loop system involving two sequential decision-makers: a scheduler and a controller. The scheduler continuously monitors the system's state but transmits it to the controller intermittently to balance the communication cost and control performance. The controller, in turn, determines the control input based on the intermittently received information. Given the partially nested information structure, we show that the optimal control policy follows a certainty-equivalence form. Subsequently, we analyze the qualitative behavior of the scheduling policy. To develop the optimal scheduling policy, we propose InterQ, a deep reinforcement learning algorithm which uses a deep neural network to approximate the Q-function. Through extensive numerical evaluations, we analyze the scheduling landscape and further compare our approach against two baseline strategies: (a) a multi-period periodic scheduling policy, and (b) an event-triggered policy. The results demonstrate that our proposed method outperforms both baselines. The open source implementation can be found at https://github.com/AC-sh/InterQ.
comment: Submitted to IEEE for possible publication
Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
Shipboard carbon capture is a promising solution to help reduce carbon emissions in international shipping. In this work, we propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework. This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants. Specifically, we propose a deep neural Koopman operator modeling approach, based on which a Koopman model with time-varying model parameters is established. This Koopman model predicts the overall economic operational cost and key system outputs, based on accessible partial state measurements. By leveraging this learned model, a constrained economic predictive control scheme is developed. Despite time-varying parameters involved in the formulated model, the formulated optimization problem associated with the economic predictive control design is convex, and it can be solved efficiently during online control implementations. Extensive tests are conducted on a high-fidelity simulation environment for shipboard post-combustion carbon capture processes. Four ship operational conditions are taken into account. The results show that the proposed method significantly improves the overall economic operational performance and carbon capture rate. Additionally, the proposed method guarantees safe operation by ensuring that hard constraints on the system outputs are satisfied.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
Distributed Prescribed-Time Observer for Nonlinear Systems in Block-Triangular Form
This paper proposes a distributed prescribed-time observer for nonlinear systems representable in a block-triangular observable canonical form. Using a weighted average of neighbor estimates exchanged over a strongly connected digraph, each observer estimates the system state despite the limited observability of local sensor measurements. The proposed design guarantees that distributed state estimation errors converge to zero at a user-specified convergence time, irrespective of observers' initial conditions. To achieve this prescribed-time convergence, distributed observers implement time-varying local output injection gains that monotonically increase and approach infinity at the prescribed time. The theoretical convergence is rigorously proven and validated through numerical simulations, where some implementation issues due to increasing gains have also been clarified.
Consensus in Multiagent Systems under communication failure
We consider multi-agent systems with cooperative interactions and study the convergence to consensus in the case of time-dependent connections, with possible communication failure. We prove a new condition ensuring consensus: we define a graph in which directed arrows correspond to connection functions that converge (in the weak sense) to some function with a positive integral on all intervals of the form $[t,+\infty)$. If the graph has a node reachable from all other indices, i.e.~``globally reachable'', then the system converges to consensus. We show that this requirement generalizes some known sufficient conditions for convergence, such as Moreau's or the Persistent Excitation one. We also give a second new condition, transversal to the known ones: total connectedness of the undirected graph formed by the non-vanishing of limiting functions.
Calculation of time-optimal motion primitives for systems exhibiting oscillatory internal dynamics
An algorithm for planning near time-optimal trajectories for systems with an oscillatory internal dynamics has been developed in previous work. It is based on assembling a complete trajectory from motion primitives called jerk segments, which are the time-optimal solution to an optimization problem. To achieve the shortest overall transition time, it is advantageous to recompute these segments for different acceleration levels within the motion planning procedure. This publication presents a numerical calculation method enabling fast and reliable calculation. This is achieved by explicitly evaluating the optimality conditions that arise for the problem, and further by reducing the evaluation of these conditions to a line-search problem on a bounded interval. This reduction guarantees, that a valid solution if found after a fixed number of computational steps, making the calculation time constant and predictable. Furthermore, the algorithm does not rely on optimisation algorithms, which allowed its implementation on a laboratory system for measurements with the purpose of validating the approach.
Sparse Spectrahedral Shadows for State Estimation and Reachability Analysis: Set Operations, Validations and Order Reductions
Set representations are the foundation of various set-based approaches in state estimation, reachability analysis and fault diagnosis. In this paper, we investigate spectrahedral shadows, a class of nonlinear geometric objects previously studied in semidefinite programming and real algebraic geometry. We demonstrate spectrahedral shadows generalize traditional and emerging set representations like ellipsoids, zonotopes, constrained zonotopes and ellipsotopes. Analytical forms of set operations are provided including linear map, linear inverse map, Minkowski sum, intersection, Cartesian product, Minkowski-Firey Lp sum, convex hull, conic hull and polytopic map, all of which are implemented without approximation in polynomial time. In addition, we develop set validation and order reduction techniques for spectrahedral shadows, thereby establishing spectrahedral shadows as a set representation applicable to a range of set-based tasks.
Stability and Controllability of Revenue Systems via the Bode Approach
In online revenue systems, e.g. an advertising system, budget pacing plays a critical role in ensuring that the spend aligns with desired financial objectives. Pacing systems dynamically control the velocity of spending to balance auction intensity, traffic fluctuations, and other stochastic variables. Current industry practices rely heavily on trial-and-error approaches, often leading to inefficiencies and instability. This paper introduces a principled methodology rooted in Classical Control Theory to address these challenges. By modeling the pacing system as a linear time-invariant (LTI) proxy and leveraging compensator design techniques using Bode methodology, we derive a robust controller to minimize pacing errors and enhance stability. The proposed methodology is validated through simulation and tested by our in-house auction system, demonstrating superior performance in achieving precise budget allocation while maintaining resilience to traffic and auction dynamics. Our findings bridge the gap between traditional control theory and modern advertising systems in modeling, simulation, and validation, offering a scalable and systematic approach to budget pacing optimization.
Systems and Control (EESS)
Computationally Efficient Signal Detection with Unknown Bandwidths
Signal detection in environments with unknown signal bandwidth and time intervals is a basic problem in adversarial and spectrum-sharing scenarios. This paper addresses the problem of detecting signals occupying unknown degrees of freedom from non-coherent power measurements where the signal is constrained to an interval in one dimension or hypercube in multiple dimensions. A Generalized Likelihood Ratio Test (GLRT) is derived, resulting in a straightforward metric involving normalized average signal energy on each candidate signal set. We present bounds on false alarm and missed detection probabilities, demonstrating their dependence on signal-to-noise ratios (SNR) and signal set sizes. To overcome the inherent computational complexity of exhaustive searches, we propose a computationally efficient binary search method, reducing the complexity from O(N2) to O(N) for one-dimensional cases. Simulations indicate that the method maintains performance near exhaustive searches and achieves asymptotic consistency, with interval-of-overlap converging to one under constant SNR as measurement size increases. The simulation studies also demonstrate superior performance and reduced complexity compared to contemporary neural network-based approaches, specifically outperforming custom-trained U-Net models in spectrum detection tasks.
comment: Submitted to the IEEE Open Journal of the Communications Society
Efficient Implementation of Reinforcement Learning over Homomorphic Encryption
We investigate encrypted control policy synthesis over the cloud. While encrypted control implementations have been studied previously, we focus on the less explored paradigm of privacy-preserving control synthesis, which can involve heavier computations ideal for cloud outsourcing. We classify control policy synthesis into model-based, simulator-driven, and data-driven approaches and examine their implementation over fully homomorphic encryption (FHE) for privacy enhancements. A key challenge arises from comparison operations (min or max) in standard reinforcement learning algorithms, which are difficult to execute over encrypted data. This observation motivates our focus on Relative-Entropy-regularized reinforcement learning (RL) problems, which simplifies encrypted evaluation of synthesis algorithms due to their comparison-free structures. We demonstrate how linearly solvable value iteration, path integral control, and Z-learning can be readily implemented over FHE. We conduct a case study of our approach through numerical simulations of encrypted Z-learning in a grid world environment using the CKKS encryption scheme, showing convergence with acceptable approximation error. Our work suggests the potential for secure and efficient cloud-based reinforcement learning.
comment: 6 pages, 3 figures
Asymptotic stabilization under homomorphic encryption: A re-encryption free method
In this paper, we propose methods to encrypted a pre-given dynamic controller with homomorphic encryption, without re-encrypting the control inputs. We first present a preliminary result showing that the coefficients in a pre-given dynamic controller can be scaled up into integers by the zooming-in factor in dynamic quantization, without utilizing re-encryption. However, a sufficiently small zooming-in factor may not always exist because it requires that the convergence speed of the pre-given closed-loop system should be sufficiently fast. Then, as the main result, we design a new controller approximating the pre-given dynamic controller, in which the zooming-in factor is decoupled from the convergence rate of the pre-given closed-loop system. Therefore, there always exist a (sufficiently small) zooming-in factor of dynamic quantization scaling up all the controller's coefficients to integers, and a finite modulus preventing overflow in cryptosystems. The process is asymptotically stable and the quantizer is not saturated.
Compliant Explicit Reference Governor for Contact Friendly Robotic Manipulators
This paper introduces the Compliant Explicit Reference Governor (C-ERG), an extension of the Explicit Reference Governor that allows the robot to operate safely while in contact with the environment. The C-ERG is an intermediate layer that can be placed between a high-level planner and a low-level controller: its role is to enforce operational constraints and to enable the smooth transition between free-motion and contact operations. The C-ERG ensures safety by limiting the total energy available to the robotic arm at the time of contact. In the absence of contact, however, the C-ERG does not penalize the system performance. Numerical examples showcase the behavior of the C-ERG for increasingly complex systems.
HARQ-based Quantized Average Consensus over Unreliable Directed Network Topologies
In this paper, we propose a distributed algorithm (herein called HARQ-QAC) that enables nodes to calculate the average of their initial states by exchanging quantized messages over a directed communication network. In our setting, we assume that our communication network consists of unreliable communication links (i.e., links suffering from packet drops). For countering link unreliability our algorithm leverages narrowband error-free feedback channels for acknowledging whether a packet transmission between nodes was successful. Additionally, we show that the feedback channels play a crucial role in enabling our algorithm to exhibit finite-time convergence. We analyze our algorithm and demonstrate its operation via an example, where we illustrate its operational advantages. Finally, simulations corroborate that our proposed algorithm converges to the average of the initial quantized values in a finite number of steps, despite the packet losses. This is the first quantized consensus algorithm in the literature that can handle packet losses and converge to the average. Additionally, the use of the retransmission mechanism allows for accelerating the convergence.
Sample Efficient Algorithms for Linear System Identification under Noisy Observations
In this paper, we focus on learning linear dynamical systems under noisy observations. In this setting, existing algorithms either yield biased parameter estimates, or suffer from large sample complexities. To address these issues, we adapt the instrumental variable method and the bias compensation method, originally proposed for error-in-variables models, to our setting and provide refined non-asymptotic analysis. Under mild conditions, our algorithms achieve superior sample complexities that match the best-known sample complexity for learning a fully observable system without observation noise.
Multi-Robot Coordination with Adversarial Perception
This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data from Visual-Inertial Odometry (VIO) and the learned perception model for robust relative localization and state estimation in the presence of adversarially sporadic and spurious measurements. The framework allows for quantifying the degradation in system observability and stability in relation to the success rate of adversarial perception. Finally, experimental results on a multi-robot platform demonstrate the real-world applicability of our methodology for resource-constrained robotic platforms.
comment: to appear at the 2025 Int'l Conference on Unmanned Aircraft Systems (ICUAS)
Nonconvex Obstacle Avoidance using Efficient Sampling-Based Distance Functions
We consider nonconvex obstacle avoidance where a robot described by nonlinear dynamics and a nonconvex shape has to avoid nonconvex obstacles. Obstacle avoidance is a fundamental problem in robotics and well studied in control. However, existing solutions are computationally expensive (e.g., model predictive controllers), neglect nonlinear dynamics (e.g., graph-based planners), use diffeomorphic transformations into convex domains (e.g., for star shapes), or are conservative due to convex overapproximations. The key challenge here is that the computation of the distance between the shapes of the robot and the obstacles is a nonconvex problem. We propose efficient computation of this distance via sampling-based distance functions. We quantify the sampling error and show that, for certain systems, such sampling-based distance functions are valid nonsmooth control barrier functions. We also study how to deal with disturbances on the robot dynamics in our setting. Finally, we illustrate our method on a robot navigation task involving an omnidirectional robot and nonconvex obstacles. We also analyze performance and computational efficiency of our controller as a function of the number of samples.
InterQ: A DQN Framework for Optimal Intermittent Control
In this letter, we explore the communication-control co-design of discrete-time stochastic linear systems through reinforcement learning. Specifically, we examine a closed-loop system involving two sequential decision-makers: a scheduler and a controller. The scheduler continuously monitors the system's state but transmits it to the controller intermittently to balance the communication cost and control performance. The controller, in turn, determines the control input based on the intermittently received information. Given the partially nested information structure, we show that the optimal control policy follows a certainty-equivalence form. Subsequently, we analyze the qualitative behavior of the scheduling policy. To develop the optimal scheduling policy, we propose InterQ, a deep reinforcement learning algorithm which uses a deep neural network to approximate the Q-function. Through extensive numerical evaluations, we analyze the scheduling landscape and further compare our approach against two baseline strategies: (a) a multi-period periodic scheduling policy, and (b) an event-triggered policy. The results demonstrate that our proposed method outperforms both baselines. The open source implementation can be found at https://github.com/AC-sh/InterQ.
comment: Submitted to IEEE for possible publication
Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
Shipboard carbon capture is a promising solution to help reduce carbon emissions in international shipping. In this work, we propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework. This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants. Specifically, we propose a deep neural Koopman operator modeling approach, based on which a Koopman model with time-varying model parameters is established. This Koopman model predicts the overall economic operational cost and key system outputs, based on accessible partial state measurements. By leveraging this learned model, a constrained economic predictive control scheme is developed. Despite time-varying parameters involved in the formulated model, the formulated optimization problem associated with the economic predictive control design is convex, and it can be solved efficiently during online control implementations. Extensive tests are conducted on a high-fidelity simulation environment for shipboard post-combustion carbon capture processes. Four ship operational conditions are taken into account. The results show that the proposed method significantly improves the overall economic operational performance and carbon capture rate. Additionally, the proposed method guarantees safe operation by ensuring that hard constraints on the system outputs are satisfied.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
Distributed Prescribed-Time Observer for Nonlinear Systems in Block-Triangular Form
This paper proposes a distributed prescribed-time observer for nonlinear systems representable in a block-triangular observable canonical form. Using a weighted average of neighbor estimates exchanged over a strongly connected digraph, each observer estimates the system state despite the limited observability of local sensor measurements. The proposed design guarantees that distributed state estimation errors converge to zero at a user-specified convergence time, irrespective of observers' initial conditions. To achieve this prescribed-time convergence, distributed observers implement time-varying local output injection gains that monotonically increase and approach infinity at the prescribed time. The theoretical convergence is rigorously proven and validated through numerical simulations, where some implementation issues due to increasing gains have also been clarified.
Consensus in Multiagent Systems under communication failure
We consider multi-agent systems with cooperative interactions and study the convergence to consensus in the case of time-dependent connections, with possible communication failure. We prove a new condition ensuring consensus: we define a graph in which directed arrows correspond to connection functions that converge (in the weak sense) to some function with a positive integral on all intervals of the form $[t,+\infty)$. If the graph has a node reachable from all other indices, i.e.~``globally reachable'', then the system converges to consensus. We show that this requirement generalizes some known sufficient conditions for convergence, such as Moreau's or the Persistent Excitation one. We also give a second new condition, transversal to the known ones: total connectedness of the undirected graph formed by the non-vanishing of limiting functions.
Calculation of time-optimal motion primitives for systems exhibiting oscillatory internal dynamics
An algorithm for planning near time-optimal trajectories for systems with an oscillatory internal dynamics has been developed in previous work. It is based on assembling a complete trajectory from motion primitives called jerk segments, which are the time-optimal solution to an optimization problem. To achieve the shortest overall transition time, it is advantageous to recompute these segments for different acceleration levels within the motion planning procedure. This publication presents a numerical calculation method enabling fast and reliable calculation. This is achieved by explicitly evaluating the optimality conditions that arise for the problem, and further by reducing the evaluation of these conditions to a line-search problem on a bounded interval. This reduction guarantees, that a valid solution if found after a fixed number of computational steps, making the calculation time constant and predictable. Furthermore, the algorithm does not rely on optimisation algorithms, which allowed its implementation on a laboratory system for measurements with the purpose of validating the approach.
Sparse Spectrahedral Shadows for State Estimation and Reachability Analysis: Set Operations, Validations and Order Reductions
Set representations are the foundation of various set-based approaches in state estimation, reachability analysis and fault diagnosis. In this paper, we investigate spectrahedral shadows, a class of nonlinear geometric objects previously studied in semidefinite programming and real algebraic geometry. We demonstrate spectrahedral shadows generalize traditional and emerging set representations like ellipsoids, zonotopes, constrained zonotopes and ellipsotopes. Analytical forms of set operations are provided including linear map, linear inverse map, Minkowski sum, intersection, Cartesian product, Minkowski-Firey Lp sum, convex hull, conic hull and polytopic map, all of which are implemented without approximation in polynomial time. In addition, we develop set validation and order reduction techniques for spectrahedral shadows, thereby establishing spectrahedral shadows as a set representation applicable to a range of set-based tasks.
Stability and Controllability of Revenue Systems via the Bode Approach
In online revenue systems, e.g. an advertising system, budget pacing plays a critical role in ensuring that the spend aligns with desired financial objectives. Pacing systems dynamically control the velocity of spending to balance auction intensity, traffic fluctuations, and other stochastic variables. Current industry practices rely heavily on trial-and-error approaches, often leading to inefficiencies and instability. This paper introduces a principled methodology rooted in Classical Control Theory to address these challenges. By modeling the pacing system as a linear time-invariant (LTI) proxy and leveraging compensator design techniques using Bode methodology, we derive a robust controller to minimize pacing errors and enhance stability. The proposed methodology is validated through simulation and tested by our in-house auction system, demonstrating superior performance in achieving precise budget allocation while maintaining resilience to traffic and auction dynamics. Our findings bridge the gap between traditional control theory and modern advertising systems in modeling, simulation, and validation, offering a scalable and systematic approach to budget pacing optimization.
Multiagent Systems
Game-Theoretic Coordination For Time-Critical Missions of UAV Systems
Cooperative missions involving Unmanned Aerial Vehicles (UAVs) in dynamic environments pose significant challenges in ensuring both coordination and agility. In this paper, we introduce a novel game-theoretic approach for time-critical missions, where each UAV optimizes a cost function that incorporates temporal and mission-specific constraints. The optimization is performed within a one-dimensional domain, significantly reducing the computational cost and enabling real-time application to complex and dynamic scenarios. The framework is distributed in structure, allowing to achieve global, system-wide coordination (a Nash equilibrium) by using only local information. For ideal systems, we prove the existence and exponential stability of the Nash equilibrium. Furthermore, we invoke model predictive control (MPC) for non-ideal scenarios. In particular, we propose a discrete-time optimization approach that tackles path-following errors and communication failures, ensuring reliable and agile performance in dynamic and uncertain environments. Simulation results demonstrate the effectiveness and agility of the approach in ensuring successful mission execution across diverse scenarios. Experiments using a motion capture system provide further validation under realistic conditions.
Robotics
BiFlex: A Passive Bimodal Stiffness Flexible Wrist for Manipulation in Unstructured Environments
Robotic manipulation in unstructured, humancentric environments poses a dual challenge: achieving the precision need for delicate free-space operation while ensuring safety during unexpected contact events. Traditional wrists struggle to balance these demands, often relying on complex control schemes or complicated mechanical designs to mitigate potential damage from force overload. In response, we present BiFlex, a flexible robotic wrist that uses a soft buckling honeycomb structure to provides a natural bimodal stiffness response. The higher stiffness mode enables precise household object manipulation, while the lower stiffness mode provides the compliance needed to adapt to external forces. We design BiFlex to maintain a fingertip deflection of less than 1 cm while supporting loads up to 500g and create a BiFlex wrist for many grippers, including Panda, Robotiq, and BaRiFlex. We validate BiFlex under several real-world experimental evaluations, including surface wiping, precise pick-and-place, and grasping under environmental constraints. We demonstrate that BiFlex simplifies control while maintaining precise object manipulation and enhanced safety in real-world applications.
comment: 8 pages, 10 figures
Offline Reinforcement Learning using Human-Aligned Reward Labeling for Autonomous Emergency Braking in Occluded Pedestrian Crossing
Effective leveraging of real-world driving datasets is crucial for enhancing the training of autonomous driving systems. While Offline Reinforcement Learning enables the training of autonomous vehicles using such data, most available datasets lack meaningful reward labels. Reward labeling is essential as it provides feedback for the learning algorithm to distinguish between desirable and undesirable behaviors, thereby improving policy performance. This paper presents a novel pipeline for generating human-aligned reward labels. The proposed approach addresses the challenge of absent reward signals in real-world datasets by generating labels that reflect human judgment and safety considerations. The pipeline incorporates an adaptive safety component, activated by analyzing semantic segmentation maps, allowing the autonomous vehicle to prioritize safety over efficiency in potential collision scenarios. The proposed pipeline is applied to an occluded pedestrian crossing scenario with varying levels of pedestrian traffic, using synthetic and simulation data. The results indicate that the generated reward labels closely match the simulation reward labels. When used to train the driving policy using Behavior Proximal Policy Optimisation, the results are competitive with other baselines. This demonstrates the effectiveness of our method in producing reliable and human-aligned reward signals, facilitating the training of autonomous driving systems through Reinforcement Learning outside of simulation environments and in alignment with human values.
comment: 13 pages, 9 figures, 1 table
Performance Evaluation of Trajectory Tracking Controllers for a Quadruped Robot Leg
The complexities in the dynamic model of the legged robots make it necessary to utilize model-free controllers in the task of trajectory tracking. In This paper, an adaptive transpose Jacobian approach is proposed to deal with the dynamic model complexity, which utilizes an adaptive PI-algorithm to adjust the control gains. The performance of the proposed control algorithm is compared with the conventional transpose Jacobian and sliding mode control algorithms and evaluated by the root mean square of the errors and control input energy criteria. In order to appraise the effectiveness of the proposed control system, simulations are carried out in MATLAB/Simulink software for a quadruped robot leg for semi-elliptical path tracking. The obtained results show that the proposed adaptive transpose Jacobian reduces the overshoot and root mean square of the errors and at the same time, decreases the control input energy. Moreover, transpose Jacobin and adaptive transpose Jacobian are more robust to changes in initial conditions compared to the conventional sliding mode control. Furthermore, sliding mode control performs well up to 20% uncertainties in the parameters due to its model-based nature, whereas the transpose Jacobin and the proposed adaptive transpose Jacobian algorithms show promising results even in higher mass uncertainties.
comment: Published in IEEE Xplore
Pobogot -- An Open-Hardware Open-Source Low Cost Robot for Swarm Robotics
This paper describes the Pogobot, an open-source and open-hardware platform specifically designed for research involving swarm robotics. Pogobot features vibration-based locomotion, infrared communication, and an array of sensors in a cost-effective package (approx. 250~euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and distributed online reinforcement learning algorithms. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units. More than 200 Pogobots are already being used on a daily basis at Sorbonne Universit\'e and PSL to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems as well as models of social learning and evolution.
Safe Flow Matching: Robot Motion Planning with Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with unseen environments or dynamic constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, we propose, Safe Flow Matching (SafeFM), a motion planning approach for trajectory generation that integrates flow matching with safety guarantees. By incorporating the proposed flow matching barrier functions, SafeFM ensures that generated trajectories remain within safe regions throughout the planning horizon, even in the presence of previously unseen obstacles or state-action constraints. Unlike diffusion-based approaches, our method allows for direct, efficient sampling of constraint-satisfying trajectories, making it well-suited for real-time motion planning. We evaluate SafeFM on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety, generalization, and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io/SafeFM/
TinyCenterSpeed: Efficient Center-Based Object Detection for Autonomous Racing
Perception within autonomous driving is nearly synonymous with Neural Networks (NNs). Yet, the domain of autonomous racing is often characterized by scaled, computationally limited robots used for cost-effectiveness and safety. For this reason, opponent detection and tracking systems typically resort to traditional computer vision techniques due to computational constraints. This paper introduces TinyCenterSpeed, a streamlined adaptation of the seminal CenterPoint method, optimized for real-time performance on 1:10 scale autonomous racing platforms. This adaptation is viable even on OBCs powered solely by Central Processing Units (CPUs), as it incorporates the use of an external Tensor Processing Unit (TPU). We demonstrate that, compared to Adaptive Breakpoint Detector (ABD), the current State-of-the-Art (SotA) in scaled autonomous racing, TinyCenterSpeed not only improves detection and velocity estimation by up to 61.38% but also supports multi-opponent detection and estimation. It achieves real-time performance with an inference time of just 7.88 ms on the TPU, significantly reducing CPU utilization 8.3-fold.
MBE-ARI: A Multimodal Dataset Mapping Bi-directional Engagement in Animal-Robot Interaction ICRA 2025
Animal-robot interaction (ARI) remains an unexplored challenge in robotics, as robots struggle to interpret the complex, multimodal communication cues of animals, such as body language, movement, and vocalizations. Unlike human-robot interaction, which benefits from established datasets and frameworks, animal-robot interaction lacks the foundational resources needed to facilitate meaningful bidirectional communication. To bridge this gap, we present the MBE-ARI (Multimodal Bidirectional Engagement in Animal-Robot Interaction), a novel multimodal dataset that captures detailed interactions between a legged robot and cows. The dataset includes synchronized RGB-D streams from multiple viewpoints, annotated with body pose and activity labels across interaction phases, offering an unprecedented level of detail for ARI research. Additionally, we introduce a full-body pose estimation model tailored for quadruped animals, capable of tracking 39 keypoints with a mean average precision (mAP) of 92.7%, outperforming existing benchmarks in animal pose estimation. The MBE-ARI dataset and our pose estimation framework lay a robust foundation for advancing research in animal-robot interaction, providing essential tools for developing perception, reasoning, and interaction frameworks needed for effective collaboration between robots and animals. The dataset and resources are publicly available at https://github.com/RISELabPurdue/MBE-ARI/, inviting further exploration and development in this critical area.
comment: Accepted to ICRA 2025
Tactile sensing enables vertical obstacle negotiation for elongate many-legged robots
Many-legged elongated robots show promise for reliable mobility on rugged landscapes. However, most studies on these systems focus on motion planning in the 2D horizontal plane (e.g., translation and rotation) without addressing rapid vertical motion. Despite their success on mild rugged terrains, recent field tests reveal a critical need for 3D behaviors (e.g., climbing or traversing tall obstacles) in real-world application. The challenges of 3D motion planning partially lie in designing sensing and control for a complex high-degree-of-freedom system, typically with over 25 degrees of freedom. To address the first challenge, we propose a tactile antenna system that enables the robot to probe obstacles and gather information about the structure of the environment. Building on this sensory input, we develop a control framework that integrates data from the antenna and foot contact sensors to dynamically adjust the robot's vertical body undulation for effective climbing. With the addition of simple, low-bandwidth tactile sensors, a robot with high static stability and redundancy exhibits predictable climbing performance in complex environments using a simple feedback controller. Laboratory and outdoor experiments demonstrate the robot's ability to climb obstacles up to five times its height. Moreover, the robot exhibits robust climbing capabilities on obstacles covered with flowable, robot-sized random items and those characterized by rapidly changing curvatures. These findings demonstrate an alternative solution to perceive the environment and facilitate effective response for legged robots, paving ways towards future highly capable, low-profile many-legged robots.
comment: Accepted by RSS 2025
Neural Fidelity Calibration for Informative Sim-to-Real Adaptation
Deep reinforcement learning can seamlessly transfer agile locomotion and navigation skills from the simulator to real world. However, bridging the sim-to-real gap with domain randomization or adversarial methods often demands expert physics knowledge to ensure policy robustness. Even so, cutting-edge simulators may fall short of capturing every real-world detail, and the reconstructed environment may introduce errors due to various perception uncertainties. To address these challenges, we propose Neural Fidelity Calibration (NFC), a novel framework that employs conditional score-based diffusion models to calibrate simulator physical coefficients and residual fidelity domains online during robot execution. Specifically, the residual fidelity reflects the simulation model shift relative to the real-world dynamics and captures the uncertainty of the perceived environment, enabling us to sample realistic environments under the inferred distribution for policy fine-tuning. Our framework is informative and adaptive in three key ways: (a) we fine-tune the pretrained policy only under anomalous scenarios, (b) we build sequential NFC online with the pretrained NFC's proposal prior, reducing the diffusion model's training burden, and (c) when NFC uncertainty is high and may degrade policy improvement, we leverage optimistic exploration to enable hallucinated policy optimization. Our framework achieves superior simulator calibration precision compared to state-of-the-art methods across diverse robots with high-dimensional parametric spaces. We study the critical contribution of residual fidelity to policy improvement in simulation and real-world experiments. Notably, our approach demonstrates robust robot navigation under challenging real-world conditions, such as a broken wheel axle on snowy surfaces.
FindAnything: Open-Vocabulary and Object-Centric Mapping for Robot Exploration in Any Environment
Geometrically accurate and semantically expressive map representations have proven invaluable to facilitate robust and safe mobile robot navigation and task planning. Nevertheless, real-time, open-vocabulary semantic understanding of large-scale unknown environments is still an open problem. In this paper we present FindAnything, an open-world mapping and exploration framework that incorporates vision-language information into dense volumetric submaps. Thanks to the use of vision-language features, FindAnything bridges the gap between pure geometric and open-vocabulary semantic information for a higher level of understanding while allowing to explore any environment without the help of any external source of ground-truth pose information. We represent the environment as a series of volumetric occupancy submaps, resulting in a robust and accurate map representation that deforms upon pose updates when the underlying SLAM system corrects its drift, allowing for a locally consistent representation between submaps. Pixel-wise vision-language features are aggregated from efficient SAM (eSAM)-generated segments, which are in turn integrated into object-centric volumetric submaps, providing a mapping from open-vocabulary queries to 3D geometry that is scalable also in terms of memory usage. The open-vocabulary map representation of FindAnything achieves state-of-the-art semantic accuracy in closed-set evaluations on the Replica dataset. This level of scene understanding allows a robot to explore environments based on objects or areas of interest selected via natural language queries. Our system is the first of its kind to be deployed on resource-constrained devices, such as MAVs, leveraging vision-language information for real-world robotic tasks.
comment: 11 pages, 5 figures
Enabling Safety for Aerial Robots: Planning and Control Architectures ICRA
Ensuring safe autonomy is crucial for deploying aerial robots in real-world applications. However, safety is a multifaceted challenge that must be addressed from multiple perspectives, including navigation in dynamic environments, operation under resource constraints, and robustness against adversarial attacks and uncertainties. In this paper, we present the authors' recent work that tackles some of these challenges and highlights key aspects that must be considered to enhance the safety and performance of autonomous aerial systems. All presented approaches are validated through hardware experiments.
comment: 2025 ICRA Workshop on 25 years of Aerial Robotics: Challenges and Opportunities
Ready, Bid, Go! On-Demand Delivery Using Fleets of Drones with Unknown, Heterogeneous Energy Storage Constraints AAMAS 2025
Unmanned Aerial Vehicles (UAVs) are expected to transform logistics, reducing delivery time, costs, and emissions. This study addresses an on-demand delivery , in which fleets of UAVs are deployed to fulfil orders that arrive stochastically. Unlike previous work, it considers UAVs with heterogeneous, unknown energy storage capacities and assumes no knowledge of the energy consumption models. We propose a decentralised deployment strategy that combines auction-based task allocation with online learning. Each UAV independently decides whether to bid for orders based on its energy storage charge level, the parcel mass, and delivery distance. Over time, it refines its policy to bid only for orders within its capability. Simulations using realistic UAV energy models reveal that, counter-intuitively, assigning orders to the least confident bidders reduces delivery times and increases the number of successfully fulfilled orders. This strategy is shown to outperform threshold-based methods which require UAVs to exceed specific charge levels at deployment. We propose a variant of the strategy which uses learned policies for forecasting. This enables UAVs with insufficient charge levels to commit to fulfilling orders at specific future times, helping to prioritise early orders. Our work provides new insights into long-term deployment of UAV swarms, highlighting the advantages of decentralised energy-aware decision-making coupled with online learning in real-world dynamic environments.
comment: The 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
Globally Optimal Data-Association-Free Landmark-Based Localization Using Semidefinite Relaxations
This paper proposes a semidefinite relaxation for landmark-based localization with unknown data associations in planar environments. The proposed method simultaneously solves for the optimal robot states and data associations in a globally optimal fashion. Relative position measurements to known landmarks are used, but the data association is unknown in tha tthe robot does not know which landmark each measurement is generated from. The relaxation is shown to be tight in a majority of cases for moderate noise levels. The proposed algorithm is compared to local Gauss-Newton baselines initialized at the dead-reckoned trajectory, and is shown to significantly improve convergence to the problem's global optimum in simulation and experiment. Accompanying software and supplementary material may be found at https://github.com/vkorotkine/certifiable_uda_loc .
comment: 11 pages, 7 figures. Submitted to IEEE Robotics and Automation Letters
Digital Twin Catalog: A Large-Scale Photorealistic 3D Object Digital Twin Dataset CVPR 2025
We introduce Digital Twin Catalog (DTC), a new large-scale photorealistic 3D object digital twin dataset. A digital twin of a 3D object is a highly detailed, virtually indistinguishable representation of a physical object, accurately capturing its shape, appearance, physical properties, and other attributes. Recent advances in neural-based 3D reconstruction and inverse rendering have significantly improved the quality of 3D object reconstruction. Despite these advancements, there remains a lack of a large-scale, digital twin quality real-world dataset and benchmark that can quantitatively assess and compare the performance of different reconstruction methods, as well as improve reconstruction quality through training or fine-tuning. Moreover, to democratize 3D digital twin creation, it is essential to integrate creation techniques with next-generation egocentric computing platforms, such as AR glasses. Currently, there is no dataset available to evaluate 3D object reconstruction using egocentric captured images. To address these gaps, the DTC dataset features 2,000 scanned digital twin-quality 3D objects, along with image sequences captured under different lighting conditions using DSLR cameras and egocentric AR glasses. This dataset establishes the first comprehensive real-world evaluation benchmark for 3D digital twin creation tasks, offering a robust foundation for comparing and improving existing reconstruction methods. The DTC dataset is already released at https://www.projectaria.com/datasets/dtc/ and we will also make the baseline evaluations open-source.
comment: accepted to CVPR 2025 highlights
Embodied Image Captioning: Self-supervised Learning Agents for Spatially Coherent Image Descriptions
We present a self-supervised method to improve an agent's abilities in describing arbitrary objects while actively exploring a generic environment. This is a challenging problem, as current models struggle to obtain coherent image captions due to different camera viewpoints and clutter. We propose a three-phase framework to fine-tune existing captioning models that enhances caption accuracy and consistency across views via a consensus mechanism. First, an agent explores the environment, collecting noisy image-caption pairs. Then, a consistent pseudo-caption for each object instance is distilled via consensus using a large language model. Finally, these pseudo-captions are used to fine-tune an off-the-shelf captioning model, with the addition of contrastive learning. We analyse the performance of the combination of captioning models, exploration policies, pseudo-labeling methods, and fine-tuning strategies, on our manually labeled test set. Results show that a policy can be trained to mine samples with higher disagreement compared to classical baselines. Our pseudo-captioning method, in combination with all policies, has a higher semantic similarity compared to other existing methods, and fine-tuning improves caption accuracy and consistency by a significant margin. Code and test set annotations available at https://hsp-iit.github.io/embodied-captioning/
comment: 11 pages, 8 figures, 5 tables, code and test set annotations available at https://hsp-iit.github.io/embodied-captioning/
Diffusion Models for Robotic Manipulation: A Survey
Diffusion generative models have demonstrated remarkable success in visual domains such as image and video generation. They have also recently emerged as a promising approach in robotics, especially in robot manipulations. Diffusion models leverage a probabilistic framework, and they stand out with their ability to model multi-modal distributions and their robustness to high-dimensional input and output spaces. This survey provides a comprehensive review of state-of-the-art diffusion models in robotic manipulation, including grasp learning, trajectory planning, and data augmentation. Diffusion models for scene and image augmentation lie at the intersection of robotics and computer vision for vision-based tasks to enhance generalizability and data scarcity. This paper also presents the two main frameworks of diffusion models and their integration with imitation learning and reinforcement learning. In addition, it discusses the common architectures and benchmarks and points out the challenges and advantages of current state-of-the-art diffusion-based methods.
comment: 28 pages, 1 figure, 2 tables
The Composite Visual-Laser Navigation Method Applied in Indoor Poultry Farming Environments
Indoor poultry farms require inspection robots to maintain precise environmental control, which is crucial for preventing the rapid spread of disease and large-scale bird mortality. However, the complex conditions within these facilities, characterized by areas of intense illumination and water accumulation, pose significant challenges. Traditional navigation methods that rely on a single sensor often perform poorly in such environments, resulting in issues like laser drift and inaccuracies in visual navigation line extraction. To overcome these limitations, we propose a novel composite navigation method that integrates both laser and vision technologies. This approach dynamically computes a fused yaw angle based on the real-time reliability of each sensor modality, thereby eliminating the need for physical navigation lines. Experimental validation in actual poultry house environments demonstrates that our method not only resolves the inherent drawbacks of single-sensor systems, but also significantly enhances navigation precision and operational efficiency. As such, it presents a promising solution for improving the performance of inspection robots in complex indoor poultry farming settings.
Human strategies for correcting `human-robot' errors during a laundry sorting task
Mental models and expectations underlying human-human interaction (HHI) inform human-robot interaction (HRI) with domestic robots. To ease collaborative home tasks by improving domestic robot speech and behaviours for human-robot communication, we designed a study to understand how people communicated when failure occurs. To identify patterns of natural communication, particularly in response to robotic failures, participants instructed Laundrobot to move laundry into baskets using natural language and gestures. Laundrobot either worked error-free, or in one of two error modes. Participants were not advised Laundrobot would be a human actor, nor given information about error modes. Video analysis from 42 participants found speech patterns, included laughter, verbal expressions, and filler words, such as ``oh'' and ``ok'', also, sequences of body movements, including touching one's own face, increased pointing with a static finger, and expressions of surprise. Common strategies deployed when errors occurred, included correcting and teaching, taking responsibility, and displays of frustration. The strength of reaction to errors diminished with exposure, possibly indicating acceptance or resignation. Some used strategies similar to those used to communicate with other technologies, such as smart assistants. An anthropomorphic robot may not be ideally suited to this kind of task. Laundrobot's appearance, morphology, voice, capabilities, and recovery strategies may have impacted how it was perceived. Some participants indicated Laundrobot's actual skills were not aligned with expectations; this made it difficult to know what to expect and how much Laundrobot understood. Expertise, personality, and cultural differences may affect responses, however these were not assessed.
SN-LiDAR: Semantic Neural Fields for Novel Space-time View LiDAR Synthesis
Recent research has begun exploring novel view synthesis (NVS) for LiDAR point clouds, aiming to generate realistic LiDAR scans from unseen viewpoints. However, most existing approaches do not reconstruct semantic labels, which are crucial for many downstream applications such as autonomous driving and robotic perception. Unlike images, which benefit from powerful segmentation models, LiDAR point clouds lack such large-scale pre-trained models, making semantic annotation time-consuming and labor-intensive. To address this challenge, we propose SN-LiDAR, a method that jointly performs accurate semantic segmentation, high-quality geometric reconstruction, and realistic LiDAR synthesis. Specifically, we employ a coarse-to-fine planar-grid feature representation to extract global features from multi-frame point clouds and leverage a CNN-based encoder to extract local semantic features from the current frame point cloud. Extensive experiments on SemanticKITTI and KITTI-360 demonstrate the superiority of SN-LiDAR in both semantic and geometric reconstruction, effectively handling dynamic objects and large-scale scenes. Codes will be available on https://github.com/dtc111111/SN-Lidar.
RINGO: Real-time Navigation with a Guiding Trajectory for Aerial Manipulators in Unknown Environments
Motion planning for aerial manipulators in constrained environments has typically been limited to known environments or simplified to that of multi-rotors, which leads to poor adaptability and overly conservative trajectories. This paper presents RINGO:~Real-time Navigation with a Guiding Trajectory, a novel planning framework that enables aerial manipulators to navigate unknown environments in real time. The proposed method simultaneously considers the positions of both the multi-rotor and the end-effector. A pre-obtained multi-rotor trajectory serves as a guiding reference, allowing the end-effector to generate a smooth, collision-free, and workspace-compatible trajectory. Leveraging the convex hull property of B-spline curves, we theoretically guarantee that the trajectory remains within the reachable workspace. To the best of our knowledge, this is the first work that enables real-time navigation of aerial manipulators in unknown environments. The simulation and experimental results show the effectiveness of the proposed method. The proposed method generates less conservative trajectories than approaches that consider only the multi-rotor.
comment: 9 pages, 15 figures
Evaluating Pedestrian Risks in Shared Spaces Through Autonomous Vehicle Experiments on a Fixed Track
The majority of research on safety in autonomous vehicles has been conducted in structured and controlled environments. However, there is a scarcity of research on safety in unregulated pedestrian areas, especially when interacting with public transport vehicles like trams. This study investigates pedestrian responses to an alert system in this context by replicating this real-world scenario in an environment using an autonomous vehicle. The results show that safety measures from other contexts can be adapted to shared spaces with trams, where fixed tracks heighten risks in unregulated crossings.
DSM: Building A Diverse Semantic Map for 3D Visual Grounding IROS
In recent years, with the growing research and application of multimodal large language models (VLMs) in robotics, there has been an increasing trend of utilizing VLMs for robotic scene understanding tasks. Existing approaches that use VLMs for 3D Visual Grounding tasks often focus on obtaining scene information through geometric and visual information, overlooking the extraction of diverse semantic information from the scene and the understanding of rich implicit semantic attributes, such as appearance, physics, and affordance. The 3D scene graph, which combines geometry and language, is an ideal representation method for environmental perception and is an effective carrier for language models in 3D Visual Grounding tasks. To address these issues, we propose a diverse semantic map construction method specifically designed for robotic agents performing 3D Visual Grounding tasks. This method leverages VLMs to capture the latent semantic attributes and relations of objects within the scene and creates a Diverse Semantic Map (DSM) through a geometry sliding-window map construction strategy. We enhance the understanding of grounding information based on DSM and introduce a novel approach named DSM-Grounding. Experimental results show that our method outperforms current approaches in tasks like semantic segmentation and 3D Visual Grounding, particularly excelling in overall metrics compared to the state-of-the-art. In addition, we have deployed this method on robots to validate its effectiveness in navigation and grasping tasks.
comment: 8 pages, 6 figures, submitted to IROS, Project Page: https://binicey.github.io/DSM
PNE-SGAN: Probabilistic NDT-Enhanced Semantic Graph Attention Network for LiDAR Loop Closure Detection
LiDAR loop closure detection (LCD) is crucial for consistent Simultaneous Localization and Mapping (SLAM) but faces challenges in robustness and accuracy. Existing methods, including semantic graph approaches, often suffer from coarse geometric representations and lack temporal robustness against noise, dynamics, and viewpoint changes. We introduce PNE-SGAN, a Probabilistic NDT-Enhanced Semantic Graph Attention Network, to overcome these limitations. PNE-SGAN enhances semantic graphs by using Normal Distributions Transform (NDT) covariance matrices as rich, discriminative geometric node features, processed via a Graph Attention Network (GAT). Crucially, it integrates graph similarity scores into a probabilistic temporal filtering framework (modeled as an HMM/Bayes filter), incorporating uncertain odometry for motion modeling and utilizing forward-backward smoothing to effectively handle ambiguities. Evaluations on challenging KITTI sequences (00 and 08) demonstrate state-of-the-art performance, achieving Average Precision of 96.2\% and 95.1\%, respectively. PNE-SGAN significantly outperforms existing methods, particularly in difficult bidirectional loop scenarios where others falter. By synergizing detailed NDT geometry with principled probabilistic temporal reasoning, PNE-SGAN offers a highly accurate and robust solution for LiDAR LCD, enhancing SLAM reliability in complex, large-scale environments.
Interior Point Differential Dynamic Programming, Redux
We present IPDDP2, a structure-exploiting algorithm for solving discrete-time, finite horizon optimal control problems with nonlinear constraints. Inequality constraints are handled using a primal-dual interior point formulation and step acceptance for equality constraints follows a line-search filter approach. The iterates of the algorithm are derived under the Differential Dynamic Programming (DDP) framework. Our numerical experiments evaluate IPDDP2 on four robotic motion planning problems. IPDDP2 reliably converges to low optimality error and exhibits local quadratic and global convergence from remote starting points. Notably, we showcase the robustness of IPDDP2 by using it to solve a contact-implicit, joint limited acrobot swing-up problem involving complementarity constraints from a range of initial conditions. We provide a full implementation of IPDDP2 in the Julia programming language.
Spectral Normalization for Lipschitz-Constrained Policies on Learning Humanoid Locomotion
Reinforcement learning (RL) has shown great potential in training agile and adaptable controllers for legged robots, enabling them to learn complex locomotion behaviors directly from experience. However, policies trained in simulation often fail to transfer to real-world robots due to unrealistic assumptions such as infinite actuator bandwidth and the absence of torque limits. These conditions allow policies to rely on abrupt, high-frequency torque changes, which are infeasible for real actuators with finite bandwidth. Traditional methods address this issue by penalizing aggressive motions through regularization rewards, such as joint velocities, accelerations, and energy consumption, but they require extensive hyperparameter tuning. Alternatively, Lipschitz-Constrained Policies (LCP) enforce finite bandwidth action control by penalizing policy gradients, but their reliance on gradient calculations introduces significant GPU memory overhead. To overcome this limitation, this work proposes Spectral Normalization (SN) as an efficient replacement for enforcing Lipschitz continuity. By constraining the spectral norm of network weights, SN effectively limits high-frequency policy fluctuations while significantly reducing GPU memory usage. Experimental evaluations in both simulation and real-world humanoid robot show that SN achieves performance comparable to gradient penalty methods while enabling more efficient parallel training.
comment: This work has been submitted to the IEEE for possible publication
InSPE: Rapid Evaluation of Heterogeneous Multi-Modal Infrastructure Sensor Placement
Infrastructure sensing is vital for traffic monitoring at safety hotspots (e.g., intersections) and serves as the backbone of cooperative perception in autonomous driving. While vehicle sensing has been extensively studied, infrastructure sensing has received little attention, especially given the unique challenges of diverse intersection geometries, complex occlusions, varying traffic conditions, and ambient environments like lighting and weather. To address these issues and ensure cost-effective sensor placement, we propose Heterogeneous Multi-Modal Infrastructure Sensor Placement Evaluation (InSPE), a perception surrogate metric set that rapidly assesses perception effectiveness across diverse infrastructure and environmental scenarios with combinations of multi-modal sensors. InSPE systematically evaluates perception capabilities by integrating three carefully designed metrics, i.e., sensor coverage, perception occlusion, and information gain. To support large-scale evaluation, we develop a data generation tool within the CARLA simulator and also introduce Infra-Set, a dataset covering diverse intersection types and environmental conditions. Benchmarking experiments with state-of-the-art perception algorithms demonstrate that InSPE enables efficient and scalable sensor placement analysis, providing a robust solution for optimizing intelligent intersection infrastructure.
CATCH-FORM-3D: Compliance-Aware Tactile Control and Hybrid Deformation Regulation for 3D Viscoelastic Object Manipulation
This paper investigates a framework (CATCH-FORM-3D) for the precise contact force control and surface deformation regulation in viscoelastic material manipulation. A partial differential equation (PDE) is proposed to model the spatiotemporal stress-strain dynamics, integrating 3D Kelvin-Voigt (stiffness-damping) and Maxwell (diffusion) effects to capture the material's viscoelastic behavior. Key mechanical parameters (stiffness, damping, diffusion coefficients) are estimated in real time via a PDE-driven observer. This observer fuses visual-tactile sensor data and experimentally validated forces to generate rich regressor signals. Then, an inner-outer loop control structure is built up. In the outer loop, the reference deformation is updated by a novel admittance control law, a proportional-derivative (PD) feedback law with contact force measurements, ensuring that the system responds adaptively to external interactions. In the inner loop, a reaction-diffusion PDE for the deformation tracking error is formulated and then exponentially stabilized by conforming the contact surface to analytical geometric configurations (i.e., defining Dirichlet boundary conditions). This dual-loop architecture enables the effective deformation regulation in dynamic contact environments. Experiments using a PaXini robotic hand demonstrate sub-millimeter deformation accuracy and stable force tracking. The framework advances compliant robotic interactions in applications like industrial assembly, polymer shaping, surgical treatment, and household service.
comment: 8 pages, 8 figures, 2 tables
CATCH-FORM-ACTer: Compliance-Aware Tactile Control and Hybrid Deformation Regulation-Based Action Transformer for Viscoelastic Object Manipulation
Automating contact-rich manipulation of viscoelastic objects with rigid robots faces challenges including dynamic parameter mismatches, unstable contact oscillations, and spatiotemporal force-deformation coupling. In our prior work, a Compliance-Aware Tactile Control and Hybrid Deformation Regulation (CATCH-FORM-3D) strategy fulfills robust and effective manipulations of 3D viscoelastic objects, which combines a contact force-driven admittance outer loop and a PDE-stabilized inner loop, achieving sub-millimeter surface deformation accuracy. However, this strategy requires fine-tuning of object-specific parameters and task-specific calibrations, to bridge this gap, a CATCH-FORM-ACTer is proposed, by enhancing CATCH-FORM-3D with a framework of Action Chunking with Transformer (ACT). An intuitive teleoperation system performs Learning from Demonstration (LfD) to build up a long-horizon sensing, decision-making and execution sequences. Unlike conventional ACT methods focused solely on trajectory planning, our approach dynamically adjusts stiffness, damping, and diffusion parameters in real time during multi-phase manipulations, effectively imitating human-like force-deformation modulation. Experiments on single arm/bimanual robots in three tasks show better force fields patterns and thus 10%-20% higher success rates versus conventional methods, enabling precise, safe interactions for industrial, medical or household scenarios.
comment: 7 pages, 7 figures, 1 table
II-NVM: Enhancing Map Accuracy and Consistency with Normal Vector-Assisted Mapping
SLAM technology plays a crucial role in indoor mapping and localization. A common challenge in indoor environments is the "double-sided mapping issue", where closely positioned walls, doors, and other surfaces are mistakenly identified as a single plane, significantly hindering map accuracy and consistency. To address this issue this paper introduces a SLAM approach that ensures accurate mapping using normal vector consistency. We enhance the voxel map structure to store both point cloud data and normal vector information, enabling the system to evaluate consistency during nearest neighbor searches and map updates. This process distinguishes between the front and back sides of surfaces, preventing incorrect point-to-plane constraints. Moreover, we implement an adaptive radius KD-tree search method that dynamically adjusts the search radius based on the local density of the point cloud, thereby enhancing the accuracy of normal vector calculations. To further improve realtime performance and storage efficiency, we incorporate a Least Recently Used (LRU) cache strategy, which facilitates efficient incremental updates of the voxel map. The code is released as open-source and validated in both simulated environments and real indoor scenarios. Experimental results demonstrate that this approach effectively resolves the "double-sided mapping issue" and significantly improves mapping precision. Additionally, we have developed and open-sourced the first simulation and real world dataset specifically tailored for the "double-sided mapping issue".
Leveraging Passive Compliance of Soft Robotics for Physical Human-Robot Collaborative Manipulation
This work represents an initial benchmark of a large-scale soft robot performing physical, collaborative manipulation of a long, extended object with a human partner. The robot consists of a pneumatically-actuated, three-link continuum soft manipulator mounted to an omni-directional mobile base. The system level configuration of the robot and design of the collaborative manipulation (co-manipulation) study are presented. The initial results, both quantitative and qualitative, are directly compared to previous similar human-human co-manipulation studies. These initial results show promise in the ability for large-scale soft robots to perform comparably to human partners acting as non-visual followers in a co-manipulation task. Furthermore, these results challenge traditional soft robot strength limitations and indicate potential for applications requiring strength and adaptability.
comment: 22 pages, 10 figures, to be published in ACM Transactions on Human-Robot Interactions
CL-CoTNav: Closed-Loop Hierarchical Chain-of-Thought for Zero-Shot Object-Goal Navigation with Vision-Language Models
Visual Object Goal Navigation (ObjectNav) requires a robot to locate a target object in an unseen environment using egocentric observations. However, decision-making policies often struggle to transfer to unseen environments and novel target objects, which is the core generalization problem. Traditional end-to-end learning methods exacerbate this issue, as they rely on memorizing spatial patterns rather than employing structured reasoning, limiting their ability to generalize effectively. In this letter, we introduce Closed-Loop Hierarchical Chain-of-Thought Navigation (CL-CoTNav), a vision-language model (VLM)-driven ObjectNav framework that integrates structured reasoning and closed-loop feedback into navigation decision-making. To enhance generalization, we fine-tune a VLM using multi-turn question-answering (QA) data derived from human demonstration trajectories. This structured dataset enables hierarchical Chain-of-Thought (H-CoT) prompting, systematically extracting compositional knowledge to refine perception and decision-making, inspired by the human cognitive process of locating a target object through iterative reasoning steps. Additionally, we propose a Closed-Loop H-CoT mechanism that incorporates detection and reasoning confidence scores into training. This adaptive weighting strategy guides the model to prioritize high-confidence data pairs, mitigating the impact of noisy inputs and enhancing robustness against hallucinated or incorrect reasoning. Extensive experiments in the AI Habitat environment demonstrate CL-CoTNav's superior generalization to unseen scenes and novel object categories. Our method consistently outperforms state-of-the-art approaches in navigation success rate (SR) and success weighted by path length (SPL) by 22.4\%. We release our datasets, models, and supplementary videos on our project page.
Enhancing Human-Robot Interaction in Healthcare: A Study on Nonverbal Communication Cues and Trust Dynamics with NAO Robot Caregivers
As the population of older adults increases, so will the need for both human and robot care providers. While traditional practices involve hiring human caregivers to serve meals and attend to basic needs, older adults often require continuous companionship and health monitoring. However, hiring human caregivers for this job costs a lot of money. However, using a robot like Nao could be cheaper and still helpful. This study explores the integration of humanoid robots, particularly Nao, in health monitoring and caregiving for older adults. Using a mixed-methods approach with a within-subject factorial design, we investigated the effectiveness of nonverbal communication modalities, including touch, gestures, and LED patterns, in enhancing human-robot interactions. Our results indicate that Nao's touch-based health monitoring was well-received by participants, with positive ratings across various dimensions. LED patterns were perceived as more effective and accurate compared to hand and head gestures. Moreover, longer interactions were associated with higher trust levels and perceived empathy, highlighting the importance of prolonged engagement in fostering trust in human-robot interactions. Despite limitations, our study contributes valuable insights into the potential of humanoid robots to improve health monitoring and caregiving for older adults.
comment: The dataset used in this manuscript was created for the purpose of a class project and does not represent actual research data reviewed through a formal ethical process. Therefore, I was not permitted to submit this project to any public platform, as doing so would be considered an academic violation
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
Advancing Manipulation Capabilities of a UAV Featuring Dynamic Center-of-Mass Displacement
As aerial robots gain traction in industrial applications, there is growing interest in enhancing their physical interaction capabilities. Pushing tasks performed by aerial manipulators have been successfully demonstrated in contact-based inspections. However, more complex industrial applications require these systems to support higher-DoF (Degree of Freedom) manipulators and generate larger forces while pushing (e.g., drilling, grinding). This paper builds on our previous work, where we introduced an aerial vehicle that can dynamically vary its CoM (Center of Mass) location to improve force exertion during interactions. We propose a novel approach to further enhance this system's force generation by optimizing its CoM location during interactions. Additionally, we study the case of this aerial vehicle equipped with a 2-DoF manipulation arm to extend the system's functionality in tool-based tasks. The effectiveness of the proposed methods is validated through simulations, demonstrating the potential of this system for advanced aerial manipulation in practical settings.
comment: arXiv admin note: text overlap with arXiv:2404.01110, accepted to the 2025 International Conference on Unmanned Aircraft Systems (ICUAS)
Learning Bipedal Locomotion on Gear-Driven Humanoid Robot Using Foot-Mounted IMUs
Sim-to-real reinforcement learning (RL) for humanoid robots with high-gear ratio actuators remains challenging due to complex actuator dynamics and the absence of torque sensors. To address this, we propose a novel RL framework leveraging foot-mounted inertial measurement units (IMUs). Instead of pursuing detailed actuator modeling and system identification, we utilize foot-mounted IMU measurements to enhance rapid stabilization capabilities over challenging terrains. Additionally, we propose symmetric data augmentation dedicated to the proposed observation space and random network distillation to enhance bipedal locomotion learning over rough terrain. We validate our approach through hardware experiments on a miniature-sized humanoid EVAL-03 over a variety of environments. The experimental results demonstrate that our method improves rapid stabilization capabilities over non-rigid surfaces and sudden environmental transitions.
comment: Project Page: https://sony.github.io/learning-feet-imu-locomotion/
RINO: Accurate, Robust Radar-Inertial Odometry with Non-Iterative Estimation
Odometry in adverse weather conditions, such as fog, rain, and snow, presents significant challenges, as traditional vision and LiDAR-based methods often suffer from degraded performance. Radar-Inertial Odometry (RIO) has emerged as a promising solution due to its resilience in such environments. In this paper, we present RINO, a non-iterative RIO framework implemented in an adaptively loosely coupled manner. Building upon ORORA as the baseline for radar odometry, RINO introduces several key advancements, including improvements in keypoint extraction, motion distortion compensation, and pose estimation via an adaptive voting mechanism. This voting strategy facilitates efficient polynomial-time optimization while simultaneously quantifying the uncertainty in the radar module's pose estimation. The estimated uncertainty is subsequently integrated into the maximum a posteriori (MAP) estimation within a Kalman filter framework. Unlike prior loosely coupled odometry systems, RINO not only retains the global and robust registration capabilities of the radar component but also dynamically accounts for the real-time operational state of each sensor during fusion. Experimental results conducted on publicly available datasets demonstrate that RINO reduces translation and rotation errors by 1.06% and 0.09{\deg}/100m, respectively, when compared to the baseline method, thus significantly enhancing its accuracy. Furthermore, RINO achieves performance comparable to state-of-the-art methods.
DAG-Plan: Generating Directed Acyclic Dependency Graphs for Dual-Arm Cooperative Planning
Dual-arm robots offer enhanced versatility and efficiency over single-arm counterparts by enabling concurrent manipulation of multiple objects or cooperative execution of tasks using both arms. However, the coordination of dual-arm systems for long-horizon tasks continues to pose significant challenges, stemming from the intricate temporal and spatial dependencies among sub-tasks, necessitating intelligent decisions regarding the allocation of actions between arms and their optimal execution order. Existing task planning methods predominantly focus on single-arm robots or rely on predefined bimanual operations to use large language models (LLMs) generate task sequence with linear temporal dependency, failing to fully leverage the capabilities of dual-arm systems. To address this limitation, we introduce DAG-Plan, a structured task planning framework tailored for dual-arm robots. DAG-Plan harnesses LLMs to decompose intricate tasks into actionable sub-tasks represented as nodes within a directed acyclic graph (DAG). Critically, DAG-Plan dynamically assigns these sub-tasks to the appropriate arm based on real-time environmental observations, enabling parallel and adaptive execution. We evaluate DAG-Plan on the Dual-Arm Kitchen Benchmark, comprising 5 sequential tasks with 44 sub-tasks. Extensive experiments demonstrate the superiority of DAG-Plan over directly using LLM to generate linear task sequence, achieving 52.8% higher efficiency compared to the single-arm task planning and 48% higher success rate of the dual-arm task planning. Compared to iterative methods, DAG-Plan improving execution efficiency 84.1% due to its fewer query time. More demos and information are available on https://sites.google.com/view/dag-plan.
Formal Verification and Control with Conformal Prediction
In this survey, we design formal verification and control algorithms for autonomous systems with practical safety guarantees using conformal prediction (CP), a statistical tool for uncertainty quantification. We focus on learning-enabled autonomous systems (LEASs) in which the complexity of learning-enabled components (LECs) is a major bottleneck that hampers the use of existing model-based verification and design techniques. Instead, we advocate for the use of CP, and we will demonstrate its use in formal verification, systems and control theory, and robotics. We argue that CP is specifically useful due to its simplicity (easy to understand, use, and modify), generality (requires no assumptions on learned models and data distributions, i.e., is distribution-free), and efficiency (real-time capable and accurate). We pursue the following goals with this survey. First, we provide an accessible introduction to CP for non-experts who are interested in using CP to solve problems in autonomy. Second, we show how to use CP for the verification of LECs, e.g., for verifying input-output properties of neural networks. Third and fourth, we review recent articles that use CP for safe control design as well as offline and online verification of LEASs. We summarize their ideas in a unifying framework that can deal with the complexity of LEASs in a computationally efficient manner. In our exposition, we consider simple system specifications, e.g., robot navigation tasks, as well as complex specifications formulated in temporal logic formalisms. Throughout our survey, we compare to other statistical techniques (e.g., scenario optimization, PAC-Bayes theory, etc.) and how these techniques have been used in verification and control. Lastly, we point the reader to open problems and future research directions.
Constraint-Aware Zero-Shot Vision-Language Navigation in Continuous Environments
We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
E-3DGS: Gaussian Splatting with Exposure and Motion Events
Achieving 3D reconstruction from images captured under optimal conditions has been extensively studied in the vision and imaging fields. However, in real-world scenarios, challenges such as motion blur and insufficient illumination often limit the performance of standard frame-based cameras in delivering high-quality images. To address these limitations, we incorporate a transmittance adjustment device at the hardware level, enabling event cameras to capture both motion and exposure events for diverse 3D reconstruction scenarios. Motion events (triggered by camera or object movement) are collected in fast-motion scenarios when the device is inactive, while exposure events (generated through controlled camera exposure) are captured during slower motion to reconstruct grayscale images for high-quality training and optimization of event-based 3D Gaussian Splatting (3DGS). Our framework supports three modes: High-Quality Reconstruction using exposure events, Fast Reconstruction relying on motion events, and Balanced Hybrid optimizing with initial exposure events followed by high-speed motion events. On the EventNeRF dataset, we demonstrate that exposure events significantly improve fine detail reconstruction compared to motion events and outperform frame-based cameras under challenging conditions such as low illumination and overexposure. Furthermore, we introduce EME-3D, a real-world 3D dataset with exposure events, motion events, camera calibration parameters, and sparse point clouds. Our method achieves faster and higher-quality reconstruction than event-based NeRF and is more cost-effective than methods combining event and RGB data. E-3DGS sets a new benchmark for event-based 3D reconstruction with robust performance in challenging conditions and lower hardware demands. The source code and dataset will be available at https://github.com/MasterHow/E-3DGS.
comment: Accepted to Applied Optics (AO). The source code and dataset will be available at https://github.com/MasterHow/E-3DGS
Open-World Task and Motion Planning via Vision-Language Model Inferred Constraints
Foundation models trained on internet-scale data, such as Vision-Language Models (VLMs), excel at performing a wide variety of common sense tasks like visual question answering. Despite their impressive capabilities, these models cannot currently be directly applied to challenging robot manipulation problems that require complex and precise continuous reasoning over long horizons. Task and Motion Planning (TAMP) systems can control high-dimensional continuous systems over long horizons via a hybrid search over traditional primitive robot skills. However, these systems require detailed models of how the robot can impact its environment, preventing them from directly interpreting and addressing novel human objectives, for example, an arbitrary natural language goal. We propose deploying VLMs within TAMP systems by having them generate discrete and continuous language-parameterized constraints that enable TAMP to reason about open-world concepts. Specifically, we propose algorithms for VLM partial planning that constrain a TAMP system's discrete temporal search and VLM continuous constraints interpretation to augment the traditional manipulation constraints that TAMP systems seek to satisfy. Experiments demonstrate that our approach -- OWL-TAMP -- outperforms several related baselines, including those that solely use TAMP or VLMs for planning, across several long-horizon manipulation tasks specified directly through natural language. We additionally demonstrate that our approach is compatible with a variety of TAMP systems and can be deployed to solve challenging manipulation tasks on real-world hardware.
Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs
Code LLMs have shown promising results with converting tasks in natural language to programs that can be executed by service robots. We are interested in finetuning small, specialized LLMs for this purpose, but collecting datasets of task-program pairs specific to each robot is time-consuming and expensive. While approaches such as SELF-INSTRUCT and EVOL-INSTRUCT are capable of generating novel tasks given a few examples, they are unable to provide the corresponding programs that correctly abide by physical-world and robot-constraints using the provided programming interface. Using a simulator is a natural potential solution to checking for such constraints, but building simulation environments that can handle arbitrary tasks and their necessary objects and locations, is challenging. To address these challenges, we introduce ROBO-INSTRUCT, which synthesizes task-specific simulation environments on the fly during program execution, by opportunistically inferring entity properties and enforcing corresponding constraints based on how the entities are used in the task program. Additionally, ROBO-INSTRUCT integrates an LLM-aided post-processing procedure to refine instructions for better alignment with robot programs. We demonstrate the effectiveness of ROBO-INSTRUCT across multiple LLMs, showing that our fine-tuned models outperform all baseline methods and even match or surpass the performance of several larger and proprietary models.
Navigation World Models CVPR 2025
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
comment: CVPR 2025. Project page: https://www.amirbar.net/nwm/
Multiagent Systems
Pobogot -- An Open-Hardware Open-Source Low Cost Robot for Swarm Robotics
This paper describes the Pogobot, an open-source and open-hardware platform specifically designed for research involving swarm robotics. Pogobot features vibration-based locomotion, infrared communication, and an array of sensors in a cost-effective package (approx. 250~euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and distributed online reinforcement learning algorithms. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units. More than 200 Pogobots are already being used on a daily basis at Sorbonne Universit\'e and PSL to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems as well as models of social learning and evolution.
Ready, Bid, Go! On-Demand Delivery Using Fleets of Drones with Unknown, Heterogeneous Energy Storage Constraints AAMAS 2025
Unmanned Aerial Vehicles (UAVs) are expected to transform logistics, reducing delivery time, costs, and emissions. This study addresses an on-demand delivery , in which fleets of UAVs are deployed to fulfil orders that arrive stochastically. Unlike previous work, it considers UAVs with heterogeneous, unknown energy storage capacities and assumes no knowledge of the energy consumption models. We propose a decentralised deployment strategy that combines auction-based task allocation with online learning. Each UAV independently decides whether to bid for orders based on its energy storage charge level, the parcel mass, and delivery distance. Over time, it refines its policy to bid only for orders within its capability. Simulations using realistic UAV energy models reveal that, counter-intuitively, assigning orders to the least confident bidders reduces delivery times and increases the number of successfully fulfilled orders. This strategy is shown to outperform threshold-based methods which require UAVs to exceed specific charge levels at deployment. We propose a variant of the strategy which uses learned policies for forecasting. This enables UAVs with insufficient charge levels to commit to fulfilling orders at specific future times, helping to prioritise early orders. Our work provides new insights into long-term deployment of UAV swarms, highlighting the advantages of decentralised energy-aware decision-making coupled with online learning in real-world dynamic environments.
comment: The 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
A Hybrid ABM-PDE Framework for Real-World Infectious Disease Simulations
This paper presents a hybrid modeling approach that couples an Agent-Based Model (ABM) with a partial differential equation (PDE) model in an epidemic setting to simulate the spatial spread of infectious diseases using a compartmental structure with seven health states. The goal is to reduce the computational complexity of a full-ABM by introducing a coupled ABM-PDE model that offers significantly faster simulations while maintaining comparable accuracy. Our results demonstrate that the hybrid model not only reduces the overall simulation runtime (defined as the number of runs required for stable results multiplied by the duration of a single run) but also achieves smaller errors across both 25% and 100% population samples. The coupling mechanism ensures consistency at the model interface: agents crossing from the ABM into the PDE domain are removed and represented as density contributions at the corresponding grid node, while surplus density in the PDE domain is used to generate agents with plausible trajectories derived from mobile phone data. We evaluate the hybrid model using real-world mobility and infection data for the Berlin-Brandenburg region in Germany, showing that it captures the core epidemiological dynamics while enabling efficient large-scale simulations.
Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation
Mission planning for a fleet of cooperative autonomous drones in applications that involve serving distributed target points, such as disaster response, environmental monitoring, and surveillance, is challenging, especially under partial observability, limited communication range, and uncertain environments. Traditional path-planning algorithms struggle in these scenarios, particularly when prior information is not available. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution. Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication. A transformer-based message-passing mechanism, augmented with edge-feature-enhanced attention, captures complex interaction patterns, while a Double Deep Q-Network (Double DQN) with prioritized experience replay optimizes agent policies in partially observable environments. This integration is carefully designed to address specific requirements of multi-agent navigation, such as scalability, adaptability, and efficient task execution. Experimental results demonstrate superior performance, with 90% service provisioning and 100% grid coverage (node discovery), while reducing the average steps per episode to 200, compared to 600 for benchmark methods such as particle swarm optimization (PSO), greedy algorithms and DQN.
comment: 6 pages, 7 figures, Accepted to the 2025 IEEE International Conference on Communications Workshops (ICC Workshops)
Toward Super Agent System with Hybrid AI Routers
AI Agents powered by Large Language Models are transforming the world through enormous applications. A super agent has the potential to fulfill diverse user needs, such as summarization, coding, and research, by accurately understanding user intent and leveraging the appropriate tools to solve tasks. However, to make such an agent viable for real-world deployment and accessible at scale, significant optimizations are required to ensure high efficiency and low cost. This paper presents a design of the Super Agent System. Upon receiving a user prompt, the system first detects the intent of the user, then routes the request to specialized task agents with the necessary tools or automatically generates agentic workflows. In practice, most applications directly serve as AI assistants on edge devices such as phones and robots. As different language models vary in capability and cloud-based models often entail high computational costs, latency, and privacy concerns, we then explore the hybrid mode where the router dynamically selects between local and cloud models based on task complexity. Finally, we introduce the blueprint of an on-device super agent enhanced with cloud. With advances in multi-modality models and edge hardware, we envision that most computations can be handled locally, with cloud collaboration only as needed. Such architecture paves the way for super agents to be seamlessly integrated into everyday life in the near future.
Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
Agents powered by Large Language Models (LLMs) have recently demonstrated impressive capabilities in various tasks. Still, they face limitations in tasks requiring specific, structured knowledge, flexibility, or accountable decision-making. While agents are capable of perceiving their environments, forming inferences, planning, and executing actions towards goals, they often face issues such as hallucinations and lack of contextual memory across interactions. This paper explores how Case-Based Reasoning (CBR), a strategy that solves new problems by referencing past experiences, can be integrated into LLM agent frameworks. This integration allows LLMs to leverage explicit knowledge, enhancing their effectiveness. We systematically review the theoretical foundations of these enhanced agents, identify critical framework components, and formulate a mathematical model for the CBR processes of case retrieval, adaptation, and learning. We also evaluate CBR-enhanced agents against other methods like Chain-of-Thought reasoning and standard Retrieval-Augmented Generation, analyzing their relative strengths. Moreover, we explore how leveraging CBR's cognitive dimensions (including self-reflection, introspection, and curiosity) via goal-driven autonomy mechanisms can further enhance the LLM agent capabilities. Contributing to the ongoing research on neuro-symbolic hybrid systems, this work posits CBR as a viable technique for enhancing the reasoning skills and cognitive aspects of autonomous LLM agents.
Data Spatial Programming
We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate the topological relationships between data entities and the execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures or finite states. By formalizing the relationships between data elements in this topological space, our approach allows for more intuitive modeling of complex systems where a topology of connections is formed for the underlying computational model. This paradigm addresses limitations in traditional OOP when representing a wide range of problems in computer science such as agent-based systems, social networks, processing on relational data, neural networks, distributed systems, finite state machines, and other spatially-oriented computational problems.
comment: 27 pages, 41 pages with appendix
Systems and Control (CS)
Performance Evaluation of Trajectory Tracking Controllers for a Quadruped Robot Leg
The complexities in the dynamic model of the legged robots make it necessary to utilize model-free controllers in the task of trajectory tracking. In This paper, an adaptive transpose Jacobian approach is proposed to deal with the dynamic model complexity, which utilizes an adaptive PI-algorithm to adjust the control gains. The performance of the proposed control algorithm is compared with the conventional transpose Jacobian and sliding mode control algorithms and evaluated by the root mean square of the errors and control input energy criteria. In order to appraise the effectiveness of the proposed control system, simulations are carried out in MATLAB/Simulink software for a quadruped robot leg for semi-elliptical path tracking. The obtained results show that the proposed adaptive transpose Jacobian reduces the overshoot and root mean square of the errors and at the same time, decreases the control input energy. Moreover, transpose Jacobin and adaptive transpose Jacobian are more robust to changes in initial conditions compared to the conventional sliding mode control. Furthermore, sliding mode control performs well up to 20% uncertainties in the parameters due to its model-based nature, whereas the transpose Jacobin and the proposed adaptive transpose Jacobian algorithms show promising results even in higher mass uncertainties.
comment: Published in IEEE Xplore
Safe Flow Matching: Robot Motion Planning with Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with unseen environments or dynamic constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, we propose, Safe Flow Matching (SafeFM), a motion planning approach for trajectory generation that integrates flow matching with safety guarantees. By incorporating the proposed flow matching barrier functions, SafeFM ensures that generated trajectories remain within safe regions throughout the planning horizon, even in the presence of previously unseen obstacles or state-action constraints. Unlike diffusion-based approaches, our method allows for direct, efficient sampling of constraint-satisfying trajectories, making it well-suited for real-time motion planning. We evaluate SafeFM on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety, generalization, and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io/SafeFM/
Reinforcement Learning-Driven Plant-Wide Refinery Planning Using Model Decomposition
In the era of smart manufacturing and Industry 4.0, the refining industry is evolving towards large-scale integration and flexible production systems. In response to these new demands, this paper presents a novel optimization framework for plant-wide refinery planning, integrating model decomposition with deep reinforcement learning. The approach decomposes the complex large scale refinery optimization problem into manageable submodels, improving computational efficiency while preserving accuracy. A reinforcement learning-based pricing mechanism is introduced to generate pricing strategies for intermediate products, facilitating better coordination between submodels and enabling rapid responses to market changes. Three industrial case studies, covering both single-period and multi-period planning, demonstrate significant improvements in computational efficiency while ensuring refinery profitability.
Neural Fidelity Calibration for Informative Sim-to-Real Adaptation
Deep reinforcement learning can seamlessly transfer agile locomotion and navigation skills from the simulator to real world. However, bridging the sim-to-real gap with domain randomization or adversarial methods often demands expert physics knowledge to ensure policy robustness. Even so, cutting-edge simulators may fall short of capturing every real-world detail, and the reconstructed environment may introduce errors due to various perception uncertainties. To address these challenges, we propose Neural Fidelity Calibration (NFC), a novel framework that employs conditional score-based diffusion models to calibrate simulator physical coefficients and residual fidelity domains online during robot execution. Specifically, the residual fidelity reflects the simulation model shift relative to the real-world dynamics and captures the uncertainty of the perceived environment, enabling us to sample realistic environments under the inferred distribution for policy fine-tuning. Our framework is informative and adaptive in three key ways: (a) we fine-tune the pretrained policy only under anomalous scenarios, (b) we build sequential NFC online with the pretrained NFC's proposal prior, reducing the diffusion model's training burden, and (c) when NFC uncertainty is high and may degrade policy improvement, we leverage optimistic exploration to enable hallucinated policy optimization. Our framework achieves superior simulator calibration precision compared to state-of-the-art methods across diverse robots with high-dimensional parametric spaces. We study the critical contribution of residual fidelity to policy improvement in simulation and real-world experiments. Notably, our approach demonstrates robust robot navigation under challenging real-world conditions, such as a broken wheel axle on snowy surfaces.
Enabling Safety for Aerial Robots: Planning and Control Architectures ICRA
Ensuring safe autonomy is crucial for deploying aerial robots in real-world applications. However, safety is a multifaceted challenge that must be addressed from multiple perspectives, including navigation in dynamic environments, operation under resource constraints, and robustness against adversarial attacks and uncertainties. In this paper, we present the authors' recent work that tackles some of these challenges and highlights key aspects that must be considered to enhance the safety and performance of autonomous aerial systems. All presented approaches are validated through hardware experiments.
comment: 2025 ICRA Workshop on 25 years of Aerial Robotics: Challenges and Opportunities
Analysis of the Unscented Transform Controller for Systems with Bounded Nonlinearities
In this paper, we present an analysis of the Unscented Transform Controller (UTC), a technique to control nonlinear systems motivated as a dual to the Unscented Kalman Filter (UKF). We consider linear, discrete-time systems augmented by a bounded nonlinear function of the state. For such systems, we review 1-step and N-step versions of the UTC. Using a Lyapunov-based analysis, we prove that the states and inputs converge to a bounded ball around the origin, whose radius depends on the bound on the nonlinearity. Using examples of a fighter jet model and a quadcopter, we demonstrate that the UTC achieves satisfactory regulation and tracking performance on these nonlinear models.
comment: 6 pages, 4 figures
Control Co-Design Under Uncertainty for Offshore Wind Farms: Optimizing Grid Integration, Energy Storage, and Market Participation
Offshore wind farms (OWFs) are set to significantly contribute to global decarbonization efforts. Developers often use a sequential approach to optimize design variables and market participation for grid-integrated offshore wind farms. However, this method can lead to sub-optimal system performance, and uncertainties associated with renewable resources are often overlooked in decision-making. This paper proposes a control co-design approach, optimizing design and control decisions for integrating OWFs into the power grid while considering energy market and primary frequency market participation. Additionally, we introduce optimal sizing solutions for energy storage systems deployed onshore to enhance revenue for OWF developers over time. This framework addresses uncertainties related to wind resources and energy prices. We analyze five U.S. west-coast offshore wind farm locations and potential interconnection points, as identified by the Bureau of Ocean Energy Management (BOEM). Results show that optimized control co-design solutions can increase market revenue by 3.2\% and provide flexibility in managing wind resource uncertainties.
Secondary Safety Control for Systems with Sector Bounded Nonlinearities
We consider the problem of safety verification and safety-aware controller synthesis for systems with sector bounded nonlinearities. We aim to keep the states of the system within a given safe set under potential actuator and sensor attacks. Specifically, we adopt the setup that a controller has already been designed to stabilize the plant. Using invariant sets and barrier certificate theory, we first give sufficient conditions to verify the safety of the closed-loop system under attacks. Furthermore, by using a subset of sensors that are assumed to be free of attacks, we provide a synthesis method for a secondary controller that enhances the safety of the system. The sufficient conditions to verify safety are derived using Lyapunov-based tools and the S-procedure. Using the projection lemma, the conditions are then formulated as linear matrix inequality (LMI) problems which can be solved efficiently. Lastly, our theoretical results are illustrated through numerical simulations.
comment: Supplementary material for the Automatica submission
POD-Based Sparse Stochastic Estimation of Wind Turbine Blade Vibrations
This study presents a framework for estimating the full vibrational state of wind turbine blades from sparse deflection measurements. The identification is performed in a reduced-order space obtained from a Proper Orthogonal Decomposition (POD) of high-fidelity aeroelastic simulations based on Geometrically Exact Beam Theory (GEBT). In this space, a Reduced Order Model (ROM) is constructed using a linear stochastic estimator, and further enhanced through Kalman fusion with a quasi-steady model of azimuthal dynamics driven by measured wind speed. The performance of the proposed estimator is assessed in a synthetic environment replicating turbulent inflow and measurement noise over a wide range of operating conditions. Results demonstrate the method's ability to accurately reconstruct three-dimensional deformations and accelerations using noisy displacement and acceleration measurements at only four spatial locations. These findings highlight the potential of the proposed framework for real-time blade monitoring, optimal sensor placement, and active load control in wind turbine systems.
Sectoral and spatial decomposition methods for multi-sector capacity expansion models
Multi-sector capacity expansion models play a crucial role in energy planning by providing decision support for policymaking in technology development. To ensure reliable support, these models require high technological, spatial, and temporal resolution, leading to large-scale linear programming problems that are often computationally intractable. To address this challenge, conventional approaches rely on simplifying abstractions that trade accuracy for computational efficiency. Benders decomposition has been widely explored to improve computational efficiency in electricity capacity expansion models. Specifically, state-of-the-art methods have primarily focused on improving performance through temporal decomposition. However, multi-sector models introduce additional complexity, requiring new decomposition strategies. In this work, we propose a budget-based formulation to extend decomposition to the sectoral and spatial domains. We test the developed sectoral and spatial Benders decomposition algorithms on case studies of the continental United States, considering different configurations in terms of spatial and temporal resolution. Results show that our algorithms achieve substantial performance improvement compared to existing decomposition algorithms, with runtime reductions within 15%-70%. The proposed methods leverage the generic structure of multi-sector capacity expansion models, and can thus be applied to most existing energy planning models, ensuring computational tractability without sacrificing resolution.
comment: Submitted to Elsevier for possible publication
Physics-informed data-driven control without persistence of excitation
We show that data that is not sufficiently informative to allow for system re-identification can still provide meaningful information when combined with external or physical knowledge of the system, such as bounded system matrix norms. We then illustrate how this information can be leveraged for safety and energy minimization problems and to enhance predictions in unmodelled dynamics. This preliminary work outlines key ideas toward using limited data for effective control by integrating physical knowledge of the system and exploiting interpolation conditions.
comment: 8 pages, 4 figures
Statistical Linear Regression Approach to Kalman Filtering and Smoothing under Cyber-Attacks
Remote state estimation in cyber-physical systems is often vulnerable to cyber-attacks due to wireless connections between sensors and computing units. In such scenarios, adversaries compromise the system by injecting false data or blocking measurement transmissions via denial-of-service attacks, distorting sensor readings. This paper develops a Kalman filter and Rauch--Tung--Striebel (RTS) smoother for linear stochastic state-space models subject to cyber-attacked measurements. We approximate the faulty measurement model via generalized statistical linear regression (GSLR). The GSLR-based approximated measurement model is then used to develop a Kalman filter and RTS smoother for the problem. The effectiveness of the proposed algorithms under cyber-attacks is demonstrated through a simulated aircraft tracking experiment.
comment: 5 pages, 4 figures
Data-driven Estimator Synthesis with Instantaneous Noise
Data-driven controller design based on data informativity has gained popularity due to its straightforward applicability, while providing rigorous guarantees. However, applying this framework to the estimator synthesis problem introduces technical challenges, which can only be solved so far by adding restrictive assumptions. In this work, we remove these restrictions to improve performance guarantees. Moreover, our parameterization allows the integration of additional structural knowledge, such as bounds on parameters. Our findings are validated using numerical examples.
Interior Point Differential Dynamic Programming, Redux
We present IPDDP2, a structure-exploiting algorithm for solving discrete-time, finite horizon optimal control problems with nonlinear constraints. Inequality constraints are handled using a primal-dual interior point formulation and step acceptance for equality constraints follows a line-search filter approach. The iterates of the algorithm are derived under the Differential Dynamic Programming (DDP) framework. Our numerical experiments evaluate IPDDP2 on four robotic motion planning problems. IPDDP2 reliably converges to low optimality error and exhibits local quadratic and global convergence from remote starting points. Notably, we showcase the robustness of IPDDP2 by using it to solve a contact-implicit, joint limited acrobot swing-up problem involving complementarity constraints from a range of initial conditions. We provide a full implementation of IPDDP2 in the Julia programming language.
Neural Network-assisted Interval Reachability for Systems with Control Barrier Function-Based Safe Controllers
Control Barrier Functions (CBFs) have been widely utilized in the design of optimization-based controllers and filters for dynamical systems to ensure forward invariance of a given set of safe states. While CBF-based controllers offer safety guarantees, they can compromise the performance of the system, leading to undesirable behaviors such as unbounded trajectories and emergence of locally stable spurious equilibria. Computing reachable sets for systems with CBF-based controllers is an effective approach for runtime performance and stability verification, and can potentially serve as a tool for trajectory re-planning. In this paper, we propose a computationally efficient interval reachability method for performance verification of systems with optimization-based controllers by: (i) approximating the optimization-based controller by a pre-trained neural network to avoid solving optimization problems repeatedly, and (ii) using mixed monotone theory to construct an embedding system that leverages state-of-the-art neural network verification algorithms for bounding the output of the neural network. Results in terms of closeness of solutions of trajectories of the system with the optimization-based controller and the neural network are derived. Using a single trajectory of the embedding system along with our closeness of solutions result, we obtain an over-approximation of the reachable set of the system with optimization-based controllers. Numerical results are presented to corroborate the technical findings.
Spectral Normalization for Lipschitz-Constrained Policies on Learning Humanoid Locomotion
Reinforcement learning (RL) has shown great potential in training agile and adaptable controllers for legged robots, enabling them to learn complex locomotion behaviors directly from experience. However, policies trained in simulation often fail to transfer to real-world robots due to unrealistic assumptions such as infinite actuator bandwidth and the absence of torque limits. These conditions allow policies to rely on abrupt, high-frequency torque changes, which are infeasible for real actuators with finite bandwidth. Traditional methods address this issue by penalizing aggressive motions through regularization rewards, such as joint velocities, accelerations, and energy consumption, but they require extensive hyperparameter tuning. Alternatively, Lipschitz-Constrained Policies (LCP) enforce finite bandwidth action control by penalizing policy gradients, but their reliance on gradient calculations introduces significant GPU memory overhead. To overcome this limitation, this work proposes Spectral Normalization (SN) as an efficient replacement for enforcing Lipschitz continuity. By constraining the spectral norm of network weights, SN effectively limits high-frequency policy fluctuations while significantly reducing GPU memory usage. Experimental evaluations in both simulation and real-world humanoid robot show that SN achieves performance comparable to gradient penalty methods while enabling more efficient parallel training.
comment: This work has been submitted to the IEEE for possible publication
Optimizing Power Grid Topologies with Reinforcement Learning: A Survey of Methods and Challenges
Power grid operation is becoming increasingly complex due to the rising integration of renewable energy sources and the need for more adaptive control strategies. Reinforcement Learning (RL) has emerged as a promising approach to power network control (PNC), offering the potential to enhance decision-making in dynamic and uncertain environments. The Learning To Run a Power Network (L2RPN) competitions have played a key role in accelerating research by providing standardized benchmarks and problem formulations, leading to rapid advancements in RL-based methods. This survey provides a comprehensive and structured overview of RL applications for power grid topology optimization, categorizing existing techniques, highlighting key design choices, and identifying gaps in current research. Additionally, we present a comparative numerical study evaluating the impact of commonly applied RL-based methods, offering insights into their practical effectiveness. By consolidating existing research and outlining open challenges, this survey aims to provide a foundation for future advancements in RL-driven power grid optimization.
comment: 60 pages, 26 figures, preprint
Advancing Autonomous Vehicle Safety: A Combined Fault Tree Analysis and Bayesian Network Approach
This paper integrates Fault Tree Analysis (FTA) and Bayesian Networks (BN) to assess collision risk and establish Automotive Safety Integrity Level (ASIL) B failure rate targets for critical autonomous vehicle (AV) components. The FTA-BN integration combines the systematic decomposition of failure events provided by FTA with the probabilistic reasoning capabilities of BN, which allow for dynamic updates in failure probabilities, enhancing the adaptability of risk assessment. A fault tree is constructed based on AV subsystem architecture, with collision as the top event, and failure rates are assigned while ensuring the total remains within 100 FIT. Bayesian inference is applied to update posterior probabilities, and the results indicate that perception system failures (46.06 FIT) are the most significant contributor, particularly failures to detect existing objects (PF5) and misclassification (PF6). Mitigation strategies are proposed for sensors, perception, decision-making, and motion control to reduce the collision risk. The FTA-BN integration approach provides dynamic risk quantification, offering system designers refined failure rate targets to improve AV safety.
comment: 7 pages, 6 figures, accepted to IEEE International Conference on Engineering Reliable Autonomous Systems (ERAS)
Adaptive Control of Dubins Vehicle in the Presence of Loss of Effectiveness (Extended Version)
The control of a Dubins Vehicle when subjected to a loss of control effectiveness is considered. A complex state-space representation is used to model the vehicle dynamics. An adaptive control design is proposed, with the underlying stability analysis guaranteeing closed-loop boundedness and tracking of a desired path. It is shown that a path constructed by waypoints and a minimum turn radius can be specified using a reference model which can be followed by the closed loop system. The control design utilizes the complex representation as well as a PID controller for the nominal closed-loop. How the design can be modified to ensure that the control input does not saturate is also discussed. Simulation studies are carried out to complement the theoretical derivations.
comment: Submitted to the 64th IEEE Conference on Decision and Control, 2025
Safe Data-Driven Predictive Control
In the realm of control systems, model predictive control (MPC) has exhibited remarkable potential; however, its reliance on accurate models and substantial computational resources has hindered its broader application, especially within real-time nonlinear systems. This study presents an innovative control framework to enhance the practical viability of the MPC. The developed safe data-driven predictive control aims to eliminate the requirement for precise models and alleviate computational burdens in the nonlinear MPC (NMPC). This is achieved by learning both the system dynamics and the control policy, enabling efficient data-driven predictive control while ensuring system safety. The methodology involves a spatial temporal filter (STF)-based concurrent learning for system identification, a robust control barrier function (RCBF) to ensure the system safety amid model uncertainties, and a RCBF-based NMPC policy approximation. An online policy correction mechanism is also introduced to counteract performance degradation caused by the existing model uncertainties. Demonstrated through simulations on two applications, the proposed approach offers comparable performance to existing benchmarks with significantly reduced computational costs.
comment: arXiv admin note: substantial text overlap with arXiv:2306.17270
Exploring the Effects of Load Altering Attacks on Load Frequency Control through Python and RTDS
The modern power grid increasingly depends on advanced information and communication technology (ICT) systems to enhance performance and reliability through real-time monitoring, intelligent control, and bidirectional communication. However, ICT integration also exposes the grid to cyber-threats. Load altering attacks (LAAs), which use botnets of high-wattage devices to manipulate load profiles, are a notable threat to grid stability. While previous research has examined LAAs, their specific impact on load frequency control (LFC), critical for maintaining nominal frequency during load fluctuations, still needs to be explored. Even minor frequency deviations can jeopardize grid operations. This study bridges the gap by analyzing LAA effects on LFC through simulations of static and dynamic scenarios using Python and RTDS. The results highlight LAA impacts on frequency stability and present an eigenvalue-based stability assessment for dynamic LAAs (DLAAs), identifying key parameters influencing grid resilience.
comment: 2025 IEEE Kiel PowerTech
Robustness of Online Identification-based Policy Iteration to Noisy Data
This article investigates the core mechanisms of indirect data-driven control for unknown systems, focusing on the application of policy iteration (PI) within the context of the linear quadratic regulator (LQR) optimal control problem. Specifically, we consider a setting where data is collected sequentially from a linear system subject to exogenous process noise, and is then used to refine estimates of the optimal control policy. We integrate recursive least squares (RLS) for online model estimation within a certainty-equivalent framework, and employ PI to iteratively update the control policy. In this work, we investigate first the convergence behavior of RLS under two different models of adversarial noise, namely point-wise and energy bounded noise, and then we provide a closed-loop analysis of the combined model identification and control design process. This iterative scheme is formulated as an algorithmic dynamical system consisting of the feedback interconnection between two algorithms expressed as discrete-time systems. This system theoretic viewpoint on indirect data-driven control allows us to establish convergence guarantees to the optimal controller in the face of uncertainty caused by noisy data. Simulations illustrate the theoretical results.
comment: Accepted by At-automatisierungstechnik (Special Issue: Data-driven Control)
On trajectory design from motion primitives for near time-optimal transitions for systems with oscillating internal dynamics
An efficient approach to compute near time-optimal trajectories for linear kinematic systems with oscillatory internal dynamics is presented. Thereby, kinematic constraints with respect to velocity, acceleration and jerk are taken into account. The trajectories are composed of several motion primitives, the most crucial of which is termed jerk segment. Within this contribution, the focus is put on the composition of the overall trajectories, assuming the required motion primitives to be readily available. Since the scheme considered is not time-optimal, even decreasing particular constraints can reduce the overall transition time, which is analysed in detail. This observation implies that replanning of the underlying jerk segments is required as an integral part of the motion planning scheme, further insight into which has been analysed in a complementary contribution. Although the proposed scheme is not time-optimal, it allows for significantly shorter transition times than established methods, such as zero-vibration shaping, while requiring significantly lower computational power than a fully time-optimal scheme.
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. Our numerical study confirms these findings, highlighting the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
On output consensus of heterogeneous dynamical networks
This work is concerned with interconnected networks with non-identical subsystems. We investigate the output consensus of the network where the dynamics are subject to external disturbance and/or reference input. For a network of output-feedback passive subsystems, we first introduce an index that characterises the gap between a pair of adjacent subsystems by the difference of their input-output trajectories. The set of these indices quantifies the level of heterogeneity of the networks. We then provide a condition in terms of the level of heterogeneity and the connectivity of the networks for ensuring the output consensus of the interconnected network.
Scaled Relative Graph Analysis of Lur'e Systems and the Generalized Circle Criterion
Scaled Relative Graphs (SRGs) provide a novel graphical frequency-domain method for the analysis of nonlinear systems. However, we show that the current SRG analysis suffers from a pitfall that limit its applicability in analyzing practical nonlinear systems. We overcome this pitfall by modifying the SRG of a linear time invariant operator, combining the SRG with the Nyquist criterion, and apply our result to Lur'e systems. We thereby obtain a generalization of the celebrated circle criterion, which deals with a broader class of nonlinearities, and provides (incremental) $L_2$-gain performance bounds.
comment: 6 pages, 5 figures, (to be) presented at the European Control Conference 2025 and published in the corresponding proceedings
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
comment: Accepted for the Hamlyn Symposium, London, June 2025
A System Parametrization for Direct Data-Driven Analysis and Control with Error-in-Variables
In this paper, we present a new parametrization to perform direct data-driven analysis and controller synthesis for the error-in-variables case. To achieve this, we employ the Sherman-Morrison-Woodbury formula to transform the problem into a linear fractional transformation (LFT) with unknown measurement errors and disturbances as uncertainties. For bounded uncertainties, we apply robust control techniques to derive a guaranteed upper bound on the H2-norm of the unknown true system. To this end, a single semidefinite program (SDP) needs to be solved, with complexity that is independent of the amount of data. Furthermore, we exploit the signal-to-noise ratio to provide a data-dependent condition, that characterizes whether the proposed parametrization can be employed. The modular formulation allows to extend this framework to controller synthesis with different performance criteria, input-output settings, and various system properties. Finally, we validate the proposed approach through a numerical example.
comment: 6 pages, 1 figure Final Version
Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
Digital Twin -- a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making -- combined with recent advances in machine learning, offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multivariate deep neural network, named Time-Series Dense Encoder (TiDE), as the surrogate model. Unlike conventional MPC models which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating the MPC. Using Directed Energy Deposition (DED) additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10\%-30\%), reducing potential porosity defects. Compared to PID controller, the MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates the MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
Formal Verification and Control with Conformal Prediction
In this survey, we design formal verification and control algorithms for autonomous systems with practical safety guarantees using conformal prediction (CP), a statistical tool for uncertainty quantification. We focus on learning-enabled autonomous systems (LEASs) in which the complexity of learning-enabled components (LECs) is a major bottleneck that hampers the use of existing model-based verification and design techniques. Instead, we advocate for the use of CP, and we will demonstrate its use in formal verification, systems and control theory, and robotics. We argue that CP is specifically useful due to its simplicity (easy to understand, use, and modify), generality (requires no assumptions on learned models and data distributions, i.e., is distribution-free), and efficiency (real-time capable and accurate). We pursue the following goals with this survey. First, we provide an accessible introduction to CP for non-experts who are interested in using CP to solve problems in autonomy. Second, we show how to use CP for the verification of LECs, e.g., for verifying input-output properties of neural networks. Third and fourth, we review recent articles that use CP for safe control design as well as offline and online verification of LEASs. We summarize their ideas in a unifying framework that can deal with the complexity of LEASs in a computationally efficient manner. In our exposition, we consider simple system specifications, e.g., robot navigation tasks, as well as complex specifications formulated in temporal logic formalisms. Throughout our survey, we compare to other statistical techniques (e.g., scenario optimization, PAC-Bayes theory, etc.) and how these techniques have been used in verification and control. Lastly, we point the reader to open problems and future research directions.
Moment-based Density Elicitation with Applications in Probabilistic Loops
We propose the K-series estimation approach for the recovery of unknown univariate and multivariate distributions given knowledge of a finite number of their moments. Our method is directly applicable to the probabilistic analysis of systems that can be represented as probabilistic loops; i.e., algorithms that express and implement non-deterministic processes ranging from robotics to macroeconomics and biology to software and cyber-physical systems. K-series statically approximates the joint and marginal distributions of a vector of continuous random variables updated in a probabilistic non-nested loop with nonlinear assignments given a finite number of moments of the unknown density. Moreover, K-series automatically derives the distribution of the systems' random variables symbolically as a function of the loop iteration. K-series density estimates are accurate, easy and fast to compute. We demonstrate the feasibility and performance of our approach on multiple benchmark examples from the literature.
comment: Accepted for publication in ACM Transactions on Probabilistic Machine Learning, 37 page
Machine learning-based hybrid dynamic modeling and economic predictive control of carbon capture process for ship decarbonization
Implementing carbon capture technology on-board ships holds promise as a solution to facilitate the reduction of carbon intensity in international shipping, as mandated by the International Maritime Organization. In this work, we address the energy-efficient operation of shipboard carbon capture processes by proposing a hybrid modeling-based economic predictive control scheme. Specifically, we consider a comprehensive shipboard carbon capture process that encompasses the ship engine system and the shipboard post-combustion carbon capture plant. To accurately and robustly characterize the dynamic behaviors of this shipboard plant, we develop a hybrid dynamic process model that integrates available imperfect physical knowledge with neural networks trained using process operation data. An economic model predictive control approach is proposed based on the hybrid model to ensure carbon capture efficiency while minimizing energy consumption required for the carbon capture process operation. The cross-entropy method is employed to efficiently solve the complex non-convex optimization problem associated with the proposed hybrid model-based economic model predictive control method. Extensive simulations, analyses, and comparisons are conducted to verify the effectiveness and illustrate the superiority of the proposed framework.
comment: 55 pages, 21 figures, 12 tables
Systems and Control (EESS)
Performance Evaluation of Trajectory Tracking Controllers for a Quadruped Robot Leg
The complexities in the dynamic model of the legged robots make it necessary to utilize model-free controllers in the task of trajectory tracking. In This paper, an adaptive transpose Jacobian approach is proposed to deal with the dynamic model complexity, which utilizes an adaptive PI-algorithm to adjust the control gains. The performance of the proposed control algorithm is compared with the conventional transpose Jacobian and sliding mode control algorithms and evaluated by the root mean square of the errors and control input energy criteria. In order to appraise the effectiveness of the proposed control system, simulations are carried out in MATLAB/Simulink software for a quadruped robot leg for semi-elliptical path tracking. The obtained results show that the proposed adaptive transpose Jacobian reduces the overshoot and root mean square of the errors and at the same time, decreases the control input energy. Moreover, transpose Jacobin and adaptive transpose Jacobian are more robust to changes in initial conditions compared to the conventional sliding mode control. Furthermore, sliding mode control performs well up to 20% uncertainties in the parameters due to its model-based nature, whereas the transpose Jacobin and the proposed adaptive transpose Jacobian algorithms show promising results even in higher mass uncertainties.
comment: Published in IEEE Xplore
Safe Flow Matching: Robot Motion Planning with Control Barrier Functions
Recent advances in generative modeling have led to promising results in robot motion planning, particularly through diffusion and flow-based models that capture complex, multimodal trajectory distributions. However, these methods are typically trained offline and remain limited when faced with unseen environments or dynamic constraints, often lacking explicit mechanisms to ensure safety during deployment. In this work, we propose, Safe Flow Matching (SafeFM), a motion planning approach for trajectory generation that integrates flow matching with safety guarantees. By incorporating the proposed flow matching barrier functions, SafeFM ensures that generated trajectories remain within safe regions throughout the planning horizon, even in the presence of previously unseen obstacles or state-action constraints. Unlike diffusion-based approaches, our method allows for direct, efficient sampling of constraint-satisfying trajectories, making it well-suited for real-time motion planning. We evaluate SafeFM on a diverse set of tasks, including planar robot navigation and 7-DoF manipulation, demonstrating superior safety, generalization, and planning performance compared to state-of-the-art generative planners. Comprehensive resources are available on the project website: https://safeflowmatching.github.io/SafeFM/
Reinforcement Learning-Driven Plant-Wide Refinery Planning Using Model Decomposition
In the era of smart manufacturing and Industry 4.0, the refining industry is evolving towards large-scale integration and flexible production systems. In response to these new demands, this paper presents a novel optimization framework for plant-wide refinery planning, integrating model decomposition with deep reinforcement learning. The approach decomposes the complex large scale refinery optimization problem into manageable submodels, improving computational efficiency while preserving accuracy. A reinforcement learning-based pricing mechanism is introduced to generate pricing strategies for intermediate products, facilitating better coordination between submodels and enabling rapid responses to market changes. Three industrial case studies, covering both single-period and multi-period planning, demonstrate significant improvements in computational efficiency while ensuring refinery profitability.
Neural Fidelity Calibration for Informative Sim-to-Real Adaptation
Deep reinforcement learning can seamlessly transfer agile locomotion and navigation skills from the simulator to real world. However, bridging the sim-to-real gap with domain randomization or adversarial methods often demands expert physics knowledge to ensure policy robustness. Even so, cutting-edge simulators may fall short of capturing every real-world detail, and the reconstructed environment may introduce errors due to various perception uncertainties. To address these challenges, we propose Neural Fidelity Calibration (NFC), a novel framework that employs conditional score-based diffusion models to calibrate simulator physical coefficients and residual fidelity domains online during robot execution. Specifically, the residual fidelity reflects the simulation model shift relative to the real-world dynamics and captures the uncertainty of the perceived environment, enabling us to sample realistic environments under the inferred distribution for policy fine-tuning. Our framework is informative and adaptive in three key ways: (a) we fine-tune the pretrained policy only under anomalous scenarios, (b) we build sequential NFC online with the pretrained NFC's proposal prior, reducing the diffusion model's training burden, and (c) when NFC uncertainty is high and may degrade policy improvement, we leverage optimistic exploration to enable hallucinated policy optimization. Our framework achieves superior simulator calibration precision compared to state-of-the-art methods across diverse robots with high-dimensional parametric spaces. We study the critical contribution of residual fidelity to policy improvement in simulation and real-world experiments. Notably, our approach demonstrates robust robot navigation under challenging real-world conditions, such as a broken wheel axle on snowy surfaces.
Enabling Safety for Aerial Robots: Planning and Control Architectures ICRA
Ensuring safe autonomy is crucial for deploying aerial robots in real-world applications. However, safety is a multifaceted challenge that must be addressed from multiple perspectives, including navigation in dynamic environments, operation under resource constraints, and robustness against adversarial attacks and uncertainties. In this paper, we present the authors' recent work that tackles some of these challenges and highlights key aspects that must be considered to enhance the safety and performance of autonomous aerial systems. All presented approaches are validated through hardware experiments.
comment: 2025 ICRA Workshop on 25 years of Aerial Robotics: Challenges and Opportunities
Analysis of the Unscented Transform Controller for Systems with Bounded Nonlinearities
In this paper, we present an analysis of the Unscented Transform Controller (UTC), a technique to control nonlinear systems motivated as a dual to the Unscented Kalman Filter (UKF). We consider linear, discrete-time systems augmented by a bounded nonlinear function of the state. For such systems, we review 1-step and N-step versions of the UTC. Using a Lyapunov-based analysis, we prove that the states and inputs converge to a bounded ball around the origin, whose radius depends on the bound on the nonlinearity. Using examples of a fighter jet model and a quadcopter, we demonstrate that the UTC achieves satisfactory regulation and tracking performance on these nonlinear models.
comment: 6 pages, 4 figures
Control Co-Design Under Uncertainty for Offshore Wind Farms: Optimizing Grid Integration, Energy Storage, and Market Participation
Offshore wind farms (OWFs) are set to significantly contribute to global decarbonization efforts. Developers often use a sequential approach to optimize design variables and market participation for grid-integrated offshore wind farms. However, this method can lead to sub-optimal system performance, and uncertainties associated with renewable resources are often overlooked in decision-making. This paper proposes a control co-design approach, optimizing design and control decisions for integrating OWFs into the power grid while considering energy market and primary frequency market participation. Additionally, we introduce optimal sizing solutions for energy storage systems deployed onshore to enhance revenue for OWF developers over time. This framework addresses uncertainties related to wind resources and energy prices. We analyze five U.S. west-coast offshore wind farm locations and potential interconnection points, as identified by the Bureau of Ocean Energy Management (BOEM). Results show that optimized control co-design solutions can increase market revenue by 3.2\% and provide flexibility in managing wind resource uncertainties.
Secondary Safety Control for Systems with Sector Bounded Nonlinearities
We consider the problem of safety verification and safety-aware controller synthesis for systems with sector bounded nonlinearities. We aim to keep the states of the system within a given safe set under potential actuator and sensor attacks. Specifically, we adopt the setup that a controller has already been designed to stabilize the plant. Using invariant sets and barrier certificate theory, we first give sufficient conditions to verify the safety of the closed-loop system under attacks. Furthermore, by using a subset of sensors that are assumed to be free of attacks, we provide a synthesis method for a secondary controller that enhances the safety of the system. The sufficient conditions to verify safety are derived using Lyapunov-based tools and the S-procedure. Using the projection lemma, the conditions are then formulated as linear matrix inequality (LMI) problems which can be solved efficiently. Lastly, our theoretical results are illustrated through numerical simulations.
comment: Supplementary material for the Automatica submission
POD-Based Sparse Stochastic Estimation of Wind Turbine Blade Vibrations
This study presents a framework for estimating the full vibrational state of wind turbine blades from sparse deflection measurements. The identification is performed in a reduced-order space obtained from a Proper Orthogonal Decomposition (POD) of high-fidelity aeroelastic simulations based on Geometrically Exact Beam Theory (GEBT). In this space, a Reduced Order Model (ROM) is constructed using a linear stochastic estimator, and further enhanced through Kalman fusion with a quasi-steady model of azimuthal dynamics driven by measured wind speed. The performance of the proposed estimator is assessed in a synthetic environment replicating turbulent inflow and measurement noise over a wide range of operating conditions. Results demonstrate the method's ability to accurately reconstruct three-dimensional deformations and accelerations using noisy displacement and acceleration measurements at only four spatial locations. These findings highlight the potential of the proposed framework for real-time blade monitoring, optimal sensor placement, and active load control in wind turbine systems.
Sectoral and spatial decomposition methods for multi-sector capacity expansion models
Multi-sector capacity expansion models play a crucial role in energy planning by providing decision support for policymaking in technology development. To ensure reliable support, these models require high technological, spatial, and temporal resolution, leading to large-scale linear programming problems that are often computationally intractable. To address this challenge, conventional approaches rely on simplifying abstractions that trade accuracy for computational efficiency. Benders decomposition has been widely explored to improve computational efficiency in electricity capacity expansion models. Specifically, state-of-the-art methods have primarily focused on improving performance through temporal decomposition. However, multi-sector models introduce additional complexity, requiring new decomposition strategies. In this work, we propose a budget-based formulation to extend decomposition to the sectoral and spatial domains. We test the developed sectoral and spatial Benders decomposition algorithms on case studies of the continental United States, considering different configurations in terms of spatial and temporal resolution. Results show that our algorithms achieve substantial performance improvement compared to existing decomposition algorithms, with runtime reductions within 15%-70%. The proposed methods leverage the generic structure of multi-sector capacity expansion models, and can thus be applied to most existing energy planning models, ensuring computational tractability without sacrificing resolution.
comment: Submitted to Elsevier for possible publication
Physics-informed data-driven control without persistence of excitation
We show that data that is not sufficiently informative to allow for system re-identification can still provide meaningful information when combined with external or physical knowledge of the system, such as bounded system matrix norms. We then illustrate how this information can be leveraged for safety and energy minimization problems and to enhance predictions in unmodelled dynamics. This preliminary work outlines key ideas toward using limited data for effective control by integrating physical knowledge of the system and exploiting interpolation conditions.
comment: 8 pages, 4 figures
Statistical Linear Regression Approach to Kalman Filtering and Smoothing under Cyber-Attacks
Remote state estimation in cyber-physical systems is often vulnerable to cyber-attacks due to wireless connections between sensors and computing units. In such scenarios, adversaries compromise the system by injecting false data or blocking measurement transmissions via denial-of-service attacks, distorting sensor readings. This paper develops a Kalman filter and Rauch--Tung--Striebel (RTS) smoother for linear stochastic state-space models subject to cyber-attacked measurements. We approximate the faulty measurement model via generalized statistical linear regression (GSLR). The GSLR-based approximated measurement model is then used to develop a Kalman filter and RTS smoother for the problem. The effectiveness of the proposed algorithms under cyber-attacks is demonstrated through a simulated aircraft tracking experiment.
comment: 5 pages, 4 figures
Data-driven Estimator Synthesis with Instantaneous Noise
Data-driven controller design based on data informativity has gained popularity due to its straightforward applicability, while providing rigorous guarantees. However, applying this framework to the estimator synthesis problem introduces technical challenges, which can only be solved so far by adding restrictive assumptions. In this work, we remove these restrictions to improve performance guarantees. Moreover, our parameterization allows the integration of additional structural knowledge, such as bounds on parameters. Our findings are validated using numerical examples.
Interior Point Differential Dynamic Programming, Redux
We present IPDDP2, a structure-exploiting algorithm for solving discrete-time, finite horizon optimal control problems with nonlinear constraints. Inequality constraints are handled using a primal-dual interior point formulation and step acceptance for equality constraints follows a line-search filter approach. The iterates of the algorithm are derived under the Differential Dynamic Programming (DDP) framework. Our numerical experiments evaluate IPDDP2 on four robotic motion planning problems. IPDDP2 reliably converges to low optimality error and exhibits local quadratic and global convergence from remote starting points. Notably, we showcase the robustness of IPDDP2 by using it to solve a contact-implicit, joint limited acrobot swing-up problem involving complementarity constraints from a range of initial conditions. We provide a full implementation of IPDDP2 in the Julia programming language.
Neural Network-assisted Interval Reachability for Systems with Control Barrier Function-Based Safe Controllers
Control Barrier Functions (CBFs) have been widely utilized in the design of optimization-based controllers and filters for dynamical systems to ensure forward invariance of a given set of safe states. While CBF-based controllers offer safety guarantees, they can compromise the performance of the system, leading to undesirable behaviors such as unbounded trajectories and emergence of locally stable spurious equilibria. Computing reachable sets for systems with CBF-based controllers is an effective approach for runtime performance and stability verification, and can potentially serve as a tool for trajectory re-planning. In this paper, we propose a computationally efficient interval reachability method for performance verification of systems with optimization-based controllers by: (i) approximating the optimization-based controller by a pre-trained neural network to avoid solving optimization problems repeatedly, and (ii) using mixed monotone theory to construct an embedding system that leverages state-of-the-art neural network verification algorithms for bounding the output of the neural network. Results in terms of closeness of solutions of trajectories of the system with the optimization-based controller and the neural network are derived. Using a single trajectory of the embedding system along with our closeness of solutions result, we obtain an over-approximation of the reachable set of the system with optimization-based controllers. Numerical results are presented to corroborate the technical findings.
Optimizing Power Grid Topologies with Reinforcement Learning: A Survey of Methods and Challenges
Power grid operation is becoming increasingly complex due to the rising integration of renewable energy sources and the need for more adaptive control strategies. Reinforcement Learning (RL) has emerged as a promising approach to power network control (PNC), offering the potential to enhance decision-making in dynamic and uncertain environments. The Learning To Run a Power Network (L2RPN) competitions have played a key role in accelerating research by providing standardized benchmarks and problem formulations, leading to rapid advancements in RL-based methods. This survey provides a comprehensive and structured overview of RL applications for power grid topology optimization, categorizing existing techniques, highlighting key design choices, and identifying gaps in current research. Additionally, we present a comparative numerical study evaluating the impact of commonly applied RL-based methods, offering insights into their practical effectiveness. By consolidating existing research and outlining open challenges, this survey aims to provide a foundation for future advancements in RL-driven power grid optimization.
comment: 60 pages, 26 figures, preprint
Advancing Autonomous Vehicle Safety: A Combined Fault Tree Analysis and Bayesian Network Approach
This paper integrates Fault Tree Analysis (FTA) and Bayesian Networks (BN) to assess collision risk and establish Automotive Safety Integrity Level (ASIL) B failure rate targets for critical autonomous vehicle (AV) components. The FTA-BN integration combines the systematic decomposition of failure events provided by FTA with the probabilistic reasoning capabilities of BN, which allow for dynamic updates in failure probabilities, enhancing the adaptability of risk assessment. A fault tree is constructed based on AV subsystem architecture, with collision as the top event, and failure rates are assigned while ensuring the total remains within 100 FIT. Bayesian inference is applied to update posterior probabilities, and the results indicate that perception system failures (46.06 FIT) are the most significant contributor, particularly failures to detect existing objects (PF5) and misclassification (PF6). Mitigation strategies are proposed for sensors, perception, decision-making, and motion control to reduce the collision risk. The FTA-BN integration approach provides dynamic risk quantification, offering system designers refined failure rate targets to improve AV safety.
comment: 7 pages, 6 figures, accepted to IEEE International Conference on Engineering Reliable Autonomous Systems (ERAS)
Adaptive Control of Dubins Vehicle in the Presence of Loss of Effectiveness (Extended Version)
The control of a Dubins Vehicle when subjected to a loss of control effectiveness is considered. A complex state-space representation is used to model the vehicle dynamics. An adaptive control design is proposed, with the underlying stability analysis guaranteeing closed-loop boundedness and tracking of a desired path. It is shown that a path constructed by waypoints and a minimum turn radius can be specified using a reference model which can be followed by the closed loop system. The control design utilizes the complex representation as well as a PID controller for the nominal closed-loop. How the design can be modified to ensure that the control input does not saturate is also discussed. Simulation studies are carried out to complement the theoretical derivations.
comment: Submitted to the 64th IEEE Conference on Decision and Control, 2025
Safe Data-Driven Predictive Control
In the realm of control systems, model predictive control (MPC) has exhibited remarkable potential; however, its reliance on accurate models and substantial computational resources has hindered its broader application, especially within real-time nonlinear systems. This study presents an innovative control framework to enhance the practical viability of the MPC. The developed safe data-driven predictive control aims to eliminate the requirement for precise models and alleviate computational burdens in the nonlinear MPC (NMPC). This is achieved by learning both the system dynamics and the control policy, enabling efficient data-driven predictive control while ensuring system safety. The methodology involves a spatial temporal filter (STF)-based concurrent learning for system identification, a robust control barrier function (RCBF) to ensure the system safety amid model uncertainties, and a RCBF-based NMPC policy approximation. An online policy correction mechanism is also introduced to counteract performance degradation caused by the existing model uncertainties. Demonstrated through simulations on two applications, the proposed approach offers comparable performance to existing benchmarks with significantly reduced computational costs.
comment: arXiv admin note: substantial text overlap with arXiv:2306.17270
Exploring the Effects of Load Altering Attacks on Load Frequency Control through Python and RTDS
The modern power grid increasingly depends on advanced information and communication technology (ICT) systems to enhance performance and reliability through real-time monitoring, intelligent control, and bidirectional communication. However, ICT integration also exposes the grid to cyber-threats. Load altering attacks (LAAs), which use botnets of high-wattage devices to manipulate load profiles, are a notable threat to grid stability. While previous research has examined LAAs, their specific impact on load frequency control (LFC), critical for maintaining nominal frequency during load fluctuations, still needs to be explored. Even minor frequency deviations can jeopardize grid operations. This study bridges the gap by analyzing LAA effects on LFC through simulations of static and dynamic scenarios using Python and RTDS. The results highlight LAA impacts on frequency stability and present an eigenvalue-based stability assessment for dynamic LAAs (DLAAs), identifying key parameters influencing grid resilience.
comment: 2025 IEEE Kiel PowerTech
Robustness of Online Identification-based Policy Iteration to Noisy Data
This article investigates the core mechanisms of indirect data-driven control for unknown systems, focusing on the application of policy iteration (PI) within the context of the linear quadratic regulator (LQR) optimal control problem. Specifically, we consider a setting where data is collected sequentially from a linear system subject to exogenous process noise, and is then used to refine estimates of the optimal control policy. We integrate recursive least squares (RLS) for online model estimation within a certainty-equivalent framework, and employ PI to iteratively update the control policy. In this work, we investigate first the convergence behavior of RLS under two different models of adversarial noise, namely point-wise and energy bounded noise, and then we provide a closed-loop analysis of the combined model identification and control design process. This iterative scheme is formulated as an algorithmic dynamical system consisting of the feedback interconnection between two algorithms expressed as discrete-time systems. This system theoretic viewpoint on indirect data-driven control allows us to establish convergence guarantees to the optimal controller in the face of uncertainty caused by noisy data. Simulations illustrate the theoretical results.
comment: Accepted by At-automatisierungstechnik (Special Issue: Data-driven Control)
On trajectory design from motion primitives for near time-optimal transitions for systems with oscillating internal dynamics
An efficient approach to compute near time-optimal trajectories for linear kinematic systems with oscillatory internal dynamics is presented. Thereby, kinematic constraints with respect to velocity, acceleration and jerk are taken into account. The trajectories are composed of several motion primitives, the most crucial of which is termed jerk segment. Within this contribution, the focus is put on the composition of the overall trajectories, assuming the required motion primitives to be readily available. Since the scheme considered is not time-optimal, even decreasing particular constraints can reduce the overall transition time, which is analysed in detail. This observation implies that replanning of the underlying jerk segments is required as an integral part of the motion planning scheme, further insight into which has been analysed in a complementary contribution. Although the proposed scheme is not time-optimal, it allows for significantly shorter transition times than established methods, such as zero-vibration shaping, while requiring significantly lower computational power than a fully time-optimal scheme.
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. Our numerical study confirms these findings, highlighting the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
On output consensus of heterogeneous dynamical networks
This work is concerned with interconnected networks with non-identical subsystems. We investigate the output consensus of the network where the dynamics are subject to external disturbance and/or reference input. For a network of output-feedback passive subsystems, we first introduce an index that characterises the gap between a pair of adjacent subsystems by the difference of their input-output trajectories. The set of these indices quantifies the level of heterogeneity of the networks. We then provide a condition in terms of the level of heterogeneity and the connectivity of the networks for ensuring the output consensus of the interconnected network.
Scaled Relative Graph Analysis of Lur'e Systems and the Generalized Circle Criterion
Scaled Relative Graphs (SRGs) provide a novel graphical frequency-domain method for the analysis of nonlinear systems. However, we show that the current SRG analysis suffers from a pitfall that limit its applicability in analyzing practical nonlinear systems. We overcome this pitfall by modifying the SRG of a linear time invariant operator, combining the SRG with the Nyquist criterion, and apply our result to Lur'e systems. We thereby obtain a generalization of the celebrated circle criterion, which deals with a broader class of nonlinearities, and provides (incremental) $L_2$-gain performance bounds.
comment: 6 pages, 5 figures, (to be) presented at the European Control Conference 2025 and published in the corresponding proceedings
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
comment: Accepted for the Hamlyn Symposium, London, June 2025
A System Parametrization for Direct Data-Driven Analysis and Control with Error-in-Variables
In this paper, we present a new parametrization to perform direct data-driven analysis and controller synthesis for the error-in-variables case. To achieve this, we employ the Sherman-Morrison-Woodbury formula to transform the problem into a linear fractional transformation (LFT) with unknown measurement errors and disturbances as uncertainties. For bounded uncertainties, we apply robust control techniques to derive a guaranteed upper bound on the H2-norm of the unknown true system. To this end, a single semidefinite program (SDP) needs to be solved, with complexity that is independent of the amount of data. Furthermore, we exploit the signal-to-noise ratio to provide a data-dependent condition, that characterizes whether the proposed parametrization can be employed. The modular formulation allows to extend this framework to controller synthesis with different performance criteria, input-output settings, and various system properties. Finally, we validate the proposed approach through a numerical example.
comment: 6 pages, 1 figure Final Version
Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
Digital Twin -- a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making -- combined with recent advances in machine learning, offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multivariate deep neural network, named Time-Series Dense Encoder (TiDE), as the surrogate model. Unlike conventional MPC models which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating the MPC. Using Directed Energy Deposition (DED) additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10\%-30\%), reducing potential porosity defects. Compared to PID controller, the MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates the MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
Formal Verification and Control with Conformal Prediction
In this survey, we design formal verification and control algorithms for autonomous systems with practical safety guarantees using conformal prediction (CP), a statistical tool for uncertainty quantification. We focus on learning-enabled autonomous systems (LEASs) in which the complexity of learning-enabled components (LECs) is a major bottleneck that hampers the use of existing model-based verification and design techniques. Instead, we advocate for the use of CP, and we will demonstrate its use in formal verification, systems and control theory, and robotics. We argue that CP is specifically useful due to its simplicity (easy to understand, use, and modify), generality (requires no assumptions on learned models and data distributions, i.e., is distribution-free), and efficiency (real-time capable and accurate). We pursue the following goals with this survey. First, we provide an accessible introduction to CP for non-experts who are interested in using CP to solve problems in autonomy. Second, we show how to use CP for the verification of LECs, e.g., for verifying input-output properties of neural networks. Third and fourth, we review recent articles that use CP for safe control design as well as offline and online verification of LEASs. We summarize their ideas in a unifying framework that can deal with the complexity of LEASs in a computationally efficient manner. In our exposition, we consider simple system specifications, e.g., robot navigation tasks, as well as complex specifications formulated in temporal logic formalisms. Throughout our survey, we compare to other statistical techniques (e.g., scenario optimization, PAC-Bayes theory, etc.) and how these techniques have been used in verification and control. Lastly, we point the reader to open problems and future research directions.
Moment-based Density Elicitation with Applications in Probabilistic Loops
We propose the K-series estimation approach for the recovery of unknown univariate and multivariate distributions given knowledge of a finite number of their moments. Our method is directly applicable to the probabilistic analysis of systems that can be represented as probabilistic loops; i.e., algorithms that express and implement non-deterministic processes ranging from robotics to macroeconomics and biology to software and cyber-physical systems. K-series statically approximates the joint and marginal distributions of a vector of continuous random variables updated in a probabilistic non-nested loop with nonlinear assignments given a finite number of moments of the unknown density. Moreover, K-series automatically derives the distribution of the systems' random variables symbolically as a function of the loop iteration. K-series density estimates are accurate, easy and fast to compute. We demonstrate the feasibility and performance of our approach on multiple benchmark examples from the literature.
comment: Accepted for publication in ACM Transactions on Probabilistic Machine Learning, 37 page
Machine learning-based hybrid dynamic modeling and economic predictive control of carbon capture process for ship decarbonization
Implementing carbon capture technology on-board ships holds promise as a solution to facilitate the reduction of carbon intensity in international shipping, as mandated by the International Maritime Organization. In this work, we address the energy-efficient operation of shipboard carbon capture processes by proposing a hybrid modeling-based economic predictive control scheme. Specifically, we consider a comprehensive shipboard carbon capture process that encompasses the ship engine system and the shipboard post-combustion carbon capture plant. To accurately and robustly characterize the dynamic behaviors of this shipboard plant, we develop a hybrid dynamic process model that integrates available imperfect physical knowledge with neural networks trained using process operation data. An economic model predictive control approach is proposed based on the hybrid model to ensure carbon capture efficiency while minimizing energy consumption required for the carbon capture process operation. The cross-entropy method is employed to efficiently solve the complex non-convex optimization problem associated with the proposed hybrid model-based economic model predictive control method. Extensive simulations, analyses, and comparisons are conducted to verify the effectiveness and illustrate the superiority of the proposed framework.
comment: 55 pages, 21 figures, 12 tables
Robotics
Echo: An Open-Source, Low-Cost Teleoperation System with Force Feedback for Dataset Collection in Robot Learning
In this article, we propose Echo, a novel joint-matching teleoperation system designed to enhance the collection of datasets for manual and bimanual tasks. Our system is specifically tailored for controlling the UR manipulator and features a custom controller with force feedback and adjustable sensitivity modes, enabling precise and intuitive operation. Additionally, Echo integrates a user-friendly dataset recording interface, simplifying the process of collecting high-quality training data for imitation learning. The system is designed to be reliable, cost-effective, and easily reproducible, making it an accessible tool for researchers, laboratories, and startups passionate about advancing robotics through imitation learning. Although the current implementation focuses on the UR manipulator, Echo architecture is reconfigurable and can be adapted to other manipulators and humanoid systems. We demonstrate the effectiveness of Echo through a series of experiments, showcasing its ability to perform complex bimanual tasks and its potential to accelerate research in the field. We provide assembly instructions, a hardware description, and code at https://eterwait.github.io/Echo/.
Fast Adaptation with Behavioral Foundation Models
Unsupervised zero-shot reinforcement learning (RL) has emerged as a powerful paradigm for pretraining behavioral foundation models (BFMs), enabling agents to solve a wide range of downstream tasks specified via reward functions in a zero-shot fashion, i.e., without additional test-time learning or planning. This is achieved by learning self-supervised task embeddings alongside corresponding near-optimal behaviors and incorporating an inference procedure to directly retrieve the latent task embedding and associated policy for any given reward function. Despite promising results, zero-shot policies are often suboptimal due to errors induced by the unsupervised training process, the embedding, and the inference procedure. In this paper, we focus on devising fast adaptation strategies to improve the zero-shot performance of BFMs in a few steps of online interaction with the environment while avoiding any performance drop during the adaptation process. Notably, we demonstrate that existing BFMs learn a set of skills containing more performant policies than those identified by their inference procedure, making them well-suited for fast adaptation. Motivated by this observation, we propose both actor-critic and actor-only fast adaptation strategies that search in the low-dimensional task-embedding space of the pre-trained BFM to rapidly improve the performance of its zero-shot policies on any downstream task. Notably, our approach mitigates the initial "unlearning" phase commonly observed when fine-tuning pre-trained RL models. We evaluate our fast adaptation strategies on top of four state-of-the-art zero-shot RL methods in multiple navigation and locomotion domains. Our results show that they achieve 10-40% improvement over their zero-shot performance in a few tens of episodes, outperforming existing baselines.
comment: 25 pages
Experimental Analysis of Quadcopter Drone Hover Constraints for Localization Improvements
In this work, we evaluate the use of aerial drone hover constraints in a multisensor fusion of ground robot and drone data to improve the localization performance of a drone. In particular, we build upon our prior work on cooperative localization between an aerial drone and ground robot that fuses data from LiDAR, inertial navigation, peer-to-peer ranging, altimeter, and stereo-vision and evaluate the incorporation knowledge from the autopilot regarding when the drone is hovering. This control command data is leveraged to add constraints on the velocity state. Hover constraints can be considered important dynamic model information, such as the exploitation of zero-velocity updates in pedestrian navigation. We analyze the benefits of these constraints using an incremental factor graph optimization. Experimental data collected in a motion capture faculty is used to provide performance insights and assess the benefits of hover constraints.
Cable Optimization and Drag Estimation for Tether-Powered Multirotor UAVs
The flight time of multirotor unmanned aerial vehicles (UAVs) is typically constrained by their high power consumption. Tethered power systems present a viable solution to extend flight times while maintaining the advantages of multirotor UAVs, such as hover capability and agility. This paper addresses the critical aspect of cable selection for tether-powered multirotor UAVs, considering both hover and forward flight. Existing research often overlooks the trade-offs between cable mass, power losses, and system constraints. We propose a novel methodology to optimize cable selection, accounting for thrust requirements and power efficiency across various flight conditions. The approach combines physics-informed modeling with system identification to combine hover and forward flight dynamics, incorporating factors such as motor efficiency, tether resistance, and aerodynamic drag. This work provides an intuitive and practical framework for optimizing tethered UAV designs, ensuring efficient power transmission and flight performance. Thus allowing for better, safer, and more efficient tethered drones.
comment: Accepted at ICUAS 2025
TOCALib: Optimal control library with interpolation for bimanual manipulation and obstacles avoidance
The paper presents a new approach for constructing a library of optimal trajectories for two robotic manipulators, Two-Arm Optimal Control and Avoidance Library (TOCALib). The optimisation takes into account kinodynamic and other constraints within the FROST framework. The novelty of the method lies in the consideration of collisions using the DCOL method, which allows obtaining symbolic expressions for assessing the presence of collisions and using them in gradient-based optimization control methods. The proposed approach allowed the implementation of complex bimanual manipulations. In this paper we used Mobile Aloha as an example of TOCALib application. The approach can be extended to other bimanual robots, as well as to gait control of bipedal robots. It can also be used to construct training data for machine learning tasks for manipulation.
comment: 10 pages, 14 figures, 3 tables, 2 algorithms, 1 appendix
Transformer-Based Robust Underwater Inertial Navigation in Prolonged Doppler Velocity Log Outages
Autonomous underwater vehicles (AUV) have a wide variety of applications in the marine domain, including exploration, surveying, and mapping. Their navigation systems rely heavily on fusing data from inertial sensors and a Doppler velocity log (DVL), typically via nonlinear filtering. The DVL estimates the AUV's velocity vector by transmitting acoustic beams to the seabed and analyzing the Doppler shift from the reflected signals. However, due to environmental challenges, DVL beams can deflect or fail in real-world settings, causing signal outages. In such cases, the AUV relies solely on inertial data, leading to accumulated navigation errors and mission terminations. To cope with these outages, we adopted ST-BeamsNet, a deep learning approach that uses inertial readings and prior DVL data to estimate AUV velocity during isolated outages. In this work, we extend ST-BeamsNet to address prolonged DVL outages and evaluate its impact within an extended Kalman filter framework. Experiments demonstrate that the proposed framework improves velocity RMSE by up to 63% and reduces final position error by up to 95% compared to pure inertial navigation. This is in scenarios involving up to 50 seconds of complete DVL outage.
comment: Eight pages, 7 Figures, 4 Tables
Sim-to-Real Transfer in Reinforcement Learning for Maneuver Control of a Variable-Pitch MAV
Reinforcement learning (RL) algorithms can enable high-maneuverability in unmanned aerial vehicles (MAVs), but transferring them from simulation to real-world use is challenging. Variable-pitch propeller (VPP) MAVs offer greater agility, yet their complex dynamics complicate the sim-to-real transfer. This paper introduces a novel RL framework to overcome these challenges, enabling VPP MAVs to perform advanced aerial maneuvers in real-world settings. Our approach includes real-to-sim transfer techniques-such as system identification, domain randomization, and curriculum learning to create robust training simulations and a sim-to-real transfer strategy combining a cascade control system with a fast-response low-level controller for reliable deployment. Results demonstrate the effectiveness of this framework in achieving zero-shot deployment, enabling MAVs to perform complex maneuvers such as flips and wall-backtracking.
Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 14 pages, 6 figures
UWB Anchor Based Localization of a Planetary Rover
Localization of an autonomous mobile robot during planetary exploration is challenging due to the unknown terrain, the difficult lighting conditions and the lack of any global reference such as satellite navigation systems. We present a novel approach for robot localization based on ultra-wideband (UWB) technology. The robot sets up its own reference coordinate system by distributing UWB anchor nodes in the environment via a rocket-propelled launcher system. This allows the creation of a localization space in which UWB measurements are employed to supplement traditional SLAM-based techniques. The system was developed for our involvement in the ESA-ESRIC challenge 2021 and the AMADEE-24, an analog Mars simulation in Armenia by the Austrian Space Forum (\"OWF).
comment: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS '24)
Joint Travel Route Optimization Framework for Platooning
Platooning represents an advanced driving technology designed to assist drivers in traffic convoys of varying lengths, enhancing road safety, reducing driver fatigue, and improving fuel efficiency. Sophisticated automated driving assistance systems have facilitated this innovation. Recent advancements in platooning emphasize cooperative mechanisms within both centralized and decentralized architectures enabled by vehicular communication technologies. This study introduces a cooperative route planning optimization framework aimed at promoting the adoption of platooning through a centralized platoon formation strategy at the system level. This approach is envisioned as a transitional phase from individual (ego) driving to fully collaborative driving. Additionally, this research formulates and incorporates travel cost metrics related to fuel consumption, driver fatigue, and travel time, considering regulatory constraints on consecutive driving durations. The performance of these cost metrics has been evaluated using Dijkstra's and A* shortest path algorithms within a network graph framework. The results indicate that the proposed architecture achieves an average cost improvement of 14 % compared to individual route planning for long road trips.
Learning Long Short-Term Intention within Human Daily Behaviors
In the domain of autonomous household robots, it is of utmost importance for robots to understand human behaviors and provide appropriate services. This requires the robots to possess the capability to analyze complex human behaviors and predict the true intentions of humans. Traditionally, humans are perceived as flawless, with their decisions acting as the standards that robots should strive to align with. However, this raises a pertinent question: What if humans make mistakes? In this research, we present a unique task, termed "long short-term intention prediction". This task requires robots can predict the long-term intention of humans, which aligns with human values, and the short term intention of humans, which reflects the immediate action intention. Meanwhile, the robots need to detect the potential non-consistency between the short-term and long-term intentions, and provide necessary warnings and suggestions. To facilitate this task, we propose a long short-term intention model to represent the complex intention states, and build a dataset to train this intention model. Then we propose a two-stage method to integrate the intention model for robots: i) predicting human intentions of both value-based long-term intentions and action-based short-term intentions; and 2) analyzing the consistency between the long-term and short-term intentions. Experimental results indicate that the proposed long short-term intention model can assist robots in comprehending human behavioral patterns over both long-term and short-term durations, which helps determine the consistency between long-term and short-term intentions of humans.
Efficient Swept Volume-Based Trajectory Generation for Arbitrary-Shaped Ground Robot Navigation
Navigating an arbitrary-shaped ground robot safely in cluttered environments remains a challenging problem. The existing trajectory planners that account for the robot's physical geometry severely suffer from the intractable runtime. To achieve both computational efficiency and Continuous Collision Avoidance (CCA) of arbitrary-shaped ground robot planning, we proposed a novel coarse-to-fine navigation framework that significantly accelerates planning. In the first stage, a sampling-based method selectively generates distinct topological paths that guarantee a minimum inflated margin. In the second stage, a geometry-aware front-end strategy is designed to discretize these topologies into full-state robot motion sequences while concurrently partitioning the paths into SE(2) sub-problems and simpler R2 sub-problems for back-end optimization. In the final stage, an SVSDF-based optimizer generates trajectories tailored to these sub-problems and seamlessly splices them into a continuous final motion plan. Extensive benchmark comparisons show that the proposed method is one to several orders of magnitude faster than the cutting-edge methods in runtime while maintaining a high planning success rate and ensuring CCA.
Drive in Corridors: Enhancing the Safety of End-to-end Autonomous Driving via Corridor Learning and Planning
Safety remains one of the most critical challenges in autonomous driving systems. In recent years, the end-to-end driving has shown great promise in advancing vehicle autonomy in a scalable manner. However, existing approaches often face safety risks due to the lack of explicit behavior constraints. To address this issue, we uncover a new paradigm by introducing the corridor as the intermediate representation. Widely adopted in robotics planning, the corridors represents spatio-temporal obstacle-free zones for the vehicle to traverse. To ensure accurate corridor prediction in diverse traffic scenarios, we develop a comprehensive learning pipeline including data annotation, architecture refinement and loss formulation. The predicted corridor is further integrated as the constraint in a trajectory optimization process. By extending the differentiability of the optimization, we enable the optimized trajectory to be seamlessly trained within the end-to-end learning framework, improving both safety and interpretability. Experimental results on the nuScenes dataset demonstrate state-of-the-art performance of our approach, showing a 66.7% reduction in collisions with agents and a 46.5% reduction with curbs, significantly enhancing the safety of end-to-end driving. Additionally, incorporating the corridor contributes to higher success rates in closed-loop evaluations.
comment: 8 pages, 4 figures
Personalized and Demand-Based Education Concept: Practical Tools for Control Engineers
This paper presents a personalized lecture concept using educational blocks and its demonstrative application in a new university lecture. Higher education faces daily challenges: deep and specialized knowledge is available from everywhere and accessible to almost everyone. University lecturers of specialized master courses confront the problem that their lectures are either too boring or too complex for the attending students. Additionally, curricula are changing more rapidly than they have in the past 10-30 years. The German education system comprises different educational forms, with universities providing less practical content. Consequently, many university students do not obtain the practical skills they should ideally gain through university lectures. Therefore, in this work, a new lecture concept is proposed based on the extension of the just-in-time teaching paradigm: Personalized and Demand-Based Education. This concept includes: 1) an initial assessment of students' backgrounds, 2) selecting the appropriate educational blocks, and 3) collecting ongoing feedback during the semester. The feedback was gathered via Pingo, ensuring anonymity for the students. Our concept was exemplarily tested in the new lecture "Practical Tools for Control Engineers" at the Karlsruhe Institute of Technology. The initial results indicate that our proposed concept could be beneficial in addressing the current challenges in higher education.
comment: Accepted to IFAC-ACE 2025
Enhanced Cooperative Perception Through Asynchronous Vehicle to Infrastructure Framework with Delay Mitigation for Connected and Automated Vehicles
Perception is a key component of Automated vehicles (AVs). However, sensors mounted to the AVs often encounter blind spots due to obstructions from other vehicles, infrastructure, or objects in the surrounding area. While recent advancements in planning and control algorithms help AVs react to sudden object appearances from blind spots at low speeds and less complex scenarios, challenges remain at high speeds and complex intersections. Vehicle to Infrastructure (V2I) technology promises to enhance scene representation for AVs in complex intersections, providing sufficient time and distance to react to adversary vehicles violating traffic rules. Most existing methods for infrastructure-based vehicle detection and tracking rely on LIDAR, RADAR or sensor fusion methods, such as LIDAR-Camera and RADAR-Camera. Although LIDAR and RADAR provide accurate spatial information, the sparsity of point cloud data limits its ability to capture detailed object contours of objects far away, resulting in inaccurate 3D object detection results. Furthermore, the absence of LIDAR or RADAR at every intersection increases the cost of implementing V2I technology. To address these challenges, this paper proposes a V2I framework that utilizes monocular traffic cameras at road intersections to detect 3D objects. The results from the roadside unit (RSU) are then combined with the on-board system using an asynchronous late fusion method to enhance scene representation. Additionally, the proposed framework provides a time delay compensation module to compensate for the processing and transmission delay from the RSU. Lastly, the V2I framework is tested by simulating and validating a scenario similar to the one described in an industry report by Waymo. The results show that the proposed method improves the scene representation and the AV's perception range, giving enough time and space to react to adversary vehicles.
comment: 9 pages, 9 figures, This paper is under review of SAE Journal of Connected and Automated Vehicles
External-Wrench Estimation for Aerial Robots Exploiting a Learned Model
This paper presents an external wrench estimator that uses a hybrid dynamics model consisting of a first-principles model and a neural network. This framework addresses one of the limitations of the state-of-the-art model-based wrench observers: the wrench estimation of these observers comprises the external wrench (e.g. collision, physical interaction, wind); in addition to residual wrench (e.g. model parameters uncertainty or unmodeled dynamics). This is a problem if these wrench estimations are to be used as wrench feedback to a force controller, for example. In the proposed framework, a neural network is combined with a first-principles model to estimate the residual dynamics arising from unmodeled dynamics and parameters uncertainties, then, the hybrid trained model is used to estimate the external wrench, leading to a wrench estimation that has smaller contributions from the residual dynamics, and affected more by the external wrench. This method is validated with numerical simulations of an aerial robot in different flying scenarios and different types of residual dynamics, and the statistical analysis of the results shows that the wrench estimation error has improved significantly compared to a model-based wrench observer using only a first-principles model.
comment: Accepted at ICUAS 2025
Threading the Needle: Test and Evaluation of Early Stage UAS Capabilities to Autonomously Navigate GPS-Denied Environments in the DARPA Fast Lightweight Autonomy (FLA) Program ICRA
The DARPA Fast Lightweight Autonomy (FLA) program (2015 - 2018) served as a significant milestone in the development of UAS, particularly for autonomous navigation through unknown GPS-denied environments. Three performing teams developed UAS using a common hardware platform, focusing their contributions on autonomy algorithms and sensing. Several experiments were conducted that spanned indoor and outdoor environments, increasing in complexity over time. This paper reviews the testing methodology developed in order to benchmark and compare the performance of each team, each of the FLA Phase 1 experiments that were conducted, and a summary of the Phase 1 results.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025, Workshop on 25 Years of Aerial Robotics: Challenges and Opportunities, Atlanta, Georgia, USA, May 2025
Design Activity for Robot Faces: Evaluating Child Responses To Expressive Faces
Facial expressiveness plays a crucial role in a robot's ability to engage and interact with children. Prior research has shown that expressive robots can enhance child engagement during human-robot interactions. However, many robots used in therapy settings feature non-personalized, static faces designed with traditional facial feature considerations, which can limit the depth of interactions and emotional connections. Digital faces offer opportunities for personalization, yet the current landscape of robot face design lacks a dynamic, user-centered approach. Specifically, there is a significant research gap in designing robot faces based on child preferences. Instead, most robots in child-focused therapy spaces are developed from an adult-centric perspective. We present a novel study investigating the influence of child-drawn digital faces in child-robot interactions. This approach focuses on a design activity with children instructed to draw their own custom robot faces. We compare the perceptions of social intelligence (PSI) of two implementations: a generic digital face and a robot face, personalized using the user's drawn robot faces. The results of this study show the perceived social intelligence of a child-drawn robot was significantly higher compared to a generic face.
comment: 8 pages, 7 figures
RL-based Control of UAS Subject to Significant Disturbance
This paper proposes a Reinforcement Learning (RL)-based control framework for position and attitude control of an Unmanned Aerial System (UAS) subjected to significant disturbance that can be associated with an uncertain trigger signal. The proposed method learns the relationship between the trigger signal and disturbance force, enabling the system to anticipate and counteract the impending disturbances before they occur. We train and evaluate three policies: a baseline policy trained without exposure to the disturbance, a reactive policy trained with the disturbance but without the trigger signal, and a predictive policy that incorporates the trigger signal as an observation and is exposed to the disturbance during training. Our simulation results show that the predictive policy outperforms the other policies by minimizing position deviations through a proactive correction maneuver. This work highlights the potential of integrating predictive cues into RL frameworks to improve UAS performance.
comment: Accepted at ICUAS 2025
Vector Quantized-Elites: Unsupervised and Problem-Agnostic Quality-Diversity Optimization
Quality-Diversity algorithms have transformed optimization by prioritizing the discovery of diverse, high-performing solutions over a single optimal result. However, traditional Quality-Diversity methods, such as MAP-Elites, rely heavily on predefined behavioral descriptors and complete prior knowledge of the task to define the behavioral space grid, limiting their flexibility and applicability. In this work, we introduce Vector Quantized-Elites (VQ-Elites), a novel Quality-Diversity algorithm that autonomously constructs a structured behavioral space grid using unsupervised learning, eliminating the need for prior task-specific knowledge. At the core of VQ-Elites is the integration of Vector Quantized Variational Autoencoders, which enables the dynamic learning of behavioral descriptors and the generation of a structured, rather than unstructured, behavioral space grid - a significant advancement over existing unsupervised Quality-Diversity approaches. This design establishes VQ-Elites as a flexible, robust, and task-agnostic optimization framework. To further enhance the performance of unsupervised Quality-Diversity algorithms, we introduce two key components: behavioral space bounding and cooperation mechanisms, which significantly improve convergence and performance. We validate VQ-Elites on robotic arm pose-reaching and mobile robot space-covering tasks. The results demonstrate its ability to efficiently generate diverse, high-quality solutions, emphasizing its adaptability, scalability, robustness to hyperparameters, and potential to extend Quality-Diversity optimization to complex, previously inaccessible domains.
comment: 12 pages, 10 figures, 2 algorithms, 1 table
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: The first two listed authors contributed equally
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
Extended URDF: Accounting for parallel mechanism in robot description
Robotic designs played an important role in recent advances by providing powerful robots with complex mechanics. Many recent systems rely on parallel actuation to provide lighter limbs and allow more complex motion. However, these emerging architectures fall outside the scope of most used description formats, leading to difficulties when designing, storing, and sharing the models of these systems. This paper introduces an extension to the widely used Unified Robot Description Format (URDF) to support closed-loop kinematic structures. Our approach relies on augmenting URDF with minimal additional information to allow more efficient modeling of complex robotic systems while maintaining compatibility with existing design and simulation frameworks. This method sets the basic requirement for a description format to handle parallel mechanisms efficiently. We demonstrate the applicability of our approach by providing an open-source collection of parallel robots, along with tools for generating and parsing this extended description format. The proposed extension simplifies robot modeling, reduces redundancy, and improves usability for advanced robotic applications.
Enhancing Human-Robot Interaction in Healthcare: A Study on Nonverbal Communication Cues and Trust Dynamics with NAO Robot Caregivers
As the population of older adults increases, so will the need for both human and robot care providers. While traditional practices involve hiring human caregivers to serve meals and attend to basic needs, older adults often require continuous companionship and health monitoring. However, hiring human caregivers for this job costs a lot of money. However, using a robot like Nao could be cheaper and still helpful. This study explores the integration of humanoid robots, particularly Nao, in health monitoring and caregiving for older adults. Using a mixed-methods approach with a within-subject factorial design, we investigated the effectiveness of nonverbal communication modalities, including touch, gestures, and LED patterns, in enhancing human-robot interactions. Our results indicate that Nao's touch-based health monitoring was well-received by participants, with positive ratings across various dimensions. LED patterns were perceived as more effective and accurate compared to hand and head gestures. Moreover, longer interactions were associated with higher trust levels and perceived empathy, highlighting the importance of prolonged engagement in fostering trust in human-robot interactions. Despite limitations, our study contributes valuable insights into the potential of humanoid robots to improve health monitoring and caregiving for older adults.
comment: The dataset in this manuscript was created for purpose of class project (pretend) and I did not take the ethical review board's permission. Therefore, I was not permitted to submit this project to any public platform, as doing so would be considered an academic violation. I humbly request that paper be withdrawn from arXiv as soon as possible. Otherwise, I may face academic misconduct consequence
Execution Semantics of Behavior Trees in Robotic Applications
Behavior Trees (BTs) have found a widespread adoption in robotics due to appealing features, their ease of use as a conceptual model of control policies and the availability of software tooling for BT-based design of control software. However, BTs don't have formal execution semantics and, furthermore, subtle differences among implementations can make the same model behave differently depending on the underlying software. This paper aims at defining the execution semantics of behavior trees (BTs) as used in robotics applications. To this purpose, we present an abstract data type that formalizes the structure and execution of BTs. While our formalization is inspired by existing contributions in the scientific literature and state-of-the art implementations, we strive to provide an unambiguous treatment of most features that find incomplete or inconsistent treatment across other works.
comment: 25 pages, 2 figures
Information Gain Is Not All You Need
Autonomous exploration in mobile robotics is driven by two competing objectives: coverage, to exhaustively observe the environment; and path length, to do so with the shortest path possible. Though it is difficult to evaluate the best course of action without knowing the unknown, the unknown can often be understood through models, maps, or common sense. However, previous work has shown that improving estimates of information gain through such prior knowledge leads to greedy behavior and ultimately causes backtracking, which degrades coverage performance. In fact, any information gain maximization will exhibit this behavior, even without prior knowledge. Information gained at task completion is constant, and cannot be maximized for. It is therefore an unsuitable choice as an optimization objective. Instead, information gain is a decision criterion for determining which candidate states should still be considered for exploration. The task therefore becomes to reach completion with the shortest total path. Since determining the shortest path is typically intractable, it is necessary to rely on a heuristic or estimate to identify candidate states that minimize the total path length. To address this, we propose a heuristic that reduces backtracking by preferring candidate states that are close to the robot, but far away from other candidate states. We evaluate the performance of the proposed heuristic in simulation against an information gain-based approach and frontier exploration, and show that our method significantly decreases total path length, both with and without prior knowledge of the environment.
comment: 9 pages, 6 figures, under review
A Fast and Model Based Approach for Evaluating Task-Competence of Antagonistic Continuum Arms
Soft robot arms have made significant progress towards completing human-scale tasks, but designing arms for tasks with specific load and workspace requirements remains difficult. A key challenge is the lack of model-based design tools, forcing advancement to occur through empirical iteration and observation. Existing models are focused on control and rely on parameter fits, which means they cannot provide general conclusions about the mapping between design and performance or the influence of factors outside the fitting data.As a first step toward model-based design tools, we introduce a novel method of analyzing whether a proposed arm design can complete desired tasks. Our method is informative, interpretable, and fast; it provides novel metrics for quantifying a proposed arm design's ability to perform a task, it yields a graphical interpretation of performance through segment forces, and computing it is over 80x faster than optimization based methods.Our formulation focuses on antagonistic, pneumatically-driven soft arms. We demonstrate our approach through example analysis, and also through consideration of antagonistic vs non-antagonistic designs. Our method enables fast, direct and task-specific comparison of these two architectures, and provides a new visualization of the comparative mechanics. While only a first step, the proposed approach will support advancement of model-based design tools, leading to highly capable soft arms.
comment: 8 pages, 7 figures. Submission for the 8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025). For code, proofs, and other supplementary information, see https://github.com/wfan19/antagonistic-task-competency
Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy
This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing $\tilde{N}$ perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a reduced-set with sample size $N<<\tilde{N}$. Consequently, we estimate collision risk using just $N$ rollouts instead of $\tilde{N}$. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the reduced-set. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.
comment: https://github.com/Basant1861/MPC-MMD
SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning SC
This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/bassamlab/SigmaRL
comment: Accepted for presentation at the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
Drama: Mamba-Enabled Model-Based Reinforcement Learning Is Sample and Parameter Efficient ICLR 2025
Model-based reinforcement learning (RL) offers a solution to the data inefficiency that plagues most model-free RL algorithms. However, learning a robust world model often requires complex and deep architectures, which are computationally expensive and challenging to train. Within the world model, sequence models play a critical role in accurate predictions, and various architectures have been explored, each with its own challenges. Currently, recurrent neural network (RNN)-based world models struggle with vanishing gradients and capturing long-term dependencies. Transformers, on the other hand, suffer from the quadratic memory and computational complexity of self-attention mechanisms, scaling as $O(n^2)$, where $n$ is the sequence length. To address these challenges, we propose a state space model (SSM)-based world model, Drama, specifically leveraging Mamba, that achieves $O(n)$ memory and computational complexity while effectively capturing long-term dependencies and enabling efficient training with longer sequences. We also introduce a novel sampling method to mitigate the suboptimality caused by an incorrect world model in the early training stages. Combining these techniques, Drama achieves a normalised score on the Atari100k benchmark that is competitive with other state-of-the-art (SOTA) model-based RL algorithms, using only a 7 million-parameter world model. Drama is accessible and trainable on off-the-shelf hardware, such as a standard laptop. Our code is available at https://github.com/realwenlongwang/Drama.git.
comment: Published as a conference paper at ICLR 2025
Geometry-aware RL for Manipulation of Varying Shapes and Deformable Objects ICLR 2025
Manipulating objects with varying geometries and deformable objects is a major challenge in robotics. Tasks such as insertion with different objects or cloth hanging require precise control and effective modelling of complex dynamics. In this work, we frame this problem through the lens of a heterogeneous graph that comprises smaller sub-graphs, such as actuators and objects, accompanied by different edge types describing their interactions. This graph representation serves as a unified structure for both rigid and deformable objects tasks, and can be extended further to tasks comprising multiple actuators. To evaluate this setup, we present a novel and challenging reinforcement learning benchmark, including rigid insertion of diverse objects, as well as rope and cloth manipulation with multiple end-effectors. These tasks present a large search space, as both the initial and target configurations are uniformly sampled in 3D space. To address this issue, we propose a novel graph-based policy model, dubbed Heterogeneous Equivariant Policy (HEPi), utilizing $SE(3)$ equivariant message passing networks as the main backbone to exploit the geometric symmetry. In addition, by modeling explicit heterogeneity, HEPi can outperform Transformer-based and non-heterogeneous equivariant policies in terms of average returns, sample efficiency, and generalization to unseen objects. Our project page is available at https://thobotics.github.io/hepi.
comment: Accepted at ICLR 2025 (Oral)
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025 as Highlight. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
comment: Project Page: https://zju3dv.github.io/sgformer/
A Convex and Global Solution for the P$n$P Problem in 2D Forward-Looking Sonar
The perspective-$n$-point (P$n$P) problem is important for robotic pose estimation. It is well studied for optical cameras, but research is lacking for 2D forward-looking sonar (FLS) in underwater scenarios due to the vastly different imaging principles. In this paper, we demonstrate that, despite the nonlinearity inherent in sonar image formation, the P$n$P problem for 2D FLS can still be effectively addressed within a point-to-line (PtL) 3D registration paradigm through orthographic approximation. The registration is then resolved by a duality-based optimal solver, ensuring the global optimality. For coplanar cases, a null space analysis is conducted to retrieve the solutions from the dual formulation, enabling the methods to be applied to more general cases. Extensive simulations have been conducted to systematically evaluate the performance under different settings. Compared to non-reprojection-optimized state-of-the-art (SOTA) methods, the proposed approach achieves significantly higher precision. When both methods are optimized, ours demonstrates comparable or slightly superior precision.
Optimal Robot Formations: Balancing Range-Based Observability and User-Defined Configurations
This paper introduces a set of customizable and novel cost functions that enable the user to easily specify desirable robot formations, such as a ``high-coverage'' infrastructure-inspection formation, while maintaining high relative pose estimation accuracy. The overall cost function balances the need for the robots to be close together for good ranging-based relative localization accuracy and the need for the robots to achieve specific tasks, such as minimizing the time taken to inspect a given area. The formations found by minimizing the aggregated cost function are evaluated in a coverage path planning task in simulation and experiment, where the robots localize themselves and unknown landmarks using a simultaneous localization and mapping algorithm based on the extended Kalman filter. Compared to an optimal formation that maximizes ranging-based relative localization accuracy, these formations significantly reduce the time to cover a given area with minimal impact on relative pose estimation accuracy.
comment: 8 pages, 9 figures, submitted to IEEE International Conference on Intelligent Robots and Systems 2024
SuperQ-GRASP: Superquadrics-based Grasp Pose Estimation on Larger Objects for Mobile-Manipulation ICRA 2025
Grasp planning and estimation have been a longstanding research problem in robotics, with two main approaches to find graspable poses on the objects: 1) geometric approach, which relies on 3D models of objects and the gripper to estimate valid grasp poses, and 2) data-driven, learning-based approach, with models trained to identify grasp poses from raw sensor observations. The latter assumes comprehensive geometric coverage during the training phase. However, the data-driven approach is typically biased toward tabletop scenarios and struggle to generalize to out-of-distribution scenarios with larger objects (e.g. chair). Additionally, raw sensor data (e.g. RGB-D data) from a single view of these larger objects is often incomplete and necessitates additional observations. In this paper, we take a geometric approach, leveraging advancements in object modeling (e.g. NeRF) to build an implicit model by taking RGB images from views around the target object. This model enables the extraction of explicit mesh model while also capturing the visual appearance from novel viewpoints that is useful for perception tasks like object detection and pose estimation. We further decompose the NeRF-reconstructed 3D mesh into superquadrics (SQs) -- parametric geometric primitives, each mapped to a set of precomputed grasp poses, allowing grasp composition on the target object based on these primitives. Our proposed pipeline overcomes the problems: a) noisy depth and incomplete view of the object, with a modeling step, and b) generalization to objects of any size. For more qualitative results, refer to the supplementary video and webpage https://bit.ly/3ZrOanU
comment: 8 pages, 7 figures, accepted by ICRA 2025
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to 2025 IEEE Conference on Decision and Control (CDC)
Maintaining Strong r-Robustness in Reconfigurable Multi-Robot Networks using Control Barrier Functions ICRA
In leader-follower consensus, strong r-robustness of the communication graph provides a sufficient condition for followers to achieve consensus in the presence of misbehaving agents. Previous studies have assumed that robots can form and/or switch between predetermined network topologies with known robustness properties. However, robots with distance-based communication models may not be able to achieve these topologies while moving through spatially constrained environments, such as narrow corridors, to complete their objectives. This paper introduces a Control Barrier Function (CBF) that ensures robots maintain strong r-robustness of their communication graph above a certain threshold without maintaining any fixed topologies. Our CBF directly addresses robustness, allowing robots to have flexible reconfigurable network structure while navigating to achieve their objectives. The efficacy of our method is tested through various simulation and hardware experiments.
comment: Accepted and will appear at 2025 IEEE International Conference on Robotics and Automation (ICRA)
PACER: Preference-conditioned All-terrain Costmap Generation
In autonomous robot navigation, terrain cost assignment is typically performed using a semantics-based paradigm in which terrain is first labeled using a pre-trained semantic classifier and costs are then assigned according to a user-defined mapping between label and cost. While this approach is rapidly adaptable to changing user preferences, only preferences over the types of terrain that are already known by the semantic classifier can be expressed. In this paper, we hypothesize that a machine-learning-based alternative to the semantics-based paradigm above will allow for rapid cost assignment adaptation to preferences expressed over new terrains at deployment time without the need for additional training. To investigate this hypothesis, we introduce and study PACER, a novel approach to costmap generation that accepts as input a single birds-eye view (BEV) image of the surrounding area along with a user-specified preference context and generates a corresponding BEV costmap that aligns with the preference context. Using both real and synthetic data along with a combination of proposed training tasks, we find that PACER is able to adapt quickly to new user preferences while also exhibiting better generalization to novel terrains compared to both semantics-based and representation-learning approaches.
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
Generalized Multi-Speed Dubins Motion Model
The paper develops a novel motion model, called Generalized Multi-Speed Dubins Motion Model (GMDM), which extends the Dubins model by considering multiple speeds. While the Dubins model produces time-optimal paths under a constant speed constraint, these paths could be suboptimal if this constraint is relaxed to include multiple speeds. This is because a constant speed results in a large minimum turning radius, thus producing paths with longer maneuvers and larger travel times. In contrast, multi-speed relaxation allows for slower speed sharp turns, thus producing more direct paths with shorter maneuvers and smaller travel times. Furthermore, the inability of the Dubins model to reduce speed could result in fast maneuvers near obstacles, thus producing paths with high collision risks. In this regard, GMDM provides the motion planners the ability to jointly optimize time and risk by allowing the change of speed along the path. GMDM is built upon the six Dubins path types considering the change of speed on path segments. It is theoretically established that GMDM provides full reachability of the configuration space for any speed selections. Furthermore, it is shown that the Dubins model is a specific case of GMDM for constant speeds. The solutions of GMDM are analytical and suitable for real-time applications. The performance of GMDM in terms of solution quality (i.e., time/time-risk cost) and computation time is comparatively evaluated against the existing motion models in obstacle-free as well as obstacle-rich environments via extensive Monte Carlo simulations. The results show that in obstacle-free environments, GMDM produces near time-optimal paths with significantly lower travel times than the Dubins model while having similar computation times. In obstacle-rich environments, GMDM produces time-risk optimized paths with substantially lower collision risks.
comment: 18 pages
Systems and Control (CS)
Episodically adapted network-based controllers
We consider the problem of distributing a control policy across a network of interconnected units. Distributing controllers in this way has a number of potential advantages, especially in terms of robustness, as the failure of a single unit can be compensated by the activity of others. However, it is not obvious a priori how such network-based controllers should be constructed for any given system and control objective. Here, we propose a synthesis procedure for obtaining dynamical networks that enact well-defined control policies in a model-free manner. We specifically consider an augmented state space consisting of both the plant state and the network states. Solution of an optimization problem in this augmented state space produces a desired objective and specification of the network dynamics. Because of the analytical tractability of this method, we are able to provide convergence and robustness assessments
Open Datasets for Grid Modeling and Visualization: An Alberta Power Network Case
In the power and energy industry, multiple entities in grid operational logs are frequently recorded and updated. Thanks to recent advances in IT facilities and smart metering services, a variety of datasets such as system load, generation mix, and grid connection are often publicly available. While these resources are valuable in evaluating power grid's operational conditions and system resilience, the lack of fine-grained, accurate locational information constrain the usage of current data, which further hinders the development of smart grid and renewables integration. For instance, electricity end users are not aware of nodal generation mix or carbon emissions, while the general public have limited understanding about the effect of demand response or renewables integration if only the whole system's demands and generations are available. In this work, we focus on recovering power grid topology and line flow directions from open public dataset. Taking the Alberta grid as a working example, we start from mapping multi-modal power system datasets to the grid topology integrated with geographical information. By designing a novel optimization-based scheme to recover line flow directions, we are able to analyze and visualize the interactions between generations and demand vectors in an efficient manner. Proposed research is fully open-sourced and highly generalizable, which can help model and visualize grid information, create synthetic dataset, and facilitate analytics and decision-making framework for clean energy transition.
comment: In submission, code available at https://github.com/BenCheng2/CarbonDistributionMap
Event-Triggered Source Seeking Control for Nonholonomic Systems
This paper introduces an event-triggered source seeking control (ET-SSC) for autonomous vehicles modeled as the nonholonomic unicycle. The classical source seeking control is enhanced with static-triggering conditions to enable aperiodic and less frequent updates of the system's input signals, offering a resource-aware control design. Our convergence analysis is based on time-scaling combined with Lyapunov and averaging theories for systems with discontinuous right-hand sides. ET-SSC ensures exponentially stable behavior for the resulting average system, leading to practical asymptotic convergence to a small neighborhood of the source point. We guarantee the avoidance of Zeno behavior by establishing a minimum dwell time to prevent infinitely fast switching. The performance optimization is aligned with classical continuous-time source seeking algorithms while balancing system performance with actuation resource consumption. Our ET-SSC algorithm, the first of its kind, allows for arbitrarily large inter-sampling times, overcoming the limitations of classical sampled-data implementations for source seeking control.
comment: 9 pages, 4 figures
Generalized Passivity Sensitivity Methodology for Small-Signal Stability Analysis
This paper proposes a generalized passivity sensitivity analysis for power system stability studies. The method uncovers the most effective instability mitigation actions for both device-level and system-level investigations. The particular structure of the admittance and nodal models is exploited in the detailed derivation of the passivity sensitivity expressions. These proposed sensitivities are validated for different parameters at device-level and at system-level. Compared to previous stability and sensitivity methods, it does not require detailed system information, such as exact system eigenvalues, while it provides valuable information for a less conservative stable system design. In addition, we demonstrate how to utilize the proposed method through case studies with different converter controls and system-wide insights showing its general applicability.
On-Chip and Off-Chip TIA Amplifiers for Nanopore Signal Readout Design, Performance and Challenges: A Review
Advancements in biomedical research have driven continuous innovations in sensing and diagnostic technologies. Among these, nanopore based single molecule sensing and sequencing is rapidly emerging as a powerful and versatile sensing methodology. Advancements in nanopore based approaches require concomitant improvements in the electronic readout methods employed, from the point of low noise, bandwidth and form factor. This article focuses on current sensing circuits designed and employed for ultra low noise nanopore signal readout, addressing the fundamental limitations of traditional off chip transimpedance amplifiers (TIAs), which suffer from high input parasitic capacitance, bandwidth constraints, and increased noise at high frequencies. This review explores the latest design schemes and circuit structures classified into on-chip and off-chip TIA designs, highlighting their design implementation, performance, respective challenges and explores the interplay between noise performance, capacitance, and bandwidth across diverse transimpedance amplifier (TIA) configurations. Emphasis is placed on characterizing noise response under varying parasitic capacitance and operational frequencies, a systematic evaluation not extensively addressed in prior literature while also considering the allowable input current compliance range limitations. The review also compares the widely used Axopatch 200B system to the designs reported in literature. The findings offer valuable insights into optimizing TIA designs for enhanced signal integrity in high speed and high sensitivity applications focusing on noise reduction, impedance matching, DC blocking, and offset cancellation techniques.
comment: 35 pages , 22 figures
Optimal Frequency Support from Virtual Power Plants: Minimal Reserve and Allocation
This paper proposes a novel reserve-minimizing and allocation strategy for virtual power plants (VPPs) to deliver optimal frequency support. The proposed strategy enables VPPs, acting as aggregators for inverter-based resources (IBRs), to provide optimal frequency support economically. The proposed strategy captures time-varying active power injections, reducing the unnecessary redundancy compared to traditional fixed reserve schemes. Reserve requirements for the VPPs are determined based on system frequency response and safety constraints, ensuring efficient grid support. Furthermore, an energy-based allocation model decomposes power injections for each IBR, accounting for their specific limitations. Numerical experiments validate the feasibility of the proposed approach, highlighting significant financial gains for VPPs, especially as system inertia decreases due to higher renewable energy integration.
comment: Accepted by Applied Energy
Distributed Fault-Tolerant Control for Heterogeneous MAS with Prescribed Performance under Communication Failures
This paper presents a novel approach employing prescribed performance control to address the distributed fault-tolerant formation control problem in a heterogeneous UAV-UGV cooperative system under a directed interaction topology and communication link failures. The proposed distributed fault-tolerant control scheme enables UAVs to accurately track a virtual leader's trajectory and achieve the desired formation, while ensuring UGVs converge within the convex hull formed by leader UAVs. By accounting for differences in system parameters and state dimensions between UAVs and UGVs, the method leverages performance functions to guarantee predefined transient and steady-state behavior. Additionally, a variable prescribed performance boundary control strategy with an adaptive learning rate is introduced to tackle actuator saturation, ensuring reliable formation tracking in real-world scenarios. Simulation results demonstrate the effectiveness and robustness of the proposed approach.
comment: 11 pages, 10 figures, journal
UWB Anchor Based Localization of a Planetary Rover
Localization of an autonomous mobile robot during planetary exploration is challenging due to the unknown terrain, the difficult lighting conditions and the lack of any global reference such as satellite navigation systems. We present a novel approach for robot localization based on ultra-wideband (UWB) technology. The robot sets up its own reference coordinate system by distributing UWB anchor nodes in the environment via a rocket-propelled launcher system. This allows the creation of a localization space in which UWB measurements are employed to supplement traditional SLAM-based techniques. The system was developed for our involvement in the ESA-ESRIC challenge 2021 and the AMADEE-24, an analog Mars simulation in Armenia by the Austrian Space Forum (\"OWF).
comment: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS '24)
Robustness of Online Identification-based Policy Iteration to Noisy Data
This article investigates the core mechanisms of indirect data-driven control for unknown systems, focusing on the application of policy iteration (PI) within the context of the linear quadratic regulator (LQR) optimal control problem. Specifically, we consider a setting where data is collected sequentially from a linear system subject to exogenous process noise, and is then used to refine estimates of the optimal control policy. We integrate recursive least squares (RLS) for online model estimation within a certainty-equivalent framework, and employ PI to iteratively update the control policy. In this work, we investigate first the convergence behavior of RLS under two different models of adversarial noise, namely point-wise and energy bounded noise, and then we provide a closed-loop analysis of the combined model identification and control design process. This iterative scheme is formulated as an algorithmic dynamical system consisting of the feedback interconnection between two algorithms expressed as discrete-time systems. This system theoretic viewpoint on indirect data-driven control allows us to establish convergence guarantees to the optimal controller in the face of uncertainty caused by noisy data. Simulations illustrate the theoretical results.
comment: Accepted by At-automatisierungstechnik (Invited Session: Data-driven Control)
Joint Travel Route Optimization Framework for Platooning
Platooning represents an advanced driving technology designed to assist drivers in traffic convoys of varying lengths, enhancing road safety, reducing driver fatigue, and improving fuel efficiency. Sophisticated automated driving assistance systems have facilitated this innovation. Recent advancements in platooning emphasize cooperative mechanisms within both centralized and decentralized architectures enabled by vehicular communication technologies. This study introduces a cooperative route planning optimization framework aimed at promoting the adoption of platooning through a centralized platoon formation strategy at the system level. This approach is envisioned as a transitional phase from individual (ego) driving to fully collaborative driving. Additionally, this research formulates and incorporates travel cost metrics related to fuel consumption, driver fatigue, and travel time, considering regulatory constraints on consecutive driving durations. The performance of these cost metrics has been evaluated using Dijkstra's and A* shortest path algorithms within a network graph framework. The results indicate that the proposed architecture achieves an average cost improvement of 14 % compared to individual route planning for long road trips.
Controlling Complex Systems
This chapter provides a comprehensive overview of controlling collective behavior in complex systems comprising large ensembles of interacting dynamical agents. Building upon traditional control theory's foundation in individual systems, we introduce tools designed to address the unique challenges of coordinating networks that exhibit emergent phenomena, including consensus, synchronization, and pattern formation. We analyze how local agent interactions generate macroscopic behaviors and investigate the fundamental role of network topology in determining system dynamics. Inspired by natural systems, we emphasize control strategies that achieve global coordination through localized interventions while considering practical implementation challenges. The chapter concludes by presenting novel frameworks for managing very large agent ensembles and leveraging interacting networks for control purposes.
Topology optimization of decoupling feeding networks for antenna arrays
Near-field and radiation coupling between nearby radiating elements is unavoidable, and it is considered a limiting factor for applications in wireless communications and active sensing. This article proposes a density-based topology optimization approach to design decoupling networks for such systems. The decoupling networks are designed based on a multi-objective optimization problem with the radiating elements replaced by their time-domain impulse response for efficient computations and to enable the solution of the design problem using gradient-based optimization methods. We use the adjoint-field method to compute the gradients of the optimization objectives. Additionally, nonlinear filters are applied during the optimization procedure to impose minimum-size control on the optimized designs. We demonstrate the concept by designing the decoupling network for a two-element planar antenna array; the antenna is designed in a separate optimization problem. The optimized decoupling networks provide a signal path that destructively interferes with the coupling between the radiating elements while preserving their individual matching to the feeding ports. Compact decoupling networks capable of suppressing the mutual coupling by more than 10 dB between two closely separated planar antennas operating around 2.45 GHz are presented and validated experimentally.
comment: This work has been submitted to IEEE for possible publication
Strategic learning for disturbance rejection in multi-agent systems: Nash and Minmax in graphical games
This article investigates the optimal control problem with disturbance rejection for discrete-time multi-agent systems under cooperative and non-cooperative graphical games frameworks. Given the practical challenges of obtaining accurate models, Q-function-based policy iteration methods are proposed to seek the Nash equilibrium solution for the cooperative graphical game and the distributed minmax solution for the non-cooperative graphical game. To implement these methods online, two reinforcement learning frameworks are developed, an actor-disturber-critic structure for the cooperative graphical game and an actor-adversary-disturber-critic structure for the non-cooperative graphical game. The stability of the proposed methods is rigorously analyzed, and simulation results are provided to illustrate the effectiveness of the proposed methods.
Modular Control of Discrete Event System for Modeling and Mitigating Power System Cascading Failures
Cascading failures in power systems caused by sequential tripping of components are a serious concern as they can lead to complete or partial shutdowns, disrupting vital services and causing damage and inconvenience. In prior work, we developed a new approach for identifying and preventing cascading failures in power systems. The approach uses supervisory control technique of discrete event systems (DES) by incorporating both on-line lookahead control and forcible events. In this paper, we use modular supervisory control of DES to reduce computation complexity and increase the robustness and reliability of control. Modular supervisory control allows us to predict and mitigate cascading failures in power systems more effectively. We implemented the proposed control technique on a simulation platform developed in MATLAB and applied the proposed DES controller. The calculations of modular supervisory control of DES are performed using an external tool and imported into the MATLAB platform. We conduct simulation studies for the IEEE 30-bus, 118-bus and 300-bus systems, and the results demonstrate the effectiveness of our proposed approach.
Quickest change detection for UAV-based sensing
This paper addresses the problem of quickest change detection (QCD) at two spatially separated locations monitored by a single unmanned aerial vehicle (UAV) equipped with a sensor. At any location, the UAV observes i.i.d. data sequentially in discrete time instants. The distribution of the observation data changes at some unknown, arbitrary time and the UAV has to detect this change in the shortest possible time. Change can occur at most at one location over the entire infinite time horizon. The UAV switches between these two locations in order to quickly detect the change. To this end, we propose Location Switching and Change Detection (LS-CD) algorithm which uses a repeated one-sided sequential probability ratio test (SPRT) based mechanism for observation-driven location switching and change detection. The primary goal is to minimize the worst-case average detection delay (WADD) while meeting constraints on the average run length to false alarm (ARL2FA) and the UAV's time-averaged energy consumption. We provide a rigorous theoretical analysis of the algorithm's performance by using theory of random walk. Specifically, we derive tight upper and lower bounds to its ARL2FA and a tight upper bound to its WADD. In the special case of a symmetrical setting, our analysis leads to a new asymptotic upper bound to the ARL2FA of the standard CUSUM algorithm, a novel contribution not available in the literature, to our knowledge. Numerical simulations demonstrate the efficacy of LS-CD.
Personalized and Demand-Based Education Concept: Practical Tools for Control Engineers
This paper presents a personalized lecture concept using educational blocks and its demonstrative application in a new university lecture. Higher education faces daily challenges: deep and specialized knowledge is available from everywhere and accessible to almost everyone. University lecturers of specialized master courses confront the problem that their lectures are either too boring or too complex for the attending students. Additionally, curricula are changing more rapidly than they have in the past 10-30 years. The German education system comprises different educational forms, with universities providing less practical content. Consequently, many university students do not obtain the practical skills they should ideally gain through university lectures. Therefore, in this work, a new lecture concept is proposed based on the extension of the just-in-time teaching paradigm: Personalized and Demand-Based Education. This concept includes: 1) an initial assessment of students' backgrounds, 2) selecting the appropriate educational blocks, and 3) collecting ongoing feedback during the semester. The feedback was gathered via Pingo, ensuring anonymity for the students. Our concept was exemplarily tested in the new lecture "Practical Tools for Control Engineers" at the Karlsruhe Institute of Technology. The initial results indicate that our proposed concept could be beneficial in addressing the current challenges in higher education.
comment: Accepted to IFAC-ACE 2025
RL-based Control of UAS Subject to Significant Disturbance
This paper proposes a Reinforcement Learning (RL)-based control framework for position and attitude control of an Unmanned Aerial System (UAS) subjected to significant disturbance that can be associated with an uncertain trigger signal. The proposed method learns the relationship between the trigger signal and disturbance force, enabling the system to anticipate and counteract the impending disturbances before they occur. We train and evaluate three policies: a baseline policy trained without exposure to the disturbance, a reactive policy trained with the disturbance but without the trigger signal, and a predictive policy that incorporates the trigger signal as an observation and is exposed to the disturbance during training. Our simulation results show that the predictive policy outperforms the other policies by minimizing position deviations through a proactive correction maneuver. This work highlights the potential of integrating predictive cues into RL frameworks to improve UAS performance.
comment: Accepted at ICUAS 2025
Deep Reinforcement Learning for Day-to-day Dynamic Tolling in Tradable Credit Schemes
Tradable credit schemes (TCS) are an increasingly studied alternative to congestion pricing, given their revenue neutrality and ability to address issues of equity through the initial credit allocation. Modeling TCS to aid future design and implementation is associated with challenges involving user and market behaviors, demand-supply dynamics, and control mechanisms. In this paper, we focus on the latter and address the day-to-day dynamic tolling problem under TCS, which is formulated as a discrete-time Markov Decision Process and solved using reinforcement learning (RL) algorithms. Our results indicate that RL algorithms achieve travel times and social welfare comparable to the Bayesian optimization benchmark, with generalization across varying capacities and demand levels. We further assess the robustness of RL under different hyperparameters and apply regularization techniques to mitigate action oscillation, which generates practical tolling strategies that are transferable under day-to-day demand and supply variability. Finally, we discuss potential challenges such as scaling to large networks, and show how transfer learning can be leveraged to improve computational efficiency and facilitate the practical deployment of RL-based TCS solutions.
Techno-economic environmental and social assessment framework for energy transition pathways in integrated energy communities: a case study in Alaska
The transition to low-carbon energy systems demands comprehensive evaluation tools that account for technical, economic, environmental, and social dimensions. While numerous studies address specific aspects of energy transition, few provide an integrated framework that captures the full spectrum of impacts. This study proposes a comprehensive techno-economic, environmental, and social (TEES) assessment framework to evaluate energy transition pathways. The framework provides a structured methodology for assessing infrastructure needs, cost implications, emissions reductions, and social equity impacts, offering a systematic approach for informed decision-making. To illustrate its applicability, a detailed case study of a remote community in Alaska is conducted, evaluating the TEES impacts of three distinct energy transition pathways including heat pumps (HPs) and battery integration, resource coordination and expanded community solar photovoltaic (PV). Findings show that coordination of HPs minimizes peak demand, enhances grid reliability, and reduces energy burdens among low-income households. Extensive simulation-based analysis reveals that strategically staging electric HPs with existing oil heating systems can lower overall energy costs by 19% and reduce emissions by 29% compared to the today's system and outperforms all-heat-pump strategy for economic savings. By combining a generalizable, community-centric assessment framework with data-driven case study insights, this work offers a practical tool for utilities, community stakeholders and policymakers to work toward equitable and sustainable energy transitions.
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: The first two listed authors contributed equally
Anti-Slip AI-Driven Model-Free Control with Global Exponential Stability in Skid-Steering Robots
Undesired lateral and longitudinal wheel slippage can disrupt a mobile robot's heading angle, traction, and, eventually, desired motion. This issue makes the robotization and accurate modeling of heavy-duty machinery very challenging because the application primarily involves off-road terrains, which are susceptible to uneven motion and severe slippage. As a step toward robotization in skid-steering heavy-duty robot (SSHDR), this paper aims to design an innovative robust model-free control system developed by neural networks to strongly stabilize the robot dynamics in the presence of a broad range of potential wheel slippages. Before the control design, the dynamics of the SSHDR are first investigated by mathematically incorporating slippage effects, assuming that all functional modeling terms of the system are unknown to the control system. Then, a novel tracking control framework to guarantee global exponential stability of the SSHDR is designed as follows: 1) the unknown modeling of wheel dynamics is approximated using radial basis function neural networks (RBFNNs); and 2) a new adaptive law is proposed to compensate for slippage effects and tune the weights of the RBFNNs online during execution. Simulation and experimental results verify the proposed tracking control performance of a 4,836 kg SSHDR operating on slippery terrain.
comment: This paper has been submitter for the IEEE consideration
Hybrid Control Barrier Functions for Nonholonomic Multi-Agent Systems
This paper addresses the problem of guaranteeing safety of multiple coordinated agents moving in dynamic environments. It has recently been shown that this problem can be efficiently solved through the notion of Control Barrier Functions (CBFs). However, for nonholonomic vehicles that are required to keep positive speeds, existing CBFs lose their validity. To overcome this limitation, we propose a hybrid formulation based on synergistic CBFs (SCBFs), which leverages a discrete switching mechanism to avoid configurations that would render the CBF invalid. Unlike existing approaches, our method ensures safety in the presence of moving obstacles and inter-agent interactions while respecting nonzero speed restrictions. We formally analyze the feasibility of the constraints with respect to actuation limits, and the efficacy of the solution is demonstrated in simulation of a multi-agent coordination problem in the presence of moving obstacles.
comment: Submitted to the 64th IEEE Conference on Decision and Control (CDC)
Coordinated vehicle dispatching and charging scheduling for an electric ride-hailing fleet under charging congestion and dynamic prices
Effective utilization of charging station capacity plays an important role in enhancing the profitability of ride-hailing systems using electric vehicles. Existing studies assume constant energy prices and uncapacitated charging stations or do not explicitly consider vehicle queueing at charging stations, resulting in over-optimistic charging infrastructure utilization. In this study, we develop a dynamic charging scheduling method (named CongestionAware) that anticipates vehicles' energy needs and coordinates their charging operations with real-time energy prices to avoid long waiting time at charging stations and increase the total profit of the system. A sequential mixed integer linear programming model is proposed to devise vehicles' day-ahead charging plans based on their experienced charging waiting times and energy consumption. The obtained charging plans are adapted within the day in response to vehicles' energy needs and charging station congestion. The developed charging policy is tested using NYC yellow taxi data in a Manhattan-like study area with a fleet size of 100 vehicles given the scenarios of 3000 and 4000 customers per day. The computational results show that our CongestionAware policy outperforms different benchmark policies with up to +15.06% profit and +19.16% service rate for 4000 customers per day. Sensitivity analysis is conducted with different system parameters and managerial insights are discussed.
Demonstrating Remote Synchronization: An Experimental Approach with Nonlinear Oscillators
This study investigates remote synchronization in arbitrary network clusters of coupled nonlinear oscillators, a phenomenon inspired by neural synchronization in the brain. Employing a multi-faceted approach encompassing analytical, numerical, and experimental methodologies, we leverage the Master Stability Function (MSF) to analyze network stability. We provide experimental evidence of remote synchronization between two clusters of nonlinear oscillators, where oscillators within each cluster are also remotely connected. This observation parallels the thalamus-mediated synchronization of neuronal populations in the brain. An electronic circuit testbed, supported by nonlinear ODE modeling and LT Spice simulation, was developed to validate our theoretical predictions. Future work will extend this investigation to encompass diverse network topologies and explore potential applications in neuroscience, communication networks, and power systems.
Attitude Estimation via Matrix Fisher Distributions on SO(3) Using Non-Unit Vector Measurements
This note presents a novel Bayesian attitude estimator with the matrix Fisher distribution on the special orthogonal group, which can smoothly accommodate both unit and non-unit vector measurements. The posterior attitude distribution is proven to be a matrix Fisher distribution with the assumption that non-unit vector measurement errors follow the isotropic Gaussian distributions and unit vector measurements follow the von-Mises Fisher distributions. Next, a global unscented transformation is proposed to approximate the full likelihood distribution with a matrix Fisher distribution for more generic cases of vector measurement errors following the non-isotropic Gaussian distributions. Following these, a Bayesian attitude estimator with the matrix Fisher distribution is constructed. Numerical examples are then presented. The proposed estimator exhibits advantageous performance compared with the previous attitude estimator with matrix Fisher distributions and the classic multiplicative extended Kalman filter in the case of non-unit vector measurements.
comment: 10 pages, 4 figures
Perturbation-Based Pinning Control Strategy for Enhanced Synchronization in Complex Networks
Synchronization is essential for the stability and coordinated operation of complex networked systems. Pinning control, which selectively controls a subset of nodes, provides a scalable solution to enhance network synchronizability. However, existing strategies face key limitations: heuristic centrality-based methods lack a direct connection to synchronization dynamics, while spectral approaches, though effective, are computationally intensive. To address these challenges, we propose a perturbation-based optimized strategy (PBO) that dynamically evaluates each node's spectral impact on the Laplacian matrix, achieving improved synchronizability with significantly reduced computational costs (with complexity O(kM)). Extensive experiments demonstrate that the proposed method outperforms traditional strategies in synchronizability, convergence rate, and pinning robustness to node failures. Notably, in all the empirical networks tested and some generated networks, PBO significantly outperforms the brute-force greedy strategy, demonstrating its ability to avoid local optima and adapt to complex connectivity patterns. Our study establishes the theoretical relationship between network synchronizability and convergence rate, offering new insights into efficient synchronization strategies for large-scale complex networks.
comment: This work has been submitted to the IEEE for possible publication
Parallel Domain-Decomposition Algorithms for Complexity Certification of Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
When implementing model predictive control (MPC) for hybrid systems with a linear or a quadratic performance measure, a mixed-integer linear program (MILP) or a mixed-integer quadratic program (MIQP) needs to be solved, respectively, at each sampling instant. Recent work has introduced the possibility to certify the computational complexity of branch-and-bound (B&B) algorithms when solving MILP and MIQP problems formulated as multi-parametric MILPs (mp-MILPs) and mp-MIQPs. Such a framework allows for computing the worst-case computational complexity of standard B&B-based MILP and MIQP solvers, quantified by metrics such as the total number of LP/QP iterations and B&B nodes. These results are highly relevant for real-time hybrid MPC applications. In this paper, we extend this framework by developing parallel, domain-decomposition versions of the previously proposed algorithm, allowing it to scale to larger problem sizes and enable the use of high-performance computing (HPC) resources. Furthermore, to reduce peak memory consumption, we introduce two novel modifications to the existing (serial) complexity certification framework, integrating them into the proposed parallel algorithms. Numerical experiments show that the parallel algorithms significantly reduce computation time while maintaining the correctness of the original framework.
A Unifying Complexity-Certification Framework for Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
In model predictive control (MPC) for hybrid systems, solving optimization problems efficiently and with guarantees on worst-case computational complexity is critical to satisfy the real-time constraints in these applications. These optimization problems often take the form of mixed-integer linear programs (MILPs) or mixed-integer quadratic programs (MIQPs) that depend on system parameters. A common approach for solving such problems is the branch-and-bound (B&B) method. This paper extends existing complexity certification methods by presenting a unified complexity-certification framework for B&B-based MILP and MIQP solvers, specifically for the family of multi-parametric MILP and MIQP problems that arise in, e.g., hybrid MPC applications. The framework provides guarantees on worst-case computational measures, including the maximum number of iterations or relaxations B&B algorithms require to reach optimality. It systematically accounts for different branching and node selection strategies, as well as heuristics integrated into B&B, ensuring a comprehensive certification framework. By offering theoretical guarantees and practical insights for solver customization, the proposed framework enhances the reliability of B&B for real-time application. The usefulness of the proposed framework is demonstrated through numerical experiments on both random MILPs and MIQPs, as well as on MIQPs arising from a hybrid MPC problem.
SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning SC
This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/bassamlab/SigmaRL
comment: Accepted for presentation at the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
Balanced Truncation via Tangential Interpolation
This paper examines the construction of rth-order truncated balanced realizations via tangential interpolation at r specified interpolation points. It is demonstrated that when the truncated Hankel singular values are negligible-that is, when the discarded states are nearly uncontrollable and unobservable-balanced truncation simplifies to a bi-tangential Hermite interpolation problem at r interpolation points. In such cases, the resulting truncated balanced realization is nearly H2-optimal and thus interpolates the original model at the mirror images of its poles along its residual directions. Like standard H2-optimal model reduction, where the interpolation points and tangential directions that yield a local optimum are not known, in balanced truncation as well, the interpolation points and tangential directions required to produce a truncated balanced realization remain unknown. To address this, we propose an iterative tangential interpolation-based algorithm for balanced truncation. Upon convergence, the algorithm yields a low-rank truncated balanced realization that accurately preserves the r largest Hankel singular values of the original system. An adaptive scheme to automatically select the order r of the reduced model is also proposed. The algorithm is fully automatic, choosing both the interpolation data and the model order without user intervention. Additionally, an adaptive low-rank solver for Lyapunov equations based on tangential interpolation is proposed, automatically selecting both the interpolation data and the rank without user intervention. The performance of the proposed algorithms is evaluated on benchmark models, confirming their efficacy.
Robust, positive and exact model reduction via monotone matrices
This work focuses on the problem of exact model reduction of positive linear systems, by leveraging minimal realization theory. While determining the existence of a positive reachable realization remains in general an open problem, we are able to fully characterize the cases in which the new model is obtained with non-negative reduction matrices, and hence positivity of the reduced model is robust with respect to small perturbations of the original system. The characterization is obtained by specializing monotone matrix theory to positive matrices. In addition, we provide a systematic method to construct positive reductions also when minimal ones are not available, by exploiting algebraic techniques.
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Mode Switching-Induced Instability of Multi-source Feed DC Microgrid
In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.
comment: This submission is being withdrawn due to the need for major structural revisions to the manuscript. All authors have agreed that substantial modifications are required to improve the work's rigor and completeness. A revised version incorporating these improvements will be submitted subsequently
Convergence and Robustness of Value and Policy Iteration for the Linear Quadratic Regulator
This paper revisits and extends the convergence and robustness properties of value and policy iteration algorithms for discrete-time linear quadratic regulator problems. In the model-based case, we extend current results concerning the region of exponential convergence of both algorithms. In the case where there is uncertainty on the value of the system matrices, we provide input-to-state stability results capturing the effect of model parameter uncertainties. Our findings offer new insights into these algorithms at the heart of several approximate dynamic programming schemes, highlighting their convergence and robustness behaviors. Numerical examples illustrate the significance of some of the theoretical results.
comment: This work has been Accepted by the European Control Conference 2025
Exact Model Reduction for Continuous-Time Open Quantum Dynamics
We consider finite-dimensional many-body quantum systems described by time-independent Hamiltonians and Markovian master equations, and present a systematic method for constructing smaller-dimensional, reduced models that exactly reproduce the time evolution of a set of initial conditions or observables of interest. Our approach exploits Krylov operator spaces and their extension to operator algebras, and may be used to obtain reduced linear models of minimal dimension, well-suited for simulation on classical computers, or reduced quantum models that preserve the structural constraints of physically admissible quantum dynamics, as required for simulation on quantum computers. Notably, we prove that the reduced quantum-dynamical generator is still in Lindblad form. By introducing a new type of observable-dependent symmetries, we show that our method provides a non-trivial generalization of techniques that leverage symmetries, unlocking new reduction opportunities. We quantitatively benchmark our method on paradigmatic open many-body systems of relevance to condensed-matter and quantum-information physics. In particular, we demonstrate how our reduced models can quantitatively describe decoherence dynamics in central-spin systems coupled to structured environments, magnetization transport in boundary-driven dissipative spin chains, and unwanted error dynamics on information encoded in a noiseless quantum code.
Amplitude response and square wave describing functions
An analog of the describing function method is developed using square waves rather than sinusoids. Static nonlinearities map square waves to square waves, and their behavior is characterized by their response to square waves of varying amplitude - their amplitude response. The output of an LTI system to a square wave input is approximated by a square wave, to give an analog of the describing function. The classical describing function method for predicting oscillations in feedback interconnections is generalized to this square wave setting, and gives accurate predictions when oscillations are approximately square.
comment: Presented at the 2025 European Control Conference
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to 2025 IEEE Conference on Decision and Control (CDC)
Maintaining Strong r-Robustness in Reconfigurable Multi-Robot Networks using Control Barrier Functions ICRA
In leader-follower consensus, strong r-robustness of the communication graph provides a sufficient condition for followers to achieve consensus in the presence of misbehaving agents. Previous studies have assumed that robots can form and/or switch between predetermined network topologies with known robustness properties. However, robots with distance-based communication models may not be able to achieve these topologies while moving through spatially constrained environments, such as narrow corridors, to complete their objectives. This paper introduces a Control Barrier Function (CBF) that ensures robots maintain strong r-robustness of their communication graph above a certain threshold without maintaining any fixed topologies. Our CBF directly addresses robustness, allowing robots to have flexible reconfigurable network structure while navigating to achieve their objectives. The efficacy of our method is tested through various simulation and hardware experiments.
comment: Accepted and will appear at 2025 IEEE International Conference on Robotics and Automation (ICRA)
Construction of the Sparsest Maximally r-Robust Graphs
In recent years, the notion of r-robustness for the communication graph of the network has been introduced to address the challenge of achieving consensus in the presence of misbehaving agents. Higher r-robustness typically implies higher tolerance to malicious information towards achieving resilient consensus, but it also implies more edges for the communication graph. This in turn conflicts with the need to minimize communication due to limited resources in real-world applications (e.g., multi-robot networks). In this paper, our contributions are twofold. (a) We provide the necessary subgraph structures and tight lower bounds on the number of edges required for graphs with a given number of nodes to achieve maximum robustness. (b) We then use the results of (a) to introduce two classes of graphs that maintain maximum robustness with the least number of edges. Our work is validated through a series of simulations.
comment: 2024 IEEE Conference on Decision and Control (CDC)
Nonparametric Steady-state Learning for Robust Output Regulation of Nonlinear Output Feedback Systems
This article addresses the nonadaptive and robust output regulation problem of the general nonlinear output feedback system with error output. The global robust output regulation problem for a class of general output feedback nonlinear systems with an uncertain exosystem and high relative degree can be tackled by constructing a linear generic internal model provided that a continuous nonlinear mapping exists. Leveraging the presented nonadaptive framework facilitates the conversion of the nonlinear robust output regulation problem into a robust nonadaptive stabilization endeavour for the augmented system endowed with Input-to-State Stable dynamics, removing the need for constructing a specific Lyapunov function with positive semidefinite derivatives and the commmonly employed assumption that the nonlinear system should be linear-in-parameter(parameterized) condition. The nonadaptive approach is extended by incorporating the nonparametric learning framework to ensure the feasibility of the nonlinear mapping, which can be classified into a data-driven method. Moreover, the introduced nonparametric learning framework allows the controlled system to learn the dynamics of the steady-state/input behaviour from the signal generated from the internal model with the output error as the feedback. As a result, the nonadaptive/nonparametric approach can be advantageous by guaranteeing convergence of the estimation and tracking error even when the underlying controlled system dynamics are complex or poorly understood. The effectiveness of the theoretical results is illustrated for a benchmark example: a controlled duffing system and two practical examples: a continuously stirred tank reactor and a continuous bioreactor.
comment: 16 pages, 18 figures
The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks From Artificial Intelligence
The risks posed by Artificial Intelligence (AI) are of considerable concern to academics, auditors, policymakers, AI companies, and the public. However, a lack of shared understanding of AI risks can impede our ability to comprehensively discuss, research, and react to them. This paper addresses this gap by creating an AI Risk Repository to serve as a common frame of reference. This comprises a living database of 777 risks extracted from 43 taxonomies, which can be filtered based on two overarching taxonomies and easily accessed, modified, and updated via our website and online spreadsheets. We construct our Repository with a systematic review of taxonomies and other structured classifications of AI risk followed by an expert consultation. We develop our taxonomies of AI risk using a best-fit framework synthesis. Our high-level Causal Taxonomy of AI Risks classifies each risk by its causal factors (1) Entity: Human, AI; (2) Intentionality: Intentional, Unintentional; and (3) Timing: Pre-deployment; Post-deployment. Our mid-level Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental, and (7) AI system safety, failures, & limitations. These are further divided into 23 subdomains. The AI Risk Repository is, to our knowledge, the first attempt to rigorously curate, analyze, and extract AI risk frameworks into a publicly accessible, comprehensive, extensible, and categorized risk database. This creates a foundation for a more coordinated, coherent, and complete approach to defining, auditing, and managing the risks posed by AI systems.
Planning and Learning in Risk-Aware Restless Multi-Arm Bandit Problem
In restless multi-arm bandits, a central agent is tasked with optimally distributing limited resources across several bandits (arms), with each arm being a Markov decision process. In this work, we generalize the traditional restless multi-arm bandit problem with a risk-neutral objective by incorporating risk-awareness. We establish indexability conditions for the case of a risk-aware objective and provide a solution based on Whittle index. In addition, we address the learning problem when the true transition probabilities are unknown by proposing a Thompson sampling approach and show that it achieves bounded regret that scales sublinearly with the number of episodes and quadratically with the number of arms. The efficacy of our method in reducing risk exposure in restless multi-arm bandits is illustrated through a set of numerical experiments in the contexts of machine replacement and patient scheduling applications under both planning and learning setups.
Generalized Multi-Speed Dubins Motion Model
The paper develops a novel motion model, called Generalized Multi-Speed Dubins Motion Model (GMDM), which extends the Dubins model by considering multiple speeds. While the Dubins model produces time-optimal paths under a constant speed constraint, these paths could be suboptimal if this constraint is relaxed to include multiple speeds. This is because a constant speed results in a large minimum turning radius, thus producing paths with longer maneuvers and larger travel times. In contrast, multi-speed relaxation allows for slower speed sharp turns, thus producing more direct paths with shorter maneuvers and smaller travel times. Furthermore, the inability of the Dubins model to reduce speed could result in fast maneuvers near obstacles, thus producing paths with high collision risks. In this regard, GMDM provides the motion planners the ability to jointly optimize time and risk by allowing the change of speed along the path. GMDM is built upon the six Dubins path types considering the change of speed on path segments. It is theoretically established that GMDM provides full reachability of the configuration space for any speed selections. Furthermore, it is shown that the Dubins model is a specific case of GMDM for constant speeds. The solutions of GMDM are analytical and suitable for real-time applications. The performance of GMDM in terms of solution quality (i.e., time/time-risk cost) and computation time is comparatively evaluated against the existing motion models in obstacle-free as well as obstacle-rich environments via extensive Monte Carlo simulations. The results show that in obstacle-free environments, GMDM produces near time-optimal paths with significantly lower travel times than the Dubins model while having similar computation times. In obstacle-rich environments, GMDM produces time-risk optimized paths with substantially lower collision risks.
comment: 18 pages
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control and communication topology co-design approach for voltage regulation and current sharing in DC microgrids (DC MGs) with generic ``ZIP'' loads. While ZIP loads accurately capture the varied nature of the consumer loads, its constant power load (CPL) component is particularly challenging (and destabilizing) due to its non-linear form. Moreover, ensuring simultaneous voltage regulation and current sharing and co-designing controllers and topology are also challenging when designing control solutions for DC MGs. To address these three challenges, we model the DC MG as a networked system comprised of distributed generators (DGs), ZIP loads, and lines interconnected according to a static interconnection matrix. Next, we equip each DG with a local controller and a distributed global controller (over an arbitrary topology) to derive the error dynamic model of the DC MG as a networked ``error'' system, including disturbance inputs and performance outputs. Subsequently, to co-design the controllers and the topology ensuring robust (dissipative) voltage regulation and current sharing performance, we use the dissipativity and sector boundedness properties of the involved subsystems and formulate Linear Matrix Inequality (LMI) problems to be solved locally and globally. To support the feasibility of the global LMI problem, we identify and embed several crucial necessary conditions in the corresponding local LMI problems, thus providing a one-shot approach (as opposed to iterative schemes) to solve the LMI problems. Overall, the proposed approach in this paper provides a unified framework for designing DC MGs. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches.
comment: arXiv admin note: text overlap with arXiv:2503.04908
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control and communication topology co-design approach for voltage regulation and current sharing in DC microgrids (DC MGs) with generic ``ZIP'' loads. While ZIP loads accurately capture the varied nature of the consumer loads, its constant power load (CPL) component is particularly challenging (and destabilizing) due to its non-linear form. Moreover, ensuring simultaneous voltage regulation and current sharing and co-designing controllers and topology are also challenging when designing control solutions for DC MGs. To address these three challenges, we model the DC MG as a networked system comprised of distributed generators (DGs), ZIP loads, and lines interconnected according to a static interconnection matrix. Next, we equip each DG with a local controller and a distributed global controller (over an arbitrary topology) to derive the error dynamic model of the DC MG as a networked ``error'' system, including disturbance inputs and performance outputs. Subsequently, to co-design the controllers and the topology ensuring robust (dissipative) voltage regulation and current sharing performance, we use the dissipativity and sector boundedness properties of the involved subsystems and formulate Linear Matrix Inequality (LMI) problems to be solved locally and globally. To support the feasibility of the global LMI problem, we identify and embed several crucial necessary conditions in the corresponding local LMI problems, thus providing a one-shot approach (as opposed to iterative schemes) to solve the LMI problems. Overall, the proposed approach in this paper provides a unified framework for designing DC MGs. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches.
comment: arXiv admin note: substantial text overlap with arXiv:2503.04908
Systems and Control (EESS)
Episodically adapted network-based controllers
We consider the problem of distributing a control policy across a network of interconnected units. Distributing controllers in this way has a number of potential advantages, especially in terms of robustness, as the failure of a single unit can be compensated by the activity of others. However, it is not obvious a priori how such network-based controllers should be constructed for any given system and control objective. Here, we propose a synthesis procedure for obtaining dynamical networks that enact well-defined control policies in a model-free manner. We specifically consider an augmented state space consisting of both the plant state and the network states. Solution of an optimization problem in this augmented state space produces a desired objective and specification of the network dynamics. Because of the analytical tractability of this method, we are able to provide convergence and robustness assessments
Open Datasets for Grid Modeling and Visualization: An Alberta Power Network Case
In the power and energy industry, multiple entities in grid operational logs are frequently recorded and updated. Thanks to recent advances in IT facilities and smart metering services, a variety of datasets such as system load, generation mix, and grid connection are often publicly available. While these resources are valuable in evaluating power grid's operational conditions and system resilience, the lack of fine-grained, accurate locational information constrain the usage of current data, which further hinders the development of smart grid and renewables integration. For instance, electricity end users are not aware of nodal generation mix or carbon emissions, while the general public have limited understanding about the effect of demand response or renewables integration if only the whole system's demands and generations are available. In this work, we focus on recovering power grid topology and line flow directions from open public dataset. Taking the Alberta grid as a working example, we start from mapping multi-modal power system datasets to the grid topology integrated with geographical information. By designing a novel optimization-based scheme to recover line flow directions, we are able to analyze and visualize the interactions between generations and demand vectors in an efficient manner. Proposed research is fully open-sourced and highly generalizable, which can help model and visualize grid information, create synthetic dataset, and facilitate analytics and decision-making framework for clean energy transition.
comment: In submission, code available at https://github.com/BenCheng2/CarbonDistributionMap
Event-Triggered Source Seeking Control for Nonholonomic Systems
This paper introduces an event-triggered source seeking control (ET-SSC) for autonomous vehicles modeled as the nonholonomic unicycle. The classical source seeking control is enhanced with static-triggering conditions to enable aperiodic and less frequent updates of the system's input signals, offering a resource-aware control design. Our convergence analysis is based on time-scaling combined with Lyapunov and averaging theories for systems with discontinuous right-hand sides. ET-SSC ensures exponentially stable behavior for the resulting average system, leading to practical asymptotic convergence to a small neighborhood of the source point. We guarantee the avoidance of Zeno behavior by establishing a minimum dwell time to prevent infinitely fast switching. The performance optimization is aligned with classical continuous-time source seeking algorithms while balancing system performance with actuation resource consumption. Our ET-SSC algorithm, the first of its kind, allows for arbitrarily large inter-sampling times, overcoming the limitations of classical sampled-data implementations for source seeking control.
comment: 9 pages, 4 figures
Generalized Passivity Sensitivity Methodology for Small-Signal Stability Analysis
This paper proposes a generalized passivity sensitivity analysis for power system stability studies. The method uncovers the most effective instability mitigation actions for both device-level and system-level investigations. The particular structure of the admittance and nodal models is exploited in the detailed derivation of the passivity sensitivity expressions. These proposed sensitivities are validated for different parameters at device-level and at system-level. Compared to previous stability and sensitivity methods, it does not require detailed system information, such as exact system eigenvalues, while it provides valuable information for a less conservative stable system design. In addition, we demonstrate how to utilize the proposed method through case studies with different converter controls and system-wide insights showing its general applicability.
On-Chip and Off-Chip TIA Amplifiers for Nanopore Signal Readout Design, Performance and Challenges: A Review
Advancements in biomedical research have driven continuous innovations in sensing and diagnostic technologies. Among these, nanopore based single molecule sensing and sequencing is rapidly emerging as a powerful and versatile sensing methodology. Advancements in nanopore based approaches require concomitant improvements in the electronic readout methods employed, from the point of low noise, bandwidth and form factor. This article focuses on current sensing circuits designed and employed for ultra low noise nanopore signal readout, addressing the fundamental limitations of traditional off chip transimpedance amplifiers (TIAs), which suffer from high input parasitic capacitance, bandwidth constraints, and increased noise at high frequencies. This review explores the latest design schemes and circuit structures classified into on-chip and off-chip TIA designs, highlighting their design implementation, performance, respective challenges and explores the interplay between noise performance, capacitance, and bandwidth across diverse transimpedance amplifier (TIA) configurations. Emphasis is placed on characterizing noise response under varying parasitic capacitance and operational frequencies, a systematic evaluation not extensively addressed in prior literature while also considering the allowable input current compliance range limitations. The review also compares the widely used Axopatch 200B system to the designs reported in literature. The findings offer valuable insights into optimizing TIA designs for enhanced signal integrity in high speed and high sensitivity applications focusing on noise reduction, impedance matching, DC blocking, and offset cancellation techniques.
comment: 35 pages , 22 figures
Optimal Frequency Support from Virtual Power Plants: Minimal Reserve and Allocation
This paper proposes a novel reserve-minimizing and allocation strategy for virtual power plants (VPPs) to deliver optimal frequency support. The proposed strategy enables VPPs, acting as aggregators for inverter-based resources (IBRs), to provide optimal frequency support economically. The proposed strategy captures time-varying active power injections, reducing the unnecessary redundancy compared to traditional fixed reserve schemes. Reserve requirements for the VPPs are determined based on system frequency response and safety constraints, ensuring efficient grid support. Furthermore, an energy-based allocation model decomposes power injections for each IBR, accounting for their specific limitations. Numerical experiments validate the feasibility of the proposed approach, highlighting significant financial gains for VPPs, especially as system inertia decreases due to higher renewable energy integration.
comment: Accepted by Applied Energy
Distributed Fault-Tolerant Control for Heterogeneous MAS with Prescribed Performance under Communication Failures
This paper presents a novel approach employing prescribed performance control to address the distributed fault-tolerant formation control problem in a heterogeneous UAV-UGV cooperative system under a directed interaction topology and communication link failures. The proposed distributed fault-tolerant control scheme enables UAVs to accurately track a virtual leader's trajectory and achieve the desired formation, while ensuring UGVs converge within the convex hull formed by leader UAVs. By accounting for differences in system parameters and state dimensions between UAVs and UGVs, the method leverages performance functions to guarantee predefined transient and steady-state behavior. Additionally, a variable prescribed performance boundary control strategy with an adaptive learning rate is introduced to tackle actuator saturation, ensuring reliable formation tracking in real-world scenarios. Simulation results demonstrate the effectiveness and robustness of the proposed approach.
comment: 11 pages, 10 figures, journal
UWB Anchor Based Localization of a Planetary Rover
Localization of an autonomous mobile robot during planetary exploration is challenging due to the unknown terrain, the difficult lighting conditions and the lack of any global reference such as satellite navigation systems. We present a novel approach for robot localization based on ultra-wideband (UWB) technology. The robot sets up its own reference coordinate system by distributing UWB anchor nodes in the environment via a rocket-propelled launcher system. This allows the creation of a localization space in which UWB measurements are employed to supplement traditional SLAM-based techniques. The system was developed for our involvement in the ESA-ESRIC challenge 2021 and the AMADEE-24, an analog Mars simulation in Armenia by the Austrian Space Forum (\"OWF).
comment: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS '24)
Robustness of Online Identification-based Policy Iteration to Noisy Data
This article investigates the core mechanisms of indirect data-driven control for unknown systems, focusing on the application of policy iteration (PI) within the context of the linear quadratic regulator (LQR) optimal control problem. Specifically, we consider a setting where data is collected sequentially from a linear system subject to exogenous process noise, and is then used to refine estimates of the optimal control policy. We integrate recursive least squares (RLS) for online model estimation within a certainty-equivalent framework, and employ PI to iteratively update the control policy. In this work, we investigate first the convergence behavior of RLS under two different models of adversarial noise, namely point-wise and energy bounded noise, and then we provide a closed-loop analysis of the combined model identification and control design process. This iterative scheme is formulated as an algorithmic dynamical system consisting of the feedback interconnection between two algorithms expressed as discrete-time systems. This system theoretic viewpoint on indirect data-driven control allows us to establish convergence guarantees to the optimal controller in the face of uncertainty caused by noisy data. Simulations illustrate the theoretical results.
comment: Accepted by At-automatisierungstechnik (Invited Session: Data-driven Control)
Joint Travel Route Optimization Framework for Platooning
Platooning represents an advanced driving technology designed to assist drivers in traffic convoys of varying lengths, enhancing road safety, reducing driver fatigue, and improving fuel efficiency. Sophisticated automated driving assistance systems have facilitated this innovation. Recent advancements in platooning emphasize cooperative mechanisms within both centralized and decentralized architectures enabled by vehicular communication technologies. This study introduces a cooperative route planning optimization framework aimed at promoting the adoption of platooning through a centralized platoon formation strategy at the system level. This approach is envisioned as a transitional phase from individual (ego) driving to fully collaborative driving. Additionally, this research formulates and incorporates travel cost metrics related to fuel consumption, driver fatigue, and travel time, considering regulatory constraints on consecutive driving durations. The performance of these cost metrics has been evaluated using Dijkstra's and A* shortest path algorithms within a network graph framework. The results indicate that the proposed architecture achieves an average cost improvement of 14 % compared to individual route planning for long road trips.
Controlling Complex Systems
This chapter provides a comprehensive overview of controlling collective behavior in complex systems comprising large ensembles of interacting dynamical agents. Building upon traditional control theory's foundation in individual systems, we introduce tools designed to address the unique challenges of coordinating networks that exhibit emergent phenomena, including consensus, synchronization, and pattern formation. We analyze how local agent interactions generate macroscopic behaviors and investigate the fundamental role of network topology in determining system dynamics. Inspired by natural systems, we emphasize control strategies that achieve global coordination through localized interventions while considering practical implementation challenges. The chapter concludes by presenting novel frameworks for managing very large agent ensembles and leveraging interacting networks for control purposes.
Topology optimization of decoupling feeding networks for antenna arrays
Near-field and radiation coupling between nearby radiating elements is unavoidable, and it is considered a limiting factor for applications in wireless communications and active sensing. This article proposes a density-based topology optimization approach to design decoupling networks for such systems. The decoupling networks are designed based on a multi-objective optimization problem with the radiating elements replaced by their time-domain impulse response for efficient computations and to enable the solution of the design problem using gradient-based optimization methods. We use the adjoint-field method to compute the gradients of the optimization objectives. Additionally, nonlinear filters are applied during the optimization procedure to impose minimum-size control on the optimized designs. We demonstrate the concept by designing the decoupling network for a two-element planar antenna array; the antenna is designed in a separate optimization problem. The optimized decoupling networks provide a signal path that destructively interferes with the coupling between the radiating elements while preserving their individual matching to the feeding ports. Compact decoupling networks capable of suppressing the mutual coupling by more than 10 dB between two closely separated planar antennas operating around 2.45 GHz are presented and validated experimentally.
comment: This work has been submitted to IEEE for possible publication
Strategic learning for disturbance rejection in multi-agent systems: Nash and Minmax in graphical games
This article investigates the optimal control problem with disturbance rejection for discrete-time multi-agent systems under cooperative and non-cooperative graphical games frameworks. Given the practical challenges of obtaining accurate models, Q-function-based policy iteration methods are proposed to seek the Nash equilibrium solution for the cooperative graphical game and the distributed minmax solution for the non-cooperative graphical game. To implement these methods online, two reinforcement learning frameworks are developed, an actor-disturber-critic structure for the cooperative graphical game and an actor-adversary-disturber-critic structure for the non-cooperative graphical game. The stability of the proposed methods is rigorously analyzed, and simulation results are provided to illustrate the effectiveness of the proposed methods.
Modular Control of Discrete Event System for Modeling and Mitigating Power System Cascading Failures
Cascading failures in power systems caused by sequential tripping of components are a serious concern as they can lead to complete or partial shutdowns, disrupting vital services and causing damage and inconvenience. In prior work, we developed a new approach for identifying and preventing cascading failures in power systems. The approach uses supervisory control technique of discrete event systems (DES) by incorporating both on-line lookahead control and forcible events. In this paper, we use modular supervisory control of DES to reduce computation complexity and increase the robustness and reliability of control. Modular supervisory control allows us to predict and mitigate cascading failures in power systems more effectively. We implemented the proposed control technique on a simulation platform developed in MATLAB and applied the proposed DES controller. The calculations of modular supervisory control of DES are performed using an external tool and imported into the MATLAB platform. We conduct simulation studies for the IEEE 30-bus, 118-bus and 300-bus systems, and the results demonstrate the effectiveness of our proposed approach.
Quickest change detection for UAV-based sensing
This paper addresses the problem of quickest change detection (QCD) at two spatially separated locations monitored by a single unmanned aerial vehicle (UAV) equipped with a sensor. At any location, the UAV observes i.i.d. data sequentially in discrete time instants. The distribution of the observation data changes at some unknown, arbitrary time and the UAV has to detect this change in the shortest possible time. Change can occur at most at one location over the entire infinite time horizon. The UAV switches between these two locations in order to quickly detect the change. To this end, we propose Location Switching and Change Detection (LS-CD) algorithm which uses a repeated one-sided sequential probability ratio test (SPRT) based mechanism for observation-driven location switching and change detection. The primary goal is to minimize the worst-case average detection delay (WADD) while meeting constraints on the average run length to false alarm (ARL2FA) and the UAV's time-averaged energy consumption. We provide a rigorous theoretical analysis of the algorithm's performance by using theory of random walk. Specifically, we derive tight upper and lower bounds to its ARL2FA and a tight upper bound to its WADD. In the special case of a symmetrical setting, our analysis leads to a new asymptotic upper bound to the ARL2FA of the standard CUSUM algorithm, a novel contribution not available in the literature, to our knowledge. Numerical simulations demonstrate the efficacy of LS-CD.
Personalized and Demand-Based Education Concept: Practical Tools for Control Engineers
This paper presents a personalized lecture concept using educational blocks and its demonstrative application in a new university lecture. Higher education faces daily challenges: deep and specialized knowledge is available from everywhere and accessible to almost everyone. University lecturers of specialized master courses confront the problem that their lectures are either too boring or too complex for the attending students. Additionally, curricula are changing more rapidly than they have in the past 10-30 years. The German education system comprises different educational forms, with universities providing less practical content. Consequently, many university students do not obtain the practical skills they should ideally gain through university lectures. Therefore, in this work, a new lecture concept is proposed based on the extension of the just-in-time teaching paradigm: Personalized and Demand-Based Education. This concept includes: 1) an initial assessment of students' backgrounds, 2) selecting the appropriate educational blocks, and 3) collecting ongoing feedback during the semester. The feedback was gathered via Pingo, ensuring anonymity for the students. Our concept was exemplarily tested in the new lecture "Practical Tools for Control Engineers" at the Karlsruhe Institute of Technology. The initial results indicate that our proposed concept could be beneficial in addressing the current challenges in higher education.
comment: Accepted to IFAC-ACE 2025
Deep Reinforcement Learning for Day-to-day Dynamic Tolling in Tradable Credit Schemes
Tradable credit schemes (TCS) are an increasingly studied alternative to congestion pricing, given their revenue neutrality and ability to address issues of equity through the initial credit allocation. Modeling TCS to aid future design and implementation is associated with challenges involving user and market behaviors, demand-supply dynamics, and control mechanisms. In this paper, we focus on the latter and address the day-to-day dynamic tolling problem under TCS, which is formulated as a discrete-time Markov Decision Process and solved using reinforcement learning (RL) algorithms. Our results indicate that RL algorithms achieve travel times and social welfare comparable to the Bayesian optimization benchmark, with generalization across varying capacities and demand levels. We further assess the robustness of RL under different hyperparameters and apply regularization techniques to mitigate action oscillation, which generates practical tolling strategies that are transferable under day-to-day demand and supply variability. Finally, we discuss potential challenges such as scaling to large networks, and show how transfer learning can be leveraged to improve computational efficiency and facilitate the practical deployment of RL-based TCS solutions.
Techno-economic environmental and social assessment framework for energy transition pathways in integrated energy communities: a case study in Alaska
The transition to low-carbon energy systems demands comprehensive evaluation tools that account for technical, economic, environmental, and social dimensions. While numerous studies address specific aspects of energy transition, few provide an integrated framework that captures the full spectrum of impacts. This study proposes a comprehensive techno-economic, environmental, and social (TEES) assessment framework to evaluate energy transition pathways. The framework provides a structured methodology for assessing infrastructure needs, cost implications, emissions reductions, and social equity impacts, offering a systematic approach for informed decision-making. To illustrate its applicability, a detailed case study of a remote community in Alaska is conducted, evaluating the TEES impacts of three distinct energy transition pathways including heat pumps (HPs) and battery integration, resource coordination and expanded community solar photovoltaic (PV). Findings show that coordination of HPs minimizes peak demand, enhances grid reliability, and reduces energy burdens among low-income households. Extensive simulation-based analysis reveals that strategically staging electric HPs with existing oil heating systems can lower overall energy costs by 19% and reduce emissions by 29% compared to the today's system and outperforms all-heat-pump strategy for economic savings. By combining a generalizable, community-centric assessment framework with data-driven case study insights, this work offers a practical tool for utilities, community stakeholders and policymakers to work toward equitable and sustainable energy transitions.
ES-HPC-MPC: Exponentially Stable Hybrid Perception Constrained MPC for Quadrotor with Suspended Payloads
Aerial transportation using quadrotors with cable-suspended payloads holds great potential for applications in disaster response, logistics, and infrastructure maintenance. However, their hybrid and underactuated dynamics pose significant control and perception challenges. Traditional approaches often assume a taut cable condition, limiting their effectiveness in real-world applications where slack-to-taut transitions occur due to disturbances. We introduce ES-HPC-MPC, a model predictive control framework that enforces exponential stability and perception-constrained control under hybrid dynamics. Our method leverages Exponentially Stabilizing Control Lyapunov Functions (ES-CLFs) to enforce stability during the tasks and Control Barrier Functions (CBFs) to maintain the payload within the onboard camera's field of view (FoV). We validate our method through both simulation and real-world experiments, demonstrating stable trajectory tracking and reliable payload perception. We validate that our method maintains stability and satisfies perception constraints while tracking dynamically infeasible trajectories and when the system is subjected to hybrid mode transitions caused by unexpected disturbances.
comment: The first two listed authors contributed equally
Anti-Slip AI-Driven Model-Free Control with Global Exponential Stability in Skid-Steering Robots
Undesired lateral and longitudinal wheel slippage can disrupt a mobile robot's heading angle, traction, and, eventually, desired motion. This issue makes the robotization and accurate modeling of heavy-duty machinery very challenging because the application primarily involves off-road terrains, which are susceptible to uneven motion and severe slippage. As a step toward robotization in skid-steering heavy-duty robot (SSHDR), this paper aims to design an innovative robust model-free control system developed by neural networks to strongly stabilize the robot dynamics in the presence of a broad range of potential wheel slippages. Before the control design, the dynamics of the SSHDR are first investigated by mathematically incorporating slippage effects, assuming that all functional modeling terms of the system are unknown to the control system. Then, a novel tracking control framework to guarantee global exponential stability of the SSHDR is designed as follows: 1) the unknown modeling of wheel dynamics is approximated using radial basis function neural networks (RBFNNs); and 2) a new adaptive law is proposed to compensate for slippage effects and tune the weights of the RBFNNs online during execution. Simulation and experimental results verify the proposed tracking control performance of a 4,836 kg SSHDR operating on slippery terrain.
comment: This paper has been submitter for the IEEE consideration
Hybrid Control Barrier Functions for Nonholonomic Multi-Agent Systems
This paper addresses the problem of guaranteeing safety of multiple coordinated agents moving in dynamic environments. It has recently been shown that this problem can be efficiently solved through the notion of Control Barrier Functions (CBFs). However, for nonholonomic vehicles that are required to keep positive speeds, existing CBFs lose their validity. To overcome this limitation, we propose a hybrid formulation based on synergistic CBFs (SCBFs), which leverages a discrete switching mechanism to avoid configurations that would render the CBF invalid. Unlike existing approaches, our method ensures safety in the presence of moving obstacles and inter-agent interactions while respecting nonzero speed restrictions. We formally analyze the feasibility of the constraints with respect to actuation limits, and the efficacy of the solution is demonstrated in simulation of a multi-agent coordination problem in the presence of moving obstacles.
comment: Submitted to the 64th IEEE Conference on Decision and Control (CDC)
Coordinated vehicle dispatching and charging scheduling for an electric ride-hailing fleet under charging congestion and dynamic prices
Effective utilization of charging station capacity plays an important role in enhancing the profitability of ride-hailing systems using electric vehicles. Existing studies assume constant energy prices and uncapacitated charging stations or do not explicitly consider vehicle queueing at charging stations, resulting in over-optimistic charging infrastructure utilization. In this study, we develop a dynamic charging scheduling method (named CongestionAware) that anticipates vehicles' energy needs and coordinates their charging operations with real-time energy prices to avoid long waiting time at charging stations and increase the total profit of the system. A sequential mixed integer linear programming model is proposed to devise vehicles' day-ahead charging plans based on their experienced charging waiting times and energy consumption. The obtained charging plans are adapted within the day in response to vehicles' energy needs and charging station congestion. The developed charging policy is tested using NYC yellow taxi data in a Manhattan-like study area with a fleet size of 100 vehicles given the scenarios of 3000 and 4000 customers per day. The computational results show that our CongestionAware policy outperforms different benchmark policies with up to +15.06% profit and +19.16% service rate for 4000 customers per day. Sensitivity analysis is conducted with different system parameters and managerial insights are discussed.
Demonstrating Remote Synchronization: An Experimental Approach with Nonlinear Oscillators
This study investigates remote synchronization in arbitrary network clusters of coupled nonlinear oscillators, a phenomenon inspired by neural synchronization in the brain. Employing a multi-faceted approach encompassing analytical, numerical, and experimental methodologies, we leverage the Master Stability Function (MSF) to analyze network stability. We provide experimental evidence of remote synchronization between two clusters of nonlinear oscillators, where oscillators within each cluster are also remotely connected. This observation parallels the thalamus-mediated synchronization of neuronal populations in the brain. An electronic circuit testbed, supported by nonlinear ODE modeling and LT Spice simulation, was developed to validate our theoretical predictions. Future work will extend this investigation to encompass diverse network topologies and explore potential applications in neuroscience, communication networks, and power systems.
Attitude Estimation via Matrix Fisher Distributions on SO(3) Using Non-Unit Vector Measurements
This note presents a novel Bayesian attitude estimator with the matrix Fisher distribution on the special orthogonal group, which can smoothly accommodate both unit and non-unit vector measurements. The posterior attitude distribution is proven to be a matrix Fisher distribution with the assumption that non-unit vector measurement errors follow the isotropic Gaussian distributions and unit vector measurements follow the von-Mises Fisher distributions. Next, a global unscented transformation is proposed to approximate the full likelihood distribution with a matrix Fisher distribution for more generic cases of vector measurement errors following the non-isotropic Gaussian distributions. Following these, a Bayesian attitude estimator with the matrix Fisher distribution is constructed. Numerical examples are then presented. The proposed estimator exhibits advantageous performance compared with the previous attitude estimator with matrix Fisher distributions and the classic multiplicative extended Kalman filter in the case of non-unit vector measurements.
comment: 10 pages, 4 figures
Perturbation-Based Pinning Control Strategy for Enhanced Synchronization in Complex Networks
Synchronization is essential for the stability and coordinated operation of complex networked systems. Pinning control, which selectively controls a subset of nodes, provides a scalable solution to enhance network synchronizability. However, existing strategies face key limitations: heuristic centrality-based methods lack a direct connection to synchronization dynamics, while spectral approaches, though effective, are computationally intensive. To address these challenges, we propose a perturbation-based optimized strategy (PBO) that dynamically evaluates each node's spectral impact on the Laplacian matrix, achieving improved synchronizability with significantly reduced computational costs (with complexity O(kM)). Extensive experiments demonstrate that the proposed method outperforms traditional strategies in synchronizability, convergence rate, and pinning robustness to node failures. Notably, in all the empirical networks tested and some generated networks, PBO significantly outperforms the brute-force greedy strategy, demonstrating its ability to avoid local optima and adapt to complex connectivity patterns. Our study establishes the theoretical relationship between network synchronizability and convergence rate, offering new insights into efficient synchronization strategies for large-scale complex networks.
comment: This work has been submitted to the IEEE for possible publication
Parallel Domain-Decomposition Algorithms for Complexity Certification of Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
When implementing model predictive control (MPC) for hybrid systems with a linear or a quadratic performance measure, a mixed-integer linear program (MILP) or a mixed-integer quadratic program (MIQP) needs to be solved, respectively, at each sampling instant. Recent work has introduced the possibility to certify the computational complexity of branch-and-bound (B&B) algorithms when solving MILP and MIQP problems formulated as multi-parametric MILPs (mp-MILPs) and mp-MIQPs. Such a framework allows for computing the worst-case computational complexity of standard B&B-based MILP and MIQP solvers, quantified by metrics such as the total number of LP/QP iterations and B&B nodes. These results are highly relevant for real-time hybrid MPC applications. In this paper, we extend this framework by developing parallel, domain-decomposition versions of the previously proposed algorithm, allowing it to scale to larger problem sizes and enable the use of high-performance computing (HPC) resources. Furthermore, to reduce peak memory consumption, we introduce two novel modifications to the existing (serial) complexity certification framework, integrating them into the proposed parallel algorithms. Numerical experiments show that the parallel algorithms significantly reduce computation time while maintaining the correctness of the original framework.
A Unifying Complexity-Certification Framework for Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
In model predictive control (MPC) for hybrid systems, solving optimization problems efficiently and with guarantees on worst-case computational complexity is critical to satisfy the real-time constraints in these applications. These optimization problems often take the form of mixed-integer linear programs (MILPs) or mixed-integer quadratic programs (MIQPs) that depend on system parameters. A common approach for solving such problems is the branch-and-bound (B&B) method. This paper extends existing complexity certification methods by presenting a unified complexity-certification framework for B&B-based MILP and MIQP solvers, specifically for the family of multi-parametric MILP and MIQP problems that arise in, e.g., hybrid MPC applications. The framework provides guarantees on worst-case computational measures, including the maximum number of iterations or relaxations B&B algorithms require to reach optimality. It systematically accounts for different branching and node selection strategies, as well as heuristics integrated into B&B, ensuring a comprehensive certification framework. By offering theoretical guarantees and practical insights for solver customization, the proposed framework enhances the reliability of B&B for real-time application. The usefulness of the proposed framework is demonstrated through numerical experiments on both random MILPs and MIQPs, as well as on MIQPs arising from a hybrid MPC problem.
SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning SC
This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/bassamlab/SigmaRL
comment: Accepted for presentation at the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
Balanced Truncation via Tangential Interpolation
This paper examines the construction of rth-order truncated balanced realizations via tangential interpolation at r specified interpolation points. It is demonstrated that when the truncated Hankel singular values are negligible-that is, when the discarded states are nearly uncontrollable and unobservable-balanced truncation simplifies to a bi-tangential Hermite interpolation problem at r interpolation points. In such cases, the resulting truncated balanced realization is nearly H2-optimal and thus interpolates the original model at the mirror images of its poles along its residual directions. Like standard H2-optimal model reduction, where the interpolation points and tangential directions that yield a local optimum are not known, in balanced truncation as well, the interpolation points and tangential directions required to produce a truncated balanced realization remain unknown. To address this, we propose an iterative tangential interpolation-based algorithm for balanced truncation. Upon convergence, the algorithm yields a low-rank truncated balanced realization that accurately preserves the r largest Hankel singular values of the original system. An adaptive scheme to automatically select the order r of the reduced model is also proposed. The algorithm is fully automatic, choosing both the interpolation data and the model order without user intervention. Additionally, an adaptive low-rank solver for Lyapunov equations based on tangential interpolation is proposed, automatically selecting both the interpolation data and the rank without user intervention. The performance of the proposed algorithms is evaluated on benchmark models, confirming their efficacy.
Robust, positive and exact model reduction via monotone matrices
This work focuses on the problem of exact model reduction of positive linear systems, by leveraging minimal realization theory. While determining the existence of a positive reachable realization remains in general an open problem, we are able to fully characterize the cases in which the new model is obtained with non-negative reduction matrices, and hence positivity of the reduced model is robust with respect to small perturbations of the original system. The characterization is obtained by specializing monotone matrix theory to positive matrices. In addition, we provide a systematic method to construct positive reductions also when minimal ones are not available, by exploiting algebraic techniques.
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Mode Switching-Induced Instability of Multi-source Feed DC Microgrid
In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.
comment: This submission is being withdrawn due to the need for major structural revisions to the manuscript. All authors have agreed that substantial modifications are required to improve the work's rigor and completeness. A revised version incorporating these improvements will be submitted subsequently
Convergence and Robustness of Value and Policy Iteration for the Linear Quadratic Regulator
This paper revisits and extends the convergence and robustness properties of value and policy iteration algorithms for discrete-time linear quadratic regulator problems. In the model-based case, we extend current results concerning the region of exponential convergence of both algorithms. In the case where there is uncertainty on the value of the system matrices, we provide input-to-state stability results capturing the effect of model parameter uncertainties. Our findings offer new insights into these algorithms at the heart of several approximate dynamic programming schemes, highlighting their convergence and robustness behaviors. Numerical examples illustrate the significance of some of the theoretical results.
comment: This work has been Accepted by the European Control Conference 2025
Exact Model Reduction for Continuous-Time Open Quantum Dynamics
We consider finite-dimensional many-body quantum systems described by time-independent Hamiltonians and Markovian master equations, and present a systematic method for constructing smaller-dimensional, reduced models that exactly reproduce the time evolution of a set of initial conditions or observables of interest. Our approach exploits Krylov operator spaces and their extension to operator algebras, and may be used to obtain reduced linear models of minimal dimension, well-suited for simulation on classical computers, or reduced quantum models that preserve the structural constraints of physically admissible quantum dynamics, as required for simulation on quantum computers. Notably, we prove that the reduced quantum-dynamical generator is still in Lindblad form. By introducing a new type of observable-dependent symmetries, we show that our method provides a non-trivial generalization of techniques that leverage symmetries, unlocking new reduction opportunities. We quantitatively benchmark our method on paradigmatic open many-body systems of relevance to condensed-matter and quantum-information physics. In particular, we demonstrate how our reduced models can quantitatively describe decoherence dynamics in central-spin systems coupled to structured environments, magnetization transport in boundary-driven dissipative spin chains, and unwanted error dynamics on information encoded in a noiseless quantum code.
Amplitude response and square wave describing functions
An analog of the describing function method is developed using square waves rather than sinusoids. Static nonlinearities map square waves to square waves, and their behavior is characterized by their response to square waves of varying amplitude - their amplitude response. The output of an LTI system to a square wave input is approximated by a square wave, to give an analog of the describing function. The classical describing function method for predicting oscillations in feedback interconnections is generalized to this square wave setting, and gives accurate predictions when oscillations are approximately square.
comment: Presented at the 2025 European Control Conference
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to 2025 IEEE Conference on Decision and Control (CDC)
Maintaining Strong r-Robustness in Reconfigurable Multi-Robot Networks using Control Barrier Functions ICRA
In leader-follower consensus, strong r-robustness of the communication graph provides a sufficient condition for followers to achieve consensus in the presence of misbehaving agents. Previous studies have assumed that robots can form and/or switch between predetermined network topologies with known robustness properties. However, robots with distance-based communication models may not be able to achieve these topologies while moving through spatially constrained environments, such as narrow corridors, to complete their objectives. This paper introduces a Control Barrier Function (CBF) that ensures robots maintain strong r-robustness of their communication graph above a certain threshold without maintaining any fixed topologies. Our CBF directly addresses robustness, allowing robots to have flexible reconfigurable network structure while navigating to achieve their objectives. The efficacy of our method is tested through various simulation and hardware experiments.
comment: Accepted and will appear at 2025 IEEE International Conference on Robotics and Automation (ICRA)
Construction of the Sparsest Maximally r-Robust Graphs
In recent years, the notion of r-robustness for the communication graph of the network has been introduced to address the challenge of achieving consensus in the presence of misbehaving agents. Higher r-robustness typically implies higher tolerance to malicious information towards achieving resilient consensus, but it also implies more edges for the communication graph. This in turn conflicts with the need to minimize communication due to limited resources in real-world applications (e.g., multi-robot networks). In this paper, our contributions are twofold. (a) We provide the necessary subgraph structures and tight lower bounds on the number of edges required for graphs with a given number of nodes to achieve maximum robustness. (b) We then use the results of (a) to introduce two classes of graphs that maintain maximum robustness with the least number of edges. Our work is validated through a series of simulations.
comment: 2024 IEEE Conference on Decision and Control (CDC)
Nonparametric Steady-state Learning for Robust Output Regulation of Nonlinear Output Feedback Systems
This article addresses the nonadaptive and robust output regulation problem of the general nonlinear output feedback system with error output. The global robust output regulation problem for a class of general output feedback nonlinear systems with an uncertain exosystem and high relative degree can be tackled by constructing a linear generic internal model provided that a continuous nonlinear mapping exists. Leveraging the presented nonadaptive framework facilitates the conversion of the nonlinear robust output regulation problem into a robust nonadaptive stabilization endeavour for the augmented system endowed with Input-to-State Stable dynamics, removing the need for constructing a specific Lyapunov function with positive semidefinite derivatives and the commmonly employed assumption that the nonlinear system should be linear-in-parameter(parameterized) condition. The nonadaptive approach is extended by incorporating the nonparametric learning framework to ensure the feasibility of the nonlinear mapping, which can be classified into a data-driven method. Moreover, the introduced nonparametric learning framework allows the controlled system to learn the dynamics of the steady-state/input behaviour from the signal generated from the internal model with the output error as the feedback. As a result, the nonadaptive/nonparametric approach can be advantageous by guaranteeing convergence of the estimation and tracking error even when the underlying controlled system dynamics are complex or poorly understood. The effectiveness of the theoretical results is illustrated for a benchmark example: a controlled duffing system and two practical examples: a continuously stirred tank reactor and a continuous bioreactor.
comment: 16 pages, 18 figures
The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks From Artificial Intelligence
The risks posed by Artificial Intelligence (AI) are of considerable concern to academics, auditors, policymakers, AI companies, and the public. However, a lack of shared understanding of AI risks can impede our ability to comprehensively discuss, research, and react to them. This paper addresses this gap by creating an AI Risk Repository to serve as a common frame of reference. This comprises a living database of 777 risks extracted from 43 taxonomies, which can be filtered based on two overarching taxonomies and easily accessed, modified, and updated via our website and online spreadsheets. We construct our Repository with a systematic review of taxonomies and other structured classifications of AI risk followed by an expert consultation. We develop our taxonomies of AI risk using a best-fit framework synthesis. Our high-level Causal Taxonomy of AI Risks classifies each risk by its causal factors (1) Entity: Human, AI; (2) Intentionality: Intentional, Unintentional; and (3) Timing: Pre-deployment; Post-deployment. Our mid-level Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental, and (7) AI system safety, failures, & limitations. These are further divided into 23 subdomains. The AI Risk Repository is, to our knowledge, the first attempt to rigorously curate, analyze, and extract AI risk frameworks into a publicly accessible, comprehensive, extensible, and categorized risk database. This creates a foundation for a more coordinated, coherent, and complete approach to defining, auditing, and managing the risks posed by AI systems.
Planning and Learning in Risk-Aware Restless Multi-Arm Bandit Problem
In restless multi-arm bandits, a central agent is tasked with optimally distributing limited resources across several bandits (arms), with each arm being a Markov decision process. In this work, we generalize the traditional restless multi-arm bandit problem with a risk-neutral objective by incorporating risk-awareness. We establish indexability conditions for the case of a risk-aware objective and provide a solution based on Whittle index. In addition, we address the learning problem when the true transition probabilities are unknown by proposing a Thompson sampling approach and show that it achieves bounded regret that scales sublinearly with the number of episodes and quadratically with the number of arms. The efficacy of our method in reducing risk exposure in restless multi-arm bandits is illustrated through a set of numerical experiments in the contexts of machine replacement and patient scheduling applications under both planning and learning setups.
Generalized Multi-Speed Dubins Motion Model
The paper develops a novel motion model, called Generalized Multi-Speed Dubins Motion Model (GMDM), which extends the Dubins model by considering multiple speeds. While the Dubins model produces time-optimal paths under a constant speed constraint, these paths could be suboptimal if this constraint is relaxed to include multiple speeds. This is because a constant speed results in a large minimum turning radius, thus producing paths with longer maneuvers and larger travel times. In contrast, multi-speed relaxation allows for slower speed sharp turns, thus producing more direct paths with shorter maneuvers and smaller travel times. Furthermore, the inability of the Dubins model to reduce speed could result in fast maneuvers near obstacles, thus producing paths with high collision risks. In this regard, GMDM provides the motion planners the ability to jointly optimize time and risk by allowing the change of speed along the path. GMDM is built upon the six Dubins path types considering the change of speed on path segments. It is theoretically established that GMDM provides full reachability of the configuration space for any speed selections. Furthermore, it is shown that the Dubins model is a specific case of GMDM for constant speeds. The solutions of GMDM are analytical and suitable for real-time applications. The performance of GMDM in terms of solution quality (i.e., time/time-risk cost) and computation time is comparatively evaluated against the existing motion models in obstacle-free as well as obstacle-rich environments via extensive Monte Carlo simulations. The results show that in obstacle-free environments, GMDM produces near time-optimal paths with significantly lower travel times than the Dubins model while having similar computation times. In obstacle-rich environments, GMDM produces time-risk optimized paths with substantially lower collision risks.
comment: 18 pages
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control and communication topology co-design approach for voltage regulation and current sharing in DC microgrids (DC MGs) with generic ``ZIP'' loads. While ZIP loads accurately capture the varied nature of the consumer loads, its constant power load (CPL) component is particularly challenging (and destabilizing) due to its non-linear form. Moreover, ensuring simultaneous voltage regulation and current sharing and co-designing controllers and topology are also challenging when designing control solutions for DC MGs. To address these three challenges, we model the DC MG as a networked system comprised of distributed generators (DGs), ZIP loads, and lines interconnected according to a static interconnection matrix. Next, we equip each DG with a local controller and a distributed global controller (over an arbitrary topology) to derive the error dynamic model of the DC MG as a networked ``error'' system, including disturbance inputs and performance outputs. Subsequently, to co-design the controllers and the topology ensuring robust (dissipative) voltage regulation and current sharing performance, we use the dissipativity and sector boundedness properties of the involved subsystems and formulate Linear Matrix Inequality (LMI) problems to be solved locally and globally. To support the feasibility of the global LMI problem, we identify and embed several crucial necessary conditions in the corresponding local LMI problems, thus providing a one-shot approach (as opposed to iterative schemes) to solve the LMI problems. Overall, the proposed approach in this paper provides a unified framework for designing DC MGs. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches.
comment: arXiv admin note: text overlap with arXiv:2503.04908
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control and communication topology co-design approach for voltage regulation and current sharing in DC microgrids (DC MGs) with generic ``ZIP'' loads. While ZIP loads accurately capture the varied nature of the consumer loads, its constant power load (CPL) component is particularly challenging (and destabilizing) due to its non-linear form. Moreover, ensuring simultaneous voltage regulation and current sharing and co-designing controllers and topology are also challenging when designing control solutions for DC MGs. To address these three challenges, we model the DC MG as a networked system comprised of distributed generators (DGs), ZIP loads, and lines interconnected according to a static interconnection matrix. Next, we equip each DG with a local controller and a distributed global controller (over an arbitrary topology) to derive the error dynamic model of the DC MG as a networked ``error'' system, including disturbance inputs and performance outputs. Subsequently, to co-design the controllers and the topology ensuring robust (dissipative) voltage regulation and current sharing performance, we use the dissipativity and sector boundedness properties of the involved subsystems and formulate Linear Matrix Inequality (LMI) problems to be solved locally and globally. To support the feasibility of the global LMI problem, we identify and embed several crucial necessary conditions in the corresponding local LMI problems, thus providing a one-shot approach (as opposed to iterative schemes) to solve the LMI problems. Overall, the proposed approach in this paper provides a unified framework for designing DC MGs. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches.
comment: arXiv admin note: substantial text overlap with arXiv:2503.04908
Multiagent Systems
Dual Engines of Thoughts: A Depth-Breadth Integration Framework for Open-Ended Analysis
We propose the Dual Engines of Thoughts (DEoT), an analytical framework for comprehensive open-ended reasoning. While traditional reasoning frameworks primarily focus on finding "the best answer" or "the correct answer" for single-answer problems, DEoT is specifically designed for "open-ended questions," enabling both broader and deeper analytical exploration. The framework centers on three key components: a Base Prompter for refining user queries, a Solver Agent that orchestrates task decomposition, execution, and validation, and a Dual-Engine System consisting of a Breadth Engine (to explore diverse impact factors) and a Depth Engine (to perform deep investigations). This integrated design allows DEoT to balance wide-ranging coverage with in-depth analysis, and it is highly customizable, enabling users to adjust analytical parameters and tool configurations based on specific requirements. Experimental results show that DEoT excels in addressing complex, multi-faceted questions, achieving a total win rate of 77-86% compared to existing reasoning models, thus highlighting its effectiveness in real-world applications.
Anytime Single-Step MAPF Planning with Anytime PIBT
PIBT is a popular Multi-Agent Path Finding (MAPF) method at the core of many state-of-the-art MAPF methods including LaCAM, CS-PIBT, and WPPL. The main utility of PIBT is that it is a very fast and effective single-step MAPF solver and can return a collision-free single-step solution for hundreds of agents in less than a millisecond. However, the main drawback of PIBT is that it is extremely greedy in respect to its priorities and thus leads to poor solution quality. Additionally, PIBT cannot use all the planning time that might be available to it and returns the first solution it finds. We thus develop Anytime PIBT, which quickly finds a one-step solution identically to PIBT but then continuously improves the solution in an anytime manner. We prove that Anytime PIBT converges to the optimal solution given sufficient time. We experimentally validate that Anytime PIBT can rapidly improve single-step solution quality within milliseconds and even find the optimal single-step action. However, we interestingly find that improving the single-step solution quality does not have a significant effect on full-horizon solution costs.
What Contributes to Affective Polarization in Networked Online Environments? Evidence from an Agent-Based Model
Affective polarization, or, inter-party hostility, is increasingly recognized as a pervasive issue in democracies worldwide, posing a threat to social cohesion. The digital media ecosystem, now widely accessible and ever-present, has often been implicated in accelerating this phenomenon. However, the precise causal mechanisms responsible for driving affective polarization have been a subject of extensive debate. While the concept of echo chambers, characterized by individuals ensconced within like-minded groups, bereft of counter-attitudinal content, has long been the prevailing hypothesis, accumulating empirical evidence suggests a more nuanced picture. This study aims to contribute to the ongoing debate by employing an agent-based model to illustrate how affective polarization is either fostered or hindered by individual news consumption and dissemination patterns based on ideological alignment. To achieve this, we parameterize three key aspects: (1) The affective asymmetry of individuals' engagement with in-party versus out-party content, (2) The proportion of in-party members within one's social neighborhood, and (3) The degree of partisan bias among the elites within the population. Subsequently, we observe macro-level changes in affective polarization within the population under various conditions stipulated by these parameters. This approach allows us to explore the intricate dynamics of affective polarization within digital environments, shedding light on the interplay between individual behaviors, social networks, and information exposure.
Achilles Heel of Distributed Multi-Agent Systems
Multi-agent system (MAS) has demonstrated exceptional capabilities in addressing complex challenges, largely due to the integration of multiple large language models (LLMs). However, the heterogeneity of LLMs, the scalability of quantities of LLMs, and local computational constraints pose significant challenges to hosting these models locally. To address these issues, we propose a new framework termed Distributed Multi-Agent System (DMAS). In DMAS, heterogeneous third-party agents function as service providers managed remotely by a central MAS server and each agent offers its services through API interfaces. However, the distributed nature of DMAS introduces several concerns about trustworthiness. In this paper, we study the Achilles heel of distributed multi-agent systems, identifying four critical trustworthiness challenges: free riding, susceptibility to malicious attacks, communication inefficiencies, and system instability. Extensive experiments across seven frameworks and four datasets reveal significant vulnerabilities of the DMAS. These attack strategies can lead to a performance degradation of up to 80% and attain a 100% success rate in executing free riding and malicious attacks. We envision our work will serve as a useful red-teaming tool for evaluating future multi-agent systems and spark further research on trustworthiness challenges in distributed multi-agent systems.
Reinforcing Clinical Decision Support through Multi-Agent Systems and Ethical AI Governance
In the age of data-driven medicine, it is paramount to include explainable and ethically managed artificial intelligence in explaining clinical decision support systems to achieve trustworthy and effective patient care. The focus of this paper is on a new architecture of a multi-agent system for clinical decision support that uses modular agents to analyze laboratory results, vital signs, and the clinical context and then integrates these results to drive predictions and validate outcomes. We describe our implementation with the eICU database to run lab-analysis-specific agents, vitals-only interpreters, and contextual reasoners and then run the prediction module and a validation agent. Everything is a transparent implementation of business logic, influenced by the principles of ethical AI governance such as Autonomy, Fairness, and Accountability. It provides visible results that this agent-based framework not only improves on interpretability and accuracy but also on reinforcing trust in AI-assisted decisions in an intensive care setting.
SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning SC
This paper introduces an open-source, decentralized framework named SigmaRL, designed to enhance both sample efficiency and generalization of multi-agent Reinforcement Learning (RL) for motion planning of connected and automated vehicles. Most RL agents exhibit a limited capacity to generalize, often focusing narrowly on specific scenarios, and are usually evaluated in similar or even the same scenarios seen during training. Various methods have been proposed to address these challenges, including experience replay and regularization. However, how observation design in RL affects sample efficiency and generalization remains an under-explored area. We address this gap by proposing five strategies to design information-dense observations, focusing on general features that are applicable to most traffic scenarios. We train our RL agents using these strategies on an intersection and evaluate their generalization through numerical experiments across completely unseen traffic scenarios, including a new intersection, an on-ramp, and a roundabout. Incorporating these information-dense observations reduces training times to under one hour on a single CPU, and the evaluation results reveal that our RL agents can effectively zero-shot generalize. Code: github.com/bassamlab/SigmaRL
comment: Accepted for presentation at the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024
Robust Event-Triggered Integrated Communication and Control with Graph Information Bottleneck Optimization
Integrated communication and control serves as a critical ingredient in Multi-Agent Reinforcement Learning. However, partial observability limitations will impair collaboration effectiveness, and a potential solution is to establish consensus through well-calibrated latent variables obtained from neighboring agents. Nevertheless, the rigid transmission of less informative content can still result in redundant information exchanges. Therefore, we propose a Consensus-Driven Event-Based Graph Information Bottleneck (CDE-GIB) method, which integrates the communication graph and information flow through a GIB regularizer to extract more concise message representations while avoiding the high computational complexity of inner-loop operations. To further minimize the communication volume required for establishing consensus during interactions, we also develop a variable-threshold event-triggering mechanism. By simultaneously considering historical data and current observations, this mechanism capably evaluates the importance of information to determine whether an event should be triggered. Experimental results demonstrate that our proposed method outperforms existing state-of-the-art methods in terms of both efficiency and adaptability.
Robotics
Neural Motion Simulator: Pushing the Limit of World Models in Reinforcement Learning CVPR 2025
An embodied system must not only model the patterns of the external world but also understand its own motion dynamics. A motion dynamic model is essential for efficient skill acquisition and effective planning. In this work, we introduce the neural motion simulator (MoSim), a world model that predicts the future physical state of an embodied system based on current observations and actions. MoSim achieves state-of-the-art performance in physical state prediction and provides competitive performance across a range of downstream tasks. This works shows that when a world model is accurate enough and performs precise long-horizon predictions, it can facilitate efficient skill acquisition in imagined worlds and even enable zero-shot reinforcement learning. Furthermore, MoSim can transform any model-free reinforcement learning (RL) algorithm into a model-based approach, effectively decoupling physical environment modeling from RL algorithm development. This separation allows for independent advancements in RL algorithms and world modeling, significantly improving sample efficiency and enhancing generalization capabilities. Our findings highlight that world models for motion dynamics is a promising direction for developing more versatile and capable embodied systems.
comment: 8 pages (main), 2-page appendix, 8 figures, accepted by CVPR 2025
UAV Position Estimation using a LiDAR-based 3D Object Detection Method
This paper explores the use of applying a deep learning approach for 3D object detection to compute the relative position of an Unmanned Aerial Vehicle (UAV) from an Unmanned Ground Vehicle (UGV) equipped with a LiDAR sensor in a GPS-denied environment. This was achieved by evaluating the LiDAR sensor's data through a 3D detection algorithm (PointPillars). The PointPillars algorithm incorporates a column voxel point-cloud representation and a 2D Convolutional Neural Network (CNN) to generate distinctive point-cloud features representing the object to be identified, in this case, the UAV. The current localization method utilizes point-cloud segmentation, Euclidean clustering, and predefined heuristics to obtain the relative position of the UAV. Results from the two methods were then compared to a reference truth solution.
Leveraging GCN-based Action Recognition for Teleoperation in Daily Activity Assistance
Caregiving of older adults is an urgent global challenge, with many older adults preferring to age in place rather than enter residential care. However, providing adequate home-based assistance remains difficult, particularly in geographically vast regions. Teleoperated robots offer a promising solution, but conventional motion-mapping teleoperation imposes unnatural movement constraints on operators, leading to muscle fatigue and reduced usability. This paper presents a novel teleoperation framework that leverages action recognition to enable intuitive remote robot control. Using our simplified Spatio-Temporal Graph Convolutional Network (S-ST-GCN), the system recognizes human actions and executes corresponding preset robot trajectories, eliminating the need for direct motion synchronization. A finite-state machine (FSM) is integrated to enhance reliability by filtering out misclassified actions. Our experiments demonstrate that the proposed framework enables effortless operator movement while ensuring accurate robot execution. This proof-of-concept study highlights the potential of teleoperation with action recognition for enabling caregivers to remotely assist older adults during activities of daily living (ADLs). Future work will focus on improving the S-ST-GCN's recognition accuracy and generalization, integrating advanced motion planning techniques to further enhance robotic autonomy in older adult care, and conducting a user study to evaluate the system's telepresence and ease of control.
RayFronts: Open-Set Semantic Ray Frontiers for Online Scene Understanding and Exploration
Open-set semantic mapping is crucial for open-world robots. Current mapping approaches either are limited by the depth range or only map beyond-range entities in constrained settings, where overall they fail to combine within-range and beyond-range observations. Furthermore, these methods make a trade-off between fine-grained semantics and efficiency. We introduce RayFronts, a unified representation that enables both dense and beyond-range efficient semantic mapping. RayFronts encodes task-agnostic open-set semantics to both in-range voxels and beyond-range rays encoded at map boundaries, empowering the robot to reduce search volumes significantly and make informed decisions both within & beyond sensory range, while running at 8.84 Hz on an Orin AGX. Benchmarking the within-range semantics shows that RayFronts's fine-grained image encoding provides 1.34x zero-shot 3D semantic segmentation performance while improving throughput by 16.5x. Traditionally, online mapping performance is entangled with other system components, complicating evaluation. We propose a planner-agnostic evaluation framework that captures the utility for online beyond-range search and exploration, and show RayFronts reduces search volume 2.2x more efficiently than the closest online baselines.
Two by Two: Learning Multi-Task Pairwise Objects Assembly for Generalizable Robot Manipulation CVPR 2025
3D assembly tasks, such as furniture assembly and component fitting, play a crucial role in daily life and represent essential capabilities for future home robots. Existing benchmarks and datasets predominantly focus on assembling geometric fragments or factory parts, which fall short in addressing the complexities of everyday object interactions and assemblies. To bridge this gap, we present 2BY2, a large-scale annotated dataset for daily pairwise objects assembly, covering 18 fine-grained tasks that reflect real-life scenarios, such as plugging into sockets, arranging flowers in vases, and inserting bread into toasters. 2BY2 dataset includes 1,034 instances and 517 pairwise objects with pose and symmetry annotations, requiring approaches that align geometric shapes while accounting for functional and spatial relationships between objects. Leveraging the 2BY2 dataset, we propose a two-step SE(3) pose estimation method with equivariant features for assembly constraints. Compared to previous shape assembly methods, our approach achieves state-of-the-art performance across all 18 tasks in the 2BY2 dataset. Additionally, robot experiments further validate the reliability and generalization ability of our method for complex 3D assembly tasks.
comment: Accepted to CVPR 2025 (Conference on Computer Vision and Pattern Recognition)
GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasping detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
Developing Modular Grasping and Manipulation Pipeline Infrastructure to Streamline Performance Benchmarking ICRA
The robot manipulation ecosystem currently faces issues with integrating open-source components and reproducing results. This limits the ability of the community to benchmark and compare the performance of different solutions to one another in an effective manner, instead relying on largely holistic evaluations. As part of the COMPARE Ecosystem project, we are developing modular grasping and manipulation pipeline infrastructure in order to streamline performance benchmarking. The infrastructure will be used towards the establishment of standards and guidelines for modularity and improved open-source development and benchmarking. This paper provides a high-level overview of the architecture of the pipeline infrastructure, experiments conducted to exercise it during development, and future work to expand its modularity.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025, Workshop on Robot Software Architectures (RSA25), Atlanta, Georgia, USA, May 2025
Towards Efficient Roadside LiDAR Deployment: A Fast Surrogate Metric Based on Entropy-Guided Visibility
The deployment of roadside LiDAR sensors plays a crucial role in the development of Cooperative Intelligent Transport Systems (C-ITS). However, the high cost of LiDAR sensors necessitates efficient placement strategies to maximize detection performance. Traditional roadside LiDAR deployment methods rely on expert insight, making them time-consuming. Automating this process, however, demands extensive computation, as it requires not only visibility evaluation but also assessing detection performance across different LiDAR placements. To address this challenge, we propose a fast surrogate metric, the Entropy-Guided Visibility Score (EGVS), based on information gain to evaluate object detection performance in roadside LiDAR configurations. EGVS leverages Traffic Probabilistic Occupancy Grids (TPOG) to prioritize critical areas and employs entropy-based calculations to quantify the information captured by LiDAR beams. This eliminates the need for direct detection performance evaluation, which typically requires extensive labeling and computational resources. By integrating EGVS into the optimization process, we significantly accelerate the search for optimal LiDAR configurations. Experimental results using the AWSIM simulator demonstrate that EGVS strongly correlates with Average Precision (AP) scores and effectively predicts object detection performance. This approach offers a computationally efficient solution for roadside LiDAR deployment, facilitating scalable smart infrastructure development.
comment: Accepted by IEEE Intelligent Vehicles Symposium (IV 2025)
Adaptive Human-Robot Collaborative Missions using Hybrid Task Planning
Producing robust task plans in human-robot collaborative missions is a critical activity in order to increase the likelihood of these missions completing successfully. Despite the broad research body in the area, which considers different classes of constraints and uncertainties, its applicability is confined to relatively simple problems that can be comfortably addressed by the underpinning mathematically-based or heuristic-driven solver engines. In this paper, we introduce a hybrid approach that effectively solves the task planning problem by decomposing it into two intertwined parts, starting with the identification of a feasible plan and followed by its uncertainty augmentation and verification yielding a set of Pareto optimal plans. To enhance its robustness, adaptation tactics are devised for the evolving system requirements and agents' capabilities. We demonstrate our approach through an industrial case study involving workers and robots undertaking activities within a vineyard, showcasing the benefits of our hybrid approach both in the generation of feasible solutions and scalability compared to native planners.
Interactive Expressive Motion Generation Using Dynamic Movement Primitives
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation [1] are a well-established framework animators use to create movements that make characters appear convincing, dynamic, and emotionally expressive. This paper proposes a novel approach that leverages Dynamic Movement Primitives (DMPs) to implement key animation principles, providing a learnable, explainable, modulable, online adaptable and composable model for automatic expressive motion generation. DMPs, originally developed for general imitation learning in robotics and grounded in a spring-damper system design, offer mathematical properties that make them particularly suitable for this task. Specifically, they enable modulation of the intensities of individual principles and facilitate the decomposition of complex, expressive motion sequences into learnable and parametrizable primitives. We present the mathematical formulation of the parameterized animation principles and demonstrate the effectiveness of our framework through experiments and application on three robotic platforms with different kinematic configurations, in simulation, on actual robots and in a user study. Our results show that the approach allows for creating diverse and nuanced expressions using a single base model.
Learning global control of underactuated systems with Model-Based Reinforcement Learning
This short paper describes our proposed solution for the third edition of the "AI Olympics with RealAIGym" competition, held at ICRA 2025. We employed Monte-Carlo Probabilistic Inference for Learning Control (MC-PILCO), an MBRL algorithm recognized for its exceptional data efficiency across various low-dimensional robotic tasks, including cart-pole, ball \& plate, and Furuta pendulum systems. MC-PILCO optimizes a system dynamics model using interaction data, enabling policy refinement through simulation rather than direct system data optimization. This approach has proven highly effective in physical systems, offering greater data efficiency than Model-Free (MF) alternatives. Notably, MC-PILCO has previously won the first two editions of this competition, demonstrating its robustness in both simulated and real-world environments. Besides briefly reviewing the algorithm, we discuss the most critical aspects of the MC-PILCO implementation in the tasks at hand: learning a global policy for the pendubot and acrobot systems.
comment: arXiv admin note: substantial text overlap with arXiv:2409.05811
Ice-Breakers, Turn-Takers and Fun-Makers: Exploring Robots for Groups with Teenagers
Successful, enjoyable group interactions are important in public and personal contexts, especially for teenagers whose peer groups are important for self-identity and self-esteem. Social robots seemingly have the potential to positively shape group interactions, but it seems difficult to effect such impact by designing robot behaviors solely based on related (human interaction) literature. In this article, we take a user-centered approach to explore how teenagers envisage a social robot "group assistant". We engaged 16 teenagers in focus groups, interviews, and robot testing to capture their views and reflections about robots for groups. Over the course of a two-week summer school, participants co-designed the action space for such a robot and experienced working with/wizarding it for 10+ hours. This experience further altered and deepened their insights into using robots as group assistants. We report results regarding teenagers' views on the applicability and use of a robot group assistant, how these expectations evolved throughout the study, and their repeat interactions with the robot. Our results indicate that each group moves on a spectrum of need for the robot, reflected in use of the robot more (or less) for ice-breaking, turn-taking, and fun-making as the situation demanded.
SDHN: Skewness-Driven Hypergraph Networks for Enhanced Localized Multi-Robot Coordination
Multi-Agent Reinforcement Learning is widely used for multi-robot coordination, where simple graphs typically model pairwise interactions. However, such representations fail to capture higher-order collaborations, limiting effectiveness in complex tasks. While hypergraph-based approaches enhance cooperation, existing methods often generate arbitrary hypergraph structures and lack adaptability to environmental uncertainties. To address these challenges, we propose the Skewness-Driven Hypergraph Network (SDHN), which employs stochastic Bernoulli hyperedges to explicitly model higher-order multi-robot interactions. By introducing a skewness loss, SDHN promotes an efficient structure with Small-Hyperedge Dominant Hypergraph, allowing robots to prioritize localized synchronization while still adhering to the overall information, similar to human coordination. Extensive experiments on Moving Agents in Formation and Robotic Warehouse tasks validate SDHN's effectiveness, demonstrating superior performance over state-of-the-art baselines.
Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.
comment: 12 pages, 10 figures; Open-source code, see https://github.com/AlexandreBanks6/dV-STEAR_Public.git; Supplementary movies, see https://github.com/AlexandreBanks6/dVSTEAR_Supplemental_Files.git
Dynamic Residual Safe Reinforcement Learning for Multi-Agent Safety-Critical Scenarios Decision-Making
In multi-agent safety-critical scenarios, traditional autonomous driving frameworks face significant challenges in balancing safety constraints and task performance. These frameworks struggle to quantify dynamic interaction risks in real-time and depend heavily on manual rules, resulting in low computational efficiency and conservative strategies. To address these limitations, we propose a Dynamic Residual Safe Reinforcement Learning (DRS-RL) framework grounded in a safety-enhanced networked Markov decision process. It's the first time that the weak-to-strong theory is introduced into multi-agent decision-making, enabling lightweight dynamic calibration of safety boundaries via a weak-to-strong safety correction paradigm. Based on the multi-agent dynamic conflict zone model, our framework accurately captures spatiotemporal coupling risks among heterogeneous traffic participants and surpasses the static constraints of conventional geometric rules. Moreover, a risk-aware prioritized experience replay mechanism mitigates data distribution bias by mapping risk to sampling probability. Experimental results reveal that the proposed method significantly outperforms traditional RL algorithms in safety, efficiency, and comfort. Specifically, it reduces the collision rate by up to 92.17%, while the safety model accounts for merely 27% of the main model's parameters.
RAMBO: RL-augmented Model-based Optimal Control for Whole-body Loco-manipulation
Loco-manipulation -- coordinated locomotion and physical interaction with objects -- remains a major challenge for legged robots due to the need for both accurate force interaction and robustness to unmodeled dynamics. While model-based controllers provide interpretable dynamics-level planning and optimization, they are limited by model inaccuracies and computational cost. In contrast, learning-based methods offer robustness while struggling with precise modulation of interaction forces. We introduce RAMBO -- RL-Augmented Model-Based Optimal Control -- a hybrid framework that integrates model-based reaction force optimization using a simplified dynamics model and a feedback policy trained with reinforcement learning. The model-based module generates feedforward torques by solving a quadratic program, while the policy provides feedback residuals to enhance robustness in control execution. We validate our framework on a quadruped robot across a diverse set of real-world loco-manipulation tasks -- such as pushing a shopping cart, balancing a plate, and holding soft objects -- in both quadrupedal and bipedal walking. Our experiments demonstrate that RAMBO enables precise manipulation while achieving robust and dynamic locomotion, surpassing the performance of policies trained with end-to-end scheme. In addition, our method enables flexible trade-off between end-effector tracking accuracy with compliance.
comment: 9 pages, 6 figures
Domain-Conditioned Scene Graphs for State-Grounded Task Planning
Recent robotic task planning frameworks have integrated large multimodal models (LMMs) such as GPT-4V. To address grounding issues of such models, it has been suggested to split the pipeline into perceptional state grounding and subsequent state-based planning. As we show in this work, the state grounding ability of LMM-based approaches is still limited by weaknesses in granular, structured, domain-specific scene understanding. To address this shortcoming, we develop a more structured state grounding framework that features a domain-conditioned scene graph as its scene representation. We show that such representation is actionable in nature as it is directly mappable to a symbolic state in classical planning languages such as PDDL. We provide an instantiation of our state grounding framework where the domain-conditioned scene graph generation is implemented with a lightweight vision-language approach that classifies domain-specific predicates on top of domain-relevant object detections. Evaluated across three domains, our approach achieves significantly higher state estimation accuracy and task planning success rates compared to the previous LMM-based approaches.
Collision avoidance from monocular vision trained with novel view synthesis
Collision avoidance can be checked in explicit environment models such as elevation maps or occupancy grids, yet integrating such models with a locomotion policy requires accurate state estimation. In this work, we consider the question of collision avoidance from an implicit environment model. We use monocular RGB images as inputs and train a collisionavoidance policy from photorealistic images generated by 2D Gaussian splatting. We evaluate the resulting pipeline in realworld experiments under velocity commands that bring the robot on an intercept course with obstacles. Our results suggest that RGB images can be enough to make collision-avoidance decisions, both in the room where training data was collected and in out-of-distribution environments.
Design and use of devices to assist movement of the upper limb: review of the literature
This article explores assistive devices for upper limb movement in people with disabilities through a systematic review based on the PRISMA methodology. The studied devices encompass technologies ranging from orthoses to advanced robotics, aiming to compensate for or supplement motor impairments. The results highlight the diversity of applications (rehabilitation, daily living activities), targeted body segments (distal, proximal, or global), as well as control mechanisms and interfaces used. However, despite the variety of promising prototypes, few devices are commercially available, limiting their real impact on end users. Existing technologies, while effective in improving functional autonomy and quality of life, still face challenges in terms of ergonomics, cost, and portability. In conclusion, this article emphasizes the importance of a user-centered approach and proposes avenues for the development of innovative, modular, and accessible assistive devices.
comment: in French language
Overcoming Dynamic Environments: A Hybrid Approach to Motion Planning for Manipulators
Robotic manipulators operating in dynamic and uncertain environments require efficient motion planning to navigate obstacles while maintaining smooth trajectories. Velocity Potential Field (VPF) planners offer real-time adaptability but struggle with complex constraints and local minima, leading to suboptimal performance in cluttered spaces. Traditional approaches rely on pre-planned trajectories, but frequent recomputation is computationally expensive. This study proposes a hybrid motion planning approach, integrating an improved VPF with a Sampling-Based Motion Planner (SBMP). The SBMP ensures optimal path generation, while VPF provides real-time adaptability to dynamic obstacles. This combination enhances motion planning efficiency, stability, and computational feasibility, addressing key challenges in uncertain environments such as warehousing and surgical robotics.
A Multi-Modal Interaction Framework for Efficient Human-Robot Collaborative Shelf Picking
The growing presence of service robots in human-centric environments, such as warehouses, demands seamless and intuitive human-robot collaboration. In this paper, we propose a collaborative shelf-picking framework that combines multimodal interaction, physics-based reasoning, and task division for enhanced human-robot teamwork. The framework enables the robot to recognize human pointing gestures, interpret verbal cues and voice commands, and communicate through visual and auditory feedback. Moreover, it is powered by a Large Language Model (LLM) which utilizes Chain of Thought (CoT) and a physics-based simulation engine for safely retrieving cluttered stacks of boxes on shelves, relationship graph for sub-task generation, extraction sequence planning and decision making. Furthermore, we validate the framework through real-world shelf picking experiments such as 1) Gesture-Guided Box Extraction, 2) Collaborative Shelf Clearing and 3) Collaborative Stability Assistance.
Sim-to-Real of Humanoid Locomotion Policies via Joint Torque Space Perturbation Injection
This paper proposes a novel alternative to existing sim-to-real methods for training control policies with simulated experiences. Prior sim-to-real methods for legged robots mostly rely on the domain randomization approach, where a fixed finite set of simulation parameters is randomized during training. Instead, our method adds state-dependent perturbations to the input joint torque used for forward simulation during the training phase. These state-dependent perturbations are designed to simulate a broader range of reality gaps than those captured by randomizing a fixed set of simulation parameters. Experimental results show that our method enables humanoid locomotion policies that achieve greater robustness against complex reality gaps unseen in the training domain.
comment: This work has been submitted to the IEEE for possible publication
CAFE-AD: Cross-Scenario Adaptive Feature Enhancement for Trajectory Planning in Autonomous Driving ICRA 2025
Imitation learning based planning tasks on the nuPlan dataset have gained great interest due to their potential to generate human-like driving behaviors. However, open-loop training on the nuPlan dataset tends to cause causal confusion during closed-loop testing, and the dataset also presents a long-tail distribution of scenarios. These issues introduce challenges for imitation learning. To tackle these problems, we introduce CAFE-AD, a Cross-Scenario Adaptive Feature Enhancement for Trajectory Planning in Autonomous Driving method, designed to enhance feature representation across various scenario types. We develop an adaptive feature pruning module that ranks feature importance to capture the most relevant information while reducing the interference of noisy information during training. Moreover, we propose a cross-scenario feature interpolation module that enhances scenario information to introduce diversity, enabling the network to alleviate over-fitting in dominant scenarios. We evaluate our method CAFE-AD on the challenging public nuPlan Test14-Hard closed-loop simulation benchmark. The results demonstrate that CAFE-AD outperforms state-of-the-art methods including rule-based and hybrid planners, and exhibits the potential in mitigating the impact of long-tail distribution within the dataset. Additionally, we further validate its effectiveness in real-world environments. The code and models will be made available at https://github.com/AlniyatRui/CAFE-AD.
comment: ICRA 2025; first two authors contributed equally
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
OPAL: Encoding Causal Understanding of Physical Systems for Robot Learning
We present OPAL (Operant Physical Agent with Language), a novel vision-language-action architecture that introduces topological constraints to flow matching for robotic control. To do so, we further introduce topological attention. Our approach models action sequences as topologically-structured representations with non-trivial constraints. Experimental results across 10 complex manipulation tasks demonstrate OPAL's superior performance compared to previous approaches, including Octo, OpenVLA, and ${\pi}$0. Our architecture achieves significant improvements in zero-shot performance without requiring task-specific fine-tuning, while reducing inference computational requirements by 42%. The theoretical guarantees provided by our topological approach result in more coherent long-horizon action sequences. Our results highlight the potential of constraining the search space of learning problems in robotics by deriving from fundamental physical laws, and the possibility of using topological attention to embed causal understanding into transformer architectures.
comment: 11 pages, 2 figures, 3 tables, 24 equations
Controller Distillation Reduces Fragile Brain-Body Co-Adaptation and Enables Migrations in MAP-Elites
Brain-body co-optimization suffers from fragile co-adaptation where brains become over-specialized for particular bodies, hindering their ability to transfer well to others. Evolutionary algorithms tend to discard such low-performing solutions, eliminating promising morphologies. Previous work considered applying MAP-Elites, where niche descriptors are based on morphological features, to promote better search over morphology space. In this work, we show that this approach still suffers from fragile co-adaptation: where a core mechanism of MAP-Elites, creating stepping stones through solutions that migrate from one niche to another, is disrupted. We suggest that this disruption occurs because the body mutations that move an offspring to a new morphological niche break the robots' fragile brain-body co-adaptation and thus significantly decrease the performance of those potential solutions -- reducing their likelihood of outcompeting an existing elite in that new niche. We utilize a technique, we call Pollination, that periodically replaces the controllers of certain solutions with a distilled controller with better generalization across morphologies to reduce fragile brain-body co-adaptation and thus promote MAP-Elites migrations. Pollination increases the success of body mutations and the number of migrations, resulting in better quality-diversity metrics. We believe we develop important insights that could apply to other domains where MAP-Elites is used.
comment: Accepted at the Genetic and Evolutionary Computation Conference 2025 Complex Systems track as a full paper
Safe Navigation in Uncertain Crowded Environments Using Risk Adaptive CVaR Barrier Functions
Robot navigation in dynamic, crowded environments poses a significant challenge due to the inherent uncertainties in the obstacle model. In this work, we propose a risk-adaptive approach based on the Conditional Value-at-Risk Barrier Function (CVaR-BF), where the risk level is automatically adjusted to accept the minimum necessary risk, achieving a good performance in terms of safety and optimization feasibility under uncertainty. Additionally, we introduce a dynamic zone-based barrier function which characterizes the collision likelihood by evaluating the relative state between the robot and the obstacle. By integrating risk adaptation with this new function, our approach adaptively expands the safety margin, enabling the robot to proactively avoid obstacles in highly dynamic environments. Comparisons and ablation studies demonstrate that our method outperforms existing social navigation approaches, and validate the effectiveness of our proposed framework.
Data-driven Fuzzy Control for Time-Optimal Aggressive Trajectory Following
Optimal trajectories that minimize a user-defined cost function in dynamic systems require the solution of a two-point boundary value problem. The optimization process yields an optimal control sequence that depends on the initial conditions and system parameters. However, the optimal sequence may result in undesirable behavior if the system's initial conditions and parameters are erroneous. This work presents a data-driven fuzzy controller synthesis framework that is guided by a time-optimal trajectory for multicopter tracking problems. In particular, we consider an aggressive maneuver consisting of a mid-air flip and generate a time-optimal trajectory by numerically solving the two-point boundary value problem. A fuzzy controller consisting of a stabilizing controller near hover conditions and an autoregressive moving average (ARMA) controller, trained to mimic the time-optimal aggressive trajectory, is constructed using the Takagi-Sugeno fuzzy framework.
comment: 6 pages, 10 figures, submitted to MECC 2025
Adaptive Vision-Guided Robotic Arm Control for Precision Pruning in Dynamic Orchard Environments
This study presents a vision-guided robotic control system for automated fruit tree pruning applications. Traditional agricultural practices rely on labor-intensive tasks and processes that lack scalability and efficiency, creating a pressing need for automation research to address growing demands for higher crop yields, scalable operations, and reduced manual labor. To this end, this paper proposes a novel algorithm for robust and automated fruit pruning in dense orchards. The proposed algorithm utilizes CoTracker, that is designed to track 2D feature points in video sequences with significant robustness and accuracy, while leveraging joint attention mechanisms to account for inter-point dependencies, enabling robust and precise tracking under challenging and sophisticated conditions. To validate the efficacy of CoTracker, a Universal Robots manipulator UR5e is employed in a Gazebo simulation environment mounted on ClearPath Robotics Warthog robot featuring an Intel RealSense D435 camera. The system achieved a 93% success rate in pruning trials and with an average end trajectory error of 0.23 mm. The vision controller demonstrated robust performance in handling occlusions and maintaining stable trajectories as the arm move towards the target point. The results validate the effectiveness of integrating vision-based tracking with kinematic control for precision agricultural tasks. Future work will focus on real-world implementation and the integration of 3D reconstruction techniques for enhanced adaptability in dynamic environments.
Data-Enabled Neighboring Extremal: Case Study on Model-Free Trajectory Tracking for Robotic Arm
Data-enabled predictive control (DeePC) has recently emerged as a powerful data-driven approach for efficient system controls with constraints handling capabilities. It performs optimal controls by directly harnessing input-output (I/O) data, bypassing the process of explicit model identification that can be costly and time-consuming. However, its high computational complexity, driven by a large-scale optimization problem (typically in a higher dimension than its model-based counterpart--Model Predictive Control), hinders real-time applications. To overcome this limitation, we propose the data-enabled neighboring extremal (DeeNE) framework, which significantly reduces computational cost while preserving control performance. DeeNE leverages first-order optimality perturbation analysis to efficiently update a precomputed nominal DeePC solution in response to changes in initial conditions and reference trajectories. We validate its effectiveness on a 7-DoF KINOVA Gen3 robotic arm, demonstrating substantial computational savings and robust, data-driven control performance.
Bridging Deep Reinforcement Learning and Motion Planning for Model-Free Navigation in Cluttered Environments
Deep Reinforcement Learning (DRL) has emerged as a powerful model-free paradigm for learning optimal policies. However, in real-world navigation tasks, DRL methods often suffer from insufficient exploration, particularly in cluttered environments with sparse rewards or complex dynamics under system disturbances. To address this challenge, we bridge general graph-based motion planning with DRL, enabling agents to explore cluttered spaces more effectively and achieve desired navigation performance. Specifically, we design a dense reward function grounded in a graph structure that spans the entire state space. This graph provides rich guidance, steering the agent toward optimal strategies. We validate our approach in challenging environments, demonstrating substantial improvements in exploration efficiency and task success rates. The project website is available at: https://plen1lune.github.io/overcome_exploration/
comment: 10 pages
Expectations, Explanations, and Embodiment: Attempts at Robot Failure Recovery
Expectations critically shape how people form judgments about robots, influencing whether they view failures as minor technical glitches or deal-breaking flaws. This work explores how high and low expectations, induced through brief video priming, affect user perceptions of robot failures and the utility of explanations in HRI. We conducted two online studies ($N=600$ total participants); each replicated two robots with different embodiments, Furhat and Pepper. In our first study, grounded in expectation theory, participants were divided into two groups, one primed with positive and the other with negative expectations regarding the robot's performance, establishing distinct expectation frameworks. This validation study aimed to verify whether the videos could reliably establish low and high-expectation profiles. In the second study, participants were primed using the validated videos and then viewed a new scenario in which the robot failed at a task. Half viewed a version where the robot explained its failure, while the other half received no explanation. We found that explanations significantly improved user perceptions of Furhat, especially when participants were primed to have lower expectations. Explanations boosted satisfaction and enhanced the robot's perceived expressiveness, indicating that effectively communicating the cause of errors can help repair user trust. By contrast, Pepper's explanations produced minimal impact on user attitudes, suggesting that a robot's embodiment and style of interaction could determine whether explanations can successfully offset negative impressions. Together, these findings underscore the need to consider users' expectations when tailoring explanation strategies in HRI. When expectations are initially low, a cogent explanation can make the difference between dismissing a failure and appreciating the robot's transparency and effort to communicate.
Analysis of the Unscented Transform for Cooperative Localization with Ranging-Only Information
Cooperative localization in multi-agent robotic systems is challenging, especially when agents rely on limited information, such as only peer-to-peer range measurements. Two key challenges arise: utilizing this limited information to improve position estimation; handling uncertainties from sensor noise, nonlinearity, and unknown correlations between agents measurements; and avoiding information reuse. This paper examines the use of the Unscented Transform (UT) for state estimation for a case in which range measurement between agents and covariance intersection (CI) is used to handle unknown correlations. Unlike Kalman Filter approaches, CI methods fuse complete state and covariance estimates. This makes formulating a CI approach with ranging-only measurements a challenge. To overcome this, UT is used to handle uncertainties and formulate a cooperative state update using range measurements and current cooperative state estimates. This introduces information reuse in the measurement update. Therefore, this work aims to evaluate the limitations and utility of this formulation when faced with various levels of state measurement uncertainty and errors.
comment: 8 pages, 8 figures. The paper will be presented at the 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS)
A Pointcloud Registration Framework for Relocalization in Subterranean Environments
Relocalization, the process of re-establishing a robot's position within an environment, is crucial for ensuring accurate navigation and task execution when external positioning information, such as GPS, is unavailable or has been lost. Subterranean environments present significant challenges for relocalization due to limited external positioning information, poor lighting that affects camera localization, irregular and often non-distinct surfaces, and dust, which can introduce noise and occlusion in sensor data. In this work, we propose a robust, computationally friendly framework for relocalization through point cloud registration utilizing a prior point cloud map. The framework employs Intrinsic Shape Signatures (ISS) to select feature points in both the target and prior point clouds. The Fast Point Feature Histogram (FPFH) algorithm is utilized to create descriptors for these feature points, and matching these descriptors yields correspondences between the point clouds. A 3D transformation is estimated using the matched points, which initializes a Normal Distribution Transform (NDT) registration. The transformation result from NDT is further refined using the Iterative Closest Point (ICP) registration algorithm. This framework enhances registration accuracy even in challenging conditions, such as dust interference and significant initial transformations between the target and source, making it suitable for autonomous robots operating in underground mines and tunnels. This framework was validated with experiments in simulated and real-world mine datasets, demonstrating its potential for improving relocalization.
Multi-Object Tracking for Collision Avoidance Using Multiple Cameras in Open RAN Networks
This paper deals with the multi-object detection and tracking problem, within the scope of open Radio Access Network (RAN), for collision avoidance in vehicular scenarios. To this end, a set of distributed intelligent agents collocated with cameras are considered. The fusion of detected objects is done at an edge service, considering Open RAN connectivity. Then, the edge service predicts the objects trajectories for collision avoidance. Compared to the related work a more realistic Open RAN network is implemented and multiple cameras are used.
Digital Gene: Learning about the Physical World through Analytic Concepts
Reviewing the progress in artificial intelligence over the past decade, various significant advances (e.g. object detection, image generation, large language models) have enabled AI systems to produce more semantically meaningful outputs and achieve widespread adoption in internet scenarios. Nevertheless, AI systems still struggle when it comes to understanding and interacting with the physical world. This reveals an important issue: relying solely on semantic-level concepts learned from internet data (e.g. texts, images) to understand the physical world is far from sufficient -- machine intelligence currently lacks an effective way to learn about the physical world. This research introduces the idea of analytic concept -- representing the concepts related to the physical world through programs of mathematical procedures, providing machine intelligence a portal to perceive, reason about, and interact with the physical world. Except for detailing the design philosophy and providing guidelines for the application of analytic concepts, this research also introduce about the infrastructure that has been built around analytic concepts. I aim for my research to contribute to addressing these questions: What is a proper abstraction of general concepts in the physical world for machine intelligence? How to systematically integrate structured priors with neural networks to constrain AI systems to comply with physical laws?
LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. %Additionally, LUDO provides uncertainty estimates and explainability for its predictions, both of which are important in safety-critical applications such as surgical interventions. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning EMNLP 2024
Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
comment: Findings of the Association for Computational Linguistics: EMNLP 2024
Task-Parameter Nexus: Task-Specific Parameter Learning for Model-Based Control
This paper presents the Task-Parameter Nexus (TPN), a learning-based approach for online determination of the (near-)optimal control parameters of model-based controllers (MBCs) for tracking tasks. In TPN, a deep neural network is introduced to predict the control parameters for any given tracking task at runtime, especially when optimal parameters for new tasks are not immediately available. To train this network, we constructed a trajectory bank with various speeds and curvatures that represent different motion characteristics. Then, for each trajectory in the bank, we auto-tune the optimal control parameters offline and use them as the corresponding ground truth. With this dataset, the TPN is trained by supervised learning. We evaluated the TPN on the quadrotor platform. In simulation experiments, it is shown that the TPN can predict near-optimal control parameters for a spectrum of tracking tasks, demonstrating its robust generalization capabilities to unseen tasks.
Approximate Feedback Nash Equilibria with Sparse Inter-Agent Dependencies
Feedback Nash equilibrium strategies in multi-agent dynamic games require availability of all players' state information to compute control actions. However, in real-world scenarios, sensing and communication limitations between agents make full state feedback expensive or impractical, and such strategies can become fragile when state information from other agents is inaccurate. To this end, we propose a regularized dynamic programming approach for finding sparse feedback policies that selectively depend on the states of a subset of agents in dynamic games. The proposed approach solves convex adaptive group Lasso problems to compute sparse policies approximating Nash equilibrium solutions. We prove the regularized solutions' asymptotic convergence to a neighborhood of Nash equilibrium policies in linear-quadratic (LQ) games. Further, we extend the proposed approach to general non-LQ games via an iterative algorithm. Simulation results in multi-robot interaction scenarios show that the proposed approach effectively computes feedback policies with varying sparsity levels. When agents have noisy observations of other agents' states, simulation results indicate that the proposed regularized policies consistently achieve lower costs than standard Nash equilibrium policies by up to 77% for all interacting agents whose costs are coupled with other agents' states.
Multi-Fidelity Policy Gradient Algorithms
Many reinforcement learning (RL) algorithms require large amounts of data, prohibiting their use in applications where frequent interactions with operational systems are infeasible, or high-fidelity simulations are expensive or unavailable. Meanwhile, low-fidelity simulators--such as reduced-order models, heuristic reward functions, or generative world models--can cheaply provide useful data for RL training, even if they are too coarse for direct sim-to-real transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a large volume of low-fidelity simulation data to form unbiased, reduced-variance estimators (control variates) for on-policy policy gradients. We instantiate the framework by developing multi-fidelity variants of two policy gradient algorithms: REINFORCE and proximal policy optimization. Experimental results across a suite of simulated robotics benchmark problems demonstrate that when target-environment samples are limited, MFPG achieves up to 3.9x higher reward and improves training stability when compared to baselines that only use high-fidelity data. Moreover, even when the baselines are given more high-fidelity samples--up to 10x as many interactions with the target environment--MFPG continues to match or outperform them. Finally, we observe that MFPG is capable of training effective policies even when the low-fidelity environment is drastically different from the target environment. MFPG thus not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Dissipative iFIR filters for data-driven design
We tackle the problem of providing closed-loop stability guarantees with a scalable data-driven design. We combine virtual reference feedback tuning with dissipativity constraints on the controller for closed-loop stability. The constraints are formulated as a set of linear inequalities in the frequency domain. This leads to a convex problem that is scalable with respect to the length of the data and the complexity of the controller. An extension of virtual reference feedback tuning to include disturbance dynamics is also discussed. The proposed data-driven control design is illustrated by a soft gripper impedance control example.
comment: 8 pages, 10 figures, Accepted by 23rd European Control Conference (ECC2025). Final submission version
Advancing Remote Medical Palpation through Cognition and Emotion
This paper explores the cognitive and emotional processes involved in medical palpation to develop a more effective remote palpation system. Conventional remote palpation systems primarily rely on force feedback to convey a patient's tactile condition to doctors. However, an analysis of the palpation process suggests that its primary goal is not merely to assess the detailed tactile properties of the affected area but to integrate tactile sensations with other assessments, past experiences, memories, and patient reactions -- both physical and emotional -- to form a comprehensive understanding of the medical condition. To support this perspective, we describe two critical signal pathways involved in the perception of tactile sensations for both doctors and patients. For doctors, perception arises from active touch, requiring the simultaneous stimulation of kinesthetic and tactile sensations. In contrast, patients experience tactile sensations through passive touch, which often elicits more subjective and emotional responses. Patients perceive this stimulation both explicitly and implicitly, and doctors interpret these reactions as part of the diagnostic process. Based on these findings, we propose a remote palpation system that leverages multimodal interaction to enhance remote diagnosis. The system prioritizes cognitive and emotional processes to realize effective palpation, overcoming technical challenges in replicating the full sensory experience.
Learning Occlusion-aware Decision-making from Agent Interaction via Active Perception
Occlusion-aware decision-making is essential in autonomous driving due to the high uncertainty of various occlusions. Recent occlusion-aware decision-making methods encounter issues such as high computational complexity, scenario scalability challenges, or reliance on limited expert data. Benefiting from automatically generating data by exploration randomization, we uncover that reinforcement learning (RL) may show promise in occlusion-aware decision-making. However, previous occlusion-aware RL faces challenges in expanding to various dynamic and static occlusion scenarios, low learning efficiency, and lack of predictive ability. To address these issues, we introduce Pad-AI, a self-reinforcing framework to learn occlusion-aware decision-making through active perception. Pad-AI utilizes vectorized representation to represent occluded environments efficiently and learns over the semantic motion primitives to focus on high-level active perception exploration. Furthermore, Pad-AI integrates prediction and RL within a unified framework to provide risk-aware learning and security guarantees. Our framework was tested in challenging scenarios under both dynamic and static occlusions and demonstrated efficient and general perception-aware exploration performance to other strong baselines in closed-loop evaluations.
comment: Accepted by IEEE Intelligent Vehicles Symposium (IV)
Software Reconfiguration in Robotics
Robots often need to be reconfigurable$-$to customize, calibrate, or optimize robots operating in varying environments with different hardware). A particular challenge in robotics is the automated and dynamic reconfiguration to load and unload software components, as well as parameterizing them. Over the last decades, a large variety of software reconfiguration techniques has been presented in the literature, many specifically for robotics systems. Also many robotics frameworks support reconfiguration. Unfortunately, there is a lack of empirical data on the actual use of reconfiguration techniques in real robotics projects and on their realization in robotics frameworks. To advance reconfiguration techniques and support their adoption, we need to improve our empirical understanding of them in practice. We present a study of automated reconfiguration at runtime in the robotics domain. We determine the state-of-the art by reviewing 78 relevant publications on reconfiguration. We determine the state-of-practice by analyzing how four major robotics frameworks support reconfiguration, and how reconfiguration is realized in 48 robotics (sub-)systems. We contribute a detailed analysis of the design space of reconfiguration techniques. We identify trends and research gaps. Our results show a significant discrepancy between the state-of-the-art and the state-of-practice. While the scientific community focuses on complex structural reconfiguration, only parameter reconfiguration is widely used in practice. Our results support practitioners to realize reconfiguration in robotics systems, as well as they support researchers and tool builders to create more effective reconfiguration techniques that are adopted in practice.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
Optimal Sensor Placement Using Combinations of Hybrid Measurements for Source Localization
This paper focuses on static source localization employing different combinations of measurements, including time-difference-of-arrival (TDOA), received-signal-strength (RSS), angle-of-arrival (AOA), and time-of-arrival (TOA) measurements. Since sensor-source geometry significantly impacts localization accuracy, the strategies of optimal sensor placement are proposed systematically using combinations of hybrid measurements. Firstly, the relationship between sensor placement and source estimation accuracy is formulated by a derived Cram\'er-Rao bound (CRB). Secondly, the A-optimality criterion, i.e., minimizing the trace of the CRB, is selected to calculate the smallest reachable estimation mean-squared-error (MSE) in a unified manner. Thirdly, the optimal sensor placement strategies are developed to achieve the optimal estimation bound. Specifically, the specific constraints of the optimal geometries deduced by specific measurement, i.e., TDOA, AOA, RSS, and TOA, are found and discussed theoretically. Finally, the new findings are verified by simulation studies.
CORTEX-AVD: A Framework for CORner Case Testing and EXploration in Autonomous Vehicle Development
Autonomous Vehicles (AVs) aim to improve traffic safety and efficiency by reducing human error. However, ensuring AVs reliability and safety is a challenging task when rare, high-risk traffic scenarios are considered. These 'Corner Cases' (CC) scenarios, such as unexpected vehicle maneuvers or sudden pedestrian crossings, must be safely and reliable dealt by AVs during their operations. But they arehard to be efficiently generated. Traditional CC generation relies on costly and risky real-world data acquisition, limiting scalability, and slowing research and development progress. Simulation-based techniques also face challenges, as modeling diverse scenarios and capturing all possible CCs is complex and time-consuming. To address these limitations in CC generation, this research introduces CORTEX-AVD, CORner Case Testing & EXploration for Autonomous Vehicles Development, an open-source framework that integrates the CARLA Simulator and Scenic to automatically generate CC from textual descriptions, increasing the diversity and automation of scenario modeling. Genetic Algorithms (GA) are used to optimize the scenario parameters in six case study scenarios, increasing the occurrence of high-risk events. Unlike previous methods, CORTEX-AVD incorporates a multi-factor fitness function that considers variables such as distance, time, speed, and collision likelihood. Additionally, the study provides a benchmark for comparing GA-based CC generation methods, contributing to a more standardized evaluation of synthetic data generation and scenario assessment. Experimental results demonstrate that the CORTEX-AVD framework significantly increases CC incidence while reducing the proportion of wasted simulations.
comment: 10 pages, 10 figures, 4 tables
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
ChatEMG: Synthetic Data Generation to Control a Robotic Hand Orthosis for Stroke
Intent inferral on a hand orthosis for stroke patients is challenging due to the difficulty of data collection. Additionally, EMG signals exhibit significant variations across different conditions, sessions, and subjects, making it hard for classifiers to generalize. Traditional approaches require a large labeled dataset from the new condition, session, or subject to train intent classifiers; however, this data collection process is burdensome and time-consuming. In this paper, we propose ChatEMG, an autoregressive generative model that can generate synthetic EMG signals conditioned on prompts (i.e., a given sequence of EMG signals). ChatEMG enables us to collect only a small dataset from the new condition, session, or subject and expand it with synthetic samples conditioned on prompts from this new context. ChatEMG leverages a vast repository of previous data via generative training while still remaining context-specific via prompting. Our experiments show that these synthetic samples are classifier-agnostic and can improve intent inferral accuracy for different types of classifiers. We demonstrate that our complete approach can be integrated into a single patient session, including the use of the classifier for functional orthosis-assisted tasks. To the best of our knowledge, this is the first time an intent classifier trained partially on synthetic data has been deployed for functional control of an orthosis by a stroke survivor. Videos, source code, and additional information can be found at https://jxu.ai/chatemg.
comment: 8 pages; accepted to RA-L in November 2024; published at RA-L in February 2025
Systems and Control (CS)
BIA Transmission in Rate Splitting-based Optical Wireless Networks
Optical wireless communication (OWC) has recently received massive interest as a new technology that can support the enormous data traffic increasing on daily basis. In particular, laser-based OWC networks can provide terabits per second (Tbps) aggregate data rates. However, the emerging OWC networks require a high number of optical access points (APs), each AP corresponding to an optical cell, to provide uniform coverage for multiple users. Therefore, inter-cell interference (ICI) and multi-user interference (MUI) are crucial issues that must be managed efficiently to provide high spectral efficiency. In radio frequency (RF) networks, rate splitting (RS) is proposed as a transmission scheme to serve multiple users simultaneously following a certain strategy. It was shown that RS provides high data rates compared to orthogonal and non-orthogonal interference management schemes. Considering the high density of OWC networks, the application of RS within each optical cell might not be practical due to severe ICI. In this paper, a new strategy is derived referred to as blind interference alignment-rate splitting (BIA-RS) to fully coordinate the transmission among the optical APs, while determining the precoding matrices of multiple groups of users formed beforehand. Therefore, RS can be implemented within each group to manage MUI. The proposed BIA-RS scheme requires two layers of power allocation to achieve high performance. Given that, a max-min fractional optimization problem is formulated to optimally distribute the power budget among the groups and the messages intended to the users of each group. Finally, a power allocation algorithm is designed with multiple Lagrangian multipliers to provide practical and sub-optimal solutions. The results show the high performance of the proposed scheme compared to other counterpart schemes.
comment: arXiv admin note: substantial text overlap with arXiv:2207.11458
LCL Resonance Analysis and Damping in Single-Loop Grid-Forming Wind Turbines
A dynamic phenomenon known as LCL resonance is often neglected when stability analysis is carried out for grid-forming (GFM) control schemes by wind turbine systems, due to its high frequency. This paper shows that this simplification is not always valid for single-loop (SL) control schemes. A detailed small-signal analysis reveals that reactive power (RAP) control significantly influences the resonant modes, which may be dominant in determining overall system stability, even if the resonant frequency is high. The underlying mechanism via which the LCL resonance may dominate the overall system stability is systematically analyzed. Furthermore, various RAP control strategies are compared to assess their different effects on resonant modes. An active damping (AD) strategy favorable for SL-GFM control is then designed. We also provide a comparison between SL-GFM and well-studied grid-following control schemes, highlighting quite different resonance features between them. Finally, case studies associated with a 14-bus, 5-machine IEEE test system are presented. These show that instability originates from the LCL resonance rather than low-frequency interactions among multiple machines, validating the theoretical analysis and the proposed AD strategy.
Parametric Reachable Sets Via Controlled Dynamical Embeddings
In this work, we propose a new framework for reachable set computation through continuous evolution of a set of parameters and offsets which define a parametope, through the intersection of constraints. This results in a dynamical approach towards nonlinear reachability analysis: a single trajectory of an embedding system provides a parametope reachable set for the original system, and uncertainties are accounted for through continuous parameter evolution. This is dual to most existing computational strategies, which define sets through some combination of generator vectors, and usually discretize the system dynamics. We show how, under some regularity assumptions of the dynamics and the set considered, any desired parameter evolution can be accommodated as long as the offset dynamics are set accordingly, providing a virtual "control input" for reachable set computation. In a special case of the theory, we demonstrate how closing the loop for the parameter dynamics using the adjoint of the linearization results in a desirable first-order cancellation of the original system dynamics. Using interval arithmetic in JAX, we demonstrate the efficiency and utility of reachable parametope computation through two numerical examples.
Maximizing Battery Storage Profits via High-Frequency Intraday Trading
Maximizing revenue for grid-scale battery energy storage systems in continuous intraday electricity markets requires strategies that are able to seize trading opportunities as soon as new information arrives. This paper introduces and evaluates an automated high-frequency trading strategy for battery energy storage systems trading on the intraday market for power while explicitly considering the dynamics of the limit order book, market rules, and technical parameters. The standard rolling intrinsic strategy is adapted for continuous intraday electricity markets and solved using a dynamic programming approximation that is two to three orders of magnitude faster than an exact mixed-integer linear programming solution. A detailed backtest over a full year of German order book data demonstrates that the proposed dynamic programming formulation does not reduce trading profits and enables the policy to react to every relevant order book update, enabling realistic rapid backtesting. Our results show the significant revenue potential of high-frequency trading: our policy earns 58% more than when re-optimizing only once every hour and 14% more than when re-optimizing once per minute, highlighting that profits critically depend on trading speed. Furthermore, we leverage the speed of our algorithm to train a parametric extension of the rolling intrinsic, increasing yearly revenue by 8.4% out of sample.
Controlling a Social Network of Individuals with Coevolving Actions and Opinions
In this paper, we consider a population of individuals who have actions and opinions, which coevolve, mutually influencing one another on a complex network structure. In particular, we formulate a control problem for this social network, in which we assume that we can inject into the network a committed minority -- a set of stubborn nodes -- with the objective of steering the population, initially at a consensus, to a different consensus state. Our study focuses on two main objectives: i) determining the conditions under which the committed minority succeeds in its goal, and ii) identifying the optimal placement for such a committed minority. After deriving general monotone convergence result for the controlled dynamics, we leverage these results to build a computationally-efficient algorithm to solve the first problem and an effective heuristics for the second problem, which we prove to be NP-complete. The proposed methodology is illustrated though academic examples, and demonstrated on a real-world case study.
Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
Shipboard carbon capture is a promising solution to help reduce carbon emissions in international shipping. In this work, we propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework. This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants. Specifically, we propose a deep neural Koopman operator modeling approach, based on which a Koopman model with time-varying model parameters is established. This Koopman model predicts the overall economic operational cost and key system outputs, based on accessible partial state measurements. By leveraging this learned model, a constrained economic predictive control scheme is developed. Despite time-varying parameters involved in the formulated model, the formulated optimization problem associated with the economic predictive control design is convex, and it can be solved efficiently during online control implementations. Extensive tests are conducted on a high-fidelity simulation environment for shipboard post-combustion carbon capture processes. Four ship operational conditions are taken into account. The results show that the proposed method significantly improves the overall economic operational performance and carbon capture rate. Additionally, the proposed method guarantees safe operation by ensuring that hard constraints on the system outputs are satisfied.
Variable Metric Splitting Methods for Neuromorphic Circuits Simulation
This paper proposes a variable metric splitting algorithm to solve the electrical behavior of neuromorphic circuits made of capacitors, memristive elements, and batteries. The gradient property of the memristive elements is exploited to split the current to voltage operator as the sum of the derivative operator, a Riemannian gradient operator, and a nonlinear residual operator that is linearized at each step of the algorithm. The diagonal structure of the three operators makes the variable metric forward-backward splitting algorithm scalable and amenable to the simulation of large-scale neuromorphic circuits.
Robust Capacity Expansion Modelling for Renewable Energy Systems under Weather and Demand Uncertainty
Future greenhouse gas neutral energy systems will be dominated by variable renewable energy technologies. However, renewable electricity generation from wind and solar technologies, as well as electricity demand, varies with the weather. This work addresses the problem of determining optimal capacities for renewable technologies in energy systems that ensure sufficient electricity supply when dealing with multi-year time-series data. An iterative algorithm is proposed that starts by optimising an arbitrary starting time-series, followed by adding additional constraints and reoptimising the modified optimisation problem until sufficient energy supply is provided for all time--series, i.e. the solution is robust to weather and demand variations. This is evaluated in a computational study on a German energy system model.The results show that the iterative algorithm finds robust solutions for an increase of 2-2.5% in total annual cost for a simplified model in gurobipy and 2.9% for a model built in the model framework ETHOS.FINE. Testing the feasibility for non robust solutions showed that supply gaps occurred in at least some of the remaining years. Based on the results of this work, ensuring feasibility within an energy system model for multiple time-series boils down to two factors: ensuring sufficient back-up capacity to overcome periods of high demand combined with low electricity generation from wind and photovoltaic, and enforcing sufficient total annual electricity generation. Our proposed open source iterative algorithm is able to ensure this. For general modelling, it is recommended to check for systematic effects of different years' time--series on energy system models especially for wind, but also for photovoltaics, include dark lull and cold period effects on generation and demand in time--series, and assess the feasibility of energy system models using different time-series.
FJ-MM: The Friedkin-Johnsen Opinion Dynamics Model with Memory and Higher-Order Neighbors
The Friedkin-Johnsen (FJ) model has been extensively explored and validated, spanning applications in social science, systems and control, game theory, and algorithmic research. In this paper, we introduce an advanced generalization of the FJ model, termed FJ-MM which incorporates both memory effects and multi-hop (higher-order neighbor) influence. This formulation allows agents to naturally incorporate both current and previous opinions at each iteration stage. Our numerical results demonstrate that incorporating memory and multi-hop influence significantly reshapes the opinion landscape; for example, the final opinion profile can exhibit reduced polarization. We analyze the stability and equilibrium properties of the FJ-MM model, showing that these properties can be reduced to those of a comparison model--namely, the standard FJ model with a modified influence matrix. This reduction enables us to leverage established stability results from FJ dynamics. Additionally, we examine the convergence rate of the FJ-MM model and demonstrate that, as can be expected, the time lags introduced by memory and higher-order neighbor influences result in slower convergence.
comment: a brief version of this manuscript will appear in the proceedings of European Control Conference 2025
Optimal Duration of Reserve Capacity Ancillary Services for Distributed Energy Resources
The increasing integration of distributed energy resources (DERs) into power systems presents opportunities and challenges for ancillary services (AS) provision. Technical requirements of existing AS (i.e., duration, reliability, ramp rate, and lead time) have been designed for traditional generating units, making their provision by DER aggregates particularly challenging. This paper proposes a method to design the duration of reserve capacity AS products considering the operational constraints of DERs and the temporal dynamics of system imbalances. The optimal product duration is determined by maximizing product availability and aligning the supply profile with the system's balancing needs. We apply the methodology to a realistic Swiss low-voltage network with a diverse DER portfolio. The results reveal that (i) shorter product durations maximize average availability and (ii) long product durations improve the alignment with system balancing needs. This paper offers valuable insights for system operators to design AS products tailored for DER participation.
comment: IEEE PowerTech Kiel, 2025
Learning-Inspired Fuzzy Logic Algorithms for Enhanced Control of Oscillatory Systems
The transportation of sensitive equipment often suffers from vibrations caused by terrain, weather, and motion speed, leading to inefficiencies and potential damage. To address this challenge, this paper explores an intelligent control framework leveraging fuzzy logic, a foundational AI technique, to suppress oscillations in suspension systems. Inspired by learning based methodologies, the proposed approach utilizes fuzzy inference and Gaussian membership functions to emulate adaptive, human like decision making. By minimizing the need for explicit mathematical models, the method demonstrates robustness in both linear and nonlinear systems. Experimental validation highlights the controllers ability to adapt to varying suspension lengths, reducing oscillation amplitudes and improving stability under dynamic conditions. This research bridges the gap between traditional control systems and learning inspired techniques, offering a scalable, data efficient solution for modern transportation challenges
comment: 4 pages, 5 figures, conference
Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.
comment: 12 pages, 10 figures; Open-source code, see https://github.com/AlexandreBanks6/dV-STEAR_Public.git; Supplementary movies, see https://github.com/AlexandreBanks6/dVSTEAR_Supplemental_Files.git
Reliability Assessment of Low-Cost PM Sensors under High Humidity and High PM Level Outdoor Conditions
Low-cost particulate matter (PM) sensors have become increasingly popular due to their compact size, low power consumption, and cost-effective installation and maintenance. While several studies have explored the effects of meteorological conditions and pollution exposure on low-cost sensor (LCS) performance, few have addressed the combined impact of high PM concentration and high humidity levels. In contrast to most evaluation studies, which generally report $\text{PM}_{2.5}$ levels below $150~\mu\text{g/m}^3$, our study observed hourly average $\text{PM}_{2.5}$ concentrations ranging from $6-611~\mu\text{g/m}^3$ (mean value of $137~\mu\text{g/m}^3$), with relative humidity between $25-95\%$ (mean value of $72\%$), and temperature varying from $6-29^\circ$C (mean value of $16^\circ$C). We evaluate three LCS models (SPS30, PMS7003, HPMA115C0-004) in outdoor conditions during the winter season in New Delhi, India, deployed alongside a reference-grade beta attenuation monitor (BAM). The results indicate a strong correlation between LCS and BAM measurements (${R^2} > 90\%$). The RMSE increases with increasing PM concentration and humidity levels but the narrow $95\%$ confidence interval range of LCS as a function of the reference BAM suggests the importance of LCS in air pollution monitoring. Among the evaluated LCS models, SPS30 showed the highest overall accuracy. Overall, the study demonstrates that LCS can effectively monitor air quality in regions with high PM and high humidity levels, provided appropriate correction models are applied.
NAPER: Fault Protection for Real-Time Resource-Constrained Deep Neural Networks
Fault tolerance in Deep Neural Networks (DNNs) deployed on resource-constrained systems presents unique challenges for high-accuracy applications with strict timing requirements. Memory bit-flips can severely degrade DNN accuracy, while traditional protection approaches like Triple Modular Redundancy (TMR) often sacrifice accuracy to maintain reliability, creating a three-way dilemma between reliability, accuracy, and timeliness. We introduce NAPER, a novel protection approach that addresses this challenge through ensemble learning. Unlike conventional redundancy methods, NAPER employs heterogeneous model redundancy, where diverse models collectively achieve higher accuracy than any individual model. This is complemented by an efficient fault detection mechanism and a real-time scheduler that prioritizes meeting deadlines by intelligently scheduling recovery operations without interrupting inference. Our evaluations demonstrate NAPER's superiority: 40% faster inference in both normal and fault conditions, maintained accuracy 4.2% higher than TMR-based strategies, and guaranteed uninterrupted operation even during fault recovery. NAPER effectively balances the competing demands of accuracy, reliability, and timeliness in real-time DNN applications
comment: 8 pages, 8 figures
A Digital Twin of an Electrical Distribution Grid: SoCal 28-Bus Dataset
We provide an open-access dataset of phasor & waveform measurement units (PMUs/WMUs) of a real-world electrical distribution network. The network consists of diverse sets of generation resources (including solar panels, fuel cells, natural gas generators, and utility interconnections), loads (including large-scale electric vehicle charging, data centers, central cooling, offices), topology changes (such as line outages and load transfers), as well as a mixture of single- and three-phase networks. We describe a densely deployed PMU sensor network in a distribution grid, in which all buses with non-zero power injections are measured. This approach enables a range of applications such as state estimation, system identification, power flow optimization, and feedback control, several of which are discussed in this paper. Additionally, we provide a synchronized waveform dataset which allows the analysis of harmonics, transient events, dynamic grid impedance, and stability. Data collection started in 2023 while new data is generated continuously and made available online. A characterization of measurement error is provided. Finally, we provide circuit topology and parameters as a part of the dataset. Together, the circuit and timeseries data offer an opportunity for researchers to develop and test algorithms on a real-world system.
Data-Driven Reachability with Scenario Optimization and the Holdout Method
Reachability analysis is an important method in providing safety guarantees for systems with unknown or uncertain dynamics. Due to the computational intractability of exact reachability analysis for general nonlinear, high-dimensional systems, recent work has focused on the use of probabilistic methods for computing approximate reachable sets. In this work, we advocate for the use of a general purpose, practical, and sharp method for data-driven reachability: the holdout method. Despite the simplicity of the holdout method, we show -- on several numerical examples including scenario-based reach tubes -- that the resulting probabilistic bounds are substantially sharper and require fewer samples than existing methods for data-driven reachability. Furthermore, we complement our work with a discussion on the necessity of probabilistic reachability bounds. We argue that any method that attempts to de-randomize the bounds, by converting the guarantees to hold deterministically, requires (a) an exponential in state-dimension amount of samples to achieve non-vacuous guarantees, and (b) extra assumptions on the dynamics.
Data-driven Fuzzy Control for Time-Optimal Aggressive Trajectory Following
Optimal trajectories that minimize a user-defined cost function in dynamic systems require the solution of a two-point boundary value problem. The optimization process yields an optimal control sequence that depends on the initial conditions and system parameters. However, the optimal sequence may result in undesirable behavior if the system's initial conditions and parameters are erroneous. This work presents a data-driven fuzzy controller synthesis framework that is guided by a time-optimal trajectory for multicopter tracking problems. In particular, we consider an aggressive maneuver consisting of a mid-air flip and generate a time-optimal trajectory by numerically solving the two-point boundary value problem. A fuzzy controller consisting of a stabilizing controller near hover conditions and an autoregressive moving average (ARMA) controller, trained to mimic the time-optimal aggressive trajectory, is constructed using the Takagi-Sugeno fuzzy framework.
comment: 6 pages, 10 figures, submitted to MECC 2025
Data-Enabled Neighboring Extremal: Case Study on Model-Free Trajectory Tracking for Robotic Arm
Data-enabled predictive control (DeePC) has recently emerged as a powerful data-driven approach for efficient system controls with constraints handling capabilities. It performs optimal controls by directly harnessing input-output (I/O) data, bypassing the process of explicit model identification that can be costly and time-consuming. However, its high computational complexity, driven by a large-scale optimization problem (typically in a higher dimension than its model-based counterpart--Model Predictive Control), hinders real-time applications. To overcome this limitation, we propose the data-enabled neighboring extremal (DeeNE) framework, which significantly reduces computational cost while preserving control performance. DeeNE leverages first-order optimality perturbation analysis to efficiently update a precomputed nominal DeePC solution in response to changes in initial conditions and reference trajectories. We validate its effectiveness on a 7-DoF KINOVA Gen3 robotic arm, demonstrating substantial computational savings and robust, data-driven control performance.
Multivariable Extremum Seeking Unit-Vector Control Design
This paper investigates multivariable extremum seeking using unit-vector control. By employing the gradient algorithm and a polytopic embedding of the unknown Hessian matrix, we establish sufficient conditions, expressed as linear matrix inequalities, for designing the unit-vector control gain that ensures finite-time stability of the origin of the average closed-loop error system. Notably, these conditions enable the design of non-diagonal control gains, which provide extra degrees of freedom to the solution. The convergence of the actual closed-loop system to a neighborhood of the unknown extremum point is rigorously proven through averaging analysis for systems with discontinuous right-hand sides. Numerical simulations illustrate the efficacy of the proposed extremum seeking control algorithm.
comment: 7 pages, 2 figures
Can Carbon-Aware Electric Load Shifting Reduce Emissions? An Equilibrium-Based Analysis
An increasing number of electric loads, such as hydrogen producers or data centers, can be characterized as carbon-sensitive, meaning that they are willing to adapt the timing and/or location of their electricity usage in order to minimize carbon footprints. However, the emission reduction efforts of these carbon-sensitive loads rely on carbon intensity information such as average carbon emissions, and it is unclear whether load shifting based on these signals effectively reduces carbon emissions. To address this open question, we investigate the impact of carbon-sensitive consumers using equilibrium analysis. Specifically, we expand the commonly used equilibrium model for electricity market clearing to include carbon-sensitive consumers that adapt their consumption based on an average carbon intensity signal. This analysis represents an idealized situation for carbon-sensitive loads, where their carbon preferences are reflected directly in the market clearing, and contrasts with current practice where carbon intensity signals only become known to consumers aposteriori (i.e. after the market has already been cleared). We include both illustrative examples and larger numerical simulations, including benchmarking with other methods, to illuminate the contributions and limitations of carbon-sensitive loads in power system emission reductions.
comment: 7 pages, 4 figures, submitted to 2025 CDC. arXiv admin note: text overlap with arXiv:2501.09853
Unit-Vector Control Design under Saturating Actuators
This paper deals with unit vector control design for multivariable polytopic uncertain systems under saturating actuators. For that purpose, we propose LMI-based conditions to design the unit vector control gain such that the origin of the closed-loop system is finite-time stable. Moreover, an optimization problem is provided to obtain an enlarged estimate of the region of attraction of the equilibrium point for the closed-loop system, where the convergence of trajectories is ensured even in the presence of saturation functions. Numerical simulations illustrate the effectiveness of the proposed approach.
comment: 7 pages, 5 figures
Compositional design for time-varying and nonlinear coordination
This work addresses the design of multi-agent coordination through high-order consensus protocols. While first-order consensus strategies are well-studied -- with known robustness to uncertainties such as time delays, time-varying weights, and nonlinearities like saturations -- the theoretical guarantees for high-order consensus are comparatively limited. We propose a compositional control framework that generates high-order consensus protocols by serially connecting stable first-order consensus operators. Under mild assumptions, we establish that the resulting high-order system inherits stability properties from its components. The proposed design is versatile and supports a wide range of real-world constraints. This is demonstrated through applications inspired by vehicular formation control, including protocols with time-varying weights, bounded time-varying delays, and saturated inputs. We derive theoretical guarantees for these settings using the proposed compositional approach and demonstrate the advantages gained compared to conventional protocols in simulations.
Multi-Agent Trustworthy Consensus under Random Dynamic Attacks
In this work, we study the consensus problem in which legitimate agents send their values over an undirected communication network in the presence of an unknown subset of malicious or faulty agents. In contrast to former works, we generalize and characterize the properties of consensus dynamics with dependent sequences of malicious transmissions with dynamic (time-varying) rates, based on not necessarily independent trust observations. We consider a detection algorithm utilizing stochastic trust observations available to legitimate agents. Under these conditions, legitimate agents almost surely classify their neighbors and form their trusted neighborhoods correctly with decaying misclassification probabilities. We further prove that the consensus process converges almost surely despite the existence of malicious agents. For a given value of failure probability, we characterize the deviation from the nominal consensus value ideally occurring when there are no malicious agents in the system. We also examine the convergence rate of the process in finite time. Numerical simulations show the convergence among agents and indicate the deviation under different attack scenarios.
comment: 16 pages, 3 figures
Extremum Seeking Control for Multivariable Maps under Actuator Saturation
This paper deals with the gradient-based extremum seeking control for multivariable maps under actuator saturation. By exploiting a polytopic embedding of the unknown Hessian, we derive a LMI-based synthesis condition to ensure that the origin of the average closed-loop error system is exponentially stable. Then, the convergence of the extremum seeking control system under actuator saturation to the unknown optimal point is proved by employing Lyapunov stability and averaging theories. Numerical simulations illustrate the efficacy of the proposed approach.
comment: 7 pages, 2 figures. arXiv admin note: text overlap with arXiv:2504.07251
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
comment: 12 pages, 6 figures, 6 tables
A Control-Oriented Simplified Single Particle Model with Grouped Parameter and Sensitivity Analysis for Lithium-Ion Batteries
Lithium-ion batteries are widely used in transportation, energy storage, and consumer electronics, driving the need for reliable battery management systems (BMS) for state estimation and control. The Single Particle Model (SPM) balances computational efficiency and accuracy but faces challenges in parameter estimation due to numerous parameters. Current SPM models using parabolic approximation introduce intermediate variables and hard to do parameter grouping. This study presents a control-oriented SPM reformulation that employs parameter grouping and parabolic approximation to simplify model parameters while using average and surface lithium-ion concentrations as model output. By parameter grouping, the original 17 parameters were reduced to 9 grouped parameters. The reformulated model achieves a reduced-order ordinary differential equation form while maintaining mathematical accuracy equivalent to the pre-grouped discretized SPM. Through Sobol sensitivity analysis under various current profiles, the grouped parameters were reduced from 9 to 6 highly sensitive parameters. Results demonstrate that estimating these 6 parameters achieves comparable practical accuracy to estimating all 9 parameters, with faster convergence. This control-oriented SPM enhances BMS applications by facilitating state estimation and control while reducing parameter estimation requirements.
comment: 30 pages, 4 figures
Learning Flatness-Preserving Residuals for Pure-Feedback Systems
We study residual dynamics learning for differentially flat systems, where a nominal model is augmented with a learned correction term from data. A key challenge is that generic residual parameterizations may destroy flatness, limiting the applicability of flatness-based planning and control methods. To address this, we propose a framework for learning flatness-preserving residual dynamics in systems whose nominal model admits a pure-feedback form. We show that residuals with a lower-triangular structure preserve both the flatness of the system and the original flat outputs. Moreover, we provide a constructive procedure to recover the flatness diffeomorphism of the augmented system from that of the nominal model. We then introduce a learning algorithm that fits such residuals from trajectory data using smooth function approximators. Our approach is validated in simulation on a 2D quadrotor subject to unmodeled aerodynamic effects. We demonstrate that the resulting learned flat model enables tracking performance comparable to nonlinear model predictive control ($5\times$ lower tracking error than the nominal flat model) while also achieving over a $20\times$ speedup in computation.
Inverter Output Impedance Estimation in Power Networks: A Variable Direction Forgetting Recursive-Least-Square Algorithm Based Approach
As inverter-based loads and energy sources become increasingly prevalent, accurate estimation of line impedance between inverters and the grid is essential for optimizing performance and enhancing control strategies. This paper presents a non-invasive method for estimating output-line impedance using measurements local to the inverter. It provides a specific method for signal conditioning of signals measured at the inverter, which makes the measured data better suited to estimation algorithms. An algorithm based on the Variable Direction Forgetting Recursive Least Squares (VDF-RLS) method is introduced, which leverages these conditioned signals for precise impedance estimation. The signal conditioning process transforms measurements into the direct-quadrature (dq) coordinate frame, where the rotating frame frequency is determined to facilitate a simpler and more accurate estimation. This frequency is implemented using a secondary Phase-Locked Loop (PLL) to attenuate grid voltage measurement variations. By isolating the variation-sensitive q-axis and relying solely on the less sensitive d-axis, the method further minimizes the impact of variations. The VDF-RLS estimation method achieves rapid adaptation while ensuring stability in the absence of persistent excitation by selectively discarding outdated data during updates. Proposed conditioning and estimation methods are non-invasive; estimations are solely done using measured outputs, and no signal is injected into the power network. Simulation results demonstrate a significant improvement in impedance estimation stability, particularly in low-excitation conditions, where the VDF-RLS method achieves more than three time lower error compared to existing approaches such as constant forgetting RLS and the Kalman filter.
comment: 8 pages, 6 figures, 2 table, submitted for 2025 Conference on Decision and Control (CDC)
Distribution Grids May Be a Barrier To Residential Electrification
Replacing fossil-fueled appliances and vehicles with electric alternatives can reduce greenhouse gas emissions and air pollution in many settings. However, residential electrification can also raise electricity demand beyond the safe limits of electrical infrastructure. This can increase the risk of blackouts or require grid reinforcement that is often slow and expensive. Here, we estimate the physical and economic impacts on distribution grids of electrifying all housing and personal vehicles in each county of the lower 48 United States. We find that space heating is the main driver of grid impacts, with the coldest regions seeing demand peaks up to five times higher than today's peaks. Accommodating electrification of all housing and personal vehicles is estimated to require 600 GW of distribution grid reinforcement nationally, at a cost of \$350 to \$790 billion, or \$2,800 to \$6,400 per household (95% confidence intervals). However, demand-side management could eliminate three-quarters of grid reinforcement costs.
Task-Parameter Nexus: Task-Specific Parameter Learning for Model-Based Control
This paper presents the Task-Parameter Nexus (TPN), a learning-based approach for online determination of the (near-)optimal control parameters of model-based controllers (MBCs) for tracking tasks. In TPN, a deep neural network is introduced to predict the control parameters for any given tracking task at runtime, especially when optimal parameters for new tasks are not immediately available. To train this network, we constructed a trajectory bank with various speeds and curvatures that represent different motion characteristics. Then, for each trajectory in the bank, we auto-tune the optimal control parameters offline and use them as the corresponding ground truth. With this dataset, the TPN is trained by supervised learning. We evaluated the TPN on the quadrotor platform. In simulation experiments, it is shown that the TPN can predict near-optimal control parameters for a spectrum of tracking tasks, demonstrating its robust generalization capabilities to unseen tasks.
A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
Two-stage adaptive robust optimization (ARO) is a powerful approach for planning under uncertainty, balancing first-stage decisions with recourse decisions made after uncertainty is realized. To account for uncertainty, modelers typically define a simple uncertainty set over which potential outcomes are considered. However, classical methods for defining these sets unintentionally capture a wide range of unrealistic outcomes, resulting in overly-conservative and costly planning in anticipation of unlikely contingencies. In this work, we introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization using a variational autoencoder. AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic, improving the robustness of first-stage decisions at a lower planning cost than standard methods. To ensure generated contingencies lie in high-density regions of the uncertainty distribution, AGRO defines a tight uncertainty set as the image of "latent" uncertainty sets under the VAE decoding transformation. Projected gradient ascent is then used to maximize recourse costs over the latent uncertainty sets by leveraging differentiable optimization methods. We demonstrate the cost-efficiency of AGRO by applying it to both a synthetic production-distribution problem and a real-world power system expansion setting. We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
Approximate Feedback Nash Equilibria with Sparse Inter-Agent Dependencies
Feedback Nash equilibrium strategies in multi-agent dynamic games require availability of all players' state information to compute control actions. However, in real-world scenarios, sensing and communication limitations between agents make full state feedback expensive or impractical, and such strategies can become fragile when state information from other agents is inaccurate. To this end, we propose a regularized dynamic programming approach for finding sparse feedback policies that selectively depend on the states of a subset of agents in dynamic games. The proposed approach solves convex adaptive group Lasso problems to compute sparse policies approximating Nash equilibrium solutions. We prove the regularized solutions' asymptotic convergence to a neighborhood of Nash equilibrium policies in linear-quadratic (LQ) games. Further, we extend the proposed approach to general non-LQ games via an iterative algorithm. Simulation results in multi-robot interaction scenarios show that the proposed approach effectively computes feedback policies with varying sparsity levels. When agents have noisy observations of other agents' states, simulation results indicate that the proposed regularized policies consistently achieve lower costs than standard Nash equilibrium policies by up to 77% for all interacting agents whose costs are coupled with other agents' states.
A Crosstalk-Aware Timing Prediction Method in Routing
With shrinking interconnect spacing in advanced technology nodes, existing timing predictions become less precise due to the challenging quantification of crosstalk-induced delay. During the routing, the crosstalk effect is typically modeled by predicting coupling capacitance with congestion information. However, the timing estimation tends to be overly pessimistic, as the crosstalk-induced delay depends not only on the coupling capacitance but also on the signal arrival time. This work presents a crosstalk-aware timing estimation method using a two-step machine learning approach. Interconnects that are physically adjacent and overlap in signal timing windows are filtered first. Crosstalk delay is predicted by integrating physical topology and timing features without relying on post-routing results and the parasitic extraction. Experimental results show a match rate of over 99% for identifying crosstalk nets compared to the commercial tool on the OpenCores benchmarks, with prediction results being more accurate than those of other state-of-the-art methods.
comment: I would like to withdraw my submission because the work is incomplete. In particular, the calculations related to crosstalk need to be reconsidered. I plan to revise and improve the manuscript further
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Lifted Frequency-Domain Identification of Closed-Loop Multirate Systems: Applied to Dual-Stage Actuator Hard Disk Drives
Frequency-domain representations are crucial for the design and performance evaluation of controllers in multirate systems, specifically to address intersample performance. The aim of this paper is to develop an effective frequency-domain system identification technique for closed-loop multirate systems using solely slow-rate output measurements. By indirect identification of multivariable time-invariant representations through lifting, in combination with local modeling techniques, the multirate system is effectively identified. The developed method is capable of accurate identification of closed-loop multirate systems within a single identification experiment, using fast-rate excitation and inputs, and slow-rate outputs. Finally, the developed framework is validated using a benchmark problem consisting of a multivariable dual-stage actuator from a hard disk drive, demonstrating its applicability and accuracy.
Dissipative iFIR filters for data-driven design
We tackle the problem of providing closed-loop stability guarantees with a scalable data-driven design. We combine virtual reference feedback tuning with dissipativity constraints on the controller for closed-loop stability. The constraints are formulated as a set of linear inequalities in the frequency domain. This leads to a convex problem that is scalable with respect to the length of the data and the complexity of the controller. An extension of virtual reference feedback tuning to include disturbance dynamics is also discussed. The proposed data-driven control design is illustrated by a soft gripper impedance control example.
comment: 8 pages, 10 figures, Accepted by 23rd European Control Conference (ECC2025). Final submission version
A 2-6 GHz Ultra-Wideband CMOS Transceiver for Radar Applications
This paper presents a low power, low cost transceiver architecture to implement radar-on-a-chip. The transceiver comprises of a full ultra-wideband (UWB) transmitter and a full UWB band receiver. A design methodology to maximize the tuning range of the voltage-controlled oscillator (VCO) is presented. At the transmitter side, a sub-harmonic mixer is used for signal up-conversion. The receiver low noise amplifier (LNA) has a 2 to 6 GHz input matching bandwidth with a power gain of 9 dB and a noise figure of 2.5 dB. The transceiver is implemented in Cadence EDA tools using 65nm CMOS technology. The system achieves a total dc power consumption of 50 mW. Good noise figure performance; good wide-band matching; gain; high level of integration; low power; low cost of the proposed UWB radar transceiver front-end make it a highly competitive SoC solution for low power UWB transceivers.
Symmetrizable systems
Transforming an asymmetric system into a symmetric system makes it possible to exploit the simplifying properties of symmetry in control problems. We define and characterize the family of symmetrizable systems, which can be transformed into symmetric systems by a linear transformation of their inputs and outputs. In the special case of complete symmetry, the set of symmetrizable systems is convex and verifiable by a semidefinite program. We show that a Khatri-Rao rank needs to be satisfied for a system to be symmetrizable and conclude that linear systems are generically neither symmetric nor symmetrizable.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
A Novel Massive Random Access in Cell-Free Massive MIMO Systems for High-Speed Mobility with OTFS Modulation
In the research of next-generation wireless communication technologies, orthogonal time frequency space (OTFS) modulation is emerging as a promising technique for high-speed mobile environments due to its superior efficiency and robustness in doubly selective channels. Additionally, the cell-free architecture, which eliminates the issues associated with cell boundaries, offers broader coverage for radio access networks. By combining cell-free network architecture with OTFS modulation, the system may meet the demands of massive random access required by machine-type communication devices in high-speed scenarios. This paper explores a massive random access scheme based on OTFS modulation within a cell-free architecture. A transceiver model for uplink OTFS signals involving multiple access points (APs) is developed, where channel estimation with fractional channel parameters is approximated as a block sparse matrix recovery problem. Building on existing superimposed and embedded preamble schemes, a hybrid preamble scheme is proposed. This scheme leverages superimposed and embedded preambles to respectively achieve rough and accurate active user equipment (UEs) detection (AUD), as well as precise channel estimation, under the condition of supporting a large number of access UEs. Moreover, this study introduces a generalized approximate message passing and pattern coupling sparse Bayesian learning with Laplacian prior (GAMP-PCSBL-La) algorithm, which effectively captures block sparse features after discrete cosine transform (DCT), delivering precise estimation results with reduced computational complexity. Simulation results demonstrate that the proposed scheme is effective and provides superior performance compared to other existing schemes.
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Scheduling Policies in a Multi-Source Status Update System with Dedicated and Shared Servers
Use of multi-path network topologies has become a prominent technique to assert timeliness in terms of age of information (AoI) and to improve resilience to link disruptions in communication systems. However, establishing multiple dedicated communication links among network nodes is a costly endeavor. Therefore, quite often, these secondary communication links are shared among multiple entities. Moreover, these multi-path networks come with the added challenge of out-of-order transmissions. In this paper, we study an amalgamation of the above two aspects, i.e., multi-path transmissions and link sharing. In contrast to the existing literature where the main focus has been scheduling multiple sources on a single shared server, we delve into the realm where each source sharing the shared server is also supplemented with its dedicated server so as to improve its timeliness. In this multi-path link sharing setting with generate-at-will transmissions, we first present the optimal probabilistic scheduler, and then propose several heuristic-based cyclic scheduling algorithms for the shared server, to minimize the weighted average age of information of the sources.
comment: New figures and references added. A more rigorous proof for Theorem 1 added
Decentralized Parametric Stability Certificates for Grid-Forming Converter Control
We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of the network dynamics. By following practical tuning rules, we are able to ensure plug-and-play operation without centralized coordination. Unlike prior works, our approach accommodates coupled frequency and voltage dynamics, incorporates network dynamics, and does not rely on specific network configurations or operating points, offering a general and scalable solution for the integration of power-electronics-based devices into future power systems. We validate our theoretical stability results through numerical case studies in a high-fidelity simulation model.
comment: 12 pages, 13 figures
PyIT2FLS: A New Python Toolkit for Interval Type 2 Fuzzy Logic Systems
Fuzzy logic is an accepted and well-developed approach for constructing verbal models. Fuzzy based methods are getting more popular, while the engineers deal with more daily life tasks. This paper presents a new Python toolkit for Interval Type 2 Fuzzy Logic Systems (IT2FLS). Developing software tools is an important issue for facilitating the practical use of theoretical results. There are limited tools for implementing IT2FLSs in Python. The developed PyIT2FLS is providing a set of tools for fast and easy modeling of fuzzy systems. This paper includes a brief description of how developed toolkit can be used. Also, three examples are given showing the usage of the developed toolkit for simulating IT2FLSs. First, a simple rule-based system is developed and it's codes are presented in the paper. The second example is the prediction of the Mackey-Glass chaotic time series using IT2FLS. In this example, the Particle Swarm Optimization (PSO) algorithm is used for determining system parameters while minimizing the mean square error. In the last example, an IT2FPID is designed and used for controlling a linear time-delay system. The code for the examples are available on toolkit's GitHub page: https://github.com/Haghrah/PyIT2FLS. The simulations and their results confirm the ability of the developed toolkit to be used in a wide range of the applications.
comment: This work has been published in SoftwareX, Volume 30, May 2025, 102146. https://doi.org/10.1016/j.softx.2025.102146
Systems and Control (EESS)
BIA Transmission in Rate Splitting-based Optical Wireless Networks
Optical wireless communication (OWC) has recently received massive interest as a new technology that can support the enormous data traffic increasing on daily basis. In particular, laser-based OWC networks can provide terabits per second (Tbps) aggregate data rates. However, the emerging OWC networks require a high number of optical access points (APs), each AP corresponding to an optical cell, to provide uniform coverage for multiple users. Therefore, inter-cell interference (ICI) and multi-user interference (MUI) are crucial issues that must be managed efficiently to provide high spectral efficiency. In radio frequency (RF) networks, rate splitting (RS) is proposed as a transmission scheme to serve multiple users simultaneously following a certain strategy. It was shown that RS provides high data rates compared to orthogonal and non-orthogonal interference management schemes. Considering the high density of OWC networks, the application of RS within each optical cell might not be practical due to severe ICI. In this paper, a new strategy is derived referred to as blind interference alignment-rate splitting (BIA-RS) to fully coordinate the transmission among the optical APs, while determining the precoding matrices of multiple groups of users formed beforehand. Therefore, RS can be implemented within each group to manage MUI. The proposed BIA-RS scheme requires two layers of power allocation to achieve high performance. Given that, a max-min fractional optimization problem is formulated to optimally distribute the power budget among the groups and the messages intended to the users of each group. Finally, a power allocation algorithm is designed with multiple Lagrangian multipliers to provide practical and sub-optimal solutions. The results show the high performance of the proposed scheme compared to other counterpart schemes.
comment: arXiv admin note: substantial text overlap with arXiv:2207.11458
LCL Resonance Analysis and Damping in Single-Loop Grid-Forming Wind Turbines
A dynamic phenomenon known as LCL resonance is often neglected when stability analysis is carried out for grid-forming (GFM) control schemes by wind turbine systems, due to its high frequency. This paper shows that this simplification is not always valid for single-loop (SL) control schemes. A detailed small-signal analysis reveals that reactive power (RAP) control significantly influences the resonant modes, which may be dominant in determining overall system stability, even if the resonant frequency is high. The underlying mechanism via which the LCL resonance may dominate the overall system stability is systematically analyzed. Furthermore, various RAP control strategies are compared to assess their different effects on resonant modes. An active damping (AD) strategy favorable for SL-GFM control is then designed. We also provide a comparison between SL-GFM and well-studied grid-following control schemes, highlighting quite different resonance features between them. Finally, case studies associated with a 14-bus, 5-machine IEEE test system are presented. These show that instability originates from the LCL resonance rather than low-frequency interactions among multiple machines, validating the theoretical analysis and the proposed AD strategy.
Parametric Reachable Sets Via Controlled Dynamical Embeddings
In this work, we propose a new framework for reachable set computation through continuous evolution of a set of parameters and offsets which define a parametope, through the intersection of constraints. This results in a dynamical approach towards nonlinear reachability analysis: a single trajectory of an embedding system provides a parametope reachable set for the original system, and uncertainties are accounted for through continuous parameter evolution. This is dual to most existing computational strategies, which define sets through some combination of generator vectors, and usually discretize the system dynamics. We show how, under some regularity assumptions of the dynamics and the set considered, any desired parameter evolution can be accommodated as long as the offset dynamics are set accordingly, providing a virtual "control input" for reachable set computation. In a special case of the theory, we demonstrate how closing the loop for the parameter dynamics using the adjoint of the linearization results in a desirable first-order cancellation of the original system dynamics. Using interval arithmetic in JAX, we demonstrate the efficiency and utility of reachable parametope computation through two numerical examples.
Maximizing Battery Storage Profits via High-Frequency Intraday Trading
Maximizing revenue for grid-scale battery energy storage systems in continuous intraday electricity markets requires strategies that are able to seize trading opportunities as soon as new information arrives. This paper introduces and evaluates an automated high-frequency trading strategy for battery energy storage systems trading on the intraday market for power while explicitly considering the dynamics of the limit order book, market rules, and technical parameters. The standard rolling intrinsic strategy is adapted for continuous intraday electricity markets and solved using a dynamic programming approximation that is two to three orders of magnitude faster than an exact mixed-integer linear programming solution. A detailed backtest over a full year of German order book data demonstrates that the proposed dynamic programming formulation does not reduce trading profits and enables the policy to react to every relevant order book update, enabling realistic rapid backtesting. Our results show the significant revenue potential of high-frequency trading: our policy earns 58% more than when re-optimizing only once every hour and 14% more than when re-optimizing once per minute, highlighting that profits critically depend on trading speed. Furthermore, we leverage the speed of our algorithm to train a parametric extension of the rolling intrinsic, increasing yearly revenue by 8.4% out of sample.
Controlling a Social Network of Individuals with Coevolving Actions and Opinions
In this paper, we consider a population of individuals who have actions and opinions, which coevolve, mutually influencing one another on a complex network structure. In particular, we formulate a control problem for this social network, in which we assume that we can inject into the network a committed minority -- a set of stubborn nodes -- with the objective of steering the population, initially at a consensus, to a different consensus state. Our study focuses on two main objectives: i) determining the conditions under which the committed minority succeeds in its goal, and ii) identifying the optimal placement for such a committed minority. After deriving general monotone convergence result for the controlled dynamics, we leverage these results to build a computationally-efficient algorithm to solve the first problem and an effective heuristics for the second problem, which we prove to be NP-complete. The proposed methodology is illustrated though academic examples, and demonstrated on a real-world case study.
Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
Shipboard carbon capture is a promising solution to help reduce carbon emissions in international shipping. In this work, we propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework. This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants. Specifically, we propose a deep neural Koopman operator modeling approach, based on which a Koopman model with time-varying model parameters is established. This Koopman model predicts the overall economic operational cost and key system outputs, based on accessible partial state measurements. By leveraging this learned model, a constrained economic predictive control scheme is developed. Despite time-varying parameters involved in the formulated model, the formulated optimization problem associated with the economic predictive control design is convex, and it can be solved efficiently during online control implementations. Extensive tests are conducted on a high-fidelity simulation environment for shipboard post-combustion carbon capture processes. Four ship operational conditions are taken into account. The results show that the proposed method significantly improves the overall economic operational performance and carbon capture rate. Additionally, the proposed method guarantees safe operation by ensuring that hard constraints on the system outputs are satisfied.
Variable Metric Splitting Methods for Neuromorphic Circuits Simulation
This paper proposes a variable metric splitting algorithm to solve the electrical behavior of neuromorphic circuits made of capacitors, memristive elements, and batteries. The gradient property of the memristive elements is exploited to split the current to voltage operator as the sum of the derivative operator, a Riemannian gradient operator, and a nonlinear residual operator that is linearized at each step of the algorithm. The diagonal structure of the three operators makes the variable metric forward-backward splitting algorithm scalable and amenable to the simulation of large-scale neuromorphic circuits.
Robust Capacity Expansion Modelling for Renewable Energy Systems under Weather and Demand Uncertainty
Future greenhouse gas neutral energy systems will be dominated by variable renewable energy technologies. However, renewable electricity generation from wind and solar technologies, as well as electricity demand, varies with the weather. This work addresses the problem of determining optimal capacities for renewable technologies in energy systems that ensure sufficient electricity supply when dealing with multi-year time-series data. An iterative algorithm is proposed that starts by optimising an arbitrary starting time-series, followed by adding additional constraints and reoptimising the modified optimisation problem until sufficient energy supply is provided for all time--series, i.e. the solution is robust to weather and demand variations. This is evaluated in a computational study on a German energy system model.The results show that the iterative algorithm finds robust solutions for an increase of 2-2.5% in total annual cost for a simplified model in gurobipy and 2.9% for a model built in the model framework ETHOS.FINE. Testing the feasibility for non robust solutions showed that supply gaps occurred in at least some of the remaining years. Based on the results of this work, ensuring feasibility within an energy system model for multiple time-series boils down to two factors: ensuring sufficient back-up capacity to overcome periods of high demand combined with low electricity generation from wind and photovoltaic, and enforcing sufficient total annual electricity generation. Our proposed open source iterative algorithm is able to ensure this. For general modelling, it is recommended to check for systematic effects of different years' time--series on energy system models especially for wind, but also for photovoltaics, include dark lull and cold period effects on generation and demand in time--series, and assess the feasibility of energy system models using different time-series.
FJ-MM: The Friedkin-Johnsen Opinion Dynamics Model with Memory and Higher-Order Neighbors
The Friedkin-Johnsen (FJ) model has been extensively explored and validated, spanning applications in social science, systems and control, game theory, and algorithmic research. In this paper, we introduce an advanced generalization of the FJ model, termed FJ-MM which incorporates both memory effects and multi-hop (higher-order neighbor) influence. This formulation allows agents to naturally incorporate both current and previous opinions at each iteration stage. Our numerical results demonstrate that incorporating memory and multi-hop influence significantly reshapes the opinion landscape; for example, the final opinion profile can exhibit reduced polarization. We analyze the stability and equilibrium properties of the FJ-MM model, showing that these properties can be reduced to those of a comparison model--namely, the standard FJ model with a modified influence matrix. This reduction enables us to leverage established stability results from FJ dynamics. Additionally, we examine the convergence rate of the FJ-MM model and demonstrate that, as can be expected, the time lags introduced by memory and higher-order neighbor influences result in slower convergence.
comment: a brief version of this manuscript will appear in the proceedings of European Control Conference 2025
Optimal Duration of Reserve Capacity Ancillary Services for Distributed Energy Resources
The increasing integration of distributed energy resources (DERs) into power systems presents opportunities and challenges for ancillary services (AS) provision. Technical requirements of existing AS (i.e., duration, reliability, ramp rate, and lead time) have been designed for traditional generating units, making their provision by DER aggregates particularly challenging. This paper proposes a method to design the duration of reserve capacity AS products considering the operational constraints of DERs and the temporal dynamics of system imbalances. The optimal product duration is determined by maximizing product availability and aligning the supply profile with the system's balancing needs. We apply the methodology to a realistic Swiss low-voltage network with a diverse DER portfolio. The results reveal that (i) shorter product durations maximize average availability and (ii) long product durations improve the alignment with system balancing needs. This paper offers valuable insights for system operators to design AS products tailored for DER participation.
comment: IEEE PowerTech Kiel, 2025
Learning-Inspired Fuzzy Logic Algorithms for Enhanced Control of Oscillatory Systems
The transportation of sensitive equipment often suffers from vibrations caused by terrain, weather, and motion speed, leading to inefficiencies and potential damage. To address this challenge, this paper explores an intelligent control framework leveraging fuzzy logic, a foundational AI technique, to suppress oscillations in suspension systems. Inspired by learning based methodologies, the proposed approach utilizes fuzzy inference and Gaussian membership functions to emulate adaptive, human like decision making. By minimizing the need for explicit mathematical models, the method demonstrates robustness in both linear and nonlinear systems. Experimental validation highlights the controllers ability to adapt to varying suspension lengths, reducing oscillation amplitudes and improving stability under dynamic conditions. This research bridges the gap between traditional control systems and learning inspired techniques, offering a scalable, data efficient solution for modern transportation challenges
comment: 4 pages, 5 figures, conference
Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.
comment: 12 pages, 10 figures; Open-source code, see https://github.com/AlexandreBanks6/dV-STEAR_Public.git; Supplementary movies, see https://github.com/AlexandreBanks6/dVSTEAR_Supplemental_Files.git
Reliability Assessment of Low-Cost PM Sensors under High Humidity and High PM Level Outdoor Conditions
Low-cost particulate matter (PM) sensors have become increasingly popular due to their compact size, low power consumption, and cost-effective installation and maintenance. While several studies have explored the effects of meteorological conditions and pollution exposure on low-cost sensor (LCS) performance, few have addressed the combined impact of high PM concentration and high humidity levels. In contrast to most evaluation studies, which generally report $\text{PM}_{2.5}$ levels below $150~\mu\text{g/m}^3$, our study observed hourly average $\text{PM}_{2.5}$ concentrations ranging from $6-611~\mu\text{g/m}^3$ (mean value of $137~\mu\text{g/m}^3$), with relative humidity between $25-95\%$ (mean value of $72\%$), and temperature varying from $6-29^\circ$C (mean value of $16^\circ$C). We evaluate three LCS models (SPS30, PMS7003, HPMA115C0-004) in outdoor conditions during the winter season in New Delhi, India, deployed alongside a reference-grade beta attenuation monitor (BAM). The results indicate a strong correlation between LCS and BAM measurements (${R^2} > 90\%$). The RMSE increases with increasing PM concentration and humidity levels but the narrow $95\%$ confidence interval range of LCS as a function of the reference BAM suggests the importance of LCS in air pollution monitoring. Among the evaluated LCS models, SPS30 showed the highest overall accuracy. Overall, the study demonstrates that LCS can effectively monitor air quality in regions with high PM and high humidity levels, provided appropriate correction models are applied.
NAPER: Fault Protection for Real-Time Resource-Constrained Deep Neural Networks
Fault tolerance in Deep Neural Networks (DNNs) deployed on resource-constrained systems presents unique challenges for high-accuracy applications with strict timing requirements. Memory bit-flips can severely degrade DNN accuracy, while traditional protection approaches like Triple Modular Redundancy (TMR) often sacrifice accuracy to maintain reliability, creating a three-way dilemma between reliability, accuracy, and timeliness. We introduce NAPER, a novel protection approach that addresses this challenge through ensemble learning. Unlike conventional redundancy methods, NAPER employs heterogeneous model redundancy, where diverse models collectively achieve higher accuracy than any individual model. This is complemented by an efficient fault detection mechanism and a real-time scheduler that prioritizes meeting deadlines by intelligently scheduling recovery operations without interrupting inference. Our evaluations demonstrate NAPER's superiority: 40% faster inference in both normal and fault conditions, maintained accuracy 4.2% higher than TMR-based strategies, and guaranteed uninterrupted operation even during fault recovery. NAPER effectively balances the competing demands of accuracy, reliability, and timeliness in real-time DNN applications
comment: 8 pages, 8 figures
A Digital Twin of an Electrical Distribution Grid: SoCal 28-Bus Dataset
We provide an open-access dataset of phasor & waveform measurement units (PMUs/WMUs) of a real-world electrical distribution network. The network consists of diverse sets of generation resources (including solar panels, fuel cells, natural gas generators, and utility interconnections), loads (including large-scale electric vehicle charging, data centers, central cooling, offices), topology changes (such as line outages and load transfers), as well as a mixture of single- and three-phase networks. We describe a densely deployed PMU sensor network in a distribution grid, in which all buses with non-zero power injections are measured. This approach enables a range of applications such as state estimation, system identification, power flow optimization, and feedback control, several of which are discussed in this paper. Additionally, we provide a synchronized waveform dataset which allows the analysis of harmonics, transient events, dynamic grid impedance, and stability. Data collection started in 2023 while new data is generated continuously and made available online. A characterization of measurement error is provided. Finally, we provide circuit topology and parameters as a part of the dataset. Together, the circuit and timeseries data offer an opportunity for researchers to develop and test algorithms on a real-world system.
Data-Driven Reachability with Scenario Optimization and the Holdout Method
Reachability analysis is an important method in providing safety guarantees for systems with unknown or uncertain dynamics. Due to the computational intractability of exact reachability analysis for general nonlinear, high-dimensional systems, recent work has focused on the use of probabilistic methods for computing approximate reachable sets. In this work, we advocate for the use of a general purpose, practical, and sharp method for data-driven reachability: the holdout method. Despite the simplicity of the holdout method, we show -- on several numerical examples including scenario-based reach tubes -- that the resulting probabilistic bounds are substantially sharper and require fewer samples than existing methods for data-driven reachability. Furthermore, we complement our work with a discussion on the necessity of probabilistic reachability bounds. We argue that any method that attempts to de-randomize the bounds, by converting the guarantees to hold deterministically, requires (a) an exponential in state-dimension amount of samples to achieve non-vacuous guarantees, and (b) extra assumptions on the dynamics.
Data-driven Fuzzy Control for Time-Optimal Aggressive Trajectory Following
Optimal trajectories that minimize a user-defined cost function in dynamic systems require the solution of a two-point boundary value problem. The optimization process yields an optimal control sequence that depends on the initial conditions and system parameters. However, the optimal sequence may result in undesirable behavior if the system's initial conditions and parameters are erroneous. This work presents a data-driven fuzzy controller synthesis framework that is guided by a time-optimal trajectory for multicopter tracking problems. In particular, we consider an aggressive maneuver consisting of a mid-air flip and generate a time-optimal trajectory by numerically solving the two-point boundary value problem. A fuzzy controller consisting of a stabilizing controller near hover conditions and an autoregressive moving average (ARMA) controller, trained to mimic the time-optimal aggressive trajectory, is constructed using the Takagi-Sugeno fuzzy framework.
comment: 6 pages, 10 figures, submitted to MECC 2025
Data-Enabled Neighboring Extremal: Case Study on Model-Free Trajectory Tracking for Robotic Arm
Data-enabled predictive control (DeePC) has recently emerged as a powerful data-driven approach for efficient system controls with constraints handling capabilities. It performs optimal controls by directly harnessing input-output (I/O) data, bypassing the process of explicit model identification that can be costly and time-consuming. However, its high computational complexity, driven by a large-scale optimization problem (typically in a higher dimension than its model-based counterpart--Model Predictive Control), hinders real-time applications. To overcome this limitation, we propose the data-enabled neighboring extremal (DeeNE) framework, which significantly reduces computational cost while preserving control performance. DeeNE leverages first-order optimality perturbation analysis to efficiently update a precomputed nominal DeePC solution in response to changes in initial conditions and reference trajectories. We validate its effectiveness on a 7-DoF KINOVA Gen3 robotic arm, demonstrating substantial computational savings and robust, data-driven control performance.
Multivariable Extremum Seeking Unit-Vector Control Design
This paper investigates multivariable extremum seeking using unit-vector control. By employing the gradient algorithm and a polytopic embedding of the unknown Hessian matrix, we establish sufficient conditions, expressed as linear matrix inequalities, for designing the unit-vector control gain that ensures finite-time stability of the origin of the average closed-loop error system. Notably, these conditions enable the design of non-diagonal control gains, which provide extra degrees of freedom to the solution. The convergence of the actual closed-loop system to a neighborhood of the unknown extremum point is rigorously proven through averaging analysis for systems with discontinuous right-hand sides. Numerical simulations illustrate the efficacy of the proposed extremum seeking control algorithm.
comment: 7 pages, 2 figures
Can Carbon-Aware Electric Load Shifting Reduce Emissions? An Equilibrium-Based Analysis
An increasing number of electric loads, such as hydrogen producers or data centers, can be characterized as carbon-sensitive, meaning that they are willing to adapt the timing and/or location of their electricity usage in order to minimize carbon footprints. However, the emission reduction efforts of these carbon-sensitive loads rely on carbon intensity information such as average carbon emissions, and it is unclear whether load shifting based on these signals effectively reduces carbon emissions. To address this open question, we investigate the impact of carbon-sensitive consumers using equilibrium analysis. Specifically, we expand the commonly used equilibrium model for electricity market clearing to include carbon-sensitive consumers that adapt their consumption based on an average carbon intensity signal. This analysis represents an idealized situation for carbon-sensitive loads, where their carbon preferences are reflected directly in the market clearing, and contrasts with current practice where carbon intensity signals only become known to consumers aposteriori (i.e. after the market has already been cleared). We include both illustrative examples and larger numerical simulations, including benchmarking with other methods, to illuminate the contributions and limitations of carbon-sensitive loads in power system emission reductions.
comment: 7 pages, 4 figures, submitted to 2025 CDC. arXiv admin note: text overlap with arXiv:2501.09853
Unit-Vector Control Design under Saturating Actuators
This paper deals with unit vector control design for multivariable polytopic uncertain systems under saturating actuators. For that purpose, we propose LMI-based conditions to design the unit vector control gain such that the origin of the closed-loop system is finite-time stable. Moreover, an optimization problem is provided to obtain an enlarged estimate of the region of attraction of the equilibrium point for the closed-loop system, where the convergence of trajectories is ensured even in the presence of saturation functions. Numerical simulations illustrate the effectiveness of the proposed approach.
comment: 7 pages, 5 figures
Compositional design for time-varying and nonlinear coordination
This work addresses the design of multi-agent coordination through high-order consensus protocols. While first-order consensus strategies are well-studied -- with known robustness to uncertainties such as time delays, time-varying weights, and nonlinearities like saturations -- the theoretical guarantees for high-order consensus are comparatively limited. We propose a compositional control framework that generates high-order consensus protocols by serially connecting stable first-order consensus operators. Under mild assumptions, we establish that the resulting high-order system inherits stability properties from its components. The proposed design is versatile and supports a wide range of real-world constraints. This is demonstrated through applications inspired by vehicular formation control, including protocols with time-varying weights, bounded time-varying delays, and saturated inputs. We derive theoretical guarantees for these settings using the proposed compositional approach and demonstrate the advantages gained compared to conventional protocols in simulations.
Multi-Agent Trustworthy Consensus under Random Dynamic Attacks
In this work, we study the consensus problem in which legitimate agents send their values over an undirected communication network in the presence of an unknown subset of malicious or faulty agents. In contrast to former works, we generalize and characterize the properties of consensus dynamics with dependent sequences of malicious transmissions with dynamic (time-varying) rates, based on not necessarily independent trust observations. We consider a detection algorithm utilizing stochastic trust observations available to legitimate agents. Under these conditions, legitimate agents almost surely classify their neighbors and form their trusted neighborhoods correctly with decaying misclassification probabilities. We further prove that the consensus process converges almost surely despite the existence of malicious agents. For a given value of failure probability, we characterize the deviation from the nominal consensus value ideally occurring when there are no malicious agents in the system. We also examine the convergence rate of the process in finite time. Numerical simulations show the convergence among agents and indicate the deviation under different attack scenarios.
comment: 16 pages, 3 figures
Extremum Seeking Control for Multivariable Maps under Actuator Saturation
This paper deals with the gradient-based extremum seeking control for multivariable maps under actuator saturation. By exploiting a polytopic embedding of the unknown Hessian, we derive a LMI-based synthesis condition to ensure that the origin of the average closed-loop error system is exponentially stable. Then, the convergence of the extremum seeking control system under actuator saturation to the unknown optimal point is proved by employing Lyapunov stability and averaging theories. Numerical simulations illustrate the efficacy of the proposed approach.
comment: 7 pages, 2 figures. arXiv admin note: text overlap with arXiv:2504.07251
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
comment: 12 pages, 6 figures, 6 tables
A Control-Oriented Simplified Single Particle Model with Grouped Parameter and Sensitivity Analysis for Lithium-Ion Batteries
Lithium-ion batteries are widely used in transportation, energy storage, and consumer electronics, driving the need for reliable battery management systems (BMS) for state estimation and control. The Single Particle Model (SPM) balances computational efficiency and accuracy but faces challenges in parameter estimation due to numerous parameters. Current SPM models using parabolic approximation introduce intermediate variables and hard to do parameter grouping. This study presents a control-oriented SPM reformulation that employs parameter grouping and parabolic approximation to simplify model parameters while using average and surface lithium-ion concentrations as model output. By parameter grouping, the original 17 parameters were reduced to 9 grouped parameters. The reformulated model achieves a reduced-order ordinary differential equation form while maintaining mathematical accuracy equivalent to the pre-grouped discretized SPM. Through Sobol sensitivity analysis under various current profiles, the grouped parameters were reduced from 9 to 6 highly sensitive parameters. Results demonstrate that estimating these 6 parameters achieves comparable practical accuracy to estimating all 9 parameters, with faster convergence. This control-oriented SPM enhances BMS applications by facilitating state estimation and control while reducing parameter estimation requirements.
comment: 30 pages, 4 figures
Learning Flatness-Preserving Residuals for Pure-Feedback Systems
We study residual dynamics learning for differentially flat systems, where a nominal model is augmented with a learned correction term from data. A key challenge is that generic residual parameterizations may destroy flatness, limiting the applicability of flatness-based planning and control methods. To address this, we propose a framework for learning flatness-preserving residual dynamics in systems whose nominal model admits a pure-feedback form. We show that residuals with a lower-triangular structure preserve both the flatness of the system and the original flat outputs. Moreover, we provide a constructive procedure to recover the flatness diffeomorphism of the augmented system from that of the nominal model. We then introduce a learning algorithm that fits such residuals from trajectory data using smooth function approximators. Our approach is validated in simulation on a 2D quadrotor subject to unmodeled aerodynamic effects. We demonstrate that the resulting learned flat model enables tracking performance comparable to nonlinear model predictive control ($5\times$ lower tracking error than the nominal flat model) while also achieving over a $20\times$ speedup in computation.
Inverter Output Impedance Estimation in Power Networks: A Variable Direction Forgetting Recursive-Least-Square Algorithm Based Approach
As inverter-based loads and energy sources become increasingly prevalent, accurate estimation of line impedance between inverters and the grid is essential for optimizing performance and enhancing control strategies. This paper presents a non-invasive method for estimating output-line impedance using measurements local to the inverter. It provides a specific method for signal conditioning of signals measured at the inverter, which makes the measured data better suited to estimation algorithms. An algorithm based on the Variable Direction Forgetting Recursive Least Squares (VDF-RLS) method is introduced, which leverages these conditioned signals for precise impedance estimation. The signal conditioning process transforms measurements into the direct-quadrature (dq) coordinate frame, where the rotating frame frequency is determined to facilitate a simpler and more accurate estimation. This frequency is implemented using a secondary Phase-Locked Loop (PLL) to attenuate grid voltage measurement variations. By isolating the variation-sensitive q-axis and relying solely on the less sensitive d-axis, the method further minimizes the impact of variations. The VDF-RLS estimation method achieves rapid adaptation while ensuring stability in the absence of persistent excitation by selectively discarding outdated data during updates. Proposed conditioning and estimation methods are non-invasive; estimations are solely done using measured outputs, and no signal is injected into the power network. Simulation results demonstrate a significant improvement in impedance estimation stability, particularly in low-excitation conditions, where the VDF-RLS method achieves more than three time lower error compared to existing approaches such as constant forgetting RLS and the Kalman filter.
comment: 8 pages, 6 figures, 2 table, submitted for 2025 Conference on Decision and Control (CDC)
Distribution Grids May Be a Barrier To Residential Electrification
Replacing fossil-fueled appliances and vehicles with electric alternatives can reduce greenhouse gas emissions and air pollution in many settings. However, residential electrification can also raise electricity demand beyond the safe limits of electrical infrastructure. This can increase the risk of blackouts or require grid reinforcement that is often slow and expensive. Here, we estimate the physical and economic impacts on distribution grids of electrifying all housing and personal vehicles in each county of the lower 48 United States. We find that space heating is the main driver of grid impacts, with the coldest regions seeing demand peaks up to five times higher than today's peaks. Accommodating electrification of all housing and personal vehicles is estimated to require 600 GW of distribution grid reinforcement nationally, at a cost of \$350 to \$790 billion, or \$2,800 to \$6,400 per household (95% confidence intervals). However, demand-side management could eliminate three-quarters of grid reinforcement costs.
Task-Parameter Nexus: Task-Specific Parameter Learning for Model-Based Control
This paper presents the Task-Parameter Nexus (TPN), a learning-based approach for online determination of the (near-)optimal control parameters of model-based controllers (MBCs) for tracking tasks. In TPN, a deep neural network is introduced to predict the control parameters for any given tracking task at runtime, especially when optimal parameters for new tasks are not immediately available. To train this network, we constructed a trajectory bank with various speeds and curvatures that represent different motion characteristics. Then, for each trajectory in the bank, we auto-tune the optimal control parameters offline and use them as the corresponding ground truth. With this dataset, the TPN is trained by supervised learning. We evaluated the TPN on the quadrotor platform. In simulation experiments, it is shown that the TPN can predict near-optimal control parameters for a spectrum of tracking tasks, demonstrating its robust generalization capabilities to unseen tasks.
A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
Two-stage adaptive robust optimization (ARO) is a powerful approach for planning under uncertainty, balancing first-stage decisions with recourse decisions made after uncertainty is realized. To account for uncertainty, modelers typically define a simple uncertainty set over which potential outcomes are considered. However, classical methods for defining these sets unintentionally capture a wide range of unrealistic outcomes, resulting in overly-conservative and costly planning in anticipation of unlikely contingencies. In this work, we introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization using a variational autoencoder. AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic, improving the robustness of first-stage decisions at a lower planning cost than standard methods. To ensure generated contingencies lie in high-density regions of the uncertainty distribution, AGRO defines a tight uncertainty set as the image of "latent" uncertainty sets under the VAE decoding transformation. Projected gradient ascent is then used to maximize recourse costs over the latent uncertainty sets by leveraging differentiable optimization methods. We demonstrate the cost-efficiency of AGRO by applying it to both a synthetic production-distribution problem and a real-world power system expansion setting. We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
Approximate Feedback Nash Equilibria with Sparse Inter-Agent Dependencies
Feedback Nash equilibrium strategies in multi-agent dynamic games require availability of all players' state information to compute control actions. However, in real-world scenarios, sensing and communication limitations between agents make full state feedback expensive or impractical, and such strategies can become fragile when state information from other agents is inaccurate. To this end, we propose a regularized dynamic programming approach for finding sparse feedback policies that selectively depend on the states of a subset of agents in dynamic games. The proposed approach solves convex adaptive group Lasso problems to compute sparse policies approximating Nash equilibrium solutions. We prove the regularized solutions' asymptotic convergence to a neighborhood of Nash equilibrium policies in linear-quadratic (LQ) games. Further, we extend the proposed approach to general non-LQ games via an iterative algorithm. Simulation results in multi-robot interaction scenarios show that the proposed approach effectively computes feedback policies with varying sparsity levels. When agents have noisy observations of other agents' states, simulation results indicate that the proposed regularized policies consistently achieve lower costs than standard Nash equilibrium policies by up to 77% for all interacting agents whose costs are coupled with other agents' states.
A Crosstalk-Aware Timing Prediction Method in Routing
With shrinking interconnect spacing in advanced technology nodes, existing timing predictions become less precise due to the challenging quantification of crosstalk-induced delay. During the routing, the crosstalk effect is typically modeled by predicting coupling capacitance with congestion information. However, the timing estimation tends to be overly pessimistic, as the crosstalk-induced delay depends not only on the coupling capacitance but also on the signal arrival time. This work presents a crosstalk-aware timing estimation method using a two-step machine learning approach. Interconnects that are physically adjacent and overlap in signal timing windows are filtered first. Crosstalk delay is predicted by integrating physical topology and timing features without relying on post-routing results and the parasitic extraction. Experimental results show a match rate of over 99% for identifying crosstalk nets compared to the commercial tool on the OpenCores benchmarks, with prediction results being more accurate than those of other state-of-the-art methods.
comment: I would like to withdraw my submission because the work is incomplete. In particular, the calculations related to crosstalk need to be reconsidered. I plan to revise and improve the manuscript further
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Lifted Frequency-Domain Identification of Closed-Loop Multirate Systems: Applied to Dual-Stage Actuator Hard Disk Drives
Frequency-domain representations are crucial for the design and performance evaluation of controllers in multirate systems, specifically to address intersample performance. The aim of this paper is to develop an effective frequency-domain system identification technique for closed-loop multirate systems using solely slow-rate output measurements. By indirect identification of multivariable time-invariant representations through lifting, in combination with local modeling techniques, the multirate system is effectively identified. The developed method is capable of accurate identification of closed-loop multirate systems within a single identification experiment, using fast-rate excitation and inputs, and slow-rate outputs. Finally, the developed framework is validated using a benchmark problem consisting of a multivariable dual-stage actuator from a hard disk drive, demonstrating its applicability and accuracy.
Dissipative iFIR filters for data-driven design
We tackle the problem of providing closed-loop stability guarantees with a scalable data-driven design. We combine virtual reference feedback tuning with dissipativity constraints on the controller for closed-loop stability. The constraints are formulated as a set of linear inequalities in the frequency domain. This leads to a convex problem that is scalable with respect to the length of the data and the complexity of the controller. An extension of virtual reference feedback tuning to include disturbance dynamics is also discussed. The proposed data-driven control design is illustrated by a soft gripper impedance control example.
comment: 8 pages, 10 figures, Accepted by 23rd European Control Conference (ECC2025). Final submission version
A 2-6 GHz Ultra-Wideband CMOS Transceiver for Radar Applications
This paper presents a low power, low cost transceiver architecture to implement radar-on-a-chip. The transceiver comprises of a full ultra-wideband (UWB) transmitter and a full UWB band receiver. A design methodology to maximize the tuning range of the voltage-controlled oscillator (VCO) is presented. At the transmitter side, a sub-harmonic mixer is used for signal up-conversion. The receiver low noise amplifier (LNA) has a 2 to 6 GHz input matching bandwidth with a power gain of 9 dB and a noise figure of 2.5 dB. The transceiver is implemented in Cadence EDA tools using 65nm CMOS technology. The system achieves a total dc power consumption of 50 mW. Good noise figure performance; good wide-band matching; gain; high level of integration; low power; low cost of the proposed UWB radar transceiver front-end make it a highly competitive SoC solution for low power UWB transceivers.
Symmetrizable systems
Transforming an asymmetric system into a symmetric system makes it possible to exploit the simplifying properties of symmetry in control problems. We define and characterize the family of symmetrizable systems, which can be transformed into symmetric systems by a linear transformation of their inputs and outputs. In the special case of complete symmetry, the set of symmetrizable systems is convex and verifiable by a semidefinite program. We show that a Khatri-Rao rank needs to be satisfied for a system to be symmetrizable and conclude that linear systems are generically neither symmetric nor symmetrizable.
Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
A Novel Massive Random Access in Cell-Free Massive MIMO Systems for High-Speed Mobility with OTFS Modulation
In the research of next-generation wireless communication technologies, orthogonal time frequency space (OTFS) modulation is emerging as a promising technique for high-speed mobile environments due to its superior efficiency and robustness in doubly selective channels. Additionally, the cell-free architecture, which eliminates the issues associated with cell boundaries, offers broader coverage for radio access networks. By combining cell-free network architecture with OTFS modulation, the system may meet the demands of massive random access required by machine-type communication devices in high-speed scenarios. This paper explores a massive random access scheme based on OTFS modulation within a cell-free architecture. A transceiver model for uplink OTFS signals involving multiple access points (APs) is developed, where channel estimation with fractional channel parameters is approximated as a block sparse matrix recovery problem. Building on existing superimposed and embedded preamble schemes, a hybrid preamble scheme is proposed. This scheme leverages superimposed and embedded preambles to respectively achieve rough and accurate active user equipment (UEs) detection (AUD), as well as precise channel estimation, under the condition of supporting a large number of access UEs. Moreover, this study introduces a generalized approximate message passing and pattern coupling sparse Bayesian learning with Laplacian prior (GAMP-PCSBL-La) algorithm, which effectively captures block sparse features after discrete cosine transform (DCT), delivering precise estimation results with reduced computational complexity. Simulation results demonstrate that the proposed scheme is effective and provides superior performance compared to other existing schemes.
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Scheduling Policies in a Multi-Source Status Update System with Dedicated and Shared Servers
Use of multi-path network topologies has become a prominent technique to assert timeliness in terms of age of information (AoI) and to improve resilience to link disruptions in communication systems. However, establishing multiple dedicated communication links among network nodes is a costly endeavor. Therefore, quite often, these secondary communication links are shared among multiple entities. Moreover, these multi-path networks come with the added challenge of out-of-order transmissions. In this paper, we study an amalgamation of the above two aspects, i.e., multi-path transmissions and link sharing. In contrast to the existing literature where the main focus has been scheduling multiple sources on a single shared server, we delve into the realm where each source sharing the shared server is also supplemented with its dedicated server so as to improve its timeliness. In this multi-path link sharing setting with generate-at-will transmissions, we first present the optimal probabilistic scheduler, and then propose several heuristic-based cyclic scheduling algorithms for the shared server, to minimize the weighted average age of information of the sources.
comment: New figures and references added. A more rigorous proof for Theorem 1 added
Decentralized Parametric Stability Certificates for Grid-Forming Converter Control
We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of the network dynamics. By following practical tuning rules, we are able to ensure plug-and-play operation without centralized coordination. Unlike prior works, our approach accommodates coupled frequency and voltage dynamics, incorporates network dynamics, and does not rely on specific network configurations or operating points, offering a general and scalable solution for the integration of power-electronics-based devices into future power systems. We validate our theoretical stability results through numerical case studies in a high-fidelity simulation model.
comment: 12 pages, 13 figures
PyIT2FLS: A New Python Toolkit for Interval Type 2 Fuzzy Logic Systems
Fuzzy logic is an accepted and well-developed approach for constructing verbal models. Fuzzy based methods are getting more popular, while the engineers deal with more daily life tasks. This paper presents a new Python toolkit for Interval Type 2 Fuzzy Logic Systems (IT2FLS). Developing software tools is an important issue for facilitating the practical use of theoretical results. There are limited tools for implementing IT2FLSs in Python. The developed PyIT2FLS is providing a set of tools for fast and easy modeling of fuzzy systems. This paper includes a brief description of how developed toolkit can be used. Also, three examples are given showing the usage of the developed toolkit for simulating IT2FLSs. First, a simple rule-based system is developed and it's codes are presented in the paper. The second example is the prediction of the Mackey-Glass chaotic time series using IT2FLS. In this example, the Particle Swarm Optimization (PSO) algorithm is used for determining system parameters while minimizing the mean square error. In the last example, an IT2FPID is designed and used for controlling a linear time-delay system. The code for the examples are available on toolkit's GitHub page: https://github.com/Haghrah/PyIT2FLS. The simulations and their results confirm the ability of the developed toolkit to be used in a wide range of the applications.
comment: This work has been published in SoftwareX, Volume 30, May 2025, 102146. https://doi.org/10.1016/j.softx.2025.102146
Multiagent Systems
Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
Agents powered by Large Language Models (LLMs) have recently demonstrated impressive capabilities in various tasks. Still, they face limitations in tasks requiring specific, structured knowledge, flexibility, or accountable decision-making. While agents are capable of perceiving their environments, forming inferences, planning, and executing actions towards goals, they often face issues such as hallucinations and lack of contextual memory across interactions. This paper explores how Case-Based Reasoning (CBR), a strategy that solves new problems by referencing past experiences, can be integrated into LLM agent frameworks. This integration allows LLMs to leverage explicit knowledge, enhancing their effectiveness. We systematically review the theoretical foundations of these enhanced agents, identify critical framework components, and formulate a mathematical model for the CBR processes of case retrieval, adaptation, and learning. We also evaluate CBR-enhanced agents against other methods like Chain-of-Thought reasoning and standard Retrieval-Augmented Generation, analyzing their relative strengths. Moreover, we explore how leveraging CBR's cognitive dimensions (including self-reflection, introspection, and curiosity) via goal-driven autonomy mechanisms can further enhance the LLM agent capabilities. Contributing to the ongoing research on neuro-symbolic hybrid systems, this work posits CBR as a viable technique for enhancing the reasoning skills and cognitive aspects of autonomous LLM agents.
AI-Driven Consensus: Modeling Multi-Agent Networks with Long-Range Interactions through path-Laplacian Matrices
Extended connectivity in graphs can be analyzed through k-path Laplacian matrices, which permit the capture of long-range interactions in various real-world networked systems such as social, transportation, and multi-agent networks. In this work, we present several alternative methods based on machine learning methods (LSTM, xLSTM, Transformer, XGBoost, and ConvLSTM) to predict the final consensus value based on directed networks (Erd\"os-Renyi, Watts-Strogatz, and Barab\'asi-Albert) and on the initial state. We highlight how different k-hop interactions affect the performance of the tested methods. This framework opens new avenues for analyzing multi-scale diffusion processes in large-scale, complex networks.
Adaptive Human-Robot Collaborative Missions using Hybrid Task Planning
Producing robust task plans in human-robot collaborative missions is a critical activity in order to increase the likelihood of these missions completing successfully. Despite the broad research body in the area, which considers different classes of constraints and uncertainties, its applicability is confined to relatively simple problems that can be comfortably addressed by the underpinning mathematically-based or heuristic-driven solver engines. In this paper, we introduce a hybrid approach that effectively solves the task planning problem by decomposing it into two intertwined parts, starting with the identification of a feasible plan and followed by its uncertainty augmentation and verification yielding a set of Pareto optimal plans. To enhance its robustness, adaptation tactics are devised for the evolving system requirements and agents' capabilities. We demonstrate our approach through an industrial case study involving workers and robots undertaking activities within a vineyard, showcasing the benefits of our hybrid approach both in the generation of feasible solutions and scalability compared to native planners.
FJ-MM: The Friedkin-Johnsen Opinion Dynamics Model with Memory and Higher-Order Neighbors
The Friedkin-Johnsen (FJ) model has been extensively explored and validated, spanning applications in social science, systems and control, game theory, and algorithmic research. In this paper, we introduce an advanced generalization of the FJ model, termed FJ-MM which incorporates both memory effects and multi-hop (higher-order neighbor) influence. This formulation allows agents to naturally incorporate both current and previous opinions at each iteration stage. Our numerical results demonstrate that incorporating memory and multi-hop influence significantly reshapes the opinion landscape; for example, the final opinion profile can exhibit reduced polarization. We analyze the stability and equilibrium properties of the FJ-MM model, showing that these properties can be reduced to those of a comparison model--namely, the standard FJ model with a modified influence matrix. This reduction enables us to leverage established stability results from FJ dynamics. Additionally, we examine the convergence rate of the FJ-MM model and demonstrate that, as can be expected, the time lags introduced by memory and higher-order neighbor influences result in slower convergence.
comment: a brief version of this manuscript will appear in the proceedings of European Control Conference 2025
SDHN: Skewness-Driven Hypergraph Networks for Enhanced Localized Multi-Robot Coordination
Multi-Agent Reinforcement Learning is widely used for multi-robot coordination, where simple graphs typically model pairwise interactions. However, such representations fail to capture higher-order collaborations, limiting effectiveness in complex tasks. While hypergraph-based approaches enhance cooperation, existing methods often generate arbitrary hypergraph structures and lack adaptability to environmental uncertainties. To address these challenges, we propose the Skewness-Driven Hypergraph Network (SDHN), which employs stochastic Bernoulli hyperedges to explicitly model higher-order multi-robot interactions. By introducing a skewness loss, SDHN promotes an efficient structure with Small-Hyperedge Dominant Hypergraph, allowing robots to prioritize localized synchronization while still adhering to the overall information, similar to human coordination. Extensive experiments on Moving Agents in Formation and Robotic Warehouse tasks validate SDHN's effectiveness, demonstrating superior performance over state-of-the-art baselines.
Modeling Response Consistency in Multi-Agent LLM Systems: A Comparative Analysis of Shared and Separate Context Approaches
Large Language Models (LLMs) are increasingly utilized in multi-agent systems (MAS) to enhance collaborative problem-solving and interactive reasoning. Recent advancements have enabled LLMs to function as autonomous agents capable of understanding complex interactions across multiple topics. However, deploying LLMs in MAS introduces challenges related to context management, response consistency, and scalability, especially when agents must operate under memory limitations and handle noisy inputs. While prior research has explored optimizing context sharing and response latency in LLM-driven MAS, these efforts often focus on either fully centralized or decentralized configurations, each with distinct trade-offs. In this paper, we develop a probabilistic framework to analyze the impact of shared versus separate context configurations on response consistency and response times in LLM-based MAS. We introduce the Response Consistency Index (RCI) as a metric to evaluate the effects of context limitations, noise, and inter-agent dependencies on system performance. Our approach differs from existing research by focusing on the interplay between memory constraints and noise management, providing insights into optimizing scalability and response times in environments with interdependent topics. Through this analysis, we offer a comprehensive understanding of how different configurations impact the efficiency of LLM-driven multi-agent systems, thereby guiding the design of more robust architectures.
Self-organisation of common good usage and an application to Internet services
Natural and human-made common goods present key challenges due to their susceptibility to degradation, overuse, or congestion. We explore the self-organisation of their usage when individuals have access to several available commons but limited information on them. We propose an extension of the Win-Stay, Lose-Shift (WSLS) strategy for such systems, under which individuals use a resource iteratively until they are unsuccessful and then shift randomly. This simple strategy leads to a distribution of the use of commons with an improvement against random shifting. Selective individuals who retain information on their usage and accordingly adapt their tolerance to failure in each common good improve the average experienced quality for an entire population. Hybrid systems of selective and non-selective individuals can lead to an equilibrium with equalised experienced quality akin to the ideal free distribution. We show that these results can be applied to the server selection problem faced by mobile users accessing Internet services and we perform realistic simulations to test their validity. Furthermore, these findings can be used to understand other real systems such as animal dispersal on grazing and foraging land, and to propose solutions to operators of systems of public transport or other technological commons.
comment: 16 pages, 7 figures, 1 table
Multi-Object Tracking for Collision Avoidance Using Multiple Cameras in Open RAN Networks
This paper deals with the multi-object detection and tracking problem, within the scope of open Radio Access Network (RAN), for collision avoidance in vehicular scenarios. To this end, a set of distributed intelligent agents collocated with cameras are considered. The fusion of detected objects is done at an edge service, considering Open RAN connectivity. Then, the edge service predicts the objects trajectories for collision avoidance. Compared to the related work a more realistic Open RAN network is implemented and multiple cameras are used.
Approximate Feedback Nash Equilibria with Sparse Inter-Agent Dependencies
Feedback Nash equilibrium strategies in multi-agent dynamic games require availability of all players' state information to compute control actions. However, in real-world scenarios, sensing and communication limitations between agents make full state feedback expensive or impractical, and such strategies can become fragile when state information from other agents is inaccurate. To this end, we propose a regularized dynamic programming approach for finding sparse feedback policies that selectively depend on the states of a subset of agents in dynamic games. The proposed approach solves convex adaptive group Lasso problems to compute sparse policies approximating Nash equilibrium solutions. We prove the regularized solutions' asymptotic convergence to a neighborhood of Nash equilibrium policies in linear-quadratic (LQ) games. Further, we extend the proposed approach to general non-LQ games via an iterative algorithm. Simulation results in multi-robot interaction scenarios show that the proposed approach effectively computes feedback policies with varying sparsity levels. When agents have noisy observations of other agents' states, simulation results indicate that the proposed regularized policies consistently achieve lower costs than standard Nash equilibrium policies by up to 77% for all interacting agents whose costs are coupled with other agents' states.
Robotics
Underwater Robotic Simulators Review for Autonomous System Development
The increasing complexity of underwater robotic systems has led to a surge in simulation platforms designed to support perception, planning, and control tasks in marine environments. However, selecting the most appropriate underwater robotic simulator (URS) remains a challenge due to wide variations in fidelity, extensibility, and task suitability. This paper presents a comprehensive review and comparative analysis of five state-of-the-art, ROS-compatible, open-source URSs: Stonefish, DAVE, HoloOcean, MARUS, and UNav-Sim. Each simulator is evaluated across multiple criteria including sensor fidelity, environmental realism, sim-to-real capabilities, and research impact. We evaluate them across architectural design, sensor and physics modeling, task capabilities, and research impact. Additionally, we discuss ongoing challenges in sim-to-real transfer and highlight the need for standardization and benchmarking in the field. Our findings aim to guide practitioners in selecting effective simulation environments and inform future development of more robust and transferable URSs.
comment: 10 pages, 4 figures, 2 tables
Addressing Relative Degree Issues in Control Barrier Function Synthesis with Physics-Informed Neural Networks
In robotics, control barrier function (CBF)-based safety filters are commonly used to enforce state constraints. A critical challenge arises when the relative degree of the CBF varies across the state space. This variability can create regions within the safe set where the control input becomes unconstrained. When implemented as a safety filter, this may result in chattering near the safety boundary and ultimately compromise system safety. To address this issue, we propose a novel approach for CBF synthesis by formulating it as solving a set of boundary value problems. The solutions to the boundary value problems are determined using physics-informed neural networks (PINNs). Our approach ensures that the synthesized CBFs maintain a constant relative degree across the set of admissible states, thereby preventing unconstrained control scenarios. We illustrate the approach in simulation and further verify it through real-world quadrotor experiments, demonstrating its effectiveness in preserving desired system safety properties.
comment: 8 pages, 5 figures
Accessible and Pedagogically-Grounded Explainability for Human-Robot Interaction: A Framework Based on UDL and Symbolic Interfaces
This paper presents a novel framework for accessible and pedagogically-grounded robot explainability, designed to support human-robot interaction (HRI) with users who have diverse cognitive, communicative, or learning needs. We combine principles from Universal Design for Learning (UDL) and Universal Design (UD) with symbolic communication strategies to facilitate the alignment of mental models between humans and robots. Our approach employs Asterics Grid and ARASAAC pictograms as a multimodal, interpretable front-end, integrated with a lightweight HTTP-to-ROS 2 bridge that enables real-time interaction and explanation triggering. We emphasize that explainability is not a one-way function but a bidirectional process, where human understanding and robot transparency must co-evolve. We further argue that in educational or assistive contexts, the role of a human mediator (e.g., a teacher) may be essential to support shared understanding. We validate our framework with examples of multimodal explanation boards and discuss how it can be extended to different scenarios in education, assistive robotics, and inclusive AI.
comment: 6 pages, 6 figures
ViTaMIn: Learning Contact-Rich Tasks Through Robot-Free Visuo-Tactile Manipulation Interface
Tactile information plays a crucial role for humans and robots to interact effectively with their environment, particularly for tasks requiring the understanding of contact properties. Solving such dexterous manipulation tasks often relies on imitation learning from demonstration datasets, which are typically collected via teleoperation systems and often demand substantial time and effort. To address these challenges, we present ViTaMIn, an embodiment-free manipulation interface that seamlessly integrates visual and tactile sensing into a hand-held gripper, enabling data collection without the need for teleoperation. Our design employs a compliant Fin Ray gripper with tactile sensing, allowing operators to perceive force feedback during manipulation for more intuitive operation. Additionally, we propose a multimodal representation learning strategy to obtain pre-trained tactile representations, improving data efficiency and policy robustness. Experiments on seven contact-rich manipulation tasks demonstrate that ViTaMIn significantly outperforms baseline methods, demonstrating its effectiveness for complex manipulation tasks.
Exploring Adversarial Obstacle Attacks in Search-based Path Planning for Autonomous Mobile Robots
Path planning algorithms, such as the search-based A*, are a critical component of autonomous mobile robotics, enabling robots to navigate from a starting point to a destination efficiently and safely. We investigated the resilience of the A* algorithm in the face of potential adversarial interventions known as obstacle attacks. The adversary's goal is to delay the robot's timely arrival at its destination by introducing obstacles along its original path. We developed malicious software to execute the attacks and conducted experiments to assess their impact, both in simulation using TurtleBot in Gazebo and in real-world deployment with the Unitree Go1 robot. In simulation, the attacks resulted in an average delay of 36\%, with the most significant delays occurring in scenarios where the robot was forced to take substantially longer alternative paths. In real-world experiments, the delays were even more pronounced, with all attacks successfully rerouting the robot and causing measurable disruptions. These results highlight that the algorithm's robustness is not solely an attribute of its design but is significantly influenced by the operational environment. For example, in constrained environments like tunnels, the delays were maximized due to the limited availability of alternative routes.
Safe Interaction via Monte Carlo Linear-Quadratic Games
Safety is critical during human-robot interaction. But -- because people are inherently unpredictable -- it is often difficult for robots to plan safe behaviors. Instead of relying on our ability to anticipate humans, here we identify robot policies that are robust to unexpected human decisions. We achieve this by formulating human-robot interaction as a zero-sum game, where (in the worst case) the human's actions directly conflict with the robot's objective. Solving for the Nash Equilibrium of this game provides robot policies that maximize safety and performance across a wide range of human actions. Existing approaches attempt to find these optimal policies by leveraging Hamilton-Jacobi analysis (which is intractable) or linear-quadratic approximations (which are inexact). By contrast, in this work we propose a computationally efficient and theoretically justified method that converges towards the Nash Equilibrium policy. Our approach (which we call MCLQ) leverages linear-quadratic games to obtain an initial guess at safe robot behavior, and then iteratively refines that guess with a Monte Carlo search. Not only does MCLQ provide real-time safety adjustments, but it also enables the designer to tune how conservative the robot is -- preventing the system from focusing on unrealistic human behaviors. Our simulations and user study suggest that this approach advances safety in terms of both computation time and expected performance. See videos of our experiments here: https://youtu.be/KJuHeiWVuWY.
A ROS2-based software library for inverse dynamics computation
Inverse dynamics computation is a critical component in robot control, planning and simulation, enabling the calculation of joint torques required to achieve a desired motion. This paper presents a ROS2-based software library designed to solve the inverse dynamics problem for robotic systems. The library is built around an abstract class with three concrete implementations: one for simulated robots and two for real UR10 and Franka robots. This contribution aims to provide a flexible, extensible, robot-agnostic solution to inverse dynamics, suitable for both simulation and real-world scenarios involving planning and control applications. The related software is available at https://github.com/ros2-gbp/ros2-gbp-github-org/issues/732.
comment: 6 pages, 8 figures
Uncertainty-Aware Hybrid Machine Learning in Virtual Sensors for Vehicle Sideslip Angle Estimation
Precise vehicle state estimation is crucial for safe and reliable autonomous driving. The number of measurable states and their precision offered by the onboard vehicle sensor system are often constrained by cost. For instance, measuring critical quantities such as the Vehicle Sideslip Angle (VSA) poses significant commercial challenges using current optical sensors. This paper addresses these limitations by focusing on the development of high-performance virtual sensors to enhance vehicle state estimation for active safety. The proposed Uncertainty-Aware Hybrid Learning (UAHL) architecture integrates a machine learning model with vehicle motion models to estimate VSA directly from onboard sensor data. A key aspect of the UAHL architecture is its focus on uncertainty quantification for individual model estimates and hybrid fusion. These mechanisms enable the dynamic weighting of uncertainty-aware predictions from machine learning and vehicle motion models to produce accurate and reliable hybrid VSA estimates. This work also presents a novel dataset named Real-world Vehicle State Estimation Dataset (ReV-StED), comprising synchronized measurements from advanced vehicle dynamic sensors. The experimental results demonstrate the superior performance of the proposed method for VSA estimation, highlighting UAHL as a promising architecture for advancing virtual sensors and enhancing active safety in autonomous vehicles.
comment: Accepted at the 2025 IEEE Intelligent Vehicles Symposium (IV)
Real-Time LaCAM
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full horizon paths. However, planning full horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is to show the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM (Okumura 2023) in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy. The proposed Real-Time LaCAM also provides us with a general mechanism for using iterative constraints for completeness in future real-time MAPF algorithms.
MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos
Large-scale egocentric video datasets capture diverse human activities across a wide range of scenarios, offering rich and detailed insights into how humans interact with objects, especially those that require fine-grained dexterous control. Such complex, dexterous skills with precise controls are crucial for many robotic manipulation tasks, yet are often insufficiently addressed by traditional data-driven approaches to robotic manipulation. To address this gap, we leverage manipulation priors learned from large-scale egocentric video datasets to improve policy learning for dexterous robotic manipulation tasks. We present MAPLE, a novel method for dexterous robotic manipulation that exploits rich manipulation priors to enable efficient policy learning and better performance on diverse, complex manipulation tasks. Specifically, we predict hand-object contact points and detailed hand poses at the moment of hand-object contact and use the learned features to train policies for downstream manipulation tasks. Experimental results demonstrate the effectiveness of MAPLE across existing simulation benchmarks, as well as a newly designed set of challenging simulation tasks, which require fine-grained object control and complex dexterous skills. The benefits of MAPLE are further highlighted in real-world experiments using a dexterous robotic hand, whereas simultaneous evaluation across both simulation and real-world experiments has remained underexplored in prior work.
Robust Statistics vs. Machine Learning vs. Bayesian Inference: Insights into Handling Faulty GNSS Measurements in Field Robotics
This paper presents research findings on handling faulty measurements (i.e., outliers) of global navigation satellite systems (GNSS) for robot localization under adverse signal conditions in field applications, where raw GNSS data are frequently corrupted due to environmental interference such as multipath, signal blockage, or non-line-of-sight conditions. In this context, we investigate three strategies applied specifically to GNSS pseudorange observations: robust statistics for error mitigation, machine learning for faulty measurement prediction, and Bayesian inference for noise distribution approximation. Since previous studies have provided limited insight into the theoretical foundations and practical evaluations of these three methodologies within a unified problem statement (i.e., state estimation using ranging sensors), we conduct extensive experiments using real-world sensor data collected in diverse urban environments. Our goal is to examine both established techniques and newly proposed methods, thereby advancing the understanding of how to handle faulty range measurements, such as GNSS, for robust, long-term robot localization. In addition to presenting successful results, this work highlights critical observations and open questions to motivate future research in robust state estimation.
Learning-enhanced electronic skin for tactile sensing on deformable surface based on electrical impedance tomography
Electrical Impedance Tomography (EIT)-based tactile sensors offer cost-effective and scalable solutions for robotic sensing, especially promising for soft robots. However a major issue of EIT-based tactile sensors when applied in highly deformable objects is their performance degradation due to surface deformations. This limitation stems from their inherent sensitivity to strain, which is particularly exacerbated in soft bodies, thus requiring dedicated data interpretation to disentangle the parameter being measured and the signal deriving from shape changes. This has largely limited their practical implementations. This paper presents a machine learning-assisted tactile sensing approach to address this challenge by tracking surface deformations and segregating this contribution in the signal readout during tactile sensing. We first capture the deformations of the target object, followed by tactile reconstruction using a deep learning model specifically designed to process and fuse EIT data and deformation information. Validations using numerical simulations achieved high correlation coefficients (0.9660 - 0.9999), peak signal-to-noise ratios (28.7221 - 55.5264 dB) and low relative image errors (0.0107 - 0.0805). Experimental validations, using a hydrogel-based EIT e-skin under various deformation scenarios, further demonstrated the effectiveness of the proposed approach in real-world settings. The findings could underpin enhanced tactile interaction in soft and highly deformable robotic applications.
Adaptive RISE Control for Dual-Arm Unmanned Aerial Manipulator Systems with Deep Neural Networks
The unmanned aerial manipulator system, consisting of a multirotor UAV (unmanned aerial vehicle) and a manipulator, has attracted considerable interest from researchers. Nevertheless, the operation of a dual-arm manipulator poses a dynamic challenge, as the CoM (center of mass) of the system changes with manipulator movement, potentially impacting the multirotor UAV. Additionally, unmodeled effects, parameter uncertainties, and external disturbances can significantly degrade control performance, leading to unforeseen dangers. To tackle these issues, this paper proposes a nonlinear adaptive RISE (robust integral of the sign of the error) controller based on DNN (deep neural network). The first step involves establishing the kinematic and dynamic model of the dual-arm aerial manipulator. Subsequently, the adaptive RISE controller is proposed with a DNN feedforward term to effectively address both internal and external challenges. By employing Lyapunov techniques, the asymptotic convergence of the tracking error signals are guaranteed rigorously. Notably, this paper marks a pioneering effort by presenting the first DNN-based adaptive RISE controller design accompanied by a comprehensive stability analysis. To validate the practicality and robustness of the proposed control approach, several groups of actual hardware experiments are conducted. The results confirm the efficacy of the developed methodology in handling real-world scenarios, thereby offering valuable insights into the performance of the dual-arm aerial manipulator system.
Modular Soft Wearable Glove for Real-Time Gesture Recognition and Dynamic 3D Shape Reconstruction
With the increasing demand for human-computer interaction (HCI), flexible wearable gloves have emerged as a promising solution in virtual reality, medical rehabilitation, and industrial automation. However, the current technology still has problems like insufficient sensitivity and limited durability, which hinder its wide application. This paper presents a highly sensitive, modular, and flexible capacitive sensor based on line-shaped electrodes and liquid metal (EGaIn), integrated into a sensor module tailored to the human hand's anatomy. The proposed system independently captures bending information from each finger joint, while additional measurements between adjacent fingers enable the recording of subtle variations in inter-finger spacing. This design enables accurate gesture recognition and dynamic hand morphological reconstruction of complex movements using point clouds. Experimental results demonstrate that our classifier based on Convolution Neural Network (CNN) and Multilayer Perceptron (MLP) achieves an accuracy of 99.15% across 30 gestures. Meanwhile, a transformer-based Deep Neural Network (DNN) accurately reconstructs dynamic hand shapes with an Average Distance (AD) of 2.076\pm3.231 mm, with the reconstruction accuracy at individual key points surpassing SOTA benchmarks by 9.7% to 64.9%. The proposed glove shows excellent accuracy, robustness and scalability in gesture recognition and hand reconstruction, making it a promising solution for next-generation HCI systems.
A Corrector-aided Look-ahead Distance-based Guidance for Reference Path Following with an Efficient Midcourse Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, look-ahead distance ($L_1$)-based guidance method has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generate bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produce higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV toward the reference path in order to maintain minimal lateral acceleration command. Once the vehicle reaches a close vicinity of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the lateral acceleration command that effectively reduces the root mean square of the cross-track error thereafter. Simulation results demonstrate that this proposed corrector point and look-ahead point pair-based guidance strategy along with the developed midcourse guidance scheme outperforms the conventional constant $L_1$ guidance scheme both in terms of feasibility and measures of effectiveness like cross-track error and lateral acceleration requirements.
comment: This paper is currently under review for publication in CDC 2025
Collision-free landing of multiple UAVs on moving ground vehicles using time-varying control barrier functions
In this article, we present a centralized approach for the control of multiple unmanned aerial vehicles (UAVs) for landing on moving unmanned ground vehicles (UGVs) using control barrier functions (CBFs). The proposed control framework employs two kinds of CBFs to impose safety constraints on the UAVs' motion. The first class of CBFs (LCBF) is a three-dimensional exponentially decaying function centered above the landing platform, designed to safely and precisely land UAVs on the UGVs. The second set is a spherical CBF (SCBF), defined between every pair of UAVs, which avoids collisions between them. The LCBF is time-varying and adapts to the motions of the UGVs. In the proposed CBF approach, the control input from the UAV's nominal tracking controller designed to reach the landing platform is filtered to choose a minimally-deviating control input that ensures safety (as defined by the CBFs). As the control inputs of every UAV are shared in establishing multiple CBF constraints, we prove that the control inputs are shared without conflict in rendering the safe sets forward invariant. The performance of the control framework is validated through a simulated scenario involving three UAVs landing on three moving targets.
Accelerated Reeds-Shepp and Under-Specified Reeds-Shepp Algorithms for Mobile Robot Path Planning
In this study, we present a simple and intuitive method for accelerating optimal Reeds-Shepp path computation. Our approach uses geometrical reasoning to analyze the behavior of optimal paths, resulting in a new partitioning of the state space and a further reduction in the minimal set of viable paths. We revisit and reimplement classic methodologies from the literature, which lack contemporary open-source implementations, to serve as benchmarks for evaluating our method. Additionally, we address the under-specified Reeds-Shepp planning problem where the final orientation is unspecified. We perform exhaustive experiments to validate our solutions. Compared to the modern C++ implementation of the original Reeds-Shepp solution in the Open Motion Planning Library, our method demonstrates a 15x speedup, while classic methods achieve a 5.79x speedup. Both approaches exhibit machine-precision differences in path lengths compared to the original solution. We release our proposed C++ implementations for both the accelerated and under-specified Reeds-Shepp problems as open-source code.
comment: 19 pages, 27 figures
Deep RL-based Autonomous Navigation of Micro Aerial Vehicles (MAVs) in a complex GPS-denied Indoor Environment
The Autonomy of Unmanned Aerial Vehicles (UAVs) in indoor environments poses significant challenges due to the lack of reliable GPS signals in enclosed spaces such as warehouses, factories, and indoor facilities. Micro Aerial Vehicles (MAVs) are preferred for navigating in these complex, GPS-denied scenarios because of their agility, low power consumption, and limited computational capabilities. In this paper, we propose a Reinforcement Learning based Deep-Proximal Policy Optimization (D-PPO) algorithm to enhance realtime navigation through improving the computation efficiency. The end-to-end network is trained in 3D realistic meta-environments created using the Unreal Engine. With these trained meta-weights, the MAV system underwent extensive experimental trials in real-world indoor environments. The results indicate that the proposed method reduces computational latency by 91\% during training period without significant degradation in performance. The algorithm was tested on a DJI Tello drone, yielding similar results.
Jointly-optimized Trajectory Generation and Camera Control for 3D Coverage Planning
This work proposes a jointly optimized trajectory generation and camera control approach, enabling an autonomous agent, such as an unmanned aerial vehicle (UAV) operating in 3D environments, to plan and execute coverage trajectories that maximally cover the surface area of a 3D object of interest. Specifically, the UAV's kinematic and camera control inputs are jointly optimized over a rolling planning horizon to achieve complete 3D coverage of the object. The proposed controller incorporates ray-tracing into the planning process to simulate the propagation of light rays, thereby determining the visible parts of the object through the UAV's camera. This integration enables the generation of precise look-ahead coverage trajectories. The coverage planning problem is formulated as a rolling finite-horizon optimal control problem and solved using mixed-integer programming techniques. Extensive real-world and synthetic experiments validate the performance of the proposed approach.
Rolling Horizon Coverage Control with Collaborative Autonomous Agents
This work proposes a coverage controller that enables an aerial team of distributed autonomous agents to collaboratively generate non-myopic coverage plans over a rolling finite horizon, aiming to cover specific points on the surface area of a 3D object of interest. The collaborative coverage problem, formulated, as a distributed model predictive control problem, optimizes the agents' motion and camera control inputs, while considering inter-agent constraints aiming at reducing work redundancy. The proposed coverage controller integrates constraints based on light-path propagation techniques to predict the parts of the object's surface that are visible with regard to the agents' future anticipated states. This work also demonstrates how complex, non-linear visibility assessment constraints can be converted into logical expressions that are embedded as binary constraints into a mixed-integer optimization framework. The proposed approach has been demonstrated through simulations and practical applications for inspecting buildings with unmanned aerial vehicles (UAVs).
Channel State Information Analysis for Jamming Attack Detection in Static and Dynamic UAV Networks -- An Experimental Study
Networks built on the IEEE 802.11 standard have experienced rapid growth in the last decade. Their field of application is vast, including smart home applications, Internet of Things (IoT), and short-range high throughput static and dynamic inter-vehicular communication networks. Within such networks, Channel State Information (CSI) provides a detailed view of the state of the communication channel and represents the combined effects of multipath propagation, scattering, phase shift, fading, and power decay. In this work, we investigate the problem of jamming attack detection in static and dynamic vehicular networks. We utilize ESP32-S3 modules to set up a communication network between an Unmanned Aerial Vehicle (UAV) and a Ground Control Station (GCS), to experimentally test the combined effects of a constant jammer on recorded CSI parameters, and the feasibility of jamming detection through CSI analysis in static and dynamic communication scenarios.
comment: 6 pages, 3 figures, 2 tables
SAP-CoPE: Social-Aware Planning using Cooperative Pose Estimation with Infrastructure Sensor Nodes
Autonomous driving systems must operate safely in human-populated indoor environments, where challenges such as limited perception and occlusion sensitivity arise when relying solely on onboard sensors. These factors generate difficulties in the accurate recognition of human intentions and the generation of comfortable, socially aware trajectories. To address these issues, we propose SAP-CoPE, a social-aware planning framework that integrates cooperative infrastructure with a novel 3D human pose estimation method and a model predictive control-based controller. This real-time framework formulates an optimization problem that accounts for uncertainty propagation in the camera projection matrix while ensuring human joint coherence. The proposed method is adaptable to single- or multi-camera configurations and can incorporate sparse LiDAR point-cloud data. To enhance safety and comfort in human environments, we integrate a human personal space field based on human pose into a model predictive controller, enabling the system to navigate while avoiding discomfort zones. Extensive evaluations in both simulated and real-world settings demonstrate the effectiveness of our approach in generating socially aware trajectories for autonomous systems.
comment: This paper has been submitted to the IEEE Transactions on Industrial Electronics
Experimental Evaluation of Precise Placement of the Hollow Object with Asymmetric Pivot Manipulation
In this paper, we present asymmetric pivot manipulation for picking up rigid hollow objects to achieve a hole grasp. The pivot motion, executed by a position-controlled robotic arm, enables the gripper to effectively grasp hollow objects placed horizontally such that one gripper finger is positioned inside the object's hole, while the other contacts its outer surface along the length. Hole grasp is widely employed by humans to manipulate hollow objects, facilitating precise placement and enabling efficient subsequent operations, such as tightly packing objects into trays or accurately inserting them into narrow machine slots in manufacturing processes. Asymmetric pivoting for hole grasping is applicable to hollow objects of various sizes and hole shapes, including bottles, cups, and ducts. We investigate the variable parameters that satisfy the force balance conditions for successful grasping configurations. Our method can be implemented using a commercially available parallel-jaw gripper installed directly on a robot arm without modification. Experimental verification confirmed that hole grasp can be achieved using our proposed asymmetric pivot manipulation for various hollow objects, demonstrating a high success rate. Two use cases, namely aligning and feeding hollow cylindrical objects, were experimentally demonstrated on the testbed to clearly showcase the advantages of the hole grasp approach.
PTRL: Prior Transfer Deep Reinforcement Learning for Legged Robots Locomotion
In the field of legged robot motion control, reinforcement learning (RL) holds great promise but faces two major challenges: high computational cost for training individual robots and poor generalization of trained models. To address these problems, this paper proposes a novel framework called Prior Transfer Reinforcement Learning (PTRL), which improves both training efficiency and model transferability across different robots. Drawing inspiration from model transfer techniques in deep learning, PTRL introduces a fine-tuning mechanism that selectively freezes layers of the policy network during transfer, making it the first to apply such a method in RL. The framework consists of three stages: pre-training on a source robot using the Proximal Policy Optimization (PPO) algorithm, transferring the learned policy to a target robot, and fine-tuning with partial network freezing. Extensive experiments on various robot platforms confirm that this approach significantly reduces training time while maintaining or even improving performance. Moreover, the study quantitatively analyzes how the ratio of frozen layers affects transfer results, providing valuable insights into optimizing the process. The experimental outcomes show that PTRL achieves better walking control performance and demonstrates strong generalization and adaptability, offering a promising solution for efficient and scalable RL-based control of legged robots.
Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
Seamless operation of mobile robots in challenging environments requires low-latency local motion estimation (e.g., dynamic maneuvers) and accurate global localization (e.g., wayfinding). While most existing sensor-fusion approaches are designed for specific scenarios, this work introduces a flexible open-source solution for task- and setup-agnostic multimodal sensor fusion that is distinguished by its generality and usability. Holistic Fusion formulates sensor fusion as a combined estimation problem of i) the local and global robot state and ii) a (theoretically unlimited) number of dynamic context variables, including automatic alignment of reference frames; this formulation fits countless real-world applications without any conceptual modifications. The proposed factor-graph solution enables the direct fusion of an arbitrary number of absolute, local, and landmark measurements expressed with respect to different reference frames by explicitly including them as states in the optimization and modeling their evolution as random walks. Moreover, local smoothness and consistency receive particular attention to prevent jumps in the robot state belief. HF enables low-latency and smooth online state estimation on typical robot hardware while simultaneously providing low-drift global localization at the IMU measurement rate. The efficacy of this released framework is demonstrated in five real-world scenarios on three robotic platforms, each with distinct task requirements.
comment: 21 pages, 25 figures, 9 tables, journal submission
Agent-Arena: A General Framework for Evaluating Control Algorithms
Robotic research is inherently challenging, requiring expertise in diverse environments and control algorithms. Adapting algorithms to new environments often poses significant difficulties, compounded by the need for extensive hyper-parameter tuning in data-driven methods. To address these challenges, we present Agent-Arena, a Python framework designed to streamline the integration, replication, development, and testing of decision-making policies across a wide range of benchmark environments. Unlike existing frameworks, Agent-Arena is uniquely generalised to support all types of control algorithms and is adaptable to both simulation and real-robot scenarios. Please see our GitHub repository https://github.com/halid1020/agent-arena-v0.
comment: 20 pages and 1 figure
Classifying Subjective Time Perception in a Multi-robot Control Scenario Using Eye-tracking Information
As automation and mobile robotics reshape work environments, rising expectations for productivity increase cognitive demands on human operators, leading to potential stress and cognitive overload. Accurately assessing an operator's mental state is critical for maintaining performance and well-being. We use subjective time perception, which can be altered by stress and cognitive load, as a sensitive, low-latency indicator of well-being and cognitive strain. Distortions in time perception can affect decision-making, reaction times, and overall task effectiveness, making it a valuable metric for adaptive human-swarm interaction systems. We study how human physiological signals can be used to estimate a person's subjective time perception in a human-swarm interaction scenario as example. A human operator needs to guide and control a swarm of small mobile robots. We obtain eye-tracking data that is classified for subjective time perception based on questionnaire data. Our results show that we successfully estimate a person's time perception from eye-tracking data. The approach can profit from individual-based pretraining using only 30 seconds of data. In future work, we aim for robots that respond to human operator needs by automatically classifying physiological data in a closed control loop.
comment: This work has been submitted to the IEEE for possible publication
Extended Version: Multi-Robot Motion Planning with Cooperative Localization IROS 2025
We consider the uncertain multi-robot motion planning (MRMP) problem with cooperative localization (CL-MRMP), under both motion and measurement noise, where each robot can act as a sensor for its nearby teammates. We formalize CL-MRMP as a chance-constrained motion planning problem, and propose a safety-guaranteed algorithm that explicitly accounts for robot-robot correlations. Our approach extends a sampling-based planner to solve CL-MRMP while preserving probabilistic completeness. To improve efficiency, we introduce novel biasing techniques. We evaluate our method across diverse benchmarks, demonstrating its effectiveness in generating motion plans, with significant performance gains from biasing strategies.
comment: Submitted to IROS 2025
Comparing Self-Disclosure Themes and Semantics to a Human, a Robot, and a Disembodied Agent
As social robots and other artificial agents become more conversationally capable, it is important to understand whether the content and meaning of self-disclosure towards these agents changes depending on the agent's embodiment. In this study, we analysed conversational data from three controlled experiments in which participants self-disclosed to a human, a humanoid social robot, and a disembodied conversational agent. Using sentence embeddings and clustering, we identified themes in participants' disclosures, which were then labelled and explained by a large language model. We subsequently assessed whether these themes and the underlying semantic structure of the disclosures varied by agent embodiment. Our findings reveal strong consistency: thematic distributions did not significantly differ across embodiments, and semantic similarity analyses showed that disclosures were expressed in highly comparable ways. These results suggest that while embodiment may influence human behaviour in human-robot and human-agent interactions, people tend to maintain a consistent thematic focus and semantic structure in their disclosures, whether speaking to humans or artificial interlocutors.
Automated Fabrication of Magnetic Soft Microrobots
The advent of 3D printing has revolutionized many industries and has had similar improvements for soft robots. However, many challenges persist for these functional devices. Magnetic soft robots require the addition of magnetic particles that must be correctly oriented. There is a significant gap in the automated fabrication of 3D geometric structures with 3D magnetization direction. A fully automated 3D printer was designed to improve accuracy, speed, and reproducibility. This design was able to achieve a circular spot size (voxels) of 1.6mm in diameter. An updated optical system can improve the resolution to a square spot size of 50$\mu$m by 50$\mu$m. The new system achieves higher resolution designs as shown through magneto-mechanical simulations. Various microrobots including 'worm', 'gripper' and 'zipper' designs are evaluated with the new spot size.
comment: Automated Fabrication of Magnetic Soft Microrobots (CSME) 2025, Montreal, Quebec
A Taxonomy of Self-Handover
Self-handover, transferring an object between one's own hands, is a common but understudied bimanual action. While it facilitates seamless transitions in complex tasks, the strategies underlying its execution remain largely unexplored. Here, we introduce the first systematic taxonomy of self-handover, derived from manual annotation of over 12 hours of cooking activity performed by 21 participants. Our analysis reveals that self-handover is not merely a passive transition, but a highly coordinated action involving anticipatory adjustments by both hands. As a step toward automated analysis of human manipulation, we further demonstrate the feasibility of classifying self-handover types using a state-of-the-art vision-language model. These findings offer fresh insights into bimanual coordination, underscoring the role of self-handover in enabling smooth task transitions-an ability essential for adaptive dual-arm robotics.
comment: 8 pages, 8 figures, 1 table, Last updated on April 7th, 2025
4CNet: A Diffusion Approach to Map Prediction for Decentralized Multi-Robot Exploration
Mobile robots in unknown cluttered environments with irregularly shaped obstacles often face energy and communication challenges which directly affect their ability to explore these environments. In this paper, we introduce a novel deep learning architecture, Confidence-Aware Contrastive Conditional Consistency Model (4CNet), for robot map prediction during decentralized, resource-limited multi-robot exploration. 4CNet uniquely incorporates: 1) a conditional consistency model for map prediction in unstructured unknown regions, 2) a contrastive map-trajectory pretraining framework for a trajectory encoder that extracts spatial information from the trajectories of nearby robots during map prediction, and 3) a confidence network to measure the uncertainty of map prediction for effective exploration under resource constraints. We incorporate 4CNet within our proposed robot exploration with map prediction architecture, 4CNet-E. We then conduct extensive comparison studies with 4CNet-E and state-of-the-art heuristic and learning methods to investigate both map prediction and exploration performance in environments consisting of irregularly shaped obstacles and uneven terrain. Results showed that 4CNet-E obtained statistically significant higher prediction accuracy and area coverage with varying environment sizes, number of robots, energy budgets, and communication limitations when compared to database and learning-based methods. Hardware experiments were performed and validated the applicability and generalizability of 4CNet-E in both unstructured indoor and real natural outdoor environments.
comment: 17 pages, 13 figures
GRAPPA: Generalizing and Adapting Robot Policies via Online Agentic Guidance
Robot learning approaches such as behavior cloning and reinforcement learning have shown great promise in synthesizing robot skills from human demonstrations in specific environments. However, these approaches often require task-specific demonstrations or designing complex simulation environments, which limits the development of generalizable and robust policies for unseen real-world settings. Recent advances in the use of foundation models for robotics (e.g., LLMs, VLMs) have shown great potential in enabling systems to understand the semantics in the world from large-scale internet data. However, it remains an open challenge to use this knowledge to enable robotic systems to understand the underlying dynamics of the world, to generalize policies across different tasks, and to adapt policies to new environments. To alleviate these limitations, we propose an agentic framework for robot self-guidance and self-improvement, which consists of a set of role-specialized conversational agents, such as a high-level advisor, a grounding agent, a monitoring agent, and a robotic agent. Our framework iteratively grounds a base robot policy to relevant objects in the environment and uses visuomotor cues to shift the action distribution of the policy to more desirable states, online, while remaining agnostic to the subjective configuration of a given robot hardware platform. We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates, both in simulation and in real-world experiments, without the need for additional human demonstrations or extensive exploration. Code and videos available at: https://agenticrobots.github.io
comment: 21 pages, 12 figures, 4 tables
ActiveGS: Active Scene Reconstruction Using Gaussian Splatting
Robotics applications often rely on scene reconstructions to enable downstream tasks. In this work, we tackle the challenge of actively building an accurate map of an unknown scene using an RGB-D camera on a mobile platform. We propose a hybrid map representation that combines a Gaussian splatting map with a coarse voxel map, leveraging the strengths of both representations: the high-fidelity scene reconstruction capabilities of Gaussian splatting and the spatial modelling strengths of the voxel map. At the core of our framework is an effective confidence modelling technique for the Gaussian splatting map to identify under-reconstructed areas, while utilising spatial information from the voxel map to target unexplored areas and assist in collision-free path planning. By actively collecting scene information in under-reconstructed and unexplored areas for map updates, our approach achieves superior Gaussian splatting reconstruction results compared to state-of-the-art approaches. Additionally, we demonstrate the real-world applicability of our framework using an unmanned aerial vehicle.
comment: Accepted to IEEE Robotics and Automation Letters
Large Language Model-based Decision-making for COLREGs and the Control of Autonomous Surface Vehicles
In the field of autonomous surface vehicles (ASVs), devising decision-making and obstacle avoidance solutions that address maritime COLREGs (Collision Regulations), primarily defined for human operators, has long been a pressing challenge. Recent advancements in explainable Artificial Intelligence (AI) and machine learning have shown promise in enabling human-like decision-making. Notably, significant developments have occurred in the application of Large Language Models (LLMs) to the decision-making of complex systems, such as self-driving cars. The textual and somewhat ambiguous nature of COLREGs (from an algorithmic perspective), however, poses challenges that align well with the capabilities of LLMs, suggesting that LLMs may become increasingly suitable for this application soon. This paper presents and demonstrates the first application of LLM-based decision-making and control for ASVs. The proposed method establishes a high-level decision-maker that uses online collision risk indices and key measurements to make decisions for safe manoeuvres. A tailored design and runtime structure is developed to support training and real-time action generation on a realistic ASV model. Local planning and control algorithms are integrated to execute the commands for waypoint following and collision avoidance at a lower level. To the authors' knowledge, this study represents the first attempt to apply explainable AI to the dynamic control problem of maritime systems recognising the COLREGs rules, opening new avenues for research in this challenging area. Results obtained across multiple test scenarios demonstrate the system's ability to maintain online COLREGs compliance, accurate waypoint tracking, and feasible control, while providing human-interpretable reasoning for each decision.
comment: This work has been accepted for publication at European Control Conference 2025, \c{opyright} IEEE 2025. Please cite the published version when available
CORTEX-AVD: CORner Case Testing & EXploration for Autonomous Vehicles Development
Autonomous Vehicles (AVs) aim to improve traffic safety and efficiency by reducing human error. However, ensuring AVs reliability and safety is a challenging task when rare, high-risk traffic scenarios are considered. These 'Corner Cases' (CC) scenarios, such as unexpected vehicle maneuvers or sudden pedestrian crossings, must be safely and reliable dealt by AVs during their operations. But they arehard to be efficiently generated. Traditional CC generation relies on costly and risky real-world data acquisition, limiting scalability, and slowing research and development progress. Simulation-based techniques also face challenges, as modeling diverse scenarios and capturing all possible CCs is complex and time-consuming. To address these limitations in CC generation, this research introduces CORTEX-AVD, CORner Case Testing & EXploration for Autonomous Vehicles Development, an open-source framework that integrates the CARLA Simulator and Scenic to automatically generate CC from textual descriptions, increasing the diversity and automation of scenario modeling. Genetic Algorithms (GA) are used to optimize the scenario parameters in six case study scenarios, increasing the occurrence of high-risk events. Unlike previous methods, CORTEX-AVD incorporates a multi-factor fitness function that considers variables such as distance, time, speed, and collision likelihood. Additionally, the study provides a benchmark for comparing GA-based CC generation methods, contributing to a more standardized evaluation of synthetic data generation and scenario assessment. Experimental results demonstrate that the CORTEX-AVD framework significantly increases CC incidence while reducing the proportion of wasted simulations.
comment: 10 pages, 10 figures
Unified Vertex Motion Estimation for Integrated Video Stabilization and Stitching in Tractor-Trailer Wheeled Robots
Tractor-trailer wheeled robots need to perform comprehensive perception tasks to enhance their operations in areas such as logistics parks and long-haul transportation. The perception of these robots faces three major challenges: the asynchronous vibrations between the tractor and trailer, the relative pose change between the tractor and trailer, and the significant camera parallax caused by the large size. In this paper, we employ the Dual Independence Stabilization Motion Field Estimation method to address asynchronous vibrations between the tractor and trailer, effectively eliminating conflicting motion estimations for the same object in overlapping regions. We utilize the Random Plane-based Stitching Motion Field Estimation method to tackle the continuous relative pose changes caused by the articulated hitch between the tractor and trailer, thus eliminating dynamic misalignment in overlapping regions. Furthermore, we apply the Unified Vertex Motion Estimation method to manage the challenges posed by the tractor-trailer's large physical size, which results in severely low overlapping regions between the tractor and trailer views, thus preventing distortions in overlapping regions from exponentially propagating into non-overlapping areas. Furthermore, this framework has been successfully implemented in real tractor-trailer wheeled robots. The proposed Unified Vertex Motion Video Stabilization and Stitching method has been thoroughly tested in various challenging scenarios, demonstrating its accuracy and practicality in real-world.
Comparing Apples to Oranges: LLM-powered Multimodal Intention Prediction in an Object Categorization Task
Human intention-based systems enable robots to perceive and interpret user actions to interact with humans and adapt to their behavior proactively. Therefore, intention prediction is pivotal in creating a natural interaction with social robots in human-designed environments. In this paper, we examine using Large Language Models (LLMs) to infer human intention in a collaborative object categorization task with a physical robot. We propose a novel multimodal approach that integrates user non-verbal cues, like hand gestures, body poses, and facial expressions, with environment states and user verbal cues to predict user intentions in a hierarchical architecture. Our evaluation of five LLMs shows the potential for reasoning about verbal and non-verbal user cues, leveraging their context-understanding and real-world knowledge to support intention prediction while collaborating on a task with a social robot. Video: https://youtu.be/tBJHfAuzohI
comment: Published in the Proceedings of the 16th International Conference on Social Robotics (ICSR) 2024,15 pages,5 figures,2 tables; work was co-funded by Horizon Europe project TERAIS under Grant agreement number 101079338
Loop Shaping of Hybrid Motion Control with Contact Transition
A standard motion control with feedback of the output displacement cannot handle unforeseen contact with environment without penetrating into the soft, i.e. viscoelastic, materials or even damaging the fragile materials. Robotics and mechatronics with tactile and haptic capabilities, and in particular medical robotics for example, place special demands on the advanced motion control systems that should enable the safe and harmless contact transitions. This paper shows how the basic principles of loop shaping can be easily used to handle sufficiently stiff motion control in such a way that it is extended by sensor-free dynamic reconfiguration upon contact with the environment. A thereupon based hybrid control scheme is proposed. A remarkable feature of the developed approach is that no measurement of the contact force is required and the input signal and the measured output displacement are the only quantities used for design and operation. Experiments on 1-DOF actuator are shown, where the moving tool comes into contact with grapes that are soft and simultaneously penetrable.
comment: 6 pages, 8 figures
GSON: A Group-based Social Navigation Framework with Large Multimodal Model
With the increasing presence of service robots and autonomous vehicles in human environments, navigation systems need to evolve beyond simple destination reach to incorporate social awareness. This paper introduces GSON, a novel group-based social navigation framework that leverages Large Multimodal Models (LMMs) to enhance robots' social perception capabilities. Our approach uses visual prompting to enable zero-shot extraction of social relationships among pedestrians and integrates these results with robust pedestrian detection and tracking pipelines to overcome the inherent inference speed limitations of LMMs. The planning system incorporates a mid-level planner that sits between global path planning and local motion planning, effectively preserving both global context and reactive responsiveness while avoiding disruption of the predicted social group. We validate GSON through extensive real-world mobile robot navigation experiments involving complex social scenarios such as queuing, conversations, and photo sessions. Comparative results show that our system significantly outperforms existing navigation approaches in minimizing social perturbations while maintaining comparable performance on traditional navigation metrics.
SR-LIO++: Efficient LiDAR-Inertial Odometry and Quantized Mapping with Sweep Reconstruction
Addressing the inherent low acquisition frequency limitation of 3D LiDAR to achieve high-frequency output has become a critical research focus in the LiDAR-Inertial Odometry (LIO) domain. To ensure real-time performance, frequency-enhanced LIO systems must process each sweep within significantly reduced timeframe, which presents substantial challenges for deployment on low-computational-power platforms. To address these limitations, we introduce SR-LIO++, an innovative LIO system capable of achieving doubled output frequency relative to input frequency on resource-constrained hardware platforms, including the Raspberry Pi 4B. Our system employs a sweep reconstruction methodology to enhance LiDAR sweep frequency, generating high-frequency reconstructed sweeps. Building upon this foundation, we propose a caching mechanism for intermediate results (i.e., surface parameters) of the most recent segments, effectively minimizing redundant processing of common segments in adjacent reconstructed sweeps. This method decouples processing time from the traditionally linear dependence on reconstructed sweep frequency. Furthermore, we present a quantized map point management based on index table mapping, significantly reducing memory usage by converting global 3D point storage from 64-bit double precision to 8-bit char representation. This method also converts the computationally intensive Euclidean distance calculations in nearest neighbor searches from 64-bit double precision to 16-bit short and 32-bit integer formats, significantly reducing both memory and computational cost. Extensive experimental evaluations across three distinct computing platforms and four public datasets demonstrate that SR-LIO++ maintains state-of-the-art accuracy while substantially enhancing efficiency. Notably, our system successfully achieves 20Hz state output on Raspberry Pi 4B hardware.
comment: 10 pages, 12 figures
Differential Flatness-based Fast Trajectory Planning for Fixed-wing Unmanned Aerial Vehicles
Due to the strong nonlinearity and nonholonomic dynamics, despite the various general trajectory optimization methods presented, few of them can guarantee efficient computation and physical feasibility for relatively complicated fixed-wing UAV dynamics. Aiming at this issue, this paper investigates a differential flatness-based trajectory optimization method for fixed-wing UAVs (DFTO-FW). The customized trajectory representation is presented through differential flat characteristics analysis and polynomial parameterization, eliminating equality constraints to avoid the heavy computational burdens of solving complex dynamics. Through the design of integral performance costs and derivation of analytical gradients, the original trajectory optimization is transcribed into a lightweight, unconstrained, gradient-analytical optimization with linear time complexity to improve efficiency further. The simulation experiments illustrate the superior efficiency of the DFTO-FW, which takes sub-second CPU time (on a personal desktop) against other competitors by orders of magnitude to generate fixed-wing UAV trajectories in randomly generated obstacle environments.
comment: Updated version with minor language and formatting edits. This version has been accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems (06-Apr-2025). This is the author's version of the accepted manuscript. The final version will appear in the IEEE Xplore digital library
Distributed Formation Shape Control of Identity-less Robot Swarms
Different from most of the formation strategies where robots require unique labels to identify topological neighbors to satisfy the predefined shape constraints, we here study the problem of identity-less distributed shape formation in homogeneous swarms, which is rarely studied in the literature. The absence of identities creates a unique challenge: how to design appropriate target formations and local behaviors that are suitable for identity-less formation shape control. To address this challenge, we propose the following novel results. First, to avoid using unique identities, we propose a dynamic formation description method and solve the formation consensus of robots in a locally distributed manner. Second, to handle identity-less distributed formations, we propose a fully distributed control law for homogeneous swarms based on locally sensed information. While the existing methods are applicable to simple cases where the target formation is stationary, ours can tackle more general maneuvering formations such as translation, rotation, or even shape deformation. Both numerical simulation and flight experiment are presented to verify the effectiveness and robustness of our proposed formation strategy.
Intuitive Human-Drone Collaborative Navigation in Unknown Environments through Mixed Reality
Considering the widespread integration of aerial robots in inspection, search and rescue, and monitoring tasks, there is a growing demand to design intuitive human-drone interfaces. These aim to streamline and enhance the user interaction and collaboration process during drone navigation, ultimately expediting mission success and accommodating users' inputs. In this paper, we present a novel human-drone mixed reality interface that aims to (a) increase human-drone spatial awareness by sharing relevant spatial information and representations between the human equipped with a Head Mounted Display (HMD) and the robot and (b) enable safer and intuitive human-drone interactive and collaborative navigation in unknown environments beyond the simple command and control or teleoperation paradigm. We validate our framework through extensive user studies and experiments in a simulated post-disaster scenario, comparing its performance against a traditional First-Person View (FPV) control systems. Furthermore, multiple tests on several users underscore the advantages of the proposed solution, which offers intuitive and natural interaction with the system. This demonstrates the solution's ability to assist humans during a drone navigation mission, ensuring its safe and effective execution.
comment: Approved at ICUAS 25
Zero-Order Control Barrier Functions for Sampled-Data Systems with State and Input Dependent Safety Constraints
We propose a novel zero-order control barrier function (ZOCBF) for sampled-data systems to ensure system safety. Our formulation generalizes conventional control barrier functions and straightforwardly handles safety constraints with high-relative degrees or those that explicitly depend on both system states and inputs. The proposed ZOCBF condition does not require any differentiation operation. Instead, it involves computing the difference of the ZOCBF values at two consecutive sampling instants. We propose three numerical approaches to enforce the ZOCBF condition, tailored to different problem settings and available computational resources. We demonstrate the effectiveness of our approach through a collision avoidance example and a rollover prevention example on uneven terrains.
comment: To present at ACC 2025
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is unsafe as the water may spill" or "rotating a cup of water is unsafe as it can lead to pouring its content"). Recent advances in computer vision and machine learning have enabled robots to acquire a semantic understanding of and reason about their operating environments. While extensive literature on safe robot decision-making exists, semantic understanding is rarely integrated into these formulations. In this work, we propose a semantic safety filter framework to certify robot inputs with respect to semantically defined constraints (e.g., unsafe spatial relationships, behaviors, and poses) and geometrically defined constraints (e.g., environment-collision and self-collision constraints). In our proposed approach, given perception inputs, we build a semantic map of the 3D environment and leverage the contextual reasoning capabilities of large language models to infer semantically unsafe conditions. These semantically unsafe conditions are then mapped to safe actions through a control barrier certification formulation. We demonstrate the proposed semantic safety filter in teleoperated manipulation tasks and with learned diffusion policies applied in a real-world kitchen environment that further showcases its effectiveness in addressing practical semantic safety constraints. Together, these experiments highlight our approach's capability to integrate semantics into safety certification, enabling safe robot operation beyond traditional collision avoidance.
comment: 9 pages, 6 figures
Non-Normalized Solutions of Generalized Nash Equilibrium in Autonomous Racing
In dynamic games with shared constraints, Generalized Nash Equilibria (GNE) are often computed using the normalized solution concept, which assumes identical Lagrange multipliers for shared constraints across all players. While widely used, this approach excludes other potentially valuable GNE. This paper addresses the limitations of normalized solutions in racing scenarios through three key contributions. First, we highlight the shortcomings of normalized solutions with a simple racing example. Second, we propose a novel method based on the Mixed Complementarity Problem (MCP) formulation to compute non-normalized Generalized Nash Equilibria (GNE). Third, we demonstrate that our proposed method overcomes the limitations of normalized GNE solutions and enables richer multi-modal interactions in realistic racing scenarios.
comment: arXiv admin note: substantial text overlap with arXiv:2502.19569
Multiagent Systems
SkillFlow: Efficient Skill and Code Transfer Through Communication in Adapting AI Agents
AI agents are autonomous systems that can execute specific tasks based on predefined programming. Here, we present SkillFlow, a modular, technology-agnostic framework that allows agents to expand their functionality in an ad-hoc fashion by acquiring new skills from their environment or other agents. We present a theoretical model that examines under which conditions this framework would be beneficial, and we then explore SkillFlow's ability to accelerate task completion and lead to lower cumulative costs in a real-world application, namely scheduling agents for calendar events. We demonstrate that within a few iterations, SkillFlow leads to considerable (24.8%, p-value = $6.4\times10^{-3}$) gains in time and cost, especially when the communication cost is high. Finally, we draw analogies from well-studied biological systems and compare this framework to that of lateral gene transfer, a significant process of adaptation and evolution in novel environments.
Decentralizing AI Memory: SHIMI, a Semantic Hierarchical Memory Index for Scalable Agent Reasoning
Retrieval-Augmented Generation (RAG) and vector-based search have become foundational tools for memory in AI systems, yet they struggle with abstraction, scalability, and semantic precision - especially in decentralized environments. We present SHIMI (Semantic Hierarchical Memory Index), a unified architecture that models knowledge as a dynamically structured hierarchy of concepts, enabling agents to retrieve information based on meaning rather than surface similarity. SHIMI organizes memory into layered semantic nodes and supports top-down traversal from abstract intent to specific entities, offering more precise and explainable retrieval. Critically, SHIMI is natively designed for decentralized ecosystems, where agents maintain local memory trees and synchronize them asynchronously across networks. We introduce a lightweight sync protocol that leverages Merkle-DAG summaries, Bloom filters, and CRDT-style conflict resolution to enable partial synchronization with minimal overhead. Through benchmark experiments and use cases involving decentralized agent collaboration, we demonstrate SHIMI's advantages in retrieval accuracy, semantic fidelity, and scalability - positioning it as a core infrastructure layer for decentralized cognitive systems.
Real-Time LaCAM
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full horizon paths. However, planning full horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is to show the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM (Okumura 2023) in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy. The proposed Real-Time LaCAM also provides us with a general mechanism for using iterative constraints for completeness in future real-time MAPF algorithms.
Cross-Document Contextual Coreference Resolution in Knowledge Graphs ACL 2025
Coreference resolution across multiple documents poses a significant challenge in natural language processing, particularly within the domain of knowledge graphs. This study introduces an innovative method aimed at identifying and resolving references to the same entities that appear across differing texts, thus enhancing the coherence and collaboration of information. Our method employs a dynamic linking mechanism that associates entities in the knowledge graph with their corresponding textual mentions. By utilizing contextual embeddings along with graph-based inference strategies, we effectively capture the relationships and interactions among entities, thereby improving the accuracy of coreference resolution. Rigorous evaluations on various benchmark datasets highlight notable advancements in our approach over traditional methodologies. The results showcase how the contextual information derived from knowledge graphs enhances the understanding of complex relationships across documents, leading to better entity linking and information extraction capabilities in applications driven by knowledge. Our technique demonstrates substantial improvements in both precision and recall, underscoring its effectiveness in the area of cross-document coreference resolution.
comment: ACL 2025 Submission Version
Extended Version: Multi-Robot Motion Planning with Cooperative Localization IROS 2025
We consider the uncertain multi-robot motion planning (MRMP) problem with cooperative localization (CL-MRMP), under both motion and measurement noise, where each robot can act as a sensor for its nearby teammates. We formalize CL-MRMP as a chance-constrained motion planning problem, and propose a safety-guaranteed algorithm that explicitly accounts for robot-robot correlations. Our approach extends a sampling-based planner to solve CL-MRMP while preserving probabilistic completeness. To improve efficiency, we introduce novel biasing techniques. We evaluate our method across diverse benchmarks, demonstrating its effectiveness in generating motion plans, with significant performance gains from biasing strategies.
comment: Submitted to IROS 2025
Attention-Augmented Inverse Reinforcement Learning with Graph Convolutions for Multi-Agent Task Allocation
Multi-agent task allocation (MATA) plays a vital role in cooperative multi-agent systems, with significant implications for applications such as logistics, search and rescue, and robotic coordination. Although traditional deep reinforcement learning (DRL) methods have been shown to be promising, their effectiveness is hindered by a reliance on manually designed reward functions and inefficiencies in dynamic environments. In this paper, an inverse reinforcement learning (IRL)-based framework is proposed, in which multi-head self-attention (MHSA) and graph attention mechanisms are incorporated to enhance reward function learning and task execution efficiency. Expert demonstrations are utilized to infer optimal reward densities, allowing dependence on handcrafted designs to be reduced and adaptability to be improved. Extensive experiments validate the superiority of the proposed method over widely used multi-agent reinforcement learning (MARL) algorithms in terms of both cumulative rewards and task execution efficiency.
comment: Added a clarification on the source of expert trajectories in Section V
Autono: A ReAct-Based Highly Robust Autonomous Agent Framework
This paper proposes a highly robust autonomous agent framework based on the ReAct paradigm, designed to solve complex tasks through adaptive decision making and multi-agent collaboration. Unlike traditional frameworks that rely on fixed workflows generated by LLM-based planners, this framework dynamically generates next actions during agent execution based on prior trajectories, thereby enhancing its robustness. To address potential termination issues caused by adaptive execution paths, I propose a timely abandonment strategy incorporating a probabilistic penalty mechanism. For multi-agent collaboration, I introduce a memory transfer mechanism that enables shared and dynamically updated memory among agents. The framework's innovative timely abandonment strategy dynamically adjusts the probability of task abandonment via probabilistic penalties, allowing developers to balance conservative and exploratory tendencies in agent execution strategies by tuning hyperparameters. This significantly improves adaptability and task execution efficiency in complex environments. Additionally, agents can be extended through external tool integration, supported by modular design and MCP protocol compatibility, which enables flexible action space expansion. Through explicit division of labor, the multi-agent collaboration mechanism enables agents to focus on specific task components, thereby significantly improving execution efficiency and quality.
comment: 10 pages, 3 figures
Improving Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Drawing a Map of Elections AAMAS '20
Our main contribution is the introduction of the map of elections framework. A map of elections consists of three main elements: (1) a dataset of elections (i.e., collections of ordinal votes over given sets of candidates), (2) a way of measuring similarities between these elections, and (3) a representation of the elections in the 2D Euclidean space as points, so that the more similar two elections are, the closer are their points. In our maps, we mostly focus on datasets of synthetic elections, but we also show an example of a map over real-life ones. To measure similarities, we would have preferred to use, e.g., the isomorphic swap distance, but this is infeasible due to its high computational complexity. Hence, we propose polynomial-time computable positionwise distance and use it instead. Regarding the representations in 2D Euclidean space, we mostly use the Kamada-Kawai algorithm, but we also show two alternatives. We develop the necessary theoretical results to form our maps and argue experimentally that they are accurate and credible. Further, we show how coloring the elections in a map according to various criteria helps in analyzing results of a number of experiments. In particular, we show colorings according to the scores of winning candidates or committees, running times of ILP-based winner determination algorithms, and approximation ratios achieved by particular algorithms.
comment: Journal article merging results from arxiv:2105.07815, arXiv:2407.11889 and Szufa et al., "Drawing a Map of Elections in the Space of Statistical Cultures", AAMAS '20
Augmenting the action space with conventions to improve multi-agent cooperation in Hanabi AAMAS
The card game Hanabi is considered a strong medium for the testing and development of multi-agent reinforcement learning (MARL) algorithms, due to its cooperative nature, hidden information, limited communication and remarkable complexity. Previous research efforts have explored the capabilities of MARL algorithms within Hanabi, focusing largely on advanced architecture design and algorithmic manipulations to achieve state-of-the-art performance for a various number of cooperators. However, this often leads to complex solution strategies with high computational cost and requiring large amounts of training data. For humans to solve the Hanabi game effectively, they require the use of conventions, which often allows for a means to implicitly convey ideas or knowledge based on a predefined, and mutually agreed upon, set of ``rules''. Multi-agent problems containing partial observability, especially when limited communication is present, can benefit greatly from the use of implicit knowledge sharing. In this paper, we propose a novel approach to augmenting the action space using conventions, which act as special cooperative actions that span over multiple time steps and multiple agents, requiring agents to actively opt in for it to reach fruition. These conventions are based on existing human conventions, and result in a significant improvement on the performance of existing techniques for self-play and cross-play across a various number of cooperators within Hanabi.
comment: This paper is under review at the journal of autonomous agents and multi-agent systems (JAAMAS). The updated manuscript is the revised version after the first round of peer revision
POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding
Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments, typically involving a small number of agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot pathfinding, which have traditionally been approached with classical non-learnable methods (e.g., heuristic search), are now being suggested for solution using learning-based or hybrid methods. However, in this domain, it remains difficult, if not impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To address this, we introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, a collection of predefined problem instances, a visualization toolkit, and a benchmarking tool for automated evaluation. We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators (such as success rate and path length), enabling a fair multi-fold comparison. The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
comment: Published as a conference paper at The International Conference on Learning Representations 2025
MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
Multi-agent pathfinding (MAPF) is a problem that generally requires finding collision-free paths for multiple agents in a shared environment. Solving MAPF optimally, even under restrictive assumptions, is NP-hard, yet efficient solutions for this problem are critical for numerous applications, such as automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Typically, such learning-based MAPF solvers are augmented with additional components like single-agent planning or communication. Orthogonally, in this work we rely solely on imitation learning that leverages a large dataset of expert MAPF solutions and transformer-based neural network to create a foundation model for MAPF called MAPF-GPT. The latter is capable of generating actions without additional heuristics or communication. MAPF-GPT demonstrates zero-shot learning abilities when solving the MAPF problems that are not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable MAPF solvers on a diverse range of problem instances and is computationally efficient during inference.
Systems and Control (CS)
Addressing Relative Degree Issues in Control Barrier Function Synthesis with Physics-Informed Neural Networks
In robotics, control barrier function (CBF)-based safety filters are commonly used to enforce state constraints. A critical challenge arises when the relative degree of the CBF varies across the state space. This variability can create regions within the safe set where the control input becomes unconstrained. When implemented as a safety filter, this may result in chattering near the safety boundary and ultimately compromise system safety. To address this issue, we propose a novel approach for CBF synthesis by formulating it as solving a set of boundary value problems. The solutions to the boundary value problems are determined using physics-informed neural networks (PINNs). Our approach ensures that the synthesized CBFs maintain a constant relative degree across the set of admissible states, thereby preventing unconstrained control scenarios. We illustrate the approach in simulation and further verify it through real-world quadrotor experiments, demonstrating its effectiveness in preserving desired system safety properties.
comment: 8 pages, 5 figures
Dictionary-free Koopman Predictive Control for Autonomous Vehicles in Mixed Traffic
Koopman Model Predictive Control (KMPC) and Data-EnablEd Predictive Control (DeePC) use linear models to approximate nonlinear systems and integrate them with predictive control. Both approaches have recently demonstrated promising performance in controlling Connected and Autonomous Vehicles (CAVs) in mixed traffic. However, selecting appropriate lifting functions for the Koopman operator in KMPC is challenging, while the data-driven representation from Willems' fundamental lemma in DeePC must be updated to approximate the local linearization when the equilibrium traffic state changes. In this paper, we propose a dictionary-free Koopman model predictive control (DF-KMPC) for CAV control. In particular, we first introduce a behavioral perspective to identify the optimal dictionary-free Koopman linear model. We then utilize an iterative algorithm to compute a data-driven approximation of the dictionary-free Koopman representation. Integrating this data-driven linear representation with predictive control leads to our DF-KMPC, which eliminates the need to select lifting functions and update the traffic equilibrium state. Nonlinear traffic simulations show that DF-KMPC effectively mitigates traffic waves and improves tracking performance.
Plug and Play Distributed Control of Clustered Energy Hub Networks
The transition to renewable energy is driving the rise of distributed multi-energy systems, in which individual energy hubs and prosumers (e.g., homes, industrial campuses) generate, store, and trade energy. Economic Model Predictive Control (MPC) schemes are widely used to optimize operation of energy hubs by efficiently dispatching resources and minimizing costs while ensuring operational constraints are met. Peer-to-peer (P2P) energy trading among hubs enhances network efficiency and reduces costs but also increases computational and privacy challenges, especially as the network scales. Additionally, current distributed control techniques require global recomputation whenever the network topology changes, limiting scalability. To address these challenges, we propose a clustering-based P2P trading framework that enables plug-and-play operation, allowing energy hubs to seamlessly join or leave without requiring network-wide controller updates. The impact is restricted to the hubs within the affected cluster. The energy trading problem is formulated as a bi-level bargaining game, where inter-cluster trading commitments are determined at the cluster level, while energy dispatch and cost-sharing among hubs within a cluster are refined at the hub level. Both levels are solved in a distributed manner using ADMM, ensuring computational feasibility and privacy preservation. Moreover, we develop plug-and-play procedures to handle dynamic topology changes at both the hub and cluster levels, minimizing disruptions across the network. Simulation results demonstrate that the proposed bi-level framework reduces operational costs, and enables scalable energy management under plug-and-play operation.
Linear Regulator-Based Synchronization of Positive Multi-Agent Systems
This paper addresses the positive synchronization of interconnected systems on undirected graphs. For homogeneous positive systems, a static feedback protocol design is proposed, based on the Linear Regulator problem. The solution to the algebraic equation associated to the stabilizing policy can be found using a linear program. Necessary and sufficient conditions on the positivity of each agent's trajectory for all nonnegative initial conditions are also provided. Simulations on large regular graphs with different nodal degree illustrate the proposed results.
comment: Accepted for presentation and publication in the proceedings of the 2025 23rd European Control Conference (ECC), June 24-27, 2025. 6 pages, 6 figures
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
comment: 12 pages, 6 figures, 6 tables
Rhythmic neuromorphic control of a pendulum: A hybrid systems analysis
Neuromorphic engineering is an emerging research domain that aims to realize important implementation advantages that brain-inspired technologies can offer over classical digital technologies, including energy efficiency, adaptability, and robustness. For the field of systems and control, neuromorphic controllers could potentially bring many benefits, but their advancement is hampered by lack of systematic analysis and design tools. In this paper, the objective is to show that hybrid systems methods can aid in filling this gap. We do this by formally analyzing rhythmic neuromorphic control of a pendulum system, which was recently proposed as a prototypical setup. The neuromorphic controller generates spikes, which we model as a Dirac delta pulse, whenever the pendulum angular position crosses its resting position, with the goal of inducing a stable limit cycle. This leads to modeling the closed-loop system as a hybrid dynamical system, which in between spikes evolves in open loop and where the jumps correspond to the spiking control actions. Exploiting the hybrid system model, we formally prove the existence, uniqueness, and a stability property of the hybrid limit cycle for the closed-loop system. Numerical simulations illustrate our approach. We finally elaborate on a possible spiking adaptation mechanism on the pulse amplitude to generate a hybrid limit cycle of a desired maximal angular amplitude.
Linear time-and-space-invariant relaxation systems
This paper generalizes the physical property of relaxation from linear time-invariant (LTI) to linear time-and-space-invariant (LTSI) systems. It is shown that the defining features of relaxation -- complete monotonicity, passivity, and memory-based storage -- carry over seamlessly to the spatio-temporal domain. An LTSI system is shown to be of relaxation type if and only if its associated spatio-temporal Hankel operator is cyclically monotone. This implies the existence of an intrinsic quadratic storage functional defined uniquely by past inputs, independently of any state-space realization. As in the LTI case, LTSI relaxation systems are shown to be those systems for which the state-space concept of storage coincides with the input-output concept of fading memory functional.
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Reinforcement learning (RL) is a powerful tool for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We propose using prior model knowledge to guide the exploration process to speed up this learning process. This model knowledge comes in the form of a model set to which the true transition kernel and reward function belong. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also show that we obtain finite-time convergence to the optimal policy under additional assumptions. We demonstrate the effectiveness of the proposed exploration strategy in a simulation study. The results indicate that the proposed method can significantly speed up the learning process in reinforcement learning.
comment: Submitted for publication
A Corrector-aided Look-ahead Distance-based Guidance for Reference Path Following with an Efficient Midcourse Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, look-ahead distance ($L_1$)-based guidance method has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generate bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produce higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV toward the reference path in order to maintain minimal lateral acceleration command. Once the vehicle reaches a close vicinity of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the lateral acceleration command that effectively reduces the root mean square of the cross-track error thereafter. Simulation results demonstrate that this proposed corrector point and look-ahead point pair-based guidance strategy along with the developed midcourse guidance scheme outperforms the conventional constant $L_1$ guidance scheme both in terms of feasibility and measures of effectiveness like cross-track error and lateral acceleration requirements.
comment: This paper is currently under review for publication in CDC 2025
Hybrid Control as a Proxy for Detection and Mitigation of Sensor Attacks in Cooperative Driving
To enhance the robustness of cooperative driving against cyberattacks, we propose a hybrid controller scheme to detect and mitigate False-Data Injection (FDI) attacks in real-time. The core of our method builds on a given Cooperative Adaptive Cruise Control (CACC) algorithm and exploits sensor redundancy to construct equivalent controllers, each driven by a distinct, non-overlapping subset of sensors (equivalent controller realizations). By construction, these controller realizations generate the same control input in the absence of an attack, allowing us to devise an algorithm that compares control signals and measurements to pinpoint anomalous behavior via a majority vote. This allows us to: 1) decide in real-time which subset of sensors is compromised; and 2) switch to a healthy subset, mitigating thus sensor FDI attacks. We model the latter logic as a hybrid dynamic controller that decides in real-time what realization to use, builds on attack-dependent flow and jump sets, and employs controller resets (to return the state of previously compromised controller realizations to a correct value after the attack stops). We demonstrate the performance of our scheme through simulation experiments.
comment: 7 pages, submitted to the IEEE 64th Conference on Decision and Control (CDC 2025)
Control-Oriented Modelling and Adaptive Parameter Estimation for Hybrid Wind-Wave Energy Systems
Hybrid wind-wave energy system, integrating floating offshore wind turbine and wave energy converters, has received much attention in recent years due to its potential benefit in increasing the power harvest density and reducing the levelized cost of electricity. Apart from the design complexities of the hybrid wind-wave energy systems, their energy conversion efficiency, power output smoothness and their safe operations introduce new challenges for their control system designs. Recent studies show that advanced model-based control strategies have the great potential to significantly improve their overall control performance. However the performance of these advanced control strategies rely on the computationally efficient control-oriented models with sufficient fidelity, which are normally difficult to derive due to the complexity of the hydro-, aero-dynamic effects and the couplings.In most available results, the hybrid wind-wave energy system models are established by using the Boundary Element Method, devoting to understanding the hydrodynamic responses and performance analysis. However, such models are complex and involved relatively heavy computational burden, which cannot be directly used for the advanced model-based control methods that are essential for improving power capture efficiency from implementing in practice. To overcome this issue, this paper proposes a control-oriented model of the hybrid windwave energy system with six degrees of freedom. First, ...
comment: 17 pages, 9 figures, submitted to IET Renewable Power Generation
InstructMPC: A Human-LLM-in-the-Loop Framework for Context-Aware Control
Model Predictive Control~(MPC) is a powerful control strategy widely utilized in domains like energy management, building control, and autonomous systems. However, its effectiveness in real-world settings is challenged by the need to incorporate context-specific predictions and expert instructions, which traditional MPC often neglects. We propose \IMPC, a novel framework that addresses this gap by integrating real-time human instructions through a Large Language Model~(LLM) to produce context-aware predictions for MPC. Our method employs a Language-to-Distribution~(L2D) module to translate contextual information into predictive disturbance trajectories, which are then incorporated into the MPC optimization. Unlike existing context-aware and language-based MPC models, \IMPC enables dynamic human-LLM interaction and fine-tunes the L2D module in a closed loop with theoretical performance guarantees, achieving a regret bound of $O(\sqrt{T\log T})$ for linear dynamics when optimized via advanced fine-tuning methods such as Direct Preference Optimization~(DPO) using a tailored loss function.
Self-sustained oscillations in discrete-time relay feedback systems
We study the problem of determining self-sustained oscillations in discrete-time linear time-invariant relay feedback systems. Concretely, we are interested in predicting when such a system admits unimodal oscillations, i.e., when the output has a single-peaked period. Under the assumption that the linear system is stable and has an impulse response that is strictly monotonically decreasing on its infinite support, we take a novel approach in using the framework of total positivity to address our main question. It is shown that unimodal self-oscillations can only exist if the number of positive and negative elements in a period coincides. Based on this result, we derive conditions for the existence of such oscillations, determine bounds on their periods, and address the question of uniqueness.
Collision-free landing of multiple UAVs on moving ground vehicles using time-varying control barrier functions
In this article, we present a centralized approach for the control of multiple unmanned aerial vehicles (UAVs) for landing on moving unmanned ground vehicles (UGVs) using control barrier functions (CBFs). The proposed control framework employs two kinds of CBFs to impose safety constraints on the UAVs' motion. The first class of CBFs (LCBF) is a three-dimensional exponentially decaying function centered above the landing platform, designed to safely and precisely land UAVs on the UGVs. The second set is a spherical CBF (SCBF), defined between every pair of UAVs, which avoids collisions between them. The LCBF is time-varying and adapts to the motions of the UGVs. In the proposed CBF approach, the control input from the UAV's nominal tracking controller designed to reach the landing platform is filtered to choose a minimally-deviating control input that ensures safety (as defined by the CBFs). As the control inputs of every UAV are shared in establishing multiple CBF constraints, we prove that the control inputs are shared without conflict in rendering the safe sets forward invariant. The performance of the control framework is validated through a simulated scenario involving three UAVs landing on three moving targets.
Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32
Accurate and computationally light algorithms for estimating the State of Charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an Adaptive Extended Kalman Filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation - a novelty in this domain. Furthermore, we tune a key design parameter - the window size - to obtain an optimal memory-performance trade-off, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
comment: Published in IEEE Embedded Systems Letters (2024)
A Control-Oriented Simplified Single Particle Model with Grouped Parameter and Sensitivity Analysis for Lithium-Ion Batteries
Lithium-ion batteries are widely used in transportation, energy storage, and consumer electronics, driving the need for reliable battery management systems (BMS) for state estimation and control. The Single Particle Model (SPM) balances computational efficiency and accuracy but faces challenges in parameter estimation due to numerous parameters. Current SPM models using parabolic approximation introduce intermediate variables and hard to do parameter grouping. This study presents a control-oriented SPM reformulation that employs parameter grouping and parabolic approximation to simplify model parameters while using average and surface lithium-ion concentrations as model output. By parameter grouping, the original 17 parameters were reduced to 9 grouped parameters. The reformulated model achieves a reduced-order ordinary differential equation form while maintaining mathematical accuracy equivalent to the pre-grouped discretized SPM. Through Sobol sensitivity analysis under various current profiles, the grouped parameters were reduced from 9 to 6 highly sensitive parameters. Results demonstrate that estimating these 6 parameters achieves comparable practical accuracy to estimating all 9 parameters, with faster convergence. This control-oriented SPM enhances BMS applications by facilitating state estimation and control while reducing parameter estimation requirements.
comment: 30 pages, 4 figures
Jointly-optimized Trajectory Generation and Camera Control for 3D Coverage Planning
This work proposes a jointly optimized trajectory generation and camera control approach, enabling an autonomous agent, such as an unmanned aerial vehicle (UAV) operating in 3D environments, to plan and execute coverage trajectories that maximally cover the surface area of a 3D object of interest. Specifically, the UAV's kinematic and camera control inputs are jointly optimized over a rolling planning horizon to achieve complete 3D coverage of the object. The proposed controller incorporates ray-tracing into the planning process to simulate the propagation of light rays, thereby determining the visible parts of the object through the UAV's camera. This integration enables the generation of precise look-ahead coverage trajectories. The coverage planning problem is formulated as a rolling finite-horizon optimal control problem and solved using mixed-integer programming techniques. Extensive real-world and synthetic experiments validate the performance of the proposed approach.
Low-Complexity AoI-Optimal Status Update Control with Partial Battery State Information in Energy Harvesting IoT Networks
For a two-hop IoT system consisting of multiple energy harvesting sensors, a cache-enabled edge node, and multiple monitors, the status update control at the edge node, which has partial battery state information (pBSI) of the sensors, is formulated as a pBSI problem. The concept of inferred pBSI is introduced to reduce the noiseless single-sensor pBSI problem to a Markov decision process with a moderate state-space size, enabling the optimal policy to be obtained through a value iteration algorithm. A lower bound on the expected time-average on-demand age of information performance is established for the general single-sensor status update problem. For the single-sensor pBSI problem, a semi-closed-form policy called the current-next (CN) policy is proposed, along with an efficient post-update value iteration algorithm with a per-iteration time complexity proportional to the square of the battery capacity. A weighted-update-gain-competition (WUGC) approach is further leveraged to extend the CN policy to the multi-sensor case. Numerical results in the single-sensor case demonstrate the near-optimal performance of the CN policy across various energy arrival processes. Simulations for an IoT system with $100$ sensors reveal that the WUGC-CN policy outperforms the maximum-age-first policy and the random-scheduling-based CN policy under Bernoulli energy arrival processes.
comment: 18 pages, 7 figures
A Douglas-Rachford Splitting Method for Solving Monotone Variational Inequalities in Linear-quadratic Dynamic Games
This paper considers constrained linear dynamic games with quadratic objective functions, which can be cast as affine variational inequalities. By leveraging the problem structure, we apply the Douglas-Rachford splitting, which generates a solution algorithm with linear convergence rate. The fast convergence of the method enables receding-horizon control architectures. Furthermore, we demonstrate that the associated VI admits a closed-form solution within a neighborhood of the attractor, thus allowing for a further reduction in computation time. Finally, we benchmark the proposed method via numerical experiments in an automated driving application.
Robust and Efficient Average Consensus with Non-Coherent Over-the-Air Aggregation
Non-coherent over-the-air (OTA) computation has garnered increasing attention for its advantages in facilitating information aggregation among distributed agents in resource-constrained networks without requiring precise channel estimation. A promising application scenario of this method is distributed average consensus in wireless multi-agent systems. However, in such scenario, non-coherent interference from concurrent OTA transmissions can introduce bias in the consensus value. To address this issue, we develop a robust distributed average consensus algorithm by formulating the consensus problem as a distributed optimization problem. Using decentralized projected gradient descent (D-PGD), our proposed algorithm can achieve unbiased mean square average consensus even in the presence of non-coherent interference and noise. Additionally, we implement transmit power control and receive scaling mechanisms to further accelerate convergence. Simulation results demonstrate that our method can significantly enhance the convergence speed of the D-PGD algorithm for OTA average consensus without compromising accuracy.
comment: 6 pages, 3 figures, accepted in IEEE ICC 2025
Covariance-Intersection-based Distributed Kalman Filtering: Stability Problems Revisited
This paper studies the stability of covariance-intersection (CI)-based distributed Kalman filtering in time-varying systems. For the general time-varying case, a relationship between the error covariance and the observability Gramian is established. Utilizing this relationship, we demonstrate an intuition that the stability of a node is only related to the observability of those nodes that can reach it uniformly. For the periodic time-varying case, it is proved by a monotonicity analysis method that CI-based distributed Kalman filtering converges periodically for any initial condition. The convergent point is shown to be the unique positive definite solution to a Riccati-like equation. Additionally, by constructing an intermediate difference equation, the closed-loop transition matrix of the estimation error system is proved to be Schur stable. Notably, all theoretical results are obtained without requiring network connectivity assumptions. Finally, simulations verify the effectiveness of the stability results.
comment: 10 pages,4 figures
Impact Assessment of Cyberattacks in Inverter-Based Microgrids
In recent years, the evolution of modern power grids has been driven by the growing integration of remotely controlled grid assets. Although Distributed Energy Resources (DERs) and Inverter-Based Resources (IBR) enhance operational efficiency, they also introduce cybersecurity risks. The remote accessibility of such critical grid components creates entry points for attacks that adversaries could exploit, posing threats to the stability of the system. To evaluate the resilience of energy systems under such threats, this study employs real-time simulation and a modified version of the IEEE 39-bus system that incorporates a Microgrid (MG) with solar-based IBR. The study assesses the impact of remote attacks impacting the MG stability under different levels of IBR penetrations through Hardware-in-the-Loop (HIL) simulations. Namely, we analyze voltage, current, and frequency profiles before, during, and after cyberattack-induced disruptions. The results demonstrate that real-time HIL testing is a practical approach to uncover potential risks and develop robust mitigation strategies for resilient MG operations.
comment: IEEE Workshop on the Electronic Grid (eGrid 2025)
Adaptive Control of Dual-Rotor Rotational System with Unknown Geometry and Unknown Inertia
This paper develops an input-output feedback linearization-based adaptive controller to stabilize and regulate a dual-rotor rotational system (DRRS), whose inertial properties as well as the geometric configuration of rotors are unknown. First, the equations of motion governing the dynamics of DRRS are derived using the Newton-Euler approach. Next, an input-output feedback linearization technique is used to linearize the dynamics from the rotor speeds to the angular position of the system. A finite-time convergent estimator, based on the portion of the DRRS dynamics, is used to update the required parameters in the controller. Finally, the proposed controller is validated in both step and harmonic command-following problems, and the robustness of the controller to the system's parameters is demonstrated.
Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
Seamless operation of mobile robots in challenging environments requires low-latency local motion estimation (e.g., dynamic maneuvers) and accurate global localization (e.g., wayfinding). While most existing sensor-fusion approaches are designed for specific scenarios, this work introduces a flexible open-source solution for task- and setup-agnostic multimodal sensor fusion that is distinguished by its generality and usability. Holistic Fusion formulates sensor fusion as a combined estimation problem of i) the local and global robot state and ii) a (theoretically unlimited) number of dynamic context variables, including automatic alignment of reference frames; this formulation fits countless real-world applications without any conceptual modifications. The proposed factor-graph solution enables the direct fusion of an arbitrary number of absolute, local, and landmark measurements expressed with respect to different reference frames by explicitly including them as states in the optimization and modeling their evolution as random walks. Moreover, local smoothness and consistency receive particular attention to prevent jumps in the robot state belief. HF enables low-latency and smooth online state estimation on typical robot hardware while simultaneously providing low-drift global localization at the IMU measurement rate. The efficacy of this released framework is demonstrated in five real-world scenarios on three robotic platforms, each with distinct task requirements.
comment: 21 pages, 25 figures, 9 tables, journal submission
ZETA: a library for Zonotope-based EsTimation and fAult diagnosis of discrete-time systems
This paper introduces ZETA, a new MATLAB library for Zonotope-based EsTimation and fAult diagnosis of discrete-time systems. It features user-friendly implementations of set representations based on zonotopes, namely zonotopes, constrained zonotopes, and line zonotopes, in addition to a basic implementation of interval arithmetic. This library has capabilities starting from the basic set operations with these sets, including propagations through nonlinear functions using various approximation methods. The features of ZETA allow for reachability analysis and state estimation of discrete-time linear, nonlinear, and descriptor systems, in addition to active fault diagnosis of linear systems. Efficient order reduction methods are also implemented for the respective set representations. Some examples are presented in order to illustrate the functionalities of the new library.
comment: 8 pages, 6 figures. Preprint submitted to the 64th IEEE Conference on Decision and Control
Solving Power System Problems using Adiabatic Quantum Computing
This letter proposes a novel combinatorial optimization framework that reformulates existing power system problems into a format executable on quantum annealers. The proposed framework accommodates both normal and complex numbers and enables efficient handling of large-scale problems, thus ensuring broad applicability across power system problems. As a proof of concept, we demonstrate its applicability in two classical problems: (i) power system parameter identification, where we estimate the admittance matrix given voltage and current measurements, and (ii) power flow analysis, where we reformulate the nonlinear equations governing active and reactive power balance. The results show that the proposed framework effectively and efficiently solves both linear and nonlinear power system problems, and thus offers significant advantages in scenarios where traditional solvers face challenges, such as ill-conditioned systems and fault conditions.
comment: 3 pages, 3 figures
Graph Neural Network-Based Distributed Optimal Control for Linear Networked Systems: An Online Distributed Training Approach
In this paper, we consider the distributed optimal control problem for linear networked systems. In particular, we are interested in learning distributed optimal controllers using graph recurrent neural networks (GRNNs). Most of the existing approaches result in centralized optimal controllers with offline training processes. However, as the increasing demand of network resilience, the optimal controllers are further expected to be distributed, and are desirable to be trained in an online distributed fashion, which are also the main contributions of our work. To solve this problem, we first propose a GRNN-based distributed optimal control method, and we cast the problem as a self-supervised learning problem. Then, the distributed online training is achieved via distributed gradient computation, and inspired by the (consensus-based) distributed optimization idea, a distributed online training optimizer is designed. Furthermore, the local closed-loop stability of the linear networked system under our proposed GRNN-based controller is provided by assuming that the nonlinear activation function of the GRNN-based controller is both local sector-bounded and slope-restricted. The effectiveness of our proposed method is illustrated by numerical simulations using a specifically developed simulator.
comment: 8 pages, 3 figures
Physical spline for denoising object trajectory data by combining splines, ML feature regression and model knowledge
This article presents a method for estimating the dynamic driving states (position, velocity, acceleration and heading) from noisy measurement data. The proposed approach is effective with both complete and partial observations, producing refined trajectory signals with kinematic consistency, ensuring that velocity is the integral of acceleration and position is the integral of velocity. Additionally, the method accounts for the constraint that vehicles can only move in the direction of their orientation. The method is implemented as a configurable python library that also enables trajectory estimation solely based on position data. Regularization is applied to prevent extreme state variations. A key application is enhancing recorded trajectory data for use as reference inputs in machine learning models. At the end, the article presents the results of the method along with a comparison to ground truth data.
comment: 7 pages, 7 figures, https://github.com/jonasTorz/physical_spline
Leveraging Non-Steady-State Frequency-Domain Data in Willems' Fundamental Lemma
Willems' fundamental lemma enables data-driven analysis and control by characterizing an unknown system's behavior directly in terms of measured data. In this work, we extend a recent frequency-domain variant of this result--previously limited to steady-state data--to incorporate non-steady-state data including transient phenomena. This approach eliminates the need to wait for transients to decay during data collection, significantly reducing the experiment duration. Unlike existing frequency-domain system identification methods, our approach integrates transient data without preprocessing, making it well-suited for direct data-driven analysis and control. We demonstrate its effectiveness by isolating transients in the collected data and performing FRF evaluation at arbitrary frequencies in a numerical case study including noise.
A Scalable Automatic Model Generation Tool for Cyber-Physical Network Topologies and Data Flows for Large-Scale Synthetic Power Grid Models
Power grids and their cyber infrastructure are classified as Critical Energy Infrastructure/Information (CEII) and are not publicly accessible. While realistic synthetic test cases for power systems have been developed in recent years, they often lack corresponding cyber network models. This work extends synthetic grid models by incorporating cyber-physical representations. To address the growing need for realistic and scalable models that integrate both cyber and physical layers in electric power systems, this paper presents the Scalable Automatic Model Generation Tool (SAM-GT). This tool enables the creation of large-scale cyber-physical topologies for power system models. The resulting cyber-physical network models include power system switches, routers, and firewalls while accounting for data flows and industrial communication protocols. Case studies demonstrate the tool's application to synthetic grid models of 500, 2,000, and 10,000 buses, considering three distinct network topologies. Results from these case studies include network metrics on critical nodes, hops, and generation times, showcasing effectiveness, adaptability, and scalability of SAM-GT.
comment: Under review in ACM Transactions on Cyber-Physical Systems
User-Centered Insights into Assistive Navigation Technologies for Individuals with Visual Impairment
Navigational challenges significantly impact the independence and mobility of Individuals with Visual Impairment (IVI). While numerous assistive technologies exist, their adoption remains limited due to usability challenges, financial constraints, and a lack of alignment with user needs. This study employs a mixed-methods approach, combining structured surveys and virtual workshops with 19 IVI to investigate their experiences, needs, and preferences regarding assistive technologies for navigation and daily living. The survey results provide insights into participants technological competence, preferences for assistive devices, and willingness to adopt new solutions. In parallel, workshop discussions offer qualitative perspectives on key navigation challenges, including difficulties in detecting overhead obstacles, navigating environments with complex layout, and the limitations of existing technologies. Findings highlight the need for assistive devices that integrate both navigational guidance and high-level spatial awareness, allowing users to build mental maps of their surroundings. Additionally, multimodal feedback, combining audio, haptic, and tactile cues, emerges as a crucial feature to accommodate diverse user preferences and environmental conditions. The study also underscores financial and training barriers that limit access to advanced assistive technologies. Based on these insights, we recommend the development of customizable, user-friendly, and most importantly affordable navigation aids that align with the daily needs of IVI. The findings from this study provide guidance for technology developers, researchers, and policymakers working toward more inclusive and effective assistive solutions.
Review, Definition and Challenges of Electrical Energy Hubs
To transition towards a carbon-neutral power system, considerable amounts of renewable energy generation capacity are being installed in the North Sea area. Consequently, projects aggregating many gigawatts of power generation capacity and transmitting renewable energy to the main load centers are being developed. Given the electrical challenges arising from having bulk power capacity in a compact geographical area with several connections to the main grid, and a lack of a robust definition identifying the type of system under study, this paper proposes a general technical definition of such projects introducing the term Electrical Energy Hub (EEH). The concept, purpose, and functionalities of EEHs are introduced in the text, emphasizing the importance of a clear technical definition for future planning procedures, grid codes, regulations, and support schemes for EEHs and multiterminal HVDC (MTDC) grids in general. Furthermore, the unique electrical challenges associated with integrating EEHs into the power system are discussed. Three research areas of concern are identified, namely control, planning, and protection. Through this analysis, insights are provided into the effective implementation of multi-GW scale EEH projects and their integration into the power grid through multiple interconnections. Finally, a list of ongoing and planned grid development projects is evaluated to assess whether they fall within the EEH category
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
Inference and estimation are fundamental aspects of statistics, system identification and machine learning. For most inference problems, prior knowledge is available on the system to be modeled, and Bayesian analysis is a natural framework to impose such prior information in the form of a prior distribution. However, in many situations, coming out with a fully specified prior distribution is not easy, as prior knowledge might be too vague, so practitioners prefer to use a prior distribution that is as `ignorant' or `uninformative' as possible, in the sense of not imposing subjective beliefs, while still supporting reliable statistical analysis. Jeffreys prior is an appealing uninformative prior because it offers two important benefits: (i) it is invariant under any re-parameterization of the model, (ii) it encodes the intrinsic geometric structure of the parameter space through the Fisher information matrix, which in turn enhances the diversity of parameter samples. Despite these benefits, drawing samples from Jeffreys prior is a challenging task. In this paper, we propose a general sampling scheme using the Metropolis-Adjusted Langevin Algorithm that enables sampling of parameter values from Jeffreys prior, and provide numerical illustrations of our approach through several examples.
comment: Submitted to CDC 2025
Efficient Simulation of Singularly Perturbed Systems Using a Stabilized Multirate Explicit Scheme
Singularly perturbed systems (SPSs) are prevalent in engineering applications, where numerically solving their initial value problems (IVPs) is challenging due to stiffness arising from multiple time scales. Classical explicit methods require impractically small time steps for stability, while implicit methods developed for SPSs are computationally intensive and less efficient for strongly nonlinear systems. This paper introduces a Stabilized Multirate Explicit Scheme (SMES) that stabilizes classical explicit methods without the need for small time steps or implicit formulations. By employing a multirate approach with variable time steps, SMES allows the fast dynamics to rapidly converge to their equilibrium manifold while slow dynamics evolve with larger steps. Analysis shows that SMES achieves numerical stability with significantly reduced computational effort and controlled error. Its effectiveness is illustrated with a numerical example.
comment: Accepted by ECC 2025
Restoring Feasibility in Power Grid Optimization: A Counterfactual ML Approach
Electric power grids are essential components of modern life, delivering reliable power to end-users while adhering to a multitude of engineering constraints and requirements. In grid operations, the Optimal Power Flow problem plays a key role in determining cost-effective generator dispatch that satisfies load demands and operational limits. However, due to stressed operating conditions, volatile demand profiles, and increased generation from intermittent energy sources, this optimization problem may become infeasible, posing risks such as voltage instability and line overloads. This study proposes a learning framework that combines machine learning with counterfactual explanations to automatically diagnose and restore feasibility in the OPF problem. Our method provides transparent and actionable insights by methodically identifying infeasible conditions and suggesting minimal demand response actions. We evaluate the proposed approach on IEEE 30-bus and 300-bus systems, demonstrating its capability to recover feasibility with high success rates and generating diverse corrective options, appropriate for real-time decision-making. These preliminary findings illustrate the potential of combining classical optimization with explainable AI techniques to enhance grid reliability and resilience.
Prescribed-Time Boresight Control of Spacecraft Under Pointing Constraints
This article proposes an integrated boresight guidance and control (IBGC) scheme to address the boresight reorientation problem of spacecraft under temporal and pointing constraints. A $C^1$ continuous, saturated prescribed-time adjustment (PPTA) function is presented, along with the establishment of a practical prescribed-time stability theorem. Utilizing the time scale transformation technique and the PPTA function, we propose a prescribed-time guidance law that guides the boresight vector from almost any initial orientation in free space to a small neighborhood of the goal orientation within a preassigned time, while avoiding all forbidden zones augmented with safety margins. Subsequently, a prescribed-time disturbance observer (PTDO) is derived to reconstruct the external disturbances. By leveraging barrier and PPTA functions, a PTDO-based reduced-attitude tracking controller is developed, which ensures prescribed-time boresight tracking within a ``safe tube''. By judiciously setting the safety margins, settling times, and safe tube for the guidance and control laws, the proposed IBGC scheme achieves pointing-constrained boresight reorientation within a required task completion time. Simulation and experimental results demonstrate the efficacy of the proposed IBGC scheme.
Improving Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Large Language Model-based Decision-making for COLREGs and the Control of Autonomous Surface Vehicles
In the field of autonomous surface vehicles (ASVs), devising decision-making and obstacle avoidance solutions that address maritime COLREGs (Collision Regulations), primarily defined for human operators, has long been a pressing challenge. Recent advancements in explainable Artificial Intelligence (AI) and machine learning have shown promise in enabling human-like decision-making. Notably, significant developments have occurred in the application of Large Language Models (LLMs) to the decision-making of complex systems, such as self-driving cars. The textual and somewhat ambiguous nature of COLREGs (from an algorithmic perspective), however, poses challenges that align well with the capabilities of LLMs, suggesting that LLMs may become increasingly suitable for this application soon. This paper presents and demonstrates the first application of LLM-based decision-making and control for ASVs. The proposed method establishes a high-level decision-maker that uses online collision risk indices and key measurements to make decisions for safe manoeuvres. A tailored design and runtime structure is developed to support training and real-time action generation on a realistic ASV model. Local planning and control algorithms are integrated to execute the commands for waypoint following and collision avoidance at a lower level. To the authors' knowledge, this study represents the first attempt to apply explainable AI to the dynamic control problem of maritime systems recognising the COLREGs rules, opening new avenues for research in this challenging area. Results obtained across multiple test scenarios demonstrate the system's ability to maintain online COLREGs compliance, accurate waypoint tracking, and feasible control, while providing human-interpretable reasoning for each decision.
comment: This work has been accepted for publication at European Control Conference 2025, \c{opyright} IEEE 2025. Please cite the published version when available
PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data. Furthermore, results show that the threshold used can have a large influence on detection performance, hence more work needs to be invested in methods to find a suitable threshold without the need for labelled data.
comment: Submitted to the Big Data Research journal
A robot-assisted pipeline to rapidly scan 1.7 million historical aerial photographs
During the 20th Century, aerial surveys captured hundreds of millions of high-resolution photographs of the earth's surface. These images, the precursors to modern satellite imagery, represent an extraordinary visual record of the environmental and social upheavals of the 20th Century. However, most of these images currently languish in physical archives where retrieval is difficult and costly. Digitization could revolutionize access, but manual scanning is slow and expensive. Here, we describe and validate a novel robot-assisted pipeline that increases worker productivity in scanning 30-fold, applied at scale to digitize an archive of 1.7 million historical aerial photographs from 65 countries.
Direct Adaptive Control of Grid-Connected Power Converters via Output-Feedback Data-Enabled Policy Optimization
Power electronic converters are becoming the main components of modern power systems due to the increasing integration of renewable energy sources. However, power converters may become unstable when interacting with the complex and time-varying power grid. In this paper, we propose an adaptive data-driven control method to stabilize power converters by using only online input-output data. Our contributions are threefold. First, we reformulate the output-feedback control problem as a state-feedback linear quadratic regulator (LQR) problem with a controllable non-minimal state, which can be constructed from past input-output signals. Second, we propose a data-enabled policy optimization (DeePO) method for this non-minimal realization to achieve efficient output-feedback adaptive control. Third, we use high-fidelity simulations to verify that the output-feedback DeePO can effectively stabilize grid-connected power converters and quickly adapt to the changes in the power grid.
Convergence Theory of Flexible ALADIN for Distributed Optimization
The Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method is a cutting-edge distributed optimization algorithm known for its superior numerical performance. It relies on each agent transmitting information to a central coordinator for data exchange. However, in practical network optimization and federated learning, unreliable information transmission often leads to packet loss, posing challenges for the convergence analysis of ALADIN. To address this issue, this paper proposes Flexible ALADIN, a random polling variant of ALADIN, and presents a rigorous convergence analysis, including global convergence for convex problems and local convergence for non-convex problems.
Real-time Tracking System with Partially Coupled Sources
We consider a pull-based real-time tracking system consisting of multiple partially coupled sources and a sink. The sink monitors the sources in real-time and can request one source for an update at each time instant. The sources send updates over an unreliable wireless channel. The sources are partially coupled, and updates about one source can provide partial knowledge about other sources. We study the problem of minimizing the sum of an average distortion function and a transmission cost. Since the controller is at the sink side, the controller (sink) has only partial knowledge about the source states, and thus, we model the problem as a partially observable Markov decision process (POMDP) and then cast it as a belief-MDP problem. Using the relative value iteration algorithm, we solve the problem and propose a control policy. Simulation results show the proposed policy's effectiveness and superiority compared to a baseline policy.
Loop Shaping of Hybrid Motion Control with Contact Transition
A standard motion control with feedback of the output displacement cannot handle unforeseen contact with environment without penetrating into the soft, i.e. viscoelastic, materials or even damaging the fragile materials. Robotics and mechatronics with tactile and haptic capabilities, and in particular medical robotics for example, place special demands on the advanced motion control systems that should enable the safe and harmless contact transitions. This paper shows how the basic principles of loop shaping can be easily used to handle sufficiently stiff motion control in such a way that it is extended by sensor-free dynamic reconfiguration upon contact with the environment. A thereupon based hybrid control scheme is proposed. A remarkable feature of the developed approach is that no measurement of the contact force is required and the input signal and the measured output displacement are the only quantities used for design and operation. Experiments on 1-DOF actuator are shown, where the moving tool comes into contact with grapes that are soft and simultaneously penetrable.
comment: 6 pages, 8 figures
Impulsive Relative Motion Control with Continuous-Time Constraint Satisfaction for Cislunar Space Missions
Recent investments in cislunar applications open new frontiers for space missions within highly nonlinear dynamical regimes. In this paper, we propose a method based on Sequential Convex Programming (SCP) to loiter around a given target with impulsive actuation while satisfying path constraints continuously over the finite time-horizon, i.e., independently of the number of nodes in which domain is discretized. Location, timing, magnitude, and direction of a fixed number of impulses are optimized in a model predictive framework, exploiting the exact nonlinear dynamics of non-stationary orbital regimes. The proposed approach is first validated on a relative orbiting problem with respect to a selenocentric near rectilinear halo orbit. The approach is then compared to a formulation with path constraints imposed only at nodes and with mesh refined to ensure complete satisfaction of path constraints over the continuous-time horizon. CPU time per iteration of 400 ms for the refined-mesh approach reduce to 5.5 ms for the proposed approach.
Zero-Order Control Barrier Functions for Sampled-Data Systems with State and Input Dependent Safety Constraints
We propose a novel zero-order control barrier function (ZOCBF) for sampled-data systems to ensure system safety. Our formulation generalizes conventional control barrier functions and straightforwardly handles safety constraints with high-relative degrees or those that explicitly depend on both system states and inputs. The proposed ZOCBF condition does not require any differentiation operation. Instead, it involves computing the difference of the ZOCBF values at two consecutive sampling instants. We propose three numerical approaches to enforce the ZOCBF condition, tailored to different problem settings and available computational resources. We demonstrate the effectiveness of our approach through a collision avoidance example and a rollover prevention example on uneven terrains.
comment: To present at ACC 2025
On the Loewner framework, the Kolmogorov superposition theorem, and the curse of dimensionality
The Loewner framework is an interpolatory approach for the approximation of linear and nonlinear systems. The purpose here is to extend this framework to linear parametric systems with an arbitrary number n of parameters. To achieve this, a new generalized multivariate rational function realization is proposed. Then, we introduce the n-dimensional multivariate Loewner matrices and show that they can be computed by solving a set of coupled Sylvester equations. The null space of these Loewner matrices allows the construction of the multivariate barycentric rational function. The principal result of this work is to show how the null space of the n-dimensional Loewner matrix can be computed using a sequence of 1-dimensional Loewner matrices, leading to a drastic reduction of the computational burden. Equally importantly, this burden is alleviated by avoiding the explicit construction of large-scale n-dimensional Loewner matrices of size $N \times N$. Instead, the proposed methodology achieves decoupling of variables, leading to (i) a complexity reduction from $O(N^3)$ to below $O(N^{1.5})$ when $n > 5$ and (ii) to memory storage bounded by the largest variable dimension rather than their product, thus taming the curse of dimensionality and making the solution scalable to very large data sets. This decoupling of the variables leads to a result similar to the Kolmogorov superposition theorem for rational functions. Thus, making use of barycentric representations, every multivariate rational function can be computed using the composition and superposition of single-variable functions. Finally, we suggest two algorithms (one direct and one iterative) to construct, directly from data, multivariate (or parametric) realizations ensuring (approximate) interpolation. Numerical examples highlight the effectiveness and scalability of the method.
comment: 31 pages, 4 figures
Control Node Placement and Structural Controllability of Water Quality Dynamics in Drinking Networks
Chlorine, the most widely used disinfectant, needs to be adequately distributed in water distribution networks (WDNs) to maintain consistent residual levels and ensure water safety. This is performed through control node injections at the treatment plant via booster stations scattered in WDNs. While previous studies have applied various optimization metrics for booster station placement, many have failed to consider the coverage of the station injections and the dynamic nature of WDNs. In particular, variations in hydraulics and demand significantly impact the reachability and efficacy of chlorine injections which then impact optimal placement of booster stations. This study introduces a novel formulation that combines control- and graph-theoretic approaches to solve the booster station placement problem. Unlike traditional methods, our approach emphasizes maximizing the system's ability to control disinfectant levels with minimal energy, taking into account the time-varying hydraulic profiles that lead to different optimal station placements. We propose a simple weighting technique to determine the placements by assessing the structural controllability of each configuration, based on the network's topology and independent of specific parameters like decay rates or pipe roughness. This method ensures effective chlorine coverage across the network. Our approach is validated on different networks, demonstrating its operational effectiveness, scalability, and practicality.
Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures
Systems and Control (EESS)
Addressing Relative Degree Issues in Control Barrier Function Synthesis with Physics-Informed Neural Networks
In robotics, control barrier function (CBF)-based safety filters are commonly used to enforce state constraints. A critical challenge arises when the relative degree of the CBF varies across the state space. This variability can create regions within the safe set where the control input becomes unconstrained. When implemented as a safety filter, this may result in chattering near the safety boundary and ultimately compromise system safety. To address this issue, we propose a novel approach for CBF synthesis by formulating it as solving a set of boundary value problems. The solutions to the boundary value problems are determined using physics-informed neural networks (PINNs). Our approach ensures that the synthesized CBFs maintain a constant relative degree across the set of admissible states, thereby preventing unconstrained control scenarios. We illustrate the approach in simulation and further verify it through real-world quadrotor experiments, demonstrating its effectiveness in preserving desired system safety properties.
comment: 8 pages, 5 figures
Dictionary-free Koopman Predictive Control for Autonomous Vehicles in Mixed Traffic
Koopman Model Predictive Control (KMPC) and Data-EnablEd Predictive Control (DeePC) use linear models to approximate nonlinear systems and integrate them with predictive control. Both approaches have recently demonstrated promising performance in controlling Connected and Autonomous Vehicles (CAVs) in mixed traffic. However, selecting appropriate lifting functions for the Koopman operator in KMPC is challenging, while the data-driven representation from Willems' fundamental lemma in DeePC must be updated to approximate the local linearization when the equilibrium traffic state changes. In this paper, we propose a dictionary-free Koopman model predictive control (DF-KMPC) for CAV control. In particular, we first introduce a behavioral perspective to identify the optimal dictionary-free Koopman linear model. We then utilize an iterative algorithm to compute a data-driven approximation of the dictionary-free Koopman representation. Integrating this data-driven linear representation with predictive control leads to our DF-KMPC, which eliminates the need to select lifting functions and update the traffic equilibrium state. Nonlinear traffic simulations show that DF-KMPC effectively mitigates traffic waves and improves tracking performance.
Plug and Play Distributed Control of Clustered Energy Hub Networks
The transition to renewable energy is driving the rise of distributed multi-energy systems, in which individual energy hubs and prosumers (e.g., homes, industrial campuses) generate, store, and trade energy. Economic Model Predictive Control (MPC) schemes are widely used to optimize operation of energy hubs by efficiently dispatching resources and minimizing costs while ensuring operational constraints are met. Peer-to-peer (P2P) energy trading among hubs enhances network efficiency and reduces costs but also increases computational and privacy challenges, especially as the network scales. Additionally, current distributed control techniques require global recomputation whenever the network topology changes, limiting scalability. To address these challenges, we propose a clustering-based P2P trading framework that enables plug-and-play operation, allowing energy hubs to seamlessly join or leave without requiring network-wide controller updates. The impact is restricted to the hubs within the affected cluster. The energy trading problem is formulated as a bi-level bargaining game, where inter-cluster trading commitments are determined at the cluster level, while energy dispatch and cost-sharing among hubs within a cluster are refined at the hub level. Both levels are solved in a distributed manner using ADMM, ensuring computational feasibility and privacy preservation. Moreover, we develop plug-and-play procedures to handle dynamic topology changes at both the hub and cluster levels, minimizing disruptions across the network. Simulation results demonstrate that the proposed bi-level framework reduces operational costs, and enables scalable energy management under plug-and-play operation.
Linear Regulator-Based Synchronization of Positive Multi-Agent Systems
This paper addresses the positive synchronization of interconnected systems on undirected graphs. For homogeneous positive systems, a static feedback protocol design is proposed, based on the Linear Regulator problem. The solution to the algebraic equation associated to the stabilizing policy can be found using a linear program. Necessary and sufficient conditions on the positivity of each agent's trajectory for all nonnegative initial conditions are also provided. Simulations on large regular graphs with different nodal degree illustrate the proposed results.
comment: Accepted for presentation and publication in the proceedings of the 2025 23rd European Control Conference (ECC), June 24-27, 2025. 6 pages, 6 figures
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
comment: 12 pages, 6 figures, 6 tables
Rhythmic neuromorphic control of a pendulum: A hybrid systems analysis
Neuromorphic engineering is an emerging research domain that aims to realize important implementation advantages that brain-inspired technologies can offer over classical digital technologies, including energy efficiency, adaptability, and robustness. For the field of systems and control, neuromorphic controllers could potentially bring many benefits, but their advancement is hampered by lack of systematic analysis and design tools. In this paper, the objective is to show that hybrid systems methods can aid in filling this gap. We do this by formally analyzing rhythmic neuromorphic control of a pendulum system, which was recently proposed as a prototypical setup. The neuromorphic controller generates spikes, which we model as a Dirac delta pulse, whenever the pendulum angular position crosses its resting position, with the goal of inducing a stable limit cycle. This leads to modeling the closed-loop system as a hybrid dynamical system, which in between spikes evolves in open loop and where the jumps correspond to the spiking control actions. Exploiting the hybrid system model, we formally prove the existence, uniqueness, and a stability property of the hybrid limit cycle for the closed-loop system. Numerical simulations illustrate our approach. We finally elaborate on a possible spiking adaptation mechanism on the pulse amplitude to generate a hybrid limit cycle of a desired maximal angular amplitude.
Linear time-and-space-invariant relaxation systems
This paper generalizes the physical property of relaxation from linear time-invariant (LTI) to linear time-and-space-invariant (LTSI) systems. It is shown that the defining features of relaxation -- complete monotonicity, passivity, and memory-based storage -- carry over seamlessly to the spatio-temporal domain. An LTSI system is shown to be of relaxation type if and only if its associated spatio-temporal Hankel operator is cyclically monotone. This implies the existence of an intrinsic quadratic storage functional defined uniquely by past inputs, independently of any state-space realization. As in the LTI case, LTSI relaxation systems are shown to be those systems for which the state-space concept of storage coincides with the input-output concept of fading memory functional.
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Reinforcement learning (RL) is a powerful tool for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We propose using prior model knowledge to guide the exploration process to speed up this learning process. This model knowledge comes in the form of a model set to which the true transition kernel and reward function belong. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also show that we obtain finite-time convergence to the optimal policy under additional assumptions. We demonstrate the effectiveness of the proposed exploration strategy in a simulation study. The results indicate that the proposed method can significantly speed up the learning process in reinforcement learning.
comment: Submitted for publication
A Corrector-aided Look-ahead Distance-based Guidance for Reference Path Following with an Efficient Midcourse Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, look-ahead distance ($L_1$)-based guidance method has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generate bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produce higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV toward the reference path in order to maintain minimal lateral acceleration command. Once the vehicle reaches a close vicinity of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the lateral acceleration command that effectively reduces the root mean square of the cross-track error thereafter. Simulation results demonstrate that this proposed corrector point and look-ahead point pair-based guidance strategy along with the developed midcourse guidance scheme outperforms the conventional constant $L_1$ guidance scheme both in terms of feasibility and measures of effectiveness like cross-track error and lateral acceleration requirements.
comment: This paper is currently under review for publication in CDC 2025
Hybrid Control as a Proxy for Detection and Mitigation of Sensor Attacks in Cooperative Driving
To enhance the robustness of cooperative driving against cyberattacks, we propose a hybrid controller scheme to detect and mitigate False-Data Injection (FDI) attacks in real-time. The core of our method builds on a given Cooperative Adaptive Cruise Control (CACC) algorithm and exploits sensor redundancy to construct equivalent controllers, each driven by a distinct, non-overlapping subset of sensors (equivalent controller realizations). By construction, these controller realizations generate the same control input in the absence of an attack, allowing us to devise an algorithm that compares control signals and measurements to pinpoint anomalous behavior via a majority vote. This allows us to: 1) decide in real-time which subset of sensors is compromised; and 2) switch to a healthy subset, mitigating thus sensor FDI attacks. We model the latter logic as a hybrid dynamic controller that decides in real-time what realization to use, builds on attack-dependent flow and jump sets, and employs controller resets (to return the state of previously compromised controller realizations to a correct value after the attack stops). We demonstrate the performance of our scheme through simulation experiments.
comment: 7 pages, submitted to the IEEE 64th Conference on Decision and Control (CDC 2025)
Control-Oriented Modelling and Adaptive Parameter Estimation for Hybrid Wind-Wave Energy Systems
Hybrid wind-wave energy system, integrating floating offshore wind turbine and wave energy converters, has received much attention in recent years due to its potential benefit in increasing the power harvest density and reducing the levelized cost of electricity. Apart from the design complexities of the hybrid wind-wave energy systems, their energy conversion efficiency, power output smoothness and their safe operations introduce new challenges for their control system designs. Recent studies show that advanced model-based control strategies have the great potential to significantly improve their overall control performance. However the performance of these advanced control strategies rely on the computationally efficient control-oriented models with sufficient fidelity, which are normally difficult to derive due to the complexity of the hydro-, aero-dynamic effects and the couplings.In most available results, the hybrid wind-wave energy system models are established by using the Boundary Element Method, devoting to understanding the hydrodynamic responses and performance analysis. However, such models are complex and involved relatively heavy computational burden, which cannot be directly used for the advanced model-based control methods that are essential for improving power capture efficiency from implementing in practice. To overcome this issue, this paper proposes a control-oriented model of the hybrid windwave energy system with six degrees of freedom. First, ...
comment: 17 pages, 9 figures, submitted to IET Renewable Power Generation
InstructMPC: A Human-LLM-in-the-Loop Framework for Context-Aware Control
Model Predictive Control~(MPC) is a powerful control strategy widely utilized in domains like energy management, building control, and autonomous systems. However, its effectiveness in real-world settings is challenged by the need to incorporate context-specific predictions and expert instructions, which traditional MPC often neglects. We propose \IMPC, a novel framework that addresses this gap by integrating real-time human instructions through a Large Language Model~(LLM) to produce context-aware predictions for MPC. Our method employs a Language-to-Distribution~(L2D) module to translate contextual information into predictive disturbance trajectories, which are then incorporated into the MPC optimization. Unlike existing context-aware and language-based MPC models, \IMPC enables dynamic human-LLM interaction and fine-tunes the L2D module in a closed loop with theoretical performance guarantees, achieving a regret bound of $O(\sqrt{T\log T})$ for linear dynamics when optimized via advanced fine-tuning methods such as Direct Preference Optimization~(DPO) using a tailored loss function.
Self-sustained oscillations in discrete-time relay feedback systems
We study the problem of determining self-sustained oscillations in discrete-time linear time-invariant relay feedback systems. Concretely, we are interested in predicting when such a system admits unimodal oscillations, i.e., when the output has a single-peaked period. Under the assumption that the linear system is stable and has an impulse response that is strictly monotonically decreasing on its infinite support, we take a novel approach in using the framework of total positivity to address our main question. It is shown that unimodal self-oscillations can only exist if the number of positive and negative elements in a period coincides. Based on this result, we derive conditions for the existence of such oscillations, determine bounds on their periods, and address the question of uniqueness.
Collision-free landing of multiple UAVs on moving ground vehicles using time-varying control barrier functions
In this article, we present a centralized approach for the control of multiple unmanned aerial vehicles (UAVs) for landing on moving unmanned ground vehicles (UGVs) using control barrier functions (CBFs). The proposed control framework employs two kinds of CBFs to impose safety constraints on the UAVs' motion. The first class of CBFs (LCBF) is a three-dimensional exponentially decaying function centered above the landing platform, designed to safely and precisely land UAVs on the UGVs. The second set is a spherical CBF (SCBF), defined between every pair of UAVs, which avoids collisions between them. The LCBF is time-varying and adapts to the motions of the UGVs. In the proposed CBF approach, the control input from the UAV's nominal tracking controller designed to reach the landing platform is filtered to choose a minimally-deviating control input that ensures safety (as defined by the CBFs). As the control inputs of every UAV are shared in establishing multiple CBF constraints, we prove that the control inputs are shared without conflict in rendering the safe sets forward invariant. The performance of the control framework is validated through a simulated scenario involving three UAVs landing on three moving targets.
Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32
Accurate and computationally light algorithms for estimating the State of Charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an Adaptive Extended Kalman Filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation - a novelty in this domain. Furthermore, we tune a key design parameter - the window size - to obtain an optimal memory-performance trade-off, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
comment: Published in IEEE Embedded Systems Letters (2024)
A Control-Oriented Simplified Single Particle Model with Grouped Parameter and Sensitivity Analysis for Lithium-Ion Batteries
Lithium-ion batteries are widely used in transportation, energy storage, and consumer electronics, driving the need for reliable battery management systems (BMS) for state estimation and control. The Single Particle Model (SPM) balances computational efficiency and accuracy but faces challenges in parameter estimation due to numerous parameters. Current SPM models using parabolic approximation introduce intermediate variables and hard to do parameter grouping. This study presents a control-oriented SPM reformulation that employs parameter grouping and parabolic approximation to simplify model parameters while using average and surface lithium-ion concentrations as model output. By parameter grouping, the original 17 parameters were reduced to 9 grouped parameters. The reformulated model achieves a reduced-order ordinary differential equation form while maintaining mathematical accuracy equivalent to the pre-grouped discretized SPM. Through Sobol sensitivity analysis under various current profiles, the grouped parameters were reduced from 9 to 6 highly sensitive parameters. Results demonstrate that estimating these 6 parameters achieves comparable practical accuracy to estimating all 9 parameters, with faster convergence. This control-oriented SPM enhances BMS applications by facilitating state estimation and control while reducing parameter estimation requirements.
comment: 30 pages, 4 figures
Jointly-optimized Trajectory Generation and Camera Control for 3D Coverage Planning
This work proposes a jointly optimized trajectory generation and camera control approach, enabling an autonomous agent, such as an unmanned aerial vehicle (UAV) operating in 3D environments, to plan and execute coverage trajectories that maximally cover the surface area of a 3D object of interest. Specifically, the UAV's kinematic and camera control inputs are jointly optimized over a rolling planning horizon to achieve complete 3D coverage of the object. The proposed controller incorporates ray-tracing into the planning process to simulate the propagation of light rays, thereby determining the visible parts of the object through the UAV's camera. This integration enables the generation of precise look-ahead coverage trajectories. The coverage planning problem is formulated as a rolling finite-horizon optimal control problem and solved using mixed-integer programming techniques. Extensive real-world and synthetic experiments validate the performance of the proposed approach.
Low-Complexity AoI-Optimal Status Update Control with Partial Battery State Information in Energy Harvesting IoT Networks
For a two-hop IoT system consisting of multiple energy harvesting sensors, a cache-enabled edge node, and multiple monitors, the status update control at the edge node, which has partial battery state information (pBSI) of the sensors, is formulated as a pBSI problem. The concept of inferred pBSI is introduced to reduce the noiseless single-sensor pBSI problem to a Markov decision process with a moderate state-space size, enabling the optimal policy to be obtained through a value iteration algorithm. A lower bound on the expected time-average on-demand age of information performance is established for the general single-sensor status update problem. For the single-sensor pBSI problem, a semi-closed-form policy called the current-next (CN) policy is proposed, along with an efficient post-update value iteration algorithm with a per-iteration time complexity proportional to the square of the battery capacity. A weighted-update-gain-competition (WUGC) approach is further leveraged to extend the CN policy to the multi-sensor case. Numerical results in the single-sensor case demonstrate the near-optimal performance of the CN policy across various energy arrival processes. Simulations for an IoT system with $100$ sensors reveal that the WUGC-CN policy outperforms the maximum-age-first policy and the random-scheduling-based CN policy under Bernoulli energy arrival processes.
comment: 18 pages, 7 figures
A Douglas-Rachford Splitting Method for Solving Monotone Variational Inequalities in Linear-quadratic Dynamic Games
This paper considers constrained linear dynamic games with quadratic objective functions, which can be cast as affine variational inequalities. By leveraging the problem structure, we apply the Douglas-Rachford splitting, which generates a solution algorithm with linear convergence rate. The fast convergence of the method enables receding-horizon control architectures. Furthermore, we demonstrate that the associated VI admits a closed-form solution within a neighborhood of the attractor, thus allowing for a further reduction in computation time. Finally, we benchmark the proposed method via numerical experiments in an automated driving application.
Robust and Efficient Average Consensus with Non-Coherent Over-the-Air Aggregation
Non-coherent over-the-air (OTA) computation has garnered increasing attention for its advantages in facilitating information aggregation among distributed agents in resource-constrained networks without requiring precise channel estimation. A promising application scenario of this method is distributed average consensus in wireless multi-agent systems. However, in such scenario, non-coherent interference from concurrent OTA transmissions can introduce bias in the consensus value. To address this issue, we develop a robust distributed average consensus algorithm by formulating the consensus problem as a distributed optimization problem. Using decentralized projected gradient descent (D-PGD), our proposed algorithm can achieve unbiased mean square average consensus even in the presence of non-coherent interference and noise. Additionally, we implement transmit power control and receive scaling mechanisms to further accelerate convergence. Simulation results demonstrate that our method can significantly enhance the convergence speed of the D-PGD algorithm for OTA average consensus without compromising accuracy.
comment: 6 pages, 3 figures, accepted in IEEE ICC 2025
Covariance-Intersection-based Distributed Kalman Filtering: Stability Problems Revisited
This paper studies the stability of covariance-intersection (CI)-based distributed Kalman filtering in time-varying systems. For the general time-varying case, a relationship between the error covariance and the observability Gramian is established. Utilizing this relationship, we demonstrate an intuition that the stability of a node is only related to the observability of those nodes that can reach it uniformly. For the periodic time-varying case, it is proved by a monotonicity analysis method that CI-based distributed Kalman filtering converges periodically for any initial condition. The convergent point is shown to be the unique positive definite solution to a Riccati-like equation. Additionally, by constructing an intermediate difference equation, the closed-loop transition matrix of the estimation error system is proved to be Schur stable. Notably, all theoretical results are obtained without requiring network connectivity assumptions. Finally, simulations verify the effectiveness of the stability results.
comment: 10 pages,4 figures
Impact Assessment of Cyberattacks in Inverter-Based Microgrids
In recent years, the evolution of modern power grids has been driven by the growing integration of remotely controlled grid assets. Although Distributed Energy Resources (DERs) and Inverter-Based Resources (IBR) enhance operational efficiency, they also introduce cybersecurity risks. The remote accessibility of such critical grid components creates entry points for attacks that adversaries could exploit, posing threats to the stability of the system. To evaluate the resilience of energy systems under such threats, this study employs real-time simulation and a modified version of the IEEE 39-bus system that incorporates a Microgrid (MG) with solar-based IBR. The study assesses the impact of remote attacks impacting the MG stability under different levels of IBR penetrations through Hardware-in-the-Loop (HIL) simulations. Namely, we analyze voltage, current, and frequency profiles before, during, and after cyberattack-induced disruptions. The results demonstrate that real-time HIL testing is a practical approach to uncover potential risks and develop robust mitigation strategies for resilient MG operations.
comment: IEEE Workshop on the Electronic Grid (eGrid 2025)
Adaptive Control of Dual-Rotor Rotational System with Unknown Geometry and Unknown Inertia
This paper develops an input-output feedback linearization-based adaptive controller to stabilize and regulate a dual-rotor rotational system (DRRS), whose inertial properties as well as the geometric configuration of rotors are unknown. First, the equations of motion governing the dynamics of DRRS are derived using the Newton-Euler approach. Next, an input-output feedback linearization technique is used to linearize the dynamics from the rotor speeds to the angular position of the system. A finite-time convergent estimator, based on the portion of the DRRS dynamics, is used to update the required parameters in the controller. Finally, the proposed controller is validated in both step and harmonic command-following problems, and the robustness of the controller to the system's parameters is demonstrated.
Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
Seamless operation of mobile robots in challenging environments requires low-latency local motion estimation (e.g., dynamic maneuvers) and accurate global localization (e.g., wayfinding). While most existing sensor-fusion approaches are designed for specific scenarios, this work introduces a flexible open-source solution for task- and setup-agnostic multimodal sensor fusion that is distinguished by its generality and usability. Holistic Fusion formulates sensor fusion as a combined estimation problem of i) the local and global robot state and ii) a (theoretically unlimited) number of dynamic context variables, including automatic alignment of reference frames; this formulation fits countless real-world applications without any conceptual modifications. The proposed factor-graph solution enables the direct fusion of an arbitrary number of absolute, local, and landmark measurements expressed with respect to different reference frames by explicitly including them as states in the optimization and modeling their evolution as random walks. Moreover, local smoothness and consistency receive particular attention to prevent jumps in the robot state belief. HF enables low-latency and smooth online state estimation on typical robot hardware while simultaneously providing low-drift global localization at the IMU measurement rate. The efficacy of this released framework is demonstrated in five real-world scenarios on three robotic platforms, each with distinct task requirements.
comment: 21 pages, 25 figures, 9 tables, journal submission
ZETA: a library for Zonotope-based EsTimation and fAult diagnosis of discrete-time systems
This paper introduces ZETA, a new MATLAB library for Zonotope-based EsTimation and fAult diagnosis of discrete-time systems. It features user-friendly implementations of set representations based on zonotopes, namely zonotopes, constrained zonotopes, and line zonotopes, in addition to a basic implementation of interval arithmetic. This library has capabilities starting from the basic set operations with these sets, including propagations through nonlinear functions using various approximation methods. The features of ZETA allow for reachability analysis and state estimation of discrete-time linear, nonlinear, and descriptor systems, in addition to active fault diagnosis of linear systems. Efficient order reduction methods are also implemented for the respective set representations. Some examples are presented in order to illustrate the functionalities of the new library.
comment: 8 pages, 6 figures. Preprint submitted to the 64th IEEE Conference on Decision and Control
Solving Power System Problems using Adiabatic Quantum Computing
This letter proposes a novel combinatorial optimization framework that reformulates existing power system problems into a format executable on quantum annealers. The proposed framework accommodates both normal and complex numbers and enables efficient handling of large-scale problems, thus ensuring broad applicability across power system problems. As a proof of concept, we demonstrate its applicability in two classical problems: (i) power system parameter identification, where we estimate the admittance matrix given voltage and current measurements, and (ii) power flow analysis, where we reformulate the nonlinear equations governing active and reactive power balance. The results show that the proposed framework effectively and efficiently solves both linear and nonlinear power system problems, and thus offers significant advantages in scenarios where traditional solvers face challenges, such as ill-conditioned systems and fault conditions.
comment: 3 pages, 3 figures
Graph Neural Network-Based Distributed Optimal Control for Linear Networked Systems: An Online Distributed Training Approach
In this paper, we consider the distributed optimal control problem for linear networked systems. In particular, we are interested in learning distributed optimal controllers using graph recurrent neural networks (GRNNs). Most of the existing approaches result in centralized optimal controllers with offline training processes. However, as the increasing demand of network resilience, the optimal controllers are further expected to be distributed, and are desirable to be trained in an online distributed fashion, which are also the main contributions of our work. To solve this problem, we first propose a GRNN-based distributed optimal control method, and we cast the problem as a self-supervised learning problem. Then, the distributed online training is achieved via distributed gradient computation, and inspired by the (consensus-based) distributed optimization idea, a distributed online training optimizer is designed. Furthermore, the local closed-loop stability of the linear networked system under our proposed GRNN-based controller is provided by assuming that the nonlinear activation function of the GRNN-based controller is both local sector-bounded and slope-restricted. The effectiveness of our proposed method is illustrated by numerical simulations using a specifically developed simulator.
comment: 8 pages, 3 figures
Physical spline for denoising object trajectory data by combining splines, ML feature regression and model knowledge
This article presents a method for estimating the dynamic driving states (position, velocity, acceleration and heading) from noisy measurement data. The proposed approach is effective with both complete and partial observations, producing refined trajectory signals with kinematic consistency, ensuring that velocity is the integral of acceleration and position is the integral of velocity. Additionally, the method accounts for the constraint that vehicles can only move in the direction of their orientation. The method is implemented as a configurable python library that also enables trajectory estimation solely based on position data. Regularization is applied to prevent extreme state variations. A key application is enhancing recorded trajectory data for use as reference inputs in machine learning models. At the end, the article presents the results of the method along with a comparison to ground truth data.
comment: 7 pages, 7 figures, https://github.com/jonasTorz/physical_spline
Leveraging Non-Steady-State Frequency-Domain Data in Willems' Fundamental Lemma
Willems' fundamental lemma enables data-driven analysis and control by characterizing an unknown system's behavior directly in terms of measured data. In this work, we extend a recent frequency-domain variant of this result--previously limited to steady-state data--to incorporate non-steady-state data including transient phenomena. This approach eliminates the need to wait for transients to decay during data collection, significantly reducing the experiment duration. Unlike existing frequency-domain system identification methods, our approach integrates transient data without preprocessing, making it well-suited for direct data-driven analysis and control. We demonstrate its effectiveness by isolating transients in the collected data and performing FRF evaluation at arbitrary frequencies in a numerical case study including noise.
A Scalable Automatic Model Generation Tool for Cyber-Physical Network Topologies and Data Flows for Large-Scale Synthetic Power Grid Models
Power grids and their cyber infrastructure are classified as Critical Energy Infrastructure/Information (CEII) and are not publicly accessible. While realistic synthetic test cases for power systems have been developed in recent years, they often lack corresponding cyber network models. This work extends synthetic grid models by incorporating cyber-physical representations. To address the growing need for realistic and scalable models that integrate both cyber and physical layers in electric power systems, this paper presents the Scalable Automatic Model Generation Tool (SAM-GT). This tool enables the creation of large-scale cyber-physical topologies for power system models. The resulting cyber-physical network models include power system switches, routers, and firewalls while accounting for data flows and industrial communication protocols. Case studies demonstrate the tool's application to synthetic grid models of 500, 2,000, and 10,000 buses, considering three distinct network topologies. Results from these case studies include network metrics on critical nodes, hops, and generation times, showcasing effectiveness, adaptability, and scalability of SAM-GT.
comment: Under review in ACM Transactions on Cyber-Physical Systems
User-Centered Insights into Assistive Navigation Technologies for Individuals with Visual Impairment
Navigational challenges significantly impact the independence and mobility of Individuals with Visual Impairment (IVI). While numerous assistive technologies exist, their adoption remains limited due to usability challenges, financial constraints, and a lack of alignment with user needs. This study employs a mixed-methods approach, combining structured surveys and virtual workshops with 19 IVI to investigate their experiences, needs, and preferences regarding assistive technologies for navigation and daily living. The survey results provide insights into participants technological competence, preferences for assistive devices, and willingness to adopt new solutions. In parallel, workshop discussions offer qualitative perspectives on key navigation challenges, including difficulties in detecting overhead obstacles, navigating environments with complex layout, and the limitations of existing technologies. Findings highlight the need for assistive devices that integrate both navigational guidance and high-level spatial awareness, allowing users to build mental maps of their surroundings. Additionally, multimodal feedback, combining audio, haptic, and tactile cues, emerges as a crucial feature to accommodate diverse user preferences and environmental conditions. The study also underscores financial and training barriers that limit access to advanced assistive technologies. Based on these insights, we recommend the development of customizable, user-friendly, and most importantly affordable navigation aids that align with the daily needs of IVI. The findings from this study provide guidance for technology developers, researchers, and policymakers working toward more inclusive and effective assistive solutions.
Review, Definition and Challenges of Electrical Energy Hubs
To transition towards a carbon-neutral power system, considerable amounts of renewable energy generation capacity are being installed in the North Sea area. Consequently, projects aggregating many gigawatts of power generation capacity and transmitting renewable energy to the main load centers are being developed. Given the electrical challenges arising from having bulk power capacity in a compact geographical area with several connections to the main grid, and a lack of a robust definition identifying the type of system under study, this paper proposes a general technical definition of such projects introducing the term Electrical Energy Hub (EEH). The concept, purpose, and functionalities of EEHs are introduced in the text, emphasizing the importance of a clear technical definition for future planning procedures, grid codes, regulations, and support schemes for EEHs and multiterminal HVDC (MTDC) grids in general. Furthermore, the unique electrical challenges associated with integrating EEHs into the power system are discussed. Three research areas of concern are identified, namely control, planning, and protection. Through this analysis, insights are provided into the effective implementation of multi-GW scale EEH projects and their integration into the power grid through multiple interconnections. Finally, a list of ongoing and planned grid development projects is evaluated to assess whether they fall within the EEH category
A Metropolis-Adjusted Langevin Algorithm for Sampling Jeffreys Prior
Inference and estimation are fundamental aspects of statistics, system identification and machine learning. For most inference problems, prior knowledge is available on the system to be modeled, and Bayesian analysis is a natural framework to impose such prior information in the form of a prior distribution. However, in many situations, coming out with a fully specified prior distribution is not easy, as prior knowledge might be too vague, so practitioners prefer to use a prior distribution that is as `ignorant' or `uninformative' as possible, in the sense of not imposing subjective beliefs, while still supporting reliable statistical analysis. Jeffreys prior is an appealing uninformative prior because it offers two important benefits: (i) it is invariant under any re-parameterization of the model, (ii) it encodes the intrinsic geometric structure of the parameter space through the Fisher information matrix, which in turn enhances the diversity of parameter samples. Despite these benefits, drawing samples from Jeffreys prior is a challenging task. In this paper, we propose a general sampling scheme using the Metropolis-Adjusted Langevin Algorithm that enables sampling of parameter values from Jeffreys prior, and provide numerical illustrations of our approach through several examples.
comment: Submitted to CDC 2025
Efficient Simulation of Singularly Perturbed Systems Using a Stabilized Multirate Explicit Scheme
Singularly perturbed systems (SPSs) are prevalent in engineering applications, where numerically solving their initial value problems (IVPs) is challenging due to stiffness arising from multiple time scales. Classical explicit methods require impractically small time steps for stability, while implicit methods developed for SPSs are computationally intensive and less efficient for strongly nonlinear systems. This paper introduces a Stabilized Multirate Explicit Scheme (SMES) that stabilizes classical explicit methods without the need for small time steps or implicit formulations. By employing a multirate approach with variable time steps, SMES allows the fast dynamics to rapidly converge to their equilibrium manifold while slow dynamics evolve with larger steps. Analysis shows that SMES achieves numerical stability with significantly reduced computational effort and controlled error. Its effectiveness is illustrated with a numerical example.
comment: Accepted by ECC 2025
Restoring Feasibility in Power Grid Optimization: A Counterfactual ML Approach
Electric power grids are essential components of modern life, delivering reliable power to end-users while adhering to a multitude of engineering constraints and requirements. In grid operations, the Optimal Power Flow problem plays a key role in determining cost-effective generator dispatch that satisfies load demands and operational limits. However, due to stressed operating conditions, volatile demand profiles, and increased generation from intermittent energy sources, this optimization problem may become infeasible, posing risks such as voltage instability and line overloads. This study proposes a learning framework that combines machine learning with counterfactual explanations to automatically diagnose and restore feasibility in the OPF problem. Our method provides transparent and actionable insights by methodically identifying infeasible conditions and suggesting minimal demand response actions. We evaluate the proposed approach on IEEE 30-bus and 300-bus systems, demonstrating its capability to recover feasibility with high success rates and generating diverse corrective options, appropriate for real-time decision-making. These preliminary findings illustrate the potential of combining classical optimization with explainable AI techniques to enhance grid reliability and resilience.
Prescribed-Time Boresight Control of Spacecraft Under Pointing Constraints
This article proposes an integrated boresight guidance and control (IBGC) scheme to address the boresight reorientation problem of spacecraft under temporal and pointing constraints. A $C^1$ continuous, saturated prescribed-time adjustment (PPTA) function is presented, along with the establishment of a practical prescribed-time stability theorem. Utilizing the time scale transformation technique and the PPTA function, we propose a prescribed-time guidance law that guides the boresight vector from almost any initial orientation in free space to a small neighborhood of the goal orientation within a preassigned time, while avoiding all forbidden zones augmented with safety margins. Subsequently, a prescribed-time disturbance observer (PTDO) is derived to reconstruct the external disturbances. By leveraging barrier and PPTA functions, a PTDO-based reduced-attitude tracking controller is developed, which ensures prescribed-time boresight tracking within a ``safe tube''. By judiciously setting the safety margins, settling times, and safe tube for the guidance and control laws, the proposed IBGC scheme achieves pointing-constrained boresight reorientation within a required task completion time. Simulation and experimental results demonstrate the efficacy of the proposed IBGC scheme.
Improving Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Large Language Model-based Decision-making for COLREGs and the Control of Autonomous Surface Vehicles
In the field of autonomous surface vehicles (ASVs), devising decision-making and obstacle avoidance solutions that address maritime COLREGs (Collision Regulations), primarily defined for human operators, has long been a pressing challenge. Recent advancements in explainable Artificial Intelligence (AI) and machine learning have shown promise in enabling human-like decision-making. Notably, significant developments have occurred in the application of Large Language Models (LLMs) to the decision-making of complex systems, such as self-driving cars. The textual and somewhat ambiguous nature of COLREGs (from an algorithmic perspective), however, poses challenges that align well with the capabilities of LLMs, suggesting that LLMs may become increasingly suitable for this application soon. This paper presents and demonstrates the first application of LLM-based decision-making and control for ASVs. The proposed method establishes a high-level decision-maker that uses online collision risk indices and key measurements to make decisions for safe manoeuvres. A tailored design and runtime structure is developed to support training and real-time action generation on a realistic ASV model. Local planning and control algorithms are integrated to execute the commands for waypoint following and collision avoidance at a lower level. To the authors' knowledge, this study represents the first attempt to apply explainable AI to the dynamic control problem of maritime systems recognising the COLREGs rules, opening new avenues for research in this challenging area. Results obtained across multiple test scenarios demonstrate the system's ability to maintain online COLREGs compliance, accurate waypoint tracking, and feasible control, while providing human-interpretable reasoning for each decision.
comment: This work has been accepted for publication at European Control Conference 2025, \c{opyright} IEEE 2025. Please cite the published version when available
PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data. Furthermore, results show that the threshold used can have a large influence on detection performance, hence more work needs to be invested in methods to find a suitable threshold without the need for labelled data.
comment: Submitted to the Big Data Research journal
A robot-assisted pipeline to rapidly scan 1.7 million historical aerial photographs
During the 20th Century, aerial surveys captured hundreds of millions of high-resolution photographs of the earth's surface. These images, the precursors to modern satellite imagery, represent an extraordinary visual record of the environmental and social upheavals of the 20th Century. However, most of these images currently languish in physical archives where retrieval is difficult and costly. Digitization could revolutionize access, but manual scanning is slow and expensive. Here, we describe and validate a novel robot-assisted pipeline that increases worker productivity in scanning 30-fold, applied at scale to digitize an archive of 1.7 million historical aerial photographs from 65 countries.
Direct Adaptive Control of Grid-Connected Power Converters via Output-Feedback Data-Enabled Policy Optimization
Power electronic converters are becoming the main components of modern power systems due to the increasing integration of renewable energy sources. However, power converters may become unstable when interacting with the complex and time-varying power grid. In this paper, we propose an adaptive data-driven control method to stabilize power converters by using only online input-output data. Our contributions are threefold. First, we reformulate the output-feedback control problem as a state-feedback linear quadratic regulator (LQR) problem with a controllable non-minimal state, which can be constructed from past input-output signals. Second, we propose a data-enabled policy optimization (DeePO) method for this non-minimal realization to achieve efficient output-feedback adaptive control. Third, we use high-fidelity simulations to verify that the output-feedback DeePO can effectively stabilize grid-connected power converters and quickly adapt to the changes in the power grid.
Convergence Theory of Flexible ALADIN for Distributed Optimization
The Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method is a cutting-edge distributed optimization algorithm known for its superior numerical performance. It relies on each agent transmitting information to a central coordinator for data exchange. However, in practical network optimization and federated learning, unreliable information transmission often leads to packet loss, posing challenges for the convergence analysis of ALADIN. To address this issue, this paper proposes Flexible ALADIN, a random polling variant of ALADIN, and presents a rigorous convergence analysis, including global convergence for convex problems and local convergence for non-convex problems.
Real-time Tracking System with Partially Coupled Sources
We consider a pull-based real-time tracking system consisting of multiple partially coupled sources and a sink. The sink monitors the sources in real-time and can request one source for an update at each time instant. The sources send updates over an unreliable wireless channel. The sources are partially coupled, and updates about one source can provide partial knowledge about other sources. We study the problem of minimizing the sum of an average distortion function and a transmission cost. Since the controller is at the sink side, the controller (sink) has only partial knowledge about the source states, and thus, we model the problem as a partially observable Markov decision process (POMDP) and then cast it as a belief-MDP problem. Using the relative value iteration algorithm, we solve the problem and propose a control policy. Simulation results show the proposed policy's effectiveness and superiority compared to a baseline policy.
Loop Shaping of Hybrid Motion Control with Contact Transition
A standard motion control with feedback of the output displacement cannot handle unforeseen contact with environment without penetrating into the soft, i.e. viscoelastic, materials or even damaging the fragile materials. Robotics and mechatronics with tactile and haptic capabilities, and in particular medical robotics for example, place special demands on the advanced motion control systems that should enable the safe and harmless contact transitions. This paper shows how the basic principles of loop shaping can be easily used to handle sufficiently stiff motion control in such a way that it is extended by sensor-free dynamic reconfiguration upon contact with the environment. A thereupon based hybrid control scheme is proposed. A remarkable feature of the developed approach is that no measurement of the contact force is required and the input signal and the measured output displacement are the only quantities used for design and operation. Experiments on 1-DOF actuator are shown, where the moving tool comes into contact with grapes that are soft and simultaneously penetrable.
comment: 6 pages, 8 figures
Impulsive Relative Motion Control with Continuous-Time Constraint Satisfaction for Cislunar Space Missions
Recent investments in cislunar applications open new frontiers for space missions within highly nonlinear dynamical regimes. In this paper, we propose a method based on Sequential Convex Programming (SCP) to loiter around a given target with impulsive actuation while satisfying path constraints continuously over the finite time-horizon, i.e., independently of the number of nodes in which domain is discretized. Location, timing, magnitude, and direction of a fixed number of impulses are optimized in a model predictive framework, exploiting the exact nonlinear dynamics of non-stationary orbital regimes. The proposed approach is first validated on a relative orbiting problem with respect to a selenocentric near rectilinear halo orbit. The approach is then compared to a formulation with path constraints imposed only at nodes and with mesh refined to ensure complete satisfaction of path constraints over the continuous-time horizon. CPU time per iteration of 400 ms for the refined-mesh approach reduce to 5.5 ms for the proposed approach.
Zero-Order Control Barrier Functions for Sampled-Data Systems with State and Input Dependent Safety Constraints
We propose a novel zero-order control barrier function (ZOCBF) for sampled-data systems to ensure system safety. Our formulation generalizes conventional control barrier functions and straightforwardly handles safety constraints with high-relative degrees or those that explicitly depend on both system states and inputs. The proposed ZOCBF condition does not require any differentiation operation. Instead, it involves computing the difference of the ZOCBF values at two consecutive sampling instants. We propose three numerical approaches to enforce the ZOCBF condition, tailored to different problem settings and available computational resources. We demonstrate the effectiveness of our approach through a collision avoidance example and a rollover prevention example on uneven terrains.
comment: To present at ACC 2025
On the Loewner framework, the Kolmogorov superposition theorem, and the curse of dimensionality
The Loewner framework is an interpolatory approach for the approximation of linear and nonlinear systems. The purpose here is to extend this framework to linear parametric systems with an arbitrary number n of parameters. To achieve this, a new generalized multivariate rational function realization is proposed. Then, we introduce the n-dimensional multivariate Loewner matrices and show that they can be computed by solving a set of coupled Sylvester equations. The null space of these Loewner matrices allows the construction of the multivariate barycentric rational function. The principal result of this work is to show how the null space of the n-dimensional Loewner matrix can be computed using a sequence of 1-dimensional Loewner matrices, leading to a drastic reduction of the computational burden. Equally importantly, this burden is alleviated by avoiding the explicit construction of large-scale n-dimensional Loewner matrices of size $N \times N$. Instead, the proposed methodology achieves decoupling of variables, leading to (i) a complexity reduction from $O(N^3)$ to below $O(N^{1.5})$ when $n > 5$ and (ii) to memory storage bounded by the largest variable dimension rather than their product, thus taming the curse of dimensionality and making the solution scalable to very large data sets. This decoupling of the variables leads to a result similar to the Kolmogorov superposition theorem for rational functions. Thus, making use of barycentric representations, every multivariate rational function can be computed using the composition and superposition of single-variable functions. Finally, we suggest two algorithms (one direct and one iterative) to construct, directly from data, multivariate (or parametric) realizations ensuring (approximate) interpolation. Numerical examples highlight the effectiveness and scalability of the method.
comment: 31 pages, 4 figures
Control Node Placement and Structural Controllability of Water Quality Dynamics in Drinking Networks
Chlorine, the most widely used disinfectant, needs to be adequately distributed in water distribution networks (WDNs) to maintain consistent residual levels and ensure water safety. This is performed through control node injections at the treatment plant via booster stations scattered in WDNs. While previous studies have applied various optimization metrics for booster station placement, many have failed to consider the coverage of the station injections and the dynamic nature of WDNs. In particular, variations in hydraulics and demand significantly impact the reachability and efficacy of chlorine injections which then impact optimal placement of booster stations. This study introduces a novel formulation that combines control- and graph-theoretic approaches to solve the booster station placement problem. Unlike traditional methods, our approach emphasizes maximizing the system's ability to control disinfectant levels with minimal energy, taking into account the time-varying hydraulic profiles that lead to different optimal station placements. We propose a simple weighting technique to determine the placements by assessing the structural controllability of each configuration, based on the network's topology and independent of specific parameters like decay rates or pipe roughness. This method ensures effective chlorine coverage across the network. Our approach is validated on different networks, demonstrating its operational effectiveness, scalability, and practicality.
Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures
Robotics
Using Physiological Measures, Gaze, and Facial Expressions to Model Human Trust in a Robot Partner ICRA
With robots becoming increasingly prevalent in various domains, it has become crucial to equip them with tools to achieve greater fluency in interactions with humans. One of the promising areas for further exploration lies in human trust. A real-time, objective model of human trust could be used to maximize productivity, preserve safety, and mitigate failure. In this work, we attempt to use physiological measures, gaze, and facial expressions to model human trust in a robot partner. We are the first to design an in-person, human-robot supervisory interaction study to create a dedicated trust dataset. Using this dataset, we train machine learning algorithms to identify the objective measures that are most indicative of trust in a robot partner, advancing trust prediction in human-robot interactions. Our findings indicate that a combination of sensor modalities (blood volume pulse, electrodermal activity, skin temperature, and gaze) can enhance the accuracy of detecting human trust in a robot partner. Furthermore, the Extra Trees, Random Forest, and Decision Trees classifiers exhibit consistently better performance in measuring the person's trust in the robot partner. These results lay the groundwork for constructing a real-time trust model for human-robot interaction, which could foster more efficient interactions between humans and robots.
comment: Accepted at the IEEE International Conference on Robotics and Automation (ICRA), 2025
RobustDexGrasp: Robust Dexterous Grasping of General Objects from Single-view Perception
Robust grasping of various objects from single-view perception is fundamental for dexterous robots. Previous works often rely on fully observable objects, expert demonstrations, or static grasping poses, which restrict their generalization ability and adaptability to external disturbances. In this paper, we present a reinforcement-learning-based framework that enables zero-shot dynamic dexterous grasping of a wide range of unseen objects from single-view perception, while performing adaptive motions to external disturbances. We utilize a hand-centric object representation for shape feature extraction that emphasizes interaction-relevant local shapes, enhancing robustness to shape variance and uncertainty. To enable effective hand adaptation to disturbances with limited observations, we propose a mixed curriculum learning strategy, which first utilizes imitation learning to distill a policy trained with privileged real-time visual-tactile feedback, and gradually transfers to reinforcement learning to learn adaptive motions under disturbances caused by observation noises and dynamic randomization. Our experiments demonstrate strong generalization in grasping unseen objects with random poses, achieving success rates of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects. We also demonstrate the robustness of our method to various disturbances, including unobserved object movement and external forces, through both quantitative and qualitative evaluations. Project Page: https://zdchan.github.io/Robust_DexGrasp/
comment: Project Page: https://zdchan.github.io/Robust_DexGrasp/
Vision-Language Model Predictive Control for Manipulation Planning and Trajectory Generation
Model Predictive Control (MPC) is a widely adopted control paradigm that leverages predictive models to estimate future system states and optimize control inputs accordingly. However, while MPC excels in planning and control, it lacks the capability for environmental perception, leading to failures in complex and unstructured scenarios. To address this limitation, we introduce Vision-Language Model Predictive Control (VLMPC), a robotic manipulation planning framework that integrates the perception power of vision-language models (VLMs) with MPC. VLMPC utilizes a conditional action sampling module that takes a goal image or language instruction as input and leverages VLM to generate candidate action sequences. These candidates are fed into a video prediction model that simulates future frames based on the actions. In addition, we propose an enhanced variant, Traj-VLMPC, which replaces video prediction with motion trajectory generation to reduce computational complexity while maintaining accuracy. Traj-VLMPC estimates motion dynamics conditioned on the candidate actions, offering a more efficient alternative for long-horizon tasks and real-time applications. Both VLMPC and Traj-VLMPC select the optimal action sequence using a VLM-based hierarchical cost function that captures both pixel-level and knowledge-level consistency between the current observation and the task input. We demonstrate that both approaches outperform existing state-of-the-art methods on public benchmarks and achieve excellent performance in various real-world robotic manipulation tasks. Code is available at https://github.com/PPjmchen/VLMPC.
Reducing the Communication of Distributed Model Predictive Control: Autoencoders and Formation Control
Communication remains a key factor limiting the applicability of distributed model predictive control (DMPC) in realistic settings, despite advances in wireless communication. DMPC schemes can require an overwhelming amount of information exchange between agents as the amount of data depends on the length of the predication horizon, for which some applications require a significant length to formally guarantee nominal asymptotic stability. This work aims to provide an approach to reduce the communication effort of DMPC by reducing the size of the communicated data between agents. Using an autoencoder, the communicated data is reduced by the encoder part of the autoencoder prior to communication and reconstructed by the decoder part upon reception within the distributed optimization algorithm that constitutes the DMPC scheme. The choice of a learning-based reduction method is motivated by structure inherent to the data, which results from the data's connection to solutions of optimal control problems. The approach is implemented and tested at the example of formation control of differential-drive robots, which is challenging for optimization-based control due to the robots' nonholonomic constraints, and which is interesting due to the practical importance of mobile robotics. The applicability of the proposed approach is presented first in form of a simulative analysis showing that the resulting control performance yields a satisfactory accuracy. In particular, the proposed approach outperforms the canonical naive way to reduce communication by reducing the length of the prediction horizon. Moreover, it is shown that numerical experiments conducted on embedded computation hardware, with real distributed computation and wireless communication, work well with the proposed way of reducing communication even in practical scenarios in which full communication fails.
comment: 25 pages, 15 figures
Stereo-LiDAR Fusion by Semi-Global Matching With Discrete Disparity-Matching Cost and Semidensification
We present a real-time, non-learning depth estimation method that fuses Light Detection and Ranging (LiDAR) data with stereo camera input. Our approach comprises three key techniques: Semi-Global Matching (SGM) stereo with Discrete Disparity-matching Cost (DDC), semidensification of LiDAR disparity, and a consistency check that combines stereo images and LiDAR data. Each of these components is designed for parallelization on a GPU to realize real-time performance. When it was evaluated on the KITTI dataset, the proposed method achieved an error rate of 2.79\%, outperforming the previous state-of-the-art real-time stereo-LiDAR fusion method, which had an error rate of 3.05\%. Furthermore, we tested the proposed method in various scenarios, including different LiDAR point densities, varying weather conditions, and indoor environments, to demonstrate its high adaptability. We believe that the real-time and non-learning nature of our method makes it highly practical for applications in robotics and automation.
comment: 8 pages, 8 figures, 7 tables
TDFANet: Encoding Sequential 4D Radar Point Clouds Using Trajectory-Guided Deformable Feature Aggregation for Place Recognition ICRA 2025
Place recognition is essential for achieving closed-loop or global positioning in autonomous vehicles and mobile robots. Despite recent advancements in place recognition using 2D cameras or 3D LiDAR, it remains to be seen how to use 4D radar for place recognition - an increasingly popular sensor for its robustness against adverse weather and lighting conditions. Compared to LiDAR point clouds, radar data are drastically sparser, noisier and in much lower resolution, which hampers their ability to effectively represent scenes, posing significant challenges for 4D radar-based place recognition. This work addresses these challenges by leveraging multi-modal information from sequential 4D radar scans and effectively extracting and aggregating spatio-temporal features.Our approach follows a principled pipeline that comprises (1) dynamic points removal and ego-velocity estimation from velocity property, (2) bird's eye view (BEV) feature encoding on the refined point cloud, (3) feature alignment using BEV feature map motion trajectory calculated by ego-velocity, (4) multi-scale spatio-temporal features of the aligned BEV feature maps are extracted and aggregated.Real-world experimental results validate the feasibility of the proposed method and demonstrate its robustness in handling dynamic environments. Source codes are available.
comment: 8 pages, 4 figures. Accepted to ICRA 2025
Speech-to-Trajectory: Learning Human-Like Verbal Guidance for Robot Motion
Full integration of robots into real-life applications necessitates their ability to interpret and execute natural language directives from untrained users. Given the inherent variability in human language, equivalent directives may be phrased differently, yet require consistent robot behavior. While Large Language Models (LLMs) have advanced language understanding, they often falter in handling user phrasing variability, rely on predefined commands, and exhibit unpredictable outputs. This letter introduces the Directive Language Model (DLM), a novel speech-to-trajectory framework that directly maps verbal commands to executable motion trajectories, bypassing predefined phrases. DLM utilizes Behavior Cloning (BC) on simulated demonstrations of human-guided robot motion. To enhance generalization, GPT-based semantic augmentation generates diverse paraphrases of training commands, labeled with the same motion trajectory. DLM further incorporates a diffusion policy-based trajectory generation for adaptive motion refinement and stochastic sampling. In contrast to LLM-based methods, DLM ensures consistent, predictable motion without extensive prompt engineering, facilitating real-time robotic guidance. As DLM learns from trajectory data, it is embodiment-agnostic, enabling deployment across diverse robotic platforms. Experimental results demonstrate DLM's improved command generalization, reduced dependence on structured phrasing, and achievement of human-like motion.
Segmented Trajectory Optimization for Autonomous Parking in Unstructured Environments IROS 2025
This paper presents a Segmented Trajectory Optimization (STO) method for autonomous parking, which refines an initial trajectory into a dynamically feasible and collision-free one using an iterative SQP-based approach. STO maintains the maneuver strategy of the high-level global planner while allowing curvature discontinuities at switching points to improve maneuver efficiency. To ensure safety, a convex corridor is constructed via GJK-accelerated ellipse shrinking and expansion, serving as safety constraints in each iteration. Numerical simulations in perpendicular and reverse-angled parking scenarios demonstrate that STO enhances maneuver efficiency while ensuring safety. Moreover, computational performance confirms its practicality for real-world applications.
comment: 8 pages, 6 figures, submitted to IROS 2025
CloSE: A Compact Shape- and Orientation-Agnostic Cloth State Representation
Cloth manipulation is a difficult problem mainly because of the non-rigid nature of cloth, which makes a good representation of deformation essential. We present a new representation for the deformation-state of clothes. First, we propose the dGLI disk representation, based on topological indices computed for segments on the edges of the cloth mesh border that are arranged on a circular grid. The heat-map of the dGLI disk uncovers patterns that correspond to features of the cloth state that are consistent for different shapes, sizes of positions of the cloth, like the corners and the fold locations. We then abstract these important features from the dGLI disk onto a circle, calling it the Cloth StatE representation (CloSE). This representation is compact, continuous, and general for different shapes. Finally, we show the strengths of this representation in two relevant applications: semantic labeling and high- and low-level planning. The code, the dataset and the video can be accessed from : https://jaykamat99.github.io/close-representation
CONCERT: a Modular Reconfigurable Robot for Construction
This paper presents CONCERT, a fully reconfigurable modular collaborative robot (cobot) for multiple on-site operations in a construction site. CONCERT has been designed to support human activities in construction sites by leveraging two main characteristics: high-power density motors and modularity. In this way, the robot is able to perform a wide range of highly demanding tasks by acting as a co-worker of the human operator or by autonomously executing them following user instructions. Most of its versatility comes from the possibility of rapidly changing its kinematic structure by adding or removing passive or active modules. In this way, the robot can be set up in a vast set of morphologies, consequently changing its workspace and capabilities depending on the task to be executed. In the same way, distal end-effectors can be replaced for the execution of different operations. This paper also includes a full description of the software pipeline employed to automatically discover and deploy the robot morphology. Specifically, depending on the modules installed, the robot updates the kinematic, dynamic, and geometric parameters, taking into account the information embedded in each module. In this way, we demonstrate how the robot can be fully reassembled and made operational in less than ten minutes. We validated the CONCERT robot across different use cases, including drilling, sanding, plastering, and collaborative transportation with obstacle avoidance, all performed in a real construction site scenario. We demonstrated the robot's adaptivity and performance in multiple scenarios characterized by different requirements in terms of power and workspace. CONCERT has been designed and built by the Humanoid and Human-Centered Mechatronics Laboratory (HHCM) at the Istituto Italiano di Tecnologia in the context of the European Project Horizon 2020 CONCERT.
comment: The paper is currently under review at the Journal of Field Robotics. We will update the related information in case of acceptance
Wavelet Policy: Imitation Policy Learning in Frequency Domain with Wavelet Transforms
Recent imitation learning policies, often framed as time series prediction tasks, directly map robotic observations-such as high-dimensional visual data and proprioception-into the action space. While time series prediction primarily relies on spatial domain modeling, the underutilization of frequency domain analysis in robotic manipulation trajectory prediction may lead to neglecting the inherent temporal information embedded within action sequences. To address this, we reframe imitation learning policies through the lens of the frequency domain and introduce the Wavelet Policy. This novel approach employs wavelet transforms (WT) for feature preprocessing and extracts multi-scale features from the frequency domain using the SE2MD (Single Encoder to Multiple Decoder) architecture. Furthermore, to enhance feature mapping in the frequency domain and increase model capacity, we introduce a Learnable Frequency-Domain Filter (LFDF) after each frequency decoder, improving adaptability under different visual conditions. Our results show that the Wavelet Policy outperforms state-of-the-art (SOTA) end-to-end methods by over 10% on four challenging robotic arm tasks, while maintaining a comparable parameter count. In long-range settings, its performance declines more slowly as task volume increases. The code will be publicly available.
A High-Force Gripper with Embedded Multimodal Sensing for Powerful and Perception Driven Grasping
Modern humanoid robots have shown their promising potential for executing various tasks involving the grasping and manipulation of objects using their end-effectors. Nevertheless, in the most of the cases, the grasping and manipulation actions involve low to moderate payload and interaction forces. This is due to limitations often presented by the end-effectors, which can not match their arm-reachable payload, and hence limit the payload that can be grasped and manipulated. In addition, grippers usually do not embed adequate perception in their hardware, and grasping actions are mainly driven by perception sensors installed in the rest of the robot body, frequently affected by occlusions due to the arm motions during the execution of the grasping and manipulation tasks. To address the above, we developed a modular high grasping force gripper equipped with embedded multi-modal perception functionalities. The proposed gripper can generate a grasping force of 110 N in a compact implementation. The high grasping force capability is combined with embedded multi-modal sensing, which includes an eye-in-hand camera, a Time-of-Flight (ToF) distance sensor, an Inertial Measurement Unit (IMU) and an omnidirectional microphone, permitting the implementation of perception-driven grasping functionalities. We extensively evaluated the grasping force capacity of the gripper by introducing novel payload evaluation metrics that are a function of the robot arm's dynamic motion and gripper thermal states. We also evaluated the embedded multi-modal sensing by performing perception-guided enhanced grasping operations.
comment: 8 pages, 15 figures
A Taxonomy of Self-Handover
Self-handover, transferring an object between one's own hands, is a common but understudied bimanual action. While it facilitates seamless transitions in complex tasks, the strategies underlying its execution remain largely unexplored. Here, we introduce the first systematic taxonomy of self-handover, derived from manual annotation of over 12 hours of cooking activity performed by 21 participants. Our analysis reveals that self-handover is not merely a passive transition, but a highly coordinated action involving anticipatory adjustments by both hands. As a step toward automated analysis of human manipulation, we further demonstrate the feasibility of classifying self-handover types using a state-of-the-art vision-language model. These findings offer fresh insights into bimanual coordination, underscoring the role of self-handover in enabling smooth task transitions-an ability essential for adaptive dual-arm robotics.
comment: 8 pages, 8 figures, 1 table, Last updated on April 7th, 2025
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Gaussian Process Motion Planning (GPMP) is a widely used framework for generating smooth trajectories within a limited compute time--an essential requirement in many robotic applications. However, traditional GPMP approaches often struggle with enforcing hard nonlinear constraints and rely on Maximum a Posteriori (MAP) solutions that disregard the full Bayesian posterior. This limits planning diversity and ultimately hampers decision-making. Recent efforts to integrate Stein Variational Gradient Descent (SVGD) into motion planning have shown promise in handling complex constraints. Nonetheless, these methods still face persistent challenges, such as difficulties in strictly enforcing constraints and inefficiencies when the probabilistic inference problem is poorly conditioned. To address these issues, we propose a novel constrained Stein Variational Gaussian Process Motion Planning (cSGPMP) framework, incorporating a GPMP prior specifically designed for trajectory optimization under hard constraints. Our approach improves the efficiency of particle-based inference while explicitly handling nonlinear constraints. This advancement significantly broadens the applicability of GPMP to motion planning scenarios demanding robust Bayesian inference, strict constraint adherence, and computational efficiency within a limited time. We validate our method on standard benchmarks, achieving an average success rate of 98.57% across 350 planning tasks, significantly outperforming competitive baselines. This demonstrates the ability of our method to discover and use diverse trajectory modes, enhancing flexibility and adaptability in complex environments, and delivering significant improvements over standard baselines without incurring major computational costs.
On Scenario Formalisms for Automated Driving
The concept of scenario and its many qualifications -- specifically logical and abstract scenarios -- have emerged as a foundational element in safeguarding automated driving systems. However, the original linguistic definitions of the different scenario qualifications were often applied ambiguously, leading to a divergence between scenario description languages proposed or standardized in practice and their terminological foundation. This resulted in confusion about the unique features as well as strengths and weaknesses of logical and abstract scenarios. To alleviate this, we give clear linguistic definitions for the scenario qualifications concrete, logical, and abstract scenario and propose generic, unifying formalisms using curves, mappings to sets of curves, and temporal logics, respectively. We demonstrate that these formalisms allow pinpointing strengths and weaknesses precisely by comparing expressiveness, specification complexity, sampling, and monitoring of logical and abstract scenarios. Our work hence enables the practitioner to comprehend the different scenario qualifications and identify a suitable formalism.
GAMDTP: Dynamic Trajectory Prediction with Graph Attention Mamba Network
Accurate motion prediction of traffic agents is crucial for the safety and stability of autonomous driving systems. In this paper, we introduce GAMDTP, a novel graph attention-based network tailored for dynamic trajectory prediction. Specifically, we fuse the result of self attention and mamba-ssm through a gate mechanism, leveraging the strengths of both to extract features more efficiently and accurately, in each graph convolution layer. GAMDTP encodes the high-definition map(HD map) data and the agents' historical trajectory coordinates and decodes the network's output to generate the final prediction results. Additionally, recent approaches predominantly focus on dynamically fusing historical forecast results and rely on two-stage frameworks including proposal and refinement. To further enhance the performance of the two-stage frameworks we also design a scoring mechanism to evaluate the prediction quality during the proposal and refinement processes. Experiments on the Argoverse dataset demonstrates that GAMDTP achieves state-of-the-art performance, achieving superior accuracy in dynamic trajectory prediction.
Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM IROS 2025
Simultaneous localization and mapping (SLAM) technology now has photorealistic mapping capabilities thanks to the real-time high-fidelity rendering capability of 3D Gaussian splatting (3DGS). However, due to the static representation of scenes, current 3DGS-based SLAM encounters issues with pose drift and failure to reconstruct accurate maps in dynamic environments. To address this problem, we present D4DGS-SLAM, the first SLAM method based on 4DGS map representation for dynamic environments. By incorporating the temporal dimension into scene representation, D4DGS-SLAM enables high-quality reconstruction of dynamic scenes. Utilizing the dynamics-aware InfoModule, we can obtain the dynamics, visibility, and reliability of scene points, and filter stable static points for tracking accordingly. When optimizing Gaussian points, we apply different isotropic regularization terms to Gaussians with varying dynamic characteristics. Experimental results on real-world dynamic scene datasets demonstrate that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
comment: This paper is currently under reviewed for IROS 2025
Embodied Perception for Test-time Grasping Detection Adaptation with Knowledge Infusion
It has always been expected that a robot can be easily deployed to unknown scenarios, accomplishing robotic grasping tasks without human intervention. Nevertheless, existing grasp detection approaches are typically off-body techniques and are realized by training various deep neural networks with extensive annotated data support. {In this paper, we propose an embodied test-time adaptation framework for grasp detection that exploits the robot's exploratory capabilities.} The framework aims to improve the generalization performance of grasping skills for robots in an unforeseen environment. Specifically, we introduce embodied assessment criteria based on the robot's manipulation capability to evaluate the quality of the grasp detection and maintain suitable samples. This process empowers the robots to actively explore the environment and continuously learn grasping skills, eliminating human intervention. Besides, to improve the efficiency of robot exploration, we construct a flexible knowledge base to provide context of initial optimal viewpoints. Conditioned on the maintained samples, the grasp detection networks can be adapted in the test-time scene. When the robot confronts new objects, it will undergo the same adaptation procedure mentioned above to realize continuous learning. Extensive experiments conducted on a real-world robot demonstrate the effectiveness and generalization of our proposed framework.
BayesCPF: Enabling Collective Perception in Robot Swarms with Degrading Sensors
The collective perception problem -- where a group of robots perceives its surroundings and comes to a consensus on an environmental state -- is a fundamental problem in swarm robotics. Past works studying collective perception use either an entire robot swarm with perfect sensing or a swarm with only a handful of malfunctioning members. A related study proposed an algorithm that does account for an entire swarm of unreliable robots but assumes that the sensor faults are known and remain constant over time. To that end, we build on that study by proposing the Bayes Collective Perception Filter (BayesCPF) that enables robots with continuously degrading sensors to accurately estimate the fill ratio -- the rate at which an environmental feature occurs. Our main contribution is the Extended Kalman Filter within the BayesCPF, which helps swarm robots calibrate for their time-varying sensor degradation. We validate our method across different degradation models, initial conditions, and environments in simulated and physical experiments. Our findings show that, regardless of degradation model assumptions, fill ratio estimation using the BayesCPF is competitive to the case if the true sensor accuracy is known, especially when assumptions regarding the model and initial sensor accuracy levels are preserved.
comment: 20 pages, 14 figures
Extended URDF: Accounting for parallel mechanism in robot description
Robotic designs played an important role in recent advances by providing powerful robots with complex mechanics. Many recent systems rely on parallel actuation to provide lighter limbs and allow more complex motion. However, these emerging architectures fall outside the scope of most used description formats, leading to difficulties when designing, storing, and sharing the models of these systems. This paper introduces an extension to the widely used Unified Robot Description Format (URDF) to support closed-loop kinematic structures. Our approach relies on augmenting URDF with minimal additional information to allow more efficient modeling of complex robotic systems while maintaining compatibility with existing design and simulation frameworks. This method sets the basic requirement for a description format to handle parallel mechanisms efficiently. We demonstrate the applicability of our approach by providing an open-source collection of parallel robots, along with tools for generating and parsing this extended description format. The proposed extension simplifies robot modeling, reduces redundancy, and improves usability for advanced robotic applications.
Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
Grounding 3D Object Affordance with Language Instructions, Visual Observations and Interactions CVPR 2025
Grounding 3D object affordance is a task that locates objects in 3D space where they can be manipulated, which links perception and action for embodied intelligence. For example, for an intelligent robot, it is necessary to accurately ground the affordance of an object and grasp it according to human instructions. In this paper, we introduce a novel task that grounds 3D object affordance based on language instructions, visual observations and interactions, which is inspired by cognitive science. We collect an Affordance Grounding dataset with Points, Images and Language instructions (AGPIL) to support the proposed task. In the 3D physical world, due to observation orientation, object rotation, or spatial occlusion, we can only get a partial observation of the object. So this dataset includes affordance estimations of objects from full-view, partial-view, and rotation-view perspectives. To accomplish this task, we propose LMAffordance3D, the first multi-modal, language-guided 3D affordance grounding network, which applies a vision-language model to fuse 2D and 3D spatial features with semantic features. Comprehensive experiments on AGPIL demonstrate the effectiveness and superiority of our method on this task, even in unseen experimental settings. Our project is available at https://sites.google.com/view/lmaffordance3d.
comment: CVPR 2025
Inverse++: Vision-Centric 3D Semantic Occupancy Prediction Assisted with 3D Object Detection
3D semantic occupancy prediction aims to forecast detailed geometric and semantic information of the surrounding environment for autonomous vehicles (AVs) using onboard surround-view cameras. Existing methods primarily focus on intricate inner structure module designs to improve model performance, such as efficient feature sampling and aggregation processes or intermediate feature representation formats. In this paper, we explore multitask learning by introducing an additional 3D supervision signal by incorporating an additional 3D object detection auxiliary branch. This extra 3D supervision signal enhances the model's overall performance by strengthening the capability of the intermediate features to capture small dynamic objects in the scene, and these small dynamic objects often include vulnerable road users, i.e. bicycles, motorcycles, and pedestrians, whose detection is crucial for ensuring driving safety in autonomous vehicles. Extensive experiments conducted on the nuScenes datasets, including challenging rainy and nighttime scenarios, showcase that our approach attains state-of-the-art results, achieving an IoU score of 31.73% and a mIoU score of 20.91% and excels at detecting vulnerable road users (VRU). The code will be made available at:https://github.com/DanielMing123/Inverse++
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
A dual quaternion-based control strategy for formation flying of small UAV groups is proposed. Through the definition of a virtual structure, the coordinated control of formation's position, orientation, and shape parameters is enabled. This abstraction simplifies formation management, allowing a low-level controller to compute commands for individual UAVs. The controller is divided into a pose control module and a geometry-based adaptive strategy, providing efficient and precise task execution. Simulation and experimental results validate the approach.
Lazy-DaSH: Lazy Approach for Hypergraph-based Multi-robot Task and Motion Planning
We introduce Lazy-DaSH, an improvement over the recent state of the art multi-robot task and motion planning method DaSH, which scales to more than double the number of robots and objects compared to the original method and achieves an order of magnitude faster planning time when applied to a multi-manipulator object rearrangement problem. We achieve this improvement through a hierarchical approach, where a high-level task planning layer identifies planning spaces required for task completion, and motion feasibility is validated lazily only within these spaces. In contrast, DaSH precomputes the motion feasibility of all possible actions, resulting in higher costs for constructing state space representations. Lazy-DaSH maintains efficient query performance by utilizing a constraint feedback mechanism within its hierarchical structure, ensuring that motion feasibility is effectively conveyed to the query process. By maintaining smaller state space representations, our method significantly reduces both representation construction time and query time. We evaluate Lazy-DaSH in four distinct scenarios, demonstrating its scalability to increasing numbers of robots and objects, as well as its adaptability in resolving conflicts through the constraint feedback mechanism.
Path Database Guidance for Motion Planning
One approach to using prior experience in robot motion planning is to store solutions to previously seen problems in a database of paths. Methods that use such databases are characterized by how they query for a path and how they use queries given a new problem. In this work we present a new method, Path Database Guidance (PDG), which innovates on existing work in two ways. First, we use the database to compute a heuristic for determining which nodes of a search tree to expand, in contrast to prior work which generally pastes the (possibly transformed) queried path or uses it to bias a sampling distribution. We demonstrate that this makes our method more easily composable with other search methods by dynamically interleaving exploration according to a baseline algorithm with exploitation of the database guidance. Second, in contrast to other methods that treat the database as a single fixed prior, our database (and thus our queried heuristic) updates as we search the implicitly defined robot configuration space. We experimentally demonstrate the effectiveness of PDG in a variety of explicitly defined environment distributions in simulation.
SPARK-Remote: A Cost-Effective System for Remote Bimanual Robot Teleoperation
Robot teleoperation enables human control over robotic systems in environments where full autonomy is challenging. Recent advancements in low-cost teleoperation devices and VR/AR technologies have expanded accessibility, particularly for bimanual robot manipulators. However, transitioning from in-person to remote teleoperation presents challenges in task performance. We introduce SPARK, a kinematically scaled, low-cost teleoperation system for operating bimanual robots. Its effectiveness is compared to existing technologies like the 3D SpaceMouse and VR/AR controllers. We further extend SPARK to SPARK-Remote, integrating sensor-based force feedback using haptic gloves and a force controller for remote teleoperation. We evaluate SPARK and SPARK-Remote variants on 5 bimanual manipulation tasks which feature operational properties - positional precision, rotational precision, large movements in the workspace, and bimanual collaboration - to test the effective teleoperation modes. Our findings offer insights into improving low-cost teleoperation interfaces for real-world applications. For supplementary materials, additional experiments, and qualitative results, visit the project webpage: https://bit.ly/41EfcJa
Trust Through Transparency: Explainable Social Navigation for Autonomous Mobile Robots via Vision-Language Models
Service and assistive robots are increasingly being deployed in dynamic social environments; however, ensuring transparent and explainable interactions remains a significant challenge. This paper presents a multimodal explainability module that integrates vision language models and heat maps to improve transparency during navigation. The proposed system enables robots to perceive, analyze, and articulate their observations through natural language summaries. User studies (n=30) showed a preference of majority for real-time explanations, indicating improved trust and understanding. Our experiments were validated through confusion matrix analysis to assess the level of agreement with human expectations. Our experimental and simulation results emphasize the effectiveness of explainability in autonomous navigation, enhancing trust and interpretability.
comment: Submitted to IEEE Conferences
BC-ADMM: An Efficient Non-convex Constrained Optimizer with Robotic Applications
Non-convex constrained optimizations are ubiquitous in robotic applications such as multi-agent navigation, UAV trajectory optimization, and soft robot simulation. For this problem class, conventional optimizers suffer from small step sizes and slow convergence. We propose BC-ADMM, a variant of Alternating Direction Method of Multiplier (ADMM), that can solve a class of non-convex constrained optimizations with biconvex constraint relaxation. Our algorithm allows larger step sizes by breaking the problem into small-scale sub-problems that can be easily solved in parallel. We show that our method has both theoretical convergence speed guarantees and practical convergence guarantees in the asymptotic sense. Through numerical experiments in a row of four robotic applications, we show that BC-ADMM has faster convergence than conventional gradient descent and Newton's method in terms of wall clock time.
EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach. The code and model checkpoints can be found here: https://github.com/continental/EP-Diffuser.
TRATSS: Transformer-Based Task Scheduling System for Autonomous Vehicles
Efficient scheduling remains a critical challenge in various domains, requiring solutions to complex NP-hard optimization problems to achieve optimal resource allocation and maximize productivity. In this paper, we introduce a framework called Transformer-Based Task Scheduling System (TRATSS), designed to address the intricacies of single agent scheduling in graph-based environments. By integrating the latest advancements in reinforcement learning and transformer architecture, TRATSS provides a novel system that outputs optimized task scheduling decisions while dynamically adapting to evolving task requirements and resource availability. Leveraging the self-attention mechanism in transformers, TRATSS effectively captures complex task dependencies, thereby providing solutions with enhanced resource utilization and task completion efficiency. Experimental evaluations on benchmark datasets demonstrate TRATSS's effectiveness in providing high-quality solutions to scheduling problems that involve multiple action profiles.
comment: 9 pages
Real-Time Model Predictive Control for the Swing-Up Problem of an Underactuated Double Pendulum
The 3rd AI Olympics with RealAIGym competition poses the challenge of developing a global policy that can swing up and stabilize an underactuated 2-link system Acrobot and/or Pendubot from any configuration in the state space. This paper presents an optimal control-based approach using a real-time Nonlinear Model Predictive Control (MPC). The results show that the controller achieves good performance and robustness and can reliably handle disturbances.
A Formalisation of the Purpose Framework: the Autonomy-Alignment Problem in Open-Ended Learning Robots
The unprecedented advancement of artificial intelligence enables the development of increasingly autonomous robots. These robots hold significant potential, particularly in moving beyond engineered factory settings to operate in the unstructured environments inhabited by humans. However, this possibility also generates a relevant autonomy-alignment problem to ensure that robots' autonomous learning processes still focus on acquiring knowledge relevant to accomplish human practical purposes, while their behaviour still aligns with their broader purposes. The literature has only begun to address this problem, and a conceptual, terminological, and formal framework is still lacking. Here we address one of the most challenging instances of the problem: autonomous open-ended learning (OEL) robots, capable of cumulatively acquiring new skills and knowledge through direct interaction with the environment, guided by self-generated goals and intrinsic motivations. In particular, we propose a computational framework, first introduced qualitatively and then formalised, to support the design of OEL robot architectures that balance autonomy and control. The framework pivots on the novel concept of purpose. A human purpose specifies what humans (e.g., designers or users) want the robot to learn, do or not do, within a certain boundary of autonomy and independently of the domains in which it operates.The framework decomposes the autonomy-alignment problem into more tractable sub-problems: the alignment of `robot purposes' with human purposes, either by hardwiring or through learning; the arbitration between multiple purposes; the grounding of purposes into specific domain-dependent robot goals; and the competence acquisition needed to accomplish these goals. The framework and its potential utility are further elucidated through the discussion of hypothetical example scenarios framed within it.
comment: 15 pages, 5 figures
CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
Nocturnal eye inspired liquid to gas phase change soft actuator with Laser-Induced-Graphene: enhanced environmental light harvesting and photothermal conversion
Robotic systems' mobility is constrained by power sources and wiring. While pneumatic actuators remain tethered to air supplies, we developed a new actuator utilizing light energy. Inspired by nocturnal animals' eyes, we designed a bilayer soft actuator incorporating Laser-Induced Graphene (LIG) on the inner surface of a silicone layer. This design maintains silicone's transparency and flexibility while achieving 54% faster response time compared to conventional actuators through enhanced photothermal conversion.
comment: 23pages, 8 figures, journal paper
STREAK: Streaming Network for Continual Learning of Object Relocations under Household Context Drifts
In real-world settings, robots are expected to assist humans across diverse tasks and still continuously adapt to dynamic changes over time. For example, in domestic environments, robots can proactively help users by fetching needed objects based on learned routines, which they infer by observing how objects move over time. However, data from these interactions are inherently non-independent and non-identically distributed (non-i.i.d.), e.g., a robot assisting multiple users may encounter varying data distributions as individuals follow distinct habits. This creates a challenge: integrating new knowledge without catastrophic forgetting. To address this, we propose STREAK (Spatio Temporal RElocation with Adaptive Knowledge retention), a continual learning framework for real-world robotic learning. It leverages a streaming graph neural network with regularization and rehearsal techniques to mitigate context drifts while retaining past knowledge. Our method is time- and memory-efficient, enabling long-term learning without retraining on all past data, which becomes infeasible as data grows in real-world interactions. We evaluate STREAK on the task of incrementally predicting human routines over 50+ days across different households. Results show that it effectively prevents catastrophic forgetting while maintaining generalization, making it a scalable solution for long-term human-robot interactions.
Learning to Adapt through Bio-Inspired Gait Strategies for Versatile Quadruped Locomotion
Deep reinforcement learning (DRL) has revolutionised quadruped robot locomotion, but existing control frameworks struggle to generalise beyond their training-induced observational scope, resulting in limited adaptability and gait proficiency. In contrast, animals achieve exceptional adaptability through gait transition strategies, diverse gait utilisation, and seamless adjustment to immediate environmental demands. Inspired by these capabilities, we present a novel DRL framework that incorporates key attributes of animal locomotion: gait transition strategies, pseudo gait procedural memory, and adaptive motion adjustments. This approach enables our framework to achieve unparalleled adaptability, demonstrated through blind zero-shot deployment on complex terrains and recovery from critically unstable states. Our findings offer valuable insights into the biomechanics of animal locomotion, paving the way for robust, adaptable robotic systems.
comment: 19 pages, 8 figures, journal paper
Open-Vocabulary Action Localization with Iterative Visual Prompting
Video action localization aims to find the timings of specific actions from a long video. Although existing learning-based approaches have been successful, they require annotating videos, which comes with a considerable labor cost. This paper proposes a training-free, open-vocabulary approach based on emerging off-the-shelf vision-language models (VLMs). The challenge stems from the fact that VLMs are neither designed to process long videos nor tailored for finding actions. We overcome these problems by extending an iterative visual prompting technique. Specifically, we sample video frames and create a concatenated image with frame index labels, allowing a VLM to identify the frames that most likely correspond to the start and end of the action. By iteratively narrowing the sampling window around the selected frames, the estimation gradually converges to more precise temporal boundaries. We demonstrate that this technique yields reasonable performance, achieving results comparable to state-of-the-art zero-shot action localization. These results support the use of VLMs as a practical tool for understanding videos. Sample code is available at https://microsoft.github.io/VLM-Video-Action-Localization/
comment: 9 pages, 5 figures, 6 tables. Published in IEEE Access. Last updated on April 7th, 2025
Distributed Motion Control of Multiple Mobile Manipulators for Reducing Interaction Wrench in Object Manipulation
In real-world cooperative manipulation of objects, multiple mobile manipulator systems may suffer from disturbances and asynchrony, leading to excessive interaction wrenches and potentially causing object damage or emergency stops. Existing methods often rely on torque control and dynamic models, which are uncommon in many industrial robots and settings. Additionally, dynamic models often neglect joint friction forces and are not accurate. These methods are challenging to implement and validate in physical systems. To address the problems, this paper presents a novel distributed motion control approach aimed at reducing these unnecessary interaction wrenches. The control law is only based on local information and joint velocity control to enhance practical applicability. The communication delays within the distributed architecture are considered. The stability of the control law is rigorously proven by the Lyapunov theorem. In the simulations, the effectiveness is shown, and the impact of communication graph connectivity and communication delays has been studied. A comparison with other methods shows the advantages of the proposed control law in terms of convergence speed and robustness. Finally, the control law has been validated in physical experiments. It does not require dynamic modeling or torque control, and thus is more user-friendly for physical robots.
Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
Towards Map-Agnostic Policies for Adaptive Informative Path Planning
Robots are frequently tasked to gather relevant sensor data in unknown terrains. A key challenge for classical path planning algorithms used for autonomous information gathering is adaptively replanning paths online as the terrain is explored given limited onboard compute resources. Recently, learning-based approaches emerged that train planning policies offline and enable computationally efficient online replanning performing policy inference. These approaches are designed and trained for terrain monitoring missions assuming a single specific map representation, which limits their applicability to different terrains. To address these issues, we propose a novel formulation of the adaptive informative path planning problem unified across different map representations, enabling training and deploying planning policies in a larger variety of monitoring missions. Experimental results validate that our novel formulation easily integrates with classical non-learning-based planning approaches while maintaining their performance. Our trained planning policy performs similarly to state-of-the-art map-specifically trained policies. We validate our learned policy on unseen real-world terrain datasets.
comment: 8 pages, 4 figures
HDVIO2.0: Wind and Disturbance Estimation with Hybrid Dynamics VIO
Visual-inertial odometry (VIO) is widely used for state estimation in autonomous micro aerial vehicles using onboard sensors. Current methods improve VIO by incorporating a model of the translational vehicle dynamics, yet their performance degrades when faced with low-accuracy vehicle models or continuous external disturbances, like wind. Additionally, incorporating rotational dynamics in these models is computationally intractable when they are deployed in online applications, e.g., in a closed-loop control system. We present HDVIO2.0, which models full 6-DoF, translational and rotational, vehicle dynamics and tightly incorporates them into a VIO with minimal impact on the runtime. HDVIO2.0 builds upon the previous work, HDVIO, and addresses these challenges through a hybrid dynamics model combining a point-mass vehicle model with a learning-based component, with access to control commands and IMU history, to capture complex aerodynamic effects. The key idea behind modeling the rotational dynamics is to represent them with continuous-time functions. HDVIO2.0 leverages the divergence between the actual motion and the predicted motion from the hybrid dynamics model to estimate external forces as well as the robot state. Our system surpasses the performance of state-of-the-art methods in experiments using public and new drone dynamics datasets, as well as real-world flights in winds up to 25 km/h. Unlike existing approaches, we also show that accurate vehicle dynamics predictions are achievable without precise knowledge of the full vehicle state.
Online POMDP Planning with Anytime Deterministic Optimality Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
Distortion Bounds of Subdivision Models for SO(3)
In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.
comment: 10 pages, 1 figure. Submitted to 3rd IMA Robotics Conferences, 2025
Reliable-loc: Robust sequential LiDAR global localization in large-scale street scenes based on verifiable cues
Wearable laser scanning (WLS) system has the advantages of flexibility and portability. It can be used for determining the user's path within a prior map, which is a huge demand for applications in pedestrian navigation, collaborative mapping, augmented reality, and emergency rescue. However, existing LiDAR-based global localization methods suffer from insufficient robustness, especially in complex large-scale outdoor scenes with insufficient features and incomplete coverage of the prior map. To address such challenges, we propose LiDAR-based reliable global localization (Reliable-loc) exploiting the verifiable cues in the sequential LiDAR data. First, we propose a Monte Carlo Localization (MCL) based on spatially verifiable cues, utilizing the rich information embedded in local features to adjust the particles' weights hence avoiding the particles converging to erroneous regions. Second, we propose a localization status monitoring mechanism guided by the sequential pose uncertainties and adaptively switching the localization mode using the temporal verifiable cues to avoid the crash of the localization system. To validate the proposed Reliable-loc, comprehensive experiments have been conducted on a large-scale heterogeneous point cloud dataset consisting of high-precision vehicle-mounted mobile laser scanning (MLS) point clouds and helmet-mounted WLS point clouds, which cover various street scenes with a length of over 30 km. The experimental results indicate that Reliable-loc exhibits high robustness, accuracy, and efficiency in large-scale, complex street scenes, with a position accuracy of 2.91 m, yaw accuracy of 3.74 degrees, and achieves real-time performance. For the code and detailed experimental results, please refer to https://github.com/zouxianghong/Reliable-loc.
SegSTRONG-C: Segmenting Surgical Tools Robustly On Non-adversarial Generated Corruptions -- An EndoVis'24 Challenge
Surgical data science has seen rapid advancement due to the excellent performance of end-to-end deep neural networks (DNNs) for surgical video analysis. Despite their successes, end-to-end DNNs have been proven susceptible to even minor corruptions, substantially impairing the model's performance. This vulnerability has become a major concern for the translation of cutting-edge technology, especially for high-stakes decision-making in surgical data science. We introduce SegSTRONG-C, a benchmark and challenge in surgical data science dedicated, aiming to better understand model deterioration under unforeseen but plausible non-adversarial corruption and the capabilities of contemporary methods that seek to improve it. Through comprehensive baseline experiments and participating submissions from widespread community engagement, SegSTRONG-C reveals key themes for model failure and identifies promising directions for improving robustness. The performance of challenge winners, achieving an average 0.9394 DSC and 0.9301 NSD across the unreleased test sets with corruption types: bleeding, smoke, and low brightness, shows inspiring improvement of 0.1471 DSC and 0.2584 NSD in average comparing to strongest baseline methods with UNet architecture trained with AutoAugment. In conclusion, the SegSTRONG-C challenge has identified some practical approaches for enhancing model robustness, yet most approaches relied on conventional techniques that have known, and sometimes quite severe, limitations. Looking ahead, we advocate for expanding intellectual diversity and creativity in non-adversarial robustness beyond data augmentation or training scale, calling for new paradigms that enhance universal robustness to corruptions and may enable richer applications in surgical data science.
Leveraging Sub-Optimal Data for Human-in-the-Loop Reinforcement Learning
To create useful reinforcement learning (RL) agents, step zero is to design a suitable reward function that captures the nuances of the task. However, reward engineering can be a difficult and time-consuming process. Instead, human-in-the-loop RL methods hold the promise of learning reward functions from human feedback. Despite recent successes, many of the human-in-the-loop RL methods still require numerous human interactions to learn successful reward functions. To improve the feedback efficiency of human-in-the-loop RL methods (i.e., require less human interaction), this paper introduces Sub-optimal Data Pre-training, SDP, an approach that leverages reward-free, sub-optimal data to improve scalar- and preference-based RL algorithms. In SDP, we start by pseudo-labeling all low-quality data with the minimum environment reward. Through this process, we obtain reward labels to pre-train our reward model without requiring human labeling or preferences. This pre-training phase provides the reward model a head start in learning, enabling it to recognize that low-quality transitions should be assigned low rewards. Through extensive experiments with both simulated and human teachers, we find that SDP can at least meet, but often significantly improve, state of the art human-in-the-loop RL performance across a variety of simulated robotic tasks.
GSCE: A Prompt Framework with Enhanced Reasoning for Reliable LLM-driven Drone Control
The integration of Large Language Models (LLMs) into robotic control, including drones, has the potential to revolutionize autonomous systems. Research studies have demonstrated that LLMs can be leveraged to support robotic operations. However, when facing tasks with complex reasoning, concerns and challenges are raised about the reliability of solutions produced by LLMs. In this paper, we propose a prompt framework with enhanced reasoning to enable reliable LLM-driven control for drones. Our framework consists of novel technical components designed using Guidelines, Skill APIs, Constraints, and Examples, namely GSCE. GSCE is featured by its reliable and constraint-compliant code generation. We performed thorough experiments using GSCE for the control of drones with a wide level of task complexities. Our experiment results demonstrate that GSCE can significantly improve task success rates and completeness compared to baseline approaches, highlighting its potential for reliable LLM-driven autonomous drone systems.
comment: 8 pages
DuoSpaceNet: Leveraging Both Bird's-Eye-View and Perspective View Representations for 3D Object Detection CVPR 2025
Multi-view camera-only 3D object detection largely follows two primary paradigms: exploiting bird's-eye-view (BEV) representations or focusing on perspective-view (PV) features, each with distinct advantages. Although several recent approaches explore combining BEV and PV, many rely on partial fusion or maintain separate detection heads. In this paper, we propose DuoSpaceNet, a novel framework that fully unifies BEV and PV feature spaces within a single detection pipeline for comprehensive 3D perception. Our design includes a decoder to integrate BEV and PV features into unified detection queries, as well as a feature enhancement strategy that enriches different feature representations. In addition, DuoSpaceNet can be extended to handle multi-frame inputs, enabling more robust temporal analysis. Extensive experiments on nuScenes dataset show that DuoSpaceNet surpasses both BEV-based baselines (e.g., BEVFormer) and PV-based baselines (e.g., Sparse4D) in 3D object detection and BEV map segmentation, verifying the effectiveness of our proposed design.
comment: CVPR 2025 Workshop on Autonomous Driving (WAD)
Multiagent Systems
Attention-Augmented Inverse Reinforcement Learning with Graph Convolutions for Multi-Agent Task Allocation
Multi-agent task allocation (MATA) plays a vital role in cooperative multi-agent systems, with significant implications for applications such as logistics, search and rescue, and robotic coordination. Although traditional deep reinforcement learning (DRL) methods have been shown to be promising, their effectiveness is hindered by a reliance on manually designed reward functions and inefficiencies in dynamic environments. In this paper, an inverse reinforcement learning (IRL)-based framework is proposed, in which multi-head self-attention (MHSA) and graph attention mechanisms are incorporated to enhance reward function learning and task execution efficiency. Expert demonstrations are utilized to infer optimal reward densities, allowing dependence on handcrafted designs to be reduced and adaptability to be improved. Extensive experiments validate the superiority of the proposed method over widely used multi-agent reinforcement learning (MARL) algorithms in terms of both cumulative rewards and task execution efficiency.
Joint Pedestrian and Vehicle Traffic Optimization in Urban Environments using Reinforcement Learning
Reinforcement learning (RL) holds significant promise for adaptive traffic signal control. While existing RL-based methods demonstrate effectiveness in reducing vehicular congestion, their predominant focus on vehicle-centric optimization leaves pedestrian mobility needs and safety challenges unaddressed. In this paper, we present a deep RL framework for adaptive control of eight traffic signals along a real-world urban corridor, jointly optimizing both pedestrian and vehicular efficiency. Our single-agent policy is trained using real-world pedestrian and vehicle demand data derived from Wi-Fi logs and video analysis. The results demonstrate significant performance improvements over traditional fixed-time signals, reducing average wait times per pedestrian and per vehicle by up to 67% and 52%, respectively, while simultaneously decreasing total accumulated wait times for both groups by up to 67% and 53%. Additionally, our results demonstrate generalization capabilities across varying traffic demands, including conditions entirely unseen during training, validating RL's potential for developing transportation systems that serve all road users.
Simulating Persuasive Dialogues on Meat Reduction with Generative Agents
Meat reduction benefits human and planetary health, but social norms keep meat central in shared meals. To date, the development of communication strategies that promote meat reduction while minimizing social costs has required the costly involvement of human participants at each stage of the process. We present work in progress on simulating multi-round dialogues on meat reduction between Generative Agents based on large language models (LLMs). We measure our main outcome using established psychological questionnaires based on the Theory of Planned Behavior and additionally investigate Social Costs. We find evidence that our preliminary simulations produce outcomes that are (i) consistent with theoretical expectations; and (ii) valid when compared to data from previous studies with human participants. Generative agent-based models are a promising tool for identifying novel communication strategies on meat reduction-tailored to highly specific participant groups-to then be tested in subsequent studies with human participants.
comment: Code available at https://github.com/dess-mannheim/MeatlessAgents
Large-Scale Mixed-Traffic and Intersection Control using Multi-agent Reinforcement Learning
Traffic congestion remains a significant challenge in modern urban networks. Autonomous driving technologies have emerged as a potential solution. Among traffic control methods, reinforcement learning has shown superior performance over traffic signals in various scenarios. However, prior research has largely focused on small-scale networks or isolated intersections, leaving large-scale mixed traffic control largely unexplored. This study presents the first attempt to use decentralized multi-agent reinforcement learning for large-scale mixed traffic control in which some intersections are managed by traffic signals and others by robot vehicles. Evaluating a real-world network in Colorado Springs, CO, USA with 14 intersections, we measure traffic efficiency via average waiting time of vehicles at intersections and the number of vehicles reaching their destinations within a time window (i.e., throughput). At 80% RV penetration rate, our method reduces waiting time from 6.17 s to 5.09 s and increases throughput from 454 vehicles per 500 seconds to 493 vehicles per 500 seconds, outperforming the baseline of fully signalized intersections. These findings suggest that integrating reinforcement learning-based control large-scale traffic can improve overall efficiency and may inform future urban planning strategies.
Autono: ReAct-Based Highly Robust Autonomous Agent Framework
This paper proposes a highly robust autonomous agent framework based on the ReAct paradigm, designed to solve complex tasks through adaptive decision making and multi-agent collaboration. Unlike traditional frameworks that rely on fixed workflows generated by LLM-based planners, this framework dynamically generates next actions during agent execution based on prior trajectories, thereby enhancing its robustness. To address potential termination issues caused by adaptive execution paths, I propose a timely abandonment strategy incorporating a probabilistic penalty mechanism. For multi-agent collaboration, I introduce a memory transfer mechanism that enables shared and dynamically updated memory among agents. The framework's innovative timely abandonment strategy dynamically adjusts the probability of task abandonment via probabilistic penalties, allowing developers to balance conservative and exploratory tendencies in agent execution strategies by tuning hyperparameters. This significantly improves adaptability and task execution efficiency in complex environments. Additionally, agents can be extended through external tool integration, supported by modular design and MCP protocol compatibility, which enables flexible action space expansion. Through explicit division of labor, the multi-agent collaboration mechanism enables agents to focus on specific task components, thereby significantly improving execution efficiency and quality.
comment: 10 pages, 3 figures
A Nature-Inspired Colony of Artificial Intelligence System with Fast, Detailed, and Organized Learner Agents for Enhancing Diversity and Quality
The concepts of convolutional neural networks (CNNs) and multi-agent systems are two important areas of research in artificial intelligence (AI). In this paper, we present an approach that builds a CNN-based colony of AI agents to serve as a single system and perform multiple tasks (e.g., predictions or classifications) in an environment. The proposed system impersonates the natural environment of a biological system, like an ant colony or a human colony. The proposed colony of AI that is defined as a role-based system uniquely contributes to accomplish tasks in an environment by incorporating AI agents that are fast learners, detailed learners, and organized learners. These learners can enhance their localized learning and their collective decisions as a single system of colony of AI agents. This approach also enhances the diversity and quality of the colony of AI with the help of Genetic Algorithms and their crossover and mutation mechanisms. The evolution of fast, detailed, and organized learners in the colony of AI is achieved by introducing a unique one-to-one mapping between these learners and the pretrained VGG16, VGG19, and ResNet50 models, respectively. This role-based approach creates two parent-AI agents using the AI models through the processes, called the intra- and inter-marriage of AI, so that they can share their learned knowledge (weights and biases) based on a probabilistic rule and produce diversified child-AI agents to perform new tasks. This process will form a colony of AI that consists of families of multi-model and mixture-model AI agents to improve diversity and quality. Simulations show that the colony of AI, built using the VGG16, VGG19, and ResNet50 models, can provide a single system that generates child-AI agents of excellent predictive performance, ranging between 82% and 95% of F1-scores, to make diversified collective and quality decisions on a task.
comment: 12 pages, 8 figures
Debate-Feedback: A Multi-Agent Framework for Efficient Legal Judgment Prediction
The use of AI in legal analysis and prediction (LegalAI) has gained widespread attention, with past research focusing on retrieval-based methods and fine-tuning large models. However, these approaches often require large datasets and underutilize the capabilities of modern large language models (LLMs). In this paper, inspired by the debate phase of real courtroom trials, we propose a novel legal judgment prediction model based on the Debate-Feedback architecture, which integrates LLM multi-agent debate and reliability evaluation models. Unlike traditional methods, our model achieves significant improvements in efficiency by minimizing the need for large historical datasets, thus offering a lightweight yet robust solution. Comparative experiments show that it outperforms several general-purpose and domain-specific legal models, offering a dynamic reasoning process and a promising direction for future LegalAI research.
A Replica for our Democracies? On Using Digital Twins to Enhance Deliberative Democracy
Deliberative democracy depends on carefully designed institutional frameworks, such as participant selection, facilitation methods, and decision-making mechanisms, that shape how deliberation occurs. However, determining which institutional design best suits a given context often proves difficult when relying solely on real-world observations or laboratory experiments, which can be resource intensive and hard to replicate. To address these challenges, this paper explores Digital Twin (DT) technology as a regulatory sandbox for deliberative democracy. DTs enable researchers and policymakers to run "what if" scenarios on varied deliberative designs in a controlled virtual environment by creating dynamic, computer based models that mirror real or synthetic data. This makes systematic analysis of the institutional design possible without the practical constraints of real world or lab-based settings. The paper also discusses the limitations of this approach and outlines key considerations for future research.
MA-DV2F: A Multi-Agent Navigation Framework using Dynamic Velocity Vector Field
In this paper we propose MA-DV2F: Multi-Agent Dynamic Velocity Vector Field. It is a framework for simultaneously controlling a group of vehicles in challenging environments. DV2F is generated for each vehicle independently and provides a map of reference orientation and speed that a vehicle must attain at any point on the navigation grid such that it safely reaches its target. The field is dynamically updated depending on the speed and proximity of the ego-vehicle to other agents. This dynamic adaptation of the velocity vector field allows prevention of imminent collisions. Experimental results show that MA-DV2F outperforms concurrent methods in terms of safety, computational efficiency and accuracy in reaching the target when scaling to a large number of vehicles. Project page for this work can be found here: https://yininghase.github.io/MA-DV2F/
comment: paper accepted by IEEE RAL 2025
A Game of Pawns
We introduce and study pawn games, a class of two-player zero-sum turn-based graph games. A turn-based graph game proceeds by placing a token on an initial vertex, and whoever controls the vertex on which the token is located, chooses its next location. This leads to a path in the graph, which determines the winner. Traditionally, the control of vertices is predetermined and fixed. The novelty of pawn games is that control of vertices changes dynamically throughout the game as follows. Each vertex of a pawn game is owned by a pawn. In each turn, the pawns are partitioned between the two players, and the player who controls the pawn that owns the vertex on which the token is located, chooses the next location of the token. Control of pawns changes dynamically throughout the game according to a fixed mechanism. Specifically, we define several grabbing-based mechanisms in which control of at most one pawn transfers at the end of each turn. We study the complexity of solving pawn games, where we focus on reachability objectives and parameterize the problem by the mechanism that is being used and by restrictions on pawn ownership of vertices. On the positive side, even though pawn games are exponentially-succinct turn-based games, we identify several natural classes that can be solved in PTIME. On the negative side, we identify several EXPTIME-complete classes, where our hardness proofs are based on a new class of games called Lock & Key games, which may be of independent interest.
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
Data Spatial Programming
We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate the topological relationships between data entities and the execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures or finite states. By formalizing the relationships between data elements in this topological space, our approach allows for more intuitive modeling of complex systems where a topology of connections is formed for the underlying computational model. This paradigm addresses limitations in traditional OOP when representing a wide range of problems in computer science such as agent-based systems, social networks, processing on relational data, neural networks, distributed systems, finite state machines, and other spatially-oriented computational problems.
comment: 26 pages, 40 pages with appendix
Inverse Attention Agents for Multi-Agent Systems
A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically to diverse environments in which opponents and teammates may continually change. Agents trained using conventional methods tend to excel only within the confines of their training cohorts; their performance drops significantly when confronting unfamiliar agents. To address this shortcoming, we introduce Inverse Attention Agents that adopt concepts from the Theory of Mind (ToM) implemented algorithmically using an attention mechanism trained in an end-to-end manner. Crucial to determining the final actions of these agents, the weights in their attention model explicitly represent attention to different goals. We furthermore propose an inverse attention network that deduces the ToM of agents based on observations and prior actions. The network infers the attentional states of other agents, thereby refining the attention weights to adjust the agent's final action. We conduct experiments in a continuous environment, tackling demanding tasks encompassing cooperation, competition, and a blend of both. They demonstrate that the inverse attention network successfully infers the attention of other agents, and that this information improves agent performance. Additional human experiments show that, compared to baseline agent models, our inverse attention agents exhibit superior cooperation with humans and better emulate human behaviors.
Systems and Control (CS)
Estimation of Heat Transfer Coefficient in Heat Exchangers from closed-loop data using Neural Networks
Heat exchangers (HEXs) play a central role in process industries for thermal energy transfer. Fouling, the gradual accumulation of solids on heat transfer surfaces, causes a time-varying decrease in the overall heat transfer coefficient (U(t)), significantly impacting the efficiency of heat transfer. Good estimation and modeling of fouling (the heat transfer coefficient) will lead to better fouling mitigation strategies. This study investigates the identifiability of the time-varying $U(t)$ in HEXs from closed-loop operational data, without external excitation of reference signals or knowledge of the controller parameters. We establish that while the complete system model cannot be identified under these given constraints, the time-varying heat transfer coefficient $U(t)$ remains identifiable. Further, we propose a neural network based architecture, called (Per-PINN), for estimation and modeling the heat transfer coefficient from the closed-loop system data. This Per-PINN model is shown to perform better than the existing Physics-Informed Neural Networks (PINN) based models for inverse parameter learning as it inherently fixes the underlying physical equations and learns only the time-varying parameter U(t).
Reducing the Communication of Distributed Model Predictive Control: Autoencoders and Formation Control
Communication remains a key factor limiting the applicability of distributed model predictive control (DMPC) in realistic settings, despite advances in wireless communication. DMPC schemes can require an overwhelming amount of information exchange between agents as the amount of data depends on the length of the predication horizon, for which some applications require a significant length to formally guarantee nominal asymptotic stability. This work aims to provide an approach to reduce the communication effort of DMPC by reducing the size of the communicated data between agents. Using an autoencoder, the communicated data is reduced by the encoder part of the autoencoder prior to communication and reconstructed by the decoder part upon reception within the distributed optimization algorithm that constitutes the DMPC scheme. The choice of a learning-based reduction method is motivated by structure inherent to the data, which results from the data's connection to solutions of optimal control problems. The approach is implemented and tested at the example of formation control of differential-drive robots, which is challenging for optimization-based control due to the robots' nonholonomic constraints, and which is interesting due to the practical importance of mobile robotics. The applicability of the proposed approach is presented first in form of a simulative analysis showing that the resulting control performance yields a satisfactory accuracy. In particular, the proposed approach outperforms the canonical naive way to reduce communication by reducing the length of the prediction horizon. Moreover, it is shown that numerical experiments conducted on embedded computation hardware, with real distributed computation and wireless communication, work well with the proposed way of reducing communication even in practical scenarios in which full communication fails.
comment: 25 pages, 15 figures
Safe and Efficient Coexistence of Autonomous Vehicles with Human-Driven Traffic at Signalized Intersections
The proliferation of connected and automated vehicles (CAVs) has positioned mixed traffic environments, which encompass both CAVs and human driven vehicles (HDVs), as critical components of emerging mobility systems. Signalized intersections are paramount for optimizing transportation efficiency and enhancing energy economy, as they inherently induce stop and go traffic dynamics. In this paper, we present an integrated framework that concurrently optimizes signal timing and CAV trajectories at signalized intersections, with the dual objectives of maximizing traffic throughput and minimizing energy consumption for CAVs. We first formulate an optimal control strategy for CAVs that prioritizes trajectory planning to circumvent state constraints, while incorporating the impact of signal timing and HDV behavior. Furthermore, we introduce a traffic signal control methodology that dynamically adjusts signal phases based on vehicular density per lane, while mitigating disruption for CAVs scheduled to traverse the intersection. Acknowledging the system's inherent dynamism, we also explore event triggered replanning mechanisms that enable CAVs to iteratively refine their planned trajectories in response to the emergence of more efficient routing options. The efficacy of our proposed framework is evaluated through comprehensive simulations in MATLAB.
AI-Driven Tactical Communications and Networking for Defense: A Survey and Emerging Trends
The integration of Artificial Intelligence (AI) in military communications and networking is reshaping modern defense strategies, enhancing secure data exchange, real-time situational awareness, and autonomous decision-making. This survey explores how AI-driven technologies improve tactical communication networks, radar-based data transmission, UAV-assisted relay systems, and electronic warfare resilience. The study highlights AI applications in adaptive signal processing, multi-agent coordination for network optimization, radar-assisted target tracking, and AI-driven electronic countermeasures. Our work introduces a novel three-criteria evaluation methodology. It systematically assesses AI applications based on general system objectives, communications constraints in the military domain, and critical tactical environmental factors. We analyze key AI techniques for different types of learning applied to multi-domain network interoperability and distributed data information fusion in military operations. We also address challenges such as adversarial AI threats, the real-time adaptability of autonomous communication networks, and the limitations of current AI models under battlefield conditions. Finally, we discuss emerging trends in self-healing networks, AI-augmented decision support systems, and intelligent spectrum allocation. We provide a structured roadmap for future AI-driven defense communications and networking research.
Quantitative Supermartingale Certificates
We introduce a general methodology for quantitative model checking and control synthesis with supermartingale certificates. We show that every specification that is invariant to time shifts admits a stochastic invariant that bounds its probability from below; for systems with general state space, the stochastic invariant bounds this probability as closely as desired; for systems with finite state space, it quantifies it exactly. Our result enables the extension of every certificate for the almost-sure satisfaction of shift-invariant specifications to its quantitative counterpart, ensuring completeness up to an approximation in the general case and exactness in the finite-state case. This generalises and unifies existing supermartingale certificates for quantitative verification and control under reachability, safety, reach-avoidance, and stability specifications, as well as asymptotic bounds on accrued costs and rewards. Furthermore, our result provides the first supermartingale certificate for computing upper and lower bounds on the probability of satisfying $\omega$-regular and linear temporal logic specifications. We present an algorithm for quantitative $\omega$-regular verification and control synthesis based on our method and demonstrate its practical efficacy on several infinite-state examples.
comment: To appear at CAV'25
Infinite precedence graphs for consistency verification in P-time event graphs
Precedence constraints are inequalities used to model time dependencies. In 1958, Gallai proved that a finite system of precedence constraints admits solutions if and only if the corresponding precedence graph does not contain positive-weight circuits. We show that this result extends naturally to the case of infinitely many constraints. We then analyze two specific classes of infinite precedence graphs -- $\mathbb{N}$-periodic and ultimately periodic graphs -- and prove that the existence of solutions of their related constraints can be verified in strongly polynomial time. The obtained algorithms find applications in P-time event graphs, which are a subclass of P-time Petri nets able to model production systems under cyclic schedules where tasks need to be performed within given time windows.
comment: 41 pages, 11 figures
SILVIA: Ultra-precision formation flying demonstration for space-based interferometry
We propose SILVIA (Space Interferometer Laboratory Voyaging towards Innovative Applications), a mission concept designed to demonstrate ultra-precision formation flying between three spacecraft separated by 100 m. SILVIA aims to achieve sub-micrometer precision in relative distance control by integrating spacecraft sensors, laser interferometry, low-thrust and low-noise micro-propulsion for real-time measurement and control of distances and relative orientations between spacecraft. A 100-meter-scale mission in a near-circular low Earth orbit has been identified as an ideal, cost-effective setting for demonstrating SILVIA, as this configuration maintains a good balance between small relative perturbations and low risk for collision. This mission will fill the current technology gap towards future missions, including gravitational wave observatories such as DECIGO (DECihertz Interferometer Gravitational wave Observatory), designed to detect the primordial gravitational wave background, and high-contrast nulling infrared interferometers like LIFE (Large Interferometer for Exoplanets), designed for direct imaging of thermal emissions from nearby terrestrial planet candidates. The mission concept and its key technologies are outlined, paving the way for the next generation of high-precision space-based observatories.
comment: 9 pages, 6 figures
Hybrid Control Barrier Functions for Nonholonomic Multi-Agent Systems
This paper addresses the problem of guaranteeing safety of multiple coordinated agents moving in dynamic environments. It has recently been shown that this problem can be efficiently solved through the notion of Control Barrier Functions (CBFs). However, for nonholonomic vehicles that are required to keep positive speeds, existing CBFs lose their validity. To overcome this limitation, we propose a hybrid formulation based on synergistic CBFs (SCBFs), which leverages a discrete switching mechanism to avoid configurations that would render the CBF invalid. Unlike existing approaches, our method ensures safety in the presence of moving obstacles and inter-agent interactions while respecting nonzero speed restrictions. We formally analyze the feasibility of the constraints with respect to actuation limits, and the efficacy of the solution is demonstrated in simulation of a multi-agent coordination problem in the presence of moving obstacles.
comment: Submitted to the 64th IEEE Conference on Decision and Control (CDC)
Age-of-information minimization under energy harvesting and non-stationary environment
This work focuses on minimizing the age of information for multiple energy harvesting sources that sample data and transmit it to a sink node. At each time, the central scheduler selects one of the sources to probe the quality of its channel to the sink node, and then the assessed channel quality is utilized to determine whether a source will sample and send the packet. For a single source case, we assume that the probed channel quality is known at each time instant, model the problem of AoI minimization as a Markov decision process, and prove the optimal sampling policy threshold structure. We then use this threshold structure and propose an AEC-SW-UCRL2 algorithm to handle unknown and time varying energy harvesting rate and channel statistics, motivated by the popular SWUCRL2 algorithm for non stationary reinforcement learning. This algorithm is applicable when an upper bound is available for the total variation of each of these quantities over a time horizon. Furthermore, in situations where these variation budgets are not accessible, we introduce the AEC-BORL algorithm, motivated by the well known BORL algorithm. For the multiple source case, we demonstrate that the AoI minimization problem can be formulated as a constrained MDP, which can be relaxed using a Lagrange multiplier and decoupled into sub problems across source nodes. We also derive Whittle index based source scheduling policy for probing and an optimal threshold policy for source sampling. We next leverage this Whittle index and threshold structure to develop the WIT-SW-UCRL2 algorithm for unknown time varying energy harvesting rates and channel statistics under their respective variation budgets. Moreover, we also proposed a Whittle index and threshold based bandit over reinforcement learning (WIT-BORL) algorithm for unknown variation budgets. Finally, we numerically demonstrate the efficacy of our algorithms.
comment: 13 pages, 5 figures
Fault Localisation in Infinite-Dimensional Linear Electrical Networks
We present a novel fault localisation methodology for linear time-invariant electrical networks with infinite-dimensional edge dynamics and uncertain fault dynamics. The theory accommodates instability and also bounded propagation delays in the network. The goal is to estimate the location of a fault along a given network edge, using sensors positioned arbitrarily throughout the network. Passive faults of unknown impedance are considered, along with stable faults of known impedance. To illustrate the approach, we tackle a significant use-case: a multi-conductor transmission line, with dynamics modelled by the Telegrapher's equation, subject to a line-to-ground fault. Frequency-domain insights are used to reformulate the general fault localisation problem into a non-convex scalar optimisation problem, of which the true fault location is guaranteed to be a global minimiser. Numerical experiments are run to quantify localisation performance over a range of fault resistances.
comment: 15 pages, 10 figures
Cloud-Fog Automation: The New Paradigm towards Autonomous Industrial Cyber-Physical Systems
Autonomous Industrial Cyber-Physical Systems (ICPS) represent a future vision where industrial systems achieve full autonomy, integrating physical processes seamlessly with communication, computing and control technologies while holistically embedding intelligence. Cloud-Fog Automation is a new digitalized industrial automation reference architecture that has been recently proposed. This architecture is a fundamental paradigm shift from the traditional International Society of Automation (ISA)-95 model to accelerate the convergence and synergy of communication, computing, and control towards a fully autonomous ICPS. With the deployment of new wireless technologies to enable almost-deterministic ultra-reliable low-latency communications, a joint design of optimal control and computing has become increasingly important in modern ICPS. It is also imperative that system-wide cyber-physical security are critically enforced. Despite recent advancements in the field, there are still significant research gaps and open technical challenges. Therefore, a deliberate rethink in co-designing and synergizing communications, computing, and control (which we term "3C co-design") is required. In this paper, we position Cloud-Fog Automation with 3C co-design as the new paradigm to realize the vision of autonomous ICPS. We articulate the state-of-the-art and future directions in the field, and specifically discuss how goal-oriented communication, virtualization-empowered computing, and Quality of Service (QoS)-aware control can drive Cloud-Fog Automation towards a fully autonomous ICPS, while accounting for system-wide cyber-physical security.
Design of a compact low loss 2-way millimetre wave power divider for future communication
In this paper, a rectangular-shaped power divider has been presented operating at 27.9 GHz. The power divider has achieved acceptable results for important parameters such as S11, S12, S21, and S22. The substrate employed for the power divider is Roger 3003 which has a thickness of 1.6 mm. This power divider provides a reflection coefficient of -12.2 dB and an insertion loss of 3.1 dB at 28 GHz. This ka-band T-junction power divider covers 68% of the bandwidth. Dimensions of the ka-band T-junction power divider are 50x80 mm. Due to its dimensions and bandwidth this power divider is more suitable for millimetre wave applications like RADAR, beamforming, and 5G applications.
comment: 7 pages, 6 figures, 2 tables
Asymmetric 4.77 Three-Way Unequal Filtering Power Divider/Combiner for Communication Systems Application
This study presents a novel three-way unequal filtering power divider/combiner, addressing challenges in unequal power distribution while incorporating filtering functions in communication systems. Wilkinson power divider (WPD) is the traditional power division approach using quarter-wavelength transmission lines [1]. This type of power divider is popularly used in communication systems due to its good electrical isolation and simple structure. The problem with WPD is that its operation requires the use of an externally connected bandpass filter (BPF) to achieve filtering functionality. This leads to increased footprint and increased loss coefficients in a system. In contrast to the traditional design approach involving a BPF, a matching transmission line, and a Wilkinson power divider as separate components, the proposed integrated filtering power divider (FPD) consolidates all three components into a single device, leading to lower footprint and lower loss coefficient in a system. Circuit modelling and electromagnetic (EM) simulations were conducted to ensure alignment between theoretical and practical results. The design demonstrates effective unequal power division at the three output ports while maintaining very good filtering performance. Results show a return loss better than 15 dB and a minimum insertion loss of 1.2 dB. The overall size of the device is 32.2 x 50.0 mm. This paper contributes to advancements in power divider design by addressing unequal power division challenges and integrating filtering functions. The findings offer a foundation for future developments in advanced power divider/combiner systems, with insights into potential challenges and areas for further improvements.
comment: 8 pages, 5 figures
The Cesàro Value Iteration
In this paper, we address the problem of undiscouted infinite-horizon optimal control for deterministic systems where the classic value iteration does not converge. For such systems, we propose to use the Ces\`aro mean to define the infinitehorizon optimal control problem and the corresponding infinitehorizon value function. Moreover, for this value function, we introduce the Ces\`aro value iteration and prove its convergence for the special case of systems with periodic optimal operating behavior.
Bilinear Data-Driven Min-Max MPC: Designing Rational Controllers via Sum-of-squares Optimization
We propose a data-driven min-max model predictive control (MPC) scheme to control unknown discrete-time bilinear systems. Based on a sequence of noisy input-state data, we state a set-membership representation for the unknown system dynamics. Then, we derive a sum-of-squares (SOS) program that minimizes an upper bound on the worst-case cost over all bilinear systems consistent with the data. As a crucial technical ingredient, the SOS program involves a rational controller parameterization to improve feasibility and tractability. We prove that the resulting data-driven MPC scheme ensures closed-loop stability and constraint satisfaction for the unknown bilinear system. We demonstrate the practicality of the proposed scheme in a numerical example.
Dynamic hysteresis model of grain-oriented ferromagnetic material using neural operators
Accurately capturing the behavior of grain-oriented (GO) ferromagnetic materials is crucial for modeling the electromagnetic devices. In this paper, neural operator models, including Fourier neural operator (FNO), U-net combined FNO (U-FNO) and Deep operator network (DeepONet) are used to approximate the dynamic hysteresis models of GO steel. Furthermore, two types of data augmentation strategies including cyclic rolling augmentation and Gaussian data augmentation (GDA) are implemented to enhance the learning ability of models. With the inclusion of these augmentation techniques, the optimized models account for not only the peak values of the magnetic flux density but also the effects of different frequencies and phase shifts. The accuracy of all models is assessed using the L2-norm of the test data and the mean relative error (MRE) of calculated core losses. Each model performs well in different scenarios, but FNO consistently achieves the best performance across all cases.
comment: 9 pages, 7 figures
Multi-Agent Deep Reinforcement Learning for Multiple Anesthetics Collaborative Control
Automated control of personalized multiple anesthetics in clinical Total Intravenous Anesthesia (TIVA) is crucial yet challenging. Current systems, including target-controlled infusion (TCI) and closed-loop systems, either rely on relatively static pharmacokinetic/pharmacodynamic (PK/PD) models or focus on single anesthetic control, limiting personalization and collaborative control. To address these issues, we propose a novel framework, Value Decomposition Multi-Agent Deep Reinforcement Learning (VD-MADRL). VD-MADRL optimizes the collaboration between two anesthetics propofol (Agent I) and remifentanil (Agent II). And It uses a Markov Game (MG) to identify optimal actions among heterogeneous agents. We employ various value function decomposition methods to resolve the credit allocation problem and enhance collaborative control. We also introduce a multivariate environment model based on random forest (RF) for anesthesia state simulation. Additionally, a data resampling and alignment technique ensures synchronized trajectory data. Our experiments on general and thoracic surgery datasets show that VD-MADRL performs better than human experience. It improves dose precision and keeps anesthesia states stable, providing great clinical value.
Trajectory Optimization of Stochastic Systems under Chance Constraints via Set Erosion
We study the trajectory optimization problem under chance constraints for continuous-time stochastic systems. To address chance constraints imposed on the entire stochastic trajectory, we propose a framework based on the set erosion strategy, which converts the chance constraints into safety constraints on an eroded subset of the safe set along the corresponding deterministic trajectory. The depth of erosion is captured by the probabilistic bound on the distance between the stochastic trajectory and its deterministic counterpart, for which we utilize a novel and sharp probabilistic bound developed recently. By adopting this framework, a deterministic control input sequence can be obtained, whose feasibility and performance are demonstrated through theoretical analysis. Our framework is compatible with various deterministic optimal control techniques, offering great flexibility and computational efficiency in a wide range of scenarios. To the best of our knowledge, our method provides the first scalable trajectory optimization scheme for high-dimensional stochastic systems under trajectory level chance constraints. We validate the proposed method through two numerical experiments.
A Simultaneous Approach for Training Neural Differential-Algebraic Systems of Equations
Scientific machine learning is an emerging field that broadly describes the combination of scientific computing and machine learning to address challenges in science and engineering. Within the context of differential equations, this has produced highly influential methods, such as neural ordinary differential equations (NODEs). Recent works extend this line of research to consider neural differential-algebraic systems of equations (DAEs), where some unknown relationships within the DAE are learned from data. Training neural DAEs, similarly to neural ODEs, is computationally expensive, as it requires the solution of a DAE for every parameter update. Further, the rigorous consideration of algebraic constraints is difficult within common deep learning training algorithms such as stochastic gradient descent. In this work, we apply the simultaneous approach to neural DAE problems, resulting in a fully discretized nonlinear optimization problem, which is solved to local optimality and simultaneously obtains the neural network parameters and the solution to the corresponding DAE. We extend recent work demonstrating the simultaneous approach for neural ODEs, by presenting a general framework to solve neural DAEs, with explicit consideration of hybrid models, where some components of the DAE are known, e.g. physics-informed constraints. Furthermore, we present a general strategy for improving the performance and convergence of the nonlinear programming solver, based on solving an auxiliary problem for initialization and approximating Hessian terms. We achieve promising results in terms of accuracy, model generalizability and computational cost, across different problem settings such as sparse data, unobserved states and multiple trajectories. Lastly, we provide several promising future directions to improve the scalability and robustness of our approach.
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
A dual quaternion-based control strategy for formation flying of small UAV groups is proposed. Through the definition of a virtual structure, the coordinated control of formation's position, orientation, and shape parameters is enabled. This abstraction simplifies formation management, allowing a low-level controller to compute commands for individual UAVs. The controller is divided into a pose control module and a geometry-based adaptive strategy, providing efficient and precise task execution. Simulation and experimental results validate the approach.
Enhanced Entropy-Based Metric for Characterization of Delayed Voltage Recovery
Ensuring accurate violation detection in power systems is paramount for operational reliability. This paper introduces an enhanced voltage recovery violation index (EVRVI), a comprehensive index designed to quantify fault-induced delayed voltage recovery (FIDVR). EVRVI enhances traditional entropy-based methods by leveraging Empirical Mode Decomposition (EMD) to extract key features from the voltage signal, which are then used to quantify over-voltage (OV) and under-voltage (UV) events. Our simulations on the Nordic system, involving over 245k scenarios, demonstrate EVRVI's superior ability to identify and categorize voltage recovery issues compared to the traditional entropy-based measure. EVRVI not only significantly reduces false negatives in violation detection but also provides a reliable framework for over-voltage detection, making it an invaluable tool for modern power system studies.
comment: This paper is accepted for publication in IEEE PESGM 2025
Novel Data-Driven Indices for Early Detection and Quantification of Short-Term Voltage Instability from Voltage Trajectories
This paper presents a novel Short-Term Voltage Stability Index (STVSI), which leverages Lyapunov Exponent-based detection to assess and quantify short-term stability triggered by Over Excitation Limiters (OELs) or undamped oscillations in voltage. The proposed method is measurement-based and decomposes the voltage trajectory into two key components using Empirical Mode Decomposition (EMD): a residual part, which indicates delayed voltage recovery, and an oscillatory part, which captures oscillations. The residual component is critical, as it can detect activation of OELs in synchronous generators or Low Voltage Ride-Through (LVRT) relays in inverter-based resources, potentially leading to instability within the quasisteady-state time frame. Meanwhile, the oscillatory component may indicate either a stable or unstable state in the short term. To accurately assess stability, STVSI employs an entropy-based metric to measure the proximity of the system to instability, with specific indices for short-term voltage stability based on oscillations and recovery. Simulations on the Nordic power system demonstrate that STVSI effectively identifies and categorizes voltage stability issues. Moreover, STVSI not only detects voltage stability conditions but also qualitatively assesses the extent of stability, providing a nuanced measure of stability.
comment: This paper is accepted for publication in IEEE PESGM 2025
Extended Sensitivity-Aware Reactive Power Dispatch Algorithm for Smart Inverters with Multiple Control Modes
The increasing integration of Distributed Energy Resources (DERs) in distribution networks presents new challenges for voltage regulation and reactive power support. This paper extends a sensitivity-aware reactive power dispatch algorithm tailored to manage smart inverters operating under different control modes, including PQ, PV, and Volt-Var (VV). The proposed approach dynamically optimizes reactive power dispatch and voltage setpoints, enabling effective coordination among distribution systems as a virtual power plant (VPP) to support the transmission network. The algorithm is applied to the IEEE 13-bus and IEEE-123 bus test systems, and its performance is validated by comparing results with OpenDSS simulations across various operating scenarios. Results show that the maximum error in the voltages is less than 0.015 pu.
Debiasing Continuous-time Nonlinear Autoregressions
We study how to identify a class of continuous-time nonlinear systems defined by an ordinary differential equation affine in the unknown parameter. We define a notion of asymptotic consistency as $(n, h) \to (\infty, 0)$, and we achieve it using a family of direct methods where the first step is differentiating a noisy time series and the second step is a plug-in linear estimator. The first step, differentiation, is a signal processing adaptation of the nonparametric statistical technique of local polynomial regression. The second step, generalized linear regression, can be consistent using a least squares estimator, but we demonstrate two novel bias corrections that improve the accuracy for finite $h$. These methods significantly broaden the class of continuous-time systems that can be consistently estimated by direct methods.
Neural network-enhanced integrators for simulating ordinary differential equations
Numerous applications necessitate the computation of numerical solutions to differential equations across a wide range of initial conditions and system parameters, which feeds the demand for efficient yet accurate numerical integration methods.This study proposes a neural network (NN) enhancement of classical numerical integrators. NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes. The performance of these enhanced integrators is compared with well-established methods through numerical studies, with a particular emphasis on computational efficiency. Analytical properties are examined in terms of local errors and backward error analysis. Embedded Runge-Kutta schemes are then employed to develop enhanced integrators that mitigate generalization risk, ensuring that the neural network's evaluation in previously unseen regions of the state space does not destabilize the integrator. It is guaranteed that the enhanced integrators perform at least as well as the desired classical Runge-Kutta schemes. The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine, with parameters derived from the established simulation framework OpenFast.
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
This paper presents a Bayesian estimation framework for Wiener models, focusing on learning nonlinear output functions under known linear state dynamics. We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics (DBS)." Several features of the proposed estimator are studied, including Bayesian unbiasedness, closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that the closed-form description is computationally available, as the Fourier DBS enjoys explicit expression. Furthermore, we identify an inherent inconsistency in single-trajectory measurements, regardless of input excitation. Leveraging the closed-form estimation error, we develop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical experiments validate the efficacy of our approach, showing significant improvements over traditional regularized least-squares methods.
comment: 23 pages, 4 figures
Towards Zero Trust Security in Connected Vehicles: A Comprehensive Survey
Zero Trust is the new cybersecurity model that challenges the traditional one by promoting continuous verification of users, devices, and applications, whatever their position or origin. This model is critical for reducing the attack surface and preventing lateral movement without relying on implicit trust. Adopting the zero trust principle in Intelligent Transportation Systems (ITS), especially in the context of connected vehicles (CVs), presents an adequate solution in the face of increasing cyber threats, thereby strengthening the ITS environment. This paper offers an understanding of Zero Trust security through a comprehensive review of existing literature, principles, and challenges. It specifically examines its applications in emerging technologies, particularly within connected vehicles, addressing potential issues and cyber threats faced by CVs. Inclusion/exclusion criteria for the systematic literature review were planned alongside a bibliometric analysis. Moreover, keyword co-occurrence analysis was done, which indicates trends and general themes for the Zero Trust model, Zero Trust implementation, and Zero Trust application. Furthermore, the paper explores various ZT models proposed in the literature for connected vehicles, shedding light on the challenges associated with their integration into CV systems. Future directions of this research will focus on incorporating Zero Trust principles within Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication paradigms. This initiative intends to enhance the security posture and safety protocols within interconnected vehicular networks. The proposed research seeks to address the unique cybersecurity vulnerabilities inherent in the highly dynamic nature of vehicular communication systems.
Physics-informed Modularized Neural Network for Advanced Building Control by Deep Reinforcement Learning
Physics-informed machine learning (PIML) provides a promising solution for building energy modeling and can serve as a virtual environment to enable reinforcement learning (RL) agents to interact and learn. However, challenges remain in efficiently integrating physics priors, evaluating the effectiveness of physics constraints, balancing model accuracy and physics consistency, and enabling real-world implementation. To address these gaps, this study introduces a Physics-Informed Modularized Neural Network (PI-ModNN), which incorporates physics priors through a physics-informed model structure, loss functions, and hard constraints. A new evaluation metric called "temperature response violation" is developed to quantify the physical consistency of data-driven building dynamic models under varying control inputs and training data sizes. Additionally, a physics prior evaluation framework based on rule importance is proposed to assess the contribution of each individual physics prior, offering guidance on selecting appropriate PIML techniques. Results indicate that incorporating physical priors does not always improve model performance; inappropriate priors may decrease model accuracy and consistency. However, hard constraints are effective in enforcing model consistency. Furthermore, we present a general workflow for developing control-oriented PIML models and integrating them with deep reinforcement learning (DRL). Following this framework, a case study implementing DRL in an office space over three months demonstrates potential energy savings of 31.4%. Finally, we provide a general guideline for integrating data-driven models with advanced building control through a four-step evaluation framework, paving the way for reliable and scalable deployment of advanced building controls.
Real-Time Model Predictive Control for the Swing-Up Problem of an Underactuated Double Pendulum
The 3rd AI Olympics with RealAIGym competition poses the challenge of developing a global policy that can swing up and stabilize an underactuated 2-link system Acrobot and/or Pendubot from any configuration in the state space. This paper presents an optimal control-based approach using a real-time Nonlinear Model Predictive Control (MPC). The results show that the controller achieves good performance and robustness and can reliably handle disturbances.
Distributed Adaptive Control of Disturbed Interconnected Systems with High-Order Tuners
This paper addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, in the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership's guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using three distributed algorithms, ranging from first- to high-order tuners to effectively address time-varying regressors. The mathematical foundation is rigorously presented from the network designs of the unknown agents following a leader, to the distributed methods. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the $L_2-$norm and $L_\infty-$norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuner outperforms its counterparts, and we provide related insights along with our conclusions.
comment: This is the extended version of the paper accepted for publication in IEEE Control Systems Letters (L-CSS). On page(s): 1421-1426. 2024
CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
Physics-informed machine learning for building performance simulation-A review of a nascent field
Building performance simulation (BPS) is critical for understanding building dynamics and behavior, analyzing performance of the built environment, optimizing energy efficiency, improving demand flexibility, and enhancing building resilience. However, conducting BPS is not trivial. Traditional BPS relies on an accurate building energy model, mostly physics-based, which depends heavily on detailed building information, expert knowledge, and case-by-case model calibrations, thereby significantly limiting their scalability. With the development of sensing technology and increased data availability, there is a growing attention and interest in data-driven BPS. However, purely data-driven models often suffer from limited generalization ability and a lack of physical consistency, resulting in poor performance in real-world applications. To address these limitations, recent studies have started to incorporate physics priors into data-driven models, a methodology called physics-informed machine learning (PIML). PIML is an emerging field with the definitions, methodologies, evaluation criteria, application scenarios, and future directions that remain open. To bridge those gaps, this study systematically reviews the state-of-art PIML for BPS, offering a comprehensive definition of PIML, and comparing it to traditional BPS approaches regarding data requirements, modeling effort, performance and computation cost. We also summarize the commonly used methodologies, validation approaches, application domains, available data sources, open-source packages and testbeds. In addition, this study provides a general guideline for selecting appropriate PIML models based on BPS applications. Finally, this study identifies key challenges and outlines future research directions, providing a solid foundation and valuable insights to advance R&D of PIML in BPS.
Safety Filter Design for Articulated Frame Steering Vehicles In the Presence of Actuator Dynamics Using High-Order Control Barrier Functions
Articulated Frame Steering (AFS) vehicles are widely used in heavy-duty industries, where they often operate near operators and laborers. Therefore, designing safe controllers for AFS vehicles is essential. In this paper, we develop a Quadratic Program (QP)-based safety filter that ensures feasibility for AFS vehicles with affine actuator dynamics. To achieve this, we first derive the general equations of motion for AFS vehicles, incorporating affine actuator dynamics. We then introduce a novel High-Order Control Barrier Function (HOCBF) candidate with equal relative degrees for both system controls. Finally, we design a Parametric Adaptive HOCBF (PACBF) and an always-feasible, QP-based safety filter. Numerical simulations of AFS vehicle kinematics demonstrate the effectiveness of our approach.
Distributed Stochastic Bilevel Optimization: Improved Complexity and Heterogeneity Analysis
This paper consider solving a class of nonconvex-strongly-convex distributed stochastic bilevel optimization (DSBO) problems with personalized inner-level objectives. Most existing algorithms require computational loops for hypergradient estimation, leading to computational inefficiency. Moreover, the impact of data heterogeneity on convergence in bilevel problems is not explicitly characterized yet. To address these issues, we propose LoPA, a loopless personalized distributed algorithm that leverages a tracking mechanism for iterative approximation of inner-level solutions and Hessian-inverse matrices without relying on extra computation loops. Our theoretical analysis explicitly characterizes the heterogeneity across nodes (denoted by $b$), and establishes a sublinear rate of $\mathcal{O}( {\frac{1}{{{{\left( {1 - \rho } \right)}}K}} \!+ \!\frac{{(\frac{b}{\sqrt{m}})^{\frac{2}{3}} }}{{\left( {1 - \rho } \right)^{\frac{2}{3}} K^{\frac{2}{3}} }} \!+ \!\frac{1}{\sqrt{ K }}( {\sigma _{\operatorname{p} }} + \frac{1}{\sqrt{m}}{\sigma _{\operatorname{c} }} ) } )$ without the boundedness of local hypergradients, where ${\sigma _{\operatorname{p} }}$ and ${\sigma _{\operatorname{c} }}$ represent the gradient sampling variances associated with the inner- and outer-level variables, respectively. We also integrate LoPA with a gradient tracking scheme to eliminate the impact of data heterogeneity, yielding an improved rate of ${{\mathcal{O}}}(\frac{{1}}{{ (1-\rho)^2K }} \!+\! \frac{1}{{\sqrt{K}}}( \sigma_{\rm{p}} \!+\! \frac{1}{\sqrt{m}}\sigma_{\rm{c}} ) )$. The computational complexity of LoPA is of ${{\mathcal{O}}}({\epsilon^{-2}})$ to an $\epsilon$-stationary point, matching the communication complexity due to the loopless structure, which outperforms existing counterparts for DSBO. Numerical experiments validate the effectiveness of the proposed algorithm.
comment: Accepted by JMLR
Lambda/6 Suspended Patch Antenna
This work introduces a novel, compact antenna design based on a lambda-6th suspended patch configuration that is particularly suited for small-size wireless sensor nodes. The proposed design meets key requirements such as compactness, omnidirectionality, robust source matching over a designated bandwidth, interference immunity, and low costs by evolving the conventional square patch antenna. With a footprint of only 20-by-20 mm, the antenna incorporates a grounded metal shield to both reduce its effective dimensions below one-half wavelength and mitigate interference from nearby circuitry. Simulation results, conducted on a cost-effective FR4 substrate, demonstrate a resonance at 2.45 GHz with a return loss of -32.5 dB and a bandwidth of 50 MHz (at the -10 dB level), making this design an attractive candidate for integration into densely populated wireless sensor networks.
comment: 4 pages, 8 figures, STW SAFE conference
A Generic Observer Design for Inertial Navigation Systems Using an LTV Framework
This paper addresses the problem of accurate pose estimation-position, velocity, and orientation-of a rigid body using an Inertial Measurement Unit (IMU) in combination with generic exteroceptive measurements. By reformulating the vehicle's dynamics and measurement models within a linear time-varying (LTV) framework, we enable the application of a linear Kalman filter, significantly simplifying observer design for inertial navigation systems (INS). A key strength of this approach lies in its generality: rather than relying on specific measurement modalities, our framework accommodates a broad class of exteroceptive measurements. To illustrate its effectiveness, we conduct a uniform observability (UO) analysis for two fundamental benchmark cases-GPS-aided INS and landmark-aided INS-deriving sufficient conditions that guarantee the global uniform exponential stability of the proposed filter. Simulations for both applications confirm the versatility and robustness of our approach.
comment: 8 pages
Safe Stabilization using Nonsmooth Control Lyapunov Barrier Function
This paper addresses the challenge of safe stabilization, ensuring the system state reach the origin while avoiding unsafe regions. Existing approaches relying on smooth Lyapunov barrier functions often fail to guarantee a feasible controller. To overcome this limitation, we introduce the nonsmooth Control Lyapunov Barrier Function (NCLBF), which ensures the existence of a safe and stabilizing controller. We provide a systematic framework for designing NCLBF and feedback control strategies to achieve safe stabilization in the presence of multiple bounded unsafe regions. Theoretical analysis and simulations of both linear and nonlinear systems demonstrate the effectiveness and superiority of our approach compared to the existing smooth functions method.
comment: 8 pages, 8 figures
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
Automotive Battery Pack Standards and Design Characteristics: A Review
The latest advancements and near-future trends in automotive battery packs, underlying regulatory compliance, and performance requirements are presented in this paper. In response to these specifications, high-level solutions that converge towards a standard architecture for passenger cars are provided. Transition to high-voltage enables ultra-fast charging above 350 kW, which reduces the charging times to less than 20 minutes. Also, advances in energy density and battery capacities make advancements in enhancing the electric vehicle's range beyond 1000 km per charge. Key factors such as electrical performance, safety, mechanical integrity, reliability, endurance, environmental conditions, and diagnostics are examined. This study explores the next generation of cost-effective and high-performance battery systems and discovers near-future battery technologies, including sodium-ion chemistry and rare-earth-free alternatives, as well as battery applications in aviation.
Self-triggered Stabilization of Contracting Systems under Quantization
We propose self-triggered control schemes for nonlinear systems with quantized state measurements. Our focus lies on scenarios where both the controller and the self-triggering mechanism receive only the quantized state at each sampling time. We assume that the ideal closed-loop system without quantization or self-triggered sampling is contracting. Moreover, an upper bound on the growth rate of the open-loop system is assumed to be known. We present two control schemes that achieve closed-loop stability without Zeno behavior. The first scheme is implemented under logarithmic quantization and uses the quantized state for the threshold in the triggering condition. The second one is a joint design of zooming quantization and self-triggered sampling, where the adjustable zoom parameter for quantization changes based on inter-sampling times and is also used for the threshold of self-triggered sampling. In both schemes, the self-triggering mechanism predicts the future state from the quantized data for the computation of the next sampling time. We employ a trajectory-based approach for stability analysis, where contraction theory plays a key role.
comment: 26 pages, 11 figures. To appear in IEEE Transactions on Automatic Control
Sampled-Data Primal-Dual Gradient Dynamics in Model Predictive Control
Model Predictive Control (MPC) is a versatile approach capable of accommodating diverse control requirements that holds significant promise for a broad spectrum of industrial applications. Noteworthy challenges associated with MPC include the substantial computational burden, which is sometimes considered excessive even for linear systems. Recently, a rapid computation method that guides the input toward convergence with the optimal control problem solution by employing primal-dual gradient (PDG) dynamics as a controller has been proposed for linear MPCs. However, stability has been ensured under the assumption that the controller is a continuous-time system, leading to potential instability when the controller undergoes discretization and is implemented as a sampled-data system. In this paper, we propose a discrete-time dynamical controller, incorporating specific modifications to the PDG approach, and present stability conditions relevant to the resulting sampled-data system. Additionally, we introduce an extension designed to enhance control performance, that was traded off in the original. Numerical examples substantiate that our proposed method, which can be executed in only 1 $\mu$s in a standard laptop, not only ensures stability with considering sampled-data implementation but also effectively enhances control performance.
Parallel Batch Scheduling With Incompatible Job Families Via Constraint Programming
This paper addresses the incompatible case of parallel batch scheduling, where compatible jobs belong to the same family, and jobs from different families cannot be processed together in the same batch. The state-of-the-art constraint programming (CP) model for this problem relies on specific functions and global constraints only available in a well established commercial CP solver. This paper expands the literature around this problem by proposing four new CP models that can be implemented in commercial and open-source solvers: a new model that relies on automaton constraints, and three alternative models that integrate assignment and scheduling decisions with different strategies and global constraints. Extensive computational experiments on standard test cases under multiple objectives and multiple solvers demonstrate the implementation flexibility and competitive performance of the proposed models.
comment: 16 pages, 9 figures
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, solutions to these PDEs often do not converge to a unique equilibrium, but instead converge to non-stationary trajectories existing in the nullspace of the spatial differential operator (e.g. $\frac{\partial^2}{\partial x^2}$). To analyse this convergence behaviour, in this paper, it is shown how such trajectories can be modeled for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any PDE state satisfying these boundary conditions can be uniquely expressed in terms of two components, existing in the image and the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$, respectively. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both state components. Finally, a notion of exponential stability is defined that requires only one of the state components to converge to zero, and it is shown how this stability notion can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that exponential stability can be verified with tight bounds on the rate of decay.
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
We develop compositional learning algorithms for coupled dynamical systems. While deep learning has proven effective at modeling complex relationships from data, compositional couplings between system components typically introduce algebraic constraints on state variables, posing challenges to many existing data-driven approaches to modeling dynamical systems. Towards developing deep learning models for constrained dynamical systems, we introduce neural port-Hamiltonian differential algebraic equations (N-PHDAEs), which use neural networks to parametrize unknown terms in both the differential and algebraic components of a port-Hamiltonian DAE. To train these models, we propose an algorithm that uses automatic differentiation to perform index reduction, automatically transforming the neural DAE into an equivalent system of neural ordinary differential equations (N-ODEs), for which established model inference and backpropagation methods exist. The proposed compositional modeling framework and learning algorithms may be applied broadly to learn control-oriented models of dynamical systems in a variety of application areas, however, in this work, we focus on their application to the modeling of electrical networks. Experiments simulating the dynamics of nonlinear circuits exemplify the benefits of our approach: the proposed N-PHDAE model achieves an order of magnitude improvement in prediction accuracy and constraint satisfaction when compared to a baseline N-ODE over long prediction time horizons. We also validate the compositional capabilities of our approach through experiments on a simulated D.C. microgrid: we train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
A Deep Neural Network-based Frequency Predictor for Frequency-Constrained Optimal Power Flow
Rate of change of frequency (RoCoF) and frequency nadir should be considered in real-time frequency-constrained optimal power flow (FCOPF) to ensure frequency stability of the modern power systems. Since calculating the frequency response is complex, deep neural network (DNN) could be adopted to capture the nonlinearities and estimate those two metrics accurately. Therefore, in this paper, a DNN-based frequency predictor is developed with the training data obtained from time-domain simulations using PSCAD/EMTDC. Subsequently, it is reformulated using a set of mixed-integer linear programming formulations and then embedded into the FCOPF framework as constraints to ensure grid frequency stability, creating the proposed DNN-FCOPF model. Two benchmark models, a traditional OPF without any frequency constraints and a linear system-wide RoCoF-constrained FCOPF, are also implemented to gauge the proposed DNN-FCOPF. Finally, the solutions obtained with these three models are compared and evaluated with time-domain simulations using PSCAD under various load profiles, demonstrating the effectiveness of the proposed DNN-FCOPF.
An Adaptive Method for Contextual Stochastic Multi-armed Bandits with Rewards Generated by a Linear Dynamical System
Online decision-making can be formulated as the popular stochastic multi-armed bandit problem where a learner makes decisions (or takes actions) to maximize cumulative rewards collected from an unknown environment. This paper proposes to model a stochastic multi-armed bandit as an unknown linear Gaussian dynamical system, as many applications, such as bandits for dynamic pricing problems or hyperparameter selection for machine learning models, can benefit from this perspective. Following this approach, we can build a matrix representation of the system's steady-state Kalman filter that takes a set of previously collected observations from a time interval of length $s$ to predict the next reward that will be returned for each action. This paper proposes a solution in which the parameter $s$ is determined via an adaptive algorithm by analyzing the model uncertainty of the matrix representation. This algorithm helps the learner adaptively adjust its model size and its length of exploration based on the uncertainty of its environmental model. The effectiveness of the proposed scheme is demonstrated through extensive numerical studies, revealing that the proposed scheme is capable of increasing the rate of collected cumulative rewards.
Faster Reinforcement Learning by Freezing Slow States
We study infinite horizon Markov decision processes (MDPs) with "fast-slow" structure, where some state variables evolve rapidly ("fast states") while others change more gradually ("slow states"). Such structure is common in real-world problems where sequential decisions need to be made at high frequencies over long horizons, where slowly evolving information also influences optimal decisions. Examples include inventory control under slowly changing demand, or dynamic pricing with gradually shifting consumer behavior. Modeling the problem at the natural decision frequency leads to MDPs with discount factors close to one, making them computationally challenging. We propose a novel approximation strategy that "freezes" slow states during a phase of lower-level planning, solving finite-horizon MDPs conditioned on a fixed slow state, and then applying value iteration to an auxiliary upper-level MDP that evolves on a slower timescale. Freezing states for short periods of time leads to easier-to-solve lower-level problems, while a slower upper-level timescale allows for a more favorable discount factor. On the theoretical side, we analyze the regret incurred by our frozen-state approach, which leads to simple insights on how to trade off computational budget versus regret. Empirically, we demonstrate that frozen-state methods produce high-quality policies with significantly less computation, and we show that simply omitting slow states is often a poor heuristic.
comment: 66 pages, 10 figures
Entropy Rate Maximization of Markov Decision Processes under Linear Temporal Logic Tasks
We investigate the problem of synthesizing optimal control policies for Markov decision processes (MDPs) with both qualitative and quantitative objectives. Specifically, our goal is to achieve a given linear temporal logic (LTL) task with probability one, while maximizing the \emph{entropy rate} of the system. The notion of entropy rate characterizes the long-run average (un)predictability of a stochastic process. Such an optimal policy is of our interest, in particular, from the security point of view, as it not only ensures the completion of tasks, but also maximizes the unpredictability of the system. However, existing works only focus on maximizing the total entropy which may diverge to infinity for infinite horizon. In this paper, we provide a complete solution to the entropy rate maximization problem under LTL constraints. Specifically, we first present an algorithm for synthesizing entropy rate maximizing policies for communicating MDPs. Then based on a new state classification method, we show the entropy rate maximization problem under LTL task can be effectively solved in polynomial-time. We illustrate the proposed algorithm based on two case studies of robot task planning scenario.
Systems and Control (EESS)
Estimation of Heat Transfer Coefficient in Heat Exchangers from closed-loop data using Neural Networks
Heat exchangers (HEXs) play a central role in process industries for thermal energy transfer. Fouling, the gradual accumulation of solids on heat transfer surfaces, causes a time-varying decrease in the overall heat transfer coefficient (U(t)), significantly impacting the efficiency of heat transfer. Good estimation and modeling of fouling (the heat transfer coefficient) will lead to better fouling mitigation strategies. This study investigates the identifiability of the time-varying $U(t)$ in HEXs from closed-loop operational data, without external excitation of reference signals or knowledge of the controller parameters. We establish that while the complete system model cannot be identified under these given constraints, the time-varying heat transfer coefficient $U(t)$ remains identifiable. Further, we propose a neural network based architecture, called (Per-PINN), for estimation and modeling the heat transfer coefficient from the closed-loop system data. This Per-PINN model is shown to perform better than the existing Physics-Informed Neural Networks (PINN) based models for inverse parameter learning as it inherently fixes the underlying physical equations and learns only the time-varying parameter U(t).
Reducing the Communication of Distributed Model Predictive Control: Autoencoders and Formation Control
Communication remains a key factor limiting the applicability of distributed model predictive control (DMPC) in realistic settings, despite advances in wireless communication. DMPC schemes can require an overwhelming amount of information exchange between agents as the amount of data depends on the length of the predication horizon, for which some applications require a significant length to formally guarantee nominal asymptotic stability. This work aims to provide an approach to reduce the communication effort of DMPC by reducing the size of the communicated data between agents. Using an autoencoder, the communicated data is reduced by the encoder part of the autoencoder prior to communication and reconstructed by the decoder part upon reception within the distributed optimization algorithm that constitutes the DMPC scheme. The choice of a learning-based reduction method is motivated by structure inherent to the data, which results from the data's connection to solutions of optimal control problems. The approach is implemented and tested at the example of formation control of differential-drive robots, which is challenging for optimization-based control due to the robots' nonholonomic constraints, and which is interesting due to the practical importance of mobile robotics. The applicability of the proposed approach is presented first in form of a simulative analysis showing that the resulting control performance yields a satisfactory accuracy. In particular, the proposed approach outperforms the canonical naive way to reduce communication by reducing the length of the prediction horizon. Moreover, it is shown that numerical experiments conducted on embedded computation hardware, with real distributed computation and wireless communication, work well with the proposed way of reducing communication even in practical scenarios in which full communication fails.
comment: 25 pages, 15 figures
Safe and Efficient Coexistence of Autonomous Vehicles with Human-Driven Traffic at Signalized Intersections
The proliferation of connected and automated vehicles (CAVs) has positioned mixed traffic environments, which encompass both CAVs and human driven vehicles (HDVs), as critical components of emerging mobility systems. Signalized intersections are paramount for optimizing transportation efficiency and enhancing energy economy, as they inherently induce stop and go traffic dynamics. In this paper, we present an integrated framework that concurrently optimizes signal timing and CAV trajectories at signalized intersections, with the dual objectives of maximizing traffic throughput and minimizing energy consumption for CAVs. We first formulate an optimal control strategy for CAVs that prioritizes trajectory planning to circumvent state constraints, while incorporating the impact of signal timing and HDV behavior. Furthermore, we introduce a traffic signal control methodology that dynamically adjusts signal phases based on vehicular density per lane, while mitigating disruption for CAVs scheduled to traverse the intersection. Acknowledging the system's inherent dynamism, we also explore event triggered replanning mechanisms that enable CAVs to iteratively refine their planned trajectories in response to the emergence of more efficient routing options. The efficacy of our proposed framework is evaluated through comprehensive simulations in MATLAB.
AI-Driven Tactical Communications and Networking for Defense: A Survey and Emerging Trends
The integration of Artificial Intelligence (AI) in military communications and networking is reshaping modern defense strategies, enhancing secure data exchange, real-time situational awareness, and autonomous decision-making. This survey explores how AI-driven technologies improve tactical communication networks, radar-based data transmission, UAV-assisted relay systems, and electronic warfare resilience. The study highlights AI applications in adaptive signal processing, multi-agent coordination for network optimization, radar-assisted target tracking, and AI-driven electronic countermeasures. Our work introduces a novel three-criteria evaluation methodology. It systematically assesses AI applications based on general system objectives, communications constraints in the military domain, and critical tactical environmental factors. We analyze key AI techniques for different types of learning applied to multi-domain network interoperability and distributed data information fusion in military operations. We also address challenges such as adversarial AI threats, the real-time adaptability of autonomous communication networks, and the limitations of current AI models under battlefield conditions. Finally, we discuss emerging trends in self-healing networks, AI-augmented decision support systems, and intelligent spectrum allocation. We provide a structured roadmap for future AI-driven defense communications and networking research.
Quantitative Supermartingale Certificates
We introduce a general methodology for quantitative model checking and control synthesis with supermartingale certificates. We show that every specification that is invariant to time shifts admits a stochastic invariant that bounds its probability from below; for systems with general state space, the stochastic invariant bounds this probability as closely as desired; for systems with finite state space, it quantifies it exactly. Our result enables the extension of every certificate for the almost-sure satisfaction of shift-invariant specifications to its quantitative counterpart, ensuring completeness up to an approximation in the general case and exactness in the finite-state case. This generalises and unifies existing supermartingale certificates for quantitative verification and control under reachability, safety, reach-avoidance, and stability specifications, as well as asymptotic bounds on accrued costs and rewards. Furthermore, our result provides the first supermartingale certificate for computing upper and lower bounds on the probability of satisfying $\omega$-regular and linear temporal logic specifications. We present an algorithm for quantitative $\omega$-regular verification and control synthesis based on our method and demonstrate its practical efficacy on several infinite-state examples.
comment: To appear at CAV'25
Infinite precedence graphs for consistency verification in P-time event graphs
Precedence constraints are inequalities used to model time dependencies. In 1958, Gallai proved that a finite system of precedence constraints admits solutions if and only if the corresponding precedence graph does not contain positive-weight circuits. We show that this result extends naturally to the case of infinitely many constraints. We then analyze two specific classes of infinite precedence graphs -- $\mathbb{N}$-periodic and ultimately periodic graphs -- and prove that the existence of solutions of their related constraints can be verified in strongly polynomial time. The obtained algorithms find applications in P-time event graphs, which are a subclass of P-time Petri nets able to model production systems under cyclic schedules where tasks need to be performed within given time windows.
comment: 41 pages, 11 figures
SILVIA: Ultra-precision formation flying demonstration for space-based interferometry
We propose SILVIA (Space Interferometer Laboratory Voyaging towards Innovative Applications), a mission concept designed to demonstrate ultra-precision formation flying between three spacecraft separated by 100 m. SILVIA aims to achieve sub-micrometer precision in relative distance control by integrating spacecraft sensors, laser interferometry, low-thrust and low-noise micro-propulsion for real-time measurement and control of distances and relative orientations between spacecraft. A 100-meter-scale mission in a near-circular low Earth orbit has been identified as an ideal, cost-effective setting for demonstrating SILVIA, as this configuration maintains a good balance between small relative perturbations and low risk for collision. This mission will fill the current technology gap towards future missions, including gravitational wave observatories such as DECIGO (DECihertz Interferometer Gravitational wave Observatory), designed to detect the primordial gravitational wave background, and high-contrast nulling infrared interferometers like LIFE (Large Interferometer for Exoplanets), designed for direct imaging of thermal emissions from nearby terrestrial planet candidates. The mission concept and its key technologies are outlined, paving the way for the next generation of high-precision space-based observatories.
comment: 9 pages, 6 figures
Hybrid Control Barrier Functions for Nonholonomic Multi-Agent Systems
This paper addresses the problem of guaranteeing safety of multiple coordinated agents moving in dynamic environments. It has recently been shown that this problem can be efficiently solved through the notion of Control Barrier Functions (CBFs). However, for nonholonomic vehicles that are required to keep positive speeds, existing CBFs lose their validity. To overcome this limitation, we propose a hybrid formulation based on synergistic CBFs (SCBFs), which leverages a discrete switching mechanism to avoid configurations that would render the CBF invalid. Unlike existing approaches, our method ensures safety in the presence of moving obstacles and inter-agent interactions while respecting nonzero speed restrictions. We formally analyze the feasibility of the constraints with respect to actuation limits, and the efficacy of the solution is demonstrated in simulation of a multi-agent coordination problem in the presence of moving obstacles.
comment: Submitted to the 64th IEEE Conference on Decision and Control (CDC)
Age-of-information minimization under energy harvesting and non-stationary environment
This work focuses on minimizing the age of information for multiple energy harvesting sources that sample data and transmit it to a sink node. At each time, the central scheduler selects one of the sources to probe the quality of its channel to the sink node, and then the assessed channel quality is utilized to determine whether a source will sample and send the packet. For a single source case, we assume that the probed channel quality is known at each time instant, model the problem of AoI minimization as a Markov decision process, and prove the optimal sampling policy threshold structure. We then use this threshold structure and propose an AEC-SW-UCRL2 algorithm to handle unknown and time varying energy harvesting rate and channel statistics, motivated by the popular SWUCRL2 algorithm for non stationary reinforcement learning. This algorithm is applicable when an upper bound is available for the total variation of each of these quantities over a time horizon. Furthermore, in situations where these variation budgets are not accessible, we introduce the AEC-BORL algorithm, motivated by the well known BORL algorithm. For the multiple source case, we demonstrate that the AoI minimization problem can be formulated as a constrained MDP, which can be relaxed using a Lagrange multiplier and decoupled into sub problems across source nodes. We also derive Whittle index based source scheduling policy for probing and an optimal threshold policy for source sampling. We next leverage this Whittle index and threshold structure to develop the WIT-SW-UCRL2 algorithm for unknown time varying energy harvesting rates and channel statistics under their respective variation budgets. Moreover, we also proposed a Whittle index and threshold based bandit over reinforcement learning (WIT-BORL) algorithm for unknown variation budgets. Finally, we numerically demonstrate the efficacy of our algorithms.
comment: 13 pages, 5 figures
Fault Localisation in Infinite-Dimensional Linear Electrical Networks
We present a novel fault localisation methodology for linear time-invariant electrical networks with infinite-dimensional edge dynamics and uncertain fault dynamics. The theory accommodates instability and also bounded propagation delays in the network. The goal is to estimate the location of a fault along a given network edge, using sensors positioned arbitrarily throughout the network. Passive faults of unknown impedance are considered, along with stable faults of known impedance. To illustrate the approach, we tackle a significant use-case: a multi-conductor transmission line, with dynamics modelled by the Telegrapher's equation, subject to a line-to-ground fault. Frequency-domain insights are used to reformulate the general fault localisation problem into a non-convex scalar optimisation problem, of which the true fault location is guaranteed to be a global minimiser. Numerical experiments are run to quantify localisation performance over a range of fault resistances.
comment: 15 pages, 10 figures
Cloud-Fog Automation: The New Paradigm towards Autonomous Industrial Cyber-Physical Systems
Autonomous Industrial Cyber-Physical Systems (ICPS) represent a future vision where industrial systems achieve full autonomy, integrating physical processes seamlessly with communication, computing and control technologies while holistically embedding intelligence. Cloud-Fog Automation is a new digitalized industrial automation reference architecture that has been recently proposed. This architecture is a fundamental paradigm shift from the traditional International Society of Automation (ISA)-95 model to accelerate the convergence and synergy of communication, computing, and control towards a fully autonomous ICPS. With the deployment of new wireless technologies to enable almost-deterministic ultra-reliable low-latency communications, a joint design of optimal control and computing has become increasingly important in modern ICPS. It is also imperative that system-wide cyber-physical security are critically enforced. Despite recent advancements in the field, there are still significant research gaps and open technical challenges. Therefore, a deliberate rethink in co-designing and synergizing communications, computing, and control (which we term "3C co-design") is required. In this paper, we position Cloud-Fog Automation with 3C co-design as the new paradigm to realize the vision of autonomous ICPS. We articulate the state-of-the-art and future directions in the field, and specifically discuss how goal-oriented communication, virtualization-empowered computing, and Quality of Service (QoS)-aware control can drive Cloud-Fog Automation towards a fully autonomous ICPS, while accounting for system-wide cyber-physical security.
Design of a compact low loss 2-way millimetre wave power divider for future communication
In this paper, a rectangular-shaped power divider has been presented operating at 27.9 GHz. The power divider has achieved acceptable results for important parameters such as S11, S12, S21, and S22. The substrate employed for the power divider is Roger 3003 which has a thickness of 1.6 mm. This power divider provides a reflection coefficient of -12.2 dB and an insertion loss of 3.1 dB at 28 GHz. This ka-band T-junction power divider covers 68% of the bandwidth. Dimensions of the ka-band T-junction power divider are 50x80 mm. Due to its dimensions and bandwidth this power divider is more suitable for millimetre wave applications like RADAR, beamforming, and 5G applications.
comment: 7 pages, 6 figures, 2 tables
Asymmetric 4.77 Three-Way Unequal Filtering Power Divider/Combiner for Communication Systems Application
This study presents a novel three-way unequal filtering power divider/combiner, addressing challenges in unequal power distribution while incorporating filtering functions in communication systems. Wilkinson power divider (WPD) is the traditional power division approach using quarter-wavelength transmission lines [1]. This type of power divider is popularly used in communication systems due to its good electrical isolation and simple structure. The problem with WPD is that its operation requires the use of an externally connected bandpass filter (BPF) to achieve filtering functionality. This leads to increased footprint and increased loss coefficients in a system. In contrast to the traditional design approach involving a BPF, a matching transmission line, and a Wilkinson power divider as separate components, the proposed integrated filtering power divider (FPD) consolidates all three components into a single device, leading to lower footprint and lower loss coefficient in a system. Circuit modelling and electromagnetic (EM) simulations were conducted to ensure alignment between theoretical and practical results. The design demonstrates effective unequal power division at the three output ports while maintaining very good filtering performance. Results show a return loss better than 15 dB and a minimum insertion loss of 1.2 dB. The overall size of the device is 32.2 x 50.0 mm. This paper contributes to advancements in power divider design by addressing unequal power division challenges and integrating filtering functions. The findings offer a foundation for future developments in advanced power divider/combiner systems, with insights into potential challenges and areas for further improvements.
comment: 8 pages, 5 figures
The Cesàro Value Iteration
In this paper, we address the problem of undiscouted infinite-horizon optimal control for deterministic systems where the classic value iteration does not converge. For such systems, we propose to use the Ces\`aro mean to define the infinitehorizon optimal control problem and the corresponding infinitehorizon value function. Moreover, for this value function, we introduce the Ces\`aro value iteration and prove its convergence for the special case of systems with periodic optimal operating behavior.
Bilinear Data-Driven Min-Max MPC: Designing Rational Controllers via Sum-of-squares Optimization
We propose a data-driven min-max model predictive control (MPC) scheme to control unknown discrete-time bilinear systems. Based on a sequence of noisy input-state data, we state a set-membership representation for the unknown system dynamics. Then, we derive a sum-of-squares (SOS) program that minimizes an upper bound on the worst-case cost over all bilinear systems consistent with the data. As a crucial technical ingredient, the SOS program involves a rational controller parameterization to improve feasibility and tractability. We prove that the resulting data-driven MPC scheme ensures closed-loop stability and constraint satisfaction for the unknown bilinear system. We demonstrate the practicality of the proposed scheme in a numerical example.
Dynamic hysteresis model of grain-oriented ferromagnetic material using neural operators
Accurately capturing the behavior of grain-oriented (GO) ferromagnetic materials is crucial for modeling the electromagnetic devices. In this paper, neural operator models, including Fourier neural operator (FNO), U-net combined FNO (U-FNO) and Deep operator network (DeepONet) are used to approximate the dynamic hysteresis models of GO steel. Furthermore, two types of data augmentation strategies including cyclic rolling augmentation and Gaussian data augmentation (GDA) are implemented to enhance the learning ability of models. With the inclusion of these augmentation techniques, the optimized models account for not only the peak values of the magnetic flux density but also the effects of different frequencies and phase shifts. The accuracy of all models is assessed using the L2-norm of the test data and the mean relative error (MRE) of calculated core losses. Each model performs well in different scenarios, but FNO consistently achieves the best performance across all cases.
comment: 9 pages, 7 figures
Multi-Agent Deep Reinforcement Learning for Multiple Anesthetics Collaborative Control
Automated control of personalized multiple anesthetics in clinical Total Intravenous Anesthesia (TIVA) is crucial yet challenging. Current systems, including target-controlled infusion (TCI) and closed-loop systems, either rely on relatively static pharmacokinetic/pharmacodynamic (PK/PD) models or focus on single anesthetic control, limiting personalization and collaborative control. To address these issues, we propose a novel framework, Value Decomposition Multi-Agent Deep Reinforcement Learning (VD-MADRL). VD-MADRL optimizes the collaboration between two anesthetics propofol (Agent I) and remifentanil (Agent II). And It uses a Markov Game (MG) to identify optimal actions among heterogeneous agents. We employ various value function decomposition methods to resolve the credit allocation problem and enhance collaborative control. We also introduce a multivariate environment model based on random forest (RF) for anesthesia state simulation. Additionally, a data resampling and alignment technique ensures synchronized trajectory data. Our experiments on general and thoracic surgery datasets show that VD-MADRL performs better than human experience. It improves dose precision and keeps anesthesia states stable, providing great clinical value.
Trajectory Optimization of Stochastic Systems under Chance Constraints via Set Erosion
We study the trajectory optimization problem under chance constraints for continuous-time stochastic systems. To address chance constraints imposed on the entire stochastic trajectory, we propose a framework based on the set erosion strategy, which converts the chance constraints into safety constraints on an eroded subset of the safe set along the corresponding deterministic trajectory. The depth of erosion is captured by the probabilistic bound on the distance between the stochastic trajectory and its deterministic counterpart, for which we utilize a novel and sharp probabilistic bound developed recently. By adopting this framework, a deterministic control input sequence can be obtained, whose feasibility and performance are demonstrated through theoretical analysis. Our framework is compatible with various deterministic optimal control techniques, offering great flexibility and computational efficiency in a wide range of scenarios. To the best of our knowledge, our method provides the first scalable trajectory optimization scheme for high-dimensional stochastic systems under trajectory level chance constraints. We validate the proposed method through two numerical experiments.
A Simultaneous Approach for Training Neural Differential-Algebraic Systems of Equations
Scientific machine learning is an emerging field that broadly describes the combination of scientific computing and machine learning to address challenges in science and engineering. Within the context of differential equations, this has produced highly influential methods, such as neural ordinary differential equations (NODEs). Recent works extend this line of research to consider neural differential-algebraic systems of equations (DAEs), where some unknown relationships within the DAE are learned from data. Training neural DAEs, similarly to neural ODEs, is computationally expensive, as it requires the solution of a DAE for every parameter update. Further, the rigorous consideration of algebraic constraints is difficult within common deep learning training algorithms such as stochastic gradient descent. In this work, we apply the simultaneous approach to neural DAE problems, resulting in a fully discretized nonlinear optimization problem, which is solved to local optimality and simultaneously obtains the neural network parameters and the solution to the corresponding DAE. We extend recent work demonstrating the simultaneous approach for neural ODEs, by presenting a general framework to solve neural DAEs, with explicit consideration of hybrid models, where some components of the DAE are known, e.g. physics-informed constraints. Furthermore, we present a general strategy for improving the performance and convergence of the nonlinear programming solver, based on solving an auxiliary problem for initialization and approximating Hessian terms. We achieve promising results in terms of accuracy, model generalizability and computational cost, across different problem settings such as sparse data, unobserved states and multiple trajectories. Lastly, we provide several promising future directions to improve the scalability and robustness of our approach.
Adaptive Multirobot Virtual Structure Control using Dual Quaternions
A dual quaternion-based control strategy for formation flying of small UAV groups is proposed. Through the definition of a virtual structure, the coordinated control of formation's position, orientation, and shape parameters is enabled. This abstraction simplifies formation management, allowing a low-level controller to compute commands for individual UAVs. The controller is divided into a pose control module and a geometry-based adaptive strategy, providing efficient and precise task execution. Simulation and experimental results validate the approach.
Enhanced Entropy-Based Metric for Characterization of Delayed Voltage Recovery
Ensuring accurate violation detection in power systems is paramount for operational reliability. This paper introduces an enhanced voltage recovery violation index (EVRVI), a comprehensive index designed to quantify fault-induced delayed voltage recovery (FIDVR). EVRVI enhances traditional entropy-based methods by leveraging Empirical Mode Decomposition (EMD) to extract key features from the voltage signal, which are then used to quantify over-voltage (OV) and under-voltage (UV) events. Our simulations on the Nordic system, involving over 245k scenarios, demonstrate EVRVI's superior ability to identify and categorize voltage recovery issues compared to the traditional entropy-based measure. EVRVI not only significantly reduces false negatives in violation detection but also provides a reliable framework for over-voltage detection, making it an invaluable tool for modern power system studies.
comment: This paper is accepted for publication in IEEE PESGM 2025
Novel Data-Driven Indices for Early Detection and Quantification of Short-Term Voltage Instability from Voltage Trajectories
This paper presents a novel Short-Term Voltage Stability Index (STVSI), which leverages Lyapunov Exponent-based detection to assess and quantify short-term stability triggered by Over Excitation Limiters (OELs) or undamped oscillations in voltage. The proposed method is measurement-based and decomposes the voltage trajectory into two key components using Empirical Mode Decomposition (EMD): a residual part, which indicates delayed voltage recovery, and an oscillatory part, which captures oscillations. The residual component is critical, as it can detect activation of OELs in synchronous generators or Low Voltage Ride-Through (LVRT) relays in inverter-based resources, potentially leading to instability within the quasisteady-state time frame. Meanwhile, the oscillatory component may indicate either a stable or unstable state in the short term. To accurately assess stability, STVSI employs an entropy-based metric to measure the proximity of the system to instability, with specific indices for short-term voltage stability based on oscillations and recovery. Simulations on the Nordic power system demonstrate that STVSI effectively identifies and categorizes voltage stability issues. Moreover, STVSI not only detects voltage stability conditions but also qualitatively assesses the extent of stability, providing a nuanced measure of stability.
comment: This paper is accepted for publication in IEEE PESGM 2025
Extended Sensitivity-Aware Reactive Power Dispatch Algorithm for Smart Inverters with Multiple Control Modes
The increasing integration of Distributed Energy Resources (DERs) in distribution networks presents new challenges for voltage regulation and reactive power support. This paper extends a sensitivity-aware reactive power dispatch algorithm tailored to manage smart inverters operating under different control modes, including PQ, PV, and Volt-Var (VV). The proposed approach dynamically optimizes reactive power dispatch and voltage setpoints, enabling effective coordination among distribution systems as a virtual power plant (VPP) to support the transmission network. The algorithm is applied to the IEEE 13-bus and IEEE-123 bus test systems, and its performance is validated by comparing results with OpenDSS simulations across various operating scenarios. Results show that the maximum error in the voltages is less than 0.015 pu.
Debiasing Continuous-time Nonlinear Autoregressions
We study how to identify a class of continuous-time nonlinear systems defined by an ordinary differential equation affine in the unknown parameter. We define a notion of asymptotic consistency as $(n, h) \to (\infty, 0)$, and we achieve it using a family of direct methods where the first step is differentiating a noisy time series and the second step is a plug-in linear estimator. The first step, differentiation, is a signal processing adaptation of the nonparametric statistical technique of local polynomial regression. The second step, generalized linear regression, can be consistent using a least squares estimator, but we demonstrate two novel bias corrections that improve the accuracy for finite $h$. These methods significantly broaden the class of continuous-time systems that can be consistently estimated by direct methods.
Neural network-enhanced integrators for simulating ordinary differential equations
Numerous applications necessitate the computation of numerical solutions to differential equations across a wide range of initial conditions and system parameters, which feeds the demand for efficient yet accurate numerical integration methods.This study proposes a neural network (NN) enhancement of classical numerical integrators. NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes. The performance of these enhanced integrators is compared with well-established methods through numerical studies, with a particular emphasis on computational efficiency. Analytical properties are examined in terms of local errors and backward error analysis. Embedded Runge-Kutta schemes are then employed to develop enhanced integrators that mitigate generalization risk, ensuring that the neural network's evaluation in previously unseen regions of the state space does not destabilize the integrator. It is guaranteed that the enhanced integrators perform at least as well as the desired classical Runge-Kutta schemes. The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine, with parameters derived from the established simulation framework OpenFast.
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
This paper presents a Bayesian estimation framework for Wiener models, focusing on learning nonlinear output functions under known linear state dynamics. We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics (DBS)." Several features of the proposed estimator are studied, including Bayesian unbiasedness, closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that the closed-form description is computationally available, as the Fourier DBS enjoys explicit expression. Furthermore, we identify an inherent inconsistency in single-trajectory measurements, regardless of input excitation. Leveraging the closed-form estimation error, we develop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical experiments validate the efficacy of our approach, showing significant improvements over traditional regularized least-squares methods.
comment: 23 pages, 4 figures
Towards Zero Trust Security in Connected Vehicles: A Comprehensive Survey
Zero Trust is the new cybersecurity model that challenges the traditional one by promoting continuous verification of users, devices, and applications, whatever their position or origin. This model is critical for reducing the attack surface and preventing lateral movement without relying on implicit trust. Adopting the zero trust principle in Intelligent Transportation Systems (ITS), especially in the context of connected vehicles (CVs), presents an adequate solution in the face of increasing cyber threats, thereby strengthening the ITS environment. This paper offers an understanding of Zero Trust security through a comprehensive review of existing literature, principles, and challenges. It specifically examines its applications in emerging technologies, particularly within connected vehicles, addressing potential issues and cyber threats faced by CVs. Inclusion/exclusion criteria for the systematic literature review were planned alongside a bibliometric analysis. Moreover, keyword co-occurrence analysis was done, which indicates trends and general themes for the Zero Trust model, Zero Trust implementation, and Zero Trust application. Furthermore, the paper explores various ZT models proposed in the literature for connected vehicles, shedding light on the challenges associated with their integration into CV systems. Future directions of this research will focus on incorporating Zero Trust principles within Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication paradigms. This initiative intends to enhance the security posture and safety protocols within interconnected vehicular networks. The proposed research seeks to address the unique cybersecurity vulnerabilities inherent in the highly dynamic nature of vehicular communication systems.
Physics-informed Modularized Neural Network for Advanced Building Control by Deep Reinforcement Learning
Physics-informed machine learning (PIML) provides a promising solution for building energy modeling and can serve as a virtual environment to enable reinforcement learning (RL) agents to interact and learn. However, challenges remain in efficiently integrating physics priors, evaluating the effectiveness of physics constraints, balancing model accuracy and physics consistency, and enabling real-world implementation. To address these gaps, this study introduces a Physics-Informed Modularized Neural Network (PI-ModNN), which incorporates physics priors through a physics-informed model structure, loss functions, and hard constraints. A new evaluation metric called "temperature response violation" is developed to quantify the physical consistency of data-driven building dynamic models under varying control inputs and training data sizes. Additionally, a physics prior evaluation framework based on rule importance is proposed to assess the contribution of each individual physics prior, offering guidance on selecting appropriate PIML techniques. Results indicate that incorporating physical priors does not always improve model performance; inappropriate priors may decrease model accuracy and consistency. However, hard constraints are effective in enforcing model consistency. Furthermore, we present a general workflow for developing control-oriented PIML models and integrating them with deep reinforcement learning (DRL). Following this framework, a case study implementing DRL in an office space over three months demonstrates potential energy savings of 31.4%. Finally, we provide a general guideline for integrating data-driven models with advanced building control through a four-step evaluation framework, paving the way for reliable and scalable deployment of advanced building controls.
Real-Time Model Predictive Control for the Swing-Up Problem of an Underactuated Double Pendulum
The 3rd AI Olympics with RealAIGym competition poses the challenge of developing a global policy that can swing up and stabilize an underactuated 2-link system Acrobot and/or Pendubot from any configuration in the state space. This paper presents an optimal control-based approach using a real-time Nonlinear Model Predictive Control (MPC). The results show that the controller achieves good performance and robustness and can reliably handle disturbances.
Distributed Adaptive Control of Disturbed Interconnected Systems with High-Order Tuners
This paper addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, in the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership's guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using three distributed algorithms, ranging from first- to high-order tuners to effectively address time-varying regressors. The mathematical foundation is rigorously presented from the network designs of the unknown agents following a leader, to the distributed methods. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the $L_2-$norm and $L_\infty-$norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuner outperforms its counterparts, and we provide related insights along with our conclusions.
comment: This is the extended version of the paper accepted for publication in IEEE Control Systems Letters (L-CSS). On page(s): 1421-1426. 2024
CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
Physics-informed machine learning for building performance simulation-A review of a nascent field
Building performance simulation (BPS) is critical for understanding building dynamics and behavior, analyzing performance of the built environment, optimizing energy efficiency, improving demand flexibility, and enhancing building resilience. However, conducting BPS is not trivial. Traditional BPS relies on an accurate building energy model, mostly physics-based, which depends heavily on detailed building information, expert knowledge, and case-by-case model calibrations, thereby significantly limiting their scalability. With the development of sensing technology and increased data availability, there is a growing attention and interest in data-driven BPS. However, purely data-driven models often suffer from limited generalization ability and a lack of physical consistency, resulting in poor performance in real-world applications. To address these limitations, recent studies have started to incorporate physics priors into data-driven models, a methodology called physics-informed machine learning (PIML). PIML is an emerging field with the definitions, methodologies, evaluation criteria, application scenarios, and future directions that remain open. To bridge those gaps, this study systematically reviews the state-of-art PIML for BPS, offering a comprehensive definition of PIML, and comparing it to traditional BPS approaches regarding data requirements, modeling effort, performance and computation cost. We also summarize the commonly used methodologies, validation approaches, application domains, available data sources, open-source packages and testbeds. In addition, this study provides a general guideline for selecting appropriate PIML models based on BPS applications. Finally, this study identifies key challenges and outlines future research directions, providing a solid foundation and valuable insights to advance R&D of PIML in BPS.
Safety Filter Design for Articulated Frame Steering Vehicles In the Presence of Actuator Dynamics Using High-Order Control Barrier Functions
Articulated Frame Steering (AFS) vehicles are widely used in heavy-duty industries, where they often operate near operators and laborers. Therefore, designing safe controllers for AFS vehicles is essential. In this paper, we develop a Quadratic Program (QP)-based safety filter that ensures feasibility for AFS vehicles with affine actuator dynamics. To achieve this, we first derive the general equations of motion for AFS vehicles, incorporating affine actuator dynamics. We then introduce a novel High-Order Control Barrier Function (HOCBF) candidate with equal relative degrees for both system controls. Finally, we design a Parametric Adaptive HOCBF (PACBF) and an always-feasible, QP-based safety filter. Numerical simulations of AFS vehicle kinematics demonstrate the effectiveness of our approach.
Distributed Stochastic Bilevel Optimization: Improved Complexity and Heterogeneity Analysis
This paper consider solving a class of nonconvex-strongly-convex distributed stochastic bilevel optimization (DSBO) problems with personalized inner-level objectives. Most existing algorithms require computational loops for hypergradient estimation, leading to computational inefficiency. Moreover, the impact of data heterogeneity on convergence in bilevel problems is not explicitly characterized yet. To address these issues, we propose LoPA, a loopless personalized distributed algorithm that leverages a tracking mechanism for iterative approximation of inner-level solutions and Hessian-inverse matrices without relying on extra computation loops. Our theoretical analysis explicitly characterizes the heterogeneity across nodes (denoted by $b$), and establishes a sublinear rate of $\mathcal{O}( {\frac{1}{{{{\left( {1 - \rho } \right)}}K}} \!+ \!\frac{{(\frac{b}{\sqrt{m}})^{\frac{2}{3}} }}{{\left( {1 - \rho } \right)^{\frac{2}{3}} K^{\frac{2}{3}} }} \!+ \!\frac{1}{\sqrt{ K }}( {\sigma _{\operatorname{p} }} + \frac{1}{\sqrt{m}}{\sigma _{\operatorname{c} }} ) } )$ without the boundedness of local hypergradients, where ${\sigma _{\operatorname{p} }}$ and ${\sigma _{\operatorname{c} }}$ represent the gradient sampling variances associated with the inner- and outer-level variables, respectively. We also integrate LoPA with a gradient tracking scheme to eliminate the impact of data heterogeneity, yielding an improved rate of ${{\mathcal{O}}}(\frac{{1}}{{ (1-\rho)^2K }} \!+\! \frac{1}{{\sqrt{K}}}( \sigma_{\rm{p}} \!+\! \frac{1}{\sqrt{m}}\sigma_{\rm{c}} ) )$. The computational complexity of LoPA is of ${{\mathcal{O}}}({\epsilon^{-2}})$ to an $\epsilon$-stationary point, matching the communication complexity due to the loopless structure, which outperforms existing counterparts for DSBO. Numerical experiments validate the effectiveness of the proposed algorithm.
comment: Accepted by JMLR
Lambda/6 Suspended Patch Antenna
This work introduces a novel, compact antenna design based on a lambda-6th suspended patch configuration that is particularly suited for small-size wireless sensor nodes. The proposed design meets key requirements such as compactness, omnidirectionality, robust source matching over a designated bandwidth, interference immunity, and low costs by evolving the conventional square patch antenna. With a footprint of only 20-by-20 mm, the antenna incorporates a grounded metal shield to both reduce its effective dimensions below one-half wavelength and mitigate interference from nearby circuitry. Simulation results, conducted on a cost-effective FR4 substrate, demonstrate a resonance at 2.45 GHz with a return loss of -32.5 dB and a bandwidth of 50 MHz (at the -10 dB level), making this design an attractive candidate for integration into densely populated wireless sensor networks.
comment: 4 pages, 8 figures, STW SAFE conference
A Generic Observer Design for Inertial Navigation Systems Using an LTV Framework
This paper addresses the problem of accurate pose estimation-position, velocity, and orientation-of a rigid body using an Inertial Measurement Unit (IMU) in combination with generic exteroceptive measurements. By reformulating the vehicle's dynamics and measurement models within a linear time-varying (LTV) framework, we enable the application of a linear Kalman filter, significantly simplifying observer design for inertial navigation systems (INS). A key strength of this approach lies in its generality: rather than relying on specific measurement modalities, our framework accommodates a broad class of exteroceptive measurements. To illustrate its effectiveness, we conduct a uniform observability (UO) analysis for two fundamental benchmark cases-GPS-aided INS and landmark-aided INS-deriving sufficient conditions that guarantee the global uniform exponential stability of the proposed filter. Simulations for both applications confirm the versatility and robustness of our approach.
comment: 8 pages
Safe Stabilization using Nonsmooth Control Lyapunov Barrier Function
This paper addresses the challenge of safe stabilization, ensuring the system state reach the origin while avoiding unsafe regions. Existing approaches relying on smooth Lyapunov barrier functions often fail to guarantee a feasible controller. To overcome this limitation, we introduce the nonsmooth Control Lyapunov Barrier Function (NCLBF), which ensures the existence of a safe and stabilizing controller. We provide a systematic framework for designing NCLBF and feedback control strategies to achieve safe stabilization in the presence of multiple bounded unsafe regions. Theoretical analysis and simulations of both linear and nonlinear systems demonstrate the effectiveness and superiority of our approach compared to the existing smooth functions method.
comment: 8 pages, 8 figures
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
Automotive Battery Pack Standards and Design Characteristics: A Review
The latest advancements and near-future trends in automotive battery packs, underlying regulatory compliance, and performance requirements are presented in this paper. In response to these specifications, high-level solutions that converge towards a standard architecture for passenger cars are provided. Transition to high-voltage enables ultra-fast charging above 350 kW, which reduces the charging times to less than 20 minutes. Also, advances in energy density and battery capacities make advancements in enhancing the electric vehicle's range beyond 1000 km per charge. Key factors such as electrical performance, safety, mechanical integrity, reliability, endurance, environmental conditions, and diagnostics are examined. This study explores the next generation of cost-effective and high-performance battery systems and discovers near-future battery technologies, including sodium-ion chemistry and rare-earth-free alternatives, as well as battery applications in aviation.
Self-triggered Stabilization of Contracting Systems under Quantization
We propose self-triggered control schemes for nonlinear systems with quantized state measurements. Our focus lies on scenarios where both the controller and the self-triggering mechanism receive only the quantized state at each sampling time. We assume that the ideal closed-loop system without quantization or self-triggered sampling is contracting. Moreover, an upper bound on the growth rate of the open-loop system is assumed to be known. We present two control schemes that achieve closed-loop stability without Zeno behavior. The first scheme is implemented under logarithmic quantization and uses the quantized state for the threshold in the triggering condition. The second one is a joint design of zooming quantization and self-triggered sampling, where the adjustable zoom parameter for quantization changes based on inter-sampling times and is also used for the threshold of self-triggered sampling. In both schemes, the self-triggering mechanism predicts the future state from the quantized data for the computation of the next sampling time. We employ a trajectory-based approach for stability analysis, where contraction theory plays a key role.
comment: 26 pages, 11 figures. To appear in IEEE Transactions on Automatic Control
Sampled-Data Primal-Dual Gradient Dynamics in Model Predictive Control
Model Predictive Control (MPC) is a versatile approach capable of accommodating diverse control requirements that holds significant promise for a broad spectrum of industrial applications. Noteworthy challenges associated with MPC include the substantial computational burden, which is sometimes considered excessive even for linear systems. Recently, a rapid computation method that guides the input toward convergence with the optimal control problem solution by employing primal-dual gradient (PDG) dynamics as a controller has been proposed for linear MPCs. However, stability has been ensured under the assumption that the controller is a continuous-time system, leading to potential instability when the controller undergoes discretization and is implemented as a sampled-data system. In this paper, we propose a discrete-time dynamical controller, incorporating specific modifications to the PDG approach, and present stability conditions relevant to the resulting sampled-data system. Additionally, we introduce an extension designed to enhance control performance, that was traded off in the original. Numerical examples substantiate that our proposed method, which can be executed in only 1 $\mu$s in a standard laptop, not only ensures stability with considering sampled-data implementation but also effectively enhances control performance.
Parallel Batch Scheduling With Incompatible Job Families Via Constraint Programming
This paper addresses the incompatible case of parallel batch scheduling, where compatible jobs belong to the same family, and jobs from different families cannot be processed together in the same batch. The state-of-the-art constraint programming (CP) model for this problem relies on specific functions and global constraints only available in a well established commercial CP solver. This paper expands the literature around this problem by proposing four new CP models that can be implemented in commercial and open-source solvers: a new model that relies on automaton constraints, and three alternative models that integrate assignment and scheduling decisions with different strategies and global constraints. Extensive computational experiments on standard test cases under multiple objectives and multiple solvers demonstrate the implementation flexibility and competitive performance of the proposed models.
comment: 16 pages, 9 figures
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, solutions to these PDEs often do not converge to a unique equilibrium, but instead converge to non-stationary trajectories existing in the nullspace of the spatial differential operator (e.g. $\frac{\partial^2}{\partial x^2}$). To analyse this convergence behaviour, in this paper, it is shown how such trajectories can be modeled for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any PDE state satisfying these boundary conditions can be uniquely expressed in terms of two components, existing in the image and the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$, respectively. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both state components. Finally, a notion of exponential stability is defined that requires only one of the state components to converge to zero, and it is shown how this stability notion can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that exponential stability can be verified with tight bounds on the rate of decay.
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
We develop compositional learning algorithms for coupled dynamical systems. While deep learning has proven effective at modeling complex relationships from data, compositional couplings between system components typically introduce algebraic constraints on state variables, posing challenges to many existing data-driven approaches to modeling dynamical systems. Towards developing deep learning models for constrained dynamical systems, we introduce neural port-Hamiltonian differential algebraic equations (N-PHDAEs), which use neural networks to parametrize unknown terms in both the differential and algebraic components of a port-Hamiltonian DAE. To train these models, we propose an algorithm that uses automatic differentiation to perform index reduction, automatically transforming the neural DAE into an equivalent system of neural ordinary differential equations (N-ODEs), for which established model inference and backpropagation methods exist. The proposed compositional modeling framework and learning algorithms may be applied broadly to learn control-oriented models of dynamical systems in a variety of application areas, however, in this work, we focus on their application to the modeling of electrical networks. Experiments simulating the dynamics of nonlinear circuits exemplify the benefits of our approach: the proposed N-PHDAE model achieves an order of magnitude improvement in prediction accuracy and constraint satisfaction when compared to a baseline N-ODE over long prediction time horizons. We also validate the compositional capabilities of our approach through experiments on a simulated D.C. microgrid: we train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
A Deep Neural Network-based Frequency Predictor for Frequency-Constrained Optimal Power Flow
Rate of change of frequency (RoCoF) and frequency nadir should be considered in real-time frequency-constrained optimal power flow (FCOPF) to ensure frequency stability of the modern power systems. Since calculating the frequency response is complex, deep neural network (DNN) could be adopted to capture the nonlinearities and estimate those two metrics accurately. Therefore, in this paper, a DNN-based frequency predictor is developed with the training data obtained from time-domain simulations using PSCAD/EMTDC. Subsequently, it is reformulated using a set of mixed-integer linear programming formulations and then embedded into the FCOPF framework as constraints to ensure grid frequency stability, creating the proposed DNN-FCOPF model. Two benchmark models, a traditional OPF without any frequency constraints and a linear system-wide RoCoF-constrained FCOPF, are also implemented to gauge the proposed DNN-FCOPF. Finally, the solutions obtained with these three models are compared and evaluated with time-domain simulations using PSCAD under various load profiles, demonstrating the effectiveness of the proposed DNN-FCOPF.
An Adaptive Method for Contextual Stochastic Multi-armed Bandits with Rewards Generated by a Linear Dynamical System
Online decision-making can be formulated as the popular stochastic multi-armed bandit problem where a learner makes decisions (or takes actions) to maximize cumulative rewards collected from an unknown environment. This paper proposes to model a stochastic multi-armed bandit as an unknown linear Gaussian dynamical system, as many applications, such as bandits for dynamic pricing problems or hyperparameter selection for machine learning models, can benefit from this perspective. Following this approach, we can build a matrix representation of the system's steady-state Kalman filter that takes a set of previously collected observations from a time interval of length $s$ to predict the next reward that will be returned for each action. This paper proposes a solution in which the parameter $s$ is determined via an adaptive algorithm by analyzing the model uncertainty of the matrix representation. This algorithm helps the learner adaptively adjust its model size and its length of exploration based on the uncertainty of its environmental model. The effectiveness of the proposed scheme is demonstrated through extensive numerical studies, revealing that the proposed scheme is capable of increasing the rate of collected cumulative rewards.
Faster Reinforcement Learning by Freezing Slow States
We study infinite horizon Markov decision processes (MDPs) with "fast-slow" structure, where some state variables evolve rapidly ("fast states") while others change more gradually ("slow states"). Such structure is common in real-world problems where sequential decisions need to be made at high frequencies over long horizons, where slowly evolving information also influences optimal decisions. Examples include inventory control under slowly changing demand, or dynamic pricing with gradually shifting consumer behavior. Modeling the problem at the natural decision frequency leads to MDPs with discount factors close to one, making them computationally challenging. We propose a novel approximation strategy that "freezes" slow states during a phase of lower-level planning, solving finite-horizon MDPs conditioned on a fixed slow state, and then applying value iteration to an auxiliary upper-level MDP that evolves on a slower timescale. Freezing states for short periods of time leads to easier-to-solve lower-level problems, while a slower upper-level timescale allows for a more favorable discount factor. On the theoretical side, we analyze the regret incurred by our frozen-state approach, which leads to simple insights on how to trade off computational budget versus regret. Empirically, we demonstrate that frozen-state methods produce high-quality policies with significantly less computation, and we show that simply omitting slow states is often a poor heuristic.
comment: 66 pages, 10 figures
Entropy Rate Maximization of Markov Decision Processes under Linear Temporal Logic Tasks
We investigate the problem of synthesizing optimal control policies for Markov decision processes (MDPs) with both qualitative and quantitative objectives. Specifically, our goal is to achieve a given linear temporal logic (LTL) task with probability one, while maximizing the \emph{entropy rate} of the system. The notion of entropy rate characterizes the long-run average (un)predictability of a stochastic process. Such an optimal policy is of our interest, in particular, from the security point of view, as it not only ensures the completion of tasks, but also maximizes the unpredictability of the system. However, existing works only focus on maximizing the total entropy which may diverge to infinity for infinite horizon. In this paper, we provide a complete solution to the entropy rate maximization problem under LTL constraints. Specifically, we first present an algorithm for synthesizing entropy rate maximizing policies for communicating MDPs. Then based on a new state classification method, we show the entropy rate maximization problem under LTL task can be effectively solved in polynomial-time. We illustrate the proposed algorithm based on two case studies of robot task planning scenario.
Robotics
Modeling, Translation, and Analysis of Different examples using Simulink, Stateflow, SpaceEx, and FlowStar
This report details the translation and testing of multiple benchmarks, including the Six Vehicle Platoon, Two Bouncing Ball, Three Tank System, and Four-Dimensional Linear Switching, which represent continuous and hybrid systems. These benchmarks were gathered from past instances involving diverse verification tools such as SpaceEx, Flow*, HyST, MATLAB-Simulink, Stateflow, etc. They cover a range of systems modeled as hybrid automata, providing a comprehensive set for analysis and evaluation. Initially, we created models for all four systems using various suitable tools. Subsequently, these models were converted to the SpaceEx format and then translated into different formats compatible with various verification tools. Adapting our approach to the dynamic characteristics of each system, we performed reachability analysis using the respective verification tools.
comment: 6 pages, 18 Figures
Tool-as-Interface: Learning Robot Policies from Human Tool Usage through Imitation Learning
Tool use is critical for enabling robots to perform complex real-world tasks, and leveraging human tool-use data can be instrumental for teaching robots. However, existing data collection methods like teleoperation are slow, prone to control delays, and unsuitable for dynamic tasks. In contrast, human natural data, where humans directly perform tasks with tools, offers natural, unstructured interactions that are both efficient and easy to collect. Building on the insight that humans and robots can share the same tools, we propose a framework to transfer tool-use knowledge from human data to robots. Using two RGB cameras, our method generates 3D reconstruction, applies Gaussian splatting for novel view augmentation, employs segmentation models to extract embodiment-agnostic observations, and leverages task-space tool-action representations to train visuomotor policies. We validate our approach on diverse real-world tasks, including meatball scooping, pan flipping, wine bottle balancing, and other complex tasks. Our method achieves a 71\% higher average success rate compared to diffusion policies trained with teleoperation data and reduces data collection time by 77\%, with some tasks solvable only by our framework. Compared to hand-held gripper, our method cuts data collection time by 41\%. Additionally, our method bridges the embodiment gap, improves robustness to variations in camera viewpoints and robot configurations, and generalizes effectively across objects and spatial setups.
comment: Project Page: https://tool-as-interface.github.io. 17 pages, 14 figures
Nonlinear Robust Optimization for Planning and Control
This paper presents a novel robust trajectory optimization method for constrained nonlinear dynamical systems subject to unknown bounded disturbances. In particular, we seek optimal control policies that remain robustly feasible with respect to all possible realizations of the disturbances within prescribed uncertainty sets. To address this problem, we introduce a bi-level optimization algorithm. The outer level employs a trust-region successive convexification approach which relies on linearizing the nonlinear dynamics and robust constraints. The inner level involves solving the resulting linearized robust optimization problems, for which we derive tractable convex reformulations and present an Augmented Lagrangian method for efficiently solving them. To further enhance the robustness of our methodology on nonlinear systems, we also illustrate that potential linearization errors can be effectively modeled as unknown disturbances as well. Simulation results verify the applicability of our approach in controlling nonlinear systems in a robust manner under unknown disturbances. The promise of effectively handling approximation errors in such successive linearization schemes from a robust optimization perspective is also highlighted.
Diffusion-Based Approximate MPC: Fast and Consistent Imitation of Multi-Modal Action Distributions
Approximating model predictive control (MPC) using imitation learning (IL) allows for fast control without solving expensive optimization problems online. However, methods that use neural networks in a simple L2-regression setup fail to approximate multi-modal (set-valued) solution distributions caused by local optima found by the numerical solver or non-convex constraints, such as obstacles, significantly limiting the applicability of approximate MPC in practice. We solve this issue by using diffusion models to accurately represent the complete solution distribution (i.e., all modes) at high control rates (more than 1000 Hz). This work shows that diffusion based AMPC significantly outperforms L2-regression-based approximate MPC for multi-modal action distributions. In contrast to most earlier work on IL, we also focus on running the diffusion-based controller at a higher rate and in joint space instead of end-effector space. Additionally, we propose the use of gradient guidance during the denoising process to consistently pick the same mode in closed loop to prevent switching between solutions. We propose using the cost and constraint satisfaction of the original MPC problem during parallel sampling of solutions from the diffusion model to pick a better mode online. We evaluate our method on the fast and accurate control of a 7-DoF robot manipulator both in simulation and on hardware deployed at 250 Hz, achieving a speedup of more than 70 times compared to solving the MPC problem online and also outperforming the numerical optimization (used for training) in success ratio.
B4P: Simultaneous Grasp and Motion Planning for Object Placement via Parallelized Bidirectional Forests and Path Repair
Robot pick and place systems have traditionally decoupled grasp, placement, and motion planning to build sequential optimization pipelines with the assumption that the individual components will be able to work together. However, this separation introduces sub-optimality, as grasp choices may limit or even prohibit feasible motions for a robot to reach the target placement pose, particularly in cluttered environments with narrow passages. To this end, we propose a forest-based planning framework to simultaneously find grasp configurations and feasible robot motions that explicitly satisfy downstream placement configurations paired with the selected grasps. Our proposed framework leverages a bidirectional sampling-based approach to build a start forest, rooted at the feasible grasp regions, and a goal forest, rooted at the feasible placement regions, to facilitate the search through randomly explored motions that connect valid pairs of grasp and placement trees. We demonstrate that the framework's inherent parallelism enables superlinear speedup, making it scalable for applications for redundant robot arms (e.g., 7 Degrees of Freedom) to work efficiently in highly cluttered environments. Extensive experiments in simulation demonstrate the robustness and efficiency of the proposed framework in comparison with multiple baselines under diverse scenarios.
Modeling of AUV Dynamics with Limited Resources: Efficient Online Learning Using Uncertainty
Machine learning proves effective in constructing dynamics models from data, especially for underwater vehicles. Continuous refinement of these models using incoming data streams, however, often requires storage of an overwhelming amount of redundant data. This work investigates the use of uncertainty in the selection of data points to rehearse in online learning when storage capacity is constrained. The models are learned using an ensemble of multilayer perceptrons as they perform well at predicting epistemic uncertainty. We present three novel approaches: the Threshold method, which excludes samples with uncertainty below a specified threshold, the Greedy method, designed to maximize uncertainty among the stored points, and Threshold-Greedy, which combines the previous two approaches. The methods are assessed on data collected by an underwater vehicle Dagon. Comparison with baselines reveals that the Threshold exhibits enhanced stability throughout the learning process and also yields a model with the least cumulative testing loss. We also conducted detailed analyses on the impact of model parameters and storage size on the performance of the models, as well as a comparison of three different uncertainty estimation methods.
comment: 10 Pages, 9 Figures. Oceans Brest 2025 camera ready
Hierarchical Planning for Complex Tasks with Knowledge Graph-RAG and Symbolic Verification
Large Language Models (LLMs) have shown promise as robotic planners but often struggle with long-horizon and complex tasks, especially in specialized environments requiring external knowledge. While hierarchical planning and Retrieval-Augmented Generation (RAG) address some of these challenges, they remain insufficient on their own and a deeper integration is required for achieving more reliable systems. To this end, we propose a neuro-symbolic approach that enhances LLMs-based planners with Knowledge Graph-based RAG for hierarchical plan generation. This method decomposes complex tasks into manageable subtasks, further expanded into executable atomic action sequences. To ensure formal correctness and proper decomposition, we integrate a Symbolic Validator, which also functions as a failure detector by aligning expected and observed world states. Our evaluation against baseline methods demonstrates the consistent significant advantages of integrating hierarchical planning, symbolic verification, and RAG across tasks of varying complexity and different LLMs. Additionally, our experimental setup and novel metrics not only validate our approach for complex planning but also serve as a tool for assessing LLMs' reasoning and compositional capabilities.
DexTOG: Learning Task-Oriented Dexterous Grasp with Language
This study introduces a novel language-guided diffusion-based learning framework, DexTOG, aimed at advancing the field of task-oriented grasping (TOG) with dexterous hands. Unlike existing methods that mainly focus on 2-finger grippers, this research addresses the complexities of dexterous manipulation, where the system must identify non-unique optimal grasp poses under specific task constraints, cater to multiple valid grasps, and search in a high degree-of-freedom configuration space in grasp planning. The proposed DexTOG includes a diffusion-based grasp pose generation model, DexDiffu, and a data engine to support the DexDiffu. By leveraging DexTOG, we also proposed a new dataset, DexTOG-80K, which was developed using a shadow robot hand to perform various tasks on 80 objects from 5 categories, showcasing the dexterity and multi-tasking capabilities of the robotic hand. This research not only presents a significant leap in dexterous TOG but also provides a comprehensive dataset and simulation validation, setting a new benchmark in robotic manipulation research.
Planning Safety Trajectories with Dual-Phase, Physics-Informed, and Transportation Knowledge-Driven Large Language Models
Foundation models have demonstrated strong reasoning and generalization capabilities in driving-related tasks, including scene understanding, planning, and control. However, they still face challenges in hallucinations, uncertainty, and long inference latency. While existing foundation models have general knowledge of avoiding collisions, they often lack transportation-specific safety knowledge. To overcome these limitations, we introduce LetsPi, a physics-informed, dual-phase, knowledge-driven framework for safe, human-like trajectory planning. To prevent hallucinations and minimize uncertainty, this hybrid framework integrates Large Language Model (LLM) reasoning with physics-informed social force dynamics. LetsPi leverages the LLM to analyze driving scenes and historical information, providing appropriate parameters and target destinations (goals) for the social force model, which then generates the future trajectory. Moreover, the dual-phase architecture balances reasoning and computational efficiency through its Memory Collection phase and Fast Inference phase. The Memory Collection phase leverages the physics-informed LLM to process and refine planning results through reasoning, reflection, and memory modules, storing safe, high-quality driving experiences in a memory bank. Surrogate safety measures and physics-informed prompt techniques are introduced to enhance the LLM's knowledge of transportation safety and physical force, respectively. The Fast Inference phase extracts similar driving experiences as few-shot examples for new scenarios, while simplifying input-output requirements to enable rapid trajectory planning without compromising safety. Extensive experiments using the HighD dataset demonstrate that LetsPi outperforms baseline models across five safety metrics.See PDF for project Github link.
Advancing Egocentric Video Question Answering with Multimodal Large Language Models
Egocentric Video Question Answering (QA) requires models to handle long-horizon temporal reasoning, first-person perspectives, and specialized challenges like frequent camera movement. This paper systematically evaluates both proprietary and open-source Multimodal Large Language Models (MLLMs) on QaEgo4Dv2 - a refined dataset of egocentric videos derived from QaEgo4D. Four popular MLLMs (GPT-4o, Gemini-1.5-Pro, Video-LLaVa-7B and Qwen2-VL-7B-Instruct) are assessed using zero-shot and fine-tuned approaches for both OpenQA and CloseQA settings. We introduce QaEgo4Dv2 to mitigate annotation noise in QaEgo4D, enabling more reliable comparison. Our results show that fine-tuned Video-LLaVa-7B and Qwen2-VL-7B-Instruct achieve new state-of-the-art performance, surpassing previous benchmarks by up to +2.6% ROUGE/METEOR (for OpenQA) and +13% accuracy (for CloseQA). We also present a thorough error analysis, indicating the model's difficulty in spatial reasoning and fine-grained object recognition - key areas for future improvement.
comment: 8 pages
DexSinGrasp: Learning a Unified Policy for Dexterous Object Singulation and Grasping in Cluttered Environments
Grasping objects in cluttered environments remains a fundamental yet challenging problem in robotic manipulation. While prior works have explored learning-based synergies between pushing and grasping for two-fingered grippers, few have leveraged the high degrees of freedom (DoF) in dexterous hands to perform efficient singulation for grasping in cluttered settings. In this work, we introduce DexSinGrasp, a unified policy for dexterous object singulation and grasping. DexSinGrasp enables high-dexterity object singulation to facilitate grasping, significantly improving efficiency and effectiveness in cluttered environments. We incorporate clutter arrangement curriculum learning to enhance success rates and generalization across diverse clutter conditions, while policy distillation enables a deployable vision-based grasping strategy. To evaluate our approach, we introduce a set of cluttered grasping tasks with varying object arrangements and occlusion levels. Experimental results show that our method outperforms baselines in both efficiency and grasping success rate, particularly in dense clutter. Codes, appendix, and videos are available on our project website https://nus-lins-lab.github.io/dexsingweb/.
The Mediating Effects of Emotions on Trust through Risk Perception and System Performance in Automated Driving
Trust in automated vehicles (AVs) has traditionally been explored through a cognitive lens, but growing evidence highlights the significant role emotions play in shaping trust. This study investigates how risk perception and AV performance (error vs. no error) influence emotional responses and trust in AVs, using mediation analysis to examine the indirect effects of emotions. In this study, 70 participants (42 male, 28 female) watched real-life recorded videos of AVs operating with or without errors, coupled with varying levels of risk information (high, low, or none). They reported their anticipated emotional responses using 19 discrete emotion items, and trust was assessed through dispositional, learned, and situational trust measures. Factor analysis identified four key emotional components, namely hostility, confidence, anxiety, and loneliness, that were influenced by risk perception and AV performance. The linear mixed model showed that risk perception was not a significant predictor of trust, while performance and individual differences were. Mediation analysis revealed that confidence was a strong positive mediator, while hostile and anxious emotions negatively impacted trust. However, lonely emotions did not significantly mediate the relationship between AV performance and trust. The results show that real-time AV behavior is more influential on trust than pre-existing risk perceptions, indicating trust in AVs might be more experience-based than shaped by prior beliefs. Our findings also underscore the importance of fostering positive emotional responses for trust calibration, which has important implications for user experience design in automated driving.
SELC: Self-Supervised Efficient Local Correspondence Learning for Low Quality Images
Accurate and stable feature matching is critical for computer vision tasks, particularly in applications such as Simultaneous Localization and Mapping (SLAM). While recent learning-based feature matching methods have demonstrated promising performance in challenging spatiotemporal scenarios, they still face inherent trade-offs between accuracy and computational efficiency in specific settings. In this paper, we propose a lightweight feature matching network designed to establish sparse, stable, and consistent correspondence between multiple frames. The proposed method eliminates the dependency on manual annotations during training and mitigates feature drift through a hybrid self-supervised paradigm. Extensive experiments validate three key advantages: (1) Our method operates without dependency on external prior knowledge and seamlessly incorporates its hybrid training mechanism into original datasets. (2) Benchmarked against state-of-the-art deep learning-based methods, our approach maintains equivalent computational efficiency at low-resolution scales while achieving a 2-10x improvement in computational efficiency for high-resolution inputs. (3) Comparative evaluations demonstrate that the proposed hybrid self-supervised scheme effectively mitigates feature drift in long-term tracking while maintaining consistent representation across image sequences.
comment: 8 pages, 4 figures
eKalibr-Stereo: Continuous-Time Spatiotemporal Calibration for Event-Based Stereo Visual Systems
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the stereo event camera setup is commonly adopted due to its direct scale perception and depth recovery. For optimal stereo visual fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. Considering that few stereo visual calibrators orienting to event cameras exist, based on our previous work eKalibr (an event camera intrinsic calibrator), we propose eKalibr-Stereo for accurate spatiotemporal calibration of event-based stereo visual systems. To improve the continuity of grid pattern tracking, building upon the grid pattern recognition method in eKalibr, an additional motion prior-based tracking module is designed in eKalibr-Stereo to track incomplete grid patterns. Based on tracked grid patterns, a two-step initialization procedure is performed to recover initial guesses of piece-wise B-splines and spatiotemporal parameters, followed by a continuous-time batch bundle adjustment to refine the initialized states to optimal ones. The results of extensive real-world experiments show that eKalibr-Stereo can achieve accurate event-based stereo spatiotemporal calibration. The implementation of eKalibr-Stereo is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
A Convex and Global Solution for the P$n$P Problem in 2D Forward-Looking Sonar
The perspective-$n$-point (P$n$P) problem is important for robotic pose estimation. It is well studied for optical cameras, but research is lacking for 2D forward-looking sonar (FLS) in underwater scenarios due to the vastly different imaging principles. In this paper, we demonstrate that, despite the nonlinearity inherent in sonar image formation, the P$n$P problem for 2D FLS can still be effectively addressed within a point-to-line (PtL) 3D registration paradigm through orthographic approximation. The registration is then resolved by a duality-based optimal solver, ensuring the global optimality. For coplanar cases, a null space analysis is conducted to retrieve the solutions from the dual formulation, enabling the methods to be applied to more general cases. Extensive simulations have been conducted to systematically evaluate the performance under different settings. Compared to non-reprojection-optimized state-of-the-art (SOTA) methods, the proposed approach achieves significantly higher precision. When both methods are optimized, ours demonstrates comparable or slightly superior precision.
Deliberate Planning of 3D Bin Packing on Packing Configuration Trees
Online 3D Bin Packing Problem (3D-BPP) has widespread applications in industrial automation. Existing methods usually solve the problem with limited resolution of spatial discretization, and/or cannot deal with complex practical constraints well. We propose to enhance the practical applicability of online 3D-BPP via learning on a novel hierarchical representation, packing configuration tree (PCT). PCT is a full-fledged description of the state and action space of bin packing which can support packing policy learning based on deep reinforcement learning (DRL). The size of the packing action space is proportional to the number of leaf nodes, making the DRL model easy to train and well-performing even with continuous solution space. We further discover the potential of PCT as tree-based planners in deliberately solving packing problems of industrial significance, including large-scale packing and different variations of BPP setting. A recursive packing method is proposed to decompose large-scale packing into smaller sub-trees while a spatial ensemble mechanism integrates local solutions into global. For different BPP variations with additional decision variables, such as lookahead, buffering, and offline packing, we propose a unified planning framework enabling out-of-the-box problem solving. Extensive evaluations demonstrate that our method outperforms existing online BPP baselines and is versatile in incorporating various practical constraints. The planning process excels across large-scale problems and diverse problem variations. We develop a real-world packing robot for industrial warehousing, with careful designs accounting for constrained placement and transportation stability. Our packing robot operates reliably and efficiently on unprotected pallets at 10 seconds per box. It achieves averagely 19 boxes per pallet with 57.4% space utilization for relatively large-size boxes.
Driving-RAG: Driving Scenarios Embedding, Search, and RAG Applications
Driving scenario data play an increasingly vital role in the development of intelligent vehicles and autonomous driving. Accurate and efficient scenario data search is critical for both online vehicle decision-making and planning, and offline scenario generation and simulations, as it allows for leveraging the scenario experiences to improve the overall performance. Especially with the application of large language models (LLMs) and Retrieval-Augmented-Generation (RAG) systems in autonomous driving, urgent requirements are put forward. In this paper, we introduce the Driving-RAG framework to address the challenges of efficient scenario data embedding, search, and applications for RAG systems. Our embedding model aligns fundamental scenario information and scenario distance metrics in the vector space. The typical scenario sampling method combined with hierarchical navigable small world can perform efficient scenario vector search to achieve high efficiency without sacrificing accuracy. In addition, the reorganization mechanism by graph knowledge enhances the relevance to the prompt scenarios and augment LLM generation. We demonstrate the effectiveness of the proposed framework on typical trajectory planning task for complex interactive scenarios such as ramps and intersections, showcasing its advantages for RAG applications.
Data Scaling Laws for End-to-End Autonomous Driving CVPR 2025
Autonomous vehicle (AV) stacks have traditionally relied on decomposed approaches, with separate modules handling perception, prediction, and planning. However, this design introduces information loss during inter-module communication, increases computational overhead, and can lead to compounding errors. To address these challenges, recent works have proposed architectures that integrate all components into an end-to-end differentiable model, enabling holistic system optimization. This shift emphasizes data engineering over software integration, offering the potential to enhance system performance by simply scaling up training resources. In this work, we evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours with both open-loop metrics and closed-loop simulations. Specifically, we investigate how much additional training data is needed to achieve a target performance gain, e.g., a 5% improvement in motion prediction accuracy. By understanding the relationship between model performance and training dataset size, we aim to provide insights for data-driven decision-making in autonomous driving development.
comment: 15 pages, 11 figures, 4 tables, CVPR 2025 Workshop on Autonomous Driving
Development and Experimental Evaluation of a Vibration-Based Adhesion System for Miniature Wall-Climbing Robots
In recent years, miniature wall-climbing robots have attracted widespread attention due to their significant potential in equipment inspection and in-situ repair applications. Traditional wall-climbing systems typically rely on electromagnetic, electrostatic, vacuum suction, or van der Waals forces for controllable adhesion. However, these conventional methods impose limitations when striving for both a compact design and high-speed mobility. This paper proposes a novel Vibration-Based Adhesion (VBA) technique, which utilizes a flexible disk vibrating near a surface to generate a strong and controllable attractive force without direct contact. By employing an electric motor as the vibration source, the constructed VBA system was experimentally evaluated, achieving an adhesion-to-weight ratio exceeding 51 times. The experimental results demonstrate that this adhesion mechanism not only provides a high normal force but also maintains minimal shear force, making it particularly suitable for high-speed movement and heavy load applications in miniature wall-climbing robots.
Optimized Path Planning for Logistics Robots Using Ant Colony Algorithm under Multiple Constraints
With the rapid development of the logistics industry, the path planning of logistics vehicles has become increasingly complex, requiring consideration of multiple constraints such as time windows, task sequencing, and motion smoothness. Traditional path planning methods often struggle to balance these competing demands efficiently. In this paper, we propose a path planning technique based on the Ant Colony Optimization (ACO) algorithm to address these challenges. The proposed method optimizes key performance metrics, including path length, task completion time, turning counts, and motion smoothness, to ensure efficient and practical route planning for logistics vehicles. Experimental results demonstrate that the ACO-based approach outperforms traditional methods in terms of both efficiency and adaptability. This study provides a robust solution for logistics vehicle path planning, offering significant potential for real-world applications in dynamic and constrained environments.
Safe Navigation in Unmapped Environments for Robotic Systems with Input Constraints
This paper presents an approach for navigation and control in unmapped environments under input and state constraints using a composite control barrier function (CBF). We consider the scenario where real-time perception feedback (e.g., LiDAR) is used online to construct a local CBF that models local state constraints (e.g., local safety constraints such as obstacles) in the a priori unmapped environment. The approach employs a soft-maximum function to synthesize a single time-varying CBF from the N most recently obtained local CBFs. Next, the input constraints are transformed into controller-state constraints through the use of control dynamics. Then, we use a soft-minimum function to compose the input constraints with the time-varying CBF that models the a priori unmapped environment. This composition yields a single relaxed CBF, which is used in a constrained optimization to obtain an optimal control that satisfies the state and input constraints. The approach is validated through simulations of a nonholonomic ground robot that is equipped with LiDAR and navigates an unmapped environment. The robot successfully navigates the environment while avoiding the a priori unmapped obstacles and satisfying both speed and input constraints.
comment: The Preprint was submitted to the 2025 Conference on Decision and Control (CDC). arXiv admin note: substantial text overlap with arXiv:2409.01458
A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation CVPR 2025
Learning generalizable visual representations across different embodied environments is essential for effective robotic manipulation in real-world scenarios. However, the limited scale and diversity of robot demonstration data pose a significant challenge. Recent research has explored leveraging large-scale human activity data for pre-training, but the substantial morphological differences between humans and robots introduce a significant human-robot domain discrepancy, hindering the generalization of these models to downstream manipulation tasks. To overcome this, we propose a novel adaptation paradigm that leverages readily available paired human-robot video data to bridge the domain gap. Our method employs a human-robot contrastive alignment loss to align the semantics of human and robot videos, adapting pre-trained models to the robot domain in a parameter-efficient manner. Experiments on 20 simulated tasks across two different benchmarks and five real-world tasks demonstrate significant improvements. These results span both single-task and language-conditioned multi-task settings, evaluated using two different pre-trained models. Compared to existing pre-trained models, our adaptation method improves the average success rate by over 7% across multiple tasks on both simulated benchmarks and real-world evaluations.
comment: accepted by CVPR 2025. Project Page: https://jiaming-zhou.github.io/projects/HumanRobotAlign
eKalibr: Dynamic Intrinsic Calibration for Event Cameras From First Principles of Events
The bio-inspired event camera has garnered extensive research attention in recent years, owing to its significant potential derived from its high dynamic range and low latency characteristics. Similar to the standard camera, the event camera requires precise intrinsic calibration to facilitate further high-level visual applications, such as pose estimation and mapping. While several calibration methods for event cameras have been proposed, most of them are either (i) engineering-driven, heavily relying on conventional image-based calibration pipelines, or (ii) inconvenient, requiring complex instrumentation. To this end, we propose an accurate and convenient intrinsic calibration method for event cameras, named eKalibr, which builds upon a carefully designed event-based circle grid pattern recognition algorithm. To extract target patterns from events, we perform event-based normal flow estimation to identify potential events generated by circle edges, and cluster them spatially. Subsequently, event clusters associated with the same grid circles are matched and grouped using normal flows, for subsequent time-varying ellipse estimation. Fitted ellipse centers are time-synchronized, for final grid pattern recognition. We conducted extensive experiments to evaluate the performance of eKalibr in terms of pattern extraction and intrinsic calibration. The implementation of eKalibr is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
A High-Speed Time-Optimal Trajectory Generation Strategy via a Two-layer Planning Model
Motion planning and trajectory generation are crucial technologies in various domains including the control of Unmanned Aerial Vehicles, manipulators, and rockets. However, optimization-based real-time motion planning becomes increasingly challenging due to the problem's probable non-convexity and the inherent limitations of non-linear programming algorithms. Highly nonlinear dynamics, obstacle avoidance constraints, and non-convex inputs can exacerbate these difficulties. In order to enhance the robustness and reduce the computational burden, this paper proposes a two-layer trajectory generating algorithm for intelligent ground vehicles with convex optimization methods, aiming to provide real-time guarantees for trajectory optimization and to improve the calculate speed of motion prediction. Our approach involves breaking down the original problem into small horizon-based planning cycles with fixed final times, referred to as planning cycles. Each planning cycle is then solved within a series of restricted convex sets constructed by some customized search algorithms incrementally. We rigorously establish these advantages through mathematical analysis under moderate assumptions and comprehensive experimental validations. For linear vehicle models, comparative experiments with general sequential convex programming algorithms demonstrate the superior performance of our proposed method, particularly in terms of the computational efficiency in dynamic maps and the reduced final time.
Functional Eigen-Grasping Using Approach Heatmaps
This work presents a framework for a robot with a multi-fingered hand to freely utilize daily tools, including functional parts like buttons and triggers. An approach heatmap is generated by selecting a functional finger, indicating optimal palm positions on the object's surface that enable the functional finger to contact the tool's functional part. Once the palm position is identified through the heatmap, achieving the functional grasp becomes a straightforward process where the fingers stably grasp the object with low-dimensional inputs using the eigengrasp. As our approach does not need human demonstrations, it can easily adapt to various sizes and designs, extending its applicability to different objects. In our approach, we use directional manipulability to obtain the approach heatmap. In addition, we add two kinds of energy functions, i.e., palm energy and functional energy functions, to realize the eigengrasp. Using this method, each robotic gripper can autonomously identify its optimal workspace for functional grasping, extending its applicability to non-anthropomorphic robotic hands. We show that several daily tools like spray, drill, and remotes can be efficiently used by not only an anthropomorphic Shadow hand but also a non-anthropomorphic Barrett hand.
comment: 8 pages, 7 figures
A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Multimodal Vision Language Models (VLMs) have emerged as a transformative topic at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification [93]. With their rapid advancements in research and growing popularity in various applications, we provide a comprehensive survey of VLMs. Specifically, we provide a systematic overview of VLMs in the following aspects: [1] model information of the major VLMs developed up to 2025; [2] the transition of VLM architectures and the newest VLM alignment methods; [3] summary and categorization of the popular benchmarks and evaluation metrics of VLMs; [4] the challenges and issues faced by current VLMs such as hallucination, alignment, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
comment: 22 pages, 3 figures
Discrete-Time Hybrid Automata Learning: Legged Locomotion Meets Skateboarding
Hybrid dynamical systems, which include continuous flow and discrete mode switching, can model robotics tasks like legged robot locomotion. Model-based methods usually depend on predefined gaits, while model-free approaches lack explicit mode-switching knowledge. Current methods identify discrete modes via segmentation before regressing continuous flow, but learning high-dimensional complex rigid body dynamics without trajectory labels or segmentation is a challenging open problem. This paper introduces Discrete-time Hybrid Automata Learning (DHAL), a framework to identify and execute mode-switching without trajectory segmentation or event function learning. Besides, we embedded it in reinforcement learning pipeline and incorporates a beta policy distribution and a multi-critic architecture to model contact-guided motions, exemplified by a challenging quadrupedal robot skateboard task. We validate our method through sufficient real-world tests, demonstrating robust performance and mode identification consistent with human intuition in hybrid dynamical systems.
Multiagent Systems
Conformal Data-driven Control of Stochastic Multi-Agent Systems under Collaborative Signal Temporal Logic Specifications
We study the control of stochastic discrete-time linear multi-agent systems (MAS) subject to additive stochastic noise and collaborative signal temporal logic (STL) specifications to be satisfied with a desired probability. Given available disturbance datasets, we leverage conformal prediction (CP) to address the underlying chance-constrained multi-agent STL synthesis problem in a distribution-free manner. By introducing nonconformity scores as functions of prediction regions (PRs) of error trajectories, we develop an iterative PR-scaling and disturbance-feedback synthesis approach to bound training error trajectory samples. These bounds are then calibrated using a separate dataset, providing probabilistic guarantees via CP. Subsequently, we relax the underlying stochastic optimal control problem by tightening the robustness functions of collaborative tasks based on their Lipschitz constants and the computed error bounds. To address scalability, we exploit the compositional structure of the multi-agent STL formula and propose a model-predictive-control-like algorithm, where agent-level problems are solved in a distributed fashion. Lastly, we showcase the benefits of the proposed method in comparison with [1] via an illustrative example.
comment: 8 pages, 2 figures, submitted to CDC2025
Exploring Generative AI Techniques in Government: A Case Study
The swift progress of Generative Artificial intelligence (GenAI), notably Large Language Models (LLMs), is reshaping the digital landscape. Recognizing this transformative potential, the National Research Council of Canada (NRC) launched a pilot initiative to explore the integration of GenAI techniques into its daily operation for performance excellence, where 22 projects were launched in May 2024. Within these projects, this paper presents the development of the intelligent agent Pubbie as a case study, targeting the automation of performance measurement, data management and insight reporting at the NRC. Cutting-edge techniques are explored, including LLM orchestration and semantic embedding via RoBERTa, while strategic fine-tuning and few-shot learning approaches are incorporated to infuse domain knowledge at an affordable cost. The user-friendly interface of Pubbie allows general government users to input queries in natural language and easily upload or download files with a simple button click, greatly reducing manual efforts and accessibility barriers.
comment: In submission to IEEE Intelligent Systems
Toward LLM-Agent-Based Modeling of Transportation Systems: A Conceptual Framework
In transportation system demand modeling and simulation, agent-based models and microsimulations are current state-of-the-art approaches. However, existing agent-based models still have some limitations on behavioral realism and resource demand that limit their applicability. In this study, leveraging the emerging technology of large language models (LLMs) and LLM-based agents, we propose a general LLM-agent-based modeling framework for transportation systems. We argue that LLM agents not only possess the essential capabilities to function as agents but also offer promising solutions to overcome some limitations of existing agent-based models. Our conceptual framework design closely replicates the decision-making and interaction processes and traits of human travelers within transportation networks, and we demonstrate that the proposed systems can meet critical behavioral criteria for decision-making and learning behaviors using related studies and a demonstrative example of LLM agents' learning and adjustment in the bottleneck setting. Although further refinement of the LLM-agent-based modeling framework is necessary, we believe that this approach has the potential to improve transportation system modeling and simulation.
comment: 39 pages; updated framework, literature review, and results
Systems and Control (CS)
Modeling, Translation, and Analysis of Different examples using Simulink, Stateflow, SpaceEx, and FlowStar
This report details the translation and testing of multiple benchmarks, including the Six Vehicle Platoon, Two Bouncing Ball, Three Tank System, and Four-Dimensional Linear Switching, which represent continuous and hybrid systems. These benchmarks were gathered from past instances involving diverse verification tools such as SpaceEx, Flow*, HyST, MATLAB-Simulink, Stateflow, etc. They cover a range of systems modeled as hybrid automata, providing a comprehensive set for analysis and evaluation. Initially, we created models for all four systems using various suitable tools. Subsequently, these models were converted to the SpaceEx format and then translated into different formats compatible with various verification tools. Adapting our approach to the dynamic characteristics of each system, we performed reachability analysis using the respective verification tools.
comment: 6 pages, 18 Figures
A Review on Symbolic Regression in Power Systems: Methods, Applications, and Future Directions
As power systems evolve with the increasing integration of renewable energy sources and smart grid technologies, there is a growing demand for flexible and scalable modeling approaches capable of capturing the complex dynamics of modern grids. This review focuses on symbolic regression, a powerful methodology for deriving parsimonious and interpretable mathematical models directly from data. The paper presents a comprehensive overview of symbolic regression methods, including sparse identification of nonlinear dynamics, automatic regression for governing equations, and deep symbolic regression, highlighting their applications in power systems. Through comparative case studies of the single machine infinite bus system, grid-following, and grid-forming inverter, we analyze the strengths, limitations, and suitability of each symbolic regression method in modeling nonlinear power system dynamics. Additionally, we identify critical research gaps and discuss future directions for leveraging symbolic regression in the optimization, control, and operation of modern power grids. This review aims to provide a valuable resource for researchers and engineers seeking innovative, data-driven solutions for modeling in the context of evolving power system infrastructure.
Distributed Mixed-Integer Quadratic Programming for Mixed-Traffic Intersection Control
In this paper, we present a distributed algorithm utilizing the proximal alternating direction method of multipliers (ADMM) in conjunction with sequential constraint tightening to address mixed-integer quadratic programming (MIQP) problems associated with traffic light systems and connected automated vehicles (CAVs) in mixed-traffic intersections. We formulate a comprehensive MIQP model aimed at optimizing the coordination of traffic light systems and CAVs, thereby fully capitalizing on the advantages of CAV integration under conditions of high penetration rates. To effectively approximate the intricate multi-agent MIQP challenges, we develop a distributed algorithm that employs proximal ADMM for solving the convex relaxation of the MIQP while systematically tightening the constraint coefficients to uphold integrality requirements. The performance of our control framework and the efficacy of the distributed algorithm are rigorously validated through a series of simulations conducted across varying penetration rates and traffic volumes.
comment: 13 pages
Conformal Data-driven Control of Stochastic Multi-Agent Systems under Collaborative Signal Temporal Logic Specifications
We study the control of stochastic discrete-time linear multi-agent systems (MAS) subject to additive stochastic noise and collaborative signal temporal logic (STL) specifications to be satisfied with a desired probability. Given available disturbance datasets, we leverage conformal prediction (CP) to address the underlying chance-constrained multi-agent STL synthesis problem in a distribution-free manner. By introducing nonconformity scores as functions of prediction regions (PRs) of error trajectories, we develop an iterative PR-scaling and disturbance-feedback synthesis approach to bound training error trajectory samples. These bounds are then calibrated using a separate dataset, providing probabilistic guarantees via CP. Subsequently, we relax the underlying stochastic optimal control problem by tightening the robustness functions of collaborative tasks based on their Lipschitz constants and the computed error bounds. To address scalability, we exploit the compositional structure of the multi-agent STL formula and propose a model-predictive-control-like algorithm, where agent-level problems are solved in a distributed fashion. Lastly, we showcase the benefits of the proposed method in comparison with [1] via an illustrative example.
comment: 8 pages, 2 figures, submitted to CDC2025
AI in a vat: Fundamental limits of efficient world modelling for agent sandboxing and interpretability
Recent work proposes using world models to generate controlled virtual environments in which AI agents can be tested before deployment to ensure their reliability and safety. However, accurate world models often have high computational demands that can severely restrict the scope and depth of such assessments. Inspired by the classic `brain in a vat' thought experiment, here we investigate ways of simplifying world models that remain agnostic to the AI agent under evaluation. By following principles from computational mechanics, our approach reveals a fundamental trade-off in world model construction between efficiency and interpretability, demonstrating that no single world model can optimise all desirable characteristics. Building on this trade-off, we identify procedures to build world models that either minimise memory requirements, delineate the boundaries of what is learnable, or allow tracking causes of undesirable outcomes. In doing so, this work establishes fundamental limits in world modelling, leading to actionable guidelines that inform core design choices related to effective agent evaluation.
comment: 38 pages, 5 figures
Nonlinear Robust Optimization for Planning and Control
This paper presents a novel robust trajectory optimization method for constrained nonlinear dynamical systems subject to unknown bounded disturbances. In particular, we seek optimal control policies that remain robustly feasible with respect to all possible realizations of the disturbances within prescribed uncertainty sets. To address this problem, we introduce a bi-level optimization algorithm. The outer level employs a trust-region successive convexification approach which relies on linearizing the nonlinear dynamics and robust constraints. The inner level involves solving the resulting linearized robust optimization problems, for which we derive tractable convex reformulations and present an Augmented Lagrangian method for efficiently solving them. To further enhance the robustness of our methodology on nonlinear systems, we also illustrate that potential linearization errors can be effectively modeled as unknown disturbances as well. Simulation results verify the applicability of our approach in controlling nonlinear systems in a robust manner under unknown disturbances. The promise of effectively handling approximation errors in such successive linearization schemes from a robust optimization perspective is also highlighted.
Persistently Exciting Data-Driven Model Predictive Control
Persistence of excitation (PE) of the system input is a fundamental requirement for the successful operation of data-driven model predictive control, as it ensures that the input--output data contains sufficient information about the underlying system dynamics. Nonetheless, this property is usually assumed rather than guaranteed. This paper introduces a novel data-driven predictive control formulation that maintains persistence of excitation. The technical development that permits this is the characterization of the nonexciting input set i.e. the set of inputs that lead to loss of PE, and the consequent derivation of a pair of disjoint, linear inequality constraints on the input that, if satisfied, maintain PE. When used in the predictive control formulation, these constraints lead to a mixed-integer optimal control problem with a single binary variable or, equivalently, a pair of disjoint quadratic programming problems that can be efficiently and reliably solved in parallel. Numerical examples show how these constraints are able to maintain persistence of excitation on the input during the controller's operation.
comment: 8 pages, 5 figures, submitted to CDC 2025
Confidence-Aware Learning Optimal Terminal Guidance via Gaussian Process Regression
Modern aerospace guidance systems demand rigorous constraint satisfaction, optimal performance, and computational efficiency. Traditional analytical methods struggle to simultaneously satisfy these requirements. While data driven methods have shown promise in learning optimal guidance strategy, challenges still persist in generating well-distributed optimal dataset and ensuring the reliability and trustworthiness of learned strategies. This paper presents a confidence-aware learning framework that addresses these limitations. First, a region-controllable optimal data generation method is proposed leveraging Hamiltonian state transition matrices, enabling efficient generation of optimal trajectories of specified data distribution. Then, to obtain a lightweight and effective dataset for efficient strategy learning, an error-distribution-smoothing method is incorporated to employ data filtering, which reduces dataset size by almost 90% while preserving prediction accuracy. To assess the operational domain of the learned strategy, a confidence-aware learning guidance strategy is proposed based on gaussian process regression, achieving constraint satisfaction even beyond training distributions. Numerical simulations validate the effectiveness and reliability of the proposed learning framework in terms of data generation, data filtering and strategy learning.
Fine Tuning a Data-Driven Estimator
In recent years, many industries have developed high-fidelity simulators, such as digital twins, to represent physical systems, although their parameters must be calibrated to accurately reflect the true system. This need has paved the way for the creation of data-driven parameter estimators to calibrate such simulators. These estimators are constructed by generating synthetic observations for various parameter settings of the simulator and then establishing a mapping from these observations to the corresponding parameter settings using supervised learning. However, if the true system's parameters fall outside the range of the sampled parameter set used to construct the mapping, the resulting predictions will suffer from out-of-distribution (OOD) issues. In this paper, we introduce a fine-tuning approach for a specific data-driven estimator, known as the Two-Stage estimator, designed to mitigate the problems associated with OOD and improve its accuracy.
comment: 7 pages, 12 figures
Distributed Nash Equilibrium Seeking in Coalition Games for Uncertain Euler-Lagrange Systems With Application to USV Swarm Confrontation
In this paper, a coalition game with local and coupling constraints is studied for uncertain Euler-Lagrange (EL) systems subject to disturbances with unknown bounds. In the coalition game, each agent collaborates with other agents within the same coalition to optimize its coalition's cost function while simultaneously competing against agents in other coalitions. Under a distributed framework where each agent has access only to its own action, cost function, and constraint parameters, a distributed strategy is proposed to seek the Nash equilibrium (NE). By combining adaptive methods and sign functions, model uncertainties and disturbances with unknown bounds in the EL system are compensated and suppressed, respectively. Furthermore, an integration of adaptive methods and consensus protocols is employed to update the Lagrange multipliers of both local and coupling constraints. A dynamic average consensus is employed to estimate the gradient of coalition function, while the leader-following protocol is adopted to estimate the actions of other agents. By leveraging Lyapunov theory, the NE is proven to be asymptotically stable. Moreover, an unmanned surface vehicle swarm confrontation is meticulously modeled and analyzed in the coalition game framework. A diverse array of tasks, including formation, encirclement, and interception, are systematically formulated. A numerical example demonstrates the effectiveness of the proposed algorithm.
Redefining Information Freshness: AoGI for Generative AI in 6G Networks
Generative Artificial Intelligence (GenAI) is playing an increasingly important role in enriching and facilitating human life by generating various useful information, of which real-time GenAI is a significant part and has great potential in applications such as real-time robot control, automated driving, augmented reality, etc. There are a variety of information updating processes in real-time GenAI, and the age of information (AoI) is an effective metric for evaluating information freshness. However, due to the diversity and generativity of information in real-time GenAI, it may be incompatible to directly use existing information aging metrics to assess its timeliness. In this article, we introduce a new concept called Age of Generative Information (AoGI) to evaluate the freshness of generative information, which takes into account the information delay caused not only by sampling and transmission, but also by computation. Furthermore, since real-time GenAI services are often supported by mobile-edge-cloud (MEC) collaborative computing in 6G networks and some of the generated information is privacy sensitive, it is recommended that the identities of edge and cloud should always be verified in a zero-trust manner. We introduce the concept of Age of Trust (AoT) to characterise the decay process of their trust level. We also discuss the optimisations of these evolved information aging metrics, focusing on the impact of dynamic external conditions, including wireless environments and limited computational resources. Finally, we highlight several open challenges in providing timeliness guarantees for real-time GenAI services.
Data-Driven Reachability Analysis for Piecewise Affine System
Hybrid systems play a crucial role in modeling real-world applications where discrete and continuous dynamics interact, including autonomous vehicles, power systems, and traffic networks. Safety verification for these systems requires determining whether system states can enter unsafe regions under given initial conditions and uncertainties, a question directly addressed by reachability analysis. However, hybrid systems present unique difficulties because their state space is divided into multiple regions with distinct dynamic models, causing traditional data-driven methods to produce inadequate over-approximations of reachable sets at region boundaries where dynamics change abruptly. This paper introduces a novel approach using hybrid zonotopes for data-driven reachability analysis of piecewise affine systems. Our method addresses the boundary transition problem by developing computational algorithms that calculate the family of set models guaranteed to contain the true system trajectories. Additionally, we extend and evaluate three methods for set-based estimation that account for input-output data with measurement noise.
comment: 8 pages, 6 figures
ChronoSync: A Decentralized Chronometer Synchronization Protocol for Multi-Agent Systems
This work presents a decentralized time synchronization algorithm for multi-agent systems. Each agent possesses two clocks, a hardware clock that is perturbed by environmental phenomena (e.g., temperature, humidity, pressure, g forces, etc.) and a steerable software clock that inherits the perturbations affecting the hardware clock. Under these disturbances and the independent time kept by the hardware clocks, our consensus-based controller enables all agents to steer their software-defined clocks into practical synchronization while achieving a common user-defined clock drift. Furthermore, we treat the drift of each hardware clock as an unknown parameter, which our algorithm can accurately estimate. The coupling of the agents is modeled by a connected, undirected, and static graph. However, each agent possesses a timer mechanism that determines when to broadcast a sample of its software time and update its own software-time estimate. Hence, communication between agents can be directed, intermittent, and asynchronous. The closed-loop dynamics of the ensemble is modeled using a hybrid system, where a Lyapunov-based stability analysis demonstrates that a set encoding the time synchronization and clock drift estimation objectives is globally practically exponentially stable. The performance suggested by the theoretical development is confirmed in simulation.
Economic Battery Storage Dispatch with Deep Reinforcement Learning from Rule-Based Demonstrations
The application of deep reinforcement learning algorithms to economic battery dispatch problems has significantly increased recently. However, optimizing battery dispatch over long horizons can be challenging due to delayed rewards. In our experiments we observe poor performance of popular actor-critic algorithms when trained on yearly episodes with hourly resolution. To address this, we propose an approach extending soft actor-critic (SAC) with learning from demonstrations. The special feature of our approach is that, due to the absence of expert demonstrations, the demonstration data is generated through simple, rule-based policies. We conduct a case study on a grid-connected microgrid and use if-then-else statements based on the wholesale price of electricity to collect demonstrations. These are stored in a separate replay buffer and sampled with linearly decaying probability along with the agent's own experiences. Despite these minimal modifications and the imperfections in the demonstration data, the results show a drastic performance improvement regarding both sample efficiency and final rewards. We further show that the proposed method reliably outperforms the demonstrator and is robust to the choice of rule, as long as the rule is sufficient to guide early training into the right direction.
Learning Flatness-Preserving Residuals for Pure-Feedback Systems
We study residual dynamics learning for differentially flat systems, where a nominal model is augmented with a learned correction term from data. A key challenge is that generic residual parameterizations may destroy flatness, limiting the applicability of flatness-based planning and control methods. To address this, we propose a framework for learning flatness-preserving residual dynamics in systems whose nominal model admits a pure-feedback form. We show that residuals with a lower-triangular structure preserve both the flatness of the system and the original flat outputs. Moreover, we provide a constructive procedure to recover the flatness diffeomorphism of the augmented system from that of the nominal model. We then introduce a learning algorithm that fits such residuals from trajectory data using smooth function approximators. Our approach is validated in simulation on a 2D quadrotor subject to unmodeled aerodynamic effects. We demonstrate that the resulting learned flat model enables tracking performance comparable to nonlinear model predictive control ($5\times$ lower tracking error than the nominal flat model) while also achieving over a $20\times$ speedup in computation.
Prescribed-Time Boresight Control of Spacecraft Under Pointing Constraints
This article proposes an integrated boresight guidance and control (IBGC) scheme to address the boresight reorientation problem of spacecraft under temporal and pointing constraints. A $C^1$ continuous, saturated prescribed-time adjustment (PPTA) function is presented, along with the establishment of a practical prescribed-time stability theorem. Utilizing the time scale transformation technique and the PPTA function, we propose a prescribed-time guidance law that guides the boresight vector from almost any initial orientation in free space to a small neighborhood of the goal orientation within a preassigned time, while avoiding all forbidden zones augmented with safety margins. Subsequently, a prescribed-time disturbance observer (PTDO) is derived to reconstruct the external disturbances. By leveraging barrier and PPTA functions, a PTDO-based reduced-attitude tracking controller is developed, which ensures prescribed-time boresight tracking within a ``safe tube''. By judiciously setting the safety margins, settling times, and safe tube for the guidance and control laws, the proposed IBGC scheme achieves pointing-constrained boresight reorientation within a required task completion time. Simulation and experimental results demonstrate the efficacy of the proposed IBGC scheme.
Safe Navigation in Unmapped Environments for Robotic Systems with Input Constraints
This paper presents an approach for navigation and control in unmapped environments under input and state constraints using a composite control barrier function (CBF). We consider the scenario where real-time perception feedback (e.g., LiDAR) is used online to construct a local CBF that models local state constraints (e.g., local safety constraints such as obstacles) in the a priori unmapped environment. The approach employs a soft-maximum function to synthesize a single time-varying CBF from the N most recently obtained local CBFs. Next, the input constraints are transformed into controller-state constraints through the use of control dynamics. Then, we use a soft-minimum function to compose the input constraints with the time-varying CBF that models the a priori unmapped environment. This composition yields a single relaxed CBF, which is used in a constrained optimization to obtain an optimal control that satisfies the state and input constraints. The approach is validated through simulations of a nonholonomic ground robot that is equipped with LiDAR and navigates an unmapped environment. The robot successfully navigates the environment while avoiding the a priori unmapped obstacles and satisfying both speed and input constraints.
comment: The Preprint was submitted to the 2025 Conference on Decision and Control (CDC). arXiv admin note: substantial text overlap with arXiv:2409.01458
Recursive Dynamic State Estimation for Power Systems with an Incomplete Nonlinear DAE Model
Power systems are highly complex, large-scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This paper proposes a novel, centralized dynamic state estimator for power systems that lack models of some components. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, we apply the least squares criterion to estimate all dynamic and algebraic states recursively. The approach results in an algorithm that generalizes the iterated extended Kalman filter and does not require static network observability. We further derive a graph theoretic condition for placing phasor measurement units that guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature within computational times that are feasible for real-time application.
comment: https://gitlab.nccr-automation.ch/mkatanic/powerdynamicestimator
Closed-Loop Finite-Time Analysis of Suboptimal Online Control
Suboptimal methods in optimal control arise due to a limited computational budget, unknown system dynamics, or a short prediction window among other reasons. Although these methods are ubiquitous, their transient performance remains relatively unstudied. We consider the control of discrete-time, nonlinear time-varying dynamical systems and establish sufficient conditions to analyze the finite-time closed-loop performance of such methods in terms of the additional cost incurred due to suboptimality. Finite-time guarantees allow the control design to distribute a limited computational budget over a time horizon and estimate the on-the-go loss in performance due to suboptimality. We study exponential incremental input-to-state stabilizing policies and show that for nonlinear systems, under some mild conditions, this property is directly implied by exponential stability without further assumptions on global smoothness. The analysis is showcased on a suboptimal model predictive control use case.
comment: Published in IEEE Transactions on Automatic Control (TAC)
Aggregator of Electric Vehicles Bidding in Nordic FCR-D Markets: A Chance-Constrained Program
The Danish system operator, Energinet, has recently introduced an innovative grid code called the P90 requirement, which allows stochastic flexible resources to bid their flexibility in Nordic ancillary service markets, contingent upon a minimum 90\% probability of successfully realizing the reserve capacity bid. For limited-energy resources, Energinet imposes additional requirements for participation in these markets. Given these requirements, this paper presents a chance-constrained optimization model designed for aggregators of electric vehicles, aiming to optimally place reserve capacity bids in the Nordic Frequency Containment Reserve for Disturbances (FCR-D) market while accounting for uncertainty in future consumption baselines. We analyze both FCR-D up and down markets, reformulating and solving the proposed joint chance-constrained model using two sample-based methods. Using real data from 1400 charging stations in Denmark from March 2022 to March 2023, we demonstrate the out-of-sample profit potential. Our findings indicate that vehicle owners could save between 6\% and 10\% on their annual electricity bills by providing FCR-D services. Additionally, we observed a synergy effect, where having more vehicles in a single portfolio enables larger bids per vehicle compared to a collective bid from multiple portfolios with the same total number of vehicles.
comment: Submitted to IEEE Transactions on Power Systems
Systems and Control (EESS)
Modeling, Translation, and Analysis of Different examples using Simulink, Stateflow, SpaceEx, and FlowStar
This report details the translation and testing of multiple benchmarks, including the Six Vehicle Platoon, Two Bouncing Ball, Three Tank System, and Four-Dimensional Linear Switching, which represent continuous and hybrid systems. These benchmarks were gathered from past instances involving diverse verification tools such as SpaceEx, Flow*, HyST, MATLAB-Simulink, Stateflow, etc. They cover a range of systems modeled as hybrid automata, providing a comprehensive set for analysis and evaluation. Initially, we created models for all four systems using various suitable tools. Subsequently, these models were converted to the SpaceEx format and then translated into different formats compatible with various verification tools. Adapting our approach to the dynamic characteristics of each system, we performed reachability analysis using the respective verification tools.
comment: 6 pages, 18 Figures
A Review on Symbolic Regression in Power Systems: Methods, Applications, and Future Directions
As power systems evolve with the increasing integration of renewable energy sources and smart grid technologies, there is a growing demand for flexible and scalable modeling approaches capable of capturing the complex dynamics of modern grids. This review focuses on symbolic regression, a powerful methodology for deriving parsimonious and interpretable mathematical models directly from data. The paper presents a comprehensive overview of symbolic regression methods, including sparse identification of nonlinear dynamics, automatic regression for governing equations, and deep symbolic regression, highlighting their applications in power systems. Through comparative case studies of the single machine infinite bus system, grid-following, and grid-forming inverter, we analyze the strengths, limitations, and suitability of each symbolic regression method in modeling nonlinear power system dynamics. Additionally, we identify critical research gaps and discuss future directions for leveraging symbolic regression in the optimization, control, and operation of modern power grids. This review aims to provide a valuable resource for researchers and engineers seeking innovative, data-driven solutions for modeling in the context of evolving power system infrastructure.
Distributed Mixed-Integer Quadratic Programming for Mixed-Traffic Intersection Control
In this paper, we present a distributed algorithm utilizing the proximal alternating direction method of multipliers (ADMM) in conjunction with sequential constraint tightening to address mixed-integer quadratic programming (MIQP) problems associated with traffic light systems and connected automated vehicles (CAVs) in mixed-traffic intersections. We formulate a comprehensive MIQP model aimed at optimizing the coordination of traffic light systems and CAVs, thereby fully capitalizing on the advantages of CAV integration under conditions of high penetration rates. To effectively approximate the intricate multi-agent MIQP challenges, we develop a distributed algorithm that employs proximal ADMM for solving the convex relaxation of the MIQP while systematically tightening the constraint coefficients to uphold integrality requirements. The performance of our control framework and the efficacy of the distributed algorithm are rigorously validated through a series of simulations conducted across varying penetration rates and traffic volumes.
comment: 13 pages
Conformal Data-driven Control of Stochastic Multi-Agent Systems under Collaborative Signal Temporal Logic Specifications
We study the control of stochastic discrete-time linear multi-agent systems (MAS) subject to additive stochastic noise and collaborative signal temporal logic (STL) specifications to be satisfied with a desired probability. Given available disturbance datasets, we leverage conformal prediction (CP) to address the underlying chance-constrained multi-agent STL synthesis problem in a distribution-free manner. By introducing nonconformity scores as functions of prediction regions (PRs) of error trajectories, we develop an iterative PR-scaling and disturbance-feedback synthesis approach to bound training error trajectory samples. These bounds are then calibrated using a separate dataset, providing probabilistic guarantees via CP. Subsequently, we relax the underlying stochastic optimal control problem by tightening the robustness functions of collaborative tasks based on their Lipschitz constants and the computed error bounds. To address scalability, we exploit the compositional structure of the multi-agent STL formula and propose a model-predictive-control-like algorithm, where agent-level problems are solved in a distributed fashion. Lastly, we showcase the benefits of the proposed method in comparison with [1] via an illustrative example.
comment: 8 pages, 2 figures, submitted to CDC2025
AI in a vat: Fundamental limits of efficient world modelling for agent sandboxing and interpretability
Recent work proposes using world models to generate controlled virtual environments in which AI agents can be tested before deployment to ensure their reliability and safety. However, accurate world models often have high computational demands that can severely restrict the scope and depth of such assessments. Inspired by the classic `brain in a vat' thought experiment, here we investigate ways of simplifying world models that remain agnostic to the AI agent under evaluation. By following principles from computational mechanics, our approach reveals a fundamental trade-off in world model construction between efficiency and interpretability, demonstrating that no single world model can optimise all desirable characteristics. Building on this trade-off, we identify procedures to build world models that either minimise memory requirements, delineate the boundaries of what is learnable, or allow tracking causes of undesirable outcomes. In doing so, this work establishes fundamental limits in world modelling, leading to actionable guidelines that inform core design choices related to effective agent evaluation.
comment: 38 pages, 5 figures
Nonlinear Robust Optimization for Planning and Control
This paper presents a novel robust trajectory optimization method for constrained nonlinear dynamical systems subject to unknown bounded disturbances. In particular, we seek optimal control policies that remain robustly feasible with respect to all possible realizations of the disturbances within prescribed uncertainty sets. To address this problem, we introduce a bi-level optimization algorithm. The outer level employs a trust-region successive convexification approach which relies on linearizing the nonlinear dynamics and robust constraints. The inner level involves solving the resulting linearized robust optimization problems, for which we derive tractable convex reformulations and present an Augmented Lagrangian method for efficiently solving them. To further enhance the robustness of our methodology on nonlinear systems, we also illustrate that potential linearization errors can be effectively modeled as unknown disturbances as well. Simulation results verify the applicability of our approach in controlling nonlinear systems in a robust manner under unknown disturbances. The promise of effectively handling approximation errors in such successive linearization schemes from a robust optimization perspective is also highlighted.
Persistently Exciting Data-Driven Model Predictive Control
Persistence of excitation (PE) of the system input is a fundamental requirement for the successful operation of data-driven model predictive control, as it ensures that the input--output data contains sufficient information about the underlying system dynamics. Nonetheless, this property is usually assumed rather than guaranteed. This paper introduces a novel data-driven predictive control formulation that maintains persistence of excitation. The technical development that permits this is the characterization of the nonexciting input set i.e. the set of inputs that lead to loss of PE, and the consequent derivation of a pair of disjoint, linear inequality constraints on the input that, if satisfied, maintain PE. When used in the predictive control formulation, these constraints lead to a mixed-integer optimal control problem with a single binary variable or, equivalently, a pair of disjoint quadratic programming problems that can be efficiently and reliably solved in parallel. Numerical examples show how these constraints are able to maintain persistence of excitation on the input during the controller's operation.
comment: 8 pages, 5 figures, submitted to CDC 2025
Confidence-Aware Learning Optimal Terminal Guidance via Gaussian Process Regression
Modern aerospace guidance systems demand rigorous constraint satisfaction, optimal performance, and computational efficiency. Traditional analytical methods struggle to simultaneously satisfy these requirements. While data driven methods have shown promise in learning optimal guidance strategy, challenges still persist in generating well-distributed optimal dataset and ensuring the reliability and trustworthiness of learned strategies. This paper presents a confidence-aware learning framework that addresses these limitations. First, a region-controllable optimal data generation method is proposed leveraging Hamiltonian state transition matrices, enabling efficient generation of optimal trajectories of specified data distribution. Then, to obtain a lightweight and effective dataset for efficient strategy learning, an error-distribution-smoothing method is incorporated to employ data filtering, which reduces dataset size by almost 90% while preserving prediction accuracy. To assess the operational domain of the learned strategy, a confidence-aware learning guidance strategy is proposed based on gaussian process regression, achieving constraint satisfaction even beyond training distributions. Numerical simulations validate the effectiveness and reliability of the proposed learning framework in terms of data generation, data filtering and strategy learning.
Fine Tuning a Data-Driven Estimator
In recent years, many industries have developed high-fidelity simulators, such as digital twins, to represent physical systems, although their parameters must be calibrated to accurately reflect the true system. This need has paved the way for the creation of data-driven parameter estimators to calibrate such simulators. These estimators are constructed by generating synthetic observations for various parameter settings of the simulator and then establishing a mapping from these observations to the corresponding parameter settings using supervised learning. However, if the true system's parameters fall outside the range of the sampled parameter set used to construct the mapping, the resulting predictions will suffer from out-of-distribution (OOD) issues. In this paper, we introduce a fine-tuning approach for a specific data-driven estimator, known as the Two-Stage estimator, designed to mitigate the problems associated with OOD and improve its accuracy.
comment: 7 pages, 12 figures
Distributed Nash Equilibrium Seeking in Coalition Games for Uncertain Euler-Lagrange Systems With Application to USV Swarm Confrontation
In this paper, a coalition game with local and coupling constraints is studied for uncertain Euler-Lagrange (EL) systems subject to disturbances with unknown bounds. In the coalition game, each agent collaborates with other agents within the same coalition to optimize its coalition's cost function while simultaneously competing against agents in other coalitions. Under a distributed framework where each agent has access only to its own action, cost function, and constraint parameters, a distributed strategy is proposed to seek the Nash equilibrium (NE). By combining adaptive methods and sign functions, model uncertainties and disturbances with unknown bounds in the EL system are compensated and suppressed, respectively. Furthermore, an integration of adaptive methods and consensus protocols is employed to update the Lagrange multipliers of both local and coupling constraints. A dynamic average consensus is employed to estimate the gradient of coalition function, while the leader-following protocol is adopted to estimate the actions of other agents. By leveraging Lyapunov theory, the NE is proven to be asymptotically stable. Moreover, an unmanned surface vehicle swarm confrontation is meticulously modeled and analyzed in the coalition game framework. A diverse array of tasks, including formation, encirclement, and interception, are systematically formulated. A numerical example demonstrates the effectiveness of the proposed algorithm.
Redefining Information Freshness: AoGI for Generative AI in 6G Networks
Generative Artificial Intelligence (GenAI) is playing an increasingly important role in enriching and facilitating human life by generating various useful information, of which real-time GenAI is a significant part and has great potential in applications such as real-time robot control, automated driving, augmented reality, etc. There are a variety of information updating processes in real-time GenAI, and the age of information (AoI) is an effective metric for evaluating information freshness. However, due to the diversity and generativity of information in real-time GenAI, it may be incompatible to directly use existing information aging metrics to assess its timeliness. In this article, we introduce a new concept called Age of Generative Information (AoGI) to evaluate the freshness of generative information, which takes into account the information delay caused not only by sampling and transmission, but also by computation. Furthermore, since real-time GenAI services are often supported by mobile-edge-cloud (MEC) collaborative computing in 6G networks and some of the generated information is privacy sensitive, it is recommended that the identities of edge and cloud should always be verified in a zero-trust manner. We introduce the concept of Age of Trust (AoT) to characterise the decay process of their trust level. We also discuss the optimisations of these evolved information aging metrics, focusing on the impact of dynamic external conditions, including wireless environments and limited computational resources. Finally, we highlight several open challenges in providing timeliness guarantees for real-time GenAI services.
Data-Driven Reachability Analysis for Piecewise Affine System
Hybrid systems play a crucial role in modeling real-world applications where discrete and continuous dynamics interact, including autonomous vehicles, power systems, and traffic networks. Safety verification for these systems requires determining whether system states can enter unsafe regions under given initial conditions and uncertainties, a question directly addressed by reachability analysis. However, hybrid systems present unique difficulties because their state space is divided into multiple regions with distinct dynamic models, causing traditional data-driven methods to produce inadequate over-approximations of reachable sets at region boundaries where dynamics change abruptly. This paper introduces a novel approach using hybrid zonotopes for data-driven reachability analysis of piecewise affine systems. Our method addresses the boundary transition problem by developing computational algorithms that calculate the family of set models guaranteed to contain the true system trajectories. Additionally, we extend and evaluate three methods for set-based estimation that account for input-output data with measurement noise.
comment: 8 pages, 6 figures
ChronoSync: A Decentralized Chronometer Synchronization Protocol for Multi-Agent Systems
This work presents a decentralized time synchronization algorithm for multi-agent systems. Each agent possesses two clocks, a hardware clock that is perturbed by environmental phenomena (e.g., temperature, humidity, pressure, g forces, etc.) and a steerable software clock that inherits the perturbations affecting the hardware clock. Under these disturbances and the independent time kept by the hardware clocks, our consensus-based controller enables all agents to steer their software-defined clocks into practical synchronization while achieving a common user-defined clock drift. Furthermore, we treat the drift of each hardware clock as an unknown parameter, which our algorithm can accurately estimate. The coupling of the agents is modeled by a connected, undirected, and static graph. However, each agent possesses a timer mechanism that determines when to broadcast a sample of its software time and update its own software-time estimate. Hence, communication between agents can be directed, intermittent, and asynchronous. The closed-loop dynamics of the ensemble is modeled using a hybrid system, where a Lyapunov-based stability analysis demonstrates that a set encoding the time synchronization and clock drift estimation objectives is globally practically exponentially stable. The performance suggested by the theoretical development is confirmed in simulation.
Economic Battery Storage Dispatch with Deep Reinforcement Learning from Rule-Based Demonstrations
The application of deep reinforcement learning algorithms to economic battery dispatch problems has significantly increased recently. However, optimizing battery dispatch over long horizons can be challenging due to delayed rewards. In our experiments we observe poor performance of popular actor-critic algorithms when trained on yearly episodes with hourly resolution. To address this, we propose an approach extending soft actor-critic (SAC) with learning from demonstrations. The special feature of our approach is that, due to the absence of expert demonstrations, the demonstration data is generated through simple, rule-based policies. We conduct a case study on a grid-connected microgrid and use if-then-else statements based on the wholesale price of electricity to collect demonstrations. These are stored in a separate replay buffer and sampled with linearly decaying probability along with the agent's own experiences. Despite these minimal modifications and the imperfections in the demonstration data, the results show a drastic performance improvement regarding both sample efficiency and final rewards. We further show that the proposed method reliably outperforms the demonstrator and is robust to the choice of rule, as long as the rule is sufficient to guide early training into the right direction.
Learning Flatness-Preserving Residuals for Pure-Feedback Systems
We study residual dynamics learning for differentially flat systems, where a nominal model is augmented with a learned correction term from data. A key challenge is that generic residual parameterizations may destroy flatness, limiting the applicability of flatness-based planning and control methods. To address this, we propose a framework for learning flatness-preserving residual dynamics in systems whose nominal model admits a pure-feedback form. We show that residuals with a lower-triangular structure preserve both the flatness of the system and the original flat outputs. Moreover, we provide a constructive procedure to recover the flatness diffeomorphism of the augmented system from that of the nominal model. We then introduce a learning algorithm that fits such residuals from trajectory data using smooth function approximators. Our approach is validated in simulation on a 2D quadrotor subject to unmodeled aerodynamic effects. We demonstrate that the resulting learned flat model enables tracking performance comparable to nonlinear model predictive control ($5\times$ lower tracking error than the nominal flat model) while also achieving over a $20\times$ speedup in computation.
Prescribed-Time Boresight Control of Spacecraft Under Pointing Constraints
This article proposes an integrated boresight guidance and control (IBGC) scheme to address the boresight reorientation problem of spacecraft under temporal and pointing constraints. A $C^1$ continuous, saturated prescribed-time adjustment (PPTA) function is presented, along with the establishment of a practical prescribed-time stability theorem. Utilizing the time scale transformation technique and the PPTA function, we propose a prescribed-time guidance law that guides the boresight vector from almost any initial orientation in free space to a small neighborhood of the goal orientation within a preassigned time, while avoiding all forbidden zones augmented with safety margins. Subsequently, a prescribed-time disturbance observer (PTDO) is derived to reconstruct the external disturbances. By leveraging barrier and PPTA functions, a PTDO-based reduced-attitude tracking controller is developed, which ensures prescribed-time boresight tracking within a ``safe tube''. By judiciously setting the safety margins, settling times, and safe tube for the guidance and control laws, the proposed IBGC scheme achieves pointing-constrained boresight reorientation within a required task completion time. Simulation and experimental results demonstrate the efficacy of the proposed IBGC scheme.
Safe Navigation in Unmapped Environments for Robotic Systems with Input Constraints
This paper presents an approach for navigation and control in unmapped environments under input and state constraints using a composite control barrier function (CBF). We consider the scenario where real-time perception feedback (e.g., LiDAR) is used online to construct a local CBF that models local state constraints (e.g., local safety constraints such as obstacles) in the a priori unmapped environment. The approach employs a soft-maximum function to synthesize a single time-varying CBF from the N most recently obtained local CBFs. Next, the input constraints are transformed into controller-state constraints through the use of control dynamics. Then, we use a soft-minimum function to compose the input constraints with the time-varying CBF that models the a priori unmapped environment. This composition yields a single relaxed CBF, which is used in a constrained optimization to obtain an optimal control that satisfies the state and input constraints. The approach is validated through simulations of a nonholonomic ground robot that is equipped with LiDAR and navigates an unmapped environment. The robot successfully navigates the environment while avoiding the a priori unmapped obstacles and satisfying both speed and input constraints.
comment: The Preprint was submitted to the 2025 Conference on Decision and Control (CDC). arXiv admin note: substantial text overlap with arXiv:2409.01458
Recursive Dynamic State Estimation for Power Systems with an Incomplete Nonlinear DAE Model
Power systems are highly complex, large-scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This paper proposes a novel, centralized dynamic state estimator for power systems that lack models of some components. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, we apply the least squares criterion to estimate all dynamic and algebraic states recursively. The approach results in an algorithm that generalizes the iterated extended Kalman filter and does not require static network observability. We further derive a graph theoretic condition for placing phasor measurement units that guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature within computational times that are feasible for real-time application.
comment: https://gitlab.nccr-automation.ch/mkatanic/powerdynamicestimator
Closed-Loop Finite-Time Analysis of Suboptimal Online Control
Suboptimal methods in optimal control arise due to a limited computational budget, unknown system dynamics, or a short prediction window among other reasons. Although these methods are ubiquitous, their transient performance remains relatively unstudied. We consider the control of discrete-time, nonlinear time-varying dynamical systems and establish sufficient conditions to analyze the finite-time closed-loop performance of such methods in terms of the additional cost incurred due to suboptimality. Finite-time guarantees allow the control design to distribute a limited computational budget over a time horizon and estimate the on-the-go loss in performance due to suboptimality. We study exponential incremental input-to-state stabilizing policies and show that for nonlinear systems, under some mild conditions, this property is directly implied by exponential stability without further assumptions on global smoothness. The analysis is showcased on a suboptimal model predictive control use case.
comment: Published in IEEE Transactions on Automatic Control (TAC)
Aggregator of Electric Vehicles Bidding in Nordic FCR-D Markets: A Chance-Constrained Program
The Danish system operator, Energinet, has recently introduced an innovative grid code called the P90 requirement, which allows stochastic flexible resources to bid their flexibility in Nordic ancillary service markets, contingent upon a minimum 90\% probability of successfully realizing the reserve capacity bid. For limited-energy resources, Energinet imposes additional requirements for participation in these markets. Given these requirements, this paper presents a chance-constrained optimization model designed for aggregators of electric vehicles, aiming to optimally place reserve capacity bids in the Nordic Frequency Containment Reserve for Disturbances (FCR-D) market while accounting for uncertainty in future consumption baselines. We analyze both FCR-D up and down markets, reformulating and solving the proposed joint chance-constrained model using two sample-based methods. Using real data from 1400 charging stations in Denmark from March 2022 to March 2023, we demonstrate the out-of-sample profit potential. Our findings indicate that vehicle owners could save between 6\% and 10\% on their annual electricity bills by providing FCR-D services. Additionally, we observed a synergy effect, where having more vehicles in a single portfolio enables larger bids per vehicle compared to a collective bid from multiple portfolios with the same total number of vehicles.
comment: Submitted to IEEE Transactions on Power Systems
Multiagent Systems
Distributed Time Synchronization in NOMA-Assisted Ultra-Dense Networks
Ultra-dense networks (UDNs) represent a transformative access architecture for upcoming sixth generation (6G) systems, poised to meet the surging demand for high data rates. Achieving precise synchronization across diverse base stations (BSs) is critical in these networks to mitigate inter-cell interference (ICI). However, traditional centralized synchronization approaches face substantial challenges in dense urban, including limited access to Global Positioning System (GPS), dependence on reliable backhaul, and high signaling overhead demands. This study advances a low-complexity distributed synchronization solution. A primary focus is on assessing the algorithm's accuracy incorporating the effects of information exchange delays, which are pronounced in large-networks. Recognizing the pivotal role of neighbor-gathered information in the proposed approach, this research employs uplink Non-Orthogonal Multiple Access (NOMA) to reduce message-gathering delays between transmitters (TXs) and receivers (RXs). The proposed algorithm is evaluated to assess effectiveness under exchange delays, analyzing impact of system parameters like network connectivity, size, sub-bands, etc., on synchronization speed. The findings demonstrate that the NOMA-based information-gathering technique significantly accelerates network synchronization compared to orthogonal access schemes. This advancement is crucial for meeting the low-latency requirements of beyond fifth generation (5G) systems, underscoring the potential of distributed synchronization as a cornerstone for next-generation UDN deployments.
comment: 14 Pages, 9 figures, Acknowledgement section
OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
The increasing number of satellites and orbital debris has made space congestion a critical issue, threatening satellite safety and sustainability. Challenges such as collision avoidance, station-keeping, and orbital maneuvering require advanced techniques to handle dynamic uncertainties and multi-agent interactions. Reinforcement learning (RL) has shown promise in this domain, enabling adaptive, autonomous policies for space operations; however, many existing RL frameworks rely on custom-built environments developed from scratch, which often use simplified models and require significant time to implement and validate the orbital dynamics, limiting their ability to fully capture real-world complexities. To address this, we introduce OrbitZoo, a versatile multi-agent RL environment built on a high-fidelity industry standard library, that enables realistic data generation, supports scenarios like collision avoidance and cooperative maneuvers, and ensures robust and accurate orbital dynamics. The environment is validated against a real satellite constellation, Starlink, achieving a Mean Absolute Percentage Error (MAPE) of 0.16% compared to real-world data. This validation ensures reliability for generating high-fidelity simulations and enabling autonomous and independent satellite operations.
Enforcement Agents: Enhancing Accountability and Resilience in Multi-Agent AI Frameworks
As autonomous agents become more powerful and widely used, it is becoming increasingly important to ensure they behave safely and stay aligned with system goals, especially in multi-agent settings. Current systems often rely on agents self-monitoring or correcting issues after the fact, but they lack mechanisms for real-time oversight. This paper introduces the Enforcement Agent (EA) Framework, which embeds dedicated supervisory agents into the environment to monitor others, detect misbehavior, and intervene through real-time correction. We implement this framework in a custom drone simulation and evaluate it across 90 episodes using 0, 1, and 2 EA configurations. Results show that adding EAs significantly improves system safety: success rates rise from 0.0% with no EA to 7.4% with one EA and 26.7% with two EAs. The system also demonstrates increased operational longevity and higher rates of malicious drone reformation. These findings highlight the potential of lightweight, real-time supervision for enhancing alignment and resilience in multi-agent systems.
Responsible Development of Offensive AI
As AI advances, broader consensus is needed to determine research priorities. This endeavor discusses offensive AI and provides guidance by leveraging Sustainable Development Goals (SDGs) and interpretability techniques. The objective is to more effectively establish priorities that balance societal benefits against risks. The two forms of offensive AI evaluated in this study are vulnerability detection agents, which solve Capture- The-Flag challenges, and AI-powered malware.
Multi-agent Auto-Bidding with Latent Graph Diffusion Models
This paper proposes a diffusion-based auto-bidding framework that leverages graph representations to model large-scale auction environments. In such settings, agents must dynamically optimize bidding strategies under constraints defined by key performance indicator (KPI) metrics, all while operating in competitive environments characterized by uncertain, sparse, and stochastic variables. To address these challenges, we introduce a novel approach combining learnable graph-based embeddings with a planning-based latent diffusion model (LDM). By capturing patterns and nuances underlying the interdependence of impression opportunities and the multi-agent dynamics of the auction environment, the graph representation enable expressive computations regarding auto-bidding outcomes. With reward alignment techniques, the LDM's posterior is fine-tuned to generate auto-bidding trajectories that maximize KPI metrics while satisfying constraint thresholds. Empirical evaluations on both real-world and synthetic auction environments demonstrate significant improvements in auto-bidding performance across multiple common KPI metrics, as well as accuracy in forecasting auction outcomes.
Systems and Control (CS)
Optimal Teaming for Coordination with Bounded Rationality via Convex Optimization
Teaming is the process of establishing connections among agents within a system to enable collaboration toward achieving a collective goal. This paper examines teaming in the context of a network of agents learning to coordinate with bounded rationality. In our framework, the team structure is represented via a weighted graph, and the agents use log-linear learning. We formulate the design of the graph's weight matrix as a convex optimization problem whose objective is to maximize the probability of learning a Nash equilibrium while minimizing a connectivity cost. Despite its convexity, solving this optimization problem is computationally challenging, as the objective function involves the summation over the action profile space, which grows exponentially with the number of agents. Leveraging the underlying symmetry and convexity properties of the problem, when there are no sparsity constraints, we prove that there exists an optimal solution corresponding to a uniformly weighted graph, simplifying to a one-dimensional convex optimization problem. Additionally, we show that the optimal weight decreases monotonically with the agent's rationality, implying that when the agents become more rational the optimal team requires less connectivity.
comment: Submitted to the IEEE Conference on Decision and Control 2025
A Self-Supervised Learning Approach with Differentiable Optimization for UAV Trajectory Planning
While Unmanned Aerial Vehicles (UAVs) have gained significant traction across various fields, path planning in 3D environments remains a critical challenge, particularly under size, weight, and power (SWAP) constraints. Traditional modular planning systems often introduce latency and suboptimal performance due to limited information sharing and local minima issues. End-to-end learning approaches streamline the pipeline by mapping sensory observations directly to actions but require large-scale datasets, face significant sim-to-real gaps, or lack dynamical feasibility. In this paper, we propose a self-supervised UAV trajectory planning pipeline that integrates a learning-based depth perception with differentiable trajectory optimization. A 3D cost map guides UAV behavior without expert demonstrations or human labels. Additionally, we incorporate a neural network-based time allocation strategy to improve the efficiency and optimality. The system thus combines robust learning-based perception with reliable physics-based optimization for improved generalizability and interpretability. Both simulation and real-world experiments validate our approach across various environments, demonstrating its effectiveness and robustness. Our method achieves a 31.33% improvement in position tracking error and 49.37% reduction in control effort compared to the state-of-the-art.
Cyber Insurance Design for Load Variation and Load Curtailment in Distribution Grids
A growing number of renewable energy resources (RES) is continuously integrated into power systems contributing towards the green energy and net zero transition. However, the uncertainties of RES generation and load variations often lead to potentially high operational costs. Furthermore, added threats of cyber-attacks such as load-altering attacks (LAAs) via distributed energy resource/load interfaces can lead to substantial load variations. In this paper, we propose a cyber insurance framework to mitigate excessive expenses in load variation conditions while considering a renewable-rich grid. We investigate how operational costs and load curtailments can be influenced due to load variations by solving a bi-level optimization problem and performing Monte Carlo simulations. We use the semi-Markov process (SMP) to estimate the probability of extreme situations that the cyber insurance covers, whose premium and coverage are designed based on its value at risk and tail value at risk. A modified IEEE-118 test bus system considering PV generations, battery storage, and energy market interaction, along with a load curtailment strategy, is used to evaluate the proposed framework. Results show that load variations of up to 30% can lead to doubling the daily operational cost, demonstrating the feasibility of using a cyber insurance policy to hedge against financial risk.
Task load dependent decision referrals for joint binary classification in human-automation teams
We consider the problem of optimal decision referrals in human-automation teams performing binary classification tasks. The automation, which includes a pre-trained classifier, observes data for a batch of independent tasks, analyzes them, and may refer a subset of tasks to a human operator for fresh and final analysis. Our key modeling assumption is that human performance degrades with task load. We model the problem of choosing which tasks to refer as a stochastic optimization problem and show that, for a given task load, it is optimal to myopically refer tasks that yield the largest reduction in expected cost, conditional on the observed data. This provides a ranking scheme and a policy to determine the optimal set of tasks for referral. We evaluate this policy against a baseline through an experimental study with human participants. Using a radar screen simulator, participants made binary target classification decisions under time constraint. They were guided by a decision rule provided to them, but were still prone to errors under time pressure. An initial experiment estimated human performance model parameters, while a second experiment compared two referral policies. Results show statistically significant gains for the proposed optimal referral policy over a blind policy that determines referrals using the automation and human-performance models but not based on the observed data.
comment: 9 pages, 6 figures. Submitted to IEEE for possible publication
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
Discovering novel materials with desired properties is essential for driving innovation. Industry 4.0 and smart manufacturing have promised transformative advances in this area through real-time data integration and automated production planning and control. However, the reliance on automation alone has often fallen short, lacking the flexibility needed for complex processes. To fully unlock the potential of smart manufacturing, we must evolve from automation to autonomous systems that go beyond rigid programming and can dynamically optimize the search for solutions. Current discovery approaches are often slow, requiring numerous trials to find optimal combinations, and costly, particularly when optimizing multiple properties simultaneously. This paper proposes a Bayesian multi-objective sequential decision-making (BMSDM) framework that can intelligently select experiments as manufacturing progresses, guiding us toward the discovery of optimal design faster and more efficiently. The framework leverages sequential learning through Bayesian Optimization, which iteratively refines a statistical model representing the underlying manufacturing process. This statistical model acts as a surrogate, allowing for efficient exploration and optimization without requiring numerous real-world experiments. This approach can significantly reduce the time and cost of data collection required by traditional experimental designs. The proposed framework is compared with traditional DoE methods and two other multi-objective optimization methods. Using a manufacturing dataset, we evaluate and compare the performance of these approaches across five evaluation metrics. BMSDM comprehensively outperforms the competing methods in multi-objective decision-making scenarios. Our proposed approach represents a significant leap forward in creating an intelligent autonomous platform capable of novel material discovery.
Nonlinear Observer Design for Landmark-Inertial Simultaneous Localization and Mapping
This paper addresses the problem of Simultaneous Localization and Mapping (SLAM) for rigid body systems in three-dimensional space. We introduce a new matrix Lie group SE_{3+n}(3), whose elements are composed of the pose, gravity, linear velocity and landmark positions, and propose an almost globally asymptotically stable nonlinear geometric observer that integrates Inertial Measurement Unit (IMU) data with landmark measurements. The proposed observer estimates the pose and map up to a constant position and a constant rotation about the gravity direction. Numerical simulations are provided to validate the performance and effectiveness of the proposed observer, demonstrating its potential for robust SLAM applications.
Exploration of Approaches for Robustness and Safety in a Low Code Open Environment for Factory Automation
This report is a compilation of technical knowledge and concepts that were produced by the authors and additional contributors in the context of the collaboration projects "Abstraction Requirements for Language of Choice in Industrial Automation" (FY21-22) and "Approaches for Robust and Safe Low-Code" (FY23-24) from Siemens Technology and the University of California, Berkeley. The primary objective of these projects was to assess Siemens Open Industrial Edge (OIE) engineering capabilities by defining a concept that ensures the satisfaction of coordination and safety requirements when using disparate OIE modules. The objective was to use the Lingua Franca (LF) coordination language to demonstrate how to address challenges in: 1. engineering modular, distributed, and flexible automation solutions that ensure, by design, robust and safe operation1; 2. the use of IEC 61499, the event driven execution model for specifying the execution order of OIE modules (defined as function blocks); 3. support large-scale distributed OIE automation solutions, and eventually 4. define optimal solutions with synchronization and time-optimal mechanisms.
comment: 15 pages, 4 figures, technical report
An Optimized Density-Based Lane Keeping System for A Cost-Efficient Autonomous Vehicle Platform: AurigaBot V1
The development of self-driving cars has garnered significant attention from researchers, universities, and industries worldwide. Autonomous vehicles integrate numerous subsystems, including lane tracking, object detection, and vehicle control, which require thorough testing and validation. Scaled-down vehicles offer a cost-effective and accessible platform for experimentation, providing researchers with opportunities to optimize algorithms under constraints of limited computational power. This paper presents a four-wheeled autonomous vehicle platform designed to facilitate research and prototyping in autonomous driving. Key contributions include (1) a novel density-based clustering approach utilizing histogram statistics for landmark tracking, (2) a lateral controller, and (3) the integration of these innovations into a cohesive platform. Additionally, the paper explores object detection through systematic dataset augmentation and introduces an autonomous parking procedure. The results demonstrate the platform's effectiveness in achieving reliable lane tracking under varying lighting conditions, smooth trajectory following, and consistent object detection performance. Though developed for small-scale vehicles, these modular solutions are adaptable for full-scale autonomous systems, offering a versatile and cost-efficient framework for advancing research and industry applications.
comment: 12 pages, 14 figures
Passive Luminescent Bellows Mechanism
The use of robots in disaster sites has rapidly expanded, with soft robots attracting particular interest due to their flexibility and adaptability. They can navigate through narrow spaces and debris, facilitating efficient and safe operations. However, low visibility in such environments remains a challenge. This study aims to enhance the visibility of soft robots by developing and evaluating a passive luminescent exible actuator activated by a black light. Using Ecoex mixed with phosphorescent powder, we fabricated an actuator and confirmed its fluorescence phosphorescence and deformation ability. Furthermore the effects of the mixing ratio on optical and mechanical properties were assessed.
comment: 6 pages, 12 figures
Model Predictive Building Climate Control for Mitigating Heat Pump Noise Pollution (Extended Version)
Noise pollution from heat pumps (HPs) has been an emerging concern to their broader adoption, especially in densely populated areas. This paper explores a model predictive control (MPC) approach for building climate control, aimed at minimizing the noise nuisance generated by HPs. By exploiting a piecewise linear approximation of HP noise patterns and assuming linear building thermal dynamics, the proposed design can be generalized to handle various HP acoustic patterns with mixed-integer linear programming (MILP). Additionally, two computationally efficient options for defining the noise cost function in the proposed MPC design are discussed. Numerical experiments on a high-fidelity building simulator are performed to demonstrate the viability and effectiveness of the proposed design. Simulation results show that the proposed approach can effectively reduce the noise pollution caused by HPs with negligible energy cost increase.
comment: 7 pages, accepted to ECC2025
Data-driven Method to Ensure Cascade Stability of Traffic Load Balancing in O-RAN Based Networks
Load balancing in open radio access networks (O-RAN) is critical for ensuring efficient resource utilization, and the user's experience by evenly distributing network traffic load. Current research mainly focuses on designing load-balancing algorithms to allocate resources while overlooking the cascade stability of load balancing, which is critical to prevent endless handover. The main challenge to analyse the cascade stability lies in the difficulty of establishing an accurate mathematical model to describe the process of load balancing due to its nonlinearity and high-dimensionality. In our previous theoretical work, a simplified general dynamic function was used to analyze the stability. However, it is elusive whether this function is close to the reality of the load balance process. To solve this problem, 1) a data-driven method is proposed to identify the dynamic model of the load balancing process according to the real-time traffic load data collected from the radio units (RUs); 2) the stability condition of load balancing process is established for the identified dynamics model. Based on the identified dynamics model and the stability condition, the RAN Intelligent Controller (RIC) can control RUs to achieve a desired load-balancing state while ensuring cascade stability.
Risk-Aware Robot Control in Dynamic Environments Using Belief Control Barrier Functions
Ensuring safety for autonomous robots operating in dynamic environments can be challenging due to factors such as unmodeled dynamics, noisy sensor measurements, and partial observability. To account for these limitations, it is common to maintain a belief distribution over the true state. This belief could be a non-parametric, sample-based representation to capture uncertainty more flexibly. In this paper, we propose a novel form of Belief Control Barrier Functions (BCBFs) specifically designed to ensure safety in dynamic environments under stochastic dynamics and a sample-based belief about the environment state. Our approach incorporates provable concentration bounds on tail risk measures into BCBFs, effectively addressing possible multimodal and skewed belief distributions represented by samples. Moreover, the proposed method demonstrates robustness against distributional shifts up to a predefined bound. We validate the effectiveness and real-time performance (approximately 1kHz) of the proposed method through two simulated underwater robotic applications: object tracking and dynamic collision avoidance.
Deep-Learning-Directed Preventive Dynamic Security Control via Coordinated Demand Response
Unlike common faults, three-phase short-circuit faults in power systems pose significant challenges. These faults can lead to out-of-step (OOS) conditions and jeopardize the system's dynamic security. The rapid dynamics of these faults often exceed the time of protection actions, thus limiting the effectiveness of corrective schemes. This paper proposes an end-to-end deep-learning-based mechanism, namely, a convolutional neural network with an attention mechanism, to predict OOS conditions early and enhance the system's fault resilience. The results of the study demonstrate the effectiveness of the proposed algorithm in terms of early prediction and robustness against such faults in various operating conditions.
comment: to appear in the 2025 IEEE Power & Energy Society General Meeting (PESGM)
Analyzing the Role of the DSO in Electricity Trading of VPPs via a Stackelberg Game Model
The increasing penetration of distributed energy resources has sparked interests in participating in power markets. Here, we consider two settings where Virtual Power Plants (VPPs) with some flexible resources participate in the electricity trading, either directly in the wholesale electricity market, or interfaced by the Distribution System Operator (DSO) who is the transaction organizer. In order to study the role of DSO as a stakeholder, a Stackelberg game is represented via a bi-level model: the DSO maximizes profits at the upper level, while the VPPs minimize operating costs at the lower level. To solve this problem, the Karush-Kuhn-Tucker conditions of lower level is deduced to achieve a single-level problem. The results show that the role of the DSO as an intermediary agent leads to a decrease in operating costs of the VPPs by organizing lower-level trading, while making a profit for itself. However, this result comes with interests loss of the wholesale market, implying that stakeholders in the market need to abide by regulatory constraints.
comment: Accepted by 16th IEEE PowerTech Conference in Kiel. Pages:6
Background results for robust minmax control of linear dynamical systems
The purpose of this note is to summarize the arguments required to derive the results appearing in robust minmax control of linear dynamical systems using a quadratic stage cost. The main result required in robust minmax control is Proposition 20.a. Moreover, the solution to the trust-region problem given in Proposition 15 and Lemma 16 may be of more general interest. This revised (second) version provides the following corrections and extensions of the previous (first) version. 1. The optimal u and w formulas in the original Corollary 13, Proposition 14, Corollary 19, and Proposition 20 have been corrected in this revision. 2. Corollary 13 and Proposition 14 are combined in the revised Proposition 14.a. 3. Corollary 19 and Proposition 20 are combined in the revised Proposition 20.a. 4. The revised Proposition 12.a is a generalization of the previous Proposition 12. 5. Propositions 5.a, 5.b, and 5.c are new in this revision. 6. Figure 1 has been revised to illustrate the revised Proposition 14.a.
Coordinating Distributed Energy Resources with Nodal Pricing in Distribution Networks: a Game-Theoretic Approach
We propose a real-time nodal pricing mechanism for cost minimization and voltage control in a distribution network with autonomous distributed energy resources and analyze the resulting market using stochastic game theory. Unlike existing methods, the proposed pricing scheme does not require device-aware centralized coordination or communication between prosumers. By developing new sufficient conditions under which a stochastic game is a Markov potential game, we show that the problem of computing an equilibrium for the proposed model is equivalent to solving a single-agent Markov Decision Process. These new conditions are general and may apply to other applications. We compute the equilibrium for an IEEE test system to empirically demonstrate the effectiveness of the pricing policy.
Localization Phenomena in Large-Scale Networked Systems: Robustness and Fragility of Dynamics
We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using spectral perturbation theory and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.
CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving, robotics, and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that trains on automatically detected objects--using relative positions, appearance embeddings, and semantic classes--to generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Through extensive experiments on two urban traffic datasets, we show that CalibRefine delivers high-precision calibration results with minimal human involvement, outperforming state-of-the-art targetless methods and remaining competitive with, or surpassing, manually tuned baselines. Our findings highlight how robust object-level feature matching, together with iterative and self-supervised attention-based adjustments, enables consistent sensor fusion in complex, real-world conditions without requiring ground-truth calibration matrices or elaborate data preprocessing. Code is available at \href{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}
Autonomous Wheel Loader Navigation Using Goal-Conditioned Actor-Critic MPC ICRA
This paper proposes a novel control method for an autonomous wheel loader, enabling time-efficient navigation to an arbitrary goal pose. Unlike prior works which combine high-level trajectory planners with Model Predictive Control (MPC), we directly enhance the planning capabilities of MPC by incorporating a cost function derived from Actor-Critic Reinforcement Learning (RL). Specifically, we first train an RL agent to solve the pose reaching task in simulation, then transfer the learned planning knowledge to an MPC by incorporating the trained neural network critic as both the stage and terminal cost. We show through comprehensive simulations that the resulting MPC inherits the time-efficient behavior of the RL agent, generating trajectories that compare favorably against those found using trajectory optimization. We also deploy our method on a real-world wheel loader, where we demonstrate successful navigation in various scenarios.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
Data-driven sliding mode control for partially unknown nonlinear systems
This paper presents a new data-driven control for multi-input, multi-output nonlinear systems with partially unknown dynamics and bounded disturbances. Since exact nonlinearity cancellation is not feasible with unknown disturbances, we adapt sliding mode control (SMC) for system stability and robustness. The SMC features a data-driven robust controller to reach the sliding surface and a data-driven nominal controller from a semidefinite program (SDP) to ensure stability. Simulations show the proposed method outperforms existing data-driven approaches with approximate nonlinearity cancellation.
comment: Submitted to a journal
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Systems and Control (EESS)
Optimal Teaming for Coordination with Bounded Rationality via Convex Optimization
Teaming is the process of establishing connections among agents within a system to enable collaboration toward achieving a collective goal. This paper examines teaming in the context of a network of agents learning to coordinate with bounded rationality. In our framework, the team structure is represented via a weighted graph, and the agents use log-linear learning. We formulate the design of the graph's weight matrix as a convex optimization problem whose objective is to maximize the probability of learning a Nash equilibrium while minimizing a connectivity cost. Despite its convexity, solving this optimization problem is computationally challenging, as the objective function involves the summation over the action profile space, which grows exponentially with the number of agents. Leveraging the underlying symmetry and convexity properties of the problem, when there are no sparsity constraints, we prove that there exists an optimal solution corresponding to a uniformly weighted graph, simplifying to a one-dimensional convex optimization problem. Additionally, we show that the optimal weight decreases monotonically with the agent's rationality, implying that when the agents become more rational the optimal team requires less connectivity.
comment: Submitted to the IEEE Conference on Decision and Control 2025
A Self-Supervised Learning Approach with Differentiable Optimization for UAV Trajectory Planning
While Unmanned Aerial Vehicles (UAVs) have gained significant traction across various fields, path planning in 3D environments remains a critical challenge, particularly under size, weight, and power (SWAP) constraints. Traditional modular planning systems often introduce latency and suboptimal performance due to limited information sharing and local minima issues. End-to-end learning approaches streamline the pipeline by mapping sensory observations directly to actions but require large-scale datasets, face significant sim-to-real gaps, or lack dynamical feasibility. In this paper, we propose a self-supervised UAV trajectory planning pipeline that integrates a learning-based depth perception with differentiable trajectory optimization. A 3D cost map guides UAV behavior without expert demonstrations or human labels. Additionally, we incorporate a neural network-based time allocation strategy to improve the efficiency and optimality. The system thus combines robust learning-based perception with reliable physics-based optimization for improved generalizability and interpretability. Both simulation and real-world experiments validate our approach across various environments, demonstrating its effectiveness and robustness. Our method achieves a 31.33% improvement in position tracking error and 49.37% reduction in control effort compared to the state-of-the-art.
Cyber Insurance Design for Load Variation and Load Curtailment in Distribution Grids
A growing number of renewable energy resources (RES) is continuously integrated into power systems contributing towards the green energy and net zero transition. However, the uncertainties of RES generation and load variations often lead to potentially high operational costs. Furthermore, added threats of cyber-attacks such as load-altering attacks (LAAs) via distributed energy resource/load interfaces can lead to substantial load variations. In this paper, we propose a cyber insurance framework to mitigate excessive expenses in load variation conditions while considering a renewable-rich grid. We investigate how operational costs and load curtailments can be influenced due to load variations by solving a bi-level optimization problem and performing Monte Carlo simulations. We use the semi-Markov process (SMP) to estimate the probability of extreme situations that the cyber insurance covers, whose premium and coverage are designed based on its value at risk and tail value at risk. A modified IEEE-118 test bus system considering PV generations, battery storage, and energy market interaction, along with a load curtailment strategy, is used to evaluate the proposed framework. Results show that load variations of up to 30% can lead to doubling the daily operational cost, demonstrating the feasibility of using a cyber insurance policy to hedge against financial risk.
Task load dependent decision referrals for joint binary classification in human-automation teams
We consider the problem of optimal decision referrals in human-automation teams performing binary classification tasks. The automation, which includes a pre-trained classifier, observes data for a batch of independent tasks, analyzes them, and may refer a subset of tasks to a human operator for fresh and final analysis. Our key modeling assumption is that human performance degrades with task load. We model the problem of choosing which tasks to refer as a stochastic optimization problem and show that, for a given task load, it is optimal to myopically refer tasks that yield the largest reduction in expected cost, conditional on the observed data. This provides a ranking scheme and a policy to determine the optimal set of tasks for referral. We evaluate this policy against a baseline through an experimental study with human participants. Using a radar screen simulator, participants made binary target classification decisions under time constraint. They were guided by a decision rule provided to them, but were still prone to errors under time pressure. An initial experiment estimated human performance model parameters, while a second experiment compared two referral policies. Results show statistically significant gains for the proposed optimal referral policy over a blind policy that determines referrals using the automation and human-performance models but not based on the observed data.
comment: 9 pages, 6 figures. Submitted to IEEE for possible publication
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
Discovering novel materials with desired properties is essential for driving innovation. Industry 4.0 and smart manufacturing have promised transformative advances in this area through real-time data integration and automated production planning and control. However, the reliance on automation alone has often fallen short, lacking the flexibility needed for complex processes. To fully unlock the potential of smart manufacturing, we must evolve from automation to autonomous systems that go beyond rigid programming and can dynamically optimize the search for solutions. Current discovery approaches are often slow, requiring numerous trials to find optimal combinations, and costly, particularly when optimizing multiple properties simultaneously. This paper proposes a Bayesian multi-objective sequential decision-making (BMSDM) framework that can intelligently select experiments as manufacturing progresses, guiding us toward the discovery of optimal design faster and more efficiently. The framework leverages sequential learning through Bayesian Optimization, which iteratively refines a statistical model representing the underlying manufacturing process. This statistical model acts as a surrogate, allowing for efficient exploration and optimization without requiring numerous real-world experiments. This approach can significantly reduce the time and cost of data collection required by traditional experimental designs. The proposed framework is compared with traditional DoE methods and two other multi-objective optimization methods. Using a manufacturing dataset, we evaluate and compare the performance of these approaches across five evaluation metrics. BMSDM comprehensively outperforms the competing methods in multi-objective decision-making scenarios. Our proposed approach represents a significant leap forward in creating an intelligent autonomous platform capable of novel material discovery.
Nonlinear Observer Design for Landmark-Inertial Simultaneous Localization and Mapping
This paper addresses the problem of Simultaneous Localization and Mapping (SLAM) for rigid body systems in three-dimensional space. We introduce a new matrix Lie group SE_{3+n}(3), whose elements are composed of the pose, gravity, linear velocity and landmark positions, and propose an almost globally asymptotically stable nonlinear geometric observer that integrates Inertial Measurement Unit (IMU) data with landmark measurements. The proposed observer estimates the pose and map up to a constant position and a constant rotation about the gravity direction. Numerical simulations are provided to validate the performance and effectiveness of the proposed observer, demonstrating its potential for robust SLAM applications.
Exploration of Approaches for Robustness and Safety in a Low Code Open Environment for Factory Automation
This report is a compilation of technical knowledge and concepts that were produced by the authors and additional contributors in the context of the collaboration projects "Abstraction Requirements for Language of Choice in Industrial Automation" (FY21-22) and "Approaches for Robust and Safe Low-Code" (FY23-24) from Siemens Technology and the University of California, Berkeley. The primary objective of these projects was to assess Siemens Open Industrial Edge (OIE) engineering capabilities by defining a concept that ensures the satisfaction of coordination and safety requirements when using disparate OIE modules. The objective was to use the Lingua Franca (LF) coordination language to demonstrate how to address challenges in: 1. engineering modular, distributed, and flexible automation solutions that ensure, by design, robust and safe operation1; 2. the use of IEC 61499, the event driven execution model for specifying the execution order of OIE modules (defined as function blocks); 3. support large-scale distributed OIE automation solutions, and eventually 4. define optimal solutions with synchronization and time-optimal mechanisms.
comment: 15 pages, 4 figures, technical report
An Optimized Density-Based Lane Keeping System for A Cost-Efficient Autonomous Vehicle Platform: AurigaBot V1
The development of self-driving cars has garnered significant attention from researchers, universities, and industries worldwide. Autonomous vehicles integrate numerous subsystems, including lane tracking, object detection, and vehicle control, which require thorough testing and validation. Scaled-down vehicles offer a cost-effective and accessible platform for experimentation, providing researchers with opportunities to optimize algorithms under constraints of limited computational power. This paper presents a four-wheeled autonomous vehicle platform designed to facilitate research and prototyping in autonomous driving. Key contributions include (1) a novel density-based clustering approach utilizing histogram statistics for landmark tracking, (2) a lateral controller, and (3) the integration of these innovations into a cohesive platform. Additionally, the paper explores object detection through systematic dataset augmentation and introduces an autonomous parking procedure. The results demonstrate the platform's effectiveness in achieving reliable lane tracking under varying lighting conditions, smooth trajectory following, and consistent object detection performance. Though developed for small-scale vehicles, these modular solutions are adaptable for full-scale autonomous systems, offering a versatile and cost-efficient framework for advancing research and industry applications.
comment: 12 pages, 14 figures
Passive Luminescent Bellows Mechanism
The use of robots in disaster sites has rapidly expanded, with soft robots attracting particular interest due to their flexibility and adaptability. They can navigate through narrow spaces and debris, facilitating efficient and safe operations. However, low visibility in such environments remains a challenge. This study aims to enhance the visibility of soft robots by developing and evaluating a passive luminescent exible actuator activated by a black light. Using Ecoex mixed with phosphorescent powder, we fabricated an actuator and confirmed its fluorescence phosphorescence and deformation ability. Furthermore the effects of the mixing ratio on optical and mechanical properties were assessed.
comment: 6 pages, 12 figures
Model Predictive Building Climate Control for Mitigating Heat Pump Noise Pollution (Extended Version)
Noise pollution from heat pumps (HPs) has been an emerging concern to their broader adoption, especially in densely populated areas. This paper explores a model predictive control (MPC) approach for building climate control, aimed at minimizing the noise nuisance generated by HPs. By exploiting a piecewise linear approximation of HP noise patterns and assuming linear building thermal dynamics, the proposed design can be generalized to handle various HP acoustic patterns with mixed-integer linear programming (MILP). Additionally, two computationally efficient options for defining the noise cost function in the proposed MPC design are discussed. Numerical experiments on a high-fidelity building simulator are performed to demonstrate the viability and effectiveness of the proposed design. Simulation results show that the proposed approach can effectively reduce the noise pollution caused by HPs with negligible energy cost increase.
comment: 7 pages, accepted to ECC2025
Data-driven Method to Ensure Cascade Stability of Traffic Load Balancing in O-RAN Based Networks
Load balancing in open radio access networks (O-RAN) is critical for ensuring efficient resource utilization, and the user's experience by evenly distributing network traffic load. Current research mainly focuses on designing load-balancing algorithms to allocate resources while overlooking the cascade stability of load balancing, which is critical to prevent endless handover. The main challenge to analyse the cascade stability lies in the difficulty of establishing an accurate mathematical model to describe the process of load balancing due to its nonlinearity and high-dimensionality. In our previous theoretical work, a simplified general dynamic function was used to analyze the stability. However, it is elusive whether this function is close to the reality of the load balance process. To solve this problem, 1) a data-driven method is proposed to identify the dynamic model of the load balancing process according to the real-time traffic load data collected from the radio units (RUs); 2) the stability condition of load balancing process is established for the identified dynamics model. Based on the identified dynamics model and the stability condition, the RAN Intelligent Controller (RIC) can control RUs to achieve a desired load-balancing state while ensuring cascade stability.
Risk-Aware Robot Control in Dynamic Environments Using Belief Control Barrier Functions
Ensuring safety for autonomous robots operating in dynamic environments can be challenging due to factors such as unmodeled dynamics, noisy sensor measurements, and partial observability. To account for these limitations, it is common to maintain a belief distribution over the true state. This belief could be a non-parametric, sample-based representation to capture uncertainty more flexibly. In this paper, we propose a novel form of Belief Control Barrier Functions (BCBFs) specifically designed to ensure safety in dynamic environments under stochastic dynamics and a sample-based belief about the environment state. Our approach incorporates provable concentration bounds on tail risk measures into BCBFs, effectively addressing possible multimodal and skewed belief distributions represented by samples. Moreover, the proposed method demonstrates robustness against distributional shifts up to a predefined bound. We validate the effectiveness and real-time performance (approximately 1kHz) of the proposed method through two simulated underwater robotic applications: object tracking and dynamic collision avoidance.
Deep-Learning-Directed Preventive Dynamic Security Control via Coordinated Demand Response
Unlike common faults, three-phase short-circuit faults in power systems pose significant challenges. These faults can lead to out-of-step (OOS) conditions and jeopardize the system's dynamic security. The rapid dynamics of these faults often exceed the time of protection actions, thus limiting the effectiveness of corrective schemes. This paper proposes an end-to-end deep-learning-based mechanism, namely, a convolutional neural network with an attention mechanism, to predict OOS conditions early and enhance the system's fault resilience. The results of the study demonstrate the effectiveness of the proposed algorithm in terms of early prediction and robustness against such faults in various operating conditions.
comment: to appear in the 2025 IEEE Power & Energy Society General Meeting (PESGM)
Analyzing the Role of the DSO in Electricity Trading of VPPs via a Stackelberg Game Model
The increasing penetration of distributed energy resources has sparked interests in participating in power markets. Here, we consider two settings where Virtual Power Plants (VPPs) with some flexible resources participate in the electricity trading, either directly in the wholesale electricity market, or interfaced by the Distribution System Operator (DSO) who is the transaction organizer. In order to study the role of DSO as a stakeholder, a Stackelberg game is represented via a bi-level model: the DSO maximizes profits at the upper level, while the VPPs minimize operating costs at the lower level. To solve this problem, the Karush-Kuhn-Tucker conditions of lower level is deduced to achieve a single-level problem. The results show that the role of the DSO as an intermediary agent leads to a decrease in operating costs of the VPPs by organizing lower-level trading, while making a profit for itself. However, this result comes with interests loss of the wholesale market, implying that stakeholders in the market need to abide by regulatory constraints.
comment: Accepted by 16th IEEE PowerTech Conference in Kiel. Pages:6
Background results for robust minmax control of linear dynamical systems
The purpose of this note is to summarize the arguments required to derive the results appearing in robust minmax control of linear dynamical systems using a quadratic stage cost. The main result required in robust minmax control is Proposition 20.a. Moreover, the solution to the trust-region problem given in Proposition 15 and Lemma 16 may be of more general interest. This revised (second) version provides the following corrections and extensions of the previous (first) version. 1. The optimal u and w formulas in the original Corollary 13, Proposition 14, Corollary 19, and Proposition 20 have been corrected in this revision. 2. Corollary 13 and Proposition 14 are combined in the revised Proposition 14.a. 3. Corollary 19 and Proposition 20 are combined in the revised Proposition 20.a. 4. The revised Proposition 12.a is a generalization of the previous Proposition 12. 5. Propositions 5.a, 5.b, and 5.c are new in this revision. 6. Figure 1 has been revised to illustrate the revised Proposition 14.a.
Coordinating Distributed Energy Resources with Nodal Pricing in Distribution Networks: a Game-Theoretic Approach
We propose a real-time nodal pricing mechanism for cost minimization and voltage control in a distribution network with autonomous distributed energy resources and analyze the resulting market using stochastic game theory. Unlike existing methods, the proposed pricing scheme does not require device-aware centralized coordination or communication between prosumers. By developing new sufficient conditions under which a stochastic game is a Markov potential game, we show that the problem of computing an equilibrium for the proposed model is equivalent to solving a single-agent Markov Decision Process. These new conditions are general and may apply to other applications. We compute the equilibrium for an IEEE test system to empirically demonstrate the effectiveness of the pricing policy.
Localization Phenomena in Large-Scale Networked Systems: Robustness and Fragility of Dynamics
We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using spectral perturbation theory and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.
CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving, robotics, and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that trains on automatically detected objects--using relative positions, appearance embeddings, and semantic classes--to generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Through extensive experiments on two urban traffic datasets, we show that CalibRefine delivers high-precision calibration results with minimal human involvement, outperforming state-of-the-art targetless methods and remaining competitive with, or surpassing, manually tuned baselines. Our findings highlight how robust object-level feature matching, together with iterative and self-supervised attention-based adjustments, enables consistent sensor fusion in complex, real-world conditions without requiring ground-truth calibration matrices or elaborate data preprocessing. Code is available at \href{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}
Autonomous Wheel Loader Navigation Using Goal-Conditioned Actor-Critic MPC ICRA
This paper proposes a novel control method for an autonomous wheel loader, enabling time-efficient navigation to an arbitrary goal pose. Unlike prior works which combine high-level trajectory planners with Model Predictive Control (MPC), we directly enhance the planning capabilities of MPC by incorporating a cost function derived from Actor-Critic Reinforcement Learning (RL). Specifically, we first train an RL agent to solve the pose reaching task in simulation, then transfer the learned planning knowledge to an MPC by incorporating the trained neural network critic as both the stage and terminal cost. We show through comprehensive simulations that the resulting MPC inherits the time-efficient behavior of the RL agent, generating trajectories that compare favorably against those found using trajectory optimization. We also deploy our method on a real-world wheel loader, where we demonstrate successful navigation in various scenarios.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
Data-driven sliding mode control for partially unknown nonlinear systems
This paper presents a new data-driven control for multi-input, multi-output nonlinear systems with partially unknown dynamics and bounded disturbances. Since exact nonlinearity cancellation is not feasible with unknown disturbances, we adapt sliding mode control (SMC) for system stability and robustness. The SMC features a data-driven robust controller to reach the sliding surface and a data-driven nominal controller from a semidefinite program (SDP) to ensure stability. Simulations show the proposed method outperforms existing data-driven approaches with approximate nonlinearity cancellation.
comment: Submitted to a journal
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Robotics
A Self-Supervised Learning Approach with Differentiable Optimization for UAV Trajectory Planning
While Unmanned Aerial Vehicles (UAVs) have gained significant traction across various fields, path planning in 3D environments remains a critical challenge, particularly under size, weight, and power (SWAP) constraints. Traditional modular planning systems often introduce latency and suboptimal performance due to limited information sharing and local minima issues. End-to-end learning approaches streamline the pipeline by mapping sensory observations directly to actions but require large-scale datasets, face significant sim-to-real gaps, or lack dynamical feasibility. In this paper, we propose a self-supervised UAV trajectory planning pipeline that integrates a learning-based depth perception with differentiable trajectory optimization. A 3D cost map guides UAV behavior without expert demonstrations or human labels. Additionally, we incorporate a neural network-based time allocation strategy to improve the efficiency and optimality. The system thus combines robust learning-based perception with reliable physics-based optimization for improved generalizability and interpretability. Both simulation and real-world experiments validate our approach across various environments, demonstrating its effectiveness and robustness. Our method achieves a 31.33% improvement in position tracking error and 49.37% reduction in control effort compared to the state-of-the-art.
ORCA: An Open-Source, Reliable, Cost-Effective, Anthropomorphic Robotic Hand for Uninterrupted Dexterous Task Learning
General-purpose robots should possess humanlike dexterity and agility to perform tasks with the same versatility as us. A human-like form factor further enables the use of vast datasets of human-hand interactions. However, the primary bottleneck in dexterous manipulation lies not only in software but arguably even more in hardware. Robotic hands that approach human capabilities are often prohibitively expensive, bulky, or require enterprise-level maintenance, limiting their accessibility for broader research and practical applications. What if the research community could get started with reliable dexterous hands within a day? We present the open-source ORCA hand, a reliable and anthropomorphic 17-DoF tendon-driven robotic hand with integrated tactile sensors, fully assembled in less than eight hours and built for a material cost below 2,000 CHF. We showcase ORCA's key design features such as popping joints, auto-calibration, and tensioning systems that significantly reduce complexity while increasing reliability, accuracy, and robustness. We benchmark the ORCA hand across a variety of tasks, ranging from teleoperation and imitation learning to zero-shot sim-to-real reinforcement learning. Furthermore, we demonstrate its durability, withstanding more than 10,000 continuous operation cycles - equivalent to approximately 20 hours - without hardware failure, the only constraint being the duration of the experiment itself. All design files, source code, and documentation will be available at https://www.orcahand.com/.
comment: This work has been submitted to the IEEE for possible publication
Nonlinear Observer Design for Landmark-Inertial Simultaneous Localization and Mapping
This paper addresses the problem of Simultaneous Localization and Mapping (SLAM) for rigid body systems in three-dimensional space. We introduce a new matrix Lie group SE_{3+n}(3), whose elements are composed of the pose, gravity, linear velocity and landmark positions, and propose an almost globally asymptotically stable nonlinear geometric observer that integrates Inertial Measurement Unit (IMU) data with landmark measurements. The proposed observer estimates the pose and map up to a constant position and a constant rotation about the gravity direction. Numerical simulations are provided to validate the performance and effectiveness of the proposed observer, demonstrating its potential for robust SLAM applications.
An Optimized Density-Based Lane Keeping System for A Cost-Efficient Autonomous Vehicle Platform: AurigaBot V1
The development of self-driving cars has garnered significant attention from researchers, universities, and industries worldwide. Autonomous vehicles integrate numerous subsystems, including lane tracking, object detection, and vehicle control, which require thorough testing and validation. Scaled-down vehicles offer a cost-effective and accessible platform for experimentation, providing researchers with opportunities to optimize algorithms under constraints of limited computational power. This paper presents a four-wheeled autonomous vehicle platform designed to facilitate research and prototyping in autonomous driving. Key contributions include (1) a novel density-based clustering approach utilizing histogram statistics for landmark tracking, (2) a lateral controller, and (3) the integration of these innovations into a cohesive platform. Additionally, the paper explores object detection through systematic dataset augmentation and introduces an autonomous parking procedure. The results demonstrate the platform's effectiveness in achieving reliable lane tracking under varying lighting conditions, smooth trajectory following, and consistent object detection performance. Though developed for small-scale vehicles, these modular solutions are adaptable for full-scale autonomous systems, offering a versatile and cost-efficient framework for advancing research and industry applications.
comment: 12 pages, 14 figures
Passive Luminescent Bellows Mechanism
The use of robots in disaster sites has rapidly expanded, with soft robots attracting particular interest due to their flexibility and adaptability. They can navigate through narrow spaces and debris, facilitating efficient and safe operations. However, low visibility in such environments remains a challenge. This study aims to enhance the visibility of soft robots by developing and evaluating a passive luminescent exible actuator activated by a black light. Using Ecoex mixed with phosphorescent powder, we fabricated an actuator and confirmed its fluorescence phosphorescence and deformation ability. Furthermore the effects of the mixing ratio on optical and mechanical properties were assessed.
comment: 6 pages, 12 figures
GROVE: A Generalized Reward for Learning Open-Vocabulary Physical Skill
Learning open-vocabulary physical skills for simulated agents presents a significant challenge in artificial intelligence. Current reinforcement learning approaches face critical limitations: manually designed rewards lack scalability across diverse tasks, while demonstration-based methods struggle to generalize beyond their training distribution. We introduce GROVE, a generalized reward framework that enables open-vocabulary physical skill learning without manual engineering or task-specific demonstrations. Our key insight is that Large Language Models(LLMs) and Vision Language Models(VLMs) provide complementary guidance -- LLMs generate precise physical constraints capturing task requirements, while VLMs evaluate motion semantics and naturalness. Through an iterative design process, VLM-based feedback continuously refines LLM-generated constraints, creating a self-improving reward system. To bridge the domain gap between simulation and natural images, we develop Pose2CLIP, a lightweight mapper that efficiently projects agent poses directly into semantic feature space without computationally expensive rendering. Extensive experiments across diverse embodiments and learning paradigms demonstrate GROVE's effectiveness, achieving 22.2% higher motion naturalness and 25.7% better task completion scores while training 8.4x faster than previous methods. These results establish a new foundation for scalable physical skill acquisition in simulated environments.
Learning about the Physical World through Analytic Concepts
Reviewing the progress in artificial intelligence over the past decade, various significant advances (e.g. object detection, image generation, large language models) have enabled AI systems to produce more semantically meaningful outputs and achieve widespread adoption in internet scenarios. Nevertheless, AI systems still struggle when it comes to understanding and interacting with the physical world. This reveals an important issue: relying solely on semantic-level concepts learned from internet data (e.g. texts, images) to understand the physical world is far from sufficient -- machine intelligence currently lacks an effective way to learn about the physical world. This research introduces the idea of analytic concept -- representing the concepts related to the physical world through programs of mathematical procedures, providing machine intelligence a portal to perceive, reason about, and interact with the physical world. Except for detailing the design philosophy and providing guidelines for the application of analytic concepts, this research also introduce about the infrastructure that has been built around analytic concepts. I aim for my research to contribute to addressing these questions: What is a proper abstraction of general concepts in the physical world for machine intelligence? How to systematically integrate structured priors with neural networks to constrain AI systems to comply with physical laws?
A General Peg-in-Hole Assembly Policy Based on Domain Randomized Reinforcement Learning
Generalization is important for peg-in-hole assembly, a fundamental industrial operation, to adapt to dynamic industrial scenarios and enhance manufacturing efficiency. While prior work has enhanced generalization ability for pose variations, spatial generalization to six degrees of freedom (6-DOF) is less researched, limiting application in real-world scenarios. This paper addresses this limitation by developing a general policy GenPiH using Proximal Policy Optimization(PPO) and dynamic simulation with domain randomization. The policy learning experiment demonstrates the policy's generalization ability with nearly 100\% success insertion across over eight thousand unique hole poses in parallel environments, and sim-to-real validation on a UR10e robot confirms the policy's performance through direct trajectory execution without task-specific tuning.
Risk-Aware Robot Control in Dynamic Environments Using Belief Control Barrier Functions
Ensuring safety for autonomous robots operating in dynamic environments can be challenging due to factors such as unmodeled dynamics, noisy sensor measurements, and partial observability. To account for these limitations, it is common to maintain a belief distribution over the true state. This belief could be a non-parametric, sample-based representation to capture uncertainty more flexibly. In this paper, we propose a novel form of Belief Control Barrier Functions (BCBFs) specifically designed to ensure safety in dynamic environments under stochastic dynamics and a sample-based belief about the environment state. Our approach incorporates provable concentration bounds on tail risk measures into BCBFs, effectively addressing possible multimodal and skewed belief distributions represented by samples. Moreover, the proposed method demonstrates robustness against distributional shifts up to a predefined bound. We validate the effectiveness and real-time performance (approximately 1kHz) of the proposed method through two simulated underwater robotic applications: object tracking and dynamic collision avoidance.
Mapping at First Sense: A Lightweight Neural Network-Based Indoor Structures Prediction Method for Robot Autonomous Exploration
Autonomous exploration in unknown environments is a critical challenge in robotics, particularly for applications such as indoor navigation, search and rescue, and service robotics. Traditional exploration strategies, such as frontier-based methods, often struggle to efficiently utilize prior knowledge of structural regularities in indoor spaces. To address this limitation, we propose Mapping at First Sense, a lightweight neural network-based approach that predicts unobserved areas in local maps, thereby enhancing exploration efficiency. The core of our method, SenseMapNet, integrates convolutional and transformerbased architectures to infer occluded regions while maintaining computational efficiency for real-time deployment on resourceconstrained robots. Additionally, we introduce SenseMapDataset, a curated dataset constructed from KTH and HouseExpo environments, which facilitates training and evaluation of neural models for indoor exploration. Experimental results demonstrate that SenseMapNet achieves an SSIM (structural similarity) of 0.78, LPIPS (perceptual quality) of 0.68, and an FID (feature distribution alignment) of 239.79, outperforming conventional methods in map reconstruction quality. Compared to traditional frontier-based exploration, our method reduces exploration time by 46.5% (from 2335.56s to 1248.68s) while maintaining a high coverage rate (88%) and achieving a reconstruction accuracy of 88%. The proposed method represents a promising step toward efficient, learning-driven robotic exploration in structured environments.
ADAPT: Actively Discovering and Adapting to Preferences for any Task
Assistive agents should be able to perform under-specified long-horizon tasks while respecting user preferences. We introduce Actively Discovering and Adapting to Preferences for any Task (ADAPT) -- a benchmark designed to evaluate agents' ability to adhere to user preferences across various household tasks through active questioning. Next, we propose Reflection-DPO, a novel training approach for adapting large language models (LLMs) to the task of active questioning. Reflection-DPO finetunes a 'student' LLM to follow the actions of a privileged 'teacher' LLM, and optionally ask a question to gather necessary information to better predict the teacher action. We find that prior approaches that use state-of-the-art LLMs fail to sufficiently follow user preferences in ADAPT due to insufficient questioning and poor adherence to elicited preferences. In contrast, Reflection-DPO achieves a higher rate of satisfying user preferences, outperforming a zero-shot chain-of-thought baseline by 6.1% on unseen users.
Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects by combining 3D generative Artificial Intelligence with robotic assembly. The system leverages natural language input to make design and manufacturing more accessible, enabling individuals without expertise in 3D modeling or robotic programming to create physical objects. We propose utilizing discrete robotic assembly of lattice-based voxel components to address the challenges of using generative AI outputs in physical production, such as design variability, fabrication speed, structural integrity, and material waste. The system interprets speech to generate 3D objects, discretizes them into voxel components, computes an optimized assembly sequence, and generates a robotic toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a 6-axis robotic arm.
comment: This work has been submitted to the IEEE for possible publication. An updated version will replace this version
Autonomous Wheel Loader Navigation Using Goal-Conditioned Actor-Critic MPC ICRA
This paper proposes a novel control method for an autonomous wheel loader, enabling time-efficient navigation to an arbitrary goal pose. Unlike prior works which combine high-level trajectory planners with Model Predictive Control (MPC), we directly enhance the planning capabilities of MPC by incorporating a cost function derived from Actor-Critic Reinforcement Learning (RL). Specifically, we first train an RL agent to solve the pose reaching task in simulation, then transfer the learned planning knowledge to an MPC by incorporating the trained neural network critic as both the stage and terminal cost. We show through comprehensive simulations that the resulting MPC inherits the time-efficient behavior of the RL agent, generating trajectories that compare favorably against those found using trajectory optimization. We also deploy our method on a real-world wheel loader, where we demonstrate successful navigation in various scenarios.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
3D-TAFS: A Training-free Framework for 3D Affordance Segmentation
Translating high-level linguistic instructions into precise robotic actions in the physical world remains challenging, particularly when considering the feasibility of interacting with 3D objects. In this paper, we introduce 3D-TAFS, a novel training-free multimodal framework for 3D affordance segmentation. To facilitate a comprehensive evaluation of such frameworks, we present IndoorAfford-Bench, a large-scale benchmark containing 9,248 images spanning 20 diverse indoor scenes across 6 areas, supporting standardized interaction queries. In particular, our framework integrates a large multimodal model with a specialized 3D vision network, enabling a seamless fusion of 2D and 3D visual understanding with language comprehension. Extensive experiments on IndoorAfford-Bench validate the proposed 3D-TAFS's capability in handling interactive 3D affordance segmentation tasks across diverse settings, showcasing competitive performance across various metrics. Our results highlight 3D-TAFS's potential for enhancing human-robot interaction based on affordance understanding in complex indoor environments, advancing the development of more intuitive and efficient robotic frameworks for real-world applications.
LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
Temporal perception, defined as the capability to detect and track objects across temporal sequences, serves as a fundamental component in autonomous driving systems. While single-vehicle perception systems encounter limitations, stemming from incomplete perception due to object occlusion and inherent blind spots, cooperative perception systems present their own challenges in terms of sensor calibration precision and positioning accuracy. To address these issues, we introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Infrastructure Cooperation (VIC). First, we employ Temporal Self-Attention and VIC Cross-Attention modules to effectively integrate temporal and spatial information from both vehicle and infrastructure perspectives. Then, we develop a novel Calibration Error Compensation (CEC) module to mitigate sensor misalignment issues and facilitate accurate feature alignment. Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models. Compared to LET-V, LET-VIC achieves +15.0% improvement in mAP and a +17.3% improvement in AMOTA. Furthermore, LET-VIC surpasses representative Tracking by Detection models, including V2VNet, FFNet, and PointPillars, with at least a +13.7% improvement in mAP and a +13.1% improvement in AMOTA without considering communication delays, showcasing its robust detection and tracking performance. The experiments demonstrate that the integration of multi-view perspectives, temporal sequences, or CEC in end-to-end training significantly improves both detection and tracking performance. All code will be open-sourced.
comment: 13 pages, 7 figures
SoftMAC: Differentiable Soft Body Simulation with Forecast-based Contact Model and Two-way Coupling with Articulated Rigid Bodies and Clothes IROS 2024
Differentiable physics simulation provides an avenue to tackle previously intractable challenges through gradient-based optimization, thereby greatly improving the efficiency of solving robotics-related problems. To apply differentiable simulation in diverse robotic manipulation scenarios, a key challenge is to integrate various materials in a unified framework. We present SoftMAC, a differentiable simulation framework that couples soft bodies with articulated rigid bodies and clothes. SoftMAC simulates soft bodies with the continuum-mechanics-based Material Point Method (MPM). We provide a novel forecast-based contact model for MPM, which effectively reduces penetration without introducing other artifacts like unnatural rebound. To couple MPM particles with deformable and non-volumetric clothes meshes, we also propose a penetration tracing algorithm that reconstructs the signed distance field in local area. Diverging from previous works, SoftMAC simulates the complete dynamics of each modality and incorporates them into a cohesive system with an explicit and differentiable coupling mechanism. The feature empowers SoftMAC to handle a broader spectrum of interactions, such as soft bodies serving as manipulators and engaging with underactuated systems. We conducted comprehensive experiments to validate the effectiveness and accuracy of the proposed differentiable pipeline in downstream robotic manipulation applications. Supplementary materials and videos are available on our project website at https://minliu01.github.io/SoftMAC.
comment: Accepted to IROS 2024
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025 (Oral); Project Website: https://chanh.ee/RoboSpatial
Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art CVPR 2025
In this paper, we review the state of the art in Out-of-Distribution (OoD) segmentation, with a focus on road obstacle detection in automated driving as a real-world application. We analyse the performance of existing methods on two widely used benchmarks, SegmentMeIfYouCan Obstacle Track and LostAndFound-NoKnown, highlighting their strengths, limitations, and real-world applicability. Additionally, we discuss key challenges and outline potential research directions to advance the field. Our goal is to provide researchers and practitioners with a comprehensive perspective on the current landscape of OoD segmentation and to foster further advancements toward safer and more reliable autonomous driving systems.
comment: Accepted to CVPR 2025 workshop on Safe Artificial Intelligence for All Domains (SAIAD)
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Robotics
SeGuE: Semantic Guided Exploration for Mobile Robots
The rise of embodied AI applications has enabled robots to perform complex tasks which require a sophisticated understanding of their environment. To enable successful robot operation in such settings, maps must be constructed so that they include semantic information, in addition to geometric information. In this paper, we address the novel problem of semantic exploration, whereby a mobile robot must autonomously explore an environment to fully map both its structure and the semantic appearance of features. We develop a method based on next-best-view exploration, where potential poses are scored based on the semantic features visible from that pose. We explore two alternative methods for sampling potential views and demonstrate the effectiveness of our framework in both simulation and physical experiments. Automatic creation of high-quality semantic maps can enable robots to better understand and interact with their environments and enable future embodied AI applications to be more easily deployed.
comment: 6 pages, 4 figures, 3 tables
Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin for Real-World Robot Policy Evaluation
Recent advancements in behavior cloning have enabled robots to perform complex manipulation tasks. However, accurately assessing training performance remains challenging, particularly for real-world applications, as behavior cloning losses often correlate poorly with actual task success. Consequently, researchers resort to success rate metrics derived from costly and time-consuming real-world evaluations, making the identification of optimal policies and detection of overfitting or underfitting impractical. To address these issues, we propose real-is-sim, a novel behavior cloning framework that incorporates a dynamic digital twin (based on Embodied Gaussians) throughout the entire policy development pipeline: data collection, training, and deployment. By continuously aligning the simulated world with the physical world, demonstrations can be collected in the real world with states extracted from the simulator. The simulator enables flexible state representations by rendering image inputs from any viewpoint or extracting low-level state information from objects embodied within the scene. During training, policies can be directly evaluated within the simulator in an offline and highly parallelizable manner. Finally, during deployment, policies are run within the simulator where the real robot directly tracks the simulated robot's joints, effectively decoupling policy execution from real hardware and mitigating traditional domain-transfer challenges. We validate real-is-sim on the PushT manipulation task, demonstrating strong correlation between success rates obtained in the simulator and real-world evaluations. Videos of our system can be found at https://realissim.rai-inst.com.
RANa: Retrieval-Augmented Navigation
Methods for navigation based on large-scale learning typically treat each episode as a new problem, where the agent is spawned with a clean memory in an unknown environment. While these generalization capabilities to an unknown environment are extremely important, we claim that, in a realistic setting, an agent should have the capacity of exploiting information collected during earlier robot operations. We address this by introducing a new retrieval-augmented agent, trained with RL, capable of querying a database collected from previous episodes in the same environment and learning how to integrate this additional context information. We introduce a unique agent architecture for the general navigation task, evaluated on ObjectNav, ImageNav and Instance-ImageNav. Our retrieval and context encoding methods are data-driven and heavily employ vision foundation models (FM) for both semantic and geometric understanding. We propose new benchmarks for these settings and we show that retrieval allows zero-shot transfer across tasks and environments while significantly improving performance.
Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high-dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning (IL), details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 22pages, 5 figures
Learning Dual-Arm Coordination for Grasping Large Flat Objects
Grasping large flat objects, such as books or keyboards lying horizontally, presents significant challenges for single-arm robotic systems, often requiring extra actions like pushing objects against walls or moving them to the edge of a surface to facilitate grasping. In contrast, dual-arm manipulation, inspired by human dexterity, offers a more refined solution by directly coordinating both arms to lift and grasp the object without the need for complex repositioning. In this paper, we propose a model-free deep reinforcement learning (DRL) framework to enable dual-arm coordination for grasping large flat objects. We utilize a large-scale grasp pose detection model as a backbone to extract high-dimensional features from input images, which are then used as the state representation in a reinforcement learning (RL) model. A CNN-based Proximal Policy Optimization (PPO) algorithm with shared Actor-Critic layers is employed to learn coordinated dual-arm grasp actions. The system is trained and tested in Isaac Gym and deployed to real robots. Experimental results demonstrate that our policy can effectively grasp large flat objects without requiring additional maneuvers. Furthermore, the policy exhibits strong generalization capabilities, successfully handling unseen objects. Importantly, it can be directly transferred to real robots without fine-tuning, consistently outperforming baseline methods.
DML-RAM: Deep Multimodal Learning Framework for Robotic Arm Manipulation using Pre-trained Models
This paper presents a novel deep learning framework for robotic arm manipulation that integrates multimodal inputs using a late-fusion strategy. Unlike traditional end-to-end or reinforcement learning approaches, our method processes image sequences with pre-trained models and robot state data with machine learning algorithms, fusing their outputs to predict continuous action values for control. Evaluated on BridgeData V2 and Kuka datasets, the best configuration (VGG16 + Random Forest) achieved MSEs of 0.0021 and 0.0028, respectively, demonstrating strong predictive performance and robustness. The framework supports modularity, interpretability, and real-time decision-making, aligning with the goals of adaptive, human-in-the-loop cyber-physical systems.
comment: 7 pages , 4 figures
MultiClear: Multimodal Soft Exoskeleton Glove for Transparent Object Grasping Assistance
Grasping is a fundamental skill for interacting with the environment. However, this ability can be difficult for some (e.g. due to disability). Wearable robotic solutions can enhance or restore hand function, and recent advances have leveraged computer vision to improve grasping capabilities. However, grasping transparent objects remains challenging due to their poor visual contrast and ambiguous depth cues. Furthermore, while multimodal control strategies incorporating tactile and auditory feedback have been explored to grasp transparent objects, the integration of vision with these modalities remains underdeveloped. This paper introduces MultiClear, a multimodal framework designed to enhance grasping assistance in a wearable soft exoskeleton glove for transparent objects by fusing RGB data, depth data, and auditory signals. The exoskeleton glove integrates a tendon-driven actuator with an RGB-D camera and a built-in microphone. To achieve precise and adaptive control, a hierarchical control architecture is proposed. For the proposed hierarchical control architecture, a high-level control layer provides contextual awareness, a mid-level control layer processes multimodal sensory inputs, and a low-level control executes PID motor control for fine-tuned grasping adjustments. The challenge of transparent object segmentation was managed by introducing a vision foundation model for zero-shot segmentation. The proposed system achieves a Grasping Ability Score of 70.37%, demonstrating its effectiveness in transparent object manipulation.
An Efficient GPU-based Implementation for Noise Robust Sound Source Localization
Robot audition, encompassing Sound Source Localization (SSL), Sound Source Separation (SSS), and Automatic Speech Recognition (ASR), enables robots and smart devices to acquire auditory capabilities similar to human hearing. Despite their wide applicability, processing multi-channel audio signals from microphone arrays in SSL involves computationally intensive matrix operations, which can hinder efficient deployment on Central Processing Units (CPUs), particularly in embedded systems with limited CPU resources. This paper introduces a GPU-based implementation of SSL for robot audition, utilizing the Generalized Singular Value Decomposition-based Multiple Signal Classification (GSVD-MUSIC), a noise-robust algorithm, within the HARK platform, an open-source software suite. For a 60-channel microphone array, the proposed implementation achieves significant performance improvements. On the Jetson AGX Orin, an embedded device powered by an NVIDIA GPU and ARM Cortex-A78AE v8.2 64-bit CPUs, we observe speedups of 4645.1x for GSVD calculations and 8.8x for the SSL module, while speedups of 2223.4x for GSVD calculation and 8.95x for the entire SSL module on a server configured with an NVIDIA A100 GPU and AMD EPYC 7352 CPUs, making real-time processing feasible for large-scale microphone arrays and providing ample capacity for real-time processing of potential subsequent machine learning or deep learning tasks.
comment: 6 pages, 2 figures
Point Cloud-based Grasping for Soft Hand Exoskeleton
Grasping is a fundamental skill for interacting with and manipulating objects in the environment. However, this ability can be challenging for individuals with hand impairments. Soft hand exoskeletons designed to assist grasping can enhance or restore essential hand functions, yet controlling these soft exoskeletons to support users effectively remains difficult due to the complexity of understanding the environment. This study presents a vision-based predictive control framework that leverages contextual awareness from depth perception to predict the grasping target and determine the next control state for activation. Unlike data-driven approaches that require extensive labelled datasets and struggle with generalizability, our method is grounded in geometric modelling, enabling robust adaptation across diverse grasping scenarios. The Grasping Ability Score (GAS) was used to evaluate performance, with our system achieving a state-of-the-art GAS of 91% across 15 objects and healthy participants, demonstrating its effectiveness across different object types. The proposed approach maintained reconstruction success for unseen objects, underscoring its enhanced generalizability compared to learning-based models.
Dynamic Objective MPC for Motion Planning of Seamless Docking Maneuvers
Automated vehicles and logistics robots must often position themselves in narrow environments with high precision in front of a specific target, such as a package or their charging station. Often, these docking scenarios are solved in two steps: path following and rough positioning followed by a high-precision motion planning algorithm. This can generate suboptimal trajectories caused by bad positioning in the first phase and, therefore, prolong the time it takes to reach the goal. In this work, we propose a unified approach, which is based on a Model Predictive Control (MPC) that unifies the advantages of Model Predictive Contouring Control (MPCC) with a Cartesian MPC to reach a specific goal pose. The paper's main contributions are the adaption of the dynamic weight allocation method to reach path ends and goal poses inside driving corridors, and the development of the so-called dynamic objective MPC. The latter is an improvement of the dynamic weight allocation method, which can inherently switch state-dependent from an MPCC to a Cartesian MPC to solve the path-following problem and the high-precision positioning tasks independently of the location of the goal pose seamlessly by one algorithm. This leads to foresighted, feasible, and safe motion plans, which can decrease the mission time and result in smoother trajectories.
comment: accepted for publication at 2025 IEEE Intelligent Vehicles Symposium (IV)
Energy Aware and Safe Path Planning for Unmanned Aircraft Systems
This paper proposes a path planning algorithm for multi-agent unmanned aircraft systems (UASs) to autonomously cover a search area, while considering obstacle avoidance, as well as the capabilities and energy consumption of the employed unmanned aerial vehicles. The path planning is optimized in terms of energy efficiency to prefer low energy-consuming maneuvers. In scenarios where a UAS is low on energy, it autonomously returns to its initial position for a safe landing, thus preventing potential battery damage. To accomplish this, an energy-aware multicopter model is integrated into a path planning algorithm based on model predictive control and mixed integer linear programming. Besides factoring in energy consumption, the planning is improved by dynamically defining feasible regions for each UAS to prevent obstacle corner-cutting or over-jumping.
comment: This work has been submitted to the IEEE for possible publication
Gradient Field-Based Dynamic Window Approach for Collision Avoidance in Complex Environments IROS
For safe and flexible navigation in multi-robot systems, this paper presents an enhanced and predictive sampling-based trajectory planning approach in complex environments, the Gradient Field-based Dynamic Window Approach (GF-DWA). Building upon the dynamic window approach, the proposed method utilizes gradient information of obstacle distances as a new cost term to anticipate potential collisions. This enhancement enables the robot to improve awareness of obstacles, including those with non-convex shapes. The gradient field is derived from the Gaussian process distance field, which generates both the distance field and gradient field by leveraging Gaussian process regression to model the spatial structure of the environment. Through several obstacle avoidance and fleet collision avoidance scenarios, the proposed GF-DWA is shown to outperform other popular trajectory planning and control methods in terms of safety and flexibility, especially in complex environments with non-convex obstacles.
comment: This paper has been submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for possible publication
A Modular Energy Aware Framework for Multicopter Modeling in Control and Planning Applications
Unmanned aerial vehicles (UAVs), especially multicopters, have recently gained popularity for use in surveillance, monitoring, inspection, and search and rescue missions. Their maneuverability and ability to operate in confined spaces make them particularly useful in cluttered environments. For advanced control and mission planning applications, accurate and resource-efficient modeling of UAVs and their capabilities is essential. This study presents a modular approach to multicopter modeling that considers vehicle dynamics, energy consumption, and sensor integration. The power train model includes detailed descriptions of key components such as the lithium-ion battery, electronic speed controllers, and brushless DC motors. Their models are validated with real test flight data. In addition, sensor models, including LiDAR and cameras, are integrated to describe the equipment often used in surveillance and monitoring missions. The individual models are combined into an energy-aware multicopter model, which provide the basis for a companion study on path planning for unmanned aircaft system (UAS) swarms performing search and rescue missions in cluttered and dynamic environments. The flexible modeling approach enables easy description of different UAVs in a heterogeneous UAS swarm, allowing for energy-efficient operations and autonomous decision making for a reliable mission performance.
comment: This work has been submitted to the IEEE for possible publication
Robot Localization Using a Learned Keypoint Detector and Descriptor with a Floor Camera and a Feature Rich Industrial Floor
The localization of moving robots depends on the availability of good features from the environment. Sensor systems like Lidar are popular, but unique features can also be extracted from images of the ground. This work presents the Keypoint Localization Framework (KOALA), which utilizes deep neural networks that extract sufficient features from an industrial floor for accurate localization without having readable markers. For this purpose, we use a floor covering that can be produced as cheaply as common industrial floors. Although we do not use any filtering, prior, or temporal information, we can estimate our position in 75.7 % of all images with a mean position error of 2 cm and a rotation error of 2.4 %. Thus, the robot kidnapping problem can be solved with high precision in every frame, even while the robot is moving. Furthermore, we show that our framework with our detector and descriptor combination is able to outperform comparable approaches.
Seeing is Believing: Belief-Space Planning with Foundation Models as Uncertainty Estimators
Generalizable robotic mobile manipulation in open-world environments poses significant challenges due to long horizons, complex goals, and partial observability. A promising approach to address these challenges involves planning with a library of parameterized skills, where a task planner sequences these skills to achieve goals specified in structured languages, such as logical expressions over symbolic facts. While vision-language models (VLMs) can be used to ground these expressions, they often assume full observability, leading to suboptimal behavior when the agent lacks sufficient information to evaluate facts with certainty. This paper introduces a novel framework that leverages VLMs as a perception module to estimate uncertainty and facilitate symbolic grounding. Our approach constructs a symbolic belief representation and uses a belief-space planner to generate uncertainty-aware plans that incorporate strategic information gathering. This enables the agent to effectively reason about partial observability and property uncertainty. We demonstrate our system on a range of challenging real-world tasks that require reasoning in partially observable environments. Simulated evaluations show that our approach outperforms both vanilla VLM-based end-to-end planning or VLM-based state estimation baselines by planning for and executing strategic information gathering. This work highlights the potential of VLMs to construct belief-space symbolic scene representations, enabling downstream tasks such as uncertainty-aware planning.
Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion SC
The increasing adoption of electric scooters (e-scooters) in urban areas has coincided with a rise in traffic accidents and injuries, largely due to their small wheels, lack of suspension, and sensitivity to uneven surfaces. While deep learning-based object detection has been widely used to improve automobile safety, its application for e-scooter obstacle detection remains unexplored. This study introduces a novel ground obstacle detection system for e-scooters, integrating an RGB camera, and a depth camera to enhance real-time road hazard detection. Additionally, the Inertial Measurement Unit (IMU) measures linear vertical acceleration to identify surface vibrations, guiding the selection of six obstacle categories: tree branches, manhole covers, potholes, pine cones, non-directional cracks, and truncated domes. All sensors, including the RGB camera, depth camera, and IMU, are integrated within the Intel RealSense Camera D435i. A deep learning model powered by YOLO detects road hazards and utilizes depth data to estimate obstacle proximity. Evaluated on the seven hours of naturalistic riding dataset, the system achieves a high mean average precision (mAP) of 0.827 and demonstrates excellent real-time performance. This approach provides an effective solution to enhance e-scooter safety through advanced computer vision and data fusion. The dataset is accessible at https://zenodo.org/records/14583718, and the project code is hosted on https://github.com/Zeyang-Zheng/Real-Time-Roadway-Obstacle-Detection-for-Electric-Scooters.
comment: Accepted at ASCE International Conference on Computing in Civil Engineering (i3ce)
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
High-dimensional nonlinear systems pose considerable challenges for modeling and control across many domains, from fluid mechanics to advanced robotics. Such systems are typically approximated with reduced order models, which often rely on orthogonal projections, a simplification that may lead to large prediction errors. In this work, we derive optimality of fiber-aligned projections onto spectral submanifolds, preserving the nonlinear geometric structure and minimizing long-term prediction error. We propose a computationally tractable procedure to approximate these projections from data, and show how the effect of control can be incorporated. For a 180-dimensional robotic system, we demonstrate that our reduced-order models outperform previous state-of-the-art approaches by up to fivefold in trajectory tracking accuracy under model predictive control.
GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
Robots operating in unstructured environments often require accurate and consistent object-level representations. This typically requires segmenting individual objects from the robot's surroundings. While recent large models such as Segment Anything (SAM) offer strong performance in 2D image segmentation. These advances do not translate directly to performance in the physical 3D world, where they often over-segment objects and fail to produce consistent mask correspondences across views. In this paper, we present GraphSeg, a framework for generating consistent 3D object segmentations from a sparse set of 2D images of the environment without any depth information. GraphSeg adds edges to graphs and constructs dual correspondence graphs: one from 2D pixel-level similarities and one from inferred 3D structure. We formulate segmentation as a problem of edge addition, then subsequent graph contraction, which merges multiple 2D masks into unified object-level segmentations. We can then leverage \emph{3D foundation models} to produce segmented 3D representations. GraphSeg achieves robust segmentation with significantly fewer images and greater accuracy than prior methods. We demonstrate state-of-the-art performance on tabletop scenes and show that GraphSeg enables improved performance on downstream robotic manipulation tasks. Code available at https://github.com/tomtang502/graphseg.git.
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
The Use of Gaze-Derived Confidence of Inferred Operator Intent in Adjusting Safety-Conscious Haptic Assistance
Humans directly completing tasks in dangerous or hazardous conditions is not always possible where these tasks are increasingly be performed remotely by teleoperated robots. However, teleoperation is difficult since the operator feels a disconnect with the robot caused by missing feedback from several senses, including touch, and the lack of depth in the video feedback presented to the operator. To overcome this problem, the proposed system actively infers the operator's intent and provides assistance based on the predicted intent. Furthermore, a novel method of calculating confidence in the inferred intent modifies the human-in-the-loop control. The operator's gaze is employed to intuitively indicate the target before the manipulation with the robot begins. A potential field method is used to provide a guiding force towards the intended target, and a safety boundary reduces risk of damage. Modifying these assistances based on the confidence level in the operator's intent makes the control more natural, and gives the robot an intuitive understanding of its human master. Initial validation results show the ability of the system to improve accuracy, execution time, and reduce operator error.
comment: 12 pages, 15 figures
CORTEX-AVD: CORner Case Testing & EXploration for Autonomous Vehicles Development
Autonomous Vehicles (AVs) aim to improve traffic safety and efficiency by reducing human error. However, ensuring AVs reliability and safety is a challenging task when rare, high-risk traffic scenarios are considered. These 'Corner Cases' (CC) scenarios, such as unexpected vehicle maneuvers or sudden pedestrian crossings, must be safely and reliable dealt by AVs during their operations. But they arehard to be efficiently generated. Traditional CC generation relies on costly and risky real-world data acquisition, limiting scalability, and slowing research and development progress. Simulation-based techniques also face challenges, as modeling diverse scenarios and capturing all possible CCs is complex and time-consuming. To address these limitations in CC generation, this research introduces CORTEX-AVD, CORner Case Testing & EXploration for Autonomous Vehicles Development, an open-source framework that integrates the CARLA Simulator and Scenic to automatically generate CC from textual descriptions, increasing the diversity and automation of scenario modeling. Genetic Algorithms (GA) are used to optimize the scenario parameters in six case study scenarios, increasing the occurrence of high-risk events. Unlike previous methods, CORTEX-AVD incorporates a multi-factor fitness function that considers variables such as distance, time, speed, and collision likelihood. Additionally, the study provides a benchmark for comparing GA-based CC generation methods, contributing to a more standardized evaluation of synthetic data generation and scenario assessment. Experimental results demonstrate that the CORTEX-AVD framework significantly increases CC incidence while reducing the proportion of wasted simulations.
comment: 10 pages, 10 figures
Bistable SMA-driven engine for pulse-jet locomotion in soft aquatic robots
This paper presents the design and experimental validation of a bio-inspired soft aquatic robot, the DilBot, which uses a bistable shape memory alloy-driven engine for pulse-jet locomotion. Drawing inspiration from the efficient swimming mechanisms of box jellyfish, the DilBot incorporates antagonistic shape memory alloy springs encapsulated in silicone insulation to achieve high-power propulsion. The innovative bistable mechanism allows continuous swimming cycles by storing and releasing energy in a controlled manner. Through free-swimming experiments and force characterization tests, we evaluated the DilBot's performance, achieving a peak speed of 158 mm/s and generating a maximum thrust of 5.59 N. This work demonstrates a novel approach to enhancing the efficiency of shape memory alloy actuators in aquatic environments. It presents a promising pathway for future applications in underwater environmental monitoring using robotic swarms.
comment: 8 pages, 8 figures, to be published in 8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
I Can Hear You Coming: RF Sensing for Uncooperative Satellite Evasion
Uncooperative satellite engagements with nation-state actors prompts the need for enhanced maneuverability and agility on-orbit. However, robust, autonomous and rapid adversary avoidance capabilities for the space environment is seldom studied. Further, the capability constrained nature of many space vehicles does not afford robust space situational awareness capabilities that can inform maneuvers. We present a "Cat & Mouse" system for training optimal adversary avoidance algorithms using Reinforcement Learning (RL). We propose the novel approach of utilizing intercepted radio frequency communication and dynamic spacecraft state as multi-modal input that could inform paths for a mouse to outmaneuver the cat satellite. Given the current ubiquitous use of RF communications, our proposed system can be applicable to a diverse array of satellites. In addition to providing a comprehensive framework for an RL architecture capable of training performant and adaptive adversary avoidance policies, we also explore several optimization based methods for adversarial avoidance on real-world data obtained from the Space Surveillance Network (SSN) to analyze the benefits and limitations of different avoidance methods.
Deep Learning-Enhanced Robotic Subretinal Injection with Real-Time Retinal Motion Compensation
Subretinal injection is a critical procedure for delivering therapeutic agents to treat retinal diseases such as age-related macular degeneration (AMD). However, retinal motion caused by physiological factors such as respiration and heartbeat significantly impacts precise needle positioning, increasing the risk of retinal pigment epithelium (RPE) damage. This paper presents a fully autonomous robotic subretinal injection system that integrates intraoperative optical coherence tomography (iOCT) imaging and deep learning-based motion prediction to synchronize needle motion with retinal displacement. A Long Short-Term Memory (LSTM) neural network is used to predict internal limiting membrane (ILM) motion, outperforming a Fast Fourier Transform (FFT)-based baseline model. Additionally, a real-time registration framework aligns the needle tip position with the robot's coordinate frame. Then, a dynamic proportional speed control strategy ensures smooth and adaptive needle insertion. Experimental validation in both simulation and ex vivo open-sky porcine eyes demonstrates precise motion synchronization and successful subretinal injections. The experiment achieves a mean tracking error below 16.4 {\mu}m in pre-insertion phases. These results show the potential of AI-driven robotic assistance to improve the safety and accuracy of retinal microsurgery.
Energy Efficient Planning for Repetitive Heterogeneous Tasks in Precision Agriculture ICRA 2025
Robotic weed removal in precision agriculture introduces a repetitive heterogeneous task planning (RHTP) challenge for a mobile manipulator. RHTP has two unique characteristics: 1) an observe-first-and-manipulate-later (OFML) temporal constraint that forces a unique ordering of two different tasks for each target and 2) energy savings from efficient task collocation to minimize unnecessary movements. RHTP can be framed as a stochastic renewal process. According to the Renewal Reward Theorem, the expected energy usage per task cycle is the long-run average. Traditional task and motion planning focuses on feasibility rather than optimality due to the unknown object and obstacle position prior to execution. However, the known target/obstacle distribution in precision agriculture allows minimizing the expected energy usage. For each instance in this renewal process, we first compute task space partition, a novel data structure that computes all possibilities of task multiplexing and its probabilities with robot reachability. Then we propose a region-based set-coverage problem to formulate the RHTP as a mixed-integer nonlinear programming. We have implemented and solved RHTP using Branch-and-Bound solver. Compared to a baseline in simulations based on real field data, the results suggest a significant improvement in path length, number of robot stops, overall energy usage, and number of replans.
comment: ICRA 2025
WildGS-SLAM: Monocular Gaussian Splatting SLAM in Dynamic Environments
We present WildGS-SLAM, a robust and efficient monocular RGB SLAM system designed to handle dynamic environments by leveraging uncertainty-aware geometric mapping. Unlike traditional SLAM systems, which assume static scenes, our approach integrates depth and uncertainty information to enhance tracking, mapping, and rendering performance in the presence of moving objects. We introduce an uncertainty map, predicted by a shallow multi-layer perceptron and DINOv2 features, to guide dynamic object removal during both tracking and mapping. This uncertainty map enhances dense bundle adjustment and Gaussian map optimization, improving reconstruction accuracy. Our system is evaluated on multiple datasets and demonstrates artifact-free view synthesis. Results showcase WildGS-SLAM's superior performance in dynamic environments compared to state-of-the-art methods.
Hierarchically Encapsulated Representation for Protocol Design in Self-Driving Labs ICLR'25
Self-driving laboratories have begun to replace human experimenters in performing single experimental skills or predetermined experimental protocols. However, as the pace of idea iteration in scientific research has been intensified by Artificial Intelligence, the demand for rapid design of new protocols for new discoveries become evident. Efforts to automate protocol design have been initiated, but the capabilities of knowledge-based machine designers, such as Large Language Models, have not been fully elicited, probably for the absence of a systematic representation of experimental knowledge, as opposed to isolated, flatten pieces of information. To tackle this issue, we propose a multi-faceted, multi-scale representation, where instance actions, generalized operations, and product flow models are hierarchically encapsulated using Domain-Specific Languages. We further develop a data-driven algorithm based on non-parametric modeling that autonomously customizes these representations for specific domains. The proposed representation is equipped with various machine designers to manage protocol design tasks, including planning, modification, and adjustment. The results demonstrate that the proposed method could effectively complement Large Language Models in the protocol design process, serving as an auxiliary module in the realm of machine-assisted scientific exploration.
comment: In International Conference on Learning Representations (ICLR'25)
Overcoming Deceptiveness in Fitness Optimization with Unsupervised Quality-Diversity
Policy optimization seeks the best solution to a control problem according to an objective or fitness function, serving as a fundamental field of engineering and research with applications in robotics. Traditional optimization methods like reinforcement learning and evolutionary algorithms struggle with deceptive fitness landscapes, where following immediate improvements leads to suboptimal solutions. Quality-diversity (QD) algorithms offer a promising approach by maintaining diverse intermediate solutions as stepping stones for escaping local optima. However, QD algorithms require domain expertise to define hand-crafted features, limiting their applicability where characterizing solution diversity remains unclear. In this paper, we show that unsupervised QD algorithms - specifically the AURORA framework, which learns features from sensory data - efficiently solve deceptive optimization problems without domain expertise. By enhancing AURORA with contrastive learning and periodic extinction events, we propose AURORA-XCon, which outperforms all traditional optimization baselines and matches, in some cases even improving by up to 34%, the best QD baseline with domain-specific hand-crafted features. This work establishes a novel application of unsupervised QD algorithms, shifting their focus from discovering novel solutions toward traditional optimization and expanding their potential to domains where defining feature spaces poses challenges.
Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
The DeepSeek models have shown exceptional performance in general scene understanding, question-answering (QA), and text generation tasks, owing to their efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our empirical study shows that, compared to existing general-purpose multimodal large language models, DeepSeek-VL2 performs better on complex understanding tasks in surgical scenes. Additionally, although DeepSeek-V3 is purely a language model, we find that when image tokens are directly inputted, the model demonstrates better performance on single-sentence QA tasks. However, overall, the DeepSeek models still fall short of meeting the clinical requirements for understanding surgical scenes. Under general prompts, DeepSeek models lack the ability to effectively analyze global surgical concepts and fail to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek models are not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
Walk along: An Experiment on Controlling the Mobile Robot 'Spot' with Voice and Gestures
Robots are becoming more capable and can autonomously perform tasks such as navigating between locations. However, human oversight remains crucial. This study compared two touchless methods for directing mobile robots: voice control and gesture control, to investigate the efficiency of the methods and the preference of users. We tested these methods in two conditions: one in which participants remained stationary and one in which they walked freely alongside the robot. We hypothesized that walking alongside the robot would result in higher intuitiveness ratings and improved task performance, based on the idea that walking promotes spatial alignment and reduces the effort required for mental rotation. In a 2x2 within-subject design, 218 participants guided the quadruped robot Spot along a circuitous route with multiple 90-degree turns using rotate left, rotate right, and walk forward commands. After each trial, participants rated the intuitiveness of the command mapping, while post-experiment interviews were used to gather the participants' preferences. Results showed that voice control combined with walking with Spot was the most favored and intuitive, whereas gesture control while standing caused confusion for left/right commands. Nevertheless, 29% of participants preferred gesture control, citing increased task engagement and visual congruence as reasons. An odometry-based analysis revealed that participants often followed behind Spot, particularly in the gesture control condition, when they were allowed to walk. In conclusion, voice control with walking produced the best outcomes. Improving physical ergonomics and adjusting gesture types could make gesture control more effective.
An Open-Source Reproducible Chess Robot for Human-Robot Interaction Research
Recent advancements in AI have accelerated the evolution of versatile robot designs. Chess provides a standardized environment for evaluating the impact of robot behavior on human behavior. This article presents an open-source chess robot for human-robot interaction (HRI) research, specifically focusing on verbal and non-verbal interactions. The OpenChessRobot recognizes chess pieces using computer vision, executes moves, and interacts with the human player through voice and robotic gestures. We detail the software design, provide quantitative evaluations of the efficacy of the robot, and offer a guide for its reproducibility. An online survey examining people's views of the robot in three possible scenarios was conducted with 597 participants. The robot received the highest ratings in the robotics education and the chess coach scenarios, while the home entertainment scenario received the lowest scores. The code is accessible on GitHub: https://github.com/renchizhhhh/OpenChessRobot
RAIDER: Tool-Equipped Large Language Model Agent for Robotic Action Issue Detection, Explanation and Recovery
As robots increasingly operate in dynamic human-centric environments, improving their ability to detect, explain, and recover from action-related issues becomes crucial. Traditional model-based and data-driven techniques lack adaptability, while more flexible generative AI methods struggle with grounding extracted information to real-world constraints. We introduce RAIDER, a novel agent that integrates Large Language Models (LLMs) with grounded tools for adaptable and efficient issue detection and explanation. Using a unique "Ground, Ask&Answer, Issue" procedure, RAIDER dynamically generates context-aware precondition questions and selects appropriate tools for resolution, achieving targeted information gathering. Our results within a simulated household environment surpass methods relying on predefined models, full scene descriptions, or standalone trained models. Additionally, RAIDER's explanations enhance recovery success, including cases requiring human interaction. Its modular architecture, featuring self-correction mechanisms, enables straightforward adaptation to diverse scenarios, as demonstrated in a real-world human-assistive task. This showcases RAIDER's potential as a versatile agentic AI solution for robotic issue detection and explanation, while addressing the problem of grounding generative AI for its effective application in embodied agents. Project website: https://eurecat.github.io/raider-llmagent/
Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing work often overlooks the differences between humans and robots, producing unsatisfactory results. In this paper, we study how perfectly aligned human-robot pairs benefit robot learning. Capitalizing on VR-based teleportation, we introduce H\&R, a third-person dataset with 2,600 episodes, each of which captures the fine-grained correspondence between human hand and robot gripper. Inspired by the recent success of diffusion models, we introduce Human2Robot, an end-to-end diffusion framework that formulates learning from human demonstration as a generative task. Human2Robot fully explores temporal dynamics in human videos to generate robot videos and predict actions at the same time. Through comprehensive evaluations of 4 carefully selected tasks in real-world settings, we demonstrate that Human2Robot can not only generate high-quality robot videos but also excels in seen tasks and generalizing to different positions, unseen appearances, novel instances, and even new backgrounds and task types.
Predictive Traffic Rule Compliance using Reinforcement Learning SC 2025
Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents an approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. Our main innovation is replacing the standard actor network in an actor-critic method with a motion planning module, which ensures both stable and interpretable trajectory generation. In this setup, we use traffic rule robustness as the reward to train a reinforcement learning agent's critic, and the output of the critic is directly used as the cost function of the motion planner, which guides the choices of the trajectory. We incorporate some key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, increasing safety and rule compliance in challenging traffic scenarios.
comment: 12 pages, 7 figures. Preprint intended for submission to IEEE ITSC 2025
AV-PedAware: Self-Supervised Audio-Visual Fusion for Dynamic Pedestrian Awareness IROS
In this study, we introduce AV-PedAware, a self-supervised audio-visual fusion system designed to improve dynamic pedestrian awareness for robotics applications. Pedestrian awareness is a critical requirement in many robotics applications. However, traditional approaches that rely on cameras and LIDARs to cover multiple views can be expensive and susceptible to issues such as changes in illumination, occlusion, and weather conditions. Our proposed solution replicates human perception for 3D pedestrian detection using low-cost audio and visual fusion. This study represents the first attempt to employ audio-visual fusion to monitor footstep sounds for the purpose of predicting the movements of pedestrians in the vicinity. The system is trained through self-supervised learning based on LIDAR-generated labels, making it a cost-effective alternative to LIDAR-based pedestrian awareness. AV-PedAware achieves comparable results to LIDAR-based systems at a fraction of the cost. By utilizing an attention mechanism, it can handle dynamic lighting and occlusions, overcoming the limitations of traditional LIDAR and camera-based systems. To evaluate our approach's effectiveness, we collected a new multimodal pedestrian detection dataset and conducted experiments that demonstrate the system's ability to provide reliable 3D detection results using only audio and visual data, even in extreme visual conditions. We will make our collected dataset and source code available online for the community to encourage further development in the field of robotics perception systems.
comment: This work has been accepted for publication at the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Personal use is permitted. For other uses, permission from IEEE is required
Evolution 6.0: Evolving Robotic Capabilities Through Generative Design IROS
We propose a new concept, Evolution 6.0, which represents the evolution of robotics driven by Generative AI. When a robot lacks the necessary tools to accomplish a task requested by a human, it autonomously designs the required instruments and learns how to use them to achieve the goal. Evolution 6.0 is an autonomous robotic system powered by Vision-Language Models (VLMs), Vision-Language Action (VLA) models, and Text-to-3D generative models for tool design and task execution. The system comprises two key modules: the Tool Generation Module, which fabricates task-specific tools from visual and textual data, and the Action Generation Module, which converts natural language instructions into robotic actions. It integrates QwenVLM for environmental understanding, OpenVLA for task execution, and Llama-Mesh for 3D tool generation. Evaluation results demonstrate a 90% success rate for tool generation with a 10-second inference time, and action generation achieving 83.5% in physical and visual generalization, 70% in motion generalization, and 37% in semantic generalization. Future improvements will focus on bimanual manipulation, expanded task capabilities, and enhanced environmental interpretation to improve real-world adaptability.
comment: Submitted to IROS
SGBA: Semantic Gaussian Mixture Model-Based LiDAR Bundle Adjustment
LiDAR bundle adjustment (BA) is an effective approach to reduce the drifts in pose estimation from the front-end. Existing works on LiDAR BA usually rely on predefined geometric features for landmark representation. This reliance restricts generalizability, as the system will inevitably deteriorate in environments where these specific features are absent. To address this issue, we propose SGBA, a LiDAR BA scheme that models the environment as a semantic Gaussian mixture model (GMM) without predefined feature types. This approach encodes both geometric and semantic information, offering a comprehensive and general representation adaptable to various environments. Additionally, to limit computational complexity while ensuring generalizability, we propose an adaptive semantic selection framework that selects the most informative semantic clusters for optimization by evaluating the condition number of the cost function. Lastly, we introduce a probabilistic feature association scheme that considers the entire probability density of assignments, which can manage uncertainties in measurement and initial pose estimation. We have conducted various experiments and the results demonstrate that SGBA can achieve accurate and robust pose refinement even in challenging scenarios with low-quality initial pose estimation and limited geometric features. We plan to open-source the work for the benefit of the community https://github.com/Ji1Xinyu/SGBA.
comment: This work has been accepted for publication in IEEE Robotics and Automation Letters (RAL). Personal use is permitted. For all other uses, permission from IEEE is required
Precise Interception Flight Targets by Image-based Visual Servoing of Multicopter
Vision-based interception using multicopters equipped strapdown camera is challenging due to camera-motion coupling and evasive targets. This paper proposes a method integrating Image-Based Visual Servoing (IBVS) with proportional navigation guidance (PNG), reducing the multicopter's overload in the final interception phase. It combines smoother trajectories from the IBVS controller with high-frequency target 2D position estimation via a delayed Kalman filter (DKF) to minimize the impact of image processing delays on accuracy. In addition, a field-of-view (FOV) holding controller is designed for stability of the visual servo system. Experimental results show a circular error probability (CEP) of 0.089 m (72.8% lower than the latest relevant IBVS work) in simulations and over 80\% interception success under wind conditions below 4 m/s in real world. These results demonstrate the system's potential for precise low-altitude interception of non-cooperative targets.
comment: 11 pages, 17 figures, has been accepted by the Journal of IEEE Transactions on Industrial Electronics
Natural Multimodal Fusion-Based Human-Robot Interaction: Application With Voice and Deictic Posture via Large Language Model
Translating human intent into robot commands is crucial for the future of service robots in an aging society. Existing Human-Robot Interaction (HRI) systems relying on gestures or verbal commands are impractical for the elderly due to difficulties with complex syntax or sign language. To address the challenge, this paper introduces a multi-modal interaction framework that combines voice and deictic posture information to create a more natural HRI system. The visual cues are first processed by the object detection model to gain a global understanding of the environment, and then bounding boxes are estimated based on depth information. By using a large language model (LLM) with voice-to-text commands and temporally aligned selected bounding boxes, robot action sequences can be generated, while key control syntax constraints are applied to avoid potential LLM hallucination issues. The system is evaluated on real-world tasks with varying levels of complexity using a Universal Robots UR3e manipulator. Our method demonstrates significantly better performance in HRI in terms of accuracy and robustness. To benefit the research community and the general public, we will make our code and design open-source.
comment: Accepted for publication by IEEE Robotics & Automation Magazine
3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning
Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.
FoundationStereo: Zero-Shot Stereo Matching CVPR 2025
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
comment: CVPR 2025
VL-TGS: Trajectory Generation and Selection using Vision Language Models in Mapless Outdoor Environments
We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios.
GRS: Generating Robotic Simulation Tasks from Real-World Images
We introduce GRS (Generating Robotic Simulation tasks), a system addressing real-to-sim for robotic simulations. GRS creates digital twin simulations from single RGB-D observations with solvable tasks for virtual agent training. Using vision-language models (VLMs), our pipeline operates in three stages: 1) scene comprehension with SAM2 for segmentation and object description, 2) matching objects with simulation-ready assets, and 3) generating appropriate tasks. We ensure simulation-task alignment through generated test suites and introduce a router that iteratively refines both simulation and test code. Experiments demonstrate our system's effectiveness in object correspondence and task environment generation through our novel router mechanism.
TrajLearn: Trajectory Prediction Learning using Deep Generative Models
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data, benefiting fields like autonomous navigation, robotics, and human movement analytics. Deep learning approaches have become key in this area, utilizing large-scale trajectory datasets to model movement patterns, but face challenges in managing complex spatial dependencies and adapting to dynamic environments. To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction that leverages generative modeling of higher-order mobility flows based on hexagonal spatial representation. TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths while maintaining spatial continuity. We conducted a rigorous evaluation of TrajLearn, benchmarking it against leading state-of-the-art approaches and meaningful baselines. The results indicate that TrajLearn achieves significant performance gains, with improvements of up to ~40% across multiple real-world trajectory datasets. In addition, we evaluated different prediction horizons (i.e., various values of $k$), conducted resolution sensitivity analysis, and performed ablation studies to assess the impact of key model components. Furthermore, we developed a novel algorithm to generate mixed-resolution maps by hierarchically subdividing hexagonal regions into finer segments within a specified observation area. This approach supports selective detailing, applying finer resolution to areas of interest or high activity (e.g., urban centers) while using coarser resolution for less significant regions (e.g., rural areas), effectively reducing data storage requirements and computational overhead. We promote reproducibility and adaptability by offering complete code, data, and detailed documentation with flexible configuration options for various applications.
comment: Accepted at ACM Transactions on Spatial Algorithms and Systems
Multiagent Systems
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: Work in progress
Agentic Knowledgeable Self-awareness
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
comment: Work in progress
Decentralized Collective World Model for Emergent Communication and Coordination
We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior through temporal extension of collective predictive coding. Unlike previous research that focuses on either communication or coordination separately, our approach achieves both simultaneously. Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information through bidirectional message exchange with contrastive learning for message alignment. Using a two-agent trajectory drawing task, we demonstrate that our communication-based approach outperforms non-communicative models when agents have divergent perceptual capabilities, achieving the second-best coordination after centralized models. Importantly, our distributed approach with constraints preventing direct access to other agents' internal states facilitates the emergence of more meaningful symbol systems that accurately reflect environmental states. These findings demonstrate the effectiveness of decentralized communication for supporting coordination while developing shared representations of the environment.
Do Large Language Models Solve the Problems of Agent-Based Modeling? A Critical Review of Generative Social Simulations
Recent advancements in AI have reinvigorated Agent-Based Models (ABMs), as the integration of Large Language Models (LLMs) has led to the emergence of ``generative ABMs'' as a novel approach to simulating social systems. While ABMs offer means to bridge micro-level interactions with macro-level patterns, they have long faced criticisms from social scientists, pointing to e.g., lack of realism, computational complexity, and challenges of calibrating and validating against empirical data. This paper reviews the generative ABM literature to assess how this new approach adequately addresses these long-standing criticisms. Our findings show that studies show limited awareness of historical debates. Validation remains poorly addressed, with many studies relying solely on subjective assessments of model `believability', and even the most rigorous validation failing to adequately evidence operational validity. We argue that there are reasons to believe that LLMs will exacerbate rather than resolve the long-standing challenges of ABMs. The black-box nature of LLMs moreover limit their usefulness for disentangling complex emergent causal mechanisms. While generative ABMs are still in a stage of early experimentation, these findings question of whether and how the field can transition to the type of rigorous modeling needed to contribute to social scientific theory.
Inherent and emergent liability issues in LLM-based agentic systems: a principal-agent perspective
Agentic systems powered by large language models (LLMs) are becoming progressively more complex and capable. Their increasing agency and expanding deployment settings attract growing attention over effective governance policies, monitoring and control protocols. Based on emerging landscapes of the agentic market, we analyze the potential liability issues stemming from delegated use of LLM agents and their extended systems from a principal-agent perspective. Our analysis complements existing risk-based studies on artificial agency and covers the spectrum of important aspects of the principal-agent relationship and their potential consequences at deployment. Furthermore, we motivate method developments for technical governance along the directions of interpretability and behavior evaluations, reward and conflict management, and the mitigation of misalignment and misconduct through principled engineering of detection and fail-safe mechanisms. By illustrating the outstanding issues in AI liability for LLM-based agentic systems, we aim to inform the system design, auditing and monitoring approaches to enhancing transparency and accountability.
comment: 12 pages content (incl. appendix) + 12 pages references, comments welcome
Extending Data Spatial Semantics for Scale Agnostic Programming
We introduce extensions to Data Spatial Programming (DSP) that enable scale-agnostic programming for application development. Building on DSP's paradigm shift from data-to-compute to compute-to-data, we formalize additional intrinsic language constructs that abstract persistent state, multi-user contexts, multiple entry points, and cross-machine distribution for applications. By introducing a globally accessible root node and treating walkers as potential entry points, we demonstrate how programs can be written once and executed across scales, from single-user to multi-user, from local to distributed, without modification. These extensions allow developers to focus on domain logic while delegating runtime concerns of persistence, multi-user support, distribution, and API interfacing to the execution environment. Our approach makes scale-agnostic programming a natural extension of the topological semantics of DSP, allowing applications to seamlessly transition from single-user to multi-user scenarios, from ephemeral to persistent execution contexts, and from local to distributed execution environments.
comment: 16 pages
Improving Offline Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Algorithmic Prompt Generation for Diverse Human-like Teaming and Communication with Large Language Models
Understanding how humans collaborate and communicate in teams is essential for improving human-agent teaming and AI-assisted decision-making. However, relying solely on data from large-scale user studies is impractical due to logistical, ethical, and practical constraints, necessitating synthetic models of multiple diverse human behaviors. Recently, agents powered by Large Language Models (LLMs) have been shown to emulate human-like behavior in social settings. But, obtaining a large set of diverse behaviors requires manual effort in the form of designing prompts. On the other hand, Quality Diversity (QD) optimization has been shown to be capable of generating diverse Reinforcement Learning (RL) agent behavior. In this work, we combine QD optimization with LLM-powered agents to iteratively search for prompts that generate diverse team behavior in a long-horizon, multi-step collaborative environment. We first show, through a human-subjects experiment (n=54 participants), that humans exhibit diverse coordination and communication behavior in this domain. We then show that our approach can effectively replicate trends from human teaming data and also capture behaviors that are not easily observed without collecting large amounts of data. Our findings highlight the combination of QD and LLM-powered agents as an effective tool for studying teaming and communication strategies in multi-agent collaboration.
Drawing a Map of Elections
Our main contribution is the introduction of the map of elections framework. A map of elections consists of three main elements: (1) a dataset of elections (i.e., collections of ordinal votes over given sets of candidates), (2) a way of measuring similarities between these elections, and (3) a representation of the elections in the 2D Euclidean space as points, so that the more similar two elections are, the closer are their points. In our maps, we mostly focus on datasets of synthetic elections, but we also show an example of a map over real-life ones. To measure similarities, we would have preferred to use, e.g., the isomorphic swap distance, but this is infeasible due to its high computational complexity. Hence, we propose polynomial-time computable positionwise distance and use it instead. Regarding the representations in 2D Euclidean space, we mostly use the Kamada-Kawai algorithm, but we also show two alternatives. We develop the necessary theoretical results to form our maps and argue experimentally that they are accurate and credible. Further, we show how coloring the elections in a map according to various criteria helps in analyzing results of a number of experiments. In particular, we show colorings according to the scores of winning candidates or committees, running times of ILP-based winner determination algorithms, and approximation ratios achieved by particular algorithms.
comment: Journal article merging results from arxiv:2105.07815, arXiv:2407.11889 and Szufa et al., "Drawing a Map of Elections in the Space of Statistical Cultures", AMMAS '20
Offline and Distributional Reinforcement Learning for Wireless Communications
The rapid growth of heterogeneous and massive wireless connectivity in 6G networks demands intelligent solutions to ensure scalability, reliability, privacy, ultra-low latency, and effective control. Although artificial intelligence (AI) and machine learning (ML) have demonstrated their potential in this domain, traditional online reinforcement learning (RL) and deep RL methods face limitations in real-time wireless networks. For instance, these methods rely on online interaction with the environment, which might be unfeasible, costly, or unsafe. In addition, they cannot handle the inherent uncertainties in real-time wireless applications. We focus on offline and distributional RL, two advanced RL techniques that can overcome these challenges by training on static datasets and accounting for network uncertainties. We introduce a novel framework that combines offline and distributional RL for wireless communication applications. Through case studies on unmanned aerial vehicle (UAV) trajectory optimization and radio resource management (RRM), we demonstrate that our proposed Conservative Quantile Regression (CQR) algorithm outperforms conventional RL approaches regarding convergence speed and risk management. Finally, we discuss open challenges and potential future directions for applying these techniques in 6G networks, paving the way for safer and more efficient real-time wireless systems.
Distributed Multi-agent Coordination over Cellular Sheaves
Techniques for coordination of multi-agent systems are vast and varied, often utilizing purpose-built solvers or controllers with tight coupling to the types of systems involved or the coordination goal. In this paper, we introduce a general unified framework for heterogeneous multi-agent coordination using the language of cellular sheaves and nonlinear sheaf Laplacians, which are generalizations of graphs and graph Laplacians. Specifically, we introduce the concept of a nonlinear homological program encompassing a choice of cellular sheaf on an undirected graph, nonlinear edge potential functions, and constrained convex node objectives, which constitutes a standard form for a wide class of coordination problems. We use the alternating direction method of multipliers to derive a distributed optimization algorithm for solving these nonlinear homological programs. To demonstrate the applicability of this framework, we show how heterogeneous coordination goals including combinations of consensus, formation, and flocking can be formulated as nonlinear homological programs and provide numerical simulations showing the efficacy of our distributed solution algorithm.
Programming Distributed Collective Processes in the eXchange Calculus
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
comment: 41 pages, 17 figures
Systems and Control (CS)
Modeling Charging Demand and Quantifying Flexibility Bounds for Large-Scale BEV Fleets
This paper presents a bottom-up method to model baseline charging power demand and quantify available flexibility for large-scale BEV fleets. The method utilizes geographic and sociodemographic information to represent the fleet's mobility and driving energy needs. It models the charging decisions of drivers based on their driving energy needs and range comfort level using real-world data. The flexibility quantification provides an hourly maximum and minimum bound for the charging power and limits the amount of daily flexible charging energy. We apply the methodology to the future fully electrified fleet of Switzerland as a case study and compare the spatio-temporal characteristics of the charging demand and flexibility of different geographic areas and urbanization levels.
comment: 6 pages, 6 figures
Lambda/6 Suspended Patch Antenna
This work introduces a novel, compact antenna design based on a lambda-6th suspended patch configuration that is particularly suited for small-size wireless sensor nodes. The proposed design meets key requirements such as compactness, omnidirectionality, robust source matching over a designated bandwidth, interference immunity, and low costs by evolving the conventional square patch antenna. With a footprint of only 20-by-20 mm, the antenna incorporates a grounded metal shield to both reduce its effective dimensions below one-half wavelength and mitigate interference from nearby circuitry. Simulation results, conducted on a cost-effective FR4 substrate, demonstrate a resonance at 2.45 GHz with a return loss of -32.5 dB and a bandwidth of 50 MHz (at the -10 dB level), making this design an attractive candidate for integration into densely populated wireless sensor networks.
comment: 4 pages, 8 figures, STW SAFE conference
The Limits of "Fairness" of the Variational Generalized Nash Equilibrium
Generalized Nash equilibrum (GNE) problems are commonly used to model strategic interactions between self-interested agents who are coupled in cost and constraints. Specifically, the variational GNE, a refinement of the GNE, is often selected as the solution concept due to it's non-discriminatory treatment of agents by charging a uniform ``shadow price" for shared resources. We study the fairness concept of v-GNEs from a comparability perspective and show that it makes an implicit assumption of unit comparability of agent's cost functions, one of the strongest comparability notions. Further, we introduce a new solution concept, f-GNE in which a fairness metric is chosen a priori which is compatible with the comparability at hand. We introduce an electric vehicle charging game to demonstrate the fragility of v-GNE fairness and compare it to the f-GNE under various fairness metrics.
State estimation for gas purity monitoring and control in water electrolysis systems
Green hydrogen, produced via water electrolysis using renewable energy, is seen as a cornerstone of the energy transition. Coupling of renewable power supplies to water electrolysis processes is, however, challenging, as explosive gas mixtures (hydrogen in oxygen) might form at low loads. This has prompted research into gas purity control of such systems. While these attempts have shown to be successful in theoretical and practical studies, they are currently limited in that they only consider the gas purity at locations where composition measurements are available. As these locations are generally positioned downstream of the disturbance origin, this incurs considerable delays and can lead to undetected critical conditions. In this work, we propose the use of an Extended Kalman Filter (EKF) in combination with a simple process model to estimate and control the gas composition at locations where measurements are not available. The model uses noise-driven states for the gas impurity and is hence agnostic towards any mechanistic disturbance model. We show in simulations that this simple approach performs well under various disturbance types and can reduce the time spent in potentially hazardous conditions by up to one order of magnitude.
comment: Accepted to the 14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS 2025). 6 pages, 5 figures, 1 table
Probabilistic Reachable Set Estimation for Saturated Systems with Unbounded Additive Disturbances
In this paper, we present an analytical approach for the synthesis of ellipsoidal probabilistic reachable sets of saturated systems subject to unbounded additive noise. Using convex optimization methods, we compute a contraction factor of the saturated error dynamics that allows us to tightly bound its evolution and therefore construct accurate reachable sets. The proposed approach is applicable to independent, zero mean disturbances with a known covariance. A numerical example illustrates the applicability and effectiveness of the proposed design.
Bifurcation analysis of an opinion dynamics model coupled with an environmental dynamics
We consider an opinion dynamics model coupled with an environmental dynamics. Based on a forward invariance argument, we can simplify the analysis of the asymptotic behavior to the case when all the opinions in the social network are synchronized. Our goal is to emphasize the role of the trust given to the environmental signal in the asymptotic behavior of the opinion dynamics and implicitly of the coupled system. To do that, we conduct a bifurcation analysis of the system around the origin when the trust parameter is varying. Specific conditions are presented for both pitchfork and Hopf bifurcation. Numerical illustration completes the theoretical findings.
comment: 7 pages, 3 figures
Leveraging Network Topology in a Two-way Competition for Influence in the Friedkin-Johnsen Model
In this paper, we consider two stubborn agents who compete for `influence' over a strongly connected group of agents. This framework represents real-world contests, such as competition among firms, two-party elections, and sports rivalries, among others. Considering stubbornness of agents to be an immutable property, we utilise the network topology alone to increase the influence of a preferred stubborn agent. We demonstrate this on a special class of strongly connected networks by identifying the supporters of each of the stubborn agents in such networks. Thereafter, we present sufficient conditions under which a network perturbation always increases the influence of the preferred stubborn agent. A key advantage of the proposed topology-based conditions is that they hold independent of the edge weights in the network. Most importantly, we assert that there exists a sequence of perturbations that can make the lesser influential stubborn agent more influential. Finally, we demonstrate our results over the Sampson's Monastery dataset.
Policy Optimization Algorithms in a Unified Framework
Policy optimization algorithms are crucial in many fields but challenging to grasp and implement, often due to complex calculations related to Markov decision processes and varying use of discount and average reward setups. This paper presents a unified framework that applies generalized ergodicity theory and perturbation analysis to clarify and enhance the application of these algorithms. Generalized ergodicity theory sheds light on the steady-state behavior of stochastic processes, aiding understanding of both discounted and average rewards. Perturbation analysis provides in-depth insights into the fundamental principles of policy optimization algorithms. We use this framework to identify common implementation errors and demonstrate the correct approaches. Through a case study on Linear Quadratic Regulator problems, we illustrate how slight variations in algorithm design affect implementation outcomes. We aim to make policy optimization algorithms more accessible and reduce their misuse in practice.
Probabilistic State Estimation of Timed Probabilistic Discrete Event Systems via Artificial Neural Networks [Draft Version]
This paper is about the state estimation of timed probabilistic discrete event systems. The main contribution is to propose general procedures for developing state estimation approaches based on artificial neural networks. It is assumed that no formal model of the system exists but a data set is available, which contains the history of the timed behaviour of the systems. This dataset will be exploited to develop a neural network model that uses both logical and temporal information gathered during the functioning of the system as inputs and provides the state probability vector as output. Two main approaches are successively proposed (i) state estimation of timed probabilistic discrete event systems over observations: in this case the state estimate is reconstructed at the occurrence of each new observation; (ii) state estimation of timed probabilistic discrete event systems over time: in this case the state estimate is reconstructed at each clock time increment. For each approach, the paper outlines the process of data preprocessing, model building and implementation. This paper not only proposes groundbreaking approaches but also opens the door to further exploitation of artificial neural networks for the benefit of discrete event systems.
Controllability Analysis of Multi-Modal Acoustic Particle Manipulation in One-Dimensional Standing Waves
Acoustic manipulation in microfluidic devices enables contactless handling of biological cells for Lab-on-Chip applications. This paper analyzes the controllability of multi-particle systems in a one-dimensional acoustic standing wave system using multi-modal actuation. By modeling the system as a nonlinear control system, we analyze its global and local controllability, quantifying these properties in terms of mode numbers. Our results show that sufficient modes enable dense reachability sets, while mode mixing with 10 modes grants a strict notion of controllability to 80\% of the state space in a two-particle system. These findings offer theoretical insights for designing acoustic manipulation algorithms, supporting efficient control in biomedical applications.
Learning-Based Conformal Tube MPC for Safe Control in Interactive Multi-Agent Systems
Safety assurance in multi-agent systems with coupled dynamics is a fundamental yet challenging problem, especially when agents exhibit uncertain and state-dependent behaviors. Classical robust control often assumes worst-case disturbances, leading to overly conservative actions. In this work, we propose a learning-based framework that combines conformal prediction with model predictive control (MPC) to ensure probabilistic safety under action-level uncertainty. Unlike prior approaches that predict future states, we directly model the control action of the uncontrollable agent as a stochastic function of the joint state, trained via neural networks and calibrated using conformal prediction. This enables us to construct dynamic, probabilistically guaranteed reachable tubes for the uncontrollable agent. These tubes are then embedded into an MPC formulation to synthesize control actions for the controllable agent that ensure safe interactions over a finite planning horizon. We provide formal stepwise and cumulative safety guarantees, and demonstrate the effectiveness of our approach through a pedestrian-vehicle interaction scenario. Compared to baseline methods, our framework achieves higher safety rates while maintaining high performance in terms of speed and responsiveness.
Dynamic Objective MPC for Motion Planning of Seamless Docking Maneuvers
Automated vehicles and logistics robots must often position themselves in narrow environments with high precision in front of a specific target, such as a package or their charging station. Often, these docking scenarios are solved in two steps: path following and rough positioning followed by a high-precision motion planning algorithm. This can generate suboptimal trajectories caused by bad positioning in the first phase and, therefore, prolong the time it takes to reach the goal. In this work, we propose a unified approach, which is based on a Model Predictive Control (MPC) that unifies the advantages of Model Predictive Contouring Control (MPCC) with a Cartesian MPC to reach a specific goal pose. The paper's main contributions are the adaption of the dynamic weight allocation method to reach path ends and goal poses inside driving corridors, and the development of the so-called dynamic objective MPC. The latter is an improvement of the dynamic weight allocation method, which can inherently switch state-dependent from an MPCC to a Cartesian MPC to solve the path-following problem and the high-precision positioning tasks independently of the location of the goal pose seamlessly by one algorithm. This leads to foresighted, feasible, and safe motion plans, which can decrease the mission time and result in smoother trajectories.
comment: accepted for publication at 2025 IEEE Intelligent Vehicles Symposium (IV)
Verification of Autonomous Neural Car Control with KeYmaera X
This article presents a formal model and formal safety proofs for the ABZ'25 case study in differential dynamic logic (dL). The case study considers an autonomous car driving on a highway avoiding collisions with neighbouring cars. Using KeYmaera X's dL implementation, we prove absence of collision on an infinite time horizon which ensures that safety is preserved independently of trip length. The safety guarantees hold for time-varying reaction time and brake force. Our dL model considers the single lane scenario with cars ahead or behind. We demonstrate that dL with its tools is a rigorous foundation for runtime monitoring, shielding, and neural network verification. Doing so sheds light on inconsistencies between the provided specification and simulation environment highway-env of the ABZ'25 study. We attempt to fix these inconsistencies and uncover numerous counterexamples which also indicate issues in the provided reinforcement learning environment.
comment: 21 pages, 6 figures; Accepted at the 11th International Conference on Rigorous State Based Methods (ABZ'25)
Energy Aware and Safe Path Planning for Unmanned Aircraft Systems
This paper proposes a path planning algorithm for multi-agent unmanned aircraft systems (UASs) to autonomously cover a search area, while considering obstacle avoidance, as well as the capabilities and energy consumption of the employed unmanned aerial vehicles. The path planning is optimized in terms of energy efficiency to prefer low energy-consuming maneuvers. In scenarios where a UAS is low on energy, it autonomously returns to its initial position for a safe landing, thus preventing potential battery damage. To accomplish this, an energy-aware multicopter model is integrated into a path planning algorithm based on model predictive control and mixed integer linear programming. Besides factoring in energy consumption, the planning is improved by dynamically defining feasible regions for each UAS to prevent obstacle corner-cutting or over-jumping.
comment: This work has been submitted to the IEEE for possible publication
Non-parametric B-spline decoupling of multivariate functions
Many scientific fields and applications require compact representations of multivariate functions. For this problem, decoupling methods are powerful techniques for representing the multivariate functions as a combination of linear transformations and nonlinear univariate functions. This work introduces an efficient decoupling algorithm that leverages the use of B-splines to allow a non-parametric estimation of the decoupling's internal functions. The use of B-splines alleviates the problem of choosing an appropriate basis, as in parametric methods, but still allows an intuitive way to tweak the flexibility of the estimated functions. Besides the non-parametric property, the use of B-spline representations allows for easy integration of nonnegativity or monotonicity constraints on the function shapes, which is not possible for the currently available (non-)parametric decoupling methods. The proposed algorithm is illustrated on synthetic examples that highlight the flexibility of the B-spline representation and the ease with which a monotonicity constraint can be added. The examples also show that if monotonic functions are required, enforcing the constraint is necessary.
Gradient Field-Based Dynamic Window Approach for Collision Avoidance in Complex Environments IROS
For safe and flexible navigation in multi-robot systems, this paper presents an enhanced and predictive sampling-based trajectory planning approach in complex environments, the Gradient Field-based Dynamic Window Approach (GF-DWA). Building upon the dynamic window approach, the proposed method utilizes gradient information of obstacle distances as a new cost term to anticipate potential collisions. This enhancement enables the robot to improve awareness of obstacles, including those with non-convex shapes. The gradient field is derived from the Gaussian process distance field, which generates both the distance field and gradient field by leveraging Gaussian process regression to model the spatial structure of the environment. Through several obstacle avoidance and fleet collision avoidance scenarios, the proposed GF-DWA is shown to outperform other popular trajectory planning and control methods in terms of safety and flexibility, especially in complex environments with non-convex obstacles.
comment: This paper has been submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for possible publication
A Modular Energy Aware Framework for Multicopter Modeling in Control and Planning Applications
Unmanned aerial vehicles (UAVs), especially multicopters, have recently gained popularity for use in surveillance, monitoring, inspection, and search and rescue missions. Their maneuverability and ability to operate in confined spaces make them particularly useful in cluttered environments. For advanced control and mission planning applications, accurate and resource-efficient modeling of UAVs and their capabilities is essential. This study presents a modular approach to multicopter modeling that considers vehicle dynamics, energy consumption, and sensor integration. The power train model includes detailed descriptions of key components such as the lithium-ion battery, electronic speed controllers, and brushless DC motors. Their models are validated with real test flight data. In addition, sensor models, including LiDAR and cameras, are integrated to describe the equipment often used in surveillance and monitoring missions. The individual models are combined into an energy-aware multicopter model, which provide the basis for a companion study on path planning for unmanned aircaft system (UAS) swarms performing search and rescue missions in cluttered and dynamic environments. The flexible modeling approach enables easy description of different UAVs in a heterogeneous UAS swarm, allowing for energy-efficient operations and autonomous decision making for a reliable mission performance.
comment: This work has been submitted to the IEEE for possible publication
On Differential Controllability and Observability Functions
Differential balancing theory for nonlinear model reduction relies on differential controllability and observability functions. In this paper, we further investigate them from two different perspectives. First, we establish novel connections between these differential energy functions and their incremental counterparts by assuming the existence of the corresponding optimal state feedback for each controllability function. Specifically, an upper bound on the incremental controllability/observability function is provided by the corresponding differential energy function. Conversely, an upper bound on the differential controllability function can be estimated from the incremental controllability function. Furthermore, the differential observability function can be constructed from the incremental observability function. Second, we explore the positive definiteness of the differential controllability/observability function in the context of controllability/observability and stability.
Data-Driven Hamiltonian for Direct Construction of Safe Set from Trajectory Data
In continuous-time optimal control, evaluating the Hamiltonian requires solving a constrained optimization problem using the system's dynamics model. Hamilton-Jacobi reachability analysis for safety verification has demonstrated practical utility only when efficient evaluation of the Hamiltonian over a large state-time grid is possible. In this study, we introduce the concept of a data-driven Hamiltonian (DDH), which circumvents the need for an explicit dynamics model by relying only on mild prior knowledge (e.g., Lipschitz constants), thus enabling the construction of reachable sets directly from trajectory data. Recognizing that the Hamiltonian is the optimal inner product between a given costate and realizable state velocities, the DDH estimates the Hamiltonian using the worst-case realization of the velocity field based on the observed state trajectory data. This formulation ensures a conservative approximation of the true Hamiltonian for uncertain dynamics. The reachable set computed based on the DDH is also ensured to be a conservative approximation of the true reachable set. Next, we propose a data-efficient safe experiment framework for gradual expansion of safe sets using the DDH. This is achieved by iteratively conducting experiments within the computed data-driven safe set and updating the set using newly collected trajectory data. To demonstrate the capabilities of our approach, we showcase its effectiveness in safe flight envelope expansion for a tiltrotor vehicle transitioning from near-hover to forward flight.
comment: This is the extended version of the article submitted to IEEE CDC 2025. This work has been submitted to the IEEE for possible publication
A Robust Method for Fault Detection and Severity Estimation in Mechanical Vibration Data
This paper proposes a robust method for fault detection and severity estimation in multivariate time-series data to enhance predictive maintenance of mechanical systems. We use the Temporal Graph Convolutional Network (T-GCN) model to capture both spatial and temporal dependencies among variables. This enables accurate future state predictions under varying operational conditions. To address the challenge of fluctuating anomaly scores that reduce fault severity estimation accuracy, we introduce a novel fault severity index based on the mean and standard deviation of anomaly scores. This generates a continuous and reliable severity measurement. We validate the proposed method using two experimental datasets: an open IMS bearing dataset and data collected from a fanjet electric propulsion system. Results demonstrate that our method significantly reduces abrupt fluctuations and inconsistencies in anomaly scores. This provides a more dependable foundation for maintenance planning and risk management in safety-critical applications.
comment: 8 pages, 9 figures
Linear Stability Analysis of a Constant Quaternion Difference Attitude Controller
It is quite often claimed, and correctly so, that linear methods cannot achieve global stability results for attitude control, and conversely that nonlinear control is essential in order to achieve (almost) globally stable tracking of general attitude trajectories. On account of this definitive result, and also because of the existence of powerful nonlinear control techniques, there has been relatively very little work analyzing the limits and performance of linear attitude control. It is the purpose of this paper to provide a characterization of the stability achievable for one class of linear attitude control problems, namely those leading to a constant quaternion difference. In this paper, we analytically derive a critical error angle below which linearized dynamics lead to natural marginal stability for such a system, and above which the system is unstable. The dynamics are then used to derive a locally stable linear attitude controller whose performance is validated using simulations.
The Ground Cost for Optimal Transport of Angular Velocity
We revisit the optimal transport problem over angular velocity dynamics given by the controlled Euler equation. The solution of this problem enables stochastic guidance of spin states of a rigid body (e.g., spacecraft) over hard deadline constraint by transferring a given initial state statistics to a desired terminal state statistics. This is an instance of generalized optimal transport over a nonlinear dynamical system. While prior work has reported existence-uniqueness and numerical solution of this dynamical optimal transport problem, here we present structural results about the equivalent Kantorovich a.k.a. optimal coupling formulation. Specifically, we focus on deriving the ground cost for the associated Kantorovich optimal coupling formulation. The ground cost equals to the cost of transporting unit amount of mass from a specific realization of the initial or source joint probability measure to a realization of the terminal or target joint probability measure, and determines the Kantorovich formulation. Finding the ground cost leads to solving a structured deterministic nonlinear optimal control problem, which is shown to be amenable to an analysis technique pioneered by Athans et. al. We show that such techniques have broader applicability in determining the ground cost (thus Kantorovich formulation) for a class of generalized optimal mass transport problems involving nonlinear dynamics with translated norm-invariant drift.
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
High-dimensional nonlinear systems pose considerable challenges for modeling and control across many domains, from fluid mechanics to advanced robotics. Such systems are typically approximated with reduced order models, which often rely on orthogonal projections, a simplification that may lead to large prediction errors. In this work, we derive optimality of fiber-aligned projections onto spectral submanifolds, preserving the nonlinear geometric structure and minimizing long-term prediction error. We propose a computationally tractable procedure to approximate these projections from data, and show how the effect of control can be incorporated. For a 180-dimensional robotic system, we demonstrate that our reduced-order models outperform previous state-of-the-art approaches by up to fivefold in trajectory tracking accuracy under model predictive control.
Performance-Aware Control of Modular Batteries For Fast Frequency Response
Modular batteries can be aggregated to deliver frequency regulation services for power grids. Although utilizing the idle capacity of battery modules is financially attractive, it remains challenging to consider the heterogeneous module-level characteristics such as dynamic operational efficiencies and battery degradation. In addition, real-time decision making within seconds is required to enable fast frequency response. In order to address these issues, this paper proposes a performance-aware scheduling approach for battery modules to deliver fast frequency response (FFR) support. In particular, the conduction loss and switching loss of battery packs as well as converters are captured within a mix-integer quadratic constrained program (MIQCP). The cycle-based aging model identifies the aging cost of battery modules during frequent cycling by introducing the aging subgradient calculation and linearization. Case studies based on real-world battery data show that the proposed scheduling approach can effectively reduce power loss cost by nearly 28%-57% and battery aging cost by 4%-15% compared to conventional methods, which can also enhance the SoC balance.
comment: 13pages,7figures.Accepted by IEEE Transactions on Sustainable Energy
GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
Robots operating in unstructured environments often require accurate and consistent object-level representations. This typically requires segmenting individual objects from the robot's surroundings. While recent large models such as Segment Anything (SAM) offer strong performance in 2D image segmentation. These advances do not translate directly to performance in the physical 3D world, where they often over-segment objects and fail to produce consistent mask correspondences across views. In this paper, we present GraphSeg, a framework for generating consistent 3D object segmentations from a sparse set of 2D images of the environment without any depth information. GraphSeg adds edges to graphs and constructs dual correspondence graphs: one from 2D pixel-level similarities and one from inferred 3D structure. We formulate segmentation as a problem of edge addition, then subsequent graph contraction, which merges multiple 2D masks into unified object-level segmentations. We can then leverage \emph{3D foundation models} to produce segmented 3D representations. GraphSeg achieves robust segmentation with significantly fewer images and greater accuracy than prior methods. We demonstrate state-of-the-art performance on tabletop scenes and show that GraphSeg enables improved performance on downstream robotic manipulation tasks. Code available at https://github.com/tomtang502/graphseg.git.
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
Oscillatory Associative Memory with Exponential Capacity
The slowing of Moore's law and the increasing energy demands of machine learning present critical challenges for both the hardware and machine learning communities, and drive the development of novel computing paradigms. Of particular interest is the challenge of incorporating memory efficiently into the learning process. Inspired by how human brains store and retrieve information, associative memory mechanisms provide a class of computational methods that can store and retrieve patterns in a robust, energy-efficient manner. Existing associative memory architectures, such as the celebrated Hopfield model and oscillatory associative memory networks, store patterns as stable equilibria of network dynamics. However, the capacity (i.e. the number of patterns that a network can memorize normalized by their number of nodes) of existing oscillatory models have been shown to decrease with the size of the network, making them impractical for large-scale, real-world applications. In this paper, we propose a novel associative memory architecture based on Kuramoto oscillators. We show that the capacity of our associative memory network increases exponentially with network size and features no spurious memories. In addition, we present algorithms and numerical experiments to support these theoretical findings, providing guidelines for the hardware implementation of the proposed associative memory networks.
comment: 7 pages, 5 figures
Improving Offline Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Meta-Learning Driven Movable-Antenna-assisted Full-Duplex RSMA for Multi-User Communication: Performance and Optimization
Full-duplex (FD) radios at base station (BS) have gained significant interest because of their ability to simultaneously transmit and receive signals on the same frequency band. However, FD communication is hindered by self-interference (SI) and intra-cell interference caused by simultaneous uplink (UL) transmissions affecting downlink (DL) reception. These interferences significantly limit the ability to fully exploit FD's potential. Recently, movable antenna (MA) technology has emerged as a groundbreaking innovation, offering an effective way to mitigate interference by adjusting the position of each MA within the transmitter or receiver region. This dynamic repositioning allows MAs to move away from high-interference zones to areas with minimal interference, thereby enhancing multiplexing gain and improving spectral efficiency (SE). In light of this, in this paper, we investigate an FD communication system by integrating it with MAs to evaluate and investigate its effectiveness in handling SI and intra-cell interference. Moreover, we utilize rate-splitting multiple access (RSMA) as our multiple access technique in both UL and DL transmission. To achieve the full potential of the system, we evaluated three different scenarios with FD-BS-RSMA with MAs where our goal is to maximize the total sum rate of the system by jointly optimizing the transmitting and receiving beamforming vectors, UL user equipment (UE) transmission power, MA positions, and common stream split ratio of RSMA while satisfying the minimum data rate requirements of all UEs, common stream constraint, power budget requirements of BS and UL UEs, and inter-MA distance. The formulated optimization problem is highly non-convex in nature, and hence, we propose a gradient-based meta-learning (GML) approach which can handle the non-convexity in a discrete manner by optimizing each variable in a different neural network.
A New Approach to Controlling Linear Dynamical Systems
We propose a new method for controlling linear dynamical systems under adversarial disturbances and cost functions. Our algorithm achieves a running time that scales polylogarithmically with the inverse of the stability margin, improving upon prior methods with polynomial dependence maintaining the same regret guarantees. The technique, which may be of independent interest, is based on a novel convex relaxation that approximates linear control policies using spectral filters constructed from the eigenvectors of a specific Hankel matrix.
An Exploration-free Method for a Linear Stochastic Bandit Driven by a Linear Gaussian Dynamical System
In stochastic multi-armed bandits, a major problem the learner faces is the trade-off between exploration and exploitation. Recently, exploration-free methods -- methods that commit to the action predicted to return the highest reward -- have been studied from the perspective of linear bandits. In this paper, we introduce a linear bandit setting where the reward is the output of a linear Gaussian dynamical system. Motivated by a problem encountered in hyperparameter optimization for reinforcement learning, where the number of actions is much higher than the number of training iterations, we propose Kalman filter Observability Dependent Exploration (KODE), an exploration-free method that utilizes the Kalman filter predictions to select actions. Our major contribution of this work is our analysis of the performance of the proposed method, which is dependent on the observability properties of the underlying linear Gaussian dynamical system. We evaluate KODE via two different metrics: regret, which is the cumulative expected difference between the highest possible reward and the reward sampled by KODE, and action alignment, which measures how closely KODE's chosen action aligns with the linear Gaussian dynamical system's state variable. To provide intuition on the performance, we prove that KODE implicitly encourages the learner to explore actions depending on the observability of the linear Gaussian dynamical system. This method is compared to several well-known stochastic multi-armed bandit algorithms to validate our theoretical results.
Sparsity-Promoting Reachability Analysis and Optimization of Constrained Zonotopes
The constrained zonotope is a polytopic set representation widely used for set-based analysis and control of dynamic systems. This paper considers the problem of tailoring a quadratic program (QP) optimization algorithm to the particular structure of constrained zonotopes and vice-versa. An alternating direction method of multipliers (ADMM) algorithm is presented that makes efficient use of the constrained zonotope structure. To increase the efficiency of the ADMM iterations, reachability calculations are presented that increase the sparsity of the matrices used to define a constrained zonotope. Numerical results show that the ADMM algorithm solves optimal control problems built using these reachability calculations faster than state-of-the-art QP solvers using conventional problem formulations, especially for large problems. Constrained zonotope reachability and optimization calculations are combined within a set-valued state estimation and moving horizon estimation algorithm, and a projection-based infeasibility detection method is presented for efficient safety verification of system trajectories.
Koopman-Based Methods for EV Climate Dynamics: Comparing eDMD Approaches
In this paper, data-driven algorithms based on Koopman Operator Theory are applied to identify and predict the nonlinear dynamics of a vapor compression system and cabin temperature in a light-duty electric vehicle. By leveraging a high-fidelity nonlinear HVAC model, the system behavior is captured in a lifted higher-dimensional state space, enabling a linear representation. A comparative analysis of three Koopman-based system identification approaches (polynomial libraries, radial basis functions (RBF), and neural network-based dictionary learning) is conducted. Accurate prediction of power consumption over entire driving cycles is demonstrated by incorporating power as a measurable output within the Koopman framework. The performance of each method is rigorously evaluated through simulations under various driving cycles and ambient conditions, highlighting their potential for real-time prediction and control in energy-efficient vehicle climate management. This study offers a scalable, data-driven methodology that can be extended to other complex nonlinear systems.
comment: 6 pages, conference
Controlled Social Learning: Altruism vs. Bias
We introduce a model of controlled sequential social learning in which a planner may pay a cost to adjust the private information structure of agents. The planner may seek to induce correct actions that are consistent with an unknown true state of the world (altruistic planner) or to induce a specific action the planner prefers (biased planner). Our framework presents a new optimization problem for social learning that combines dynamic programming with decentralized action choices and Bayesian belief updates. This sheds light on practical policy questions, such as how the socially optimal level of ad personalization changes according to current beliefs or how a political campaign may selectively illuminate or obfuscate the winning potential of its candidate among voters. We then prove the convexity of the value function and characterize the optimal policies of altruistic and biased planners, which attain desired tradeoffs between the costs they incur and the payoffs they earn from the choices they induce in the agents. Even for a planner who has equivalent knowledge to an individual, cannot lie or cherry-pick information, and is fully observable, we demonstrate that it is possible to dramatically influence social welfare in both positive and negative directions.
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, solutions to these PDEs often do not converge to a unique equilibrium, but instead converge to non-stationary trajectories existing in the nullspace of the spatial differential operator (e.g. $\frac{\partial^2}{\partial x^2}$). To analyse this convergence behaviour, in this paper, it is shown how such trajectories can be modeled for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any PDE state satisfying these boundary conditions can be uniquely expressed in terms of two components, existing in the image and the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$, respectively. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both state components. Finally, a notion of exponential stability is defined that requires only one of the state components to converge to zero, and it is shown how this stability notion can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that exponential stability can be verified with tight bounds on the rate of decay.
Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems
This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
Asymptotically efficient adaptive identification under saturated output observation
As saturated output observations are ubiquitous in practice, identifying stochastic systems with such nonlinear observations is a fundamental problem across various fields. This paper investigates the asymptotically efficient identification problem for stochastic dynamical systems with saturated output observations. In contrast to most of the existing results, our results do not need the commonly used but stringent conditions such as periodic or independent assumptions on the system signals, and thus do not exclude applications to stochastic feedback systems. To be specific, we introduce a new adaptive Newton-type algorithm on the negative log-likelihood of the partially observed samples using a two-step design technique. Under some general excitation data conditions, we show that the parameter estimate is strongly consistent and asymptotically normal by employing the stochastic Lyapunov function method and limit theories for martingales. Furthermore, we show that the mean square error of the estimates can achieve the Cramer-Rao bound asymptotically without resorting to i.i.d data assumptions. This indicates that the performance of the proposed algorithm is the best possible that one can expect in general. A numerical example is provided to illustrate the superiority of our new adaptive algorithm over the existing related ones in the literature.
comment: 28 pages
Showcasing Automated Vehicle Prototypes: A Collaborative Release Process to Manage and Communicate Risk SC
The development and deployment of automated vehicles pose major challenges for manufacturers to this day. Whilst central questions, like the issue of ensuring a sufficient level of safety, remain unanswered, prototypes are increasingly finding their way into public traffic in urban areas. Although safety concepts for prototypes are addressed in literature, published work hardly contains any dedicated considerations on a systematic release for their operation. In this paper, we propose an incremental release process for public demonstrations of prototypes' automated driving functionality. We explicate release process requirements, derive process design decisions, and define stakeholder tasks. Furthermore, we reflect on practical insights gained through implementing the release process as part of the UNICAR$agil$ research project, in which four prototypes based on novel vehicle concepts were built and demonstrated to the public. One observation is the improved quality of internal risk communication, achieved by dismantling information asymmetries between stakeholders. Design conflicts are disclosed - providing a contribution to nurture transparency and, thereby, supporting a valid basis for release decisions. We argue that our release process meets two important requirements, as the results suggest its applicability to the domain of automated driving and its scalability to different vehicle concepts and organizational structures.
comment: Published in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, September 24-27, 2024
Event-Triggered Polynomial Control for Trajectory Tracking by Unicycle Robots
This paper proposes an event-triggered polynomial control method for trajectory tracking by unicycle robots. In this method, each control input between two consecutive events is a polynomial and its coefficients are chosen to minimize the error in approximating a continuous-time control signal. We design an event-triggering rule that guarantees uniform ultimate boundedness of the tracking error and non-Zeno behavior of inter-event times. We illustrate our results through a suite of numerical simulations and experiments, which indicate that the number of events generated by the proposed controller is significantly less compared to that by a time-triggered controller or a event-triggered controller based on zero-order hold while guaranteeing similar tracking performance.
A 2-6 GHz Ultra-Wideband CMOS Transceiver for Radar Applications
This paper presents a low power, low cost transceiver architecture to implement radar-on-a-chip. The transceiver comprises of a full ultra-wideband (UWB) transmitter and a full UWB band receiver. A design methodology to maximize the tuning range of the voltage-controlled oscillator (VCO) is presented. At the transmitter side, a sub-harmonic mixer is used for signal up-conversion. The receiver low noise amplifier (LNA) has a 2 to 6 GHz input matching bandwidth with a power gain of 9 dB and a noise figure of 2.5 dB. The transceiver is implemented in Cadence EDA tools using 65nm CMOS technology. The system achieves a total dc power consumption of 50 mW. Good noise figure performance; good wide-band matching; gain; high level of integration; low power; low cost of the proposed UWB radar transceiver front-end make it a highly competitive SoC solution for low power UWB transceivers.
The Price of Simplicity: Analyzing Decoupled Policies for Multi-Location Inventory Control
What is the performance cost of using simple, decoupled control policies in inherently coupled systems? Motivated by industrial refrigeration systems, where centralized compressors exhibit economies of scale yet traditional control employs decoupled room-by-room temperature regulation, we address this question through the lens of multi-location inventory control. Here, a planner manages multiple inventories to meet stochastic demand while minimizing costs that are coupled through nonlinear ordering functions reflecting economies of scale. Our main contributions are: (i) a surprising equivalence result showing that optimal stationary base-stock levels for individual locations remain unchanged despite the coupling when restricting attention to decoupled strategies; (ii) tight performance bounds for simple decoupled policies relative to optimal coupled policies, revealing that the worst-case ratio depends primarily on the degree of nonlinearity in the cost function and scales with the number of locations for systems with fixed costs; and (iii) analysis of practical online algorithms that achieve competitive performance without solving complex dynamic programs. Numerical simulations demonstrate that while decoupled policies significantly outperform their worst-case guarantees in typical scenarios, they still exhibit meaningful suboptimality compared to fully coordinated strategies. These results provide actionable guidance for system operators navigating the trade-off between control complexity and operational efficiency in coupled systems.
Cooperative Deterministic Learning-Based Formation Control for a Group of Nonlinear Mechanical Systems Under Complete Uncertainty
In this work we address the formation control problem for a group of nonlinear mechanical systems with complete uncertain dynamics under a virtual leader-following framework. We propose a novel cooperative deterministic learning-based adaptive formation control algorithm. This algorithm is designed by utilizing artificial neural networks to simultaneously achieve formation tracking control and locally-accurate identification/learning of the nonlinear uncertain dynamics of the considered group of mechanical systems. To demonstrate the practicality and verify the effectiveness of the proposed results, numerical simulations have been conducted.
comment: 8 pages, 6 figures, Conference
Safety Filter for Robust Disturbance Rejection via Online Optimization
Disturbance rejection in high-precision control applications can be significantly improved upon via online convex optimization (OCO). This includes classical techniques such as recursive least squares (RLS) and more recent, regret-based formulations. However, these methods can cause instabilities in the presence of model uncertainty. This paper introduces a safety filter for systems with OCO in the form of adaptive finite impulse response (FIR) filtering to ensure robust disturbance rejection. The safety filter enforces a robust stability constraint on the FIR coefficients while minimally altering the OCO command in the $\infty$-norm cost. Additionally, we show that the induced $\ell_\infty$-norm allows for easy online implementation of the safety filter by directly limiting the OCO command. The constraint can be tuned to trade off robustness and performance. We provide a simple example to demonstrate the safety filter.
comment: Accepted to the 2025 European Control Conference. This paper builds on the work done in arXiv:2405.07037 and adds to the appendix in arXiv:2411.09582
Model Reduction of a Flexible Nonsmooth Oscillator Recovers its Entire Bifurcation Structure
We study the reduced order modeling of a nonlinear flexible oscillator in which a Bernoulli-Euler beam is subjected to a position-triggered kick force and a piecewise restoring force at its tip. The resulting nonsmooth boundary conditions can generally be expected to excite many degrees of freedom. The system is modeled as piecewise linear with different boundary conditions determining different regions of a hybrid phase space. With kick strength as parameter, its bifurcation diagram is found to exhibit a range of periodic and chaotic behaviors. Proper orthogonal decomposition (POD) is used to estimate the system's intrinsic dimensionality. However, conventional POD's purely statistical analysis of spatial covariance does not guarantee accuracy of reduced order models (ROMs). We therefore augment POD by employing a previously-developed energy closure criterion that selects ROM dimension by ensuring approximate energy balance on the reduced subspace. This physics-based criterion yields accurate ROMs with 8 degrees of freedom. Remarkably, we find that ROMs formulated at particular values of the kick strength can nevertheless reconstruct the entire bifurcation structure of the original nonlinear structural system. We thus show that energy closure analysis reliably yields effective dimension estimates and, thereby, ROMs that are robust across stability transitions, including even period doubling cascades to chaos.
comment: 30 pages, 8 figures
Systems and Control (EESS)
Modeling Charging Demand and Quantifying Flexibility Bounds for Large-Scale BEV Fleets
This paper presents a bottom-up method to model baseline charging power demand and quantify available flexibility for large-scale BEV fleets. The method utilizes geographic and sociodemographic information to represent the fleet's mobility and driving energy needs. It models the charging decisions of drivers based on their driving energy needs and range comfort level using real-world data. The flexibility quantification provides an hourly maximum and minimum bound for the charging power and limits the amount of daily flexible charging energy. We apply the methodology to the future fully electrified fleet of Switzerland as a case study and compare the spatio-temporal characteristics of the charging demand and flexibility of different geographic areas and urbanization levels.
comment: 6 pages, 6 figures
Lambda/6 Suspended Patch Antenna
This work introduces a novel, compact antenna design based on a lambda-6th suspended patch configuration that is particularly suited for small-size wireless sensor nodes. The proposed design meets key requirements such as compactness, omnidirectionality, robust source matching over a designated bandwidth, interference immunity, and low costs by evolving the conventional square patch antenna. With a footprint of only 20-by-20 mm, the antenna incorporates a grounded metal shield to both reduce its effective dimensions below one-half wavelength and mitigate interference from nearby circuitry. Simulation results, conducted on a cost-effective FR4 substrate, demonstrate a resonance at 2.45 GHz with a return loss of -32.5 dB and a bandwidth of 50 MHz (at the -10 dB level), making this design an attractive candidate for integration into densely populated wireless sensor networks.
comment: 4 pages, 8 figures, STW SAFE conference
The Limits of "Fairness" of the Variational Generalized Nash Equilibrium
Generalized Nash equilibrum (GNE) problems are commonly used to model strategic interactions between self-interested agents who are coupled in cost and constraints. Specifically, the variational GNE, a refinement of the GNE, is often selected as the solution concept due to it's non-discriminatory treatment of agents by charging a uniform ``shadow price" for shared resources. We study the fairness concept of v-GNEs from a comparability perspective and show that it makes an implicit assumption of unit comparability of agent's cost functions, one of the strongest comparability notions. Further, we introduce a new solution concept, f-GNE in which a fairness metric is chosen a priori which is compatible with the comparability at hand. We introduce an electric vehicle charging game to demonstrate the fragility of v-GNE fairness and compare it to the f-GNE under various fairness metrics.
State estimation for gas purity monitoring and control in water electrolysis systems
Green hydrogen, produced via water electrolysis using renewable energy, is seen as a cornerstone of the energy transition. Coupling of renewable power supplies to water electrolysis processes is, however, challenging, as explosive gas mixtures (hydrogen in oxygen) might form at low loads. This has prompted research into gas purity control of such systems. While these attempts have shown to be successful in theoretical and practical studies, they are currently limited in that they only consider the gas purity at locations where composition measurements are available. As these locations are generally positioned downstream of the disturbance origin, this incurs considerable delays and can lead to undetected critical conditions. In this work, we propose the use of an Extended Kalman Filter (EKF) in combination with a simple process model to estimate and control the gas composition at locations where measurements are not available. The model uses noise-driven states for the gas impurity and is hence agnostic towards any mechanistic disturbance model. We show in simulations that this simple approach performs well under various disturbance types and can reduce the time spent in potentially hazardous conditions by up to one order of magnitude.
comment: Accepted to the 14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS 2025). 6 pages, 5 figures, 1 table
Probabilistic Reachable Set Estimation for Saturated Systems with Unbounded Additive Disturbances
In this paper, we present an analytical approach for the synthesis of ellipsoidal probabilistic reachable sets of saturated systems subject to unbounded additive noise. Using convex optimization methods, we compute a contraction factor of the saturated error dynamics that allows us to tightly bound its evolution and therefore construct accurate reachable sets. The proposed approach is applicable to independent, zero mean disturbances with a known covariance. A numerical example illustrates the applicability and effectiveness of the proposed design.
Bifurcation analysis of an opinion dynamics model coupled with an environmental dynamics
We consider an opinion dynamics model coupled with an environmental dynamics. Based on a forward invariance argument, we can simplify the analysis of the asymptotic behavior to the case when all the opinions in the social network are synchronized. Our goal is to emphasize the role of the trust given to the environmental signal in the asymptotic behavior of the opinion dynamics and implicitly of the coupled system. To do that, we conduct a bifurcation analysis of the system around the origin when the trust parameter is varying. Specific conditions are presented for both pitchfork and Hopf bifurcation. Numerical illustration completes the theoretical findings.
comment: 7 pages, 3 figures
Leveraging Network Topology in a Two-way Competition for Influence in the Friedkin-Johnsen Model
In this paper, we consider two stubborn agents who compete for `influence' over a strongly connected group of agents. This framework represents real-world contests, such as competition among firms, two-party elections, and sports rivalries, among others. Considering stubbornness of agents to be an immutable property, we utilise the network topology alone to increase the influence of a preferred stubborn agent. We demonstrate this on a special class of strongly connected networks by identifying the supporters of each of the stubborn agents in such networks. Thereafter, we present sufficient conditions under which a network perturbation always increases the influence of the preferred stubborn agent. A key advantage of the proposed topology-based conditions is that they hold independent of the edge weights in the network. Most importantly, we assert that there exists a sequence of perturbations that can make the lesser influential stubborn agent more influential. Finally, we demonstrate our results over the Sampson's Monastery dataset.
Policy Optimization Algorithms in a Unified Framework
Policy optimization algorithms are crucial in many fields but challenging to grasp and implement, often due to complex calculations related to Markov decision processes and varying use of discount and average reward setups. This paper presents a unified framework that applies generalized ergodicity theory and perturbation analysis to clarify and enhance the application of these algorithms. Generalized ergodicity theory sheds light on the steady-state behavior of stochastic processes, aiding understanding of both discounted and average rewards. Perturbation analysis provides in-depth insights into the fundamental principles of policy optimization algorithms. We use this framework to identify common implementation errors and demonstrate the correct approaches. Through a case study on Linear Quadratic Regulator problems, we illustrate how slight variations in algorithm design affect implementation outcomes. We aim to make policy optimization algorithms more accessible and reduce their misuse in practice.
Probabilistic State Estimation of Timed Probabilistic Discrete Event Systems via Artificial Neural Networks [Draft Version]
This paper is about the state estimation of timed probabilistic discrete event systems. The main contribution is to propose general procedures for developing state estimation approaches based on artificial neural networks. It is assumed that no formal model of the system exists but a data set is available, which contains the history of the timed behaviour of the systems. This dataset will be exploited to develop a neural network model that uses both logical and temporal information gathered during the functioning of the system as inputs and provides the state probability vector as output. Two main approaches are successively proposed (i) state estimation of timed probabilistic discrete event systems over observations: in this case the state estimate is reconstructed at the occurrence of each new observation; (ii) state estimation of timed probabilistic discrete event systems over time: in this case the state estimate is reconstructed at each clock time increment. For each approach, the paper outlines the process of data preprocessing, model building and implementation. This paper not only proposes groundbreaking approaches but also opens the door to further exploitation of artificial neural networks for the benefit of discrete event systems.
Controllability Analysis of Multi-Modal Acoustic Particle Manipulation in One-Dimensional Standing Waves
Acoustic manipulation in microfluidic devices enables contactless handling of biological cells for Lab-on-Chip applications. This paper analyzes the controllability of multi-particle systems in a one-dimensional acoustic standing wave system using multi-modal actuation. By modeling the system as a nonlinear control system, we analyze its global and local controllability, quantifying these properties in terms of mode numbers. Our results show that sufficient modes enable dense reachability sets, while mode mixing with 10 modes grants a strict notion of controllability to 80\% of the state space in a two-particle system. These findings offer theoretical insights for designing acoustic manipulation algorithms, supporting efficient control in biomedical applications.
Learning-Based Conformal Tube MPC for Safe Control in Interactive Multi-Agent Systems
Safety assurance in multi-agent systems with coupled dynamics is a fundamental yet challenging problem, especially when agents exhibit uncertain and state-dependent behaviors. Classical robust control often assumes worst-case disturbances, leading to overly conservative actions. In this work, we propose a learning-based framework that combines conformal prediction with model predictive control (MPC) to ensure probabilistic safety under action-level uncertainty. Unlike prior approaches that predict future states, we directly model the control action of the uncontrollable agent as a stochastic function of the joint state, trained via neural networks and calibrated using conformal prediction. This enables us to construct dynamic, probabilistically guaranteed reachable tubes for the uncontrollable agent. These tubes are then embedded into an MPC formulation to synthesize control actions for the controllable agent that ensure safe interactions over a finite planning horizon. We provide formal stepwise and cumulative safety guarantees, and demonstrate the effectiveness of our approach through a pedestrian-vehicle interaction scenario. Compared to baseline methods, our framework achieves higher safety rates while maintaining high performance in terms of speed and responsiveness.
Dynamic Objective MPC for Motion Planning of Seamless Docking Maneuvers
Automated vehicles and logistics robots must often position themselves in narrow environments with high precision in front of a specific target, such as a package or their charging station. Often, these docking scenarios are solved in two steps: path following and rough positioning followed by a high-precision motion planning algorithm. This can generate suboptimal trajectories caused by bad positioning in the first phase and, therefore, prolong the time it takes to reach the goal. In this work, we propose a unified approach, which is based on a Model Predictive Control (MPC) that unifies the advantages of Model Predictive Contouring Control (MPCC) with a Cartesian MPC to reach a specific goal pose. The paper's main contributions are the adaption of the dynamic weight allocation method to reach path ends and goal poses inside driving corridors, and the development of the so-called dynamic objective MPC. The latter is an improvement of the dynamic weight allocation method, which can inherently switch state-dependent from an MPCC to a Cartesian MPC to solve the path-following problem and the high-precision positioning tasks independently of the location of the goal pose seamlessly by one algorithm. This leads to foresighted, feasible, and safe motion plans, which can decrease the mission time and result in smoother trajectories.
comment: accepted for publication at 2025 IEEE Intelligent Vehicles Symposium (IV)
Verification of Autonomous Neural Car Control with KeYmaera X
This article presents a formal model and formal safety proofs for the ABZ'25 case study in differential dynamic logic (dL). The case study considers an autonomous car driving on a highway avoiding collisions with neighbouring cars. Using KeYmaera X's dL implementation, we prove absence of collision on an infinite time horizon which ensures that safety is preserved independently of trip length. The safety guarantees hold for time-varying reaction time and brake force. Our dL model considers the single lane scenario with cars ahead or behind. We demonstrate that dL with its tools is a rigorous foundation for runtime monitoring, shielding, and neural network verification. Doing so sheds light on inconsistencies between the provided specification and simulation environment highway-env of the ABZ'25 study. We attempt to fix these inconsistencies and uncover numerous counterexamples which also indicate issues in the provided reinforcement learning environment.
comment: 21 pages, 6 figures; Accepted at the 11th International Conference on Rigorous State Based Methods (ABZ'25)
Energy Aware and Safe Path Planning for Unmanned Aircraft Systems
This paper proposes a path planning algorithm for multi-agent unmanned aircraft systems (UASs) to autonomously cover a search area, while considering obstacle avoidance, as well as the capabilities and energy consumption of the employed unmanned aerial vehicles. The path planning is optimized in terms of energy efficiency to prefer low energy-consuming maneuvers. In scenarios where a UAS is low on energy, it autonomously returns to its initial position for a safe landing, thus preventing potential battery damage. To accomplish this, an energy-aware multicopter model is integrated into a path planning algorithm based on model predictive control and mixed integer linear programming. Besides factoring in energy consumption, the planning is improved by dynamically defining feasible regions for each UAS to prevent obstacle corner-cutting or over-jumping.
comment: This work has been submitted to the IEEE for possible publication
Non-parametric B-spline decoupling of multivariate functions
Many scientific fields and applications require compact representations of multivariate functions. For this problem, decoupling methods are powerful techniques for representing the multivariate functions as a combination of linear transformations and nonlinear univariate functions. This work introduces an efficient decoupling algorithm that leverages the use of B-splines to allow a non-parametric estimation of the decoupling's internal functions. The use of B-splines alleviates the problem of choosing an appropriate basis, as in parametric methods, but still allows an intuitive way to tweak the flexibility of the estimated functions. Besides the non-parametric property, the use of B-spline representations allows for easy integration of nonnegativity or monotonicity constraints on the function shapes, which is not possible for the currently available (non-)parametric decoupling methods. The proposed algorithm is illustrated on synthetic examples that highlight the flexibility of the B-spline representation and the ease with which a monotonicity constraint can be added. The examples also show that if monotonic functions are required, enforcing the constraint is necessary.
Gradient Field-Based Dynamic Window Approach for Collision Avoidance in Complex Environments IROS
For safe and flexible navigation in multi-robot systems, this paper presents an enhanced and predictive sampling-based trajectory planning approach in complex environments, the Gradient Field-based Dynamic Window Approach (GF-DWA). Building upon the dynamic window approach, the proposed method utilizes gradient information of obstacle distances as a new cost term to anticipate potential collisions. This enhancement enables the robot to improve awareness of obstacles, including those with non-convex shapes. The gradient field is derived from the Gaussian process distance field, which generates both the distance field and gradient field by leveraging Gaussian process regression to model the spatial structure of the environment. Through several obstacle avoidance and fleet collision avoidance scenarios, the proposed GF-DWA is shown to outperform other popular trajectory planning and control methods in terms of safety and flexibility, especially in complex environments with non-convex obstacles.
comment: This paper has been submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for possible publication
A Modular Energy Aware Framework for Multicopter Modeling in Control and Planning Applications
Unmanned aerial vehicles (UAVs), especially multicopters, have recently gained popularity for use in surveillance, monitoring, inspection, and search and rescue missions. Their maneuverability and ability to operate in confined spaces make them particularly useful in cluttered environments. For advanced control and mission planning applications, accurate and resource-efficient modeling of UAVs and their capabilities is essential. This study presents a modular approach to multicopter modeling that considers vehicle dynamics, energy consumption, and sensor integration. The power train model includes detailed descriptions of key components such as the lithium-ion battery, electronic speed controllers, and brushless DC motors. Their models are validated with real test flight data. In addition, sensor models, including LiDAR and cameras, are integrated to describe the equipment often used in surveillance and monitoring missions. The individual models are combined into an energy-aware multicopter model, which provide the basis for a companion study on path planning for unmanned aircaft system (UAS) swarms performing search and rescue missions in cluttered and dynamic environments. The flexible modeling approach enables easy description of different UAVs in a heterogeneous UAS swarm, allowing for energy-efficient operations and autonomous decision making for a reliable mission performance.
comment: This work has been submitted to the IEEE for possible publication
On Differential Controllability and Observability Functions
Differential balancing theory for nonlinear model reduction relies on differential controllability and observability functions. In this paper, we further investigate them from two different perspectives. First, we establish novel connections between these differential energy functions and their incremental counterparts by assuming the existence of the corresponding optimal state feedback for each controllability function. Specifically, an upper bound on the incremental controllability/observability function is provided by the corresponding differential energy function. Conversely, an upper bound on the differential controllability function can be estimated from the incremental controllability function. Furthermore, the differential observability function can be constructed from the incremental observability function. Second, we explore the positive definiteness of the differential controllability/observability function in the context of controllability/observability and stability.
Data-Driven Hamiltonian for Direct Construction of Safe Set from Trajectory Data
In continuous-time optimal control, evaluating the Hamiltonian requires solving a constrained optimization problem using the system's dynamics model. Hamilton-Jacobi reachability analysis for safety verification has demonstrated practical utility only when efficient evaluation of the Hamiltonian over a large state-time grid is possible. In this study, we introduce the concept of a data-driven Hamiltonian (DDH), which circumvents the need for an explicit dynamics model by relying only on mild prior knowledge (e.g., Lipschitz constants), thus enabling the construction of reachable sets directly from trajectory data. Recognizing that the Hamiltonian is the optimal inner product between a given costate and realizable state velocities, the DDH estimates the Hamiltonian using the worst-case realization of the velocity field based on the observed state trajectory data. This formulation ensures a conservative approximation of the true Hamiltonian for uncertain dynamics. The reachable set computed based on the DDH is also ensured to be a conservative approximation of the true reachable set. Next, we propose a data-efficient safe experiment framework for gradual expansion of safe sets using the DDH. This is achieved by iteratively conducting experiments within the computed data-driven safe set and updating the set using newly collected trajectory data. To demonstrate the capabilities of our approach, we showcase its effectiveness in safe flight envelope expansion for a tiltrotor vehicle transitioning from near-hover to forward flight.
comment: This is the extended version of the article submitted to IEEE CDC 2025. This work has been submitted to the IEEE for possible publication
A Robust Method for Fault Detection and Severity Estimation in Mechanical Vibration Data
This paper proposes a robust method for fault detection and severity estimation in multivariate time-series data to enhance predictive maintenance of mechanical systems. We use the Temporal Graph Convolutional Network (T-GCN) model to capture both spatial and temporal dependencies among variables. This enables accurate future state predictions under varying operational conditions. To address the challenge of fluctuating anomaly scores that reduce fault severity estimation accuracy, we introduce a novel fault severity index based on the mean and standard deviation of anomaly scores. This generates a continuous and reliable severity measurement. We validate the proposed method using two experimental datasets: an open IMS bearing dataset and data collected from a fanjet electric propulsion system. Results demonstrate that our method significantly reduces abrupt fluctuations and inconsistencies in anomaly scores. This provides a more dependable foundation for maintenance planning and risk management in safety-critical applications.
comment: 8 pages, 9 figures
Linear Stability Analysis of a Constant Quaternion Difference Attitude Controller
It is quite often claimed, and correctly so, that linear methods cannot achieve global stability results for attitude control, and conversely that nonlinear control is essential in order to achieve (almost) globally stable tracking of general attitude trajectories. On account of this definitive result, and also because of the existence of powerful nonlinear control techniques, there has been relatively very little work analyzing the limits and performance of linear attitude control. It is the purpose of this paper to provide a characterization of the stability achievable for one class of linear attitude control problems, namely those leading to a constant quaternion difference. In this paper, we analytically derive a critical error angle below which linearized dynamics lead to natural marginal stability for such a system, and above which the system is unstable. The dynamics are then used to derive a locally stable linear attitude controller whose performance is validated using simulations.
The Ground Cost for Optimal Transport of Angular Velocity
We revisit the optimal transport problem over angular velocity dynamics given by the controlled Euler equation. The solution of this problem enables stochastic guidance of spin states of a rigid body (e.g., spacecraft) over hard deadline constraint by transferring a given initial state statistics to a desired terminal state statistics. This is an instance of generalized optimal transport over a nonlinear dynamical system. While prior work has reported existence-uniqueness and numerical solution of this dynamical optimal transport problem, here we present structural results about the equivalent Kantorovich a.k.a. optimal coupling formulation. Specifically, we focus on deriving the ground cost for the associated Kantorovich optimal coupling formulation. The ground cost equals to the cost of transporting unit amount of mass from a specific realization of the initial or source joint probability measure to a realization of the terminal or target joint probability measure, and determines the Kantorovich formulation. Finding the ground cost leads to solving a structured deterministic nonlinear optimal control problem, which is shown to be amenable to an analysis technique pioneered by Athans et. al. We show that such techniques have broader applicability in determining the ground cost (thus Kantorovich formulation) for a class of generalized optimal mass transport problems involving nonlinear dynamics with translated norm-invariant drift.
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
High-dimensional nonlinear systems pose considerable challenges for modeling and control across many domains, from fluid mechanics to advanced robotics. Such systems are typically approximated with reduced order models, which often rely on orthogonal projections, a simplification that may lead to large prediction errors. In this work, we derive optimality of fiber-aligned projections onto spectral submanifolds, preserving the nonlinear geometric structure and minimizing long-term prediction error. We propose a computationally tractable procedure to approximate these projections from data, and show how the effect of control can be incorporated. For a 180-dimensional robotic system, we demonstrate that our reduced-order models outperform previous state-of-the-art approaches by up to fivefold in trajectory tracking accuracy under model predictive control.
Performance-Aware Control of Modular Batteries For Fast Frequency Response
Modular batteries can be aggregated to deliver frequency regulation services for power grids. Although utilizing the idle capacity of battery modules is financially attractive, it remains challenging to consider the heterogeneous module-level characteristics such as dynamic operational efficiencies and battery degradation. In addition, real-time decision making within seconds is required to enable fast frequency response. In order to address these issues, this paper proposes a performance-aware scheduling approach for battery modules to deliver fast frequency response (FFR) support. In particular, the conduction loss and switching loss of battery packs as well as converters are captured within a mix-integer quadratic constrained program (MIQCP). The cycle-based aging model identifies the aging cost of battery modules during frequent cycling by introducing the aging subgradient calculation and linearization. Case studies based on real-world battery data show that the proposed scheduling approach can effectively reduce power loss cost by nearly 28%-57% and battery aging cost by 4%-15% compared to conventional methods, which can also enhance the SoC balance.
comment: 13pages,7figures.Accepted by IEEE Transactions on Sustainable Energy
GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
Robots operating in unstructured environments often require accurate and consistent object-level representations. This typically requires segmenting individual objects from the robot's surroundings. While recent large models such as Segment Anything (SAM) offer strong performance in 2D image segmentation. These advances do not translate directly to performance in the physical 3D world, where they often over-segment objects and fail to produce consistent mask correspondences across views. In this paper, we present GraphSeg, a framework for generating consistent 3D object segmentations from a sparse set of 2D images of the environment without any depth information. GraphSeg adds edges to graphs and constructs dual correspondence graphs: one from 2D pixel-level similarities and one from inferred 3D structure. We formulate segmentation as a problem of edge addition, then subsequent graph contraction, which merges multiple 2D masks into unified object-level segmentations. We can then leverage \emph{3D foundation models} to produce segmented 3D representations. GraphSeg achieves robust segmentation with significantly fewer images and greater accuracy than prior methods. We demonstrate state-of-the-art performance on tabletop scenes and show that GraphSeg enables improved performance on downstream robotic manipulation tasks. Code available at https://github.com/tomtang502/graphseg.git.
Distributed Resilience-Aware Control in Multi-Robot Networks
Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
Oscillatory Associative Memory with Exponential Capacity
The slowing of Moore's law and the increasing energy demands of machine learning present critical challenges for both the hardware and machine learning communities, and drive the development of novel computing paradigms. Of particular interest is the challenge of incorporating memory efficiently into the learning process. Inspired by how human brains store and retrieve information, associative memory mechanisms provide a class of computational methods that can store and retrieve patterns in a robust, energy-efficient manner. Existing associative memory architectures, such as the celebrated Hopfield model and oscillatory associative memory networks, store patterns as stable equilibria of network dynamics. However, the capacity (i.e. the number of patterns that a network can memorize normalized by their number of nodes) of existing oscillatory models have been shown to decrease with the size of the network, making them impractical for large-scale, real-world applications. In this paper, we propose a novel associative memory architecture based on Kuramoto oscillators. We show that the capacity of our associative memory network increases exponentially with network size and features no spurious memories. In addition, we present algorithms and numerical experiments to support these theoretical findings, providing guidelines for the hardware implementation of the proposed associative memory networks.
comment: 7 pages, 5 figures
Improving Offline Mixed-Criticality Scheduling with Reinforcement Learning
This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
comment: This work was submitted to the 32nd International Conference on Real-Time Networks and Systems (RTNS) on June 8, 2024
Meta-Learning Driven Movable-Antenna-assisted Full-Duplex RSMA for Multi-User Communication: Performance and Optimization
Full-duplex (FD) radios at base station (BS) have gained significant interest because of their ability to simultaneously transmit and receive signals on the same frequency band. However, FD communication is hindered by self-interference (SI) and intra-cell interference caused by simultaneous uplink (UL) transmissions affecting downlink (DL) reception. These interferences significantly limit the ability to fully exploit FD's potential. Recently, movable antenna (MA) technology has emerged as a groundbreaking innovation, offering an effective way to mitigate interference by adjusting the position of each MA within the transmitter or receiver region. This dynamic repositioning allows MAs to move away from high-interference zones to areas with minimal interference, thereby enhancing multiplexing gain and improving spectral efficiency (SE). In light of this, in this paper, we investigate an FD communication system by integrating it with MAs to evaluate and investigate its effectiveness in handling SI and intra-cell interference. Moreover, we utilize rate-splitting multiple access (RSMA) as our multiple access technique in both UL and DL transmission. To achieve the full potential of the system, we evaluated three different scenarios with FD-BS-RSMA with MAs where our goal is to maximize the total sum rate of the system by jointly optimizing the transmitting and receiving beamforming vectors, UL user equipment (UE) transmission power, MA positions, and common stream split ratio of RSMA while satisfying the minimum data rate requirements of all UEs, common stream constraint, power budget requirements of BS and UL UEs, and inter-MA distance. The formulated optimization problem is highly non-convex in nature, and hence, we propose a gradient-based meta-learning (GML) approach which can handle the non-convexity in a discrete manner by optimizing each variable in a different neural network.
A New Approach to Controlling Linear Dynamical Systems
We propose a new method for controlling linear dynamical systems under adversarial disturbances and cost functions. Our algorithm achieves a running time that scales polylogarithmically with the inverse of the stability margin, improving upon prior methods with polynomial dependence maintaining the same regret guarantees. The technique, which may be of independent interest, is based on a novel convex relaxation that approximates linear control policies using spectral filters constructed from the eigenvectors of a specific Hankel matrix.
An Exploration-free Method for a Linear Stochastic Bandit Driven by a Linear Gaussian Dynamical System
In stochastic multi-armed bandits, a major problem the learner faces is the trade-off between exploration and exploitation. Recently, exploration-free methods -- methods that commit to the action predicted to return the highest reward -- have been studied from the perspective of linear bandits. In this paper, we introduce a linear bandit setting where the reward is the output of a linear Gaussian dynamical system. Motivated by a problem encountered in hyperparameter optimization for reinforcement learning, where the number of actions is much higher than the number of training iterations, we propose Kalman filter Observability Dependent Exploration (KODE), an exploration-free method that utilizes the Kalman filter predictions to select actions. Our major contribution of this work is our analysis of the performance of the proposed method, which is dependent on the observability properties of the underlying linear Gaussian dynamical system. We evaluate KODE via two different metrics: regret, which is the cumulative expected difference between the highest possible reward and the reward sampled by KODE, and action alignment, which measures how closely KODE's chosen action aligns with the linear Gaussian dynamical system's state variable. To provide intuition on the performance, we prove that KODE implicitly encourages the learner to explore actions depending on the observability of the linear Gaussian dynamical system. This method is compared to several well-known stochastic multi-armed bandit algorithms to validate our theoretical results.
Sparsity-Promoting Reachability Analysis and Optimization of Constrained Zonotopes
The constrained zonotope is a polytopic set representation widely used for set-based analysis and control of dynamic systems. This paper considers the problem of tailoring a quadratic program (QP) optimization algorithm to the particular structure of constrained zonotopes and vice-versa. An alternating direction method of multipliers (ADMM) algorithm is presented that makes efficient use of the constrained zonotope structure. To increase the efficiency of the ADMM iterations, reachability calculations are presented that increase the sparsity of the matrices used to define a constrained zonotope. Numerical results show that the ADMM algorithm solves optimal control problems built using these reachability calculations faster than state-of-the-art QP solvers using conventional problem formulations, especially for large problems. Constrained zonotope reachability and optimization calculations are combined within a set-valued state estimation and moving horizon estimation algorithm, and a projection-based infeasibility detection method is presented for efficient safety verification of system trajectories.
Koopman-Based Methods for EV Climate Dynamics: Comparing eDMD Approaches
In this paper, data-driven algorithms based on Koopman Operator Theory are applied to identify and predict the nonlinear dynamics of a vapor compression system and cabin temperature in a light-duty electric vehicle. By leveraging a high-fidelity nonlinear HVAC model, the system behavior is captured in a lifted higher-dimensional state space, enabling a linear representation. A comparative analysis of three Koopman-based system identification approaches (polynomial libraries, radial basis functions (RBF), and neural network-based dictionary learning) is conducted. Accurate prediction of power consumption over entire driving cycles is demonstrated by incorporating power as a measurable output within the Koopman framework. The performance of each method is rigorously evaluated through simulations under various driving cycles and ambient conditions, highlighting their potential for real-time prediction and control in energy-efficient vehicle climate management. This study offers a scalable, data-driven methodology that can be extended to other complex nonlinear systems.
comment: 6 pages, conference
Controlled Social Learning: Altruism vs. Bias
We introduce a model of controlled sequential social learning in which a planner may pay a cost to adjust the private information structure of agents. The planner may seek to induce correct actions that are consistent with an unknown true state of the world (altruistic planner) or to induce a specific action the planner prefers (biased planner). Our framework presents a new optimization problem for social learning that combines dynamic programming with decentralized action choices and Bayesian belief updates. This sheds light on practical policy questions, such as how the socially optimal level of ad personalization changes according to current beliefs or how a political campaign may selectively illuminate or obfuscate the winning potential of its candidate among voters. We then prove the convexity of the value function and characterize the optimal policies of altruistic and biased planners, which attain desired tradeoffs between the costs they incur and the payoffs they earn from the choices they induce in the agents. Even for a planner who has equivalent knowledge to an individual, cannot lie or cherry-pick information, and is fully observable, we demonstrate that it is possible to dramatically influence social welfare in both positive and negative directions.
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, solutions to these PDEs often do not converge to a unique equilibrium, but instead converge to non-stationary trajectories existing in the nullspace of the spatial differential operator (e.g. $\frac{\partial^2}{\partial x^2}$). To analyse this convergence behaviour, in this paper, it is shown how such trajectories can be modeled for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any PDE state satisfying these boundary conditions can be uniquely expressed in terms of two components, existing in the image and the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$, respectively. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both state components. Finally, a notion of exponential stability is defined that requires only one of the state components to converge to zero, and it is shown how this stability notion can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that exponential stability can be verified with tight bounds on the rate of decay.
Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems
This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
Asymptotically efficient adaptive identification under saturated output observation
As saturated output observations are ubiquitous in practice, identifying stochastic systems with such nonlinear observations is a fundamental problem across various fields. This paper investigates the asymptotically efficient identification problem for stochastic dynamical systems with saturated output observations. In contrast to most of the existing results, our results do not need the commonly used but stringent conditions such as periodic or independent assumptions on the system signals, and thus do not exclude applications to stochastic feedback systems. To be specific, we introduce a new adaptive Newton-type algorithm on the negative log-likelihood of the partially observed samples using a two-step design technique. Under some general excitation data conditions, we show that the parameter estimate is strongly consistent and asymptotically normal by employing the stochastic Lyapunov function method and limit theories for martingales. Furthermore, we show that the mean square error of the estimates can achieve the Cramer-Rao bound asymptotically without resorting to i.i.d data assumptions. This indicates that the performance of the proposed algorithm is the best possible that one can expect in general. A numerical example is provided to illustrate the superiority of our new adaptive algorithm over the existing related ones in the literature.
comment: 28 pages
Showcasing Automated Vehicle Prototypes: A Collaborative Release Process to Manage and Communicate Risk SC
The development and deployment of automated vehicles pose major challenges for manufacturers to this day. Whilst central questions, like the issue of ensuring a sufficient level of safety, remain unanswered, prototypes are increasingly finding their way into public traffic in urban areas. Although safety concepts for prototypes are addressed in literature, published work hardly contains any dedicated considerations on a systematic release for their operation. In this paper, we propose an incremental release process for public demonstrations of prototypes' automated driving functionality. We explicate release process requirements, derive process design decisions, and define stakeholder tasks. Furthermore, we reflect on practical insights gained through implementing the release process as part of the UNICAR$agil$ research project, in which four prototypes based on novel vehicle concepts were built and demonstrated to the public. One observation is the improved quality of internal risk communication, achieved by dismantling information asymmetries between stakeholders. Design conflicts are disclosed - providing a contribution to nurture transparency and, thereby, supporting a valid basis for release decisions. We argue that our release process meets two important requirements, as the results suggest its applicability to the domain of automated driving and its scalability to different vehicle concepts and organizational structures.
comment: Published in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, September 24-27, 2024
Event-Triggered Polynomial Control for Trajectory Tracking by Unicycle Robots
This paper proposes an event-triggered polynomial control method for trajectory tracking by unicycle robots. In this method, each control input between two consecutive events is a polynomial and its coefficients are chosen to minimize the error in approximating a continuous-time control signal. We design an event-triggering rule that guarantees uniform ultimate boundedness of the tracking error and non-Zeno behavior of inter-event times. We illustrate our results through a suite of numerical simulations and experiments, which indicate that the number of events generated by the proposed controller is significantly less compared to that by a time-triggered controller or a event-triggered controller based on zero-order hold while guaranteeing similar tracking performance.
A 2-6 GHz Ultra-Wideband CMOS Transceiver for Radar Applications
This paper presents a low power, low cost transceiver architecture to implement radar-on-a-chip. The transceiver comprises of a full ultra-wideband (UWB) transmitter and a full UWB band receiver. A design methodology to maximize the tuning range of the voltage-controlled oscillator (VCO) is presented. At the transmitter side, a sub-harmonic mixer is used for signal up-conversion. The receiver low noise amplifier (LNA) has a 2 to 6 GHz input matching bandwidth with a power gain of 9 dB and a noise figure of 2.5 dB. The transceiver is implemented in Cadence EDA tools using 65nm CMOS technology. The system achieves a total dc power consumption of 50 mW. Good noise figure performance; good wide-band matching; gain; high level of integration; low power; low cost of the proposed UWB radar transceiver front-end make it a highly competitive SoC solution for low power UWB transceivers.
The Price of Simplicity: Analyzing Decoupled Policies for Multi-Location Inventory Control
What is the performance cost of using simple, decoupled control policies in inherently coupled systems? Motivated by industrial refrigeration systems, where centralized compressors exhibit economies of scale yet traditional control employs decoupled room-by-room temperature regulation, we address this question through the lens of multi-location inventory control. Here, a planner manages multiple inventories to meet stochastic demand while minimizing costs that are coupled through nonlinear ordering functions reflecting economies of scale. Our main contributions are: (i) a surprising equivalence result showing that optimal stationary base-stock levels for individual locations remain unchanged despite the coupling when restricting attention to decoupled strategies; (ii) tight performance bounds for simple decoupled policies relative to optimal coupled policies, revealing that the worst-case ratio depends primarily on the degree of nonlinearity in the cost function and scales with the number of locations for systems with fixed costs; and (iii) analysis of practical online algorithms that achieve competitive performance without solving complex dynamic programs. Numerical simulations demonstrate that while decoupled policies significantly outperform their worst-case guarantees in typical scenarios, they still exhibit meaningful suboptimality compared to fully coordinated strategies. These results provide actionable guidance for system operators navigating the trade-off between control complexity and operational efficiency in coupled systems.
Cooperative Deterministic Learning-Based Formation Control for a Group of Nonlinear Mechanical Systems Under Complete Uncertainty
In this work we address the formation control problem for a group of nonlinear mechanical systems with complete uncertain dynamics under a virtual leader-following framework. We propose a novel cooperative deterministic learning-based adaptive formation control algorithm. This algorithm is designed by utilizing artificial neural networks to simultaneously achieve formation tracking control and locally-accurate identification/learning of the nonlinear uncertain dynamics of the considered group of mechanical systems. To demonstrate the practicality and verify the effectiveness of the proposed results, numerical simulations have been conducted.
comment: 8 pages, 6 figures, Conference
Safety Filter for Robust Disturbance Rejection via Online Optimization
Disturbance rejection in high-precision control applications can be significantly improved upon via online convex optimization (OCO). This includes classical techniques such as recursive least squares (RLS) and more recent, regret-based formulations. However, these methods can cause instabilities in the presence of model uncertainty. This paper introduces a safety filter for systems with OCO in the form of adaptive finite impulse response (FIR) filtering to ensure robust disturbance rejection. The safety filter enforces a robust stability constraint on the FIR coefficients while minimally altering the OCO command in the $\infty$-norm cost. Additionally, we show that the induced $\ell_\infty$-norm allows for easy online implementation of the safety filter by directly limiting the OCO command. The constraint can be tuned to trade off robustness and performance. We provide a simple example to demonstrate the safety filter.
comment: Accepted to the 2025 European Control Conference. This paper builds on the work done in arXiv:2405.07037 and adds to the appendix in arXiv:2411.09582
Model Reduction of a Flexible Nonsmooth Oscillator Recovers its Entire Bifurcation Structure
We study the reduced order modeling of a nonlinear flexible oscillator in which a Bernoulli-Euler beam is subjected to a position-triggered kick force and a piecewise restoring force at its tip. The resulting nonsmooth boundary conditions can generally be expected to excite many degrees of freedom. The system is modeled as piecewise linear with different boundary conditions determining different regions of a hybrid phase space. With kick strength as parameter, its bifurcation diagram is found to exhibit a range of periodic and chaotic behaviors. Proper orthogonal decomposition (POD) is used to estimate the system's intrinsic dimensionality. However, conventional POD's purely statistical analysis of spatial covariance does not guarantee accuracy of reduced order models (ROMs). We therefore augment POD by employing a previously-developed energy closure criterion that selects ROM dimension by ensuring approximate energy balance on the reduced subspace. This physics-based criterion yields accurate ROMs with 8 degrees of freedom. Remarkably, we find that ROMs formulated at particular values of the kick strength can nevertheless reconstruct the entire bifurcation structure of the original nonlinear structural system. We thus show that energy closure analysis reliably yields effective dimension estimates and, thereby, ROMs that are robust across stability transitions, including even period doubling cascades to chaos.
comment: 30 pages, 8 figures
Robotics
Unified World Models: Coupling Video and Action Diffusion for Pretraining on Large Robotic Datasets
Imitation learning has emerged as a promising approach towards building generalist robots. However, scaling imitation learning for large robot foundation models remains challenging due to its reliance on high-quality expert demonstrations. Meanwhile, large amounts of video data depicting a wide range of environments and diverse behaviors are readily available. This data provides a rich source of information about real-world dynamics and agent-environment interactions. Leveraging this data directly for imitation learning, however, has proven difficult due to the lack of action annotation required for most contemporary methods. In this work, we present Unified World Models (UWM), a framework that allows for leveraging both video and action data for policy learning. Specifically, a UWM integrates an action diffusion process and a video diffusion process within a unified transformer architecture, where independent diffusion timesteps govern each modality. We show that by simply controlling each diffusion timestep, UWM can flexibly represent a policy, a forward dynamics, an inverse dynamics, and a video generator. Through simulated and real-world experiments, we show that: (1) UWM enables effective pretraining on large-scale multitask robot datasets with both dynamics and action predictions, resulting in more generalizable and robust policies than imitation learning, (2) UWM naturally facilitates learning from action-free video data through independent control of modality-specific diffusion timesteps, further improving the performance of finetuned policies. Our results suggest that UWM offers a promising step toward harnessing large, heterogeneous datasets for scalable robot learning, and provides a simple unification between the often disparate paradigms of imitation learning and world modeling. Videos and code are available at https://weirdlabuw.github.io/uwm/.
BT-ACTION: A Test-Driven Approach for Modular Understanding of User Instruction Leveraging Behaviour Trees and LLMs
Natural language instructions are often abstract and complex, requiring robots to execute multiple subtasks even for seemingly simple queries. For example, when a user asks a robot to prepare avocado toast, the task involves several sequential steps. Moreover, such instructions can be ambiguous or infeasible for the robot or may exceed the robot's existing knowledge. While Large Language Models (LLMs) offer strong language reasoning capabilities to handle these challenges, effectively integrating them into robotic systems remains a key challenge. To address this, we propose BT-ACTION, a test-driven approach that combines the modular structure of Behavior Trees (BT) with LLMs to generate coherent sequences of robot actions for following complex user instructions, specifically in the context of preparing recipes in a kitchen-assistance setting. We evaluated BT-ACTION in a comprehensive user study with 45 participants, comparing its performance to direct LLM prompting. Results demonstrate that the modular design of BT-ACTION helped the robot make fewer mistakes and increased user trust, and participants showed a significant preference for the robot leveraging BT-ACTION. The code is publicly available at https://github.com/1Eggbert7/BT_LLM.
Robot-Led Vision Language Model Wellbeing Assessment of Children
This study presents a novel robot-led approach to assessing children's mental wellbeing using a Vision Language Model (VLM). Inspired by the Child Apperception Test (CAT), the social robot NAO presented children with pictorial stimuli to elicit their verbal narratives of the images, which were then evaluated by a VLM in accordance with CAT assessment guidelines. The VLM's assessments were systematically compared to those provided by a trained psychologist. The results reveal that while the VLM demonstrates moderate reliability in identifying cases with no wellbeing concerns, its ability to accurately classify assessments with clinical concern remains limited. Moreover, although the model's performance was generally consistent when prompted with varying demographic factors such as age and gender, a significantly higher false positive rate was observed for girls, indicating potential sensitivity to gender attribute. These findings highlight both the promise and the challenges of integrating VLMs into robot-led assessments of children's wellbeing.
Autonomous Human-Robot Interaction via Operator Imitation
Teleoperated robotic characters can perform expressive interactions with humans, relying on the operators' experience and social intuition. In this work, we propose to create autonomous interactive robots, by training a model to imitate operator data. Our model is trained on a dataset of human-robot interactions, where an expert operator is asked to vary the interactions and mood of the robot, while the operator commands as well as the pose of the human and robot are recorded. Our approach learns to predict continuous operator commands through a diffusion process and discrete commands through a classifier, all unified within a single transformer architecture. We evaluate the resulting model in simulation and with a user study on the real system. We show that our method enables simple autonomous human-robot interactions that are comparable to the expert-operator baseline, and that users can recognize the different robot moods as generated by our model. Finally, we demonstrate a zero-shot transfer of our model onto a different robotic platform with the same operator interface.
A Planning Framework for Stable Robust Multi-Contact Manipulation
While modeling multi-contact manipulation as a quasi-static mechanical process transitioning between different contact equilibria, we propose formulating it as a planning and optimization problem, explicitly evaluating (i) contact stability and (ii) robustness to sensor noise. Specifically, we conduct a comprehensive study on multi-manipulator control strategies, focusing on dual-arm execution in a planar peg-in-hole task and extending it to the Multi-Manipulator Multiple Peg-in-Hole (MMPiH) problem to explore increased task complexity. Our framework employs Dynamic Movement Primitives (DMPs) to parameterize desired trajectories and Black-Box Optimization (BBO) with a comprehensive cost function incorporating friction cone constraints, squeeze forces, and stability considerations. By integrating parallel scenario training, we enhance the robustness of the learned policies. To evaluate the friction cone cost in experiments, we test the optimal trajectories computed for various contact surfaces, i.e., with different coefficients of friction. The stability cost is analytical explained and tested its necessity in simulation. The robustness performance is quantified through variations of hole pose and chamfer size in simulation and experiment. Results demonstrate that our approach achieves consistently high success rates in both the single peg-in-hole and multiple peg-in-hole tasks, confirming its effectiveness and generalizability. The video can be found at https://youtu.be/IU0pdnSd4tE.
A Memory-Augmented LLM-Driven Method for Autonomous Merging of 3D Printing Work Orders
With the rapid development of 3D printing, the demand for personalized and customized production on the manufacturing line is steadily increasing. Efficient merging of printing workpieces can significantly enhance the processing efficiency of the production line. Addressing the challenge, a Large Language Model (LLM)-driven method is established in this paper for the autonomous merging of 3D printing work orders, integrated with a memory-augmented learning strategy. In industrial scenarios, both device and order features are modeled into LLM-readable natural language prompt templates, and develop an order-device matching tool along with a merging interference checking module. By incorporating a self-memory learning strategy, an intelligent agent for autonomous order merging is constructed, resulting in improved accuracy and precision in order allocation. The proposed method effectively leverages the strengths of LLMs in industrial applications while reducing hallucination.
comment: 6 pages, 5 figures
Industrial Internet Robot Collaboration System and Edge Computing Optimization
In a complex environment, for a mobile robot to safely and collision - free avoid all obstacles, it poses high requirements for its intelligence level. Given that the information such as the position and geometric characteristics of obstacles is random, the control parameters of the robot, such as velocity and angular velocity, are also prone to random deviations. To address this issue in the framework of the Industrial Internet Robot Collaboration System, this paper proposes a global path control scheme for mobile robots based on deep learning. First of all, the dynamic equation of the mobile robot is established. According to the linear velocity and angular velocity of the mobile robot, its motion behaviors are divided into obstacle - avoidance behavior, target - turning behavior, and target approaching behavior. Subsequently, the neural network method in deep learning is used to build a global path planning model for the robot. On this basis, a fuzzy controller is designed with the help of a fuzzy control algorithm to correct the deviations that occur during path planning, thereby achieving optimized control of the robot's global path. In addition, considering edge computing optimization, the proposed model can process local data at the edge device, reducing the communication burden between the robot and the central server, and improving the real time performance of path planning. The experimental results show that for the mobile robot controlled by the research method in this paper, the deviation distance of the path angle is within 5 cm, the deviation convergence can be completed within 10 ms, and the planned path is shorter. This indicates that the proposed scheme can effectively improve the global path planning ability of mobile robots in the industrial Internet environment and promote the collaborative operation of robots through edge computing optimization.
Multimodal Fusion and Vision-Language Models: A Survey for Robot Vision
Robot vision has greatly benefited from advancements in multimodal fusion techniques and vision-language models (VLMs). We systematically review the applications of multimodal fusion in key robotic vision tasks, including semantic scene understanding, simultaneous localization and mapping (SLAM), 3D object detection, navigation and localization, and robot manipulation. We compare VLMs based on large language models (LLMs) with traditional multimodal fusion methods, analyzing their advantages, limitations, and synergies. Additionally, we conduct an in-depth analysis of commonly used datasets, evaluating their applicability and challenges in real-world robotic scenarios. Furthermore, we identify critical research challenges such as cross-modal alignment, efficient fusion strategies, real-time deployment, and domain adaptation, and propose future research directions, including self-supervised learning for robust multimodal representations, transformer-based fusion architectures, and scalable multimodal frameworks. Through a comprehensive review, comparative analysis, and forward-looking discussion, we provide a valuable reference for advancing multimodal perception and interaction in robotic vision. A comprehensive list of studies in this survey is available at https://github.com/Xiaofeng-Han-Res/MF-RV.
comment: 27 pages, 11 figures, survey paper submitted to Information Fusion
Adaptive path planning for efficient object search by UAVs in agricultural fields
This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field, when the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with high number of objects. Overall, the presented adaptive path planner allowed to find non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.
CHARMS: Cognitive Hierarchical Agent with Reasoning and Motion Styles
To address the current challenges of low intelligence and simplistic vehicle behavior modeling in autonomous driving simulation scenarios, this paper proposes the Cognitive Hierarchical Agent with Reasoning and Motion Styles (CHARMS). The model can reason about the behavior of other vehicles like a human driver and respond with different decision-making styles, thereby improving the intelligence and diversity of the surrounding vehicles in the driving scenario. By introducing the Level-k behavioral game theory, the paper models the decision-making process of human drivers and employs deep reinforcement learning to train the models with diverse decision styles, simulating different reasoning approaches and behavioral characteristics. Building on the Poisson cognitive hierarchy theory, this paper also presents a novel driving scenario generation method. The method controls the proportion of vehicles with different driving styles in the scenario using Poisson and binomial distributions, thus generating controllable and diverse driving environments. Experimental results demonstrate that CHARMS not only exhibits superior decision-making capabilities as ego vehicles, but also generates more complex and diverse driving scenarios as surrounding vehicles. We will release code for CHARMS at https://github.com/WUTAD-Wjy/CHARMS.
Estimating Scene Flow in Robot Surroundings with Distributed Miniaturized Time-of-Flight Sensors
Tracking motions of humans or objects in the surroundings of the robot is essential to improve safe robot motions and reactions. In this work, we present an approach for scene flow estimation from low-density and noisy point clouds acquired from miniaturized Time of Flight (ToF) sensors distributed on the robot body. The proposed method clusters points from consecutive frames and applies Iterative Closest Point (ICP) to estimate a dense motion flow, with additional steps introduced to mitigate the impact of sensor noise and low-density data points. Specifically, we employ a fitness-based classification to distinguish between stationary and moving points and an inlier removal strategy to refine geometric correspondences. The proposed approach is validated in an experimental setup where 24 ToF are used to estimate the velocity of an object moving at different controlled speeds. Experimental results show that the method consistently approximates the direction of the motion and its magnitude with an error which is in line with sensor noise.
comment: 7 pages, 5 figures, 2 tables, 1 algorithm
On learning racing policies with reinforcement learning
Fully autonomous vehicles promise enhanced safety and efficiency. However, ensuring reliable operation in challenging corner cases requires control algorithms capable of performing at the vehicle limits. We address this requirement by considering the task of autonomous racing and propose solving it by learning a racing policy using Reinforcement Learning (RL). Our approach leverages domain randomization, actuator dynamics modeling, and policy architecture design to enable reliable and safe zero-shot deployment on a real platform. Evaluated on the F1TENTH race car, our RL policy not only surpasses a state-of-the-art Model Predictive Control (MPC), but, to the best of our knowledge, also represents the first instance of an RL policy outperforming expert human drivers in RC racing. This work identifies the key factors driving this performance improvement, providing critical insights for the design of robust RL-based control strategies for autonomous vehicles.
All-day Depth Completion via Thermal-LiDAR Fusion
Depth completion, which estimates dense depth from sparse LiDAR and RGB images, has demonstrated outstanding performance in well-lit conditions. However, due to the limitations of RGB sensors, existing methods often struggle to achieve reliable performance in harsh environments, such as heavy rain and low-light conditions. Furthermore, we observe that ground truth depth maps often suffer from large missing measurements in adverse weather conditions such as heavy rain, leading to insufficient supervision. In contrast, thermal cameras are known for providing clear and reliable visibility in such conditions, yet research on thermal-LiDAR depth completion remains underexplored. Moreover, the characteristics of thermal images, such as blurriness, low contrast, and noise, bring unclear depth boundary problems. To address these challenges, we first evaluate the feasibility and robustness of thermal-LiDAR depth completion across diverse lighting (eg., well-lit, low-light), weather (eg., clear-sky, rainy), and environment (eg., indoor, outdoor) conditions, by conducting extensive benchmarks on the MS$^2$ and ViViD datasets. In addition, we propose a framework that utilizes COntrastive learning and Pseudo-Supervision (COPS) to enhance depth boundary clarity and improve completion accuracy by leveraging a depth foundation model in two key ways. First, COPS enforces a depth-aware contrastive loss between different depth points by mining positive and negative samples using a monocular depth foundation model to sharpen depth boundaries. Second, it mitigates the issue of incomplete supervision from ground truth depth maps by leveraging foundation model predictions as dense depth priors. We also provide in-depth analyses of the key challenges in thermal-LiDAR depth completion to aid in understanding the task and encourage future research.
X-Capture: An Open-Source Portable Device for Multi-Sensory Learning
Understanding objects through multiple sensory modalities is fundamental to human perception, enabling cross-sensory integration and richer comprehension. For AI and robotic systems to replicate this ability, access to diverse, high-quality multi-sensory data is critical. Existing datasets are often limited by their focus on controlled environments, simulated objects, or restricted modality pairings. We introduce X-Capture, an open-source, portable, and cost-effective device for real-world multi-sensory data collection, capable of capturing correlated RGBD images, tactile readings, and impact audio. With a build cost under $1,000, X-Capture democratizes the creation of multi-sensory datasets, requiring only consumer-grade tools for assembly. Using X-Capture, we curate a sample dataset of 3,000 total points on 500 everyday objects from diverse, real-world environments, offering both richness and variety. Our experiments demonstrate the value of both the quantity and the sensory breadth of our data for both pretraining and fine-tuning multi-modal representations for object-centric tasks such as cross-sensory retrieval and reconstruction. X-Capture lays the groundwork for advancing human-like sensory representations in AI, emphasizing scalability, accessibility, and real-world applicability.
comment: Project page: https://xcapture.github.io/
MinkOcc: Towards real-time label-efficient semantic occupancy prediction
Developing 3D semantic occupancy prediction models often relies on dense 3D annotations for supervised learning, a process that is both labor and resource-intensive, underscoring the need for label-efficient or even label-free approaches. To address this, we introduce MinkOcc, a multi-modal 3D semantic occupancy prediction framework for cameras and LiDARs that proposes a two-step semi-supervised training procedure. Here, a small dataset of explicitly 3D annotations warm-starts the training process; then, the supervision is continued by simpler-to-annotate accumulated LiDAR sweeps and images -- semantically labelled through vision foundational models. MinkOcc effectively utilizes these sensor-rich supervisory cues and reduces reliance on manual labeling by 90\% while maintaining competitive accuracy. In addition, the proposed model incorporates information from LiDAR and camera data through early fusion and leverages sparse convolution networks for real-time prediction. With its efficiency in both supervision and computation, we aim to extend MinkOcc beyond curated datasets, enabling broader real-world deployment of 3D semantic occupancy prediction in autonomous driving.
comment: 8 pages
Bipedal Robust Walking on Uneven Footholds: Piecewise Slope LIPM with Discrete Model Predictive Control
This study presents an enhanced theoretical formulation for bipedal hierarchical control frameworks under uneven terrain conditions. Specifically, owing to the inherent limitations of the Linear Inverted Pendulum Model (LIPM) in handling terrain elevation variations, we develop a Piecewise Slope LIPM (PS-LIPM). This innovative model enables dynamic adjustment of the Center of Mass (CoM) height to align with topographical undulations during single-step cycles. Another contribution is proposed a generalized Angular Momentum-based LIPM (G-ALIP) for CoM velocity compensation using Centroidal Angular Momentum (CAM) regulation. Building upon these advancements, we derive the DCM step-to-step dynamics for Model Predictive Control MPC formulation, enabling simultaneous optimization of step position and step duration. A hierarchical control framework integrating MPC with a Whole-Body Controller (WBC) is implemented for bipedal locomotion across uneven stepping stones. The results validate the efficacy of the proposed hierarchical control framework and the theoretical formulation.
Adapting World Models with Latent-State Dynamics Residuals
Simulation-to-reality reinforcement learning (RL) faces the critical challenge of reconciling discrepancies between simulated and real-world dynamics, which can severely degrade agent performance. A promising approach involves learning corrections to simulator forward dynamics represented as a residual error function, however this operation is impractical with high-dimensional states such as images. To overcome this, we propose ReDRAW, a latent-state autoregressive world model pretrained in simulation and calibrated to target environments through residual corrections of latent-state dynamics rather than of explicit observed states. Using this adapted world model, ReDRAW enables RL agents to be optimized with imagined rollouts under corrected dynamics and then deployed in the real world. In multiple vision-based MuJoCo domains and a physical robot visual lane-following task, ReDRAW effectively models changes to dynamics and avoids overfitting in low data regimes where traditional transfer methods fail.
comment: 15 pages, 11 figures. Project website at https://redraw.jblanier.net/
Designing Effective Human-Swarm Interaction Interfaces: Insights from a User Study on Task Performance
In this paper, we present a systematic method of design for human-swarm interaction interfaces, combining theoretical insights with empirical evaluation. We first derive ten design principles from existing literature, apply them to key information dimensions identified through goal-directed task analysis and developed a tablet-based interface for a target search task. We then conducted a user study with 31 participants where humans were required to guide a robotic swarm to a target in the presence of three types of hazards that pose a risk to the robots: Distributed, Moving, and Spreading. Performance was measured based on the proximity of the robots to the target and the number of deactivated robots at the end of the task. Results indicate that at least one robot was bought closer to the target in 98% of tasks, demonstrating the interface's success fulfilling the primary objective of the task. Additionally, in nearly 67% of tasks, more than 50% of the robots reached the target. Moreover, particularly better performance was noted in moving hazards. Additionally, the interface appeared to help minimize robot deactivation, as evidenced by nearly 94% of tasks where participants managed to keep more than 50% of the robots active, ensuring that most of the swarm remained operational. However, its effectiveness varied across hazards, with robot deactivation being lowest in distributed hazard scenarios, suggesting that the interface provided the most support in these conditions.
comment: 8 pages, 4 figures, 5 tables
Model Predictive Control with Visibility Graphs for Humanoid Path Planning and Tracking Against Adversarial Opponents ICRA
In this paper we detail the methods used for obstacle avoidance, path planning, and trajectory tracking that helped us win the adult-sized, autonomous humanoid soccer league in RoboCup 2024. Our team was undefeated for all seated matches and scored 45 goals over 6 games, winning the championship game 6 to 1. During the competition, a major challenge for collision avoidance was the measurement noise coming from bipedal locomotion and a limited field of view (FOV). Furthermore, obstacles would sporadically jump in and out of our planned trajectory. At times our estimator would place our robot inside a hard constraint. Any planner in this competition must also be be computationally efficient enough to re-plan and react in real time. This motivated our approach to trajectory generation and tracking. In many scenarios long-term and short-term planning is needed. To efficiently find a long-term general path that avoids all obstacles we developed DAVG (Dynamic Augmented Visibility Graphs). DAVG focuses on essential path planning by setting certain regions to be active based on obstacles and the desired goal pose. By augmenting the states in the graph, turning angles are considered, which is crucial for a large soccer playing robot as turning may be more costly. A trajectory is formed by linearly interpolating between discrete points generated by DAVG. A modified version of model predictive control (MPC) is used to then track this trajectory called cf-MPC (Collision-Free MPC). This ensures short-term planning. Without having to switch formulations cf-MPC takes into account the robot dynamics and collision free constraints. Without a hard switch the control input can smoothly transition in cases where the noise places our robot inside a constraint boundary. The nonlinear formulation runs at approximately 120 Hz, while the quadratic version achieves around 400 Hz.
comment: This is a preprint version. This paper has been accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025. The final published version will be available on IEEE Xplore
Statics of continuum planar grasping
Continuum robotic grasping, inspired by biological appendages such as octopus arms and elephant trunks, provides a versatile and adaptive approach to object manipulation. Unlike conventional rigid-body grasping, continuum robots leverage distributed compliance and whole-body contact to achieve robust and dexterous grasping. This paper presents a control-theoretic framework for analyzing the statics of continuous contact with a planar object. The governing equations of static equilibrium of the object are formulated as a linear control system, where the distributed contact forces act as control inputs. To optimize the grasping performance, a constrained optimal control problem is posed to minimize contact forces required to achieve a static grasp, with solutions derived using the Pontryagin Maximum Principle. Furthermore, two optimization problems are introduced: (i) for assigning a measure to the quality of a particular grasp, which generalizes a (rigid-body) grasp quality metric in the continuum case, and (ii) for finding the best grasping configuration that maximizes the continuum grasp quality. Several numerical results are also provided to elucidate our methods.
Push-Grasp Policy Learning Using Equivariant Models and Grasp Score Optimization
Goal-conditioned robotic grasping in cluttered environments remains a challenging problem due to occlusions caused by surrounding objects, which prevent direct access to the target object. A promising solution to mitigate this issue is combining pushing and grasping policies, enabling active rearrangement of the scene to facilitate target retrieval. However, existing methods often overlook the rich geometric structures inherent in such tasks, thus limiting their effectiveness in complex, heavily cluttered scenarios. To address this, we propose the Equivariant Push-Grasp Network, a novel framework for joint pushing and grasping policy learning. Our contributions are twofold: (1) leveraging SE(2)-equivariance to improve both pushing and grasping performance and (2) a grasp score optimization-based training strategy that simplifies the joint learning process. Experimental results show that our method improves grasp success rates by 49% in simulation and by 35% in real-world scenarios compared to strong baselines, representing a significant advancement in push-grasp policy learning.
How to Adapt Control Barrier Functions? A Learning-Based Approach with Applications to a VTOL Quadplane
In this paper, we present a novel theoretical framework for online adaptation of Control Barrier Function (CBF) parameters, i.e., of the class K functions included in the CBF condition, under input constraints. We introduce the concept of locally validated CBF parameters, which are adapted online to guarantee finite-horizon safety, based on conditions derived from Nagumo's theorem and tangent cone analysis. To identify these parameters online, we integrate a learning-based approach with an uncertainty-aware verification process that account for both epistemic and aleatoric uncertainties inherent in neural network predictions. Our method is demonstrated on a VTOL quadplane model during challenging transition and landing maneuvers, showcasing enhanced performance while maintaining safety.
comment: Project page: https://www.taekyung.me/how-to-adapt-cbf
AuDeRe: Automated Strategy Decision and Realization in Robot Planning and Control via LLMs
Recent advancements in large language models (LLMs) have shown significant promise in various domains, especially robotics. However, most prior LLM-based work in robotic applications either directly predicts waypoints or applies LLMs within fixed tool integration frameworks, offering limited flexibility in exploring and configuring solutions best suited to different tasks. In this work, we propose a framework that leverages LLMs to select appropriate planning and control strategies based on task descriptions, environmental constraints, and system dynamics. These strategies are then executed by calling the available comprehensive planning and control APIs. Our approach employs iterative LLM-based reasoning with performance feedback to refine the algorithm selection. We validate our approach through extensive experiments across tasks of varying complexity, from simple tracking to complex planning scenarios involving spatiotemporal constraints. The results demonstrate that using LLMs to determine planning and control strategies from natural language descriptions significantly enhances robotic autonomy while reducing the need for extensive manual tuning and expert knowledge. Furthermore, our framework maintains generalizability across different tasks and notably outperforms baseline methods that rely on LLMs for direct trajectory, control sequence, or code generation.
comment: 8 pages, 14 figures, submitted for CDC 2025 invited session on Large Language Models (LLMs) and Control
Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints
Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. Our contributions are as follows: 1) We propose an online method, building on our previous work "gatekeeper", to guarantee safety and satisfy budget constraints of the system trajectory at all times throughout a mission. 2) Next, we prove that our algorithm is recursively feasible and correct. 3) Finally, instead of using a heuristically designed backup controller, we propose a sampling-based method to construct backup trajectories that both minimize resource expenditure and reach budget renewal sets, in which path constraints are satisfied and the constrained resources are renewed. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.
comment: Code: https://github.com/dcherenson/gatekeeper_budget_constraints
What People Share With a Robot When Feeling Lonely and Stressed and How It Helps Over Time
Loneliness and stress are prevalent among young adults and are linked to significant psychological and health-related consequences. Social robots may offer a promising avenue for emotional support, especially when considering the ongoing advancements in conversational AI. This study investigates how repeated interactions with a social robot influence feelings of loneliness and perceived stress, and how such feelings are reflected in the themes of user disclosures towards the robot. Participants engaged in a five-session robot-led intervention, where a large language model powered QTrobot facilitated structured conversations designed to support cognitive reappraisal. Results from linear mixed-effects models show significant reductions in both loneliness and perceived stress over time. Additionally, semantic clustering of 560 user disclosures towards the robot revealed six distinct conversational themes. Results from a Kruskal-Wallis H-test demonstrate that participants reporting higher loneliness and stress more frequently engaged in socially focused disclosures, such as friendship and connection, whereas lower distress was associated with introspective and goal-oriented themes (e.g., academic ambitions). By exploring both how the intervention affects well-being, as well as how well-being shapes the content of robot-directed conversations, we aim to capture the dynamic nature of emotional support in huma-robot interaction.
Distributionally Robust Predictive Runtime Verification under Spatio-Temporal Logic Specifications
Cyber-physical systems designed in simulators, often consisting of multiple interacting agents, behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of an f-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work [1, 2] where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime and robust conformal prediction to obtain probabilistic guarantees by accounting for distribution shifts. Building on [1], we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift.
comment: arXiv admin note: substantial text overlap with arXiv:2311.09482
Beyond Non-Expert Demonstrations: Outcome-Driven Action Constraint for Offline Reinforcement Learning
We address the challenge of offline reinforcement learning using realistic data, specifically non-expert data collected through sub-optimal behavior policies. Under such circumstance, the learned policy must be safe enough to manage distribution shift while maintaining sufficient flexibility to deal with non-expert (bad) demonstrations from offline data.To tackle this issue, we introduce a novel method called Outcome-Driven Action Flexibility (ODAF), which seeks to reduce reliance on the empirical action distribution of the behavior policy, hence reducing the negative impact of those bad demonstrations.To be specific, a new conservative reward mechanism is developed to deal with distribution shift by evaluating actions according to whether their outcomes meet safety requirements - remaining within the state support area, rather than solely depending on the actions' likelihood based on offline data.Besides theoretical justification, we provide empirical evidence on widely used MuJoCo and various maze benchmarks, demonstrating that our ODAF method, implemented using uncertainty quantification techniques, effectively tolerates unseen transitions for improved "trajectory stitching," while enhancing the agent's ability to learn from realistic non-expert data.
SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models
Reasoning about motion and space is a fundamental cognitive capability that is required by multiple real-world applications. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only focus on static spatial relationships, and not dynamic awareness of motion and space, i.e., reasoning about the effect of egocentric and object motions on spatial relationships. Manually annotating such object and camera movements is expensive. Hence, we introduce SAT, a simulated spatial aptitude training dataset comprising both static and dynamic spatial reasoning across 175K question-answer (QA) pairs and 20K scenes. Complementing this, we also construct a small (150 image-QAs) yet challenging dynamic spatial test set using real-world images. Leveraging our SAT datasets and 6 existing static spatial benchmarks, we systematically investigate what improves both static and dynamic spatial awareness. Our results reveal that simulations are surprisingly effective at imparting spatial aptitude to MLMs that translate to real images. We show that perfect annotations in simulation are more effective than existing approaches of pseudo-annotating real images. For instance, SAT training improves a LLaVA-13B model by an average 11% and a LLaVA-Video-7B model by an average 8% on multiple spatial benchmarks, including our real-image dynamic test set and spatial reasoning on long videos -- even outperforming some large proprietary models. While reasoning over static relationships improves with synthetic training data, there is still considerable room for improvement for dynamic reasoning questions.
comment: Project webpage: https://arijitray.com/SAT/
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.
GRACE: Generating Socially Appropriate Robot Actions Leveraging LLMs and Human Explanations ICRA
When operating in human environments, robots need to handle complex tasks while both adhering to social norms and accommodating individual preferences. For instance, based on common sense knowledge, a household robot can predict that it should avoid vacuuming during a social gathering, but it may still be uncertain whether it should vacuum before or after having guests. In such cases, integrating common-sense knowledge with human preferences, often conveyed through human explanations, is fundamental yet a challenge for existing systems. In this paper, we introduce GRACE, a novel approach addressing this while generating socially appropriate robot actions. GRACE leverages common sense knowledge from LLMs, and it integrates this knowledge with human explanations through a generative network. The bidirectional structure of GRACE enables robots to refine and enhance LLM predictions by utilizing human explanations and makes robots capable of generating such explanations for human-specified actions. Our evaluations show that integrating human explanations boosts GRACE's performance, where it outperforms several baselines and provides sensible explanations.
comment: 2025 IEEE International Conference on Robotics & Automation (ICRA), Supplementary video: https://youtu.be/GTNCC1GkiQ4
Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness
Robots operating in complex and unknown environments frequently require geometric-semantic representations of the environment to safely perform their tasks. While inferring the environment, they must account for many possible scenarios when planning future actions. Since objects' class types are discrete and the robot's self-pose and the objects' poses are continuous, the environment can be represented by a hybrid discrete-continuous belief which is updated according to models and incoming data. Prior probabilities and observation models representing the environment can be learned from data using deep learning algorithms. Such models often couple environmental semantic and geometric properties. As a result, semantic variables are interconnected, causing semantic state space dimensionality to increase exponentially. In this paper, we consider planning under uncertainty using partially observable Markov decision processes (POMDPs) with hybrid semantic-geometric beliefs. The models and priors consider the coupling between semantic and geometric variables. Within POMDP, we introduce the concept of semantically aware safety. Obtaining representative samples of the theoretical hybrid belief, required for estimating the value function, is very challenging. As a key contribution, we develop a novel form of the hybrid belief and leverage it to sample representative samples. We show that under certain conditions, the value function and probability of safety can be calculated efficiently with an explicit expectation over all possible semantic mappings. Our simulations show that our estimates of the objective function and probability of safety achieve similar levels of accuracy compared to estimators that run exhaustively on the entire semantic state-space using samples from the theoretical hybrid belief. Nevertheless, the complexity of our estimators is polynomial rather than exponential.
comment: 18 pages, 11 figures
MI-HGNN: Morphology-Informed Heterogeneous Graph Neural Network for Legged Robot Contact Perception ICRA 2025
We present a Morphology-Informed Heterogeneous Graph Neural Network (MI-HGNN) for learning-based contact perception. The architecture and connectivity of the MI-HGNN are constructed from the robot morphology, in which nodes and edges are robot joints and links, respectively. By incorporating the morphology-informed constraints into a neural network, we improve a learning-based approach using model-based knowledge. We apply the proposed MI-HGNN to two contact perception problems, and conduct extensive experiments using both real-world and simulated data collected using two quadruped robots. Our experiments demonstrate the superiority of our method in terms of effectiveness, generalization ability, model efficiency, and sample efficiency. Our MI-HGNN improved the performance of a state-of-the-art model that leverages robot morphological symmetry by 8.4% with only 0.21% of its parameters. Although MI-HGNN is applied to contact perception problems for legged robots in this work, it can be seamlessly applied to other types of multi-body dynamical systems and has the potential to improve other robot learning frameworks. Our code is made publicly available at https://github.com/lunarlab-gatech/Morphology-Informed-HGNN.
comment: 6 pages, 5 figures; This work has been accepted to ICRA 2025 and will soon be published
ArtFormer: Controllable Generation of Diverse 3D Articulated Objects CVPR 2025
This paper presents a novel framework for modeling and conditional generation of 3D articulated objects. Troubled by flexibility-quality tradeoffs, existing methods are often limited to using predefined structures or retrieving shapes from static datasets. To address these challenges, we parameterize an articulated object as a tree of tokens and employ a transformer to generate both the object's high-level geometry code and its kinematic relations. Subsequently, each sub-part's geometry is further decoded using a signed-distance-function (SDF) shape prior, facilitating the synthesis of high-quality 3D shapes. Our approach enables the generation of diverse objects with high-quality geometry and varying number of parts. Comprehensive experiments on conditional generation from text descriptions demonstrate the effectiveness and flexibility of our method.
comment: CVPR 2025. impl. repo: https://github.com/ShuYuMo2003/ArtFormer
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting
Efficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5$\times$ speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
R+X: Retrieval and Execution from Everyday Human Videos ICRA
We present R+X, a framework which enables robots to learn skills from long, unlabelled, first-person videos of humans performing everyday tasks. Given a language command from a human, R+X first retrieves short video clips containing relevant behaviour, and then executes the skill by conditioning an in-context imitation learning method (KAT) on this behaviour. By leveraging a Vision Language Model (VLM) for retrieval, R+X does not require any manual annotation of the videos, and by leveraging in-context learning for execution, robots can perform commanded skills immediately, without requiring a period of training on the retrieved videos. Experiments studying a range of everyday household tasks show that R+X succeeds at translating unlabelled human videos into robust robot skills, and that R+X outperforms several recent alternative methods. Videos and code are available at https://www.robot-learning.uk/r-plus-x.
comment: Published at the IEEE International Conference on Robotics and Automation (ICRA) 2025
A Framework for Adapting Human-Robot Interaction to Diverse User Groups
To facilitate natural and intuitive interactions with diverse user groups in real-world settings, social robots must be capable of addressing the varying requirements and expectations of these groups while adapting their behavior based on user feedback. While previous research often focuses on specific demographics, we present a novel framework for adaptive Human-Robot Interaction (HRI) that tailors interactions to different user groups and enables individual users to modulate interactions through both minor and major interruptions. Our primary contributions include the development of an adaptive, ROS-based HRI framework with an open-source code base. This framework supports natural interactions through advanced speech recognition and voice activity detection, and leverages a large language model (LLM) as a dialogue bridge. We validate the efficiency of our framework through module tests and system trials, demonstrating its high accuracy in age recognition and its robustness to repeated user inputs and plan changes.
comment: Published in the Proceedings of the 16th International Conference on Social Robotics (ICSR) 2024
STEAK: Streaming Network for Continual Learning of Object Relocations under Household Context Drifts
In real-world settings, robots are expected to assist humans across diverse tasks and still continuously adapt to dynamic changes over time. For example, in domestic environments, robots can proactively help users by fetching needed objects based on learned routines, which they infer by observing how objects move over time. However, data from these interactions are inherently non-independent and non-identically distributed (non-i.i.d.), e.g., a robot assisting multiple users may encounter varying data distributions as individuals follow distinct habits. This creates a challenge: integrating new knowledge without catastrophic forgetting. To address this, we propose STREAK (Spatio Temporal RElocation with Adaptive Knowledge retention), a continual learning framework for real-world robotic learning. It leverages a streaming graph neural network with regularization and rehearsal techniques to mitigate context drifts while retaining past knowledge. Our method is time- and memory-efficient, enabling long-term learning without retraining on all past data, which becomes infeasible as data grows in real-world interactions. We evaluate STREAK on the task of incrementally predicting human routines over 50+ days across different households. Results show that it effectively prevents catastrophic forgetting while maintaining generalization, making it a scalable solution for long-term human-robot interactions.
HEROS: Hierarchical Exploration with Online Subregion Updating for 3D Environment Coverage
We present an autonomous exploration system for efficient coverage of unknown environments. First, a rapid environment preprocessing method is introduced to provide environmental information for subsequent exploration planning. Then, the whole exploration space is divided into multiple subregion cells, each with varying levels of detail. The subregion cells are capable of decomposition and updating online, effectively characterizing dynamic unknown regions with variable resolution. Finally, the hierarchical planning strategy treats subregions as basic planning units and computes an efficient global coverage path. Guided by the global path, the local path that sequentially visits the viewpoint set is refined to provide an executable path for the robot. This hierarchical planning from coarse to fine steps reduces the complexity of the planning scheme while improving exploration efficiency. The proposed method is compared with state-of-art methods in benchmark environments. Our approach demonstrates superior efficiency in completing exploration while using lower computational resources.
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving further up to 20.8$\times$ speedup over prevalent embedded CPUs with over 11$\times$ power reduction than GPU and low hardware resource overhead.
Towards Mobile Sensing with Event Cameras on High-agility Resource-constrained Devices: A Survey
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.
comment: 32 pages, 9 figures
High-Performance Vision-Based Tactile Sensing Enhanced by Microstructures and Lightweight CNN
Tactile sensing is critical in advanced interactive systems by emulating the human sense of touch to detect stimuli. Vision-based tactile sensors are promising for providing multimodal capabilities and high robustness, yet existing technologies still have limitations in sensitivity, spatial resolution, and high computational demands of deep learning-based image processing. This paper presents a comprehensive approach combining a novel microstructure-based sensor design and efficient image processing, demonstrating that carefully engineered microstructures can significantly enhance performance while reducing computational load. Without traditional tracking markers, our sensor incorporates an surface with micromachined trenches, as an example of microstructures, which modulate light transmission and amplify the response to applied force. The amplified image features can be extracted by a ultra lightweight convolutional neural network to accurately inferring contact location, displacement, and applied force with high precision. Through theoretical analysis, we demonstrated that the micro trenches significantly amplified the visual effects of shape distortion. Using only a commercial webcam, the sensor system effectively detected forces below 5 mN, and achieved a millimetre-level single-point spatial resolution. Using a model with only one convolutional layer, a mean absolute error below 0.05 mm was achieved. Its soft sensor body allows seamless integration with soft robots, while its immunity to electrical crosstalk and interference guarantees reliability in complex human-machine environments.
comment: 41 pages, 28 figures, 2 tables; rearranged figures; updated supplymentary information
Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
Floxels: Fast Unsupervised Voxel Based Scene Flow Estimation CVPR 2025
Scene flow estimation is a foundational task for many robotic applications, including robust dynamic object detection, automatic labeling, and sensor synchronization. Two types of approaches to the problem have evolved: 1) Supervised and 2) optimization-based methods. Supervised methods are fast during inference and achieve high-quality results, however, they are limited by the need for large amounts of labeled training data and are susceptible to domain gaps. In contrast, unsupervised test-time optimization methods do not face the problem of domain gaps but usually suffer from substantial runtime, exhibit artifacts, or fail to converge to the right solution. In this work, we mitigate several limitations of existing optimization-based methods. To this end, we 1) introduce a simple voxel grid-based model that improves over the standard MLP-based formulation in multiple dimensions and 2) introduce a new multiframe loss formulation. 3) We combine both contributions in our new method, termed Floxels. On the Argoverse 2 benchmark, Floxels is surpassed only by EulerFlow among unsupervised methods while achieving comparable performance at a fraction of the computational cost. Floxels achieves a massive speedup of more than ~60 - 140x over EulerFlow, reducing the runtime from a day to 10 minutes per sequence. Over the faster but low-quality baseline, NSFP, Floxels achieves a speedup of ~14x.
comment: Accepted at CVPR 2025
Multiagent Systems
Sequential Binary Hypothesis Testing with Competing Agents under Information Asymmetry
This paper concerns sequential hypothesis testing in competitive multi-agent systems where agents exchange potentially manipulated information. Specifically, a two-agent scenario is studied where each agent aims to correctly infer the true state of nature while optimizing decision speed and accuracy. At each iteration, agents collect private observations, update their beliefs, and share (possibly corrupted) belief signals with their counterparts before deciding whether to stop and declare a state, or continue gathering more information. The analysis yields three main results: (1)~when agents share information strategically, the optimal signaling policy involves equal-probability randomization between truthful and inverted beliefs; (2)~agents maximize performance by relying solely on their own observations for belief updating while using received information only to anticipate their counterpart's stopping decision; and (3)~the agent reaching their confidence threshold first cause the other agent to achieve a higher conditional probability of error. Numerical simulations further demonstrate that agents with higher KL divergence in their conditional distributions gain competitive advantage. Furthermore, our results establish that information sharing -- despite strategic manipulation -- reduces overall system stopping time compared to non-interactive scenarios, which highlights the inherent value of communication even in this competitive setup.
comment: 8 pages, 4 figures, submitted to IEEE Conference on Decision and Control 2025
Responsible Development of Offensive AI
As AI advances, broader consensus is needed to determine research priorities. This endeavor discusses offensive AI and provides guidance by leveraging Sustainable Development Goals (SDGs) and interpretability techniques. The objective is to more effectively establish priorities that balance societal benefits against risks. The two forms of offensive AI evaluated in this study are vulnerability detection agents, which solve Capture- The-Flag challenges, and AI-powered malware.
Hierarchical Policy-Gradient Reinforcement Learning for Multi-Agent Shepherding Control of Non-Cohesive Targets
We propose a decentralized reinforcement learning solution for multi-agent shepherding of non-cohesive targets using policy-gradient methods. Our architecture integrates target-selection with target-driving through Proximal Policy Optimization, overcoming discrete-action constraints of previous Deep Q-Network approaches and enabling smoother agent trajectories. This model-free framework effectively solves the shepherding problem without prior dynamics knowledge. Experiments demonstrate our method's effectiveness and scalability with increased target numbers and limited sensing capabilities.
Am I Being Treated Fairly? A Conceptual Framework for Individuals to Ascertain Fairness
Current fairness metrics and mitigation techniques provide tools for practitioners to asses how non-discriminatory Automatic Decision Making (ADM) systems are. What if I, as an individual facing a decision taken by an ADM system, would like to know: Am I being treated fairly? We explore how to create the affordance for users to be able to ask this question of ADM. In this paper, we argue for the reification of fairness not only as a property of ADM, but also as an epistemic right of an individual to acquire information about the decisions that affect them and use that information to contest and seek effective redress against those decisions, in case they are proven to be discriminatory. We examine key concepts from existing research not only in algorithmic fairness but also in explainable artificial intelligence, accountability, and contestability. Integrating notions from these domains, we propose a conceptual framework to ascertain fairness by combining different tools that empower the end-users of ADM systems. Our framework shifts the focus from technical solutions aimed at practitioners to mechanisms that enable individuals to understand, challenge, and verify the fairness of decisions, and also serves as a blueprint for organizations and policymakers, bridging the gap between technical requirements and practical, user-centered accountability.
comment: 21 pages, 5 figures
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
Steve: LLM Powered ChatBot for Career Progression
The advancements in systems deploying large language models (LLMs), as well as improvements in their ability to act as agents with predefined templates, provide an opportunity to conduct qualitative, individualized assessments, creating a bridge between qualitative and quantitative methods for candidates seeking career progression. In this paper, we develop a platform that allows candidates to run AI-led interviews to assess their current career stage and curate coursework to enable progression to the next level. Our approach incorporates predefined career trajectories, associated skills, and a method to recommend the best resources for gaining the necessary skills for advancement. We employ OpenAI API calls along with expertly compiled chat templates to assess candidate competence. Our platform is highly configurable due to the modularity of the development, is easy to deploy and use, and available as a web interface where the only requirement is candidate resumes in PDF format. We demonstrate a use-case centered on software engineering and intend to extend this platform to be domain-agnostic, requiring only regular updates to chat templates as industries evolve.
An Investigation into the Causal Mechanism of Political Opinion Dynamics: A Model of Hierarchical Coarse-Graining with Community-Bounded Social Influence
The increasing polarization in democratic societies is an emergent outcome of political opinion dynamics. Yet, the fundamental mechanisms behind the formation of political opinions, from individual beliefs to collective consensus, remain unknown. Understanding that a causal mechanism must account for both bottom-up and top-down influences, we conceptualize political opinion dynamics as hierarchical coarse-graining, where microscale opinions integrate into a macro-scale state variable. Using the CODA (Continuous Opinions Discrete Actions) model, we simulate Bayesian opinion updating, social identity-based information integration, and migration between social identity groups to represent higher-level connectivity. This results in coarse-graining across micro, meso, and macro levels. Our findings show that higher-level connectivity shapes information integration, yielding three regimes: independent (disconnected, local convergence), parallel (fast, global convergence), and iterative (slow, stepwise convergence). In the iterative regime, low connectivity fosters transient diversity, indicating an informed consensus. In all regimes, time-scale separation leads to downward causation, where agents converge on the aggregate majority choice, driving consensus. Critically, any degree of coherent higher-level information integration can overcome misalignment via global downward causation. The results highlight how emergent properties of the causal mechanism, such as downward causation, are essential for consensus and may inform more precise investigations into polarized political discourse.
comment: This is a draft of a chapter forthcoming in Computational Social Science of Social Cohesion and Polarization, edited by Marijn Keijzer, Jan Lorenz and Michal Bojanowski
Data Spatial Programming
We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate the topological relationships between data entities and the execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures or finite states. By formalizing the relationships between data elements in this topological space, our approach allows for more intuitive modeling of complex systems where a topology of connections is formed for the underlying computational model. This paradigm addresses limitations in traditional OOP when representing a wide range of problems in computer science such as agent-based systems, social networks, processing on relational data, neural networks, distributed systems, finite state machines, and other spatially-oriented computational problems.
comment: 17 pages, 24 pages with appendix
Safety-Aware Multi-Agent Learning for Dynamic Network Bridging
Addressing complex cooperative tasks in safety-critical environments poses significant challenges for multi-agent systems, especially under conditions of partial observability. We focus on a dynamic network bridging task, where agents must learn to maintain a communication path between two moving targets. To ensure safety during training and deployment, we integrate a control-theoretic safety filter that enforces collision avoidance through local setpoint updates. We develop and evaluate multi-agent reinforcement learning safety-informed message passing, showing that encoding safety filter activations as edge-level features improves coordination. The results suggest that local safety enforcement and decentralized learning can be effectively combined in distributed multi-agent tasks.
comment: 8 pages, 18 equations, 4 figures, 1 algorithm, and 1 table
Characterizations of voting rules based on majority margins
In the context of voting with ranked ballots, an important class of voting rules is the class of margin-based rules (also called pairwise rules). A voting rule is margin-based if whenever two elections generate the same head-to-head margins of victory or loss between candidates, then the voting rule yields the same outcome in both elections. Although this is a mathematically natural invariance property to consider, whether it should be regarded as a normative axiom on voting rules is less clear. In this paper, we address this question for voting rules with any kind of output, whether a set of candidates, a ranking, a probability distribution, etc. We prove that a voting rule is margin-based if and only if it satisfies some axioms with clearer normative content. A key axiom is what we call Preferential Equality, stating that if two voters both rank a candidate $x$ immediately above a candidate $y$, then either voter switching to rank $y$ immediately above $x$ will have the same effect on the election outcome as if the other voter made the switch, so each voter's preference for $y$ over $x$ is treated equally.
comment: Corrected Table 2
Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow. Traditional approaches often simplify road networks into standard graphs, which results in a failure to consider the dynamic nature of traffic data at neighboring intersections, thereby neglecting higher-order interconnections necessary for real-time control. To address this, we propose a novel TSCS framework to realize intelligent traffic control. This framework collaborates with multiple neighboring edge computing servers to collect traffic information across the road network. To elevate the efficiency of traffic signal control, we have crafted a multi-agent soft actor-critic (MA-SAC) reinforcement learning algorithm. Within this algorithm, individual agents are deployed at each intersection with a mandate to optimize traffic flow across the road network collectively. Furthermore, we introduce hypergraph learning into the critic network of MA-SAC to enable the spatio-temporal interactions from multiple intersections in the road network. This method fuses hypergraph and spatio-temporal graph structures to encode traffic data and capture the complex spatio-temporal correlations between multiple intersections. Our empirical evaluation, tested on varied datasets, demonstrates the superiority of our framework in minimizing average vehicle travel times and sustaining high-throughput performance. This work facilitates the development of more intelligent urban traffic management solutions. We release the code to support the reproducibility of this work at https://github.com/Edun-Eyes/TSC
comment: Accepted by IEEE Transactions on Mobile Computing
The Overcooked Generalisation Challenge
We introduce the Overcooked Generalisation Challenge (OGC) - the first benchmark to study agents' zero-shot cooperation abilities when faced with novel partners and levels in the Overcooked-AI environment. This perspective starkly contrasts a large body of previous work that has trained and evaluated cooperating agents only on the same level, failing to capture generalisation abilities required for real-world human-AI cooperation. Our challenge interfaces with state-of-the-art dual curriculum design (DCD) methods to generate auto-curricula for training general agents in Overcooked. It is the first cooperative multi-agent environment specially designed for DCD methods and, consequently, the first benchmarked with state-of-the-art methods. It is fully GPU-accelerated, built on the DCD benchmark suite minimax, and freely available under an open-source license: https://git.hcics.simtech.uni-stuttgart.de/public-projects/OGC. We show that current DCD algorithms struggle to produce useful policies in this novel challenge, even if combined with recent network architectures that were designed for scalability and generalisability. The OGC pushes the boundaries of real-world human-AI cooperation by enabling the research community to study the impact of generalisation on cooperating agents.
comment: 26 pages
Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread
Agent-based models have proven to be useful tools in supporting decision-making processes in different application domains. The advent of modern computers and supercomputers has enabled these bottom-up approaches to realistically model human mobility and contact behavior. The COVID-19 pandemic showcased the urgent need for detailed and informative models that can answer research questions on transmission dynamics. We present a sophisticated agent-based model to simulate the spread of respiratory diseases. The model is highly modularized and can be used on various scales, from a small collection of buildings up to cities or countries. Although not being the focus of this paper, the model has undergone performance engineering on a single core and provides an efficient intra- and inter-simulation parallelization for time-critical decision-making processes. In order to allow answering research questions on individual level resolution, nonpharmaceutical intervention strategies such as face masks or venue closures can be implemented for particular locations or agents. In particular, we allow for sophisticated testing and isolation strategies to study the effects of minimal-invasive infectious disease mitigation. With realistic human mobility patterns for the region of Brunswick, Germany, we study the effects of different interventions between March 1st and May 30, 2021 in the SARS-CoV-2 pandemic. Our analyses suggest that symptom-independent testing has limited impact on the mitigation of disease dynamics if the dark figure in symptomatic cases is high. Furthermore, we found that quarantine length is more important than quarantine efficiency but that, with sufficient symptomatic control, also short quarantines can have a substantial effect.
comment: 40 pages, 18 figures, submitted to Elsevier
Systems and Control (CS)
On Composable and Parametric Uncertainty in Systems Co-Design
Optimizing the design of complex systems requires navigating interdependent decisions, heterogeneous components, and multiple objectives. Our monotone theory of co-design offers a compositional framework for addressing this challenge, modeling systems as Design Problems (DPs), representing trade-offs between functionalities and resources within partially ordered sets. While current approaches model uncertainty using intervals, capturing worst- and best-case bounds, they fail to express probabilistic notions such as risk and confidence. These limitations hinder the applicability of co-design in domains where uncertainty plays a critical role. In this paper, we introduce a unified framework for composable uncertainty in co-design, capturing intervals, distributions, and parametrized models. This extension enables reasoning about risk-performance trade-offs and supports advanced queries such as experiment design, learning, and multi-stage decision making. We demonstrate the expressiveness and utility of the framework via a numerical case study on the uncertainty-aware co-design of task-driven Unmanned Aerial Vehicle (UAV).
comment: 8 pages, submitted to IEEE Conference on Decision and Control (CDC) 2025
Sequential Binary Hypothesis Testing with Competing Agents under Information Asymmetry
This paper concerns sequential hypothesis testing in competitive multi-agent systems where agents exchange potentially manipulated information. Specifically, a two-agent scenario is studied where each agent aims to correctly infer the true state of nature while optimizing decision speed and accuracy. At each iteration, agents collect private observations, update their beliefs, and share (possibly corrupted) belief signals with their counterparts before deciding whether to stop and declare a state, or continue gathering more information. The analysis yields three main results: (1)~when agents share information strategically, the optimal signaling policy involves equal-probability randomization between truthful and inverted beliefs; (2)~agents maximize performance by relying solely on their own observations for belief updating while using received information only to anticipate their counterpart's stopping decision; and (3)~the agent reaching their confidence threshold first cause the other agent to achieve a higher conditional probability of error. Numerical simulations further demonstrate that agents with higher KL divergence in their conditional distributions gain competitive advantage. Furthermore, our results establish that information sharing -- despite strategic manipulation -- reduces overall system stopping time compared to non-interactive scenarios, which highlights the inherent value of communication even in this competitive setup.
comment: 8 pages, 4 figures, submitted to IEEE Conference on Decision and Control 2025
A Set-Theoretic Robust Control Approach for Linear Quadratic Games with Unknown Counterparts
Ensuring robust decision-making in multi-agent systems is challenging when agents have distinct, possibly conflicting objectives and lack full knowledge of each other s strategies. This is apparent in safety-critical applications such as human-robot interaction and assisted driving, where uncertainty arises not only from unknown adversary strategies but also from external disturbances. To address this, the paper proposes a robust adaptive control approach based on linear quadratic differential games. Our method allows a controlled agent to iteratively refine its belief about the adversary strategy and disturbances using a set-membership approach, while simultaneously adapting its policy to guarantee robustness against the uncertain adversary policy and improve performance over time. We formally derive theoretical guarantees on the robustness of the proposed control scheme and its convergence to epsilon-Nash strategies. The effectiveness of our approach is demonstrated in a numerical simulation.
comment: Submitted to 64th IEEE Conference on Decision and Control
Online and Offline Space-Filling Input Design for Nonlinear System Identification: A Receding Horizon Control-Based Approach
The effectiveness of data-driven techniques heavily depends on the input signal used to generate the estimation data. However, a significant research gap exists in the field of input design for nonlinear dynamic system identification. In particular, existing methods largely overlook the minimization of the generalization error, i.e., model inaccuracies in regions not covered by the estimation dataset. This work addresses this gap by proposing an input design method that embeds a novel optimality criterion within a receding horizon control (RHC)-based optimization framework. The distance-based optimality criterion induces a space-filling design within a user-defined region of interest in a surrogate model's input space, requiring only minimal prior knowledge. Additionally, the method is applicable both online, where model parameters are continuously updated based on process observations, and offline, where a fixed model is employed. The space-filling performance of the proposed strategy is evaluated on an artificial example and compared to state-of-the-art methods, demonstrating superior efficiency in exploring process operating spaces.
Controlled Social Learning: Altruism vs. Bias
We introduce a model of sequential social learning in which a planner may pay a cost to adjust the private signal precision of some agents. This framework presents a new optimization problem for social learning that sheds light on practical policy questions, such as how the socially optimal level of ad personalization changes according to current beliefs or how a biased planner might derail social learning. We then characterize the optimal policies of an altruistic planner who maximizes social welfare and a biased planner who seeks to induce a specific action. Even for a planner who has equivalent knowledge to an individual, cannot lie or cherry-pick information, and is fully observable, we demonstrate that it can dramatically influence social welfare in both positive and negative directions. An important area for future exploration is how one might prevent these latter outcomes to protect against the manipulation of social learning.
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Markov chain Monte Carlo (MCMC) methods are a powerful but computationally expensive way of performing non-parametric Bayesian inference. MCMC proposals which utilise gradients, such as Hamiltonian Monte Carlo (HMC), can better explore the parameter space of interest if the additional hyper-parameters are chosen well. The No-U-Turn Sampler (NUTS) is a variant of HMC which is extremely effective at selecting these hyper-parameters but is slow to run and is not suited to GPU architectures. An alternative to NUTS, Change in the Estimator of the Expected Square HMC (ChEES-HMC) was shown not only to run faster than NUTS on GPU but also sample from posteriors more efficiently. Sequential Monte Carlo (SMC) samplers are another sampling method which instead output weighted samples from the posterior. They are very amenable to parallelisation and therefore being run on GPUs while having additional flexibility in their choice of proposal over MCMC. We incorporate (ChEEs-HMC) as a proposal into SMC samplers and demonstrate competitive but faster performance than NUTS on a number of tasks.
comment: 16 pages, 9 figures
Learning Geometrically-Informed Lyapunov Functions with Deep Diffeomorphic RBF Networks
The practical deployment of learning-based autonomous systems would greatly benefit from tools that flexibly obtain safety guarantees in the form of certificate functions from data. While the geometrical properties of such certificate functions are well understood, synthesizing them using machine learning techniques still remains a challenge. To mitigate this issue, we propose a diffeomorphic function learning framework where prior structural knowledge of the desired output is encoded in the geometry of a simple surrogate function, which is subsequently augmented through an expressive, topology-preserving state-space transformation. Thereby, we achieve an indirect function approximation framework that is guaranteed to remain in the desired hypothesis space. To this end, we introduce a novel approach to construct diffeomorphic maps based on RBF networks, which facilitate precise, local transformations around data. Finally, we demonstrate our approach by learning diffeomorphic Lyapunov functions from real-world data and apply our method to different attractor systems.
Regulating Spatial Fairness in a Tripartite Micromobility Sharing System via Reinforcement Learning
In the growing field of Shared Micromobility Systems, which holds great potential for shaping urban transportation, fairness-oriented approaches remain largely unexplored. This work addresses such a gap by investigating the balance between performance optimization and algorithmic fairness in Shared Micromobility Services using Reinforcement Learning. Our methodology achieves equitable outcomes, measured by the Gini index, across central, peripheral, and remote station categories. By strategically rebalancing vehicle distribution, it maximizes operator performance while upholding fairness principles. The efficacy of our approach is validated through a case study using synthetic data.
comment: 6 pages, 2 figures, accepted at the 2025 Innovation & Society: Statistics and Data Science for Evaluation and Quality (IES) on February 24th, 2025. arXiv admin note: text overlap with arXiv:2403.15780
Assessing Geographical and Seasonal Influences on Energy Efficiency of Electric Drayage Trucks
The electrification of heavy-duty vehicles is a critical pathway towards improved energy efficiency of the freight sector. The current battery electric truck technology poses several challenges to the operations of commercial vehicles, such as limited driving range, sensitivity to climate conditions, and long recharging times. Estimating the energy consumption of heavy-duty electric trucks is crucial to assess the feasibility of the fleet electrification and its impact on the electric grid. This paper focuses on developing a model-based simulation approach to predict and analyze the energy consumption of drayage trucks used in ports logistic operations, considering seasonal climate variations and geographical characteristics. The paper includes results for three major container ports within the United States, providing region-specific insights into driving range, payload capacity, and charging infrastructure requirements, which will inform decision-makers in integrating electric trucks into the existing drayage operations and plan investments for electric grid development.
MAD: A Magnitude And Direction Policy Parametrization for Stability Constrained Reinforcement Learning
We introduce magnitude and direction (MAD) policies, a policy parameterization for reinforcement learning (RL) that preserves Lp closed-loop stability for nonlinear dynamical systems. Although complete in their ability to describe all stabilizing controllers, methods based on nonlinear Youla and system-level synthesis are significantly affected by the difficulty of parameterizing Lp-stable operators. In contrast, MAD policies introduce explicit feedback on state-dependent features - a key element behind the success of RL pipelines - without compromising closed-loop stability. This is achieved by describing the magnitude of the control input with a disturbance-feedback Lp-stable operator, while selecting its direction based on state-dependent features through a universal function approximator. We further characterize the robust stability properties of MAD policies under model mismatch. Unlike existing disturbance-feedback policy parameterizations, MAD policies introduce state-feedback components compatible with model-free RL pipelines, ensuring closed-loop stability without requiring model information beyond open-loop stability. Numerical experiments show that MAD policies trained with deep deterministic policy gradient (DDPG) methods generalize to unseen scenarios, matching the performance of standard neural network policies while guaranteeing closed-loop stability by design.
Digital Twins for Internet of Battlespace Things (IoBT) Coalitions
This paper presents a new framework for integrating Digital Twins (DTs) within Internet of battlespace Things (IoBT) coalitions. We introduce a novel three-tier architecture that enables efficient coordination and management of DT models across coalition partners while addressing key challenges in interoperability, security, and resource allocation. The architecture comprises specialized controllers at each tier: Digital Twin Coalition Partner (DTCP) controllers managing individual coalition partners' DT resources, a central Digital Twin Coalition(DTC) controller orchestrating cross-partner coordination, and Digital Twin Coalition Mission (DTCP) controllers handling mission-specific DT interactions. We propose a hybrid approach for DT model placement across edge devices, tactical nodes, and cloud infrastructure, optimizing performance while maintaining security and accessibility. The architecture leverages software-defined networking principles for dynamic resource allocation and slice management, enabling efficient sharing of computational and network resources between DT operations and primary IoBT functions. Our proposed framework aims to provide a robust foundation for deploying and managing Digital Twins in coalition warfare, enhancing situational awareness, decision-making capabilities, and operational effectiveness while ensuring secure and interoperable operations across diverse coalition partners.
Probabilistic Simulation of Aircraft Descent via a Hybrid Physics-Data Approach
This paper presents a method for generating probabilistic descent trajectories in simulations of real-world airspace. A dataset of 116,066 trajectories harvested from Mode S radar returns in UK airspace was used to train and test the model. Thirteen aircraft types with varying performance characteristics were investigated. It was found that the error in the mean prediction of time to reach the bottom of descent for the proposed method was less than that of the the Base of Aircraft Data (BADA) model by a factor of 10. Furthermore, the method was capable of generating a range of trajectories that were similar to the held out test dataset when analysed in distribution. The proposed method is hybrid, with aircraft drag and calibrated airspeed functions generated probabilistically to parameterise the BADA equations, ensuring the physical plausibility of generated trajectories.
Secrecy Performance of a Keyhole-based Multi-user System with Multiple Eavesdroppers
This paper investigates the secrecy performance of a keyhole-aided multi-user communication network in the presence of multiple eavesdroppers. The communication happens through the same keyhole for legitimate users and eavesdroppers. In this context, the secrecy performance is evaluated for a user scheduling technique by obtaining the exact closed-form expression of secrecy outage probability (SOP). Further, a simplified asymptotic SOP expression is derived assuming high signal-to-noise ratio (SNR) scenario for a better understanding of the impact of system parameters. The effect of the keyhole parameters, number of users, number of eavesdroppers, and threshold secrecy rate on the SOP performance are also investigated for the considered system model. In the high-SNR regime, the asymptotic SOP saturates to a constant value and does not depend on the keyhole parameter and the channel parameter of the source-to-keyhole channel.
Hierarchical Policy-Gradient Reinforcement Learning for Multi-Agent Shepherding Control of Non-Cohesive Targets
We propose a decentralized reinforcement learning solution for multi-agent shepherding of non-cohesive targets using policy-gradient methods. Our architecture integrates target-selection with target-driving through Proximal Policy Optimization, overcoming discrete-action constraints of previous Deep Q-Network approaches and enabling smoother agent trajectories. This model-free framework effectively solves the shepherding problem without prior dynamics knowledge. Experiments demonstrate our method's effectiveness and scalability with increased target numbers and limited sensing capabilities.
On learning racing policies with reinforcement learning
Fully autonomous vehicles promise enhanced safety and efficiency. However, ensuring reliable operation in challenging corner cases requires control algorithms capable of performing at the vehicle limits. We address this requirement by considering the task of autonomous racing and propose solving it by learning a racing policy using Reinforcement Learning (RL). Our approach leverages domain randomization, actuator dynamics modeling, and policy architecture design to enable reliable and safe zero-shot deployment on a real platform. Evaluated on the F1TENTH race car, our RL policy not only surpasses a state-of-the-art Model Predictive Control (MPC), but, to the best of our knowledge, also represents the first instance of an RL policy outperforming expert human drivers in RC racing. This work identifies the key factors driving this performance improvement, providing critical insights for the design of robust RL-based control strategies for autonomous vehicles.
Beyond Asymptotics: Targeted exploration with finite-sample guarantees
In this paper, we introduce a targeted exploration strategy for the non-asymptotic, finite-time case. The proposed strategy is applicable to uncertain linear time-invariant systems subject to sub-Gaussian disturbances. As the main result, the proposed approach provides a priori guarantees, ensuring that the optimized exploration inputs achieve a desired accuracy of the model parameters. The technical derivation of the strategy (i) leverages existing non-asymptotic identification bounds with self-normalized martingales, (ii) utilizes spectral lines to predict the effect of sinusoidal excitation, and (iii) effectively accounts for spectral transient error and parametric uncertainty. A numerical example illustrates how the finite exploration time influence the required exploration energy.
A Comparative Study of MINLP and MPVC Formulations for Solving Complex Nonlinear Decision-Making Problems in Aerospace Applications
High-level decision-making for dynamical systems often involves performance and safety specifications that are activated or deactivated depending on conditions related to the system state and commands. Such decision-making problems can be naturally formulated as optimization problems where these conditional activations are regulated by discrete variables. However, solving these problems can be challenging numerically, even on powerful computing platforms, especially when the dynamics are nonlinear. In this work, we consider decision-making for nonlinear systems where certain constraints, as well as possible terms in the cost function, are activated or deactivated depending on the system state and commands. We show that these problems can be formulated either as mixed-integer nonlinear programs (MINLPs) or as mathematical programs with vanishing constraints (MPVCs), where the former formulation involves discrete decision variables, whereas the latter relies on continuous variables subject to structured nonconvex constraints. We discuss the different solution methods available for both formulations and demonstrate them on optimal trajectory planning problems in various aerospace applications. Finally, we compare the strengths and weaknesses of the MINLP and MPVC approaches through a focused case study on powered descent guidance with divert-feasible regions.
comment: Submitted to Optimal Control Applications and Methods (OCAM)
Bipedal Robust Walking on Uneven Footholds: Piecewise Slope LIPM with Discrete Model Predictive Control
This study presents an enhanced theoretical formulation for bipedal hierarchical control frameworks under uneven terrain conditions. Specifically, owing to the inherent limitations of the Linear Inverted Pendulum Model (LIPM) in handling terrain elevation variations, we develop a Piecewise Slope LIPM (PS-LIPM). This innovative model enables dynamic adjustment of the Center of Mass (CoM) height to align with topographical undulations during single-step cycles. Another contribution is proposed a generalized Angular Momentum-based LIPM (G-ALIP) for CoM velocity compensation using Centroidal Angular Momentum (CAM) regulation. Building upon these advancements, we derive the DCM step-to-step dynamics for Model Predictive Control MPC formulation, enabling simultaneous optimization of step position and step duration. A hierarchical control framework integrating MPC with a Whole-Body Controller (WBC) is implemented for bipedal locomotion across uneven stepping stones. The results validate the efficacy of the proposed hierarchical control framework and the theoretical formulation.
Error Analysis of Sampling Algorithms for Approximating Stochastic Optimal Control
This paper is concerned with the error analysis of two types of sampling algorithms, namely model predictive path integral (MPPI) and an interacting particle system (\IPS) algorithm, that have been proposed in the literature for numerical approximation of the stochastic optimal control. The analysis is presented through the lens of Gibbs variational principle. For an illustrative example of a single-stage stochastic optimal control problem, analytical expressions for approximation error and scaling laws, with respect to the state dimension and sample size, are derived. The analytical results are illustrated with numerical simulations.
Model Predictive Control with Visibility Graphs for Humanoid Path Planning and Tracking Against Adversarial Opponents ICRA
In this paper we detail the methods used for obstacle avoidance, path planning, and trajectory tracking that helped us win the adult-sized, autonomous humanoid soccer league in RoboCup 2024. Our team was undefeated for all seated matches and scored 45 goals over 6 games, winning the championship game 6 to 1. During the competition, a major challenge for collision avoidance was the measurement noise coming from bipedal locomotion and a limited field of view (FOV). Furthermore, obstacles would sporadically jump in and out of our planned trajectory. At times our estimator would place our robot inside a hard constraint. Any planner in this competition must also be be computationally efficient enough to re-plan and react in real time. This motivated our approach to trajectory generation and tracking. In many scenarios long-term and short-term planning is needed. To efficiently find a long-term general path that avoids all obstacles we developed DAVG (Dynamic Augmented Visibility Graphs). DAVG focuses on essential path planning by setting certain regions to be active based on obstacles and the desired goal pose. By augmenting the states in the graph, turning angles are considered, which is crucial for a large soccer playing robot as turning may be more costly. A trajectory is formed by linearly interpolating between discrete points generated by DAVG. A modified version of model predictive control (MPC) is used to then track this trajectory called cf-MPC (Collision-Free MPC). This ensures short-term planning. Without having to switch formulations cf-MPC takes into account the robot dynamics and collision free constraints. Without a hard switch the control input can smoothly transition in cases where the noise places our robot inside a constraint boundary. The nonlinear formulation runs at approximately 120 Hz, while the quadratic version achieves around 400 Hz.
comment: This is a preprint version. This paper has been accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025. The final published version will be available on IEEE Xplore
Statics of continuum planar grasping
Continuum robotic grasping, inspired by biological appendages such as octopus arms and elephant trunks, provides a versatile and adaptive approach to object manipulation. Unlike conventional rigid-body grasping, continuum robots leverage distributed compliance and whole-body contact to achieve robust and dexterous grasping. This paper presents a control-theoretic framework for analyzing the statics of continuous contact with a planar object. The governing equations of static equilibrium of the object are formulated as a linear control system, where the distributed contact forces act as control inputs. To optimize the grasping performance, a constrained optimal control problem is posed to minimize contact forces required to achieve a static grasp, with solutions derived using the Pontryagin Maximum Principle. Furthermore, two optimization problems are introduced: (i) for assigning a measure to the quality of a particular grasp, which generalizes a (rigid-body) grasp quality metric in the continuum case, and (ii) for finding the best grasping configuration that maximizes the continuum grasp quality. Several numerical results are also provided to elucidate our methods.
Moving Target Defense Against Adversarial False Data Injection Attacks In Power Grids
Machine learning (ML)-based detectors have been shown to be effective in detecting stealthy false data injection attacks (FDIAs) that can bypass conventional bad data detectors (BDDs) in power systems. However, ML models are also vulnerable to adversarial attacks. A sophisticated perturbation signal added to the original BDD-bypassing FDIA can conceal the attack from ML-based detectors. In this paper, we develop a moving target defense (MTD) strategy to defend against adversarial FDIAs in power grids. We first develop an MTD-strengthened deep neural network (DNN) model, which deploys a pool of DNN models rather than a single static model that cooperate to detect the adversarial attack jointly. The MTD model pool introduces randomness to the ML model's decision boundary, thereby making the adversarial attacks detectable. Furthermore, to increase the effectiveness of the MTD strategy and reduce the computational costs associated with developing the MTD model pool, we combine this approach with the physics-based MTD, which involves dynamically perturbing the transmission line reactance and retraining the DNN-based detector to adapt to the new system topology. Simulations conducted on IEEE test bus systems demonstrate that the MTD-strengthened DNN achieves up to 94.2% accuracy in detecting adversarial FDIAs. When combined with a physics-based MTD, the detection accuracy surpasses 99%, while significantly reducing the computational costs of updating the DNN models. This approach requires only moderate perturbations to transmission line reactances, resulting in minimal increases in OPF cost.
How to Adapt Control Barrier Functions? A Learning-Based Approach with Applications to a VTOL Quadplane
In this paper, we present a novel theoretical framework for online adaptation of Control Barrier Function (CBF) parameters, i.e., of the class K functions included in the CBF condition, under input constraints. We introduce the concept of locally validated CBF parameters, which are adapted online to guarantee finite-horizon safety, based on conditions derived from Nagumo's theorem and tangent cone analysis. To identify these parameters online, we integrate a learning-based approach with an uncertainty-aware verification process that account for both epistemic and aleatoric uncertainties inherent in neural network predictions. Our method is demonstrated on a VTOL quadplane model during challenging transition and landing maneuvers, showcasing enhanced performance while maintaining safety.
comment: Project page: https://www.taekyung.me/how-to-adapt-cbf
Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints
Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. Our contributions are as follows: 1) We propose an online method, building on our previous work "gatekeeper", to guarantee safety and satisfy budget constraints of the system trajectory at all times throughout a mission. 2) Next, we prove that our algorithm is recursively feasible and correct. 3) Finally, instead of using a heuristically designed backup controller, we propose a sampling-based method to construct backup trajectories that both minimize resource expenditure and reach budget renewal sets, in which path constraints are satisfied and the constrained resources are renewed. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.
comment: Code: https://github.com/dcherenson/gatekeeper_budget_constraints
Online Learning for Nonlinear Dynamical Systems without the I.I.D. Condition
This paper investigates online identification and prediction for nonlinear stochastic dynamical systems. In contrast to offline learning methods, we develop online algorithms that learn unknown parameters from a single trajectory. A key challenge in this setting is handling the non-independent data generated by the closed-loop system. Existing theoretical guarantees for such systems are mostly restricted to the assumption that inputs are independently and identically distributed (i.i.d.), or that the closed-loop data satisfy a persistent excitation (PE) condition. However, these assumptions are often violated in applications such as adaptive feedback control. In this paper, we propose an online projected Newton-type algorithm for parameter estimation in nonlinear stochastic dynamical systems, and develop an online predictor for system outputs based on online parameter estimates. By using both the stochastic Lyapunov function and martingale estimation methods, we demonstrate that the average regret converges to zero without requiring traditional persistent excitation (PE) conditions. Furthermore, we establish a novel excitation condition that ensures global convergence of the online parameter estimates. The proposed excitation condition is applicable to a broader class of system trajectories, including those violating the PE condition.
Route Recommendations for Traffic Management Under Learned Partial Driver Compliance
In this paper, we aim to mitigate congestion in traffic management systems by guiding travelers along system-optimal (SO) routes. However, we recognize that most theoretical approaches assume perfect driver compliance, which often does not reflect reality, as drivers tend to deviate from recommendations to fulfill their personal objectives. Therefore, we propose a route recommendation framework that explicitly learns partial driver compliance and optimizes traffic flow under realistic adherence. We first compute an SO edge flow through flow optimization techniques. Next, we train a compliance model based on historical driver decisions to capture individual responses to our recommendations. Finally, we formulate a stochastic optimization problem that minimizes the gap between the target SO flow and the realized flow under conditions of imperfect adherence. Our simulations conducted on a grid network reveal that our approach significantly reduces travel time compared to baseline strategies, demonstrating the practical advantage of incorporating learned compliance into traffic management.
comment: 7 pages
Distributionally Robust Predictive Runtime Verification under Spatio-Temporal Logic Specifications
Cyber-physical systems designed in simulators, often consisting of multiple interacting agents, behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of an f-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work [1, 2] where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime and robust conformal prediction to obtain probabilistic guarantees by accounting for distribution shifts. Building on [1], we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift.
comment: arXiv admin note: substantial text overlap with arXiv:2311.09482
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
On-the-fly Surrogation for Complex Nonlinear Dynamics
High-fidelity models are essential for accurately capturing nonlinear system dynamics. However, simulation of these models is often computationally too expensive and, due to their complexity, they are not directly suitable for analysis, control design or real-time applications. Surrogate modelling techniques seek to construct simplified representations of these systems with minimal complexity, but adequate information on the dynamics given a simulation, analysis or synthesis objective at hand. Despite the widespread availability of system linearizations and the growing computational potential of autograd methods, there is no established approach that systematically exploits them to capture the underlying global nonlinear dynamics. This work proposes a novel surrogate modelling approach that can efficiently build a global representation of the dynamics on-the-fly from local system linearizations without ever explicitly computing a model. Using radial basis function interpolation and the second fundamental theorem of calculus, the surrogate model is only computed at its evaluation, enabling rapid computation for simulation and analysis and seamless incorporation of new linearization data. The efficiency and modelling capabilities of the method are demonstrated on simulation examples.
comment: Preprint submitted to the 2025 64th IEEE Conference on Decision and Control (CDC)
Safety-Aware Multi-Agent Learning for Dynamic Network Bridging
Addressing complex cooperative tasks in safety-critical environments poses significant challenges for multi-agent systems, especially under conditions of partial observability. We focus on a dynamic network bridging task, where agents must learn to maintain a communication path between two moving targets. To ensure safety during training and deployment, we integrate a control-theoretic safety filter that enforces collision avoidance through local setpoint updates. We develop and evaluate multi-agent reinforcement learning safety-informed message passing, showing that encoding safety filter activations as edge-level features improves coordination. The results suggest that local safety enforcement and decentralized learning can be effectively combined in distributed multi-agent tasks.
comment: 8 pages, 18 equations, 4 figures, 1 algorithm, and 1 table
Hybrid lunar ISRU plant: a comparative analysis with carbothermal reduction and water extraction
To establish a self-sustained human presence in space and to explore deeper into the solar system, extensive research has been conducted on In-Situ Resource Utilization (ISRU) systems. Past studies have proposed and researched many technologies to produce oxygen from regolith, such as carbothermal reduction and water extraction from icy regolith, to utilize it for astronauts' life support and as the propellant of space systems. However, determining the most promising technology remains challenging due to uncertainties in the lunar environment and processing methods. To better understand the lunar environment and ISRU operations, it is crucial to gather more information. Motivated by this need for information gathering, this paper proposes a new ISRU plant architecture integrating carbothermal reduction of dry regolith and water extraction from icy regolith. Two different hybrid plant architectures integrating both technologies (1) in parallel and (2) in series are examined. The former involves mining and processing in both a Permanently Shadowed Region (PSR) and a peak of eternal light in parallel, while the latter solely mines in a PSR. In this series hybrid architecture, the dry regolith tailings from water extraction are further processed by carbothermal reduction. This paper conducts a comparative analysis of the landed mass and required power of each plant architecture utilizing subsystem-level models. Furthermore, based on uncertain parameters such as resource content in regolith, the potential performance range of each plant was discovered through Monte Carlo simulations. The result indicates the benefit of the series hybrid architecture in terms of regolith excavation rate, while its mass cost seems the highest among the studied architectures.
comment: 29 pages, 22 figures, 8 tables, accepted by Acta Astronautica
The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
We approach the debate on how ``intelligent'' artificial agents should be, by endowing the preys and predators of the Lotka-Volterra model with behavioural algorithms characterized by different levels of sophistication. We find that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While we confirm that, in general, simple agents favour the emergence of complex collective behaviour, we also suggest that the capability of individuals to take first-order derivatives of one other's behaviour may allow the collective computation of derivatives of any order.
comment: 30 pages, 3 figures, 3 tables
Data-Driven Neural Certificate Synthesis
We investigate the problem of verifying different properties of discrete time dynamical systems, namely, reachability, safety and reach-while-avoid. To achieve this, we adopt a data driven perspective and using past systems' trajectories as data, we aim at learning a specific function termed \emph{certificate} for each property we wish to verify. The certificate construction problem is treated as a safety informed neural network training process, where we use a neural network to learn the parameterization of each certificate, while the loss function we seek to minimize is designed to encompass conditions on the certificate to be learned that encode the satisfaction of the associated property. Besides learning a certificate, we quantify probabilistically its generalization properties, namely, how likely it is for a certificate to be valid (and hence for the associated property to be satisfied) when it comes to a new system trajectory not included in the training data set. We view this problem under the realm of probably approximately correct (PAC) learning under the notion of compression, and use recent advancements of the so-called scenario approach to obtain scalable generalization bounds on the learned certificates. To achieve this, we design a novel algorithm that minimizes the loss function and hence constructs a certificate, and at the same time determines a quantity termed compression, which is instrumental in obtaining meaningful probabilistic guarantees. This process is novel per se and provides a constructive mechanism for compression set calculation, thus opening the road for its use to more general non-convex optimization problems. We verify the efficacy of our methodology on several numerical case studies, and compare it (both theoretically and numerically) with closely related results on data-driven property verification.
comment: 18 pages, submitted to Automatica
On Some Geometric Behavior of Value Iteration on the Orthant: Switching System Perspective
In this paper, the primary goal is to offer additional insights into the value iteration through the lens of switching system models in the control community. These models establish a connection between value iteration and switching system theory and reveal additional geometric behaviors of value iteration in solving discounted Markov decision problems. Specifically, the main contributions of this paper are twofold: 1) We provide a switching system model of value iteration and, based on it, offer a different proof for the contraction property of the value iteration. 2) Furthermore, from the additional insights, new geometric behaviors of value iteration are proven when the initial iterate lies in a special region. We anticipate that the proposed perspectives might have the potential to be a useful tool, applicable in various settings. Therefore, further development of these methods could be a valuable avenue for future research.
Model-Agnostic Meta-Learning for Fault Diagnosis of Induction Motors in Data-Scarce Environments with Varying Operating Conditions and Electric Drive Noise
Reliable mechanical fault detection with limited data is crucial for the effective operation of induction machines, particularly given the real-world challenges present in industrial datasets, such as significant imbalances between healthy and faulty samples and the scarcity of data representing faulty conditions. This research introduces an innovative meta-learning approach to address these issues, focusing on mechanical fault detection in induction motors across diverse operating conditions while mitigating the adverse effects of drive noise in scenarios with limited data. The process of identifying faults under varying operating conditions is framed as a few-shot classification challenge and approached through a model-agnostic meta-learning strategy. Specifically, this approach begins with training a meta-learner across multiple interconnected fault-diagnosis tasks conducted under different operating conditions. In this stage, cross-entropy is utilized to optimize parameters and develop a robust representation of the tasks. Subsequently, the parameters of the meta-learner are fine-tuned for new tasks, enabling rapid adaptation using only a small number of samples. This method achieves excellent accuracy in fault detection across various conditions, even when data availability is restricted. The findings indicate that the proposed model outperforms other sophisticated techniques, providing enhanced generalization and quicker adaptation. The accuracy of fault diagnosis reaches a minimum of 99%, underscoring the model's effectiveness for reliable fault identification.
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
Analyzing the Role of the DSO in Electricity Trading of VPPs via a Stackelberg Game Model
The increasing penetration of distributed energy resources has sparked interests in participating in power markets. Here, we consider two settings where Virtual Power Plants (VPPs) with some flexible resources participate in the electricity trading, either directly in the wholesale electricity market, or interfaced by the Distribution System Operator (DSO) who is the transaction organizer. In order to study the role of DSO as a stakeholder, a Stackelberg game is represented via a bi-level model: the DSO maximizes profits at the upper level, while the VPPs minimize operating costs at the lower level. To solve this problem, the Karush-Kuhn-Tucker conditions of lower level is deduced to achieve a single-level problem. The results show that the role of the DSO as an intermediary agent leads to a decrease in operating costs of the VPPs by organizing lower-level trading, while making a profit for itself. However, this seemingly win-win result comes at the cost of losing wholesale market interests, which implies that stakeholders need to abide by regulatory constraints in the electricity market.
comment: Accepted by 16th IEEE PowerTech conference in Kiel. 6 pages
L4acados: Learning-based models for acados, applied to Gaussian process-based predictive control
Incorporating learning-based models, such as artificial neural networks or Gaussian processes, into model predictive control (MPC) strategies can significantly improve control performance and online adaptation capabilities for real-world applications. Still, enabling state-of-the-art implementations of learning-based models for MPC is complicated by the challenge of interfacing machine learning frameworks with real-time optimal control software. This work aims at filling this gap by incorporating external sensitivities in sequential quadratic programming solvers for nonlinear optimal control. To this end, we provide L4acados, a general framework for incorporating Python-based residual models in the real-time optimal control software acados. By computing external sensitivities via a user-defined Python module, L4acados enables the implementation of MPC controllers with learning-based residual models in acados, while supporting parallelization of sensitivity computations when preparing the quadratic subproblems. We demonstrate significant speed-ups and superior scaling properties of L4acados compared to available software using a neural-network-based control example. Last, we provide an efficient and modular real-time implementation of Gaussian process-based MPC using L4acados, which is applied to two hardware examples: autonomous miniature racing, as well as motion control of a full-scale autonomous vehicle for an ISO lane change maneuver.
Optimization of partially isolated quantum harmonic oscillator memory systems by mean square decoherence time criteria
This paper is concerned with open quantum harmonic oscillators with position-momentum system variables, whose internal dynamics and interaction with the environment are governed by linear quantum stochastic differential equations. A recently proposed approach to such systems as Heisenberg picture quantum memories exploits their ability to approximately retain initial conditions over a decoherence horizon. Using the quantum memory decoherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation of the system variables from their initial values, we apply this approach to a partially isolated subsystem of the oscillator, which is not directly affected by the external fields. The partial isolation leads to an appropriate system decomposition and a qualitatively different short-horizon asymptotic behaviour of the deviation, which yields a longer decoherence time in the high-fidelity limit. The resulting approximate decoherence time maximization over the energy parameters for improving the quantum memory performance is discussed for a coherent feedback interconnection of such systems.
comment: 9 pages, 3 figures, submitted to ANZCC 2025, the first line of the proof of Lemma 1 on page 4 has been corrected
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving further up to 20.8$\times$ speedup over prevalent embedded CPUs with over 11$\times$ power reduction than GPU and low hardware resource overhead.
Robust Control of General Linear Delay Systems under Dissipativity: Part I -- A KSD based Framework
This paper introduces an effective framework for designing memoryless dissipative full-state feedbacks for general linear delay systems via the Krasovski\u{i} functional (KF) approach, where an unlimited number of pointwise and general distributed delays (DDs) exists in the state, input and output. To handle the infinite dimensionality of DDs, we employ the Kronecker-Seuret Decomposition (KSD) which we recently proposed for analyzing matrix-valued functions in the context of delay systems. The KSD enables factorization or least-squares approximation of any number of $\mathcal{L}^2$ DD kernels from any number of DDs without introducing conservatism. This also facilitates the construction of a complete-type KF with flexible integral kernels, following from an application of a novel integral inequality derived from the least-squares principle. Our solution includes two theorems and an iterative algorithm to compute controller gains without relying on nonlinear solvers. A challenging numerical example, intractable for existing methods, underscores the efficacy of this approach.
comment: Submitted to 2025 IEEE Control and Decision Conference
Systems and Control (EESS)
On Composable and Parametric Uncertainty in Systems Co-Design
Optimizing the design of complex systems requires navigating interdependent decisions, heterogeneous components, and multiple objectives. Our monotone theory of co-design offers a compositional framework for addressing this challenge, modeling systems as Design Problems (DPs), representing trade-offs between functionalities and resources within partially ordered sets. While current approaches model uncertainty using intervals, capturing worst- and best-case bounds, they fail to express probabilistic notions such as risk and confidence. These limitations hinder the applicability of co-design in domains where uncertainty plays a critical role. In this paper, we introduce a unified framework for composable uncertainty in co-design, capturing intervals, distributions, and parametrized models. This extension enables reasoning about risk-performance trade-offs and supports advanced queries such as experiment design, learning, and multi-stage decision making. We demonstrate the expressiveness and utility of the framework via a numerical case study on the uncertainty-aware co-design of task-driven Unmanned Aerial Vehicle (UAV).
comment: 8 pages, submitted to IEEE Conference on Decision and Control (CDC) 2025
Sequential Binary Hypothesis Testing with Competing Agents under Information Asymmetry
This paper concerns sequential hypothesis testing in competitive multi-agent systems where agents exchange potentially manipulated information. Specifically, a two-agent scenario is studied where each agent aims to correctly infer the true state of nature while optimizing decision speed and accuracy. At each iteration, agents collect private observations, update their beliefs, and share (possibly corrupted) belief signals with their counterparts before deciding whether to stop and declare a state, or continue gathering more information. The analysis yields three main results: (1)~when agents share information strategically, the optimal signaling policy involves equal-probability randomization between truthful and inverted beliefs; (2)~agents maximize performance by relying solely on their own observations for belief updating while using received information only to anticipate their counterpart's stopping decision; and (3)~the agent reaching their confidence threshold first cause the other agent to achieve a higher conditional probability of error. Numerical simulations further demonstrate that agents with higher KL divergence in their conditional distributions gain competitive advantage. Furthermore, our results establish that information sharing -- despite strategic manipulation -- reduces overall system stopping time compared to non-interactive scenarios, which highlights the inherent value of communication even in this competitive setup.
comment: 8 pages, 4 figures, submitted to IEEE Conference on Decision and Control 2025
A Set-Theoretic Robust Control Approach for Linear Quadratic Games with Unknown Counterparts
Ensuring robust decision-making in multi-agent systems is challenging when agents have distinct, possibly conflicting objectives and lack full knowledge of each other s strategies. This is apparent in safety-critical applications such as human-robot interaction and assisted driving, where uncertainty arises not only from unknown adversary strategies but also from external disturbances. To address this, the paper proposes a robust adaptive control approach based on linear quadratic differential games. Our method allows a controlled agent to iteratively refine its belief about the adversary strategy and disturbances using a set-membership approach, while simultaneously adapting its policy to guarantee robustness against the uncertain adversary policy and improve performance over time. We formally derive theoretical guarantees on the robustness of the proposed control scheme and its convergence to epsilon-Nash strategies. The effectiveness of our approach is demonstrated in a numerical simulation.
comment: Submitted to 64th IEEE Conference on Decision and Control
Online and Offline Space-Filling Input Design for Nonlinear System Identification: A Receding Horizon Control-Based Approach
The effectiveness of data-driven techniques heavily depends on the input signal used to generate the estimation data. However, a significant research gap exists in the field of input design for nonlinear dynamic system identification. In particular, existing methods largely overlook the minimization of the generalization error, i.e., model inaccuracies in regions not covered by the estimation dataset. This work addresses this gap by proposing an input design method that embeds a novel optimality criterion within a receding horizon control (RHC)-based optimization framework. The distance-based optimality criterion induces a space-filling design within a user-defined region of interest in a surrogate model's input space, requiring only minimal prior knowledge. Additionally, the method is applicable both online, where model parameters are continuously updated based on process observations, and offline, where a fixed model is employed. The space-filling performance of the proposed strategy is evaluated on an artificial example and compared to state-of-the-art methods, demonstrating superior efficiency in exploring process operating spaces.
Controlled Social Learning: Altruism vs. Bias
We introduce a model of sequential social learning in which a planner may pay a cost to adjust the private signal precision of some agents. This framework presents a new optimization problem for social learning that sheds light on practical policy questions, such as how the socially optimal level of ad personalization changes according to current beliefs or how a biased planner might derail social learning. We then characterize the optimal policies of an altruistic planner who maximizes social welfare and a biased planner who seeks to induce a specific action. Even for a planner who has equivalent knowledge to an individual, cannot lie or cherry-pick information, and is fully observable, we demonstrate that it can dramatically influence social welfare in both positive and negative directions. An important area for future exploration is how one might prevent these latter outcomes to protect against the manipulation of social learning.
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Markov chain Monte Carlo (MCMC) methods are a powerful but computationally expensive way of performing non-parametric Bayesian inference. MCMC proposals which utilise gradients, such as Hamiltonian Monte Carlo (HMC), can better explore the parameter space of interest if the additional hyper-parameters are chosen well. The No-U-Turn Sampler (NUTS) is a variant of HMC which is extremely effective at selecting these hyper-parameters but is slow to run and is not suited to GPU architectures. An alternative to NUTS, Change in the Estimator of the Expected Square HMC (ChEES-HMC) was shown not only to run faster than NUTS on GPU but also sample from posteriors more efficiently. Sequential Monte Carlo (SMC) samplers are another sampling method which instead output weighted samples from the posterior. They are very amenable to parallelisation and therefore being run on GPUs while having additional flexibility in their choice of proposal over MCMC. We incorporate (ChEEs-HMC) as a proposal into SMC samplers and demonstrate competitive but faster performance than NUTS on a number of tasks.
comment: 16 pages, 9 figures
Learning Geometrically-Informed Lyapunov Functions with Deep Diffeomorphic RBF Networks
The practical deployment of learning-based autonomous systems would greatly benefit from tools that flexibly obtain safety guarantees in the form of certificate functions from data. While the geometrical properties of such certificate functions are well understood, synthesizing them using machine learning techniques still remains a challenge. To mitigate this issue, we propose a diffeomorphic function learning framework where prior structural knowledge of the desired output is encoded in the geometry of a simple surrogate function, which is subsequently augmented through an expressive, topology-preserving state-space transformation. Thereby, we achieve an indirect function approximation framework that is guaranteed to remain in the desired hypothesis space. To this end, we introduce a novel approach to construct diffeomorphic maps based on RBF networks, which facilitate precise, local transformations around data. Finally, we demonstrate our approach by learning diffeomorphic Lyapunov functions from real-world data and apply our method to different attractor systems.
Regulating Spatial Fairness in a Tripartite Micromobility Sharing System via Reinforcement Learning
In the growing field of Shared Micromobility Systems, which holds great potential for shaping urban transportation, fairness-oriented approaches remain largely unexplored. This work addresses such a gap by investigating the balance between performance optimization and algorithmic fairness in Shared Micromobility Services using Reinforcement Learning. Our methodology achieves equitable outcomes, measured by the Gini index, across central, peripheral, and remote station categories. By strategically rebalancing vehicle distribution, it maximizes operator performance while upholding fairness principles. The efficacy of our approach is validated through a case study using synthetic data.
comment: 6 pages, 2 figures, accepted at the 2025 Innovation & Society: Statistics and Data Science for Evaluation and Quality (IES) on February 24th, 2025. arXiv admin note: text overlap with arXiv:2403.15780
Assessing Geographical and Seasonal Influences on Energy Efficiency of Electric Drayage Trucks
The electrification of heavy-duty vehicles is a critical pathway towards improved energy efficiency of the freight sector. The current battery electric truck technology poses several challenges to the operations of commercial vehicles, such as limited driving range, sensitivity to climate conditions, and long recharging times. Estimating the energy consumption of heavy-duty electric trucks is crucial to assess the feasibility of the fleet electrification and its impact on the electric grid. This paper focuses on developing a model-based simulation approach to predict and analyze the energy consumption of drayage trucks used in ports logistic operations, considering seasonal climate variations and geographical characteristics. The paper includes results for three major container ports within the United States, providing region-specific insights into driving range, payload capacity, and charging infrastructure requirements, which will inform decision-makers in integrating electric trucks into the existing drayage operations and plan investments for electric grid development.
MAD: A Magnitude And Direction Policy Parametrization for Stability Constrained Reinforcement Learning
We introduce magnitude and direction (MAD) policies, a policy parameterization for reinforcement learning (RL) that preserves Lp closed-loop stability for nonlinear dynamical systems. Although complete in their ability to describe all stabilizing controllers, methods based on nonlinear Youla and system-level synthesis are significantly affected by the difficulty of parameterizing Lp-stable operators. In contrast, MAD policies introduce explicit feedback on state-dependent features - a key element behind the success of RL pipelines - without compromising closed-loop stability. This is achieved by describing the magnitude of the control input with a disturbance-feedback Lp-stable operator, while selecting its direction based on state-dependent features through a universal function approximator. We further characterize the robust stability properties of MAD policies under model mismatch. Unlike existing disturbance-feedback policy parameterizations, MAD policies introduce state-feedback components compatible with model-free RL pipelines, ensuring closed-loop stability without requiring model information beyond open-loop stability. Numerical experiments show that MAD policies trained with deep deterministic policy gradient (DDPG) methods generalize to unseen scenarios, matching the performance of standard neural network policies while guaranteeing closed-loop stability by design.
Digital Twins for Internet of Battlespace Things (IoBT) Coalitions
This paper presents a new framework for integrating Digital Twins (DTs) within Internet of battlespace Things (IoBT) coalitions. We introduce a novel three-tier architecture that enables efficient coordination and management of DT models across coalition partners while addressing key challenges in interoperability, security, and resource allocation. The architecture comprises specialized controllers at each tier: Digital Twin Coalition Partner (DTCP) controllers managing individual coalition partners' DT resources, a central Digital Twin Coalition(DTC) controller orchestrating cross-partner coordination, and Digital Twin Coalition Mission (DTCP) controllers handling mission-specific DT interactions. We propose a hybrid approach for DT model placement across edge devices, tactical nodes, and cloud infrastructure, optimizing performance while maintaining security and accessibility. The architecture leverages software-defined networking principles for dynamic resource allocation and slice management, enabling efficient sharing of computational and network resources between DT operations and primary IoBT functions. Our proposed framework aims to provide a robust foundation for deploying and managing Digital Twins in coalition warfare, enhancing situational awareness, decision-making capabilities, and operational effectiveness while ensuring secure and interoperable operations across diverse coalition partners.
Probabilistic Simulation of Aircraft Descent via a Hybrid Physics-Data Approach
This paper presents a method for generating probabilistic descent trajectories in simulations of real-world airspace. A dataset of 116,066 trajectories harvested from Mode S radar returns in UK airspace was used to train and test the model. Thirteen aircraft types with varying performance characteristics were investigated. It was found that the error in the mean prediction of time to reach the bottom of descent for the proposed method was less than that of the the Base of Aircraft Data (BADA) model by a factor of 10. Furthermore, the method was capable of generating a range of trajectories that were similar to the held out test dataset when analysed in distribution. The proposed method is hybrid, with aircraft drag and calibrated airspeed functions generated probabilistically to parameterise the BADA equations, ensuring the physical plausibility of generated trajectories.
Secrecy Performance of a Keyhole-based Multi-user System with Multiple Eavesdroppers
This paper investigates the secrecy performance of a keyhole-aided multi-user communication network in the presence of multiple eavesdroppers. The communication happens through the same keyhole for legitimate users and eavesdroppers. In this context, the secrecy performance is evaluated for a user scheduling technique by obtaining the exact closed-form expression of secrecy outage probability (SOP). Further, a simplified asymptotic SOP expression is derived assuming high signal-to-noise ratio (SNR) scenario for a better understanding of the impact of system parameters. The effect of the keyhole parameters, number of users, number of eavesdroppers, and threshold secrecy rate on the SOP performance are also investigated for the considered system model. In the high-SNR regime, the asymptotic SOP saturates to a constant value and does not depend on the keyhole parameter and the channel parameter of the source-to-keyhole channel.
Hierarchical Policy-Gradient Reinforcement Learning for Multi-Agent Shepherding Control of Non-Cohesive Targets
We propose a decentralized reinforcement learning solution for multi-agent shepherding of non-cohesive targets using policy-gradient methods. Our architecture integrates target-selection with target-driving through Proximal Policy Optimization, overcoming discrete-action constraints of previous Deep Q-Network approaches and enabling smoother agent trajectories. This model-free framework effectively solves the shepherding problem without prior dynamics knowledge. Experiments demonstrate our method's effectiveness and scalability with increased target numbers and limited sensing capabilities.
On learning racing policies with reinforcement learning
Fully autonomous vehicles promise enhanced safety and efficiency. However, ensuring reliable operation in challenging corner cases requires control algorithms capable of performing at the vehicle limits. We address this requirement by considering the task of autonomous racing and propose solving it by learning a racing policy using Reinforcement Learning (RL). Our approach leverages domain randomization, actuator dynamics modeling, and policy architecture design to enable reliable and safe zero-shot deployment on a real platform. Evaluated on the F1TENTH race car, our RL policy not only surpasses a state-of-the-art Model Predictive Control (MPC), but, to the best of our knowledge, also represents the first instance of an RL policy outperforming expert human drivers in RC racing. This work identifies the key factors driving this performance improvement, providing critical insights for the design of robust RL-based control strategies for autonomous vehicles.
Beyond Asymptotics: Targeted exploration with finite-sample guarantees
In this paper, we introduce a targeted exploration strategy for the non-asymptotic, finite-time case. The proposed strategy is applicable to uncertain linear time-invariant systems subject to sub-Gaussian disturbances. As the main result, the proposed approach provides a priori guarantees, ensuring that the optimized exploration inputs achieve a desired accuracy of the model parameters. The technical derivation of the strategy (i) leverages existing non-asymptotic identification bounds with self-normalized martingales, (ii) utilizes spectral lines to predict the effect of sinusoidal excitation, and (iii) effectively accounts for spectral transient error and parametric uncertainty. A numerical example illustrates how the finite exploration time influence the required exploration energy.
A Comparative Study of MINLP and MPVC Formulations for Solving Complex Nonlinear Decision-Making Problems in Aerospace Applications
High-level decision-making for dynamical systems often involves performance and safety specifications that are activated or deactivated depending on conditions related to the system state and commands. Such decision-making problems can be naturally formulated as optimization problems where these conditional activations are regulated by discrete variables. However, solving these problems can be challenging numerically, even on powerful computing platforms, especially when the dynamics are nonlinear. In this work, we consider decision-making for nonlinear systems where certain constraints, as well as possible terms in the cost function, are activated or deactivated depending on the system state and commands. We show that these problems can be formulated either as mixed-integer nonlinear programs (MINLPs) or as mathematical programs with vanishing constraints (MPVCs), where the former formulation involves discrete decision variables, whereas the latter relies on continuous variables subject to structured nonconvex constraints. We discuss the different solution methods available for both formulations and demonstrate them on optimal trajectory planning problems in various aerospace applications. Finally, we compare the strengths and weaknesses of the MINLP and MPVC approaches through a focused case study on powered descent guidance with divert-feasible regions.
comment: Submitted to Optimal Control Applications and Methods (OCAM)
Bipedal Robust Walking on Uneven Footholds: Piecewise Slope LIPM with Discrete Model Predictive Control
This study presents an enhanced theoretical formulation for bipedal hierarchical control frameworks under uneven terrain conditions. Specifically, owing to the inherent limitations of the Linear Inverted Pendulum Model (LIPM) in handling terrain elevation variations, we develop a Piecewise Slope LIPM (PS-LIPM). This innovative model enables dynamic adjustment of the Center of Mass (CoM) height to align with topographical undulations during single-step cycles. Another contribution is proposed a generalized Angular Momentum-based LIPM (G-ALIP) for CoM velocity compensation using Centroidal Angular Momentum (CAM) regulation. Building upon these advancements, we derive the DCM step-to-step dynamics for Model Predictive Control MPC formulation, enabling simultaneous optimization of step position and step duration. A hierarchical control framework integrating MPC with a Whole-Body Controller (WBC) is implemented for bipedal locomotion across uneven stepping stones. The results validate the efficacy of the proposed hierarchical control framework and the theoretical formulation.
Error Analysis of Sampling Algorithms for Approximating Stochastic Optimal Control
This paper is concerned with the error analysis of two types of sampling algorithms, namely model predictive path integral (MPPI) and an interacting particle system (\IPS) algorithm, that have been proposed in the literature for numerical approximation of the stochastic optimal control. The analysis is presented through the lens of Gibbs variational principle. For an illustrative example of a single-stage stochastic optimal control problem, analytical expressions for approximation error and scaling laws, with respect to the state dimension and sample size, are derived. The analytical results are illustrated with numerical simulations.
Model Predictive Control with Visibility Graphs for Humanoid Path Planning and Tracking Against Adversarial Opponents ICRA
In this paper we detail the methods used for obstacle avoidance, path planning, and trajectory tracking that helped us win the adult-sized, autonomous humanoid soccer league in RoboCup 2024. Our team was undefeated for all seated matches and scored 45 goals over 6 games, winning the championship game 6 to 1. During the competition, a major challenge for collision avoidance was the measurement noise coming from bipedal locomotion and a limited field of view (FOV). Furthermore, obstacles would sporadically jump in and out of our planned trajectory. At times our estimator would place our robot inside a hard constraint. Any planner in this competition must also be be computationally efficient enough to re-plan and react in real time. This motivated our approach to trajectory generation and tracking. In many scenarios long-term and short-term planning is needed. To efficiently find a long-term general path that avoids all obstacles we developed DAVG (Dynamic Augmented Visibility Graphs). DAVG focuses on essential path planning by setting certain regions to be active based on obstacles and the desired goal pose. By augmenting the states in the graph, turning angles are considered, which is crucial for a large soccer playing robot as turning may be more costly. A trajectory is formed by linearly interpolating between discrete points generated by DAVG. A modified version of model predictive control (MPC) is used to then track this trajectory called cf-MPC (Collision-Free MPC). This ensures short-term planning. Without having to switch formulations cf-MPC takes into account the robot dynamics and collision free constraints. Without a hard switch the control input can smoothly transition in cases where the noise places our robot inside a constraint boundary. The nonlinear formulation runs at approximately 120 Hz, while the quadratic version achieves around 400 Hz.
comment: This is a preprint version. This paper has been accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025. The final published version will be available on IEEE Xplore
Statics of continuum planar grasping
Continuum robotic grasping, inspired by biological appendages such as octopus arms and elephant trunks, provides a versatile and adaptive approach to object manipulation. Unlike conventional rigid-body grasping, continuum robots leverage distributed compliance and whole-body contact to achieve robust and dexterous grasping. This paper presents a control-theoretic framework for analyzing the statics of continuous contact with a planar object. The governing equations of static equilibrium of the object are formulated as a linear control system, where the distributed contact forces act as control inputs. To optimize the grasping performance, a constrained optimal control problem is posed to minimize contact forces required to achieve a static grasp, with solutions derived using the Pontryagin Maximum Principle. Furthermore, two optimization problems are introduced: (i) for assigning a measure to the quality of a particular grasp, which generalizes a (rigid-body) grasp quality metric in the continuum case, and (ii) for finding the best grasping configuration that maximizes the continuum grasp quality. Several numerical results are also provided to elucidate our methods.
Moving Target Defense Against Adversarial False Data Injection Attacks In Power Grids
Machine learning (ML)-based detectors have been shown to be effective in detecting stealthy false data injection attacks (FDIAs) that can bypass conventional bad data detectors (BDDs) in power systems. However, ML models are also vulnerable to adversarial attacks. A sophisticated perturbation signal added to the original BDD-bypassing FDIA can conceal the attack from ML-based detectors. In this paper, we develop a moving target defense (MTD) strategy to defend against adversarial FDIAs in power grids. We first develop an MTD-strengthened deep neural network (DNN) model, which deploys a pool of DNN models rather than a single static model that cooperate to detect the adversarial attack jointly. The MTD model pool introduces randomness to the ML model's decision boundary, thereby making the adversarial attacks detectable. Furthermore, to increase the effectiveness of the MTD strategy and reduce the computational costs associated with developing the MTD model pool, we combine this approach with the physics-based MTD, which involves dynamically perturbing the transmission line reactance and retraining the DNN-based detector to adapt to the new system topology. Simulations conducted on IEEE test bus systems demonstrate that the MTD-strengthened DNN achieves up to 94.2% accuracy in detecting adversarial FDIAs. When combined with a physics-based MTD, the detection accuracy surpasses 99%, while significantly reducing the computational costs of updating the DNN models. This approach requires only moderate perturbations to transmission line reactances, resulting in minimal increases in OPF cost.
How to Adapt Control Barrier Functions? A Learning-Based Approach with Applications to a VTOL Quadplane
In this paper, we present a novel theoretical framework for online adaptation of Control Barrier Function (CBF) parameters, i.e., of the class K functions included in the CBF condition, under input constraints. We introduce the concept of locally validated CBF parameters, which are adapted online to guarantee finite-horizon safety, based on conditions derived from Nagumo's theorem and tangent cone analysis. To identify these parameters online, we integrate a learning-based approach with an uncertainty-aware verification process that account for both epistemic and aleatoric uncertainties inherent in neural network predictions. Our method is demonstrated on a VTOL quadplane model during challenging transition and landing maneuvers, showcasing enhanced performance while maintaining safety.
comment: Project page: https://www.taekyung.me/how-to-adapt-cbf
Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints
Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. Our contributions are as follows: 1) We propose an online method, building on our previous work "gatekeeper", to guarantee safety and satisfy budget constraints of the system trajectory at all times throughout a mission. 2) Next, we prove that our algorithm is recursively feasible and correct. 3) Finally, instead of using a heuristically designed backup controller, we propose a sampling-based method to construct backup trajectories that both minimize resource expenditure and reach budget renewal sets, in which path constraints are satisfied and the constrained resources are renewed. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.
comment: Code: https://github.com/dcherenson/gatekeeper_budget_constraints
Online Learning for Nonlinear Dynamical Systems without the I.I.D. Condition
This paper investigates online identification and prediction for nonlinear stochastic dynamical systems. In contrast to offline learning methods, we develop online algorithms that learn unknown parameters from a single trajectory. A key challenge in this setting is handling the non-independent data generated by the closed-loop system. Existing theoretical guarantees for such systems are mostly restricted to the assumption that inputs are independently and identically distributed (i.i.d.), or that the closed-loop data satisfy a persistent excitation (PE) condition. However, these assumptions are often violated in applications such as adaptive feedback control. In this paper, we propose an online projected Newton-type algorithm for parameter estimation in nonlinear stochastic dynamical systems, and develop an online predictor for system outputs based on online parameter estimates. By using both the stochastic Lyapunov function and martingale estimation methods, we demonstrate that the average regret converges to zero without requiring traditional persistent excitation (PE) conditions. Furthermore, we establish a novel excitation condition that ensures global convergence of the online parameter estimates. The proposed excitation condition is applicable to a broader class of system trajectories, including those violating the PE condition.
Route Recommendations for Traffic Management Under Learned Partial Driver Compliance
In this paper, we aim to mitigate congestion in traffic management systems by guiding travelers along system-optimal (SO) routes. However, we recognize that most theoretical approaches assume perfect driver compliance, which often does not reflect reality, as drivers tend to deviate from recommendations to fulfill their personal objectives. Therefore, we propose a route recommendation framework that explicitly learns partial driver compliance and optimizes traffic flow under realistic adherence. We first compute an SO edge flow through flow optimization techniques. Next, we train a compliance model based on historical driver decisions to capture individual responses to our recommendations. Finally, we formulate a stochastic optimization problem that minimizes the gap between the target SO flow and the realized flow under conditions of imperfect adherence. Our simulations conducted on a grid network reveal that our approach significantly reduces travel time compared to baseline strategies, demonstrating the practical advantage of incorporating learned compliance into traffic management.
comment: 7 pages
Distributionally Robust Predictive Runtime Verification under Spatio-Temporal Logic Specifications
Cyber-physical systems designed in simulators, often consisting of multiple interacting agents, behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of an f-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work [1, 2] where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime and robust conformal prediction to obtain probabilistic guarantees by accounting for distribution shifts. Building on [1], we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift.
comment: arXiv admin note: substantial text overlap with arXiv:2311.09482
On Word-of-Mouth and Private-Prior Sequential Social Learning
Social learning provides a fundamental framework in economics and social sciences for studying interactions among rational agents who observe each other's actions but lack direct access to individual beliefs. This paper investigates a specific social learning paradigm known as Word-of-Mouth (WoM), where a series of agents seeks to estimate the state of a dynamical system. The first agent receives noisy measurements of the state, while each subsequent agent relies solely on a degraded version of her predecessor's estimate. A defining feature of WoM is that the final agent's belief is publicly broadcast and adopted by all agents, in place of their own. We analyze this setting both theoretically and through numerical simulations, showing that some agents benefit from using the public belief broadcast by the last agent, while others suffer from performance deterioration.
comment: 8 pages, 5 figures, Submitted to IEEE CDC 2025
On-the-fly Surrogation for Complex Nonlinear Dynamics
High-fidelity models are essential for accurately capturing nonlinear system dynamics. However, simulation of these models is often computationally too expensive and, due to their complexity, they are not directly suitable for analysis, control design or real-time applications. Surrogate modelling techniques seek to construct simplified representations of these systems with minimal complexity, but adequate information on the dynamics given a simulation, analysis or synthesis objective at hand. Despite the widespread availability of system linearizations and the growing computational potential of autograd methods, there is no established approach that systematically exploits them to capture the underlying global nonlinear dynamics. This work proposes a novel surrogate modelling approach that can efficiently build a global representation of the dynamics on-the-fly from local system linearizations without ever explicitly computing a model. Using radial basis function interpolation and the second fundamental theorem of calculus, the surrogate model is only computed at its evaluation, enabling rapid computation for simulation and analysis and seamless incorporation of new linearization data. The efficiency and modelling capabilities of the method are demonstrated on simulation examples.
comment: Preprint submitted to the 2025 64th IEEE Conference on Decision and Control (CDC)
Safety-Aware Multi-Agent Learning for Dynamic Network Bridging
Addressing complex cooperative tasks in safety-critical environments poses significant challenges for multi-agent systems, especially under conditions of partial observability. We focus on a dynamic network bridging task, where agents must learn to maintain a communication path between two moving targets. To ensure safety during training and deployment, we integrate a control-theoretic safety filter that enforces collision avoidance through local setpoint updates. We develop and evaluate multi-agent reinforcement learning safety-informed message passing, showing that encoding safety filter activations as edge-level features improves coordination. The results suggest that local safety enforcement and decentralized learning can be effectively combined in distributed multi-agent tasks.
comment: 8 pages, 18 equations, 4 figures, 1 algorithm, and 1 table
Hybrid lunar ISRU plant: a comparative analysis with carbothermal reduction and water extraction
To establish a self-sustained human presence in space and to explore deeper into the solar system, extensive research has been conducted on In-Situ Resource Utilization (ISRU) systems. Past studies have proposed and researched many technologies to produce oxygen from regolith, such as carbothermal reduction and water extraction from icy regolith, to utilize it for astronauts' life support and as the propellant of space systems. However, determining the most promising technology remains challenging due to uncertainties in the lunar environment and processing methods. To better understand the lunar environment and ISRU operations, it is crucial to gather more information. Motivated by this need for information gathering, this paper proposes a new ISRU plant architecture integrating carbothermal reduction of dry regolith and water extraction from icy regolith. Two different hybrid plant architectures integrating both technologies (1) in parallel and (2) in series are examined. The former involves mining and processing in both a Permanently Shadowed Region (PSR) and a peak of eternal light in parallel, while the latter solely mines in a PSR. In this series hybrid architecture, the dry regolith tailings from water extraction are further processed by carbothermal reduction. This paper conducts a comparative analysis of the landed mass and required power of each plant architecture utilizing subsystem-level models. Furthermore, based on uncertain parameters such as resource content in regolith, the potential performance range of each plant was discovered through Monte Carlo simulations. The result indicates the benefit of the series hybrid architecture in terms of regolith excavation rate, while its mass cost seems the highest among the studied architectures.
comment: 29 pages, 22 figures, 8 tables, accepted by Acta Astronautica
The Less Intelligent the Elements, the More Intelligent the Whole. Or, Possibly Not?
We approach the debate on how ``intelligent'' artificial agents should be, by endowing the preys and predators of the Lotka-Volterra model with behavioural algorithms characterized by different levels of sophistication. We find that by endowing both preys and predators with the capability of making predictions based on linear extrapolation a novel sort of dynamic equilibrium appears, where both species co-exist while both populations grow indefinitely. While we confirm that, in general, simple agents favour the emergence of complex collective behaviour, we also suggest that the capability of individuals to take first-order derivatives of one other's behaviour may allow the collective computation of derivatives of any order.
comment: 30 pages, 3 figures, 3 tables
Data-Driven Neural Certificate Synthesis
We investigate the problem of verifying different properties of discrete time dynamical systems, namely, reachability, safety and reach-while-avoid. To achieve this, we adopt a data driven perspective and using past systems' trajectories as data, we aim at learning a specific function termed \emph{certificate} for each property we wish to verify. The certificate construction problem is treated as a safety informed neural network training process, where we use a neural network to learn the parameterization of each certificate, while the loss function we seek to minimize is designed to encompass conditions on the certificate to be learned that encode the satisfaction of the associated property. Besides learning a certificate, we quantify probabilistically its generalization properties, namely, how likely it is for a certificate to be valid (and hence for the associated property to be satisfied) when it comes to a new system trajectory not included in the training data set. We view this problem under the realm of probably approximately correct (PAC) learning under the notion of compression, and use recent advancements of the so-called scenario approach to obtain scalable generalization bounds on the learned certificates. To achieve this, we design a novel algorithm that minimizes the loss function and hence constructs a certificate, and at the same time determines a quantity termed compression, which is instrumental in obtaining meaningful probabilistic guarantees. This process is novel per se and provides a constructive mechanism for compression set calculation, thus opening the road for its use to more general non-convex optimization problems. We verify the efficacy of our methodology on several numerical case studies, and compare it (both theoretically and numerically) with closely related results on data-driven property verification.
comment: 18 pages, submitted to Automatica
On Some Geometric Behavior of Value Iteration on the Orthant: Switching System Perspective
In this paper, the primary goal is to offer additional insights into the value iteration through the lens of switching system models in the control community. These models establish a connection between value iteration and switching system theory and reveal additional geometric behaviors of value iteration in solving discounted Markov decision problems. Specifically, the main contributions of this paper are twofold: 1) We provide a switching system model of value iteration and, based on it, offer a different proof for the contraction property of the value iteration. 2) Furthermore, from the additional insights, new geometric behaviors of value iteration are proven when the initial iterate lies in a special region. We anticipate that the proposed perspectives might have the potential to be a useful tool, applicable in various settings. Therefore, further development of these methods could be a valuable avenue for future research.
Model-Agnostic Meta-Learning for Fault Diagnosis of Induction Motors in Data-Scarce Environments with Varying Operating Conditions and Electric Drive Noise
Reliable mechanical fault detection with limited data is crucial for the effective operation of induction machines, particularly given the real-world challenges present in industrial datasets, such as significant imbalances between healthy and faulty samples and the scarcity of data representing faulty conditions. This research introduces an innovative meta-learning approach to address these issues, focusing on mechanical fault detection in induction motors across diverse operating conditions while mitigating the adverse effects of drive noise in scenarios with limited data. The process of identifying faults under varying operating conditions is framed as a few-shot classification challenge and approached through a model-agnostic meta-learning strategy. Specifically, this approach begins with training a meta-learner across multiple interconnected fault-diagnosis tasks conducted under different operating conditions. In this stage, cross-entropy is utilized to optimize parameters and develop a robust representation of the tasks. Subsequently, the parameters of the meta-learner are fine-tuned for new tasks, enabling rapid adaptation using only a small number of samples. This method achieves excellent accuracy in fault detection across various conditions, even when data availability is restricted. The findings indicate that the proposed model outperforms other sophisticated techniques, providing enhanced generalization and quicker adaptation. The accuracy of fault diagnosis reaches a minimum of 99%, underscoring the model's effectiveness for reliable fault identification.
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
Analyzing the Role of the DSO in Electricity Trading of VPPs via a Stackelberg Game Model
The increasing penetration of distributed energy resources has sparked interests in participating in power markets. Here, we consider two settings where Virtual Power Plants (VPPs) with some flexible resources participate in the electricity trading, either directly in the wholesale electricity market, or interfaced by the Distribution System Operator (DSO) who is the transaction organizer. In order to study the role of DSO as a stakeholder, a Stackelberg game is represented via a bi-level model: the DSO maximizes profits at the upper level, while the VPPs minimize operating costs at the lower level. To solve this problem, the Karush-Kuhn-Tucker conditions of lower level is deduced to achieve a single-level problem. The results show that the role of the DSO as an intermediary agent leads to a decrease in operating costs of the VPPs by organizing lower-level trading, while making a profit for itself. However, this seemingly win-win result comes at the cost of losing wholesale market interests, which implies that stakeholders need to abide by regulatory constraints in the electricity market.
comment: Accepted by 16th IEEE PowerTech conference in Kiel. 6 pages
L4acados: Learning-based models for acados, applied to Gaussian process-based predictive control
Incorporating learning-based models, such as artificial neural networks or Gaussian processes, into model predictive control (MPC) strategies can significantly improve control performance and online adaptation capabilities for real-world applications. Still, enabling state-of-the-art implementations of learning-based models for MPC is complicated by the challenge of interfacing machine learning frameworks with real-time optimal control software. This work aims at filling this gap by incorporating external sensitivities in sequential quadratic programming solvers for nonlinear optimal control. To this end, we provide L4acados, a general framework for incorporating Python-based residual models in the real-time optimal control software acados. By computing external sensitivities via a user-defined Python module, L4acados enables the implementation of MPC controllers with learning-based residual models in acados, while supporting parallelization of sensitivity computations when preparing the quadratic subproblems. We demonstrate significant speed-ups and superior scaling properties of L4acados compared to available software using a neural-network-based control example. Last, we provide an efficient and modular real-time implementation of Gaussian process-based MPC using L4acados, which is applied to two hardware examples: autonomous miniature racing, as well as motion control of a full-scale autonomous vehicle for an ISO lane change maneuver.
Optimization of partially isolated quantum harmonic oscillator memory systems by mean square decoherence time criteria
This paper is concerned with open quantum harmonic oscillators with position-momentum system variables, whose internal dynamics and interaction with the environment are governed by linear quantum stochastic differential equations. A recently proposed approach to such systems as Heisenberg picture quantum memories exploits their ability to approximately retain initial conditions over a decoherence horizon. Using the quantum memory decoherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation of the system variables from their initial values, we apply this approach to a partially isolated subsystem of the oscillator, which is not directly affected by the external fields. The partial isolation leads to an appropriate system decomposition and a qualitatively different short-horizon asymptotic behaviour of the deviation, which yields a longer decoherence time in the high-fidelity limit. The resulting approximate decoherence time maximization over the energy parameters for improving the quantum memory performance is discussed for a coherent feedback interconnection of such systems.
comment: 9 pages, 3 figures, submitted to ANZCC 2025, the first line of the proof of Lemma 1 on page 4 has been corrected
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving further up to 20.8$\times$ speedup over prevalent embedded CPUs with over 11$\times$ power reduction than GPU and low hardware resource overhead.
Robust Control of General Linear Delay Systems under Dissipativity: Part I -- A KSD based Framework
This paper introduces an effective framework for designing memoryless dissipative full-state feedbacks for general linear delay systems via the Krasovski\u{i} functional (KF) approach, where an unlimited number of pointwise and general distributed delays (DDs) exists in the state, input and output. To handle the infinite dimensionality of DDs, we employ the Kronecker-Seuret Decomposition (KSD) which we recently proposed for analyzing matrix-valued functions in the context of delay systems. The KSD enables factorization or least-squares approximation of any number of $\mathcal{L}^2$ DD kernels from any number of DDs without introducing conservatism. This also facilitates the construction of a complete-type KF with flexible integral kernels, following from an application of a novel integral inequality derived from the least-squares principle. Our solution includes two theorems and an iterative algorithm to compute controller gains without relying on nonlinear solvers. A challenging numerical example, intractable for existing methods, underscores the efficacy of this approach.
comment: Submitted to 2025 IEEE Control and Decision Conference
Robotics
Slot-Level Robotic Placement via Visual Imitation from Single Human Video
The majority of modern robot learning methods focus on learning a set of pre-defined tasks with limited or no generalization to new tasks. Extending the robot skillset to novel tasks involves gathering an extensive amount of training data for additional tasks. In this paper, we address the problem of teaching new tasks to robots using human demonstration videos for repetitive tasks (e.g., packing). This task requires understanding the human video to identify which object is being manipulated (the pick object) and where it is being placed (the placement slot). In addition, it needs to re-identify the pick object and the placement slots during inference along with the relative poses to enable robot execution of the task. To tackle this, we propose SLeRP, a modular system that leverages several advanced visual foundation models and a novel slot-level placement detector Slot-Net, eliminating the need for expensive video demonstrations for training. We evaluate our system using a new benchmark of real-world videos. The evaluation results show that SLeRP outperforms several baselines and can be deployed on a real robot.
Strengthening Multi-Robot Systems for SAR: Co-Designing Robotics and Communication Towards 6G
This paper presents field-tested use cases from Search and Rescue (SAR) missions, highlighting the co-design of mobile robots and communication systems to support Edge-Cloud architectures based on 5G Standalone (SA). The main goal is to contribute to the effective cooperation of multiple robots and first responders. Our field experience includes the development of Hybrid Wireless Sensor Networks (H-WSNs) for risk and victim detection, smartphones integrated into the Robot Operating System (ROS) as Edge devices for mission requests and path planning, real-time Simultaneous Localization and Mapping (SLAM) via Multi-Access Edge Computing (MEC), and implementation of Uncrewed Ground Vehicles (UGVs) for victim evacuation in different navigation modes. These experiments, conducted in collaboration with actual first responders, underscore the need for intelligent network resource management, balancing low-latency and high-bandwidth demands. Network slicing is key to ensuring critical emergency services are performed despite challenging communication conditions. The paper identifies architectural needs, lessons learned, and challenges to be addressed by 6G technologies to enhance emergency response capabilities.
comment: 8 pages, 6 figures, submitted to IEEE Communication Society (Special Issue: Empowering Robotics with 6G: Connectivity, Intelligence, and Beyond)
Overcoming Deceptiveness in Fitness Optimization with Unsupervised Quality-Diversity
Policy optimization seeks the best solution to a control problem according to an objective or fitness function, serving as a fundamental field of engineering and research with applications in robotics. Traditional optimization methods like reinforcement learning and evolutionary algorithms struggle with deceptive fitness landscapes, where following immediate improvements leads to suboptimal solutions. Quality-diversity (QD) algorithms offer a promising approach by maintaining diverse intermediate solutions as stepping stones for escaping local optima. However, QD algorithms require domain expertise to define hand-crafted features, limiting their applicability where characterizing solution diversity remains unclear. In this paper, we show that unsupervised QD algorithms - specifically the AURORA framework, which learns features from sensory data - efficiently solve deceptive optimization problems without domain expertise. By enhancing AURORA with contrastive learning and periodic extinction events, we propose AURORA-XCon, which outperforms all traditional optimization baselines and matches, in some cases even improving by up to 34%, the best QD baseline with domain-specific hand-crafted features. This work establishes a novel application of unsupervised QD algorithms, shifting their focus from discovering novel solutions toward traditional optimization and expanding their potential to domains where defining feature spaces poses challenges.
Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness
The rapid development of Large Multimodal Models (LMMs) for 2D images and videos has spurred efforts to adapt these models for interpreting 3D scenes. However, the absence of large-scale 3D vision-language datasets has posed a significant obstacle. To address this issue, typical approaches focus on injecting 3D awareness into 2D LMMs by designing 3D input-level scene representations. This work provides a new perspective. We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure. Specifically, it incorporates cross-view and global-view reconstruction. The former requires reconstructing masked views by aggregating overlapping information from other views. The latter aims to aggregate information from all available views to recover Bird's-Eye-View images, contributing to a comprehensive overview of the entire scene. Empirically, Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks. More importantly, our semi-supervised experiments demonstrate significant potential in leveraging large amounts of unlabeled 3D vision-only data.
A novel gesture interaction control method for rehabilitation lower extremity exoskeleton
With the rapid development of Rehabilitation Lower Extremity Robotic Exoskeletons (RLEEX) technology, significant advancements have been made in Human-Robot Interaction (HRI) methods. These include traditional physical HRI methods that are easily recognizable and various bio-electrical signal-based HRI methods that can visualize and predict actions. However, most of these HRI methods are contact-based, facing challenges such as operational complexity, sensitivity to interference, risks associated with implantable devices, and, most importantly, limitations in comfort. These challenges render the interaction less intuitive and natural, which can negatively impact patient motivation for rehabilitation. To address these issues, this paper proposes a novel non-contact gesture interaction control method for RLEEX, based on RGB monocular camera depth estimation. This method integrates three key steps: detecting keypoints, recognizing gestures, and assessing distance, thereby applying gesture information and augmented reality triggering technology to control gait movements of RLEEX. Results indicate that this approach provides a feasible solution to the problems of poor comfort, low reliability, and high latency in HRI for RLEEX platforms. Specifically, it achieves a gesture-controlled exoskeleton motion accuracy of 94.11\% and an average system response time of 0.615 seconds through non-contact HRI. The proposed non-contact HRI method represents a pioneering advancement in control interactions for RLEEX, paving the way for further exploration and development in this field.
Corner-Grasp: Multi-Action Grasp Detection and Active Gripper Adaptation for Grasping in Cluttered Environments
Robotic grasping is an essential capability, playing a critical role in enabling robots to physically interact with their surroundings. Despite extensive research, challenges remain due to the diverse shapes and properties of target objects, inaccuracies in sensing, and potential collisions with the environment. In this work, we propose a method for effectively grasping in cluttered bin-picking environments where these challenges intersect. We utilize a multi-functional gripper that combines both suction and finger grasping to handle a wide range of objects. We also present an active gripper adaptation strategy to minimize collisions between the gripper hardware and the surrounding environment by actively leveraging the reciprocating suction cup and reconfigurable finger motion. To fully utilize the gripper's capabilities, we built a neural network that detects suction and finger grasp points from a single input RGB-D image. This network is trained using a larger-scale synthetic dataset generated from simulation. In addition to this, we propose an efficient approach to constructing a real-world dataset that facilitates grasp point detection on various objects with diverse characteristics. Experiment results show that the proposed method can grasp objects in cluttered bin-picking scenarios and prevent collisions with environmental constraints such as a corner of the bin. Our proposed method demonstrated its effectiveness in the 9th Robotic Grasping and Manipulation Competition (RGMC) held at ICRA 2024.
comment: 11 pages, 14 figures
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of other vehicles is crucial for autonomous vehicles, with applications from missile guidance to UAV collision avoidance. Typically, target trajectories are assumed deterministic, but real-world aerial vehicles exhibit stochastic behavior, such as evasive maneuvers or gliders circling in thermals. This paper uses Conditional Normalizing Flows, an unsupervised Machine Learning technique, to learn and predict the stochastic behavior of targets of guided missiles using trajectory data. The trained model predicts the distribution of future target positions based on initial conditions and parameters of the dynamics. Samples from this distribution are clustered using a time series k-means algorithm to generate representative trajectories, termed virtual targets. The method is fast and target-agnostic, requiring only training data in the form of target trajectories. Thus, it serves as a drop-in replacement for deterministic trajectory predictions in guidance laws and path planning. Simulated scenarios demonstrate the approach's effectiveness for aerial vehicles with random maneuvers, bridging the gap between deterministic predictions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: will be submitted to Journal of Guidance, Control, and Dynamics
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving up to 27.3$\times$ speedup over commonly used computing devices, with around 2 to 4$\times$ power reduction and acceptable hardware overhead.
SOLAQUA: SINTEF Ocean Large Aquaculture Robotics Dataset
This paper presents a dataset gathered with an underwater robot in a sea-based aquaculture setting. Data was gathered from an operational fish farm and includes data from sensors such as the Waterlinked A50 DVL, the Nortek Nucleus 1000 DVL, Sonardyne Micro Ranger 2 USBL, Sonoptix Mulitbeam Sonar, mono and stereo cameras, and vehicle sensor data such as power usage, IMU, pressure, temperature, and more. Data acquisition is performed during both manual and autonomous traversal of the net pen structure. The collected vision data is of undamaged nets with some fish and marine growth presence, and it is expected that both the research community and the aquaculture industry will benefit greatly from the utilization of the proposed SOLAQUA dataset.
Beyond Non-Expert Demonstrations: Outcome-Driven Action Constraint for Offline Reinforcement Learning
We address the challenge of offline reinforcement learning using realistic data, specifically non-expert data collected through sub-optimal behavior policies. Under such circumstance, the learned policy must be safe enough to manage \textit{distribution shift} while maintaining sufficient flexibility to deal with non-expert (bad) demonstrations from offline data.To tackle this issue, we introduce a novel method called Outcome-Driven Action Flexibility (ODAF), which seeks to reduce reliance on the empirical action distribution of the behavior policy, hence reducing the negative impact of those bad demonstrations.To be specific, a new conservative reward mechanism is developed to deal with {\it distribution shift} by evaluating actions according to whether their outcomes meet safety requirements - remaining within the state support area, rather than solely depending on the actions' likelihood based on offline data.Besides theoretical justification, we provide empirical evidence on widely used MuJoCo and various maze benchmarks, demonstrating that our ODAF method, implemented using uncertainty quantification techniques, effectively tolerates unseen transitions for improved "trajectory stitching," while enhancing the agent's ability to learn from realistic non-expert data.
TransforMerger: Transformer-based Voice-Gesture Fusion for Robust Human-Robot Communication
As human-robot collaboration advances, natural and flexible communication methods are essential for effective robot control. Traditional methods relying on a single modality or rigid rules struggle with noisy or misaligned data as well as with object descriptions that do not perfectly fit the predefined object names (e.g. 'Pick that red object'). We introduce TransforMerger, a transformer-based reasoning model that infers a structured action command for robotic manipulation based on fused voice and gesture inputs. Our approach merges multimodal data into a single unified sentence, which is then processed by the language model. We employ probabilistic embeddings to handle uncertainty and we integrate contextual scene understanding to resolve ambiguous references (e.g., gestures pointing to multiple objects or vague verbal cues like "this"). We evaluate TransforMerger in simulated and real-world experiments, demonstrating its robustness to noise, misalignment, and missing information. Our results show that TransforMerger outperforms deterministic baselines, especially in scenarios requiring more contextual knowledge, enabling more robust and flexible human-robot communication. Code and datasets are available at: http://imitrob.ciirc.cvut.cz/publications/transformerger.
comment: 8 pages, 7 figures
Reasoning LLMs for User-Aware Multimodal Conversational Agents
Personalization in social robotics is critical for fostering effective human-robot interactions, yet systems often face the cold start problem, where initial user preferences or characteristics are unavailable. This paper proposes a novel framework called USER-LLM R1 for a user-aware conversational agent that addresses this challenge through dynamic user profiling and model initiation. Our approach integrates chain-of-thought (CoT) reasoning models to iteratively infer user preferences and vision-language models (VLMs) to initialize user profiles from multimodal inputs, enabling personalized interactions from the first encounter. Leveraging a Retrieval-Augmented Generation (RAG) architecture, the system dynamically refines user representations within an inherent CoT process, ensuring contextually relevant and adaptive responses. Evaluations on the ElderlyTech-VQA Bench demonstrate significant improvements in ROUGE-1 (+23.2%), ROUGE-2 (+0.6%), and ROUGE-L (+8%) F1 scores over state-of-the-art baselines, with ablation studies underscoring the impact of reasoning model size on performance. Human evaluations further validate the framework's efficacy, particularly for elderly users, where tailored responses enhance engagement and trust. Ethical considerations, including privacy preservation and bias mitigation, are rigorously discussed and addressed to ensure responsible deployment.
Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
comment: 8 pages,6 figures
Proposition of Affordance-Driven Environment Recognition Framework Using Symbol Networks in Large Language Models
In the quest to enable robots to coexist with humans, understanding dynamic situations and selecting appropriate actions based on common sense and affordances are essential. Conventional AI systems face challenges in applying affordance, as it represents implicit knowledge derived from common sense. However, large language models (LLMs) offer new opportunities due to their ability to process extensive human knowledge. This study proposes a method for automatic affordance acquisition by leveraging LLM outputs. The process involves generating text using LLMs, reconstructing the output into a symbol network using morphological and dependency analysis, and calculating affordances based on network distances. Experiments using ``apple'' as an example demonstrated the method's ability to extract context-dependent affordances with high explainability. The results suggest that the proposed symbol network, reconstructed from LLM outputs, enables robots to interpret affordances effectively, bridging the gap between symbolized data and human-like situational understanding.
LLM-mediated Dynamic Plan Generation with a Multi-Agent Approach
Planning methods with high adaptability to dynamic environments are crucial for the development of autonomous and versatile robots. We propose a method for leveraging a large language model (GPT-4o) to automatically generate networks capable of adapting to dynamic environments. The proposed method collects environmental "status," representing conditions and goals, and uses them to generate agents. These agents are interconnected on the basis of specific conditions, resulting in networks that combine flexibility and generality. We conducted evaluation experiments to compare the networks automatically generated with the proposed method with manually constructed ones, confirming the comprehensiveness of the proposed method's networks and their higher generality. This research marks a significant advancement toward the development of versatile planning methods applicable to robotics, autonomous vehicles, smart systems, and other complex environments.
Anticipating Degradation: A Predictive Approach to Fault Tolerance in Robot Swarms
An active approach to fault tolerance is essential for robot swarms to achieve long-term autonomy. Previous efforts have focused on responding to spontaneous electro-mechanical faults and failures. However, many faults occur gradually over time. Waiting until such faults have manifested as failures before addressing them is both inefficient and unsustainable in a variety of scenarios. This work argues that the principles of predictive maintenance, in which potential faults are resolved before they hinder the operation of the swarm, offer a promising means of achieving long-term fault tolerance. This is a novel approach to swarm fault tolerance, which is shown to give a comparable or improved performance when tested against a reactive approach in almost all cases tested.
Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning IROS
Integrating robotics into everyday scenarios like tutoring or physical training requires robots capable of adaptive, socially engaging, and goal-oriented interactions. While Large Language Models show promise in human-like communication, their standalone use is hindered by memory constraints and contextual incoherence. This work presents a multimodal, cognitively inspired framework that enhances LLM-based autonomous decision-making in social and task-oriented Human-Robot Interaction. Specifically, we develop an LLM-based agent for a robot trainer, balancing social conversation with task guidance and goal-driven motivation. To further enhance autonomy and personalization, we introduce a memory system for selecting, storing and retrieving experiences, facilitating generalized reasoning based on knowledge built across different interactions. A preliminary HRI user study and offline experiments with a synthetic dataset validate our approach, demonstrating the system's ability to manage complex interactions, autonomously drive training tasks, and build and retrieve contextual memories, advancing socially intelligent robotics.
comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
LL-Localizer: A Life-Long Localization System based on Dynamic i-Octree
This paper proposes an incremental voxel-based life-long localization method, LL-Localizer, which enables robots to localize robustly and accurately in multi-session mode using prior maps. Meanwhile, considering that it is difficult to be aware of changes in the environment in the prior map and robots may traverse between mapped and unmapped areas during actual operation, we will update the map when needed according to the established strategies through incremental voxel map. Besides, to ensure high performance in real-time and facilitate our map management, we utilize Dynamic i-Octree, an efficient organization of 3D points based on Dynamic Octree to load local map and update the map during the robot's operation. The experiments show that our system can perform stable and accurate localization comparable to state-of-the-art LIO systems. And even if the environment in the prior map changes or the robots traverse between mapped and unmapped areas, our system can still maintain robust and accurate localization without any distinction. Our demo can be found on Blibili (https://www.bilibili.com/video/BV1faZHYCEkZ) and youtube (https://youtu.be/UWn7RCb9kA8) and the program will be available at https://github.com/M-Evanovic/LL-Localizer.
8-DoFs Cable Driven Parallel Robots for Bimanual Teleportation
Teleoperation plays a critical role in intuitive robot control and imitation learning, particularly for complex tasks involving mobile manipulators with redundant degrees of freedom (DoFs). However, most existing master controllers are limited to 6-DoF spatial control and basic gripper control, making them insufficient for controlling high-DoF robots and restricting the operator to a small workspace. In this work, we present a novel, low-cost, high-DoF master controller based on Cable-Driven Parallel Robots (CDPRs), designed to overcome these limitations. The system decouples translation and orientation control, following a scalable 3 + 3 + n DoF structure: 3 DoFs for large-range translation using a CDPR, 3 DoFs for orientation using a gimbal mechanism, and n additional DoFs for gripper and redundant joint control. Its lightweight cable-driven design enables a large and adaptable workspace while minimizing actuator load. The end-effector remains stable without requiring continuous high-torque input, unlike most serial robot arms. We developed the first dual-arm CDPR-based master controller using cost-effective actuators and a simple mechanical structure. In demonstrations, the system successfully controlled an 8-DoF robotic arm with a 2-DoF pan-tilt camera, performing tasks such as pick-and-place, knot tying, object sorting, and tape application. The results show precise, versatile, and practical high-DoF teleoperation.
Grasping by Spiraling: Reproducing Elephant Movements with Rigid-Soft Robot Synergy
The logarithmic spiral is observed as a common pattern in several living beings across kingdoms and species. Some examples include fern shoots, prehensile tails, and soft limbs like octopus arms and elephant trunks. In the latter cases, spiraling is also used for grasping. Motivated by how this strategy simplifies behavior into kinematic primitives and combines them to develop smart grasping movements, this work focuses on the elephant trunk, which is more deeply investigated in the literature. We present a soft arm combined with a rigid robotic system to replicate elephant grasping capabilities based on the combination of a soft trunk with a solid body. In our system, the rigid arm ensures positioning and orientation, mimicking the role of the elephant's head, while the soft manipulator reproduces trunk motion primitives of bending and twisting under proper actuation patterns. This synergy replicates 9 distinct elephant grasping strategies reported in the literature, accommodating objects of varying shapes and sizes. The synergistic interaction between the rigid and soft components of the system minimizes the control complexity while maintaining a high degree of adaptability.
comment: Version 1. 16 pages, 5 figures
Dynamic Initialization for LiDAR-inertial SLAM
The accuracy of the initial state, including initial velocity, gravity direction, and IMU biases, is critical for the initialization of LiDAR-inertial SLAM systems. Inaccurate initial values can reduce initialization speed or lead to failure. When the system faces urgent tasks, robust and fast initialization is required while the robot is moving, such as during the swift assessment of rescue environments after natural disasters, bomb disposal, and restarting LiDAR-inertial SLAM in rescue missions. However, existing initialization methods usually require the platform to remain stationary, which is ineffective when the robot is in motion. To address this issue, this paper introduces a robust and fast dynamic initialization method for LiDAR-inertial systems (D-LI-Init). This method iteratively aligns LiDAR-based odometry with IMU measurements to achieve system initialization. To enhance the reliability of the LiDAR odometry module, the LiDAR and gyroscope are tightly integrated within the ESIKF framework. The gyroscope compensates for rotational distortion in the point cloud. Translational distortion compensation occurs during the iterative update phase, resulting in the output of LiDAR-gyroscope odometry. The proposed method can initialize the system no matter the robot is moving or stationary. Experiments on public datasets and real-world environments demonstrate that the D-LI-Init algorithm can effectively serve various platforms, including vehicles, handheld devices, and UAVs. D-LI-Init completes dynamic initialization regardless of specific motion patterns. To benefit the research community, we have open-sourced our code and test datasets on GitHub.
comment: Accepted by IEEE/ASME Transactions on Mechatronics
DF-Calib: Targetless LiDAR-Camera Calibration via Depth Flow
Precise LiDAR-camera calibration is crucial for integrating these two sensors into robotic systems to achieve robust perception. In applications like autonomous driving, online targetless calibration enables a prompt sensor misalignment correction from mechanical vibrations without extra targets. However, existing methods exhibit limitations in effectively extracting consistent features from LiDAR and camera data and fail to prioritize salient regions, compromising cross-modal alignment robustness. To address these issues, we propose DF-Calib, a LiDAR-camera calibration method that reformulates calibration as an intra-modality depth flow estimation problem. DF-Calib estimates a dense depth map from the camera image and completes the sparse LiDAR projected depth map, using a shared feature encoder to extract consistent depth-to-depth features, effectively bridging the 2D-3D cross-modal gap. Additionally, we introduce a reliability map to prioritize valid pixels and propose a perceptually weighted sparse flow loss to enhance depth flow estimation. Experimental results across multiple datasets validate its accuracy and generalization,with DF-Calib achieving a mean translation error of 0.635cm and rotation error of 0.045 degrees on the KITTI dataset.
comment: 7 pages,3 figures, 3 figures
Pedestrian-Aware Motion Planning for Autonomous Driving in Complex Urban Scenarios
Motion planning in uncertain environments like complex urban areas is a key challenge for autonomous vehicles (AVs). The aim of our research is to investigate how AVs can navigate crowded, unpredictable scenarios with multiple pedestrians while maintaining a safe and efficient vehicle behavior. So far, most research has concentrated on static or deterministic traffic participant behavior. This paper introduces a novel algorithm for motion planning in crowded spaces by combining social force principles for simulating realistic pedestrian behavior with a risk-aware motion planner. We evaluate this new algorithm in a 2D simulation environment to rigorously assess AV-pedestrian interactions, demonstrating that our algorithm enables safe, efficient, and adaptive motion planning, particularly in highly crowded urban environments - a first in achieving this level of performance. This study has not taken into consideration real-time constraints and has been shown only in simulation so far. Further studies are needed to investigate the novel algorithm in a complete software stack for AVs on real cars to investigate the entire perception, planning and control pipeline in crowded scenarios. We release the code developed in this research as an open-source resource for further studies and development. It can be accessed at the following link: https://github.com/TUM-AVS/PedestrianAwareMotionPlanning
comment: 13 Pages. Submitted to the IEEE Transactions on Intelligent Vehicles
From Shadows to Safety: Occlusion Tracking and Risk Mitigation for Urban Autonomous Driving
Autonomous vehicles (AVs) must navigate dynamic urban environments where occlusions and perception limitations introduce significant uncertainties. This research builds upon and extends existing approaches in risk-aware motion planning and occlusion tracking to address these challenges. While prior studies have developed individual methods for occlusion tracking and risk assessment, a comprehensive method integrating these techniques has not been fully explored. We, therefore, enhance a phantom agent-centric model by incorporating sequential reasoning to track occluded areas and predict potential hazards. Our model enables realistic scenario representation and context-aware risk evaluation by modeling diverse phantom agents, each with distinct behavior profiles. Simulations demonstrate that the proposed approach improves situational awareness and balances proactive safety with efficient traffic flow. While these results underline the potential of our method, validation in real-world scenarios is necessary to confirm its feasibility and generalizability. By utilizing and advancing established methodologies, this work contributes to safer and more reliable AV planning in complex urban environments. To support further research, our method is available as open-source software at: https://github.com/TUM-AVS/OcclusionAwareMotionPlanning
comment: 8 Pages. Submitted to the IEEE Intelligent Vehicles Symposium (IV 2025), Romania
Teaching Robots to Handle Nuclear Waste: A Teleoperation-Based Learning Approach<
This paper presents a Learning from Teleoperation (LfT) framework that integrates human expertise with robotic precision to enable robots to autonomously perform skills learned from human operators. The proposed framework addresses challenges in nuclear waste handling tasks, which often involve repetitive and meticulous manipulation operations. By capturing operator movements and manipulation forces during teleoperation, the framework utilizes this data to train machine learning models capable of replicating and generalizing human skills. We validate the effectiveness of the LfT framework through its application to a power plug insertion task, selected as a representative scenario that is repetitive yet requires precise trajectory and force control. Experimental results highlight significant improvements in task efficiency, while reducing reliance on continuous operator involvement.
comment: Waste Management Symposia 2025
Intuitive Human-Drone Collaborative Navigation in Unknown Environments through Mixed Reality
Considering the widespread integration of aerial robots in inspection, search and rescue, and monitoring tasks, there is a growing demand to design intuitive human-drone interfaces. These aim to streamline and enhance the user interaction and collaboration process during drone navigation, ultimately expediting mission success and accommodating users' inputs. In this paper, we present a novel human-drone mixed reality interface that aims to (a) increase human-drone spatial awareness by sharing relevant spatial information and representations between the human equipped with a Head Mounted Display (HMD) and the robot and (b) enable safer and intuitive human-drone interactive and collaborative navigation in unknown environments beyond the simple command and control or teleoperation paradigm. We validate our framework through extensive user studies and experiments in a simulated post-disaster scenarios, comparing its performance against a traditional First-Person View (FPV) control systems. Furthermore, multiple tests on several users underscore the advantages of the proposed solution, which offers intuitive and natural interaction with the system. This demonstrates the solution's ability to assist humans during a drone navigation mission, ensuring its safe and effective execution.
comment: Approved at ICUAS 25
Inverse RL Scene Dynamics Learning for Nonlinear Predictive Control in Autonomous Vehicles
This paper introduces the Deep Learning-based Nonlinear Model Predictive Controller with Scene Dynamics (DL-NMPC-SD) method for autonomous navigation. DL-NMPC-SD uses an a-priori nominal vehicle model in combination with a scene dynamics model learned from temporal range sensing information. The scene dynamics model is responsible for estimating the desired vehicle trajectory, as well as to adjust the true system model used by the underlying model predictive controller. We propose to encode the scene dynamics model within the layers of a deep neural network, which acts as a nonlinear approximator for the high order state-space of the operating conditions. The model is learned based on temporal sequences of range sensing observations and system states, both integrated by an Augmented Memory component. We use Inverse Reinforcement Learning and the Bellman optimality principle to train our learning controller with a modified version of the Deep Q-Learning algorithm, enabling us to estimate the desired state trajectory as an optimal action-value function. We have evaluated DL-NMPC-SD against the baseline Dynamic Window Approach (DWA), as well as against two state-of-the-art End2End and reinforcement learning methods, respectively. The performance has been measured in three experiments: i) in our GridSim virtual environment, ii) on indoor and outdoor navigation tasks using our RovisLab AMTU (Autonomous Mobile Test Unit) platform and iii) on a full scale autonomous test vehicle driving on public roads.
comment: 21 pages, 14 figures, journal paper
Bi-LAT: Bilateral Control-Based Imitation Learning via Natural Language and Action Chunking with Transformers
We present Bi-LAT, a novel imitation learning framework that unifies bilateral control with natural language processing to achieve precise force modulation in robotic manipulation. Bi-LAT leverages joint position, velocity, and torque data from leader-follower teleoperation while also integrating visual and linguistic cues to dynamically adjust applied force. By encoding human instructions such as "softly grasp the cup" or "strongly twist the sponge" through a multimodal Transformer-based model, Bi-LAT learns to distinguish nuanced force requirements in real-world tasks. We demonstrate Bi-LAT's performance in (1) unimanual cup-stacking scenario where the robot accurately modulates grasp force based on language commands, and (2) bimanual sponge-twisting task that requires coordinated force control. Experimental results show that Bi-LAT effectively reproduces the instructed force levels, particularly when incorporating SigLIP among tested language encoders. Our findings demonstrate the potential of integrating natural language cues into imitation learning, paving the way for more intuitive and adaptive human-robot interaction. For additional material, please visit: https://mertcookimg.github.io/bi-lat/
AIM: Acoustic Inertial Measurement for Indoor Drone Localization and Tracking
We present Acoustic Inertial Measurement (AIM), a one-of-a-kind technique for indoor drone localization and tracking. Indoor drone localization and tracking are arguably a crucial, yet unsolved challenge: in GPS-denied environments, existing approaches enjoy limited applicability, especially in Non-Line of Sight (NLoS), require extensive environment instrumentation, or demand considerable hardware/software changes on drones. In contrast, AIM exploits the acoustic characteristics of the drones to estimate their location and derive their motion, even in NLoS settings. We tame location estimation errors using a dedicated Kalman filter and the Interquartile Range rule (IQR). We implement AIM using an off-the-shelf microphone array and evaluate its performance with a commercial drone under varied settings. Results indicate that the mean localization error of AIM is 46% lower than commercial UWB-based systems in complex indoor scenarios, where state-of-the-art infrared systems would not even work because of NLoS settings. We further demonstrate that AIM can be extended to support indoor spaces with arbitrary ranges and layouts without loss of accuracy by deploying distributed microphone arrays.
comment: arXiv admin note: substantial text overlap with arXiv:2504.00445
Cuddle-Fish: Exploring a Soft Floating Robot with Flapping Wings for Physical Interactions
Flying robots, such as quadrotor drones, offer new possibilities for human-robot interaction but often pose safety risks due to fast-spinning propellers, rigid structures, and noise. In contrast, lighter-than-air flapping-wing robots, inspired by animal movement, offer a soft, quiet, and touch-safe alternative. Building on these advantages, we present \textit{Cuddle-Fish}, a soft, flapping-wing floating robot designed for safe, close-proximity interactions in indoor spaces. Through a user study with 24 participants, we explored their perceptions of the robot and experiences during a series of co-located demonstrations in which the robot moved near them. Results showed that participants felt safe, willingly engaged in touch-based interactions with the robot, and exhibited spontaneous affective behaviours, such as patting, stroking, hugging, and cheek-touching, without external prompting. They also reported positive emotional responses towards the robot. These findings suggest that the soft floating robot with flapping wings can serve as a novel and socially acceptable alternative to traditional rigid flying robots, opening new possibilities for companionship, play, and interactive experiences in everyday indoor environments.
ForestVO: Enhancing Visual Odometry in Forest Environments through ForestGlue
Recent advancements in visual odometry systems have improved autonomous navigation; however, challenges persist in complex environments like forests, where dense foliage, variable lighting, and repetitive textures compromise feature correspondence accuracy. To address these challenges, we introduce ForestGlue, enhancing the SuperPoint feature detector through four configurations - grayscale, RGB, RGB-D, and stereo-vision - optimised for various sensing modalities. For feature matching, we employ LightGlue or SuperGlue, retrained with synthetic forest data. ForestGlue achieves comparable pose estimation accuracy to baseline models but requires only 512 keypoints - just 25% of the baseline's 2048 - to reach an LO-RANSAC AUC score of 0.745 at a 10{\deg} threshold. With only a quarter of keypoints needed, ForestGlue significantly reduces computational overhead, demonstrating effectiveness in dynamic forest environments, and making it suitable for real-time deployment on resource-constrained platforms. By combining ForestGlue with a transformer-based pose estimation model, we propose ForestVO, which estimates relative camera poses using matched 2D pixel coordinates between frames. On challenging TartanAir forest sequences, ForestVO achieves an average relative pose error (RPE) of 1.09 m and a kitti_score of 2.33%, outperforming direct-based methods like DSO by 40% in dynamic scenes. Despite using only 10% of the dataset for training, ForestVO maintains competitive performance with TartanVO while being a significantly lighter model. This work establishes an end-to-end deep learning pipeline specifically tailored for visual odometry in forested environments, leveraging forest-specific training data to optimise feature correspondence and pose estimation, thereby enhancing the accuracy and robustness of autonomous navigation systems.
comment: Accepted to the IEEE Robotics and Automation Letters
The Social Life of Industrial Arms: How Arousal and Attention Shape Human-Robot Interaction
This study explores how human perceptions of a non-anthropomorphic robotic manipulator are shaped by two key dimensions of behaviour: arousal, defined as the robot's movement energy and expressiveness, and attention, defined as the robot's capacity to selectively orient toward and engage with a user. We introduce a novel control architecture that integrates a gaze-like attention engine with an arousal-modulated motion system to generate socially meaningful behaviours. In a user study, we find that robots exhibiting high attention -- actively directing their focus toward users -- are perceived as warmer and more competent, intentional, and lifelike. In contrast, high arousal -- characterized by fast, expansive, and energetic motions -- increases perceptions of discomfort and disturbance. Importantly, a combination of focused attention and moderate arousal yields the highest ratings of trust and sociability, while excessive arousal diminishes social engagement. These findings offer design insights for endowing non-humanoid robots with expressive, intuitive behaviours that support more natural human-robot interaction.
comment: 7 pages, 3 figures, 1 table
Preference-Driven Active 3D Scene Representation for Robotic Inspection in Nuclear Decommissioning IROS
Active 3D scene representation is pivotal in modern robotics applications, including remote inspection, manipulation, and telepresence. Traditional methods primarily optimize geometric fidelity or rendering accuracy, but often overlook operator-specific objectives, such as safety-critical coverage or task-driven viewpoints. This limitation leads to suboptimal viewpoint selection, particularly in constrained environments such as nuclear decommissioning. To bridge this gap, we introduce a novel framework that integrates expert operator preferences into the active 3D scene representation pipeline. Specifically, we employ Reinforcement Learning from Human Feedback (RLHF) to guide robotic path planning, reshaping the reward function based on expert input. To capture operator-specific priorities, we conduct interactive choice experiments that evaluate user preferences in 3D scene representation. We validate our framework using a UR3e robotic arm for reactor tile inspection in a nuclear decommissioning scenario. Compared to baseline methods, our approach enhances scene representation while optimizing trajectory efficiency. The RLHF-based policy consistently outperforms random selection, prioritizing task-critical details. By unifying explicit 3D geometric modeling with implicit human-in-the-loop optimization, this work establishes a foundation for adaptive, safety-critical robotic perception systems, paving the way for enhanced automation in nuclear decommissioning, remote maintenance, and other high-risk environments.
comment: This work has been submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
Let's move on: Topic Change in Robot-Facilitated Group Discussions
Robot-moderated group discussions have the potential to facilitate engaging and productive interactions among human participants. Previous work on topic management in conversational agents has predominantly focused on human engagement and topic personalization, with the agent having an active role in the discussion. Also, studies have shown the usefulness of including robots in groups, yet further exploration is still needed for robots to learn when to change the topic while facilitating discussions. Accordingly, our work investigates the suitability of machine-learning models and audiovisual non-verbal features in predicting appropriate topic changes. We utilized interactions between a robot moderator and human participants, which we annotated and used for extracting acoustic and body language-related features. We provide a detailed analysis of the performance of machine learning approaches using sequential and non-sequential data with different sets of features. The results indicate promising performance in classifying inappropriate topic changes, outperforming rule-based approaches. Additionally, acoustic features exhibited comparable performance and robustness compared to the complete set of multimodal features. Our annotated data is publicly available at https://github.com/ghadj/topic-change-robot-discussions-data-2024.
comment: 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN)
A Chefs KISS -- Utilizing semantic information in both ICP and SLAM framework
For utilizing autonomous vehicle in urban areas a reliable localization is needed. Especially when HD maps are used, a precise and repeatable method has to be chosen. Therefore accurate map generation but also re-localization against these maps is necessary. Due to best 3D reconstruction of the surrounding, LiDAR has become a reliable modality for localization. The latest LiDAR odometry estimation are based on iterative closest point (ICP) approaches, namely KISS-ICP and SAGE-ICP. We extend the capabilities of KISS-ICP by incorporating semantic information into the point alignment process using a generalizable approach with minimal parameter tuning. This enhancement allows us to surpass KISS-ICP in terms of absolute trajectory error (ATE), the primary metric for map accuracy. Additionally, we improve the Cartographer mapping framework to handle semantic information. Cartographer facilitates loop closure detection over larger areas, mitigating odometry drift and further enhancing ATE accuracy. By integrating semantic information into the mapping process, we enable the filtering of specific classes, such as parked vehicles, from the resulting map. This filtering improves relocalization quality by addressing temporal changes, such as vehicles being moved.
Evaluation of Flight Parameters in UAV-based 3D Reconstruction for Rooftop Infrastructure Assessment
Rooftop 3D reconstruction using UAV-based photogrammetry offers a promising solution for infrastructure assessment, but existing methods often require high percentages of image overlap and extended flight times to ensure model accuracy when using autonomous flight paths. This study systematically evaluates key flight parameters-ground sampling distance (GSD) and image overlap-to optimize the 3D reconstruction of complex rooftop infrastructure. Controlled UAV flights were conducted over a multi-segment rooftop at Queen's University using a DJI Phantom 4 Pro V2, with varied GSD and overlap settings. The collected data were processed using Reality Capture software and evaluated against ground truth models generated from UAV-based LiDAR and terrestrial laser scanning (TLS). Experimental results indicate that a GSD range of 0.75-1.26 cm combined with 85% image overlap achieves a high degree of model accuracy, while minimizing images collected and flight time. These findings provide guidance for planning autonomous UAV flight paths for efficient rooftop assessments.
comment: 8 pages, 6 figures, 2 tables
RoboAct-CLIP: Video-Driven Pre-training of Atomic Action Understanding for Robotics IROS 2025
Visual Language Models (VLMs) have emerged as pivotal tools for robotic systems, enabling cross-task generalization, dynamic environmental interaction, and long-horizon planning through multimodal perception and semantic reasoning. However, existing open-source VLMs predominantly trained for generic vision-language alignment tasks fail to model temporally correlated action semantics that are crucial for robotic manipulation effectively. While current image-based fine-tuning methods partially adapt VLMs to robotic applications, they fundamentally disregard temporal evolution patterns in video sequences and suffer from visual feature entanglement between robotic agents, manipulated objects, and environmental contexts, thereby limiting semantic decoupling capability for atomic actions and compromising model generalizability.To overcome these challenges, this work presents RoboAct-CLIP with dual technical contributions: 1) A dataset reconstruction framework that performs semantic-constrained action unit segmentation and re-annotation on open-source robotic videos, constructing purified training sets containing singular atomic actions (e.g., "grasp"); 2) A temporal-decoupling fine-tuning strategy based on Contrastive Language-Image Pretraining (CLIP) architecture, which disentangles temporal action features across video frames from object-centric characteristics to achieve hierarchical representation learning of robotic atomic actions.Experimental results in simulated environments demonstrate that the RoboAct-CLIP pretrained model achieves a 12% higher success rate than baseline VLMs, along with superior generalization in multi-object manipulation tasks.
comment: IROS 2025
Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek series have demonstrated outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
Dynamics-aware Diffusion Models for Planning and Control
This paper addresses the problem of generating dynamically admissible trajectories for control tasks using diffusion models, particularly in scenarios where the environment is complex and system dynamics are crucial for practical application. We propose a novel framework that integrates system dynamics directly into the diffusion model's denoising process through a sequential prediction and projection mechanism. This mechanism, aligned with the diffusion model's noising schedule, ensures generated trajectories are both consistent with expert demonstrations and adhere to underlying physical constraints. Notably, our approach can generate maximum likelihood trajectories and accurately recover trajectories generated by linear feedback controllers, even when explicit dynamics knowledge is unavailable. We validate the effectiveness of our method through experiments on standard control tasks and a complex non-convex optimal control problem involving waypoint tracking and collision avoidance, demonstrating its potential for efficient trajectory generation in practical applications.
comment: 8 pages, 3 figures
A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions
Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection, and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss its implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots.
A Model-Agnostic Approach for Semantically Driven Disambiguation in Human-Robot Interaction
Ambiguities are inevitable in human-robot interaction, especially when a robot follows user instructions in a large, shared space. For example, if a user asks the robot to find an object in a home environment with underspecified instructions, the object could be in multiple locations depending on missing factors. For instance, a bowl might be in the kitchen cabinet or on the dining room table, depending on whether it is clean or dirty, full or empty, and the presence of other objects around it. Previous works on object search have assumed that the queried object is immediately visible to the robot or have predicted object locations using one-shot inferences, which are likely to fail for ambiguous or partially understood instructions. This paper focuses on these gaps and presents a novel model-agnostic approach leveraging semantically driven clarifications to enhance the robot's ability to locate queried objects in fewer attempts. Specifically, we leverage different knowledge embedding models, and when ambiguities arise, we propose an informative clarification method, which follows an iterative prediction process. The user experiment evaluation of our method shows that our approach is applicable to different custom semantic encoders as well as LLMs, and informative clarifications improve performances, enabling the robot to locate objects on its first attempts. The user experiment data is publicly available at https://github.com/IrmakDogan/ExpressionDataset.
comment: Under review for 2025 IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Supplementary video: https://youtu.be/_P0v07Xc24Y, Dataset publicly available: https://github.com/IrmakDogan/ExpressionDataset
Why Autonomous Vehicles Are Not Ready Yet: A Multi-Disciplinary Review of Problems, Attempted Solutions, and Future Directions
Personal autonomous vehicles are cars, trucks and bikes capable of sensing their surrounding environment, planning their route, and driving with little or no involvement of human drivers. Despite the impressive technological achievements made by the industry in recent times and the hopeful announcements made by leading entrepreneurs, to date no personal vehicle is approved for road circulation in a 'fully' or 'semi' autonomous mode (autonomy levels 4 and 5) and it is still unclear when such vehicles will eventually be mature enough to receive this kind of approval. The present review adopts an integrative and multidisciplinary approach to investigate the major challenges faced by the automative sector, with the aim to identify the problems that still trouble and delay the commercialization of autonomous vehicles. The review examines the limitations and risks associated with current technologies and the most promising solutions devised by the researchers. This negative assessment methodology is not motivated by pessimism, but by the aspiration to raise critical awareness about the technology's state-of-the-art, the industry's quality standards, and the society's demands and expectations. While the survey primarily focuses on the applications of artificial intelligence for perception and navigation, it also aims to offer an enlarged picture that links the purely technological aspects with the relevant human-centric aspects, including, cultural attitudes, conceptual assumptions, and normative (ethico-legal) frameworks. Examining the broader context serves to highlight problems that have a cross-disciplinary scope and identify solutions that may benefit from a holistic consideration.
comment: This manuscript extends the work "Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges, and Future Directions." We have added several sections to explore autonomous vehicles from a multidisciplinary perspective. We propose changing the arXiv category to cs.RO, as the expanded content addresses broader autonomous vehicle topics aligning more closely with the Robotics domain
Learning Dual-Arm Push and Grasp Synergy in Dense Clutter
Robotic grasping in densely cluttered environments is challenging due to scarce collision-free grasp affordances. Non-prehensile actions can increase feasible grasps in cluttered environments, but most research focuses on single-arm rather than dual-arm manipulation. Policies from single-arm systems fail to fully leverage the advantages of dual-arm coordination. We propose a target-oriented hierarchical deep reinforcement learning (DRL) framework that learns dual-arm push-grasp synergy for grasping objects to enhance dexterous manipulation in dense clutter. Our framework maps visual observations to actions via a pre-trained deep learning backbone and a novel CNN-based DRL model, trained with Proximal Policy Optimization (PPO), to develop a dual-arm push-grasp strategy. The backbone enhances feature mapping in densely cluttered environments. A novel fuzzy-based reward function is introduced to accelerate efficient strategy learning. Our system is developed and trained in Isaac Gym and then tested in simulations and on a real robot. Experimental results show that our framework effectively maps visual data to dual push-grasp motions, enabling the dual-arm system to grasp target objects in complex environments. Compared to other methods, our approach generates 6-DoF grasp candidates and enables dual-arm push actions, mimicking human behavior. Results show that our method efficiently completes tasks in densely cluttered environments. https://sites.google.com/view/pg4da/home
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions. Videos and codes are available at https://xukechun.github.io/papers/A2.
Bench4Merge: A Comprehensive Benchmark for Merging in Realistic Dense Traffic with Micro-Interactive Vehicles
While the capabilities of autonomous driving have advanced rapidly, merging into dense traffic remains a significant challenge, many motion planning methods for this scenario have been proposed but it is hard to evaluate them. Most existing closed-loop simulators rely on rule-based controls for other vehicles, which results in a lack of diversity and randomness, thus failing to accurately assess the motion planning capabilities in highly interactive scenarios. Moreover, traditional evaluation metrics are insufficient for comprehensively evaluating the performance of merging in dense traffic. In response, we proposed a closed-loop evaluation benchmark for assessing motion planning capabilities in merging scenarios. Our approach involves other vehicles trained in large scale datasets with micro-behavioral characteristics that significantly enhance the complexity and diversity. Additionally, we have restructured the evaluation mechanism by leveraging Large Language Models (LLMs) to assess each autonomous vehicle merging onto the main lane. Extensive experiments and test-vehicle deployment have demonstrated the progressiveness of this benchmark. Through this benchmark, we have obtained an evaluation of existing methods and identified common issues. The simulation environment and evaluation process can be accessed at https://github.com/WZM5853/Bench4Merge.
comment: 6 pages, 8 figures, on submitted
EPIC: A Lightweight LiDAR-Based UAV Exploration Framework for Large-Scale Scenarios
Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles (UAVs). Recently, LiDAR-based exploration has gained significant attention due to its ability to generate high-precision point cloud maps of large-scale environments. While the point clouds are inherently informative for navigation, many existing exploration methods still rely on additional, often expensive, environmental representations. This reliance stems from two main reasons: the need for frontier detection or information gain computation, which typically depends on memory-intensive occupancy grid maps, and the high computational complexity of path planning directly on point clouds, primarily due to costly collision checking. To address these limitations, we present EPIC, a lightweight LiDAR-based UAV exploration framework that directly exploits point cloud data to explore large-scale environments. EPIC introduces a novel observation map derived directly from the quality of point clouds, eliminating the need for global occupancy grid maps while preserving comprehensive exploration capabilities. We also propose an incremental topological graph construction method operating directly on point clouds, enabling real-time path planning in large-scale environments. Leveraging these components, we build a hierarchical planning framework that generates agile and energy-efficient trajectories, achieving significantly reduced memory consumption and computation time compared to most existing methods. Extensive simulations and real-world experiments demonstrate that EPIC achieves faster exploration while significantly reducing memory consumption compared to state-of-the-art methods.
comment: RAL 2025 accepted. Open-sourced at https://github.com/SYSU-STAR/EPIC
Learning Perceptive Humanoid Locomotion over Challenging Terrain
Humanoid robots are engineered to navigate terrains akin to those encountered by humans, which necessitates human-like locomotion and perceptual abilities. Currently, the most reliable controllers for humanoid motion rely exclusively on proprioception, a reliance that becomes both dangerous and unreliable when coping with rugged terrain. Although the integration of height maps into perception can enable proactive gait planning, robust utilization of this information remains a significant challenge, especially when exteroceptive perception is noisy. To surmount these challenges, we propose a solution based on a teacher-student distillation framework. In this paradigm, an oracle policy accesses noise-free data to establish an optimal reference policy, while the student policy not only imitates the teacher's actions but also simultaneously trains a world model with a variational information bottleneck for sensor denoising and state estimation. Extensive evaluations demonstrate that our approach markedly enhances performance in scenarios characterized by unreliable terrain estimations. Moreover, we conducted rigorous testing in both challenging urban settings and off-road environments, the model successfully traverse 2 km of varied terrain without external intervention.
TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
Systems and Control (CS)
Source Coding for a Wiener Process
We develop a novel source coding strategy for sampling and monitoring of a Wiener process. For the encoding process, we employ a four level ``quantization'' scheme, which employs monotone function thresholds as opposed to fixed constant thresholds. Leveraging the hitting times of the Wiener process with these thresholds, we devise a sampling and encoding strategy which does not incur any quantization errors. We give analytical expressions for the mean squared error (MSE) and find the optimal source code lengths to minimize the MSE under this monotone function threshold scheme, subject to a sampling rate constraint.
Tunable Thresholds and Frequency Encoding in a Spiking NOD Controller
Spiking Nonlinear Opinion Dynamics (S-NOD) is an excitable decision-making model inspired by the spiking dynamics of neurons. S-NOD enables the design of agile decision-making that can rapidly switch between decision options in response to a changing environment. In S-NOD, decisions are represented by continuous time, yet discrete, opinion spikes. Here, we extend previous analysis of S-NOD and explore its potential as a nonlinear controller with a tunable balance between robustness and responsiveness. We identify and provide necessary conditions for the bifurcation that determines the onset of periodic opinion spiking. We leverage this analysis to characterize the tunability of the input-output threshold for opinion spiking as a function of the model basal sensitivity and the modulation of opinion spiking frequency as a function of input magnitude past threshold. We conclude with a discussion on S-NOD as a new neuromorphic control block and its extension to distributed spiking controllers.
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of other vehicles is crucial for autonomous vehicles, with applications from missile guidance to UAV collision avoidance. Typically, target trajectories are assumed deterministic, but real-world aerial vehicles exhibit stochastic behavior, such as evasive maneuvers or gliders circling in thermals. This paper uses Conditional Normalizing Flows, an unsupervised Machine Learning technique, to learn and predict the stochastic behavior of targets of guided missiles using trajectory data. The trained model predicts the distribution of future target positions based on initial conditions and parameters of the dynamics. Samples from this distribution are clustered using a time series k-means algorithm to generate representative trajectories, termed virtual targets. The method is fast and target-agnostic, requiring only training data in the form of target trajectories. Thus, it serves as a drop-in replacement for deterministic trajectory predictions in guidance laws and path planning. Simulated scenarios demonstrate the approach's effectiveness for aerial vehicles with random maneuvers, bridging the gap between deterministic predictions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: will be submitted to Journal of Guidance, Control, and Dynamics
Non-collocated vibration absorption using delayed resonator for spectral and spacial tuning -- analysis and experimental validation
Non-collocated vibration absorption (NCVA) concept using delayed resonator for in-situ tuning is analyzed and experimentally validated. There are two critical contributions of this work. One is on the scalable analytical pathway for verifying the concept of resonant substructure as the basis of the ideal vibration absorption. The second is to experimentally validate the spatial and spectral tunability of NCVA structures for the first time. For both novelties arbitrarily large dimensions of interconnected mass-spring-damper chains are considered. Following the state of the art on NCVA, control synthesis is performed over the resonant substructure comprising the delayed resonator and a part of the primary structure involved in the vibration absorption. The experimental validation of the proposed NCVA concept is performed on a mechatronic setup with three interconnected cart-bodies. Based on the spectral analysis, an excitation frequency is selected for which a stable vibration suppression can be achieved sequentially for all the three bodies, one collocated and two non-collocated. The experimental results closely match the simulations for complete vibration suppression at the targeted bodies, and thus validating the crucial spatial tunability characteristic as well as the traditional spectral tuning.
comment: 17 pages, 9 figures, submitted to Automatica October 7, 2024
Barrier Certificates for Unknown Systems with Latent States and Polynomial Dynamics using Bayesian Inference
Certifying safety in dynamical systems is crucial, but barrier certificates - widely used to verify that system trajectories remain within a safe region - typically require explicit system models. When dynamics are unknown, data-driven methods can be used instead, yet obtaining a valid certificate requires rigorous uncertainty quantification. For this purpose, existing methods usually rely on full-state measurements, limiting their applicability. This paper proposes a novel approach for synthesizing barrier certificates for unknown systems with latent states and polynomial dynamics. A Bayesian framework is employed, where a prior in state-space representation is updated using input-output data via a targeted marginal Metropolis-Hastings sampler. The resulting samples are used to construct a candidate barrier certificate through a sum-of-squares program. It is shown that if the candidate satisfies the required conditions on a test set of additional samples, it is also valid for the true, unknown system with high probability. The approach and its probabilistic guarantees are illustrated through a numerical simulation.
comment: Submitted to the 64th IEEE Conference on Decision and Control
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving up to 27.3$\times$ speedup over commonly used computing devices, with around 2 to 4$\times$ power reduction and acceptable hardware overhead.
Learning with Imperfect Models: When Multi-step Prediction Mitigates Compounding Error
Compounding error, where small prediction mistakes accumulate over time, presents a major challenge in learning-based control. For example, this issue often limits the performance of model-based reinforcement learning and imitation learning. One common approach to mitigate compounding error is to train multi-step predictors directly, rather than relying on autoregressive rollout of a single-step model. However, it is not well understood when the benefits of multi-step prediction outweigh the added complexity of learning a more complicated model. In this work, we provide a rigorous analysis of this trade-off in the context of linear dynamical systems. We show that when the model class is well-specified and accurately captures the system dynamics, single-step models achieve lower asymptotic prediction error. On the other hand, when the model class is misspecified due to partial observability, direct multi-step predictors can significantly reduce bias and thus outperform single-step approaches. These theoretical results are supported by numerical experiments, wherein we also (a) empirically evaluate an intermediate strategy which trains a single-step model using a multi-step loss and (b) evaluate performance of single step and multi-step predictors in a closed loop control setting.
Hidden Markov Model Filtering with Equal Exit Probabilities
Hidden Markov Models (HMMs) provide a rigorous framework for inference in dynamic environments. In this work, we study the alpha-HMM algorithm motivated by the optimal online filtering formulation in settings where the true state evolves as a Markov chain with equal exit probabilities. We quantify the dynamics of the algorithm in stationary environments, revealing a trade-off between inference and adaptation, showing how key parameters and the quality of observations affect performance. Comprehensive theoretical analysis on the nonlinear dynamical system that governs the evolution of the log-belief ratio over time and numerical experiments demonstrate that the proposed approach effectively balances adaptation and inference performance.
System Level Synthesis for Affine Control Policies: Model Based and Data-Driven Settings
There is an increasing need for effective control of systems with complex dynamics, particularly through data-driven approaches. System Level Synthesis (SLS) has emerged as a powerful framework that facilitates the control of large-scale systems while accounting for model uncertainties. SLS approaches are currently limited to linear systems and time-varying linear control policies, thus limiting the class of achievable control strategies. We introduce a novel closed-loop parameterization for time-varying affine control policies, extending the SLS framework to a broader class of systems and policies. We show that the closed-loop behavior under affine policies can be equivalently characterized using past system trajectories, enabling a fully data-driven formulation. This parameterization seamlessly integrates affine policies into optimal control problems, allowing for a closed-loop formulation of general Model Predictive Control (MPC) problems. To the best of our knowledge, this is the first work to extend SLS to affine policies in both model-based and data-driven settings, enabling an equivalent formulation of MPC problems using closed-loop maps. We validate our approach through numerical experiments, demonstrating that our model-based and data-driven affine SLS formulations achieve performance on par with traditional model-based MPC.
comment: Submited to IEEE Conference on Decision and Control (CDC), 2025
Market-Oriented Flow Allocation for Thermal Solar Plants: An Auction-Based Methodology with Artificial Intelligence
This paper presents a novel method to optimize thermal balance in parabolic trough collector (PTC) plants. It uses a market-based system to distribute flow among loops combined with an artificial neural network (ANN) to reduce computation and data requirements. This auction-based approach balances loop temperatures, accommodating varying thermal losses and collector efficiencies. Validation across different thermal losses, optical efficiencies, and irradiance conditions-sunny, partially cloudy, and cloudy-show improved thermal power output and intercept factors compared to a no-allocation system. It demonstrates scalability and practicality for large solar thermal plants, enhancing overall performance. The method was first validated through simulations on a realistic solar plant model, then adapted and successfully tested in a 50 MW solar trough plant, demonstrating its advantages. Furthermore, the algorithms have been implemented, commissioned, and are currently operating in 13 commercial solar trough plants.
comment: This manuscript has been submitted to Renewable Energy
Convex Computations for Controlled Safety Invariant Sets of Black-box Discrete-time Dynamical Systems
Identifying controlled safety invariant sets (CSISs) is essential in safety-critical applications. This paper tackles the problem of identifying CSISs for black-box discrete-time systems, where the model is unknown and only limited simulation data is accessible. Traditionally, a CSIS is defined as a subset of a safe set, encompassing initial states for which a control input exists that keeps the system within the set at the next time step-this is referred to as the one-step invariance property. However, the requirement for one-step invariance can be equivalently translated into a stricter condition of ``always-invariance'', meaning that there exist control inputs capable of keeping the system within this set indefinitely. Such a condition may prove overly stringent or impractical for black-box systems, where predictions can become unreliable beyond a single time step or a limited number of finite time steps. To overcome the challenges posed by black-box systems, we reformulate the one-step invariance property in a ``Probably Approximately Correct'' (PAC) sense. This approach allows us to assess the probability that a control input exists to keep the system within the CSIS at the next time step, with a predefined level of confidence. If the system successfully remains within the set at the next time step, we can then reapply the invariance evaluation to the new state, thereby facilitating a recursive assurance of invariance. Our method employs barrier functions and scenario optimization, resulting in a linear programming method to estimate PAC CSISs. Finally, the effectiveness of our approach is demonstrated on several examples.
comment: 15 pages
Frequency-Domain Bounds for the Multiconductor Telegrapher's Equation
We establish mathematical bounds on the chain, ABCD and immittance matrices of a multiconductor transmission line, based on the Telegrapher's equation. Closed-form expressions for those matrices are also presented. Existing results that hold on the imaginary axis are extended to the complex plane, without reliance on a simultaneous diagonalizability assumption that is ubiquitous in the literature. Therefore, the results remain valid even when line symmetry breaks down, as in the case of electrical faults. The system-theoretic properties established here are of general relevance to control, power systems, and signal processing involving multiconductor transmission lines.
comment: 10 pages, 1 figure
Nonlinear Bandwidth and Bode Diagrams based on Scaled Relative Graphs
Scaled Relative Graphs (SRGs) provide a novel graphical frequency domain method for the analysis of nonlinear systems. In this paper, we use the restriction of the SRG to particular input spaces to compute frequency-dependent gain bounds for incrementally stable nonlinear systems. This leads to a nonlinear (NL) generalization of the Bode diagram, where the sinusoidal, harmonic, and subharmonic inputs are considered separately. When applied to the analysis of the NL loop transfer and sensitivity, we define a notion of bandwidth for both the open-loop and closed-loop, compatible with the LTI definitions. We illustrate the power of our method on the analysis of a DC motor with a parasitic nonlinearity, verifying our results in simulations.
comment: 8 pages, submitted for CDC 2025
Dual first-order methods for efficient computation of convex hull prices
Convex Hull (CH) pricing, used in US electricity markets and raising interest in Europe, is a pricing rule designed to handle markets with non-convexities such as startup costs and minimum up and down times. In such markets, the market operator makes side payments to generators to cover lost opportunity costs, and CH prices minimize the total "lost opportunity costs", which include both actual losses and missed profit opportunities. These prices can also be obtained by solving a (partial) Lagrangian dual of the original mixed-integer program, where power balance constraints are dualized. Computing CH prices then amounts to minimizing a sum of nonsmooth convex objective functions, where each term depends only on a single generator. The subgradient of each of those terms can be obtained independently by solving smaller mixed-integer programs. In this work, we benchmark a large panel of first-order methods to solve the above dual CH pricing problem. We test several dual methods, most of which not previously considered for CH pricing, namely a proximal variant of the bundle level method, subgradient methods with three different stepsize strategies, two recent parameter-free methods and an accelerated gradient method combined with smoothing. We compare those methods on two representative sets of real-world large-scale instances and complement the comparison with a (Dantzig-Wolfe) primal column generation method shown to be efficient at computing CH prices, for reference. Our numerical experiments show that the bundle proximal level method and two variants of the subgradient method perform the best among all dual methods and compare favorably with the Dantzig-Wolfe primal method.
comment: 10 pages
Behavioral Inequalities
We introduce behavioral inequalities as a way to model dynamical systems defined by inequalities among their variables of interest. We claim that such a formulation enables the representation of safety-aware dynamical systems, systems with bounds on disturbances, practical design limits and operational boundaries, etc. We develop a necessary and sufficient condition for the existence of solutions to such behavioral inequalities and provide a parametrization of solutions when they exist. Finally, we show the efficacy of the proposed method in two practical examples.
Dynamic Incentive Strategies for Smart EV Charging Stations: An LLM-Driven User Digital Twin Approach
This paper presents an enhanced electric vehicle demand response system based on large language models, aimed at optimizing the application of vehicle-to-grid technology. By leveraging an large language models-driven multi-agent framework to construct user digital twins integrated with multidimensional user profile features, it enables deep simulation and precise prediction of users' charging and discharging decision-making patterns. Additionally, a data- and knowledge-driven dynamic incentive mechanism is proposed, combining a distributed optimization model under network constraints to optimize the grid-user interaction while ensuring both economic viability and security. Simulation results demonstrate that the approach significantly improves load peak-valley regulation and charging/discharging strategies. Experimental validation highlights the system's substantial advantages in load balancing, user satisfaction and grid stability, providing decision-makers with a scalable V2G management tool that promotes the sustainable, synergistic development of vehicle-grid integration.
Navigating the Uncharted Waters: A Gradual Approach to the Certification and Integration of Maritime Autonomous Surface Ships (MASS) in Global Maritime Operations
The integration of Maritime Autonomous Surface Ships (MASS) into global maritime operations represents a transformative shift in the shipping industry, promising enhanced safety, efficiency, and cost-effectiveness. However, the widespread adoption of autonomous ships necessitates a robust regulatory framework and rigorous certification processes to address the unique challenges posed by these advanced technologies. This paper proposes a gradual, multi-stage approach to the certification and integration of MASS, beginning with small-scale trials in controlled environments and progressing to large-scale international operations. Key considerations include the development of reliable control systems, cybersecurity measures, sensor technologies, and redundancy mechanisms to ensure safe and efficient navigation. Additionally, the paper explores the economic and environmental implications of autonomous shipping, as well as the evolving legal frameworks for liability and compensation in the event of collisions. By adopting a cautious and methodical approach, the maritime industry can mitigate risks and pave the way for the safe and sustainable integration of autonomous ships into global trade.
comment: 9 pages, 8 figures
IRS Assisted Decentralized Learning for Wideband Spectrum Sensing
The increasing demand for reliable connectivity in industrial environments necessitates effective spectrum utilization strategies, especially in the context of shared spectrum bands. However, the dynamic spectrum-sharing mechanisms often lead to significant interference and critical failures, creating a trade-off between spectrum scarcity and under-utilization. This paper addresses these challenges by proposing a novel Intelligent Reflecting Surface (IRS)-assisted spectrum sensing framework integrated with decentralized deep learning. The proposed model overcomes partial observation constraints and minimizes communication overhead while leveraging IRS technology to enhance spectrum sensing accuracy. Through comprehensive simulations, the framework demonstrates its ability to monitor wideband spectrum occupancy effectively, even under challenging signal-to-noise ratio (SNR) conditions. This approach offers a scalable and robust solution for spectrum management in next-generation wireless networks.
Model-Predictive Planning and Airspeed Regulation to Minimize Flight Energy Consumption
Although battery technology has advanced tremendously over the past decade, it continues to be a bottleneck for the mass adoption of electric aircraft in long-haul cargo and passenger delivery. The onboard energy is expected to be utilized in an efficient manner. Energy concumption modeling research offers increasingly accurate mathematical models, but there is scant research pertaining to real-time energy optimization at an operational level. Additionally, few publications include landing and take-off energy demands in their governing models. This work presents fundamental energy equations and proposes a proportional-integral-derivative (PID) controller. The proposed method demonstrates a unique approach to an energy consumption model that tracks real-time energy optimization along a predetermined path. The proposed PID controller was tested in simulation, and the results show its effectiveness and accuracy in driving the actual airspeed to converge to the optimal velocity without knowing the system dynamics. We also propose a model-predictive method to minimize the energy usage in landing and take-off by optimizing the flight trajectory.
A Retina-Inspired Pathway to Real-Time Motion Prediction inside Image Sensors for Extreme-Edge Intelligence
The ability to predict motion in real time is fundamental to many maneuvering activities in animals, particularly those critical for survival, such as attack and escape responses. Given its significance, it is no surprise that motion prediction in animals begins in the retina. Similarly, autonomous systems utilizing computer vision could greatly benefit from the capability to predict motion in real time. Therefore, for computer vision applications, motion prediction should be integrated directly at the camera pixel level. Towards that end, we present a retina-inspired neuromorphic framework capable of performing real-time, energy-efficient MP directly within camera pixels. Our hardware-algorithm framework, implemented using GlobalFoundries 22nm FDSOI technology, integrates key retinal MP compute blocks, including a biphasic filter, spike adder, nonlinear circuit, and a 2D array for multi-directional motion prediction. Additionally, integrating the sensor and MP compute die using a 3D Cu-Cu hybrid bonding approach improves design compactness by minimizing area usage and simplifying routing complexity. Validated on real-world object stimuli, the model delivers efficient, low-latency MP for decision-making scenarios reliant on predictive visual computation, while consuming only 18.56 pJ/MP in our mixed-signal hardware implementation.
comment: 24 pages, 8 figures
The Social Life of Industrial Arms: How Arousal and Attention Shape Human-Robot Interaction
This study explores how human perceptions of a non-anthropomorphic robotic manipulator are shaped by two key dimensions of behaviour: arousal, defined as the robot's movement energy and expressiveness, and attention, defined as the robot's capacity to selectively orient toward and engage with a user. We introduce a novel control architecture that integrates a gaze-like attention engine with an arousal-modulated motion system to generate socially meaningful behaviours. In a user study, we find that robots exhibiting high attention -- actively directing their focus toward users -- are perceived as warmer and more competent, intentional, and lifelike. In contrast, high arousal -- characterized by fast, expansive, and energetic motions -- increases perceptions of discomfort and disturbance. Importantly, a combination of focused attention and moderate arousal yields the highest ratings of trust and sociability, while excessive arousal diminishes social engagement. These findings offer design insights for endowing non-humanoid robots with expressive, intuitive behaviours that support more natural human-robot interaction.
comment: 7 pages, 3 figures, 1 table
On the threshold of excitable systems: An energy-based perspective
A fundamental characteristic of excitable systems is their ability to exhibit distinct subthreshold and suprathreshold behaviors. Precisely quantifying this distinction requires a proper definition of the threshold, which has remained elusive in neurodynamics. In this paper, we introduce a novel, energy-based threshold definition for excitable circuits grounded in dissipativity theory, specifically using the classical concept of required supply. According to our definition, the threshold corresponds to a local maximum of the required supply, clearly separating subthreshold passive responses from suprathreshold regenerative spikes. We illustrate and validate the proposed definition through analytical and numerical studies of three canonical systems: a simple RC circuit, the FitzHugh--Nagumo model, and the biophysically detailed Hodgkin--Huxley model.
Data-Driven Nonconvex Reachability Analysis using Exact Multiplication
This paper addresses a fundamental challenge in data-driven reachability analysis: accurately representing and propagating non-convex reachable sets. We propose a novel approach using constrained polynomial zonotopes to describe reachable sets for unknown LTI systems. Unlike constrained zonotopes commonly used in existing literature, constrained polynomial zonotopes are closed under multiplication with constrained matrix zonotopes. We leverage this property to develop an exact multiplication method that preserves the non-convex geometry of reachable sets without resorting to approximations. We demonstrate that our approach provides tighter over-approximations of reachable sets for LTI systems compared to conventional methods.
Towards Enabling Learning for Time-Varying finite horizon Sequential Decision-Making Problems*
Parameterized Sequential Decision Making (Para-SDM) framework models a wide array of network design applications spanning supply-chain, transportation, and sensor networks. These problems entail sequential multi-stage optimization characterized by states, control actions, and cost functions dependent on designable parameters. The challenge is to determine both the sequential decision policy and parameters simultaneously to minimize cumulative stagewise costs. Many Para-SDM problems are NP-hard and often necessitate time-varying policies. Existing algorithms tackling finite-horizon time-varying Para-SDM problems struggle with scalability when faced with a large number of states. Conversely, the sole algorithm addressing infinite-horizon Para-SDM assumes time (stage)-invariance, yielding stationary policies. However, this approach proves scalable for time-invariant problems by leveraging deep neural networks to learn optimal stage-invariant state-action value functions, enabling handling of large-scale scenarios. This article proposes a novel approach that reinterprets finite-horizon, time-varying Para-SDM problems as equivalent time-invariant problems through topography lifting. Our method achieves nearly identical results to the time-varying solution while exhibiting improved performance times in various simulations, notably in the small cell network problem. This fresh perspective on Para-SDM problems expands the scope of addressable issues and holds promise for future scalability through the integration of learning methods.
On Model Protection in Federated Learning against Eavesdropping Attacks
In this study, we investigate the protection offered by federated learning algorithms against eavesdropping adversaries. In our model, the adversary is capable of intercepting model updates transmitted from clients to the server, enabling it to create its own estimate of the model. Unlike previous research, which predominantly focuses on safeguarding client data, our work shifts attention protecting the client model itself. Through a theoretical analysis, we examine how various factors, such as the probability of client selection, the structure of local objective functions, global aggregation at the server, and the eavesdropper's capabilities, impact the overall level of protection. We further validate our findings through numerical experiments, assessing the protection by evaluating the model accuracy achieved by the adversary. Finally, we compare our results with methods based on differential privacy, underscoring their limitations in this specific context.
Orthodromic Routing and Forwarding for Large Satellite Constellations
Low earth orbit satellite constellations with intersatellite links (ISLs) are currently being developed and deployed. The availability of ISLs provides the capability to route across the satellite constellation, rather than using the satellite as a single hop in a bent-pipe configuration. We present a fully distributed solution to routing and forwarding which we call Orthodromic Routing (OR(r) ). OR(r) routing is built on a foundation of both geographic and link state routing to create a hybrid protocol which scales to enormous constellations with excellent failure handling. Our work includes an addressing and forwarding plane for OR(r)which can be implemented in hardware in a highly parallel manner to achieve line rates while only requiring a bounded number of forwarding table entries.
comment: 6 pages, 7 figures
An Integrated Transportation Network and Power Grid Simulation Approach for Assessing Environmental Impact of Electric Vehicles
This study develops an integrated approach that includes EV charging and power generation to assess the complex cross-sector interactions of vehicle electrification and its environmental impact. The charging load from on-road EV operation is developed based on a regional-level transportation simulation and charging behavior simulation, considering different EV penetration levels, congestion levels, and charging strategies. The emissions from EGUs are estimated from a dispatch study in a power grid simulation using the charging load as a major input. A case study of Austin, Texas is performed to quantify the environmental impact of EV adoption on both on-road and EGU emission sources at the regional level. The results demonstrate the range of emission impact under a combination of factors.
comment: This work has been submitted to Nature for possible publication
Distributed Resource Allocation for Human-Autonomy Teaming under Coupled Constraints
This paper studies the optimal resource allocation problem within a multi-agent network composed of both autonomous agents and humans. The main challenge lies in the globally coupled constraints that link the decisions of autonomous agents with those of humans. To address this, we propose a reformulation that transforms these coupled constraints into decoupled local constraints defined over the system's communication graph. Building on this reformulation and incorporating a human response model that captures human-robot interactions while accounting for individual preferences and biases, we develop a fully distributed algorithm. This algorithm guides the states of the autonomous agents to equilibrium points which, when combined with the human responses, yield a globally optimal resource allocation. We provide both theoretical analysis and numerical simulations to validate the effectiveness of the proposed approach.
comment: 8 pages, 4 figures. Submitted to the 2025 IEEE Conference on Decision and Control (CDC)
Path planning with moving obstacles using stochastic optimal control
Navigating a collision-free, optimal path for a robot poses a perpetual challenge, particularly in the presence of moving objects such as humans. In this study, we formulate the problem of finding an optimal path as a stochastic optimal control problem. However, obtaining a solution to this problem is nontrivial. Therefore, we consider a simplified problem, which is more tractable. For this simplified formulation, we are able to solve the corresponding Bellman equation. However, the solution obtained from the simplified problem does not sufficiently address the original problem of interest. To address the full problem, we propose a numerical procedure where we solve an optimization problem at each sampling instant. The solution to the simplified problem is integrated into the online formulation as a final-state penalty. We illustrate the efficiency of the proposed method using a numerical example.
comment: 6 pages, 6 figures. Submitted to the 64th IEEE Conference on Decision and Control (CDC) 2025
8-DoFs Cable Driven Parallel Robots for Bimanual Teleportation
Teleoperation plays a critical role in intuitive robot control and imitation learning, particularly for complex tasks involving mobile manipulators with redundant degrees of freedom (DoFs). However, most existing master controllers are limited to 6-DoF spatial control and basic gripper control, making them insufficient for controlling high-DoF robots and restricting the operator to a small workspace. In this work, we present a novel, low-cost, high-DoF master controller based on Cable-Driven Parallel Robots (CDPRs), designed to overcome these limitations. The system decouples translation and orientation control, following a scalable 3 + 3 + n DoF structure: 3 DoFs for large-range translation using a CDPR, 3 DoFs for orientation using a gimbal mechanism, and n additional DoFs for gripper and redundant joint control. Its lightweight cable-driven design enables a large and adaptable workspace while minimizing actuator load. The end-effector remains stable without requiring continuous high-torque input, unlike most serial robot arms. We developed the first dual-arm CDPR-based master controller using cost-effective actuators and a simple mechanical structure. In demonstrations, the system successfully controlled an 8-DoF robotic arm with a 2-DoF pan-tilt camera, performing tasks such as pick-and-place, knot tying, object sorting, and tape application. The results show precise, versatile, and practical high-DoF teleoperation.
Dynamical Simulation Model of the Pyro-Process in Cement Clinker Production
This study presents a dynamic simulation model for the pyro-process of clinker production in cement plants. The study aims to construct a simulation model capable of replicating the real-world dynamics of the pyro-process to facilitate research into the improvements of operation, i.e., the development of alternative strategies for reducing CO2 emissions and ensuring clinker quality, production, and lowering fuel consumption. The presented model is an index-1 differential-algebraic equation (DAE) model based on first engineering principles and modular approaches. Using a systematic approach, the model is described on a detailed level that integrates geometric aspects, thermo-physical properties, transport phenomena, stoichiometry and kinetics, mass and energy balances, and algebraic volume and energy conservations. By manually calibrating the model to a steady-state reference, we provide dynamic simulation results that match the expected reference performance and the expected dynamic behavior from the industrial practices.
comment: 20 pages, 10 figures, 13 tables
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Stability
Grid-Forming (GFM) technology is considered a promising solution to build power electronics-dominated power systems. However, the impact of GFM converters on the system stability is still unquantified, creating a gap between the system- and device-level perspectives. To fill this gap, at the device-level, we propose a Forming Index to quantify a converter's response to grid voltage variations, providing a characterization of its GFM behavior. At the system-level, a quantitative notion of System Strength is introduced to capture the fundamental requirements for power system formation. Finally, we establish the alignment between device- and system-level metrics by demonstrating that GFM converters provably enhance system strength.
Unraveling tensor structures in correct-by-design controller synthesis
Formal safety guarantees on the synthesis of controllers for stochastic systems can be obtained using correct-by-design approaches. These approaches often use abstractions as finite-state Markov Decision Processes. As the state space of these MDPs grows, the curse of dimensionality makes the computational and memory cost of the probabilistic guarantees, quantified with dynamic programming, scale exponentially. In this work, we leverage decoupled dynamics and unravel, via dynamic programming operations, a tree structure in the Canonical Polyadic Decomposition (CPD) of the value functions. For discrete-time stochastic systems with syntactically co-safe linear temporal logic (scLTL) specifications, we provide provable probabilistic safety guarantees and significantly alleviate the computational burden. We provide an initial validation of the theoretical results on several typical case studies and showcase that the uncovered tree structure enables efficient reductions in the computational burden.
Ensuring Safe and Smooth Control in Safety-Critical Systems via Filtered Control Barrier Functions
In safety-critical control systems, ensuring both system safety and smooth control input is essential for theoretical guarantees and practical deployment. Existing Control Barrier Function (CBF) frameworks, especially High-Order CBFs (HOCBFs), effectively enforce safety constraints but often lead to nonsmooth or discontinuous control inputs that can degrade system performance or violate actuator limitations. This paper introduces Filtered Control Barrier Functions (FCBFs), which extend HOCBFs by incorporating an auxiliary dynamic system - referred to as input regularization filter - to produce Lipschitz continuous control inputs. The proposed framework ensures safety, control bounds, and smoothness simultaneously by integrating FCBFs and HOCBFs within a unified quadratic program (QP). Theoretical guarantees are provided and simulations on a unicycle model demonstrate the effectiveness of the proposed method compared to standard and smoothness-penalized HOCBF approaches.
comment: 7 pages, 4 figures
Universal Global State Estimation for Inertial Navigation Systems
This paper addresses the problem of accurate pose estimation (position, velocity, and orientation) for a rigid body. By utilizing generic exteroceptive measurements in combination with an Inertial Measurement Unit (IMU), we reformulate the vehicle's dynamics and outputs to fit within a linear time-varying (LTV) framework. This transformation enables the application of a linear continuous-time Kalman filter, thereby avoiding the complexities of nonlinear estimators and local Kalman-type filtering methods (e.g., EKF). We perform a complete uniform observability analysis for key benchmark problems (e.g., GPS-INS and Landmark-INS) and derive sufficient conditions for ensuring global uniform exponential stability. Simulations are conducted for two practical applications: stereo-aided inertial navigation systems (INS) with both constant and time-varying gains, as well as GPS-aided INS. The proposed approach notably simplifies observer design for INS.
comment: 8 pages
Distribution System Reconfiguration to Mitigate Load Altering Attacks via Stackelberg Games
The integration of IoT-controllable devices in power systems (such as smart electric vehicle charging stations, heat pumps, etc.), despite their benefits, raises novel cybersecurity concerns. Vulnerabilities in these devices can be leveraged to launch load-altering attacks (LAAs) that can potentially compromise the safety of power systems. In this paper, we analyze the impact of LAAs on the voltage profile of distribution networks (DNs). We first derive closed-form expressions to quantify the attacks' impact. Using the insights derived from this analysis, we then propose a reactive defense method to mitigate LAAs based on reconfiguring the DNs. We also study optimal defense strategies that are robust to LAAs by exploiting non-cooperative sequential game theory. The proposed solution takes into account the potential uncertainties in the attack localization. Furthermore, we propose a Bayesian optimization (BO) approach to compute the equilibrium of the game, which reduces the computational burden. Our results show that attacks launched on the deepest nodes in the DN have the most detrimental effect on the grid voltage profile. Furthermore, the proposed game-theoretic strategy successfully mitigates the effect of the attack while ensuring minimum system reconfiguration.
A Volumetric Approach to Privacy of Dynamical Systems
Information-theoretic metrics, such as mutual information, have been widely used to evaluate privacy leakage in dynamic systems. However, these approaches are typically limited to stochastic systems and face computational challenges. In this paper, we introduce a novel volumetric framework for analyzing privacy in systems affected by unknown but bounded noise. Our model considers a dynamic system comprising public and private states, where an observation set of the public state is released. An adversary utilizes the observed public state to infer an uncertainty set of the private state, referred to as the inference attack. We define the evolution dynamics of these inference attacks and quantify the privacy level of the private state using the volume of its uncertainty sets. We then develop an approximate computation method leveraging interval analysis to compute the private state set. We investigate the properties of the proposed volumetric privacy measure and demonstrate that it is bounded by the information gain derived from the observation set. Furthermore, we propose an optimization approach to designing privacy filter using randomization and linear programming based on the proposed privacy measure. The effectiveness of the optimal privacy filter design is evaluated through a production-inventory case study, illustrating its robustness against inference attacks and its superiority compared to a truncated Gaussian mechanism.
The computation of approximate feedback Stackelberg equilibria in multi-player nonlinear constrained dynamic games
Solving feedback Stackelberg games with nonlinear dynamics and coupled constraints, a common scenario in practice, presents significant challenges. This work introduces an efficient method for computing approximate local feedback Stackelberg equilibria in multi-player general-sum dynamic games, with continuous state and action spaces. Different from existing (approximate) dynamic programming solutions that are primarily designed for unconstrained problems, our approach involves reformulating a feedback Stackelberg dynamic game into a sequence of nested optimization problems, enabling the derivation of Karush-Kuhn-Tucker (KKT) conditions and the establishment of a second-order sufficient condition for local feedback Stackelberg equilibria. We propose a Newton-style primal-dual interior point method for solving constrained linear quadratic (LQ) feedback Stackelberg games, offering provable convergence guarantees. Our method is further extended to compute local feedback Stackelberg equilibria for more general nonlinear games by iteratively approximating them using LQ games, ensuring that their KKT conditions are locally aligned with those of the original nonlinear games. We prove the exponential convergence of our algorithm in constrained nonlinear games. In a feedback Stackelberg game with nonlinear dynamics and (nonconvex) coupled costs and constraints, our experimental results reveal the algorithm's ability to handle infeasible initial conditions and achieve exponential convergence towards an approximate local feedback Stackelberg equilibrium.
comment: This manuscript has been accepted by SIAM Journal on Optimization. In this arxiv version, we fix a typo in equation (4.3), \ell_{T+1}(x_T) -> \ell_{T+1}(x_{T+1}), and a typo in equation (4.7), L_{T+1} -> L_T. All main results are unchanged
Semantic-Enabled 6G Communication: A Task-oriented and Privacy-preserving Perspective
Task-oriented semantic communication (ToSC) emerges as an innovative approach in the 6G landscape, characterized by the transmission of only vital information that is directly pertinent to a specific task. While ToSC offers an efficient mode of communication, it concurrently raises concerns regarding privacy, as sophisticated adversaries might possess the capability to reconstruct the original data from the transmitted features. This paper provides an in-depth analysis of privacy-preserving strategies specifically designed for ToSC relying on deep neural network-based joint source and channel coding (DeepJSCC). Our study encompasses a detailed comparative assessment of trustworthy feature perturbation methods such as differential privacy (DP) and encryption, alongside intrinsic security incorporation approaches like adversarial learning to train the JSCC and learning-based vector quantization (LBVQ). Our comparative analysis underscores the integration of advanced explainable learning algorithms into communication systems, positing a new benchmark for privacy standards in the forthcoming 6G era.
A New Type of Nonlinear Disturbance Rejection
Asymptotic disturbance rejection (equivalently tracking) for nonlinear systems has been studied only in qualitative terms (the state is asymptotically stable under bounded disturbances). We show how to prove quantitative performance guarantees for the nonlinear servomechanism problem. Our technique originates by applying a gain inequalities point of view to an ad fontes reexamination of the linear problem: what is the nonlinear equivalent of a sensitivity transfer function with a zero at the origin? We answer: a nonlinear input-output system is high-pass if its output is stable with respect to the \emph{derivative} of the input. We first show that definition generalizes high-pass resistor-capacitor circuit analysis to accommodate nonlinear resistors. We then show that this definition generalizes the steady-state disturbance rejection property of integral feedback controllers for linear systems. The theoretical payoff is that low-frequency disturbance rejection is captured by a quantitative, non-asymptotic output cost bound. Finally, we raise theoretical questions about compositionality of nonlinear operators.
comment: to appear in ACC 2025
Learning Koopman-based Stability Certificates for Unknown Nonlinear Systems
Koopman operator theory has gained significant attention in recent years for identifying discrete-time nonlinear systems by embedding them into an infinite-dimensional linear vector space. However, providing stability guarantees while learning the continuous-time dynamics, especially under conditions of relatively low observation frequency, remains a challenge within the existing Koopman-based learning frameworks. To address this challenge, we propose an algorithmic framework to simultaneously learn the vector field and Lyapunov functions for unknown nonlinear systems, using a limited amount of data sampled across the state space and along the trajectories at a relatively low sampling frequency. The proposed framework builds upon recently developed high-accuracy Koopman generator learning for capturing transient system transitions and physics-informed neural networks for training Lyapunov functions. We show that the learned Lyapunov functions can be formally verified using a satisfiability modulo theories (SMT) solver and provide less conservative estimates of the region of attraction compared to existing methods.
TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
Incremental Composition of Learned Control Barrier Functions in Unknown Environments
We consider the problem of safely exploring a static and unknown environment while learning valid control barrier functions (CBFs) from sensor data. Existing works either assume known environments, target specific dynamics models, or use a-priori valid CBFs, and are thus limited in their safety guarantees for general systems during exploration. We present a method for safely exploring the unknown environment by incrementally composing a global CBF from locally-learned CBFs. The challenge here is that local CBFs may not have well-defined end behavior outside their training domain, i.e. local CBFs may be positive (indicating safety) in regions where no training data is available. We show that well-defined end behavior can be obtained when local CBFs are parameterized by compactly-supported radial basis functions. For learning local CBFs, we collect sensor data, e.g. LiDAR capturing obstacles in the environment, and augment it with simulated data from a safe oracle controller. Our work complements recent efforts to learn CBFs from safe demonstrations -- where learned safe sets are limited to their training domains -- by demonstrating how to grow the safe set over time as more data becomes available. We evaluate our approach on two simulated systems, where our method successfully explores an unknown environment while maintaining safety throughout the entire execution.
Equitably allocating wildfire resilience investments for power grids: The curse of aggregation and vulnerability indices
Social vulnerability indices have increased traction for guiding infrastructure investment decisions to prioritize communities that need these investments most. One such plan is the Biden-Harris Justice40 initiative, which aims to guide equitable infrastructure investments by ensuring that disadvantaged communities defined by the Climate & Economic Justice Screening Tool (CEJST) receive 40% of the total benefit realized by the investment. However, there is limited research on the practicality of applying vulnerability indices like the CEJST to real-world decision-making for policy outcomes. In this paper, we study this gap by examining the effectiveness of vulnerability indices in a case study focused on power shutoff and undergrounding decisions in wildfire-prone regions. Using a mixed-integer program and a high-fidelity synthetic transmission network in Texas, we model resource allocation policies inspired by Justice40 and evaluate their impact on reducing power outages and mitigating wildfire risk for vulnerable groups. Our analysis reveals that the Justice40 framework may fail to protect certain communities facing high wildfire risk. In our case study, we show that indigenous groups are particularly impacted. We posit that this outcome is likely due to information losses from data aggregation and the use of generalized vulnerability indices. Through the use of explicit group-level protections, we are able to bound the best possible outcome for population groups that are proportionally most affected.
Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial HVAC: A review
A large body of simulation research suggests that model predictive control (MPC) and reinforcement learning (RL) for heating, ventilation, and air-conditioning (HVAC) in residential and commercial buildings could reduce energy costs, pollutant emissions, and strain on power grids. Despite this potential, neither MPC nor RL has seen widespread industry adoption. Field demonstrations could accelerate MPC and RL adoption by providing real-world data that support the business case for deployment. Here we review 24 papers that document field demonstrations of MPC and RL in residential buildings and 80 in commercial buildings. After presenting demographic information -- such as experiment scopes, locations, and durations -- this paper analyzes experiment protocols and their influence on performance estimates. We find that 71% of the reviewed field demonstrations use experiment protocols that may lead to unreliable performance estimates. Over the remaining 29% that we view as reliable, the weighted-average cost savings, weighted by experiment duration, are 16% in residential buildings and 13% in commercial buildings. While these savings are potentially attractive, making the business case for MPC and RL also requires characterizing the costs of deployment, operation, and maintenance. Only 13 of the 104 reviewed papers report these costs or discuss related challenges. Based on these observations, we recommend directions for future field research, including: Improving experiment protocols; reporting deployment, operation, and maintenance costs; designing algorithms and instrumentation to reduce these costs; controlling HVAC equipment alongside other distributed energy resources; and pursuing emerging objectives such as peak shaving, arbitraging wholesale energy prices, and providing power grid reliability services.
Harnessing On-Machine Metrology Data for Prints with a Surrogate Model for Laser Powder Directed Energy Deposition
In this study, we leverage the massive amount of multi-modal on-machine metrology data generated from Laser Powder Directed Energy Deposition (LP-DED) to construct a comprehensive surrogate model of the 3D printing process. By employing Dynamic Mode Decomposition with Control (DMDc), a data-driven technique, we capture the complex physics inherent in this extensive dataset. This physics-based surrogate model emphasizes thermodynamically significant quantities, enabling us to accurately predict key process outcomes. The model ingests 21 process parameters, including laser power, scan rate, and position, while providing outputs such as melt pool temperature, melt pool size, and other essential observables. Furthermore, it incorporates uncertainty quantification to provide bounds on these predictions, enhancing reliability and confidence in the results. We then deploy the surrogate model on a new, unseen part and monitor the printing process as validation of the method. Our experimental results demonstrate that the predictions align with actual measurements with high accuracy, confirming the effectiveness of our approach. This methodology not only facilitates real-time predictions but also operates at process-relevant speeds, establishing a basis for implementing feedback control in LP-DED.
comment: 19 pages, 9 figures
Systems and Control (EESS)
Source Coding for a Wiener Process
We develop a novel source coding strategy for sampling and monitoring of a Wiener process. For the encoding process, we employ a four level ``quantization'' scheme, which employs monotone function thresholds as opposed to fixed constant thresholds. Leveraging the hitting times of the Wiener process with these thresholds, we devise a sampling and encoding strategy which does not incur any quantization errors. We give analytical expressions for the mean squared error (MSE) and find the optimal source code lengths to minimize the MSE under this monotone function threshold scheme, subject to a sampling rate constraint.
Tunable Thresholds and Frequency Encoding in a Spiking NOD Controller
Spiking Nonlinear Opinion Dynamics (S-NOD) is an excitable decision-making model inspired by the spiking dynamics of neurons. S-NOD enables the design of agile decision-making that can rapidly switch between decision options in response to a changing environment. In S-NOD, decisions are represented by continuous time, yet discrete, opinion spikes. Here, we extend previous analysis of S-NOD and explore its potential as a nonlinear controller with a tunable balance between robustness and responsiveness. We identify and provide necessary conditions for the bifurcation that determines the onset of periodic opinion spiking. We leverage this analysis to characterize the tunability of the input-output threshold for opinion spiking as a function of the model basal sensitivity and the modulation of opinion spiking frequency as a function of input magnitude past threshold. We conclude with a discussion on S-NOD as a new neuromorphic control block and its extension to distributed spiking controllers.
Virtual Target Trajectory Prediction for Stochastic Targets
Trajectory prediction of other vehicles is crucial for autonomous vehicles, with applications from missile guidance to UAV collision avoidance. Typically, target trajectories are assumed deterministic, but real-world aerial vehicles exhibit stochastic behavior, such as evasive maneuvers or gliders circling in thermals. This paper uses Conditional Normalizing Flows, an unsupervised Machine Learning technique, to learn and predict the stochastic behavior of targets of guided missiles using trajectory data. The trained model predicts the distribution of future target positions based on initial conditions and parameters of the dynamics. Samples from this distribution are clustered using a time series k-means algorithm to generate representative trajectories, termed virtual targets. The method is fast and target-agnostic, requiring only training data in the form of target trajectories. Thus, it serves as a drop-in replacement for deterministic trajectory predictions in guidance laws and path planning. Simulated scenarios demonstrate the approach's effectiveness for aerial vehicles with random maneuvers, bridging the gap between deterministic predictions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
comment: will be submitted to Journal of Guidance, Control, and Dynamics
Non-collocated vibration absorption using delayed resonator for spectral and spacial tuning -- analysis and experimental validation
Non-collocated vibration absorption (NCVA) concept using delayed resonator for in-situ tuning is analyzed and experimentally validated. There are two critical contributions of this work. One is on the scalable analytical pathway for verifying the concept of resonant substructure as the basis of the ideal vibration absorption. The second is to experimentally validate the spatial and spectral tunability of NCVA structures for the first time. For both novelties arbitrarily large dimensions of interconnected mass-spring-damper chains are considered. Following the state of the art on NCVA, control synthesis is performed over the resonant substructure comprising the delayed resonator and a part of the primary structure involved in the vibration absorption. The experimental validation of the proposed NCVA concept is performed on a mechatronic setup with three interconnected cart-bodies. Based on the spectral analysis, an excitation frequency is selected for which a stable vibration suppression can be achieved sequentially for all the three bodies, one collocated and two non-collocated. The experimental results closely match the simulations for complete vibration suppression at the targeted bodies, and thus validating the crucial spatial tunability characteristic as well as the traditional spectral tuning.
comment: 17 pages, 9 figures, submitted to Automatica October 7, 2024
Barrier Certificates for Unknown Systems with Latent States and Polynomial Dynamics using Bayesian Inference
Certifying safety in dynamical systems is crucial, but barrier certificates - widely used to verify that system trajectories remain within a safe region - typically require explicit system models. When dynamics are unknown, data-driven methods can be used instead, yet obtaining a valid certificate requires rigorous uncertainty quantification. For this purpose, existing methods usually rely on full-state measurements, limiting their applicability. This paper proposes a novel approach for synthesizing barrier certificates for unknown systems with latent states and polynomial dynamics. A Bayesian framework is employed, where a prior in state-space representation is updated using input-output data via a targeted marginal Metropolis-Hastings sampler. The resulting samples are used to construct a candidate barrier certificate through a sum-of-squares program. It is shown that if the candidate satisfies the required conditions on a test set of additional samples, it is also valid for the true, unknown system with high probability. The approach and its probabilistic guarantees are illustrated through a numerical simulation.
comment: Submitted to the 64th IEEE Conference on Decision and Control
Quattro: Transformer-Accelerated Iterative Linear Quadratic Regulator Framework for Fast Trajectory Optimization
Real-time optimal control remains a fundamental challenge in robotics, especially for nonlinear systems with stringent performance requirements. As one of the representative trajectory optimization algorithms, the iterative Linear Quadratic Regulator (iLQR) faces limitations due to their inherently sequential computational nature, which restricts the efficiency and applicability of real-time control for robotic systems. While existing parallel implementations aim to overcome the above limitations, they typically demand additional computational iterations and high-performance hardware, leading to only modest practical improvements. In this paper, we introduce Quattro, a transformer-accelerated iLQR framework employing an algorithm-hardware co-design strategy to predict intermediate feedback and feedforward matrices. It facilitates effective parallel computations on resource-constrained devices without sacrificing accuracy. Experiments on cart-pole and quadrotor systems show an algorithm-level acceleration of up to 5.3$\times$ and 27$\times$ per iteration, respectively. When integrated into a Model Predictive Control (MPC) framework, Quattro achieves overall speedups of 2.8$\times$ for the cart-pole and 17.8$\times$ for the quadrotor compared to the one that applies traditional iLQR. Transformer inference is deployed on FPGA to maximize performance, achieving up to 27.3$\times$ speedup over commonly used computing devices, with around 2 to 4$\times$ power reduction and acceptable hardware overhead.
Learning with Imperfect Models: When Multi-step Prediction Mitigates Compounding Error
Compounding error, where small prediction mistakes accumulate over time, presents a major challenge in learning-based control. For example, this issue often limits the performance of model-based reinforcement learning and imitation learning. One common approach to mitigate compounding error is to train multi-step predictors directly, rather than relying on autoregressive rollout of a single-step model. However, it is not well understood when the benefits of multi-step prediction outweigh the added complexity of learning a more complicated model. In this work, we provide a rigorous analysis of this trade-off in the context of linear dynamical systems. We show that when the model class is well-specified and accurately captures the system dynamics, single-step models achieve lower asymptotic prediction error. On the other hand, when the model class is misspecified due to partial observability, direct multi-step predictors can significantly reduce bias and thus outperform single-step approaches. These theoretical results are supported by numerical experiments, wherein we also (a) empirically evaluate an intermediate strategy which trains a single-step model using a multi-step loss and (b) evaluate performance of single step and multi-step predictors in a closed loop control setting.
Hidden Markov Model Filtering with Equal Exit Probabilities
Hidden Markov Models (HMMs) provide a rigorous framework for inference in dynamic environments. In this work, we study the alpha-HMM algorithm motivated by the optimal online filtering formulation in settings where the true state evolves as a Markov chain with equal exit probabilities. We quantify the dynamics of the algorithm in stationary environments, revealing a trade-off between inference and adaptation, showing how key parameters and the quality of observations affect performance. Comprehensive theoretical analysis on the nonlinear dynamical system that governs the evolution of the log-belief ratio over time and numerical experiments demonstrate that the proposed approach effectively balances adaptation and inference performance.
System Level Synthesis for Affine Control Policies: Model Based and Data-Driven Settings
There is an increasing need for effective control of systems with complex dynamics, particularly through data-driven approaches. System Level Synthesis (SLS) has emerged as a powerful framework that facilitates the control of large-scale systems while accounting for model uncertainties. SLS approaches are currently limited to linear systems and time-varying linear control policies, thus limiting the class of achievable control strategies. We introduce a novel closed-loop parameterization for time-varying affine control policies, extending the SLS framework to a broader class of systems and policies. We show that the closed-loop behavior under affine policies can be equivalently characterized using past system trajectories, enabling a fully data-driven formulation. This parameterization seamlessly integrates affine policies into optimal control problems, allowing for a closed-loop formulation of general Model Predictive Control (MPC) problems. To the best of our knowledge, this is the first work to extend SLS to affine policies in both model-based and data-driven settings, enabling an equivalent formulation of MPC problems using closed-loop maps. We validate our approach through numerical experiments, demonstrating that our model-based and data-driven affine SLS formulations achieve performance on par with traditional model-based MPC.
comment: Submited to IEEE Conference on Decision and Control (CDC), 2025
Market-Oriented Flow Allocation for Thermal Solar Plants: An Auction-Based Methodology with Artificial Intelligence
This paper presents a novel method to optimize thermal balance in parabolic trough collector (PTC) plants. It uses a market-based system to distribute flow among loops combined with an artificial neural network (ANN) to reduce computation and data requirements. This auction-based approach balances loop temperatures, accommodating varying thermal losses and collector efficiencies. Validation across different thermal losses, optical efficiencies, and irradiance conditions-sunny, partially cloudy, and cloudy-show improved thermal power output and intercept factors compared to a no-allocation system. It demonstrates scalability and practicality for large solar thermal plants, enhancing overall performance. The method was first validated through simulations on a realistic solar plant model, then adapted and successfully tested in a 50 MW solar trough plant, demonstrating its advantages. Furthermore, the algorithms have been implemented, commissioned, and are currently operating in 13 commercial solar trough plants.
comment: This manuscript has been submitted to Renewable Energy
Convex Computations for Controlled Safety Invariant Sets of Black-box Discrete-time Dynamical Systems
Identifying controlled safety invariant sets (CSISs) is essential in safety-critical applications. This paper tackles the problem of identifying CSISs for black-box discrete-time systems, where the model is unknown and only limited simulation data is accessible. Traditionally, a CSIS is defined as a subset of a safe set, encompassing initial states for which a control input exists that keeps the system within the set at the next time step-this is referred to as the one-step invariance property. However, the requirement for one-step invariance can be equivalently translated into a stricter condition of ``always-invariance'', meaning that there exist control inputs capable of keeping the system within this set indefinitely. Such a condition may prove overly stringent or impractical for black-box systems, where predictions can become unreliable beyond a single time step or a limited number of finite time steps. To overcome the challenges posed by black-box systems, we reformulate the one-step invariance property in a ``Probably Approximately Correct'' (PAC) sense. This approach allows us to assess the probability that a control input exists to keep the system within the CSIS at the next time step, with a predefined level of confidence. If the system successfully remains within the set at the next time step, we can then reapply the invariance evaluation to the new state, thereby facilitating a recursive assurance of invariance. Our method employs barrier functions and scenario optimization, resulting in a linear programming method to estimate PAC CSISs. Finally, the effectiveness of our approach is demonstrated on several examples.
comment: 15 pages
Frequency-Domain Bounds for the Multiconductor Telegrapher's Equation
We establish mathematical bounds on the chain, ABCD and immittance matrices of a multiconductor transmission line, based on the Telegrapher's equation. Closed-form expressions for those matrices are also presented. Existing results that hold on the imaginary axis are extended to the complex plane, without reliance on a simultaneous diagonalizability assumption that is ubiquitous in the literature. Therefore, the results remain valid even when line symmetry breaks down, as in the case of electrical faults. The system-theoretic properties established here are of general relevance to control, power systems, and signal processing involving multiconductor transmission lines.
comment: 10 pages, 1 figure
Nonlinear Bandwidth and Bode Diagrams based on Scaled Relative Graphs
Scaled Relative Graphs (SRGs) provide a novel graphical frequency domain method for the analysis of nonlinear systems. In this paper, we use the restriction of the SRG to particular input spaces to compute frequency-dependent gain bounds for incrementally stable nonlinear systems. This leads to a nonlinear (NL) generalization of the Bode diagram, where the sinusoidal, harmonic, and subharmonic inputs are considered separately. When applied to the analysis of the NL loop transfer and sensitivity, we define a notion of bandwidth for both the open-loop and closed-loop, compatible with the LTI definitions. We illustrate the power of our method on the analysis of a DC motor with a parasitic nonlinearity, verifying our results in simulations.
comment: 8 pages, submitted for CDC 2025
Dual first-order methods for efficient computation of convex hull prices
Convex Hull (CH) pricing, used in US electricity markets and raising interest in Europe, is a pricing rule designed to handle markets with non-convexities such as startup costs and minimum up and down times. In such markets, the market operator makes side payments to generators to cover lost opportunity costs, and CH prices minimize the total "lost opportunity costs", which include both actual losses and missed profit opportunities. These prices can also be obtained by solving a (partial) Lagrangian dual of the original mixed-integer program, where power balance constraints are dualized. Computing CH prices then amounts to minimizing a sum of nonsmooth convex objective functions, where each term depends only on a single generator. The subgradient of each of those terms can be obtained independently by solving smaller mixed-integer programs. In this work, we benchmark a large panel of first-order methods to solve the above dual CH pricing problem. We test several dual methods, most of which not previously considered for CH pricing, namely a proximal variant of the bundle level method, subgradient methods with three different stepsize strategies, two recent parameter-free methods and an accelerated gradient method combined with smoothing. We compare those methods on two representative sets of real-world large-scale instances and complement the comparison with a (Dantzig-Wolfe) primal column generation method shown to be efficient at computing CH prices, for reference. Our numerical experiments show that the bundle proximal level method and two variants of the subgradient method perform the best among all dual methods and compare favorably with the Dantzig-Wolfe primal method.
comment: 10 pages
Behavioral Inequalities
We introduce behavioral inequalities as a way to model dynamical systems defined by inequalities among their variables of interest. We claim that such a formulation enables the representation of safety-aware dynamical systems, systems with bounds on disturbances, practical design limits and operational boundaries, etc. We develop a necessary and sufficient condition for the existence of solutions to such behavioral inequalities and provide a parametrization of solutions when they exist. Finally, we show the efficacy of the proposed method in two practical examples.
Dynamic Incentive Strategies for Smart EV Charging Stations: An LLM-Driven User Digital Twin Approach
This paper presents an enhanced electric vehicle demand response system based on large language models, aimed at optimizing the application of vehicle-to-grid technology. By leveraging an large language models-driven multi-agent framework to construct user digital twins integrated with multidimensional user profile features, it enables deep simulation and precise prediction of users' charging and discharging decision-making patterns. Additionally, a data- and knowledge-driven dynamic incentive mechanism is proposed, combining a distributed optimization model under network constraints to optimize the grid-user interaction while ensuring both economic viability and security. Simulation results demonstrate that the approach significantly improves load peak-valley regulation and charging/discharging strategies. Experimental validation highlights the system's substantial advantages in load balancing, user satisfaction and grid stability, providing decision-makers with a scalable V2G management tool that promotes the sustainable, synergistic development of vehicle-grid integration.
Navigating the Uncharted Waters: A Gradual Approach to the Certification and Integration of Maritime Autonomous Surface Ships (MASS) in Global Maritime Operations
The integration of Maritime Autonomous Surface Ships (MASS) into global maritime operations represents a transformative shift in the shipping industry, promising enhanced safety, efficiency, and cost-effectiveness. However, the widespread adoption of autonomous ships necessitates a robust regulatory framework and rigorous certification processes to address the unique challenges posed by these advanced technologies. This paper proposes a gradual, multi-stage approach to the certification and integration of MASS, beginning with small-scale trials in controlled environments and progressing to large-scale international operations. Key considerations include the development of reliable control systems, cybersecurity measures, sensor technologies, and redundancy mechanisms to ensure safe and efficient navigation. Additionally, the paper explores the economic and environmental implications of autonomous shipping, as well as the evolving legal frameworks for liability and compensation in the event of collisions. By adopting a cautious and methodical approach, the maritime industry can mitigate risks and pave the way for the safe and sustainable integration of autonomous ships into global trade.
comment: 9 pages, 8 figures
IRS Assisted Decentralized Learning for Wideband Spectrum Sensing
The increasing demand for reliable connectivity in industrial environments necessitates effective spectrum utilization strategies, especially in the context of shared spectrum bands. However, the dynamic spectrum-sharing mechanisms often lead to significant interference and critical failures, creating a trade-off between spectrum scarcity and under-utilization. This paper addresses these challenges by proposing a novel Intelligent Reflecting Surface (IRS)-assisted spectrum sensing framework integrated with decentralized deep learning. The proposed model overcomes partial observation constraints and minimizes communication overhead while leveraging IRS technology to enhance spectrum sensing accuracy. Through comprehensive simulations, the framework demonstrates its ability to monitor wideband spectrum occupancy effectively, even under challenging signal-to-noise ratio (SNR) conditions. This approach offers a scalable and robust solution for spectrum management in next-generation wireless networks.
Model-Predictive Planning and Airspeed Regulation to Minimize Flight Energy Consumption
Although battery technology has advanced tremendously over the past decade, it continues to be a bottleneck for the mass adoption of electric aircraft in long-haul cargo and passenger delivery. The onboard energy is expected to be utilized in an efficient manner. Energy concumption modeling research offers increasingly accurate mathematical models, but there is scant research pertaining to real-time energy optimization at an operational level. Additionally, few publications include landing and take-off energy demands in their governing models. This work presents fundamental energy equations and proposes a proportional-integral-derivative (PID) controller. The proposed method demonstrates a unique approach to an energy consumption model that tracks real-time energy optimization along a predetermined path. The proposed PID controller was tested in simulation, and the results show its effectiveness and accuracy in driving the actual airspeed to converge to the optimal velocity without knowing the system dynamics. We also propose a model-predictive method to minimize the energy usage in landing and take-off by optimizing the flight trajectory.
A Retina-Inspired Pathway to Real-Time Motion Prediction inside Image Sensors for Extreme-Edge Intelligence
The ability to predict motion in real time is fundamental to many maneuvering activities in animals, particularly those critical for survival, such as attack and escape responses. Given its significance, it is no surprise that motion prediction in animals begins in the retina. Similarly, autonomous systems utilizing computer vision could greatly benefit from the capability to predict motion in real time. Therefore, for computer vision applications, motion prediction should be integrated directly at the camera pixel level. Towards that end, we present a retina-inspired neuromorphic framework capable of performing real-time, energy-efficient MP directly within camera pixels. Our hardware-algorithm framework, implemented using GlobalFoundries 22nm FDSOI technology, integrates key retinal MP compute blocks, including a biphasic filter, spike adder, nonlinear circuit, and a 2D array for multi-directional motion prediction. Additionally, integrating the sensor and MP compute die using a 3D Cu-Cu hybrid bonding approach improves design compactness by minimizing area usage and simplifying routing complexity. Validated on real-world object stimuli, the model delivers efficient, low-latency MP for decision-making scenarios reliant on predictive visual computation, while consuming only 18.56 pJ/MP in our mixed-signal hardware implementation.
comment: 24 pages, 8 figures
The Social Life of Industrial Arms: How Arousal and Attention Shape Human-Robot Interaction
This study explores how human perceptions of a non-anthropomorphic robotic manipulator are shaped by two key dimensions of behaviour: arousal, defined as the robot's movement energy and expressiveness, and attention, defined as the robot's capacity to selectively orient toward and engage with a user. We introduce a novel control architecture that integrates a gaze-like attention engine with an arousal-modulated motion system to generate socially meaningful behaviours. In a user study, we find that robots exhibiting high attention -- actively directing their focus toward users -- are perceived as warmer and more competent, intentional, and lifelike. In contrast, high arousal -- characterized by fast, expansive, and energetic motions -- increases perceptions of discomfort and disturbance. Importantly, a combination of focused attention and moderate arousal yields the highest ratings of trust and sociability, while excessive arousal diminishes social engagement. These findings offer design insights for endowing non-humanoid robots with expressive, intuitive behaviours that support more natural human-robot interaction.
comment: 7 pages, 3 figures, 1 table
On the threshold of excitable systems: An energy-based perspective
A fundamental characteristic of excitable systems is their ability to exhibit distinct subthreshold and suprathreshold behaviors. Precisely quantifying this distinction requires a proper definition of the threshold, which has remained elusive in neurodynamics. In this paper, we introduce a novel, energy-based threshold definition for excitable circuits grounded in dissipativity theory, specifically using the classical concept of required supply. According to our definition, the threshold corresponds to a local maximum of the required supply, clearly separating subthreshold passive responses from suprathreshold regenerative spikes. We illustrate and validate the proposed definition through analytical and numerical studies of three canonical systems: a simple RC circuit, the FitzHugh--Nagumo model, and the biophysically detailed Hodgkin--Huxley model.
Data-Driven Nonconvex Reachability Analysis using Exact Multiplication
This paper addresses a fundamental challenge in data-driven reachability analysis: accurately representing and propagating non-convex reachable sets. We propose a novel approach using constrained polynomial zonotopes to describe reachable sets for unknown LTI systems. Unlike constrained zonotopes commonly used in existing literature, constrained polynomial zonotopes are closed under multiplication with constrained matrix zonotopes. We leverage this property to develop an exact multiplication method that preserves the non-convex geometry of reachable sets without resorting to approximations. We demonstrate that our approach provides tighter over-approximations of reachable sets for LTI systems compared to conventional methods.
Towards Enabling Learning for Time-Varying finite horizon Sequential Decision-Making Problems*
Parameterized Sequential Decision Making (Para-SDM) framework models a wide array of network design applications spanning supply-chain, transportation, and sensor networks. These problems entail sequential multi-stage optimization characterized by states, control actions, and cost functions dependent on designable parameters. The challenge is to determine both the sequential decision policy and parameters simultaneously to minimize cumulative stagewise costs. Many Para-SDM problems are NP-hard and often necessitate time-varying policies. Existing algorithms tackling finite-horizon time-varying Para-SDM problems struggle with scalability when faced with a large number of states. Conversely, the sole algorithm addressing infinite-horizon Para-SDM assumes time (stage)-invariance, yielding stationary policies. However, this approach proves scalable for time-invariant problems by leveraging deep neural networks to learn optimal stage-invariant state-action value functions, enabling handling of large-scale scenarios. This article proposes a novel approach that reinterprets finite-horizon, time-varying Para-SDM problems as equivalent time-invariant problems through topography lifting. Our method achieves nearly identical results to the time-varying solution while exhibiting improved performance times in various simulations, notably in the small cell network problem. This fresh perspective on Para-SDM problems expands the scope of addressable issues and holds promise for future scalability through the integration of learning methods.
On Model Protection in Federated Learning against Eavesdropping Attacks
In this study, we investigate the protection offered by federated learning algorithms against eavesdropping adversaries. In our model, the adversary is capable of intercepting model updates transmitted from clients to the server, enabling it to create its own estimate of the model. Unlike previous research, which predominantly focuses on safeguarding client data, our work shifts attention protecting the client model itself. Through a theoretical analysis, we examine how various factors, such as the probability of client selection, the structure of local objective functions, global aggregation at the server, and the eavesdropper's capabilities, impact the overall level of protection. We further validate our findings through numerical experiments, assessing the protection by evaluating the model accuracy achieved by the adversary. Finally, we compare our results with methods based on differential privacy, underscoring their limitations in this specific context.
Orthodromic Routing and Forwarding for Large Satellite Constellations
Low earth orbit satellite constellations with intersatellite links (ISLs) are currently being developed and deployed. The availability of ISLs provides the capability to route across the satellite constellation, rather than using the satellite as a single hop in a bent-pipe configuration. We present a fully distributed solution to routing and forwarding which we call Orthodromic Routing (OR(r) ). OR(r) routing is built on a foundation of both geographic and link state routing to create a hybrid protocol which scales to enormous constellations with excellent failure handling. Our work includes an addressing and forwarding plane for OR(r)which can be implemented in hardware in a highly parallel manner to achieve line rates while only requiring a bounded number of forwarding table entries.
comment: 6 pages, 7 figures
An Integrated Transportation Network and Power Grid Simulation Approach for Assessing Environmental Impact of Electric Vehicles
This study develops an integrated approach that includes EV charging and power generation to assess the complex cross-sector interactions of vehicle electrification and its environmental impact. The charging load from on-road EV operation is developed based on a regional-level transportation simulation and charging behavior simulation, considering different EV penetration levels, congestion levels, and charging strategies. The emissions from EGUs are estimated from a dispatch study in a power grid simulation using the charging load as a major input. A case study of Austin, Texas is performed to quantify the environmental impact of EV adoption on both on-road and EGU emission sources at the regional level. The results demonstrate the range of emission impact under a combination of factors.
comment: This work has been submitted to Nature for possible publication
Distributed Resource Allocation for Human-Autonomy Teaming under Coupled Constraints
This paper studies the optimal resource allocation problem within a multi-agent network composed of both autonomous agents and humans. The main challenge lies in the globally coupled constraints that link the decisions of autonomous agents with those of humans. To address this, we propose a reformulation that transforms these coupled constraints into decoupled local constraints defined over the system's communication graph. Building on this reformulation and incorporating a human response model that captures human-robot interactions while accounting for individual preferences and biases, we develop a fully distributed algorithm. This algorithm guides the states of the autonomous agents to equilibrium points which, when combined with the human responses, yield a globally optimal resource allocation. We provide both theoretical analysis and numerical simulations to validate the effectiveness of the proposed approach.
comment: 8 pages, 4 figures. Submitted to the 2025 IEEE Conference on Decision and Control (CDC)
Path planning with moving obstacles using stochastic optimal control
Navigating a collision-free, optimal path for a robot poses a perpetual challenge, particularly in the presence of moving objects such as humans. In this study, we formulate the problem of finding an optimal path as a stochastic optimal control problem. However, obtaining a solution to this problem is nontrivial. Therefore, we consider a simplified problem, which is more tractable. For this simplified formulation, we are able to solve the corresponding Bellman equation. However, the solution obtained from the simplified problem does not sufficiently address the original problem of interest. To address the full problem, we propose a numerical procedure where we solve an optimization problem at each sampling instant. The solution to the simplified problem is integrated into the online formulation as a final-state penalty. We illustrate the efficiency of the proposed method using a numerical example.
comment: 6 pages, 6 figures. Submitted to the 64th IEEE Conference on Decision and Control (CDC) 2025
8-DoFs Cable Driven Parallel Robots for Bimanual Teleportation
Teleoperation plays a critical role in intuitive robot control and imitation learning, particularly for complex tasks involving mobile manipulators with redundant degrees of freedom (DoFs). However, most existing master controllers are limited to 6-DoF spatial control and basic gripper control, making them insufficient for controlling high-DoF robots and restricting the operator to a small workspace. In this work, we present a novel, low-cost, high-DoF master controller based on Cable-Driven Parallel Robots (CDPRs), designed to overcome these limitations. The system decouples translation and orientation control, following a scalable 3 + 3 + n DoF structure: 3 DoFs for large-range translation using a CDPR, 3 DoFs for orientation using a gimbal mechanism, and n additional DoFs for gripper and redundant joint control. Its lightweight cable-driven design enables a large and adaptable workspace while minimizing actuator load. The end-effector remains stable without requiring continuous high-torque input, unlike most serial robot arms. We developed the first dual-arm CDPR-based master controller using cost-effective actuators and a simple mechanical structure. In demonstrations, the system successfully controlled an 8-DoF robotic arm with a 2-DoF pan-tilt camera, performing tasks such as pick-and-place, knot tying, object sorting, and tape application. The results show precise, versatile, and practical high-DoF teleoperation.
Dynamical Simulation Model of the Pyro-Process in Cement Clinker Production
This study presents a dynamic simulation model for the pyro-process of clinker production in cement plants. The study aims to construct a simulation model capable of replicating the real-world dynamics of the pyro-process to facilitate research into the improvements of operation, i.e., the development of alternative strategies for reducing CO2 emissions and ensuring clinker quality, production, and lowering fuel consumption. The presented model is an index-1 differential-algebraic equation (DAE) model based on first engineering principles and modular approaches. Using a systematic approach, the model is described on a detailed level that integrates geometric aspects, thermo-physical properties, transport phenomena, stoichiometry and kinetics, mass and energy balances, and algebraic volume and energy conservations. By manually calibrating the model to a steady-state reference, we provide dynamic simulation results that match the expected reference performance and the expected dynamic behavior from the industrial practices.
comment: 20 pages, 10 figures, 13 tables
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Stability
Grid-Forming (GFM) technology is considered a promising solution to build power electronics-dominated power systems. However, the impact of GFM converters on the system stability is still unquantified, creating a gap between the system- and device-level perspectives. To fill this gap, at the device-level, we propose a Forming Index to quantify a converter's response to grid voltage variations, providing a characterization of its GFM behavior. At the system-level, a quantitative notion of System Strength is introduced to capture the fundamental requirements for power system formation. Finally, we establish the alignment between device- and system-level metrics by demonstrating that GFM converters provably enhance system strength.
Unraveling tensor structures in correct-by-design controller synthesis
Formal safety guarantees on the synthesis of controllers for stochastic systems can be obtained using correct-by-design approaches. These approaches often use abstractions as finite-state Markov Decision Processes. As the state space of these MDPs grows, the curse of dimensionality makes the computational and memory cost of the probabilistic guarantees, quantified with dynamic programming, scale exponentially. In this work, we leverage decoupled dynamics and unravel, via dynamic programming operations, a tree structure in the Canonical Polyadic Decomposition (CPD) of the value functions. For discrete-time stochastic systems with syntactically co-safe linear temporal logic (scLTL) specifications, we provide provable probabilistic safety guarantees and significantly alleviate the computational burden. We provide an initial validation of the theoretical results on several typical case studies and showcase that the uncovered tree structure enables efficient reductions in the computational burden.
Ensuring Safe and Smooth Control in Safety-Critical Systems via Filtered Control Barrier Functions
In safety-critical control systems, ensuring both system safety and smooth control input is essential for theoretical guarantees and practical deployment. Existing Control Barrier Function (CBF) frameworks, especially High-Order CBFs (HOCBFs), effectively enforce safety constraints but often lead to nonsmooth or discontinuous control inputs that can degrade system performance or violate actuator limitations. This paper introduces Filtered Control Barrier Functions (FCBFs), which extend HOCBFs by incorporating an auxiliary dynamic system - referred to as input regularization filter - to produce Lipschitz continuous control inputs. The proposed framework ensures safety, control bounds, and smoothness simultaneously by integrating FCBFs and HOCBFs within a unified quadratic program (QP). Theoretical guarantees are provided and simulations on a unicycle model demonstrate the effectiveness of the proposed method compared to standard and smoothness-penalized HOCBF approaches.
comment: 7 pages, 4 figures
Universal Global State Estimation for Inertial Navigation Systems
This paper addresses the problem of accurate pose estimation (position, velocity, and orientation) for a rigid body. By utilizing generic exteroceptive measurements in combination with an Inertial Measurement Unit (IMU), we reformulate the vehicle's dynamics and outputs to fit within a linear time-varying (LTV) framework. This transformation enables the application of a linear continuous-time Kalman filter, thereby avoiding the complexities of nonlinear estimators and local Kalman-type filtering methods (e.g., EKF). We perform a complete uniform observability analysis for key benchmark problems (e.g., GPS-INS and Landmark-INS) and derive sufficient conditions for ensuring global uniform exponential stability. Simulations are conducted for two practical applications: stereo-aided inertial navigation systems (INS) with both constant and time-varying gains, as well as GPS-aided INS. The proposed approach notably simplifies observer design for INS.
comment: 8 pages
Distribution System Reconfiguration to Mitigate Load Altering Attacks via Stackelberg Games
The integration of IoT-controllable devices in power systems (such as smart electric vehicle charging stations, heat pumps, etc.), despite their benefits, raises novel cybersecurity concerns. Vulnerabilities in these devices can be leveraged to launch load-altering attacks (LAAs) that can potentially compromise the safety of power systems. In this paper, we analyze the impact of LAAs on the voltage profile of distribution networks (DNs). We first derive closed-form expressions to quantify the attacks' impact. Using the insights derived from this analysis, we then propose a reactive defense method to mitigate LAAs based on reconfiguring the DNs. We also study optimal defense strategies that are robust to LAAs by exploiting non-cooperative sequential game theory. The proposed solution takes into account the potential uncertainties in the attack localization. Furthermore, we propose a Bayesian optimization (BO) approach to compute the equilibrium of the game, which reduces the computational burden. Our results show that attacks launched on the deepest nodes in the DN have the most detrimental effect on the grid voltage profile. Furthermore, the proposed game-theoretic strategy successfully mitigates the effect of the attack while ensuring minimum system reconfiguration.
A Volumetric Approach to Privacy of Dynamical Systems
Information-theoretic metrics, such as mutual information, have been widely used to evaluate privacy leakage in dynamic systems. However, these approaches are typically limited to stochastic systems and face computational challenges. In this paper, we introduce a novel volumetric framework for analyzing privacy in systems affected by unknown but bounded noise. Our model considers a dynamic system comprising public and private states, where an observation set of the public state is released. An adversary utilizes the observed public state to infer an uncertainty set of the private state, referred to as the inference attack. We define the evolution dynamics of these inference attacks and quantify the privacy level of the private state using the volume of its uncertainty sets. We then develop an approximate computation method leveraging interval analysis to compute the private state set. We investigate the properties of the proposed volumetric privacy measure and demonstrate that it is bounded by the information gain derived from the observation set. Furthermore, we propose an optimization approach to designing privacy filter using randomization and linear programming based on the proposed privacy measure. The effectiveness of the optimal privacy filter design is evaluated through a production-inventory case study, illustrating its robustness against inference attacks and its superiority compared to a truncated Gaussian mechanism.
The computation of approximate feedback Stackelberg equilibria in multi-player nonlinear constrained dynamic games
Solving feedback Stackelberg games with nonlinear dynamics and coupled constraints, a common scenario in practice, presents significant challenges. This work introduces an efficient method for computing approximate local feedback Stackelberg equilibria in multi-player general-sum dynamic games, with continuous state and action spaces. Different from existing (approximate) dynamic programming solutions that are primarily designed for unconstrained problems, our approach involves reformulating a feedback Stackelberg dynamic game into a sequence of nested optimization problems, enabling the derivation of Karush-Kuhn-Tucker (KKT) conditions and the establishment of a second-order sufficient condition for local feedback Stackelberg equilibria. We propose a Newton-style primal-dual interior point method for solving constrained linear quadratic (LQ) feedback Stackelberg games, offering provable convergence guarantees. Our method is further extended to compute local feedback Stackelberg equilibria for more general nonlinear games by iteratively approximating them using LQ games, ensuring that their KKT conditions are locally aligned with those of the original nonlinear games. We prove the exponential convergence of our algorithm in constrained nonlinear games. In a feedback Stackelberg game with nonlinear dynamics and (nonconvex) coupled costs and constraints, our experimental results reveal the algorithm's ability to handle infeasible initial conditions and achieve exponential convergence towards an approximate local feedback Stackelberg equilibrium.
comment: This manuscript has been accepted by SIAM Journal on Optimization. In this arxiv version, we fix a typo in equation (4.3), \ell_{T+1}(x_T) -> \ell_{T+1}(x_{T+1}), and a typo in equation (4.7), L_{T+1} -> L_T. All main results are unchanged
Semantic-Enabled 6G Communication: A Task-oriented and Privacy-preserving Perspective
Task-oriented semantic communication (ToSC) emerges as an innovative approach in the 6G landscape, characterized by the transmission of only vital information that is directly pertinent to a specific task. While ToSC offers an efficient mode of communication, it concurrently raises concerns regarding privacy, as sophisticated adversaries might possess the capability to reconstruct the original data from the transmitted features. This paper provides an in-depth analysis of privacy-preserving strategies specifically designed for ToSC relying on deep neural network-based joint source and channel coding (DeepJSCC). Our study encompasses a detailed comparative assessment of trustworthy feature perturbation methods such as differential privacy (DP) and encryption, alongside intrinsic security incorporation approaches like adversarial learning to train the JSCC and learning-based vector quantization (LBVQ). Our comparative analysis underscores the integration of advanced explainable learning algorithms into communication systems, positing a new benchmark for privacy standards in the forthcoming 6G era.
A New Type of Nonlinear Disturbance Rejection
Asymptotic disturbance rejection (equivalently tracking) for nonlinear systems has been studied only in qualitative terms (the state is asymptotically stable under bounded disturbances). We show how to prove quantitative performance guarantees for the nonlinear servomechanism problem. Our technique originates by applying a gain inequalities point of view to an ad fontes reexamination of the linear problem: what is the nonlinear equivalent of a sensitivity transfer function with a zero at the origin? We answer: a nonlinear input-output system is high-pass if its output is stable with respect to the \emph{derivative} of the input. We first show that definition generalizes high-pass resistor-capacitor circuit analysis to accommodate nonlinear resistors. We then show that this definition generalizes the steady-state disturbance rejection property of integral feedback controllers for linear systems. The theoretical payoff is that low-frequency disturbance rejection is captured by a quantitative, non-asymptotic output cost bound. Finally, we raise theoretical questions about compositionality of nonlinear operators.
comment: to appear in ACC 2025
Learning Koopman-based Stability Certificates for Unknown Nonlinear Systems
Koopman operator theory has gained significant attention in recent years for identifying discrete-time nonlinear systems by embedding them into an infinite-dimensional linear vector space. However, providing stability guarantees while learning the continuous-time dynamics, especially under conditions of relatively low observation frequency, remains a challenge within the existing Koopman-based learning frameworks. To address this challenge, we propose an algorithmic framework to simultaneously learn the vector field and Lyapunov functions for unknown nonlinear systems, using a limited amount of data sampled across the state space and along the trajectories at a relatively low sampling frequency. The proposed framework builds upon recently developed high-accuracy Koopman generator learning for capturing transient system transitions and physics-informed neural networks for training Lyapunov functions. We show that the learned Lyapunov functions can be formally verified using a satisfiability modulo theories (SMT) solver and provide less conservative estimates of the region of attraction compared to existing methods.
TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
Incremental Composition of Learned Control Barrier Functions in Unknown Environments
We consider the problem of safely exploring a static and unknown environment while learning valid control barrier functions (CBFs) from sensor data. Existing works either assume known environments, target specific dynamics models, or use a-priori valid CBFs, and are thus limited in their safety guarantees for general systems during exploration. We present a method for safely exploring the unknown environment by incrementally composing a global CBF from locally-learned CBFs. The challenge here is that local CBFs may not have well-defined end behavior outside their training domain, i.e. local CBFs may be positive (indicating safety) in regions where no training data is available. We show that well-defined end behavior can be obtained when local CBFs are parameterized by compactly-supported radial basis functions. For learning local CBFs, we collect sensor data, e.g. LiDAR capturing obstacles in the environment, and augment it with simulated data from a safe oracle controller. Our work complements recent efforts to learn CBFs from safe demonstrations -- where learned safe sets are limited to their training domains -- by demonstrating how to grow the safe set over time as more data becomes available. We evaluate our approach on two simulated systems, where our method successfully explores an unknown environment while maintaining safety throughout the entire execution.
Equitably allocating wildfire resilience investments for power grids: The curse of aggregation and vulnerability indices
Social vulnerability indices have increased traction for guiding infrastructure investment decisions to prioritize communities that need these investments most. One such plan is the Biden-Harris Justice40 initiative, which aims to guide equitable infrastructure investments by ensuring that disadvantaged communities defined by the Climate & Economic Justice Screening Tool (CEJST) receive 40% of the total benefit realized by the investment. However, there is limited research on the practicality of applying vulnerability indices like the CEJST to real-world decision-making for policy outcomes. In this paper, we study this gap by examining the effectiveness of vulnerability indices in a case study focused on power shutoff and undergrounding decisions in wildfire-prone regions. Using a mixed-integer program and a high-fidelity synthetic transmission network in Texas, we model resource allocation policies inspired by Justice40 and evaluate their impact on reducing power outages and mitigating wildfire risk for vulnerable groups. Our analysis reveals that the Justice40 framework may fail to protect certain communities facing high wildfire risk. In our case study, we show that indigenous groups are particularly impacted. We posit that this outcome is likely due to information losses from data aggregation and the use of generalized vulnerability indices. Through the use of explicit group-level protections, we are able to bound the best possible outcome for population groups that are proportionally most affected.
Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial HVAC: A review
A large body of simulation research suggests that model predictive control (MPC) and reinforcement learning (RL) for heating, ventilation, and air-conditioning (HVAC) in residential and commercial buildings could reduce energy costs, pollutant emissions, and strain on power grids. Despite this potential, neither MPC nor RL has seen widespread industry adoption. Field demonstrations could accelerate MPC and RL adoption by providing real-world data that support the business case for deployment. Here we review 24 papers that document field demonstrations of MPC and RL in residential buildings and 80 in commercial buildings. After presenting demographic information -- such as experiment scopes, locations, and durations -- this paper analyzes experiment protocols and their influence on performance estimates. We find that 71% of the reviewed field demonstrations use experiment protocols that may lead to unreliable performance estimates. Over the remaining 29% that we view as reliable, the weighted-average cost savings, weighted by experiment duration, are 16% in residential buildings and 13% in commercial buildings. While these savings are potentially attractive, making the business case for MPC and RL also requires characterizing the costs of deployment, operation, and maintenance. Only 13 of the 104 reviewed papers report these costs or discuss related challenges. Based on these observations, we recommend directions for future field research, including: Improving experiment protocols; reporting deployment, operation, and maintenance costs; designing algorithms and instrumentation to reduce these costs; controlling HVAC equipment alongside other distributed energy resources; and pursuing emerging objectives such as peak shaving, arbitraging wholesale energy prices, and providing power grid reliability services.
Harnessing On-Machine Metrology Data for Prints with a Surrogate Model for Laser Powder Directed Energy Deposition
In this study, we leverage the massive amount of multi-modal on-machine metrology data generated from Laser Powder Directed Energy Deposition (LP-DED) to construct a comprehensive surrogate model of the 3D printing process. By employing Dynamic Mode Decomposition with Control (DMDc), a data-driven technique, we capture the complex physics inherent in this extensive dataset. This physics-based surrogate model emphasizes thermodynamically significant quantities, enabling us to accurately predict key process outcomes. The model ingests 21 process parameters, including laser power, scan rate, and position, while providing outputs such as melt pool temperature, melt pool size, and other essential observables. Furthermore, it incorporates uncertainty quantification to provide bounds on these predictions, enhancing reliability and confidence in the results. We then deploy the surrogate model on a new, unseen part and monitor the printing process as validation of the method. Our experimental results demonstrate that the predictions align with actual measurements with high accuracy, confirming the effectiveness of our approach. This methodology not only facilitates real-time predictions but also operates at process-relevant speeds, establishing a basis for implementing feedback control in LP-DED.
comment: 19 pages, 9 figures
Multiagent Systems
Sky of Unlearning (SoUL): Rewiring Federated Machine Unlearning via Selective Pruning
The Internet of Drones (IoD), where drones collaborate in data collection and analysis, has become essential for applications such as surveillance and environmental monitoring. Federated learning (FL) enables drones to train machine learning models in a decentralized manner while preserving data privacy. However, FL in IoD networks is susceptible to attacks like data poisoning and model inversion. Federated unlearning (FU) mitigates these risks by eliminating adversarial data contributions, preventing their influence on the model. This paper proposes sky of unlearning (SoUL), a federated unlearning framework that efficiently removes the influence of unlearned data while maintaining model performance. A selective pruning algorithm is designed to identify and remove neurons influential in unlearning but minimally impact the overall performance of the model. Simulations demonstrate that SoUL outperforms existing unlearning methods, achieves accuracy comparable to full retraining, and reduces computation and communication overhead, making it a scalable and efficient solution for resource-constrained IoD networks.
comment: 6 pages, 6 figures, IEEE International Conference on Communications (ICC 2025)
Achieving Unanimous Consensus in Decision Making Using Multi-Agents
Blockchain consensus mechanisms have relied on algorithms such as Proof-of-Work (PoW) and Proof-of-Stake (PoS) to ensure network functionality and integrity. However, these approaches struggle with adaptability for decision-making where the opinions of each matter rather than reaching an agreement based on honest majority or weighted consensus. This paper introduces a novel deliberation-based consensus mechanism where Large Language Models (LLMs) act as rational agents engaging in structured discussions to reach a unanimous consensus. By leveraging graded consensus and a multi-round deliberation process, our approach ensures both unanimous consensus for definitive problems and graded confidence for prioritized decisions and policies. We provide a formalization of our system and use it to show that the properties of blockchains: consistency, agreement, liveness, and determinism are maintained. Moreover, experimental results demonstrate our system's feasibility, showcasing how our deliberation method's convergence, block properties, and accuracy enable decision-making on blockchain networks. We also address key challenges with this novel approach such as degeneration of thoughts, hallucinations, malicious models and nodes, resource consumption, and scalability.
comment: 11 pages, 9 figure, 3 tables
Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
Distributed Multi-agent Coordination over Cellular Sheaves
Techniques for coordination of multi-agent systems are vast and varied, often utilizing purpose-built solvers or controllers with tight coupling to the types of systems involved or the coordination goal. In this paper, we introduce a general unified framework for heterogeneous multi-agent coordination using the language of cellular sheaves and nonlinear sheaf Laplacians, which are generalizations of graphs and graph Laplacians. Specifically, we introduce the concept of a nonlinear homological program encompassing a choice of cellular sheaf on an undirected graph, nonlinear edge potential functions, and constrained convex node objectives. We use the alternating direction method of multipliers to derive a distributed optimization algorithm for solving these nonlinear homological programs. To demonstrate the wide applicability of this framework, we show how hybrid coordination goals including combinations of consensus, formation, and flocking can be formulated as nonlinear homological programs and provide numerical simulations showing the efficacy of our distributed solution algorithm.
Anticipating Degradation: A Predictive Approach to Fault Tolerance in Robot Swarms
An active approach to fault tolerance is essential for robot swarms to achieve long-term autonomy. Previous efforts have focused on responding to spontaneous electro-mechanical faults and failures. However, many faults occur gradually over time. Waiting until such faults have manifested as failures before addressing them is both inefficient and unsustainable in a variety of scenarios. This work argues that the principles of predictive maintenance, in which potential faults are resolved before they hinder the operation of the swarm, offer a promising means of achieving long-term fault tolerance. This is a novel approach to swarm fault tolerance, which is shown to give a comparable or improved performance when tested against a reactive approach in almost all cases tested.
Can A Society of Generative Agents Simulate Human Behavior and Inform Public Health Policy? A Case Study on Vaccine Hesitancy
Can we simulate a sandbox society with generative agents to model human behavior, thereby reducing the over-reliance on real human trials for assessing public policies? In this work, we investigate the feasibility of simulating health-related decision-making, using vaccine hesitancy, defined as the delay in acceptance or refusal of vaccines despite the availability of vaccination services (MacDonald, 2015), as a case study. To this end, we introduce the VacSim framework with 100 generative agents powered by Large Language Models (LLMs). VacSim simulates vaccine policy outcomes with the following steps: 1) instantiate a population of agents with demographics based on census data; 2) connect the agents via a social network and model vaccine attitudes as a function of social dynamics and disease-related information; 3) design and evaluate various public health interventions aimed at mitigating vaccine hesitancy. To align with real-world results, we also introduce simulation warmup and attitude modulation to adjust agents' attitudes. We propose a series of evaluations to assess the reliability of various LLM simulations. Experiments indicate that models like Llama and Qwen can simulate aspects of human behavior but also highlight real-world alignment challenges, such as inconsistent responses with demographic profiles. This early exploration of LLM-driven simulations is not meant to serve as definitive policy guidance; instead, it serves as a call for action to examine social simulation for policy development.
Robotics
Plan-and-Act using Large Language Models for Interactive Agreement
Recent large language models (LLMs) are capable of planning robot actions. In this paper, we explore how LLMs can be used for planning actions with tasks involving situational human-robot interaction (HRI). A key problem of applying LLMs in situational HRI is balancing between "respecting the current human's activity" and "prioritizing the robot's task," as well as understanding the timing of when to use the LLM to generate an action plan. In this paper, we propose a necessary plan-and-act skill design to solve the above problems. We show that a critical factor for enabling a robot to switch between passive / active interaction behavior is to provide the LLM with an action text about the current robot's action. We also show that a second-stage question to the LLM (about the next timing to call the LLM) is necessary for planning actions at an appropriate timing. The skill design is applied to an Engage skill and is tested on four distinct interaction scenarios. We show that by using the skill design, LLMs can be leveraged to easily scale to different HRI scenarios with a reasonable success rate reaching 90% on the test scenarios.
FUSION: Frequency-guided Underwater Spatial Image recOnstructioN
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
Value Iteration for Learning Concurrently Executable Robotic Control Tasks AAMAS 2025
Many modern robotic systems such as multi-robot systems and manipulators exhibit redundancy, a property owing to which they are capable of executing multiple tasks. This work proposes a novel method, based on the Reinforcement Learning (RL) paradigm, to train redundant robots to be able to execute multiple tasks concurrently. Our approach differs from typical multi-objective RL methods insofar as the learned tasks can be combined and executed in possibly time-varying prioritized stacks. We do so by first defining a notion of task independence between learned value functions. We then use our definition of task independence to propose a cost functional that encourages a policy, based on an approximated value function, to accomplish its control objective while minimally interfering with the execution of higher priority tasks. This allows us to train a set of control policies that can be executed simultaneously. We also introduce a version of fitted value iteration to learn to approximate our proposed cost functional efficiently. We demonstrate our approach on several scenarios and robotic systems.
comment: To be published in AAMAS 2025 conference: https://aamas2025.org/
Extended Hybrid Zero Dynamics for Bipedal Walking of the Knee-less Robot SLIDER
Knee-less bipedal robots like SLIDER have the advantage of ultra-lightweight legs and improved walking energy efficiency compared to traditional humanoid robots. In this paper, we firstly introduce an improved hardware design of the bipedal robot SLIDER with new line-feet and more optimized mass distribution which enables higher locomotion speeds. Secondly, we propose an extended Hybrid Zero Dynamics (eHZD) method, which can be applied to prismatic joint robots like SLIDER. The eHZD method is then used to generate a library of gaits with varying reference velocities in an offline way. Thirdly, a Guided Deep Reinforcement Learning (DRL) algorithm is proposed to use the pre-generated library to create walking control policies in real-time. This approach allows us to combine the advantages of both HZD (for generating stable gaits with a full-dynamics model) and DRL (for real-time adaptive gait generation). The experimental results show that this approach achieves 150% higher walking velocity than the previous MPC-based approach.
Active Learning Design: Modeling Force Output for Axisymmetric Soft Pneumatic Actuators SP
Soft pneumatic actuators (SPA) made from elastomeric materials can provide large strain and large force. The behavior of locally strain-restricted hyperelastic materials under inflation has been investigated thoroughly for shape reconfiguration, but requires further investigation for trajectories involving external force. In this work we model force-pressure-height relationships for a concentrically strain-limited class of soft pneumatic actuators and demonstrate the use of this model to design SPA response for object lifting. We predict relationships under different loadings by solving energy minimization equations and verify this theory by using an automated test rig to collect rich data for n=22 Ecoflex 00-30 membranes. We collect this data using an active learning pipeline to efficiently model the design space. We show that this learned material model outperforms the theory-based model and naive curve-fitting approaches. We use our model to optimize membrane design for different lift tasks and compare this performance to other designs. These contributions represent a step towards understanding the natural response for this class of actuator and embodying intelligent lifts in a single-pressure input actuator system.
comment: This work has been submitted to the IEEE for possible publication. Submitted to R-AL Special Issue: Interdisciplinarity and Widening Horizons in Soft Robotics (2025). Accompanying video: https://www.youtube.com/watch?v=iAsE9GTH2xc . Accompanying codebase: https://github.com/gmcampbell/SPA_Design
Making Sense of Robots in Public Spaces: A Study of Trash Barrel Robots
In this work, we analyze video data and interviews from a public deployment of two trash barrel robots in a large public space to better understand the sensemaking activities people perform when they encounter robots in public spaces. Based on an analysis of 274 human-robot interactions and interviews with N=65 individuals or groups, we discovered that people were responding not only to the robots or their behavior, but also to the general idea of deploying robots as trashcans, and the larger social implications of that idea. They wanted to understand details about the deployment because having that knowledge would change how they interact with the robot. Based on our data and analysis, we have provided implications for design that may be topics for future human-robot design researchers who are exploring robots for public space deployment. Furthermore, our work offers a practical example of analyzing field data to make sense of robots in public spaces.
HomeEmergency -- Using Audio to Find and Respond to Emergencies in the Home
In the United States alone accidental home deaths exceed 128,000 per year. Our work aims to enable home robots who respond to emergency scenarios in the home, preventing injuries and deaths. We introduce a new dataset of household emergencies based in the ThreeDWorld simulator. Each scenario in our dataset begins with an instantaneous or periodic sound which may or may not be an emergency. The agent must navigate the multi-room home scene using prior observations, alongside audio signals and images from the simulator, to determine if there is an emergency or not. In addition to our new dataset, we present a modular approach for localizing and identifying potential home emergencies. Underpinning our approach is a novel probabilistic dynamic scene graph (P-DSG), where our key insight is that graph nodes corresponding to agents can be represented with a probabilistic edge. This edge, when refined using Bayesian inference, enables efficient and effective localization of agents in the scene. We also utilize multi-modal vision-language models (VLMs) as a component in our approach, determining object traits (e.g. flammability) and identifying emergencies. We present a demonstration of our method completing a real-world version of our task on a consumer robot, showing the transferability of both our task and our method. Our dataset will be released to the public upon this papers publication.
HDVIO2.0: Wind and Disturbance Estimation with Hybrid Dynamics VIO
Visual-inertial odometry (VIO) is widely used for state estimation in autonomous micro aerial vehicles using onboard sensors. Current methods improve VIO by incorporating a model of the translational vehicle dynamics, yet their performance degrades when faced with low-accuracy vehicle models or continuous external disturbances, like wind. Additionally, incorporating rotational dynamics in these models is computationally intractable when they are deployed in online applications, e.g., in a closed-loop control system. We present HDVIO2.0, which models full 6-DoF, translational and rotational, vehicle dynamics and tightly incorporates them into a VIO with minimal impact on the runtime. HDVIO2.0 builds upon the previous work, HDVIO, and addresses these challenges through a hybrid dynamics model combining a point-mass vehicle model with a learning-based component, with access to control commands and IMU history, to capture complex aerodynamic effects. The key idea behind modeling the rotational dynamics is to represent them with continuous-time functions. HDVIO2.0 leverages the divergence between the actual motion and the predicted motion from the hybrid dynamics model to estimate external forces as well as the robot state. Our system surpasses the performance of state-of-the-art methods in experiments using public and new drone dynamics datasets, as well as real-world flights in winds up to 25 km/h. Unlike existing approaches, we also show that accurate vehicle dynamics predictions are achievable without precise knowledge of the full vehicle state.
Time-optimal Convexified Reeds-Shepp Paths on a Sphere
This article addresses time-optimal path planning for a vehicle capable of moving both forward and backward on a unit sphere with a unit maximum speed, and constrained by a maximum absolute turning rate $U_{max}$. The proposed formulation can be utilized for optimal attitude control of underactuated satellites, optimal motion planning for spherical rolling robots, and optimal path planning for mobile robots on spherical surfaces or uneven terrains. By utilizing Pontryagin's Maximum Principle and analyzing phase portraits, it is shown that for $U_{max}\geq1$, the optimal path connecting a given initial configuration to a desired terminal configuration falls within a sufficient list of 23 path types, each comprising at most 6 segments. These segments belong to the set $\{C,G,T\}$, where $C$ represents a tight turn with radius $r=\frac{1}{\sqrt{1+U_{max}^2}}$, $G$ represents a great circular arc, and $T$ represents a turn-in-place motion. Closed-form expressions for the angles of each path in the sufficient list are derived. The source code for solving the time-optimal path problem and visualization is publicly available at https://github.com/sixuli97/Optimal-Spherical-Convexified-Reeds-Shepp-Paths.
Combined Aerial Cooperative Tethered Carrying and Path Planning for Quadrotors in Confined Environments
In this article, a novel combined aerial cooperative tethered carrying and path planning framework is introduced with a special focus on applications in confined environments. The proposed work is aiming towards solving the path planning problem for the formation of two quadrotors, while having a rope hanging below them and passing through or around obstacles. A novel composition mechanism is proposed, which simplifies the degrees of freedom of the combined aerial system and expresses the corresponding states in a compact form. Given the state of the composition, a dynamic body is generated that encapsulates the quadrotors-rope system and makes the procedure of collision checking between the system and the environment more efficient. By utilizing the above two abstractions, an RRT path planning scheme is implemented and a collision-free path for the formation is generated. This path is decomposed back to the quadrotors' desired positions that are fed to the Model Predictive Controller (MPC) for each one. The efficiency of the proposed framework is experimentally evaluated.
Provably Stable Multi-Agent Routing with Bounded-Delay Adversaries in the Decision Loop
In this work, we are interested in studying multi-agent routing settings, where adversarial agents are part of the assignment and decision loop, degrading the performance of the fleet by incurring bounded delays while servicing pickup-and-delivery requests. Specifically, we are interested in characterizing conditions on the fleet size and the proportion of adversarial agents for which a routing policy remains stable, where stability for a routing policy is achieved if the number of outstanding requests is uniformly bounded over time. To obtain this characterization, we first establish a threshold on the proportion of adversarial agents above which previously stable routing policies for fully cooperative fleets are provably unstable. We then derive a sufficient condition on the fleet size to recover stability given a maximum proportion of adversarial agents. We empirically validate our theoretical results on a case study on autonomous taxi routing, where we consider transportation requests from real San Francisco taxicab data.
comment: 14 pages, 4 figures
Context-Aware Human Behavior Prediction Using Multimodal Large Language Models: Challenges and Insights
Predicting human behavior in shared environments is crucial for safe and efficient human-robot interaction. Traditional data-driven methods to that end are pre-trained on domain-specific datasets, activity types, and prediction horizons. In contrast, the recent breakthroughs in Large Language Models (LLMs) promise open-ended cross-domain generalization to describe various human activities and make predictions in any context. In particular, Multimodal LLMs (MLLMs) are able to integrate information from various sources, achieving more contextual awareness and improved scene understanding. The difficulty in applying general-purpose MLLMs directly for prediction stems from their limited capacity for processing large input sequences, sensitivity to prompt design, and expensive fine-tuning. In this paper, we present a systematic analysis of applying pre-trained MLLMs for context-aware human behavior prediction. To this end, we introduce a modular multimodal human activity prediction framework that allows us to benchmark various MLLMs, input variations, In-Context Learning (ICL), and autoregressive techniques. Our evaluation indicates that the best-performing framework configuration is able to reach 92.8% semantic similarity and 66.1% exact label accuracy in predicting human behaviors in the target frame.
Visual Environment-Interactive Planning for Embodied Complex-Question Answering
This study focuses on Embodied Complex-Question Answering task, which means the embodied robot need to understand human questions with intricate structures and abstract semantics. The core of this task lies in making appropriate plans based on the perception of the visual environment. Existing methods often generate plans in a once-for-all manner, i.e., one-step planning. Such approach rely on large models, without sufficient understanding of the environment. Considering multi-step planning, the framework for formulating plans in a sequential manner is proposed in this paper. To ensure the ability of our framework to tackle complex questions, we create a structured semantic space, where hierarchical visual perception and chain expression of the question essence can achieve iterative interaction. This space makes sequential task planning possible. Within the framework, we first parse human natural language based on a visual hierarchical scene graph, which can clarify the intention of the question. Then, we incorporate external rules to make a plan for current step, weakening the reliance on large models. Every plan is generated based on feedback from visual perception, with multiple rounds of interaction until an answer is obtained. This approach enables continuous feedback and adjustment, allowing the robot to optimize its action strategy. To test our framework, we contribute a new dataset with more complex questions. Experimental results demonstrate that our approach performs excellently and stably on complex tasks. And also, the feasibility of our approach in real-world scenarios has been established, indicating its practical applicability.
UnIRe: Unsupervised Instance Decomposition for Dynamic Urban Scene Reconstruction
Reconstructing and decomposing dynamic urban scenes is crucial for autonomous driving, urban planning, and scene editing. However, existing methods fail to perform instance-aware decomposition without manual annotations, which is crucial for instance-level scene editing.We propose UnIRe, a 3D Gaussian Splatting (3DGS) based approach that decomposes a scene into a static background and individual dynamic instances using only RGB images and LiDAR point clouds. At its core, we introduce 4D superpoints, a novel representation that clusters multi-frame LiDAR points in 4D space, enabling unsupervised instance separation based on spatiotemporal correlations. These 4D superpoints serve as the foundation for our decomposed 4D initialization, i.e., providing spatial and temporal initialization to train a dynamic 3DGS for arbitrary dynamic classes without requiring bounding boxes or object templates.Furthermore, we introduce a smoothness regularization strategy in both 2D and 3D space, further improving the temporal stability.Experiments on benchmark datasets show that our method outperforms existing methods in decomposed dynamic scene reconstruction while enabling accurate and flexible instance-level editing, making it a practical solution for real-world applications.
Predictive Spray Switching for an Efficient Path Planning Pattern for Area Coverage
This paper presents within an arable farming context a predictive logic for the on- and off-switching of a set of nozzles attached to a boom aligned along a working width and carried by a machinery with the purpose of applying spray along the working width while the machinery is traveling along a specific path planning pattern. Concatenation of multiple of those path patterns and corresponding concatenation of proposed switching logics enables nominal lossless spray application for area coverage tasks. Proposed predictive switching logic is compared to the common and state-of-the-art reactive switching logic for Boustrophedon-based path planning for area coverage. The trade-off between reduction in pathlength and increase in the number of required on- and off-switchings for proposed method is discussed.
comment: 11 pages, 13 figures, 2 tables
Design and Validation of an Intention-Aware Probabilistic Framework for Trajectory Prediction: Integrating COLREGS, Grounding Hazards, and Planned Routes
Collision avoidance capability is an essential component in an autonomous vessel navigation system. To this end, an accurate prediction of dynamic obstacle trajectories is vital. Traditional approaches to trajectory prediction face limitations in generalizability and often fail to account for the intentions of other vessels. While recent research has considered incorporating the intentions of dynamic obstacles, these efforts are typically based on the own-ship's interpretation of the situation. The current state-of-the-art in this area is a Dynamic Bayesian Network (DBN) model, which infers target vessel intentions by considering multiple underlying causes and allowing for different interpretations of the situation by different vessels. However, since its inception, there have not been any significant structural improvements to this model. In this paper, we propose enhancing the DBN model by incorporating considerations for grounding hazards and vessel waypoint information. The proposed model is validated using real vessel encounters extracted from historical Automatic Identification System (AIS) data.
Energy Weighted Learning Progress Guided Interleaved Multi-Task Learning
Humans can continuously acquire new skills and knowledge by exploiting existing ones for improved learning, without forgetting them. Similarly, 'continual learning' in machine learning aims to learn new information while preserving the previously acquired knowledge. Existing research often overlooks the nature of human learning, where tasks are interleaved due to human choice or environmental constraints. So, almost never do humans master one task before switching to the next. To investigate to what extent human-like learning can benefit the learner, we propose a method that interleaves tasks based on their 'learning progress' and energy consumption. From a machine learning perspective, our approach can be seen as a multi-task learning system that balances learning performance with energy constraints while mimicking ecologically realistic human task learning. To assess the validity of our approach, we consider a robot learning setting in simulation, where the robot learns the effect of its actions in different contexts. The conducted experiments show that our proposed method achieves better performance than sequential task learning and reduces energy consumption for learning the tasks.
comment: 15 pages, 8 figures
Auditory Localization and Assessment of Consequential Robot Sounds: A Multi-Method Study in Virtual Reality
Mobile robots increasingly operate alongside humans but are often out of sight, so that humans need to rely on the sounds of the robots to recognize their presence. For successful human-robot interaction (HRI), it is therefore crucial to understand how humans perceive robots by their consequential sounds, i.e., operating noise. Prior research suggests that the sound of a quadruped Go1 is more detectable than that of a wheeled Turtlebot. This study builds on this and examines the human ability to localize consequential sounds of three robots (quadruped Go1, wheeled Turtlebot 2i, wheeled HSR) in Virtual Reality. In a within-subjects design, we assessed participants' localization performance for the robots with and without an acoustic vehicle alerting system (AVAS) for two velocities (0.3, 0.8 m/s) and two trajectories (head-on, radial). In each trial, participants were presented with the sound of a moving robot for 3~s and were tasked to point at its final position (localization task). Localization errors were measured as the absolute angular difference between the participants' estimated and the actual robot position. Results showed that the robot type significantly influenced the localization accuracy and precision, with the sound of the wheeled HSR (especially without AVAS) performing worst under all experimental conditions. Surprisingly, participants rated the HSR sound as more positive, less annoying, and more trustworthy than the Turtlebot and Go1 sound. This reveals a tension between subjective evaluation and objective auditory localization performance. Our findings highlight consequential robot sounds as a critical factor for designing intuitive and effective HRI, with implications for human-centered robot design and social navigation.
Immersive Explainability: Visualizing Robot Navigation Decisions through XAI Semantic Scene Projections in Virtual Reality
End-to-end robot policies achieve high performance through neural networks trained via reinforcement learning (RL). Yet, their black box nature and abstract reasoning pose challenges for human-robot interaction (HRI), because humans may experience difficulty in understanding and predicting the robot's navigation decisions, hindering trust development. We present a virtual reality (VR) interface that visualizes explainable AI (XAI) outputs and the robot's lidar perception to support intuitive interpretation of RL-based navigation behavior. By visually highlighting objects based on their attribution scores, the interface grounds abstract policy explanations in the scene context. This XAI visualization bridges the gap between obscure numerical XAI attribution scores and a human-centric semantic level of explanation. A within-subjects study with 24 participants evaluated the effectiveness of our interface for four visualization conditions combining XAI and lidar. Participants ranked scene objects across navigation scenarios based on their importance to the robot, followed by a questionnaire assessing subjective understanding and predictability. Results show that semantic projection of attributions significantly enhances non-expert users' objective understanding and subjective awareness of robot behavior. In addition, lidar visualization further improves perceived predictability, underscoring the value of integrating XAI and sensor for transparent, trustworthy HRI.
In-Context Learning for Zero-Shot Speed Estimation of BLDC motors
Accurate speed estimation in sensorless brushless DC motors is essential for high-performance control and monitoring, yet conventional model-based approaches struggle with system nonlinearities and parameter uncertainties. In this work, we propose an in-context learning framework leveraging transformer-based models to perform zero-shot speed estimation using only electrical measurements. By training the filter offline on simulated motor trajectories, we enable real-time inference on unseen real motors without retraining, eliminating the need for explicit system identification while retaining adaptability to varying operating conditions. Experimental results demonstrate that our method outperforms traditional Kalman filter-based estimators, especially in low-speed regimes that are crucial during motor startup.
Optimal Control of Walkers with Parallel Actuation
Legged robots with closed-loop kinematic chains are increasingly prevalent due to their increased mobility and efficiency. Yet, most motion generation methods rely on serial-chain approximations, sidestepping their specific constraints and dynamics. This leads to suboptimal motions and limits the adaptability of these methods to diverse kinematic structures. We propose a comprehensive motion generation method that explicitly incorporates closed-loop kinematics and their associated constraints in an optimal control problem, integrating kinematic closure conditions and their analytical derivatives. This allows the solver to leverage the non-linear transmission effects inherent to closed-chain mechanisms, reducing peak actuator efforts and expanding their effective operating range. Unlike previous methods, our framework does not require serial approximations, enabling more accurate and efficient motion strategies. We also are able to generate the motion of more complex robots for which an approximate serial chain does not exist. We validate our approach through simulations and experiments, demonstrating superior performance in complex tasks such as rapid locomotion and stair negotiation. This method enhances the capabilities of current closed-loop robots and broadens the design space for future kinematic architectures.
Learning Bipedal Locomotion on Gear-Driven Humanoid Robot Using Foot-Mounted IMUs
Sim-to-real reinforcement learning (RL) for humanoid robots with high-gear ratio actuators remains challenging due to complex actuator dynamics and the absence of torque sensors. To address this, we propose a novel RL framework leveraging foot-mounted inertial measurement units (IMUs). Instead of pursuing detailed actuator modeling and system identification, we utilize foot-mounted IMU measurements to enhance rapid stabilization capabilities over challenging terrains. Additionally, we propose symmetric data augmentation dedicated to the proposed observation space and random network distillation to enhance bipedal locomotion learning over rough terrain. We validate our approach through hardware experiments on a miniature-sized humanoid EVAL-03 over a variety of environments. The experimental results demonstrate that our method improves rapid stabilization capabilities over non-rigid surfaces and sudden environmental transitions.
comment: 8 pages, 9 figures
Contextualized Autonomous Drone Navigation using LLMs Deployed in Edge-Cloud Computing
Autonomous navigation is usually trained offline in diverse scenarios and fine-tuned online subject to real-world experiences. However, the real world is dynamic and changeable, and many environmental encounters/effects are not accounted for in real-time due to difficulties in describing them within offline training data or hard to describe even in online scenarios. However, we know that the human operator can describe these dynamic environmental encounters through natural language, adding semantic context. The research is to deploy Large Language Models (LLMs) to perform real-time contextual code adjustment to autonomous navigation. The challenge not evaluated in literature is what LLMs are appropriate and where should these computationally heavy algorithms sit in the computation-communication edge-cloud computing architectures. In this paper, we evaluate how different LLMs can adjust both the navigation map parameters dynamically (e.g., contour map shaping) and also derive navigation task instruction sets. We then evaluate which LLMs are most suitable and where they should sit in future edge-cloud of 6G telecommunication architectures.
MRHaD: Mixed Reality-based Hand-Drawn Map Editing Interface for Mobile Robot Navigation
Mobile robot navigation systems are increasingly relied upon in dynamic and complex environments, yet they often struggle with map inaccuracies and the resulting inefficient path planning. This paper presents MRHaD, a Mixed Reality-based Hand-drawn Map Editing Interface that enables intuitive, real-time map modifications through natural hand gestures. By integrating the MR head-mounted display with the robotic navigation system, operators can directly create hand-drawn restricted zones (HRZ), thereby bridging the gap between 2D map representations and the real-world environment. Comparative experiments against conventional 2D editing methods demonstrate that MRHaD significantly improves editing efficiency, map accuracy, and overall usability, contributing to safer and more efficient mobile robot operations. The proposed approach provides a robust technical foundation for advancing human-robot collaboration and establishing innovative interaction models that enhance the hybrid future of robotics and human society. For additional material, please check: https://mertcookimg.github.io/mrhad/
Robust LiDAR-Camera Calibration with 2D Gaussian Splatting
LiDAR-camera systems have become increasingly popular in robotics recently. A critical and initial step in integrating the LiDAR and camera data is the calibration of the LiDAR-camera system. Most existing calibration methods rely on auxiliary target objects, which often involve complex manual operations, whereas targetless methods have yet to achieve practical effectiveness. Recognizing that 2D Gaussian Splatting (2DGS) can reconstruct geometric information from camera image sequences, we propose a calibration method that estimates LiDAR-camera extrinsic parameters using geometric constraints. The proposed method begins by reconstructing colorless 2DGS using LiDAR point clouds. Subsequently, we update the colors of the Gaussian splats by minimizing the photometric loss. The extrinsic parameters are optimized during this process. Additionally, we address the limitations of the photometric loss by incorporating the reprojection and triangulation losses, thereby enhancing the calibration robustness and accuracy.
comment: Accepted in IEEE Robotics and Automation Letters. Code available at: https://github.com/ShuyiZhou495/RobustCalibration
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Egocentric Conformal Prediction for Safe and Efficient Navigation in Dynamic Cluttered Environments
Conformal prediction (CP) has emerged as a powerful tool in robotics and control, thanks to its ability to calibrate complex, data-driven models with formal guarantees. However, in robot navigation tasks, existing CP-based methods often decouple prediction from control, evaluating models without considering whether prediction errors actually compromise safety. Consequently, ego-vehicles may become overly conservative or even immobilized when all potential trajectories appear infeasible. To address this issue, we propose a novel CP-based navigation framework that responds exclusively to safety-critical prediction errors. Our approach introduces egocentric score functions that quantify how much closer obstacles are to a candidate vehicle position than anticipated. These score functions are then integrated into a model predictive control scheme, wherein each candidate state is individually evaluated for safety. Combined with an adaptive CP mechanism, our framework dynamically adjusts to changes in obstacle motion without resorting to unnecessary conservatism. Theoretical analyses indicate that our method outperforms existing CP-based approaches in terms of cost-efficiency while maintaining the desired safety levels, as further validated through experiments on real-world datasets featuring densely populated pedestrian environments.
Indoor Drone Localization and Tracking Based on Acoustic Inertial Measurement
We present Acoustic Inertial Measurement (AIM), a one-of-a-kind technique for indoor drone localization and tracking. Indoor drone localization and tracking are arguably a crucial, yet unsolved challenge: in GPS-denied environments, existing approaches enjoy limited applicability, especially in Non-Line of Sight (NLoS), require extensive environment instrumentation, or demand considerable hardware/software changes on drones. In contrast, AIM exploits the acoustic characteristics of the drones to estimate their location and derive their motion, even in NLoS settings. We tame location estimation errors using a dedicated Kalman filter and the Interquartile Range rule (IQR) and demonstrate that AIM can support indoor spaces with arbitrary ranges and layouts. We implement AIM using an off-the-shelf microphone array and evaluate its performance with a commercial drone under varied settings. Results indicate that the mean localization error of AIM is 46% lower than that of commercial UWB-based systems in a complex 10m\times10m indoor scenario, where state-of-the-art infrared systems would not even work because of NLoS situations. When distributed microphone arrays are deployed, the mean error can be reduced to less than 0.5m in a 20m range, and even support spaces with arbitrary ranges and layouts.
Think Small, Act Big: Primitive Prompt Learning for Lifelong Robot Manipulation CVPR 2025
Building a lifelong robot that can effectively leverage prior knowledge for continuous skill acquisition remains significantly challenging. Despite the success of experience replay and parameter-efficient methods in alleviating catastrophic forgetting problem, naively applying these methods causes a failure to leverage the shared primitives between skills. To tackle these issues, we propose Primitive Prompt Learning (PPL), to achieve lifelong robot manipulation via reusable and extensible primitives. Within our two stage learning scheme, we first learn a set of primitive prompts to represent shared primitives through multi-skills pre-training stage, where motion-aware prompts are learned to capture semantic and motion shared primitives across different skills. Secondly, when acquiring new skills in lifelong span, new prompts are appended and optimized with frozen pretrained prompts, boosting the learning via knowledge transfer from old skills to new ones. For evaluation, we construct a large-scale skill dataset and conduct extensive experiments in both simulation and real-world tasks, demonstrating PPL's superior performance over state-of-the-art methods.
comment: Accepted to CVPR 2025
Interpreting and Improving Optimal Control Problems with Directional Corrections
Many robotics tasks, such as path planning or trajectory optimization, are formulated as optimal control problems (OCPs). The key to obtaining high performance lies in the design of the OCP's objective function. In practice, the objective function consists of a set of individual components that must be carefully modeled and traded off such that the OCP has the desired solution. It is often challenging to balance multiple components to achieve the desired solution and to understand, when the solution is undesired, the impact of individual cost components. In this paper, we present a framework addressing these challenges based on the concept of directional corrections. Specifically, given the solution to an OCP that is deemed undesirable, and access to an expert providing the direction of change that would increase the desirability of the solution, our method analyzes the individual cost components for their "consistency" with the provided directional correction. This information can be used to improve the OCP formulation, e.g., by increasing the weight of consistent cost components, or reducing the weight of - or even redesigning - inconsistent cost components. We also show that our framework can automatically tune parameters of the OCP to achieve consistency with a set of corrections.
comment: Paper accepted for publication at IEEE Robotics and Automation Letters (RA-L)
Control Barrier Functions via Minkowski Operations for Safe Navigation among Polytopic Sets
Safely navigating around obstacles while respecting the dynamics, control, and geometry of the underlying system is a key challenge in robotics. Control Barrier Functions (CBFs) generate safe control policies by considering system dynamics and geometry when calculating safe forward-invariant sets. Existing CBF-based methods often rely on conservative shape approximations, like spheres or ellipsoids, which have explicit and differentiable distance functions. In this paper, we propose an optimization-defined CBF that directly considers the exact Signed Distance Function (SDF) between a polytopic robot and polytopic obstacles. Inspired by the Gilbert-Johnson-Keerthi (GJK) algorithm, we formulate both (i) minimum distance and (ii) penetration depth between polytopic sets as convex optimization problems in the space of Minkowski difference operations (the MD-space). Convenient geometric properties of the MD-space enable the derivatives of implicit SDF between two polytopes to be computed via differentiable optimization. We demonstrate the proposed framework in three scenarios including pure translation, initialization inside an unsafe set, and multi-obstacle avoidance. These three scenarios highlight the generation of a non-conservative maneuver, a recovery after starting in collision, and the consideration of multiple obstacles via pairwise CBF constraint, respectively.
comment: 8 pages, 3 figures
Safe Navigation in Dynamic Environments Using Data-Driven Koopman Operators and Conformal Prediction
We propose a novel framework for safe navigation in dynamic environments by integrating Koopman operator theory with conformal prediction. Our approach leverages data-driven Koopman approximation to learn nonlinear dynamics and employs conformal prediction to quantify uncertainty, providing statistical guarantees on approximation errors. This uncertainty is effectively incorporated into a Model Predictive Controller (MPC) formulation through constraint tightening, ensuring robust safety guarantees. We implement a layered control architecture with a reference generator providing waypoints for safe navigation. The effectiveness of our methods is validated in simulation.
Aligning Diffusion Model with Problem Constraints for Trajectory Optimization
Diffusion models have recently emerged as effective generative frameworks for trajectory optimization, capable of producing high-quality and diverse solutions. However, training these models in a purely data-driven manner without explicit incorporation of constraint information often leads to violations of critical constraints, such as goal-reaching, collision avoidance, and adherence to system dynamics. To address this limitation, we propose a novel approach that aligns diffusion models explicitly with problem-specific constraints, drawing insights from the Dynamic Data-driven Application Systems (DDDAS) framework. Our approach introduces a hybrid loss function that explicitly measures and penalizes constraint violations during training. Furthermore, by statistically analyzing how constraint violations evolve throughout the diffusion steps, we develop a re-weighting strategy that aligns predicted violations to ground truth statistics at each diffusion step. Evaluated on a tabletop manipulation and a two-car reach-avoid problem, our constraint-aligned diffusion model significantly reduces constraint violations compared to traditional diffusion models, while maintaining the quality of trajectory solutions. This approach is well-suited for integration into the DDDAS framework for efficient online trajectory adaptation as new environmental data becomes available.
An Iterative Algorithm to Symbolically Derive Generalized n-Trailer Vehicle Kinematics
Articulated multi-axle vehicles are interesting from a control-theoretic perspective due to their peculiar kinematic offtracking characteristics, instability modes, and singularities. Holonomic and nonholonomic constraints affecting the kinematic behavior is investigated in order to develop control-oriented kinematic models representative of these peculiarities. Then, the structure of these constraints is exploited to develop an iterative algorithm to symbolically derive yaw-plane kinematic models of generalized $n$-trailer articulated vehicles with an arbitrary number of multi-axle vehicle units. A formal proof is provided for the maximum number of kinematic controls admissible to a large-scale generalized articulated vehicle system, which leads to a generalized Ackermann steering law for $n$-trailer systems. Moreover, kinematic data collected from a test vehicle is used to validate the kinematic models and, to understand the rearward yaw rate amplification behavior of the vehicle pulling multiple simulated trailers.
System Identification and Adaptive Input Estimation on the Jaiabot Micro Autonomous Underwater Vehicle
This paper reports an attempt to model the system dynamics and estimate both the unknown internal control input and the state of a recently developed marine autonomous vehicle, the Jaiabot. Although the Jaiabot has shown promise in many applications, process and sensor noise necessitates state estimation and noise filtering. In this work, we present the first surge and heading linear dynamical model for Jaiabots derived from real data collected during field testing. An adaptive input estimation algorithm is implemented to accurately estimate the control input and hence the state. For validation, this approach is compared to the classical Kalman filter, highlighting its advantages in handling unknown control inputs.
comment: 9 pages, 8 figures
Semantic SLAM with Rolling-Shutter Cameras and Low-Precision INS in Outdoor Environments
Accurate localization and mapping in outdoor environments remains challenging when using consumer-grade hardware, particularly with rolling-shutter cameras and low-precision inertial navigation systems (INS). We present a novel semantic SLAM approach that leverages road elements such as lane boundaries, traffic signs, and road markings to enhance localization accuracy. Our system integrates real-time semantic feature detection with a graph optimization framework, effectively handling both rolling-shutter effects and INS drift. Using a practical hardware setup which consists of a rolling-shutter camera (3840*2160@30fps), IMU (100Hz), and wheel encoder (50Hz), we demonstrate significant improvements over existing methods. Compared to state-of-the-art approaches, our method achieves higher recall (up to 5.35\%) and precision (up to 2.79\%) in semantic element detection, while maintaining mean relative error (MRE) within 10cm and mean absolute error (MAE) around 1m. Extensive experiments in diverse urban environments demonstrate the robust performance of our system under varying lighting conditions and complex traffic scenarios, making it particularly suitable for autonomous driving applications. The proposed approach provides a practical solution for high-precision localization using affordable hardware, bridging the gap between consumer-grade sensors and production-level performance requirements.
comment: Accepted by IEEE IV'25
Real-Time Navigation for Autonomous Aerial Vehicles Using Video
Most applications in autonomous navigation using mounted cameras rely on the construction and processing of geometric 3D point clouds, which is an expensive process. However, there is another simpler way to make a space navigable quickly: to use semantic information (e.g., traffic signs) to guide the agent. However, detecting and acting on semantic information involves Computer Vision~(CV) algorithms such as object detection, which themselves are demanding for agents such as aerial drones with limited onboard resources. To solve this problem, we introduce a novel Markov Decision Process~(MDP) framework to reduce the workload of these CV approaches. We apply our proposed framework to both feature-based and neural-network-based object-detection tasks, using open-loop and closed-loop simulations as well as hardware-in-the-loop emulations. These holistic tests show significant benefits in energy consumption and speed with only a limited loss in accuracy compared to models based on static features and neural networks.
comment: Submitted to Journal of Real-Time Image Processing
VET: A Visual-Electronic Tactile System for Immersive Human-Machine Interaction
In the pursuit of deeper immersion in human-machine interaction, achieving higher-dimensional tactile input and output on a single interface has become a key research focus. This study introduces the Visual-Electronic Tactile (VET) System, which builds upon vision-based tactile sensors (VBTS) and integrates electrical stimulation feedback to enable bidirectional tactile communication. We propose and implement a system framework that seamlessly integrates an electrical stimulation film with VBTS using a screen-printing preparation process, eliminating interference from traditional methods. While VBTS captures multi-dimensional input through visuotactile signals, electrical stimulation feedback directly stimulates neural pathways, preventing interference with visuotactile information. The potential of the VET system is demonstrated through experiments on finger electrical stimulation sensitivity zones, as well as applications in interactive gaming and robotic arm teleoperation. This system paves the way for new advancements in bidirectional tactile interaction and its broader applications.
Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning CVPR 2025
Learning from multiple domains is a primary factor that influences the generalization of a single unified robot system. In this paper, we aim to learn the trajectory prediction model by using broad out-of-domain data to improve its performance and generalization ability. Trajectory model is designed to predict any-point trajectories in the current frame given an instruction and can provide detailed control guidance for robotic policy learning. To handle the diverse out-of-domain data distribution, we propose a sparsely-gated MoE (\textbf{Top-1} gating strategy) architecture for trajectory model, coined as \textbf{Tra-MoE}. The sparse activation design enables good balance between parameter cooperation and specialization, effectively benefiting from large-scale out-of-domain data while maintaining constant FLOPs per token. In addition, we further introduce an adaptive policy conditioning technique by learning 2D mask representations for predicted trajectories, which is explicitly aligned with image observations to guide action prediction more flexibly. We perform extensive experiments on both simulation and real-world scenarios to verify the effectiveness of Tra-MoE and adaptive policy conditioning technique. We also conduct a comprehensive empirical study to train Tra-MoE, demonstrating that our Tra-MoE consistently exhibits superior performance compared to the dense baseline model, even when the latter is scaled to match Tra-MoE's parameter count.
comment: Accepted to CVPR 2025. Code Page: https://github.com/MCG-NJU/Tra-MoE
ActiveGAMER: Active GAussian Mapping through Efficient Rendering CVPR2025
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
comment: Accepted to CVPR2025
TelePreview: A User-Friendly Teleoperation System with Virtual Arm Assistance for Enhanced Effectiveness
Teleoperation provides an effective way to collect robot data, which is crucial for learning from demonstrations. In this field, teleoperation faces several key challenges: user-friendliness for new users, safety assurance, and transferability across different platforms. While collecting real robot dexterous manipulation data by teleoperation to train robots has shown impressive results on diverse tasks, due to the morphological differences between human and robot hands, it is not only hard for new users to understand the action mapping but also raises potential safety concerns during operation. To address these limitations, we introduce TelePreview. This teleoperation system offers real-time visual feedback on robot actions based on human user inputs, with a total hardware cost of less than $1,000. TelePreview allows the user to see a virtual robot that represents the outcome of the user's next movement. By enabling flexible switching between command visualization and actual execution, this system helps new users learn how to demonstrate quickly and safely. We demonstrate that it outperforms other teleoperation systems across five tasks, emphasize its ease of use, and highlight its straightforward deployment across diverse robotic platforms. We release our code and a deployment document on our website https://nus-lins-lab.github.io/telepreview-web/.
comment: In submission
One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
A Digital Twin for Telesurgery under Intermittent Communication
Telesurgery is an effective way to deliver service from expert surgeons to areas without immediate access to specialized resources. However, many of these areas, such as rural districts or battlefields, might be subject to different problems in communication, especially latency and intermittent periods of communication outage. This challenge motivates the use of a digital twin for the surgical system, where a simulation would mirror the robot hardware and surgical environment in the real world. The surgeon would then be able to interact with the digital twin during communication outage, followed by a recovery strategy on the real robot upon reestablishing communication. This paper builds the digital twin for the da Vinci surgical robot, with a buffering and replay strategy that reduces the mean task completion time by 23% when compared to the baseline, for a peg transfer task subject to intermittent communication outage. The relevant code can be found here: https://github.com/LCSR-CIIS/dvrk_digital_twin_teleoperation.
comment: 7 pages, 5 figures. To be published in 2025 International Symposium on Medical Robotics (ISMR)
Hierarchical Procedural Framework for Low-latency Robot-Assisted Hand-Object Interaction
Advances in robotics have been driving the development of human-robot interaction (HRI) technologies. However, accurately perceiving human actions and achieving adaptive control remains a challenge in facilitating seamless coordination between human and robotic movements. In this paper, we propose a hierarchical procedural framework to enable dynamic robot-assisted hand-object interaction. An open-loop hierarchy leverages the computer vision (CV)-based 3D reconstruction of the human hand, based on which motion primitives have been designed to translate hand motions into robotic actions. The low-level coordination hierarchy fine-tunes the robot's action by using the continuously updated 3D hand models. Experimental validation demonstrates the effectiveness of the hierarchical control architecture. The adaptive coordination between human and robot behavior has achieved a delay of $\leq 0.3$ seconds in the tele-interaction scenario. A case study of ring-wearing tasks indicates the potential application of this work in assistive technologies such as healthcare and manufacturing.
comment: 6 pages, 5 figures
DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models ICRA 2025
Recent advancements in Large Language Models (LLMs) have sparked a revolution across many research fields. In robotics, the integration of common-sense knowledge from LLMs into task and motion planning has drastically advanced the field by unlocking unprecedented levels of context awareness. Despite their vast collection of knowledge, large language models may generate infeasible plans due to hallucinations or missing domain information. To address these challenges and improve plan feasibility and computational efficiency, we introduce DELTA, a novel LLM-informed task planning approach. By using scene graphs as environment representations within LLMs, DELTA achieves rapid generation of precise planning problem descriptions. To enhance planning performance, DELTA decomposes long-term task goals with LLMs into an autoregressive sequence of sub-goals, enabling automated task planners to efficiently solve complex problems. In our extensive evaluation, we show that DELTA enables an efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art. Project webpage: https://delta-llm.github.io/
comment: Accepted at ICRA 2025
RedMotion: Motion Prediction via Redundancy Reduction
We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion
comment: TMLR published version
A formal implementation of Behavior Trees to act in robotics
Behavior Trees (BT) are becoming quite popular as an Acting component of autonomous robotic systems. We propose to define a formal semantics to BT by translating them to a formal language which enables us to perform verification of programs written with BT, as well as runtime verification while these BT execute. This allows us to formally verify BT correctness without requiring BT programmers to master formal languages and without compromising BT most valuable features: modularity, flexibility and reusability. We present the formal framework we use: Fiacre, its language and the produced TTS model; Tina, its model checking tools and Hippo, its runtime verification engine. We then show how the translation from BT to Fiacre is automatically done, the type of formal LTL and CTL properties we can check offline and how to execute the formal model online in place of a regular BT engine. We illustrate our approach on two robotics applications, and show how BT can be extended with state variables, eval nodes, node evaluation results and benefit of other features available in the Fiacre formal framework (e.g., time).
AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a Velocity Obstacle's (VO) formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction
Knowledge graphs are often used to represent structured information in a flexible and efficient manner, but their use in situated dialogue remains under-explored. This paper presents a novel conversational model for human--robot interaction that rests upon a graph-based representation of the dialogue state. The knowledge graph representing the dialogue state is continuously updated with new observations from the robot sensors, including linguistic, situated and multimodal inputs, and is further enriched by other modules, in particular for spatial understanding. The neural conversational model employed to respond to user utterances relies on a simple but effective graph-to-text mechanism that traverses the dialogue state graph and converts the traversals into a natural language form. This conversion of the state graph into text is performed using a set of parameterized functions, and the values for those parameters are optimized based on a small set of Wizard-of-Oz interactions. After this conversion, the text representation of the dialogue state graph is included as part of the prompt of a large language model used to decode the agent response. The proposed approach is empirically evaluated through a user study with a humanoid robot that acts as conversation partner to evaluate the impact of the graph-to-text mechanism on the response generation. After moving a robot along a tour of an indoor environment, participants interacted with the robot using spoken dialogue and evaluated how well the robot was able to answer questions about what the robot observed during the tour. User scores show a statistically significant improvement in the perceived factuality of the robot responses when the graph-to-text approach is employed, compared to a baseline using inputs structured as semantic triples.
comment: Submitted to Dialogue & Discourse 2023
Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
Temporal and Semantic Evaluation Metrics for Foundation Models in Post-Hoc Analysis of Robotic Sub-tasks IROS 2024
Recent works in Task and Motion Planning (TAMP) show that training control policies on language-supervised robot trajectories with quality labeled data markedly improves agent task success rates. However, the scarcity of such data presents a significant hurdle to extending these methods to general use cases. To address this concern, we present an automated framework to decompose trajectory data into temporally bounded and natural language-based descriptive sub-tasks by leveraging recent prompting strategies for Foundation Models (FMs) including both Large Language Models (LLMs) and Vision Language Models (VLMs). Our framework provides both time-based and language-based descriptions for lower-level sub-tasks that comprise full trajectories. To rigorously evaluate the quality of our automatic labeling framework, we contribute an algorithm SIMILARITY to produce two novel metrics, temporal similarity and semantic similarity. The metrics measure the temporal alignment and semantic fidelity of language descriptions between two sub-task decompositions, namely an FM sub-task decomposition prediction and a ground-truth sub-task decomposition. We present scores for temporal similarity and semantic similarity above 90%, compared to 30% of a randomized baseline, for multiple robotic environments, demonstrating the effectiveness of our proposed framework. Our results enable building diverse, large-scale, language-supervised datasets for improved robotic TAMP.
comment: 8 pages, 3 figures. IROS 2024 Submission
Scalable Real2Sim: Physics-Aware Asset Generation Via Robotic Pick-and-Place Setups
Simulating object dynamics from real-world perception shows great promise for digital twins and robotic manipulation but often demands labor-intensive measurements and expertise. We present a fully automated Real2Sim pipeline that generates simulation-ready assets for real-world objects through robotic interaction. Using only a robot's joint torque sensors and an external camera, the pipeline identifies visual geometry, collision geometry, and physical properties such as inertial parameters. Our approach introduces a general method for extracting high-quality, object-centric meshes from photometric reconstruction techniques (e.g., NeRF, Gaussian Splatting) by employing alpha-transparent training while explicitly distinguishing foreground occlusions from background subtraction. We validate the full pipeline through extensive experiments, demonstrating its effectiveness across diverse objects. By eliminating the need for manual intervention or environment modifications, our pipeline can be integrated directly into existing pick-and-place setups, enabling scalable and efficient dataset creation. Project page (with code and data): https://scalable-real2sim.github.io/.
comment: Website: https://scalable-real2sim.github.io/
RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.
Whole-Body Dynamic Throwing with Legged Manipulators
Throwing with a legged robot involves precise coordination of object manipulation and locomotion - crucial for advanced real-world interactions. Most research focuses on either manipulation or locomotion, with minimal exploration of tasks requiring both. This work investigates leveraging all available motors (full-body) over arm-only throwing in legged manipulators. We frame the task as a deep reinforcement learning (RL) objective, optimising throwing accuracy towards any user-commanded target destination and the robot's stability. Evaluations on a humanoid and an armed quadruped in simulation show that full-body throwing improves range, accuracy, and stability by exploiting body momentum, counter-balancing, and full-body dynamics. We introduce an optimised adaptive curriculum to balance throwing accuracy and stability, along with a tailored RL environment setup for efficient learning in sparse-reward conditions. Unlike prior work, our approach generalises to targets in 3D space. We transfer our learned controllers from simulation to a real humanoid platform.
VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present VizFlyt, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on VizFlyt for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
Emotion estimation from video footage with LSTM
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. https://github.com/Samir-atra/Emotion_estimation_from_video_footage_with_LSTM_ML_algorithm
comment: 12 pages, 5 figures, 34 references, 4 tables, 3 equations
Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language Models
Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on perception tasks like detection or tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates a Multi-Modal LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Multi-Modal Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer various types of driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. The code and data will be released to the public to facilitate open-source research in this field. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .
comment: Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/
Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles
This article introduces XPLORER, a passive deformable UAV with a spring-augmented chassis and proprioceptive state awareness, designed to endure collisions and maintain smooth contact. We develop a fast-converging external force estimation algorithm for XPLORER that leverages onboard sensors and proprioceptive data for contact and collision detection. Using this force information, we propose four motion primitives, including three novel tactile-based primitives: tactile-traversal, tactile-turning, and ricocheting-to aid XPLORER in navigating unknown environments. These primitives are synthesized autonomously in real-time to enable efficient exploration and navigation by leveraging collisions and contacts. Experimental results demonstrate the effectiveness of our approach, highlighting the potential of passive deformable UAVs for contact-rich real-world tasks such as non-destructive inspection, surveillance and mapping, and pursuit/evasion.
Vision Transformers for End-to-End Vision-Based Quadrotor Obstacle Avoidance
We demonstrate the capabilities of an attention-based end-to-end approach for high-speed vision-based quadrotor obstacle avoidance in dense, cluttered environments, with comparison to various state-of-the-art learning architectures. Quadrotor unmanned aerial vehicles (UAVs) have tremendous maneuverability when flown fast; however, as flight speed increases, traditional model-based approaches to navigation via independent perception, mapping, planning, and control modules breaks down due to increased sensor noise, compounding errors, and increased processing latency. Thus, learning-based, end-to-end vision-to-control networks have shown to have great potential for online control of these fast robots through cluttered environments. We train and compare convolutional, U-Net, and recurrent architectures against vision transformer (ViT) models for depth image-to-control in high-fidelity simulation, observing that ViT models are more effective than others as quadrotor speeds increase and in generalization to unseen environments, while the addition of recurrence further improves performance while reducing quadrotor energy cost across all tested flight speeds. We assess performance at speeds of up to 7m/s in simulation and hardware. To the best of our knowledge, this is the first work to utilize vision transformers for end-to-end vision-based quadrotor control.
comment: 11 pages, 18 figures, 3 tables (with supplementary)
UniT: Data Efficient Tactile Representation with Generalization to Unseen Objects
UniT is an approach to tactile representation learning, using VQGAN to learn a compact latent space and serve as the tactile representation. It uses tactile images obtained from a single simple object to train the representation with generalizability. This tactile representation can be zero-shot transferred to various downstream tasks, including perception tasks and manipulation policy learning. Our benchmarkings on in-hand 3D pose and 6D pose estimation tasks and a tactile classification task show that UniT outperforms existing visual and tactile representation learning methods. Additionally, UniT's effectiveness in policy learning is demonstrated across three real-world tasks involving diverse manipulated objects and complex robot-object-environment interactions. Through extensive experimentation, UniT is shown to be a simple-to-train, plug-and-play, yet widely effective method for tactile representation learning. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/UniT and the project website https://zhengtongxu.github.io/unit-website/.
Systems and Control (CS)
R2DN: Scalable Parameterization of Contracting and Lipschitz Recurrent Deep Networks
This paper presents the Robust Recurrent Deep Network (R2DN), a scalable parameterization of robust recurrent neural networks for machine learning and data-driven control. We construct R2DNs as a feedback interconnection of a linear time-invariant system and a 1-Lipschitz deep feedforward network, and directly parameterize the weights so that our models are stable (contracting) and robust to small input perturbations (Lipschitz) by design. Our parameterization uses a structure similar to the previously-proposed recurrent equilibrium networks (RENs), but without the requirement to iteratively solve an equilibrium layer at each time-step. This speeds up model evaluation and backpropagation on GPUs, and makes it computationally feasible to scale up the network size, batch size, and input sequence length in comparison to RENs. We compare R2DNs to RENs on three representative problems in nonlinear system identification, observer design, and learning-based feedback control and find that training and inference are both up to an order of magnitude faster with similar test set performance, and that training/inference times scale more favorably with respect to model expressivity.
An Adaptive Control Approach to Treatment Selection for Substance Use Disorders
Despite the massive costs and widespread harms of substance use, most individuals with substance use disorders (SUDs) receive no treatment at all. Digital therapeutics platforms are an emerging low-cost and low-barrier means of extending treatment to those who need it. While there is a growing body of research focused on how treatment providers can identify which patients need SUD support (or when they need it), there is very little work that addresses how providers should select treatments that are most appropriate for a given patient. Because SUD treatment involves months or years of voluntary compliance from the patient, treatment adherence is a critical consideration for the treatment provider. In this paper we focus on algorithms that a treatment provider can use to match the burden-level of proposed treatments to the time-varying engagement state of the patient to promote adherence. We propose structured models for a patient's engagement over time and their treatment adherence decisions. Using these models we pose a stochastic control formulation of the treatment-provider's burden selection problem. We propose an adaptive control approach that estimates unknown patient parameters as new data are observed. We show that these estimates are consistent and propose algorithms that use these estimates to make appropriate treatment recommendations.
comment: 8 pages, 2 figures
Long-Range Rendezvous and Docking Maneuver Control of Satellite using Cross-Feedback Sliding Mode Controller
Satellite rendezvous and docking (RvD) maneuvers are essential for satellite servicing and in-orbit assembly. Traditional approaches often treat translational and rotational motions independently, simplifying control design but potentially leading to inefficiencies in maneuver time and fuel consumption. To address these challenges, a novel cross-feedback sliding mode controller has been proposed, developing an interdependent regulation system for translational and rotational motion. This method decouples the relative translational and rotational motion of chaser satellite with respect to target satellite while incorporating cross-feedback mechanisms to account for their inherent coupling. By incorporating rotational state information into translational control laws and vice versa, the approach ensures coordinated adjustments, enhancing maneuver efficiency. The chaser satellite manages both translational and rotational adjustments to rendezvous and dock with the target satellite. The stability of the cross-feedback sliding mode controller is established within the Lyapunov framework, and simulation results substantiate the effectiveness of this strategy.
How to Maximize Efficiency in Systems with Exhausted Workers
We consider the problem of assigning tasks efficiently to a set of workers that can exhaust themselves as a result of processing tasks. If a worker is exhausted, it will take a longer time to recover. To model efficiency of workers with exhaustion, we use a continuous-time Markov chain (CTMC). By taking samples from the internal states of the workers, the source assigns tasks to the workers when they are found to be in their efficient states. We consider two different settings where (i) the source can assign tasks to the workers only when they are in their most efficient state, and (ii) it can assign tasks to workers when they are also moderately efficient in spite of a potentially reduced success probability. In the former case, we find the optimal policy to be a threshold-based sampling policy where the thresholds depend on the workers' recovery and exhaustion rates. In the latter case, we solve a non-convex sum-of-ratios problem using a branch-and-bound approach which performs well compared with the globally optimal solution.
Value Iteration for Learning Concurrently Executable Robotic Control Tasks AAMAS 2025
Many modern robotic systems such as multi-robot systems and manipulators exhibit redundancy, a property owing to which they are capable of executing multiple tasks. This work proposes a novel method, based on the Reinforcement Learning (RL) paradigm, to train redundant robots to be able to execute multiple tasks concurrently. Our approach differs from typical multi-objective RL methods insofar as the learned tasks can be combined and executed in possibly time-varying prioritized stacks. We do so by first defining a notion of task independence between learned value functions. We then use our definition of task independence to propose a cost functional that encourages a policy, based on an approximated value function, to accomplish its control objective while minimally interfering with the execution of higher priority tasks. This allows us to train a set of control policies that can be executed simultaneously. We also introduce a version of fitted value iteration to learn to approximate our proposed cost functional efficiently. We demonstrate our approach on several scenarios and robotic systems.
comment: To be published in AAMAS 2025 conference: https://aamas2025.org/
Extended Hybrid Zero Dynamics for Bipedal Walking of the Knee-less Robot SLIDER
Knee-less bipedal robots like SLIDER have the advantage of ultra-lightweight legs and improved walking energy efficiency compared to traditional humanoid robots. In this paper, we firstly introduce an improved hardware design of the bipedal robot SLIDER with new line-feet and more optimized mass distribution which enables higher locomotion speeds. Secondly, we propose an extended Hybrid Zero Dynamics (eHZD) method, which can be applied to prismatic joint robots like SLIDER. The eHZD method is then used to generate a library of gaits with varying reference velocities in an offline way. Thirdly, a Guided Deep Reinforcement Learning (DRL) algorithm is proposed to use the pre-generated library to create walking control policies in real-time. This approach allows us to combine the advantages of both HZD (for generating stable gaits with a full-dynamics model) and DRL (for real-time adaptive gait generation). The experimental results show that this approach achieves 150% higher walking velocity than the previous MPC-based approach.
Incompressible Optimal Transport and Applications in Fluid Mixing
The problem of incompressible fluid mixing arises in numerous engineering applications and has been well-studied over the years, yet many open questions remain. This paper aims to address the question "what do efficient flow fields for mixing look like, and how do they behave?" We approach this question by developing a framework which is inspired by the dynamic and geometric approach to optimal mass transport. Specifically, we formulate the fluid mixing problem as an optimal control problem where the dynamics are given by the continuity equation together with an incompressibility constraint. We show that within this framework, the set of reachable fluid configurations can formally be endowed with the structure of an infinite-dimensional Riemannian manifold, with a metric which is induced by the control effort, and that flow fields which are maximally efficient at mixing correspond to geodesics in this Riemannian space.
comment: 8 pages
LQR based $ω-$stabilization of a heat equation with memory
We consider a heat equation with memory which is defined on a bounded domain in $\mathbb{R}^d$ and is driven by $m$ control inputs acting on the interior of the domain. Our objective is to numerically construct a state feedback controller for this equation such that, for each initial state, the solution of the closed-loop system decays exponentially to zero with a decay rate larger than a given rate $\omega>0$, i.e. we want to solve the $\omega$-stabilization problem for the heat equation with memory. We first show that the spectrum of the state operator $A$ associated with this equation has an accumulation point at $-\omega_0<0$. Given a $\omega\in(0,\omega_0)$, we show that the $\omega$-stabilization problem for the heat equation with memory is solvable provided certain verifiable conditions on the control operator $B$ associated with this equation hold. We then consider an appropriate LQR problem for the heat equation with memory. For each $n\in\mathbb{N}$, we construct finite-dimensional approximations $A_n$ and $B_n$ of $A$ and $B$, respectively, and then show that by solving a corresponding approximation of the LQR problem a feedback operator $K_n$ can be computed such that all the eigenvalues of $A_n + B_n K_n$ have real part less than $-\omega$. We prove that $K_n$ for $n$ sufficiently large solves the $\omega$-stabilization problem for the heat equation with memory. A crucial and nontrivial step in our proof is establishing the uniform (in $n$) stabilizability of the pair $(A_n+\omega I, B_n)$. We have validated our theoretical results numerically using two examples: an 1D example on a unit interval and a 2D example on a square domain.
MPCritic: A plug-and-play MPC architecture for reinforcement learning
The reinforcement learning (RL) and model predictive control (MPC) communities have developed vast ecosystems of theoretical approaches and computational tools for solving optimal control problems. Given their conceptual similarities but differing strengths, there has been increasing interest in synergizing RL and MPC. However, existing approaches tend to be limited for various reasons, including computational cost of MPC in an RL algorithm and software hurdles towards seamless integration of MPC and RL tools. These challenges often result in the use of "simple" MPC schemes or RL algorithms, neglecting the state-of-the-art in both areas. This paper presents MPCritic, a machine learning-friendly architecture that interfaces seamlessly with MPC tools. MPCritic utilizes the loss landscape defined by a parameterized MPC problem, focusing on "soft" optimization over batched training steps; thereby updating the MPC parameters while avoiding costly minimization and parametric sensitivities. Since the MPC structure is preserved during training, an MPC agent can be readily used for online deployment, where robust constraint satisfaction is paramount. We demonstrate the versatility of MPCritic, in terms of MPC architectures and RL algorithms that it can accommodate, on classic control benchmarks.
comment: Preprint for CDC 2025
Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
comment: Submitted to CDC 2025
A Parametric Model for Near-Optimal Online Synthesis with Robust Reach-Avoid Guarantees
Objective: To obtain explainable guarantees in the online synthesis of optimal controllers for high-integrity cyber-physical systems, we re-investigate the use of exhaustive search as an alternative to reinforcement learning. Approach: We model an application scenario as a hybrid game automaton, enabling the synthesis of robustly correct and near-optimal controllers online without prior training. For modal synthesis, we employ discretised games solved via scope-adaptive and step-pre-shielded discrete dynamic programming. Evaluation: In a simulation-based experiment, we apply our approach to an autonomous aerial vehicle scenario. Contribution: We propose a parametric system model and a parametric online synthesis.
comment: 17 pages, 9 figures
Time-optimal Convexified Reeds-Shepp Paths on a Sphere
This article addresses time-optimal path planning for a vehicle capable of moving both forward and backward on a unit sphere with a unit maximum speed, and constrained by a maximum absolute turning rate $U_{max}$. The proposed formulation can be utilized for optimal attitude control of underactuated satellites, optimal motion planning for spherical rolling robots, and optimal path planning for mobile robots on spherical surfaces or uneven terrains. By utilizing Pontryagin's Maximum Principle and analyzing phase portraits, it is shown that for $U_{max}\geq1$, the optimal path connecting a given initial configuration to a desired terminal configuration falls within a sufficient list of 23 path types, each comprising at most 6 segments. These segments belong to the set $\{C,G,T\}$, where $C$ represents a tight turn with radius $r=\frac{1}{\sqrt{1+U_{max}^2}}$, $G$ represents a great circular arc, and $T$ represents a turn-in-place motion. Closed-form expressions for the angles of each path in the sufficient list are derived. The source code for solving the time-optimal path problem and visualization is publicly available at https://github.com/sixuli97/Optimal-Spherical-Convexified-Reeds-Shepp-Paths.
Analyzing cell-to-cell heterogeneities and cell configurations in parallel-connected battery modules using physics-based modeling
In parallel-connected cells, cell-to-cell (CtC) heterogeneities can lead to current and thermal gradients that may adversely impact the battery performance and aging. Sources of CtC heterogeneity include manufacturing process tolerances, poor module configurations, and inadequate thermal management. Understanding which CtC heterogeneity sources most significantly impact battery performance is crucial, as it can provide valuable insights. In this study, we use an experimentally validated electrochemical battery model to simulate hundreds of battery configurations, each consisting of four cells in parallel. We conduct a statistical analysis to evaluate the relative importance of key cell-level parameters, interconnection resistance, cell spacing, and location on performance and aging. The analysis reveals that heterogeneities in electrode active material volume fractions primarily impact module capacity, energy, and cell current, leading to substantial thermal gradients. However, to fully capture the output behavior, interconnection resistance, state of charge gradients and the effect of the temperature on parameter values must also be considered. Additionally, module design configurations, particularly cell location, exacerbate thermal gradients, accelerating long-term module degradation. This study also offers insights into optimizing cell arrangement during module design to reduce thermal gradients and enhance overall battery performance and longevity. Simulation results with four cells indicate a reduction of 51.8% in thermal gradients, leading to a 5.2% decrease in long-term energy loss.
Physics-informed machine learning for building performance simulation-A review of a nascent field
Building performance simulation (BPS) is critical for understanding building dynamics and behavior, analyzing performance of the built environment, optimizing energy efficiency, improving demand flexibility, and enhancing building resilience. However, conducting BPS is not trivial. Traditional BPS relies on an accurate building energy model, mostly physics-based, which depends heavily on detailed building information, expert knowledge, and case-by-case model calibrations, thereby significantly limiting their scalability. With the development of sensing technology and increased data availability, there is a growing attention and interest in data-driven BPS. However, purely data-driven models often suffer from limited generalization ability and a lack of physical consistency, resulting in poor performance in real-world applications. To address these limitations, recent studies have started to incorporate physics priors into data-driven models, a methodology called physics-informed machine learning (PIML). PIML is an emerging field with the definitions, methodologies, evaluation criteria, application scenarios, and future directions that remain open. To bridge those gaps, this study systematically reviews the state-of-art PIML for BPS, offering a comprehensive definition of PIML, and comparing it to traditional BPS approaches regarding data requirements, modeling effort, performance and computation cost. We also summarize the commonly used methodologies, validation approaches, application domains, available data sources, open-source packages and testbeds. In addition, this study provides a general guideline for selecting appropriate PIML models based on BPS applications. Finally, this study identifies key challenges and outlines future research directions, providing a solid foundation and valuable insights to advance R&D of PIML in BPS.
Timely Trajectory Reconstruction in Finite Buffer Remote Tracking Systems
Remote tracking systems play a critical role in applications such as IoT, monitoring, surveillance and healthcare. In such systems, maintaining both real-time state awareness (for online decision making) and accurate reconstruction of historical trajectories (for offline post-processing) are essential. While the Age of Information (AoI) metric has been extensively studied as a measure of freshness, it does not capture the accuracy with which past trajectories can be reconstructed. In this work, we investigate reconstruction error as a complementary metric to AoI, addressing the trade-off between timely updates and historical accuracy. Specifically, we consider three policies, each prioritizing different aspects of information management: Keep-Old, Keep-Fresh, and our proposed Inter-arrival-Aware dropping policy. We compare these policies in terms of impact on both AoI and reconstruction error in a remote tracking system with a finite buffer. Through theoretical analysis and numerical simulations of queueing behavior, we demonstrate that while the Keep-Fresh policy minimizes AoI, it does not necessarily minimize reconstruction error. In contrast, our proposed Inter-arrival-Aware dropping policy dynamically adjusts packet retention decisions based on generation times, achieving a balance between AoI and reconstruction error. Our results provide key insights into the design of efficient update policies for resource-constrained IoT networks.
Boosting the transient performance of reference tracking controllers with neural networks
Reference tracking is a key objective in many control systems, including those characterized by complex nonlinear dynamics. In these settings, traditional control approaches can effectively ensure steady-state accuracy but often struggle to explicitly optimize transient performance. Neural network controllers have gained popularity due to their adaptability to nonlinearities and disturbances; however, they often lack formal closed-loop stability and performance guarantees. To address these challenges, a recently proposed neural-network control framework known as Performance Boosting (PB) has demonstrated the ability to maintain $\mathcal{L}_p$ stability properties of nonlinear systems while optimizing generic transient costs. This paper extends the PB approach to reference tracking problems. First, we characterize the complete set of nonlinear controllers that preserve desired tracking properties for nonlinear systems equipped with base reference-tracking controllers. Then, we show how to optimize transient costs while searching within subsets of tracking controllers that incorporate expressive neural network models. Furthermore, we analyze the robustness of our method to uncertainties in the underlying system dynamics. Numerical simulations on a robotic system demonstrate the advantages of our approach over the standard PB framework.
Feedback Optimization with State Constraints through Control Barrier Functions
Recently, there has been a surge of research on a class of methods called feedback optimization. These are methods to steer the state of a control system to an equilibrium that arises as the solution of an optimization problem. Despite the growing literature on the topic, the important problem of enforcing state constraints at all times remains unaddressed. In this work, we present the first feedback-optimization method that enforces state constraints. The method combines a class of dynamics called safe gradient flows with high-order control barrier functions. We provide a number of results on our proposed controller, including well-posedness guarantees, anytime constraint-satisfaction guarantees, equivalence between the closed-loop's equilibria and the optimization problem's critical points, and local asymptotic stability of optima.
Semi-Data-Driven Model Predictive Control: A Physics-Informed Data-Driven Control Approach
Data-enabled predictive control (DeePC) has emerged as a powerful technique to control complex systems without the need for extensive modeling efforts. However, relying solely on offline collected data trajectories to represent the system dynamics introduces certain drawbacks. Therefore, we present a novel semi-data-driven model predictive control (SD-MPC) framework that combines (limited) model information with DeePC to address a range of these drawbacks, including sensitivity to noisy data, lack of robustness, and a high computational burden. In this work we focus on the performance of DeePC in operating regimes not captured by the offline collected data trajectories and demonstrate how incorporating an underlying parametric model can counteract this issue. SD-MPC exhibits equivalent closed-loop performance as DeePC for deterministic linear time-invariant systems. Simulations demonstrate the general control performance of the proposed SD-MPC for both a linear time-invariant system and a nonlinear system modeled as a linear parameter-varying system. These results provide numerical evidence of the enhanced robustness of SD-MPC over classical DeePC.
comment: 8 pages, 5 figures
Reinforcement learning for robust dynamic metabolic control
Dynamic metabolic control can enhance bioprocess flexibility and expand the available optimization degrees of freedom via real-time modulation of metabolic enzyme expression. This allows target metabolic fluxes to be dynamically tuned throughout the process. However, identifying optimal dynamic control policies is challenging due to the presence of potential metabolic burden, cytotoxic effects, and the generally high-dimensional solution space, making exhaustive experimentation impractical. Here, we propose an approach based on reinforcement learning to derive optimal dynamic metabolic control policies by allowing an agent or controller to interact with a surrogate dynamic model $\textit{in silico}$. To incorporate and test robustness, we apply domain randomization, enabling the controller to generalize across system uncertainties. Our approach provides an alternative to conventional model-based control such as model predictive control, which requires differentiating the models with respect to decision variables; an often impractical task when dealing with complex stochastic, nonlinear, stiff, or piecewise-defined dynamics. In contrast, our approach only requires forward integration, making the task computationally much simpler with off-the-shelf solvers. We demonstrate our approach with a case study on the dynamic control of acetyl-CoA carboxylase in $\textit{Escherichia coli}$ for fatty acid biosynthesis. The derived dynamic metabolic control policies outperform static control, achieving up to 40 % higher titers while remaining robust under uncertainty.
Design and Validation of an Intention-Aware Probabilistic Framework for Trajectory Prediction: Integrating COLREGS, Grounding Hazards, and Planned Routes
Collision avoidance capability is an essential component in an autonomous vessel navigation system. To this end, an accurate prediction of dynamic obstacle trajectories is vital. Traditional approaches to trajectory prediction face limitations in generalizability and often fail to account for the intentions of other vessels. While recent research has considered incorporating the intentions of dynamic obstacles, these efforts are typically based on the own-ship's interpretation of the situation. The current state-of-the-art in this area is a Dynamic Bayesian Network (DBN) model, which infers target vessel intentions by considering multiple underlying causes and allowing for different interpretations of the situation by different vessels. However, since its inception, there have not been any significant structural improvements to this model. In this paper, we propose enhancing the DBN model by incorporating considerations for grounding hazards and vessel waypoint information. The proposed model is validated using real vessel encounters extracted from historical Automatic Identification System (AIS) data.
Intermodal Network of Autonomous Mobility-on-Demand and Micromobility Systems
This paper studies models for Autonomous Micromobility-on-Demand (AMoD), a paradigm in which a fleet of autonomous vehicles delivers mobility services on demand in conjunction with micromobility systems. Specifically, we introduce a network flow model to encapsulate the interaction between AMoD and micromobility under an intermodal connection scenario. The primary objective is to analyze the system's behavior, optimizing passenger travel time. Following this theoretical development, we apply these models to the transportation networks of Sioux Falls, enabling a quantifiable evaluation of the reciprocal influences between the two transportation modes. We found that increasing the number of vehicles in any of these two modes of transportation also incentivizes users to use the other. Moreover, increasing the rebalancing capacity of the micromobility system will make the AMoD system need less rebalancing.
comment: 7 pages, 5 figures, to be published in the proceedings of the 2025 33rd International Conference on Electrical Engineering (ICEE'2025) and will appear in IEEE Xplore
Stochastic Model Predictive Control of Charging Energy Hubs with Conformal Prediction
This paper presents an online energy management system for an energy hub where electric vehicles are charged combining on-site photovoltaic generation and battery energy storage with the power grid, with the objective to decide on the battery (dis)charging to minimize the costs of operation. To this end, we devise a scenario-based stochastic model predictive control (MPC) scheme that leverages probabilistic 24-hour-ahead forecasts of charging load, solar generation and day-ahead electricity prices to achieve a cost-optimal operation of the energy hub. The probabilistic forecasts leverage conformal prediction providing calibrated distribution-free confidence intervals starting from a machine learning model that generates no uncertainty quantification. We showcase our controller by running it over a 280-day evaluation in a closed-loop simulated environment to compare the observed cost of two scenario-based MPCs with two deterministic alternatives: a version with point forecast and a version with perfect forecast. Our results indicate that, compared to the perfect forecast implementation, our proposed scenario-based MPCs are 11\% more expensive, and 1\% better than their deterministic point-forecast counterpart.
In-Context Learning for Zero-Shot Speed Estimation of BLDC motors
Accurate speed estimation in sensorless brushless DC motors is essential for high-performance control and monitoring, yet conventional model-based approaches struggle with system nonlinearities and parameter uncertainties. In this work, we propose an in-context learning framework leveraging transformer-based models to perform zero-shot speed estimation using only electrical measurements. By training the filter offline on simulated motor trajectories, we enable real-time inference on unseen real motors without retraining, eliminating the need for explicit system identification while retaining adaptability to varying operating conditions. Experimental results demonstrate that our method outperforms traditional Kalman filter-based estimators, especially in low-speed regimes that are crucial during motor startup.
Adaptive Pricing for Optimal Coordination in Networked Energy Systems with Nonsmooth Cost Functions
Incentive-based coordination mechanisms for distributed energy consumption have shown promise in aligning individual user objectives with social welfare, especially under privacy constraints. Our prior work proposed a two-timescale adaptive pricing framework, where users respond to prices by minimizing their local cost, and the system operator iteratively updates the prices based on aggregate user responses. A key assumption was that the system cost need to smoothly depend on the aggregate of the user demands. In this paper, we relax this assumption by considering the more realistic model of where the cost are determined by solving a DCOPF problem with constraints. We present a generalization of the pricing update rule that leverages the generalized gradients of the system cost function, which may be nonsmooth due to the structure of DCOPF. We prove that the resulting dynamic system converges to a unique equilibrium, which solves the social welfare optimization problem. Our theoretical results provide guarantees on convergence and stability using tools from nonsmooth analysis and Lyapunov theory. Numerical simulations on networked energy systems illustrate the effectiveness and robustness of the proposed scheme.
Probabilistically safe and efficient model-based Reinforcement Learning
This paper proposes tackling safety-critical stochastic Reinforcement Learning (RL) tasks with a samplebased, model-based approach. At the core of the method lies a Model Predictive Control (MPC) scheme that acts as function approximation, providing a model-based predictive control policy. To ensure safety, a probabilistic Control Barrier Function (CBF) is integrated into the MPC controller. A sample-based approach with guarantees is employed to approximate the effects of stochasticies in the optimal control formulation and to guarantee the probabilistic CBF condition. A learnable terminal cost formulation is included in the MPC objective to counterbalance the additional computational burden due to sampling. An RL algorithm is deployed to learn both the terminal cost and the CBF constraint. Results from our numerical experiment on a constrained LTI problem corroborate the effectiveness of the proposed methodology in reducing computation time while preserving control performance and safety.
comment: 7 pages, 3 figures, submitted to 2025 CDC
New Insights into the Decidability of Opacity in Timed Automata
This paper investigates the decidability of opacity in timed automata (TA), a property that has been proven to be undecidable in general. First, we address a theoretical gap in recent work by J. An et al. (FM 2024) by providing necessary and sufficient conditions for the decidability of location-based opacity in TA. Based on these conditions, we identify a new decidable subclass of TA, called timed automata with integer resets (IRTA), where clock resets are restricted to occurring at integer time points. We also present a verification algorithm for opacity in IRTA. On the other hand, we consider achieving decidable timed opacity by weakening the capabilities of intruders. Specifically, we show that opacity in general TA becomes decidable under the assumption that intruders can only observe time in discrete units. These results establish theoretical foundations for modeling timed systems and intruders in security analysis, enabling an effective balance between expressiveness and decidability.
Contextualized Autonomous Drone Navigation using LLMs Deployed in Edge-Cloud Computing
Autonomous navigation is usually trained offline in diverse scenarios and fine-tuned online subject to real-world experiences. However, the real world is dynamic and changeable, and many environmental encounters/effects are not accounted for in real-time due to difficulties in describing them within offline training data or hard to describe even in online scenarios. However, we know that the human operator can describe these dynamic environmental encounters through natural language, adding semantic context. The research is to deploy Large Language Models (LLMs) to perform real-time contextual code adjustment to autonomous navigation. The challenge not evaluated in literature is what LLMs are appropriate and where should these computationally heavy algorithms sit in the computation-communication edge-cloud computing architectures. In this paper, we evaluate how different LLMs can adjust both the navigation map parameters dynamically (e.g., contour map shaping) and also derive navigation task instruction sets. We then evaluate which LLMs are most suitable and where they should sit in future edge-cloud of 6G telecommunication architectures.
Symmetry-based observers for ODE systems
In this paper we introduce an observer design framework for ordinary differential equation (ODE) systems based on various types of existing or even novel one-parameter symmetries (exact, asymptotic and variational) ending up with a certain number of semi-global and global observers, with bounded or unbounded system's solutions and with infinite- or finite-time convergence. We compare some of these symmetry-based observers with existing observers, recovering for instance the same performances of high-gain semiglobal observers and the finite-time convergence capabilities of sliding mode observers, while obtaining novel global observers where existing techniques are not able to provide any.
comment: 16 pages, submitted to journal
Carbon and Reliability-Aware Computing for Heterogeneous Data Centers
The rapid expansion of data centers (DCs) has intensified energy and carbon footprint, incurring a massive environmental computing cost. While carbon-aware workload migration strategies have been examined, existing approaches often overlook reliability metrics such as server lifetime degradation, and quality-of-service (QoS) that substantially affects both carbon and operational efficiency of DCs. Hence, this paper proposes a comprehensive optimization framework for spatio-temporal workload migration across distributed DCs that jointly minimizes operational and embodied carbon emissions while complying with service-level agreements (SLA). A key contribution is the development of an embodied carbon emission model based on servers' expected lifetime analysis, which explicitly considers server heterogeneity resulting from aging and utilization conditions. These issues are accommodated using new server dispatch strategies, and backup resource allocation model, accounting hardware, software and workload-induced failure. The overall model is formulated as a mixed-integer optimization problem with multiple linearization techniques to ensure computational tractability. Numerical case studies demonstrate that the proposed method reduces total carbon emissions by up to 21%, offering a pragmatic approach to sustainable DC operations.
comment: The manuscript has been submitted for review to IEEE Transactions on Smart Grid
Perturbation-Based Pinning Control Strategy for Enhanced Synchronization in Complex Networks
Synchronization is essential for the stability and coordinated operation of complex networked systems. Pinning control, which selectively controls a subset of nodes, provides a scalable solution to enhance network synchronizability. However, existing strategies face key limitations: heuristic centrality-based methods lack a direct connection to synchronization dynamics, while spectral approaches, though effective, are computationally intensive. To address these challenges, we propose a perturbation-based optimized strategy (PBO) that dynamically evaluates each node's spectral impact on the Laplacian matrix, achieving improved synchronizability with significantly reduced computational costs (with complexity O(kM)). Extensive experiments demonstrate that the proposed method outperforms traditional strategies in synchronizability, convergence rate, and pinning robustness to node failures. Notably, in all the empirical networks tested and some generated networks, PBO significantly outperforms the brute-force greedy strategy, demonstrating its ability to avoid local optima and adapt to complex connectivity patterns. Our study establishes the theoretical relationship between network synchronizability and convergence rate, offering new insights into efficient synchronization strategies for large-scale complex networks.
comment: 26 pages, 6 figures
Aggregate Flexibility of Thermostatically Controlled Loads using Generalized Polymatroids
Leveraging populations of thermostatically controlled loads could provide vast storage capacity to the grid. To realize this potential, their flexibility must be accurately aggregated and represented to the system operator as a single, controllable virtual device. Mathematically this is computed by calculating the Minkowski sum of the individual flexibility of each of the devices. Previous work showed how to exactly characterize the flexibility of lossless storage devices as generalized polymatroids-a family of polytope that enable an efficient computation of the Minkowski sum. In this paper we build on these results to encompass devices with dissipative storage dynamics. In doing so we are able to provide tractable methods of accurately characterizing the flexibility in populations consisting of a variety of heterogeneous devices. Numerical results demonstrate that the proposed characterizations are tight.
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Egocentric Conformal Prediction for Safe and Efficient Navigation in Dynamic Cluttered Environments
Conformal prediction (CP) has emerged as a powerful tool in robotics and control, thanks to its ability to calibrate complex, data-driven models with formal guarantees. However, in robot navigation tasks, existing CP-based methods often decouple prediction from control, evaluating models without considering whether prediction errors actually compromise safety. Consequently, ego-vehicles may become overly conservative or even immobilized when all potential trajectories appear infeasible. To address this issue, we propose a novel CP-based navigation framework that responds exclusively to safety-critical prediction errors. Our approach introduces egocentric score functions that quantify how much closer obstacles are to a candidate vehicle position than anticipated. These score functions are then integrated into a model predictive control scheme, wherein each candidate state is individually evaluated for safety. Combined with an adaptive CP mechanism, our framework dynamically adjusts to changes in obstacle motion without resorting to unnecessary conservatism. Theoretical analyses indicate that our method outperforms existing CP-based approaches in terms of cost-efficiency while maintaining the desired safety levels, as further validated through experiments on real-world datasets featuring densely populated pedestrian environments.
Interpreting and Improving Optimal Control Problems with Directional Corrections
Many robotics tasks, such as path planning or trajectory optimization, are formulated as optimal control problems (OCPs). The key to obtaining high performance lies in the design of the OCP's objective function. In practice, the objective function consists of a set of individual components that must be carefully modeled and traded off such that the OCP has the desired solution. It is often challenging to balance multiple components to achieve the desired solution and to understand, when the solution is undesired, the impact of individual cost components. In this paper, we present a framework addressing these challenges based on the concept of directional corrections. Specifically, given the solution to an OCP that is deemed undesirable, and access to an expert providing the direction of change that would increase the desirability of the solution, our method analyzes the individual cost components for their "consistency" with the provided directional correction. This information can be used to improve the OCP formulation, e.g., by increasing the weight of consistent cost components, or reducing the weight of - or even redesigning - inconsistent cost components. We also show that our framework can automatically tune parameters of the OCP to achieve consistency with a set of corrections.
comment: Paper accepted for publication at IEEE Robotics and Automation Letters (RA-L)
Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree
Control barrier functions (CBFs) are a powerful tool for synthesizing safe control actions; however, constructing CBFs remains difficult for general nonlinear systems. In this work, we provide a constructive framework for synthesizing CBFs for systems with dual relative degree -- where different inputs influence the outputs at two different orders of differentiation; this is common in systems with orientation-based actuation, such as unicycles and quadrotors. In particular, we propose dual relative degree CBFs (DRD-CBFs) and show that these DRD-CBFs can be constructively synthesized and used to guarantee system safety. Our method constructs DRD-CBFs by leveraging the dual relative degree property -- combining a CBF for an integrator chain with a Lyapunov function certifying the tracking of safe inputs generated for this linear system. We apply these results to dual relative degree systems, both in simulation and experimentally on hardware using quadruped and quadrotor robotic platforms.
Robust Continuous-Time Generation Scheduling under Power Demand Uncertainty: An Affine Decision Rule Approach
Most existing generation scheduling models for power systems under demand uncertainty rely on energy-based formulations with a finite number of time periods, which may fail to ensure that power supply and demand are balanced continuously over time. To address this issue, we propose a robust generation scheduling model in a continuous-time framework, employing a decision rule approach. First, for a given set of demand trajectories, we formulate a general robust generation scheduling problem to determine a decision rule that maps these demand trajectories and time points to the power outputs of generators. Subsequently, we derive a surrogate of it as our model by carefully designing a class of decision rules that are affine in the current demand, with coefficients invariant over time and constant terms that are continuous piecewise affine functions of time. As a result, our model can be recast as a finite-dimensional linear program to determine the coefficients and the function values of the constant terms at each breakpoint, solvable via the cutting-plane method. Our model is non-anticipative unlike most existing continuous-time models, which use Bernstein polynomials, making it more practical. We also provide illustrative numerical examples.
comment: 9 pages, 4 figures
Integrated LLM-Based Intrusion Detection with Secure Slicing xApp for Securing O-RAN-Enabled Wireless Network Deployments
The Open Radio Access Network (O-RAN) architecture is reshaping telecommunications by promoting openness, flexibility, and intelligent closed-loop optimization. By decoupling hardware and software and enabling multi-vendor deployments, O-RAN reduces costs, enhances performance, and allows rapid adaptation to new technologies. A key innovation is intelligent network slicing, which partitions networks into isolated slices tailored for specific use cases or quality of service requirements. The RAN Intelligent Controller further optimizes resource allocation, ensuring efficient utilization and improved service quality for user equipment (UEs). However, the modular and dynamic nature of O-RAN expands the threat surface, necessitating advanced security measures to maintain network integrity, confidentiality, and availability. Intrusion detection systems have become essential for identifying and mitigating attacks. This research explores using large language models (LLMs) to generate security recommendations based on the temporal traffic patterns of connected UEs. The paper introduces an LLM-driven intrusion detection framework and demonstrates its efficacy through experimental deployments, comparing non fine-tuned and fine-tuned models for task-specific accuracy.
comment: This article has been accepted for publication in the IEEE 2025 International Conference on Communications (ICC2025)
A Hybrid Systems Model of Feedback Optimization for Linear Systems
Feedback optimization algorithms compute inputs to a system in real time, which helps mitigate the effects of unknown disturbances. However, existing work models both system dynamics and computations in either discrete or continuous time, which does not faithfully model some applications. In this work, we model linear system dynamics in continuous time, and we model the computations of inputs in discrete time. Therefore, we present a novel hybrid systems framework for modeling feedback optimization of linear time-invariant systems that are subject to unknown, constant disturbances. For this setup, we first establish the well-posedness of the hybrid model and establish completeness of solutions while ruling out Zeno behavior. Then, our main result derives a convergence rate and an error bound for the full hybrid computation-in-theloop system and shows that it converges exponentially towards a ball of known radius about a desired fixed point. Simulation results show that this approach successfully mitigates the effects of disturbances, with the magnitude of steady-state error being 81% less than the magnitude of the disturbances in the system.
comment: 14 Pages, 3 Figures, submitted to Conference on Decision and Control 2025
An Iterative Algorithm to Symbolically Derive Generalized n-Trailer Vehicle Kinematics
Articulated multi-axle vehicles are interesting from a control-theoretic perspective due to their peculiar kinematic offtracking characteristics, instability modes, and singularities. Holonomic and nonholonomic constraints affecting the kinematic behavior is investigated in order to develop control-oriented kinematic models representative of these peculiarities. Then, the structure of these constraints is exploited to develop an iterative algorithm to symbolically derive yaw-plane kinematic models of generalized $n$-trailer articulated vehicles with an arbitrary number of multi-axle vehicle units. A formal proof is provided for the maximum number of kinematic controls admissible to a large-scale generalized articulated vehicle system, which leads to a generalized Ackermann steering law for $n$-trailer systems. Moreover, kinematic data collected from a test vehicle is used to validate the kinematic models and, to understand the rearward yaw rate amplification behavior of the vehicle pulling multiple simulated trailers.
Inverted Gaussian Process Optimization for Nonparametric Koopman Operator Discovery
The Koopman Operator Theory opens the door for application of rich linear systems theory for computationally efficient modeling and optimal control of nonlinear systems by providing a globally linear representation for complex nonlinear systems. However, methodologies for Koopman Operator discovery struggle with the dependency on the set of selected observable functions and meaningful uncertainty quantification. The primary objective of this work is to leverage Gaussian process regression (GPR) to develop a probabilistic Koopman linear model while removing the need for heuristic observable specification. In this work, we present inverted Gaussian process optimization based Koopman Operator learning (iGPK), an automatic differentiation-based approach to simultaneously learn the observable-operator combination. We show that the proposed iGPK method is robust to observation noise in the training data, while also providing good uncertainty quantification, such that the predicted distribution consistently encapsulates the ground truth, even for noisy training data.
Off-Policy Evaluation for Sequential Persuasion Process with Unobserved Confounding
In this paper, we expand the Bayesian persuasion framework to account for unobserved confounding variables in sender-receiver interactions. While traditional models assume that belief updates follow Bayesian principles, real-world scenarios often involve hidden variables that impact the receiver's belief formation and decision-making. We conceptualize this as a sequential decision-making problem, where the sender and receiver interact over multiple rounds. In each round, the sender communicates with the receiver, who also interacts with the environment. Crucially, the receiver's belief update is affected by an unobserved confounding variable. By reformulating this scenario as a Partially Observable Markov Decision Process (POMDP), we capture the sender's incomplete information regarding both the dynamics of the receiver's beliefs and the unobserved confounder. We prove that finding an optimal observation-based policy in this POMDP is equivalent to solving for an optimal signaling strategy in the original persuasion framework. Furthermore, we demonstrate how this reformulation facilitates the application of proximal learning for off-policy evaluation in the persuasion process. This advancement enables the sender to evaluate alternative signaling strategies using only observational data from a behavioral policy, thus eliminating the necessity for costly new experiments.
comment: 8 pages, 4 Figures
System Identification and Adaptive Input Estimation on the Jaiabot Micro Autonomous Underwater Vehicle
This paper reports an attempt to model the system dynamics and estimate both the unknown internal control input and the state of a recently developed marine autonomous vehicle, the Jaiabot. Although the Jaiabot has shown promise in many applications, process and sensor noise necessitates state estimation and noise filtering. In this work, we present the first surge and heading linear dynamical model for Jaiabots derived from real data collected during field testing. An adaptive input estimation algorithm is implemented to accurately estimate the control input and hence the state. For validation, this approach is compared to the classical Kalman filter, highlighting its advantages in handling unknown control inputs.
comment: 9 pages, 8 figures
Minimally Conservative Controlled-Invariant Set Synthesis Using Control Barrier Certificates
Finding a controlled-invariant set for a system with state and control constraints is crucial for safety-critical applications. However, existing methods often produce overly conservative solutions. This paper presents a method for generating controlled-invariant (safe) sets for nonlinear polynomial control-affine systems using Control Barrier Certificates (CBCs). We formulate CBC conditions as Sum-of-Squares (SOS) constraints and solve them via an SOS Program (SOSP). First, we generalize existing SOSPs for CBC synthesis to handle environments with complex unsafe state representations. Then, we propose an iterative algorithm that progressively enlarges the safe set constructed by the synthesized CBCs by maximizing boundary expansion at each iteration. We theoretically prove that our method guarantees strict safe set expansion at every step. Finally, we validate our approach with numerical simulations in 2D and 3D for single-input and multi-input systems. Empirical results show that the safe set generated by our method covers in most part a larger portion of the state space compared to two state-of-the-art techniques.
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, for 2nd order PDEs with periodic boundary conditions, the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$ is nontrivial on the PDE domain, and solutions may converge to non-stationary trajectories existing in this nullspace. To test this convergence behaviour, in this paper, it is shown how we can model these trajectories for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any function $\mathbf{u}(t)$ in the PDE domain can be decomposed into a component defined by $\mathbf{u}_{xx}(t)$, and a component $\bar{\mathbf{u}}(t)$ existing in the nullspace of $\frac{\partial^2}{\partial x^2}$. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both $\mathbf{u}_{xx}(t)$ and $\bar{\mathbf{u}}(t)$. Finally, a notion of exponential stability is defined for trajectories $\mathbf{u}^*(t)=\bar{\mathbf{u}}(t)$, and it is shown that stability of these trajectories as well as of the equilibrium $\mathbf{u}^*\equiv0$ can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that stability can be verified with tight bounds on the rate of exponential decay.
Analysis and Optimization of Robustness in Multiplex Flow Networks Against Cascading Failures
Networked systems are susceptible to cascading failures, where the failure of an initial set of nodes propagates through the network, often leading to system-wide failures. In this work, we propose a multiplex flow network model to study robustness against cascading failures triggered by random failures. The model is inspired by systems where nodes carry or support multiple types of flows, and failures result in the redistribution of flows within the same layer rather than between layers. To represent different types of interdependencies between the layers of the multiplex network, we define two cases of failure conditions: layer-independent overload and layer-influenced overload. We provide recursive equations and their solutions to calculate the steady-state fraction of surviving nodes, validate them through a set of simulation experiments, and discuss optimal load-capacity allocation strategies. Our results demonstrate that allocating the total excess capacity to each layer proportional to the mean effective load in the layer and distributing that excess capacity equally among the nodes within the layer ensures maximum robustness. The proposed framework for different failure conditions allows us to analyze the two overload conditions presented and can be extended to explore more complex interdependent relationships.
Routing Guidance for Emerging Transportation Systems with Improved Dynamic Trip Equity
In this paper, we present a dynamic routing guidance system that optimizes route recommendations for individual vehicles within an emerging transportation system while enhancing travelers' trip equity. We develop a framework to quantify trip quality and equity in a dynamic travel environment, providing new insights into how routing guidance influences equity in road transportation. Our approach enables real-time routing by incorporating both monitored and anticipated traffic congestion. We provide conditions that ensure achieving perfect trip equity for all travelers in a free-flow network. Finally, simulation studies on 1,000 vehicles traversing an urban road network in Boston demonstrate that our proposed method improves trip equity by approximately 11.4\% compared to the shortest-route strategy. In addition, the results reveal that our approach redistributes travel costs across vehicle types through route optimization, contributing to a more equitable transportation system.
Design, Implementation and Practical Energy-Efficiency Evaluation of a Blockchain Based Academic Credential Verification System for Low-Power Nodes
The educational system manages extensive documentation and paperwork, which can lead to human errors and sometimes abuse or fraud, such as the falsification of diplomas, certificates or other credentials. In fact, in the last years, multiple cases of fraud have been detected, which have a significant cost to society, since they harm the trustworthiness of certificates and academic institutions. To tackle such an issue, this article proposes a solution aimed at recording and verifying academic records through a decentralized application that is supported by a smart contract deployed in the Ethereum blockchain and by a decentralized storage system based on Inter-Planetary File System (IPFS). The proposed solution is evaluated in terms of performance and energy-efficiency, comparing the results obtained with a traditional Proof-of-Work (PoW) consensus protocol and the new Proof-of-Authority (PoA) protocol. The results shown in this paper indicate that the latter is clearly greener and demands less CPU load. Moreover, this article compares the performance of a traditional computer and two SBCs (a Raspberry Pi 4 and an Orange Pi One), showing that is possible to make use of the latter low-power devices to implement blockchain nodes but at the cost of higher response latency. Furthermore, the impact of Ethereum gas limit is evaluated, demonstrating its significant influence on the blockchain network performance. Thus, this article provides guidelines, useful practical evaluations and key findings that will help the next generation of green blockchain developers and researchers.
Gaussian Processes with Noisy Regression Inputs for Dynamical Systems
This paper is centered around the approximation of dynamical systems by means of Gaussian processes. To this end, trajectories of such systems must be collected to be used as training data. The measurements of these trajectories are typically noisy, which implies that both the regression inputs and outputs are corrupted by noise. However, most of the literature considers only noise in the regression outputs. In this paper, we show how to account for the noise in the regression inputs in an extended Gaussian process framework to approximate scalar and multidimensional systems. We demonstrate the potential of our framework by comparing it to different state-of-the-art methods in several simulation examples.
comment: 6 pages
Harmonic model predictive control for tracking sinusoidal references and its application to trajectory tracking
Harmonic model predictive control (HMPC) is a recent model predictive control (MPC) formulation for tracking piece-wise constant references that includes a parameterized artificial harmonic reference as a decision variable, resulting in an increased performance and domain of attraction with respect to other MPC formulations. This article presents an extension of the HMPC formulation to track periodic harmonic/sinusoidal references and discusses its use for tracking arbitrary trajectories. The proposed formulation inherits the benefits of its predecessor, namely its good performance and large domain of attraction when using small prediction horizons, and that the complexity of its optimization problem does not depend on the period of the reference. We show closed-loop results discussing its performance and comparing it to other MPC formulations.
comment: Accepted version of the article published in IEEE Transactions on Automatic Control (8 pages, 5 figures)
Data-Efficient Extremum-Seeking Control Using Kernel-Based Function Approximation
Existing extremum-seeking control (ESC) approaches typically rely on applying repeated perturbations to input parameters and performing measurements of the corresponding performance output. The required separation between the different timescales in the ESC loop means that performing these measurements can be time-consuming. Moreover, performing these measurements can be costly in practice, e.g., due to the use of resources. With these challenges in mind, it is desirable to reduce the number of measurements needed to optimize performance. Therefore, in this work, we present a sampled-data ESC approach aimed at reducing the number of measurements that need to be performed. In the proposed approach, we use input-output data obtained during regular operation of the extremum-seeking controller to construct online an approximation of the system's underlying cost function. By using this approximation to perform parameter updates when a decrease in the cost can be guaranteed, instead of performing additional measurements to perform this update, we make more efficient use of data collected during regular operation of the extremum-seeking controller. As a result, we indeed obtain a reduction in the required number of measurements to achieve optimization. We provide a stability analysis of the novel sampled-data ESC approach, and demonstrate the benefits of the synergy between kernel-based function approximation and standard ESC in simulation on a multi-input dynamical system.
comment: 16 pages, 5 figures, extended version of the paper submitted to Automatica
Minimal positive Markov realizations
Finding a positive state-space realization with the minimum dimension for a given transfer function is an open problem in control theory. In this paper, we focus on positive realizations in Markov form and propose a linear programming approach that computes them with a minimum dimension. Such minimum dimension of positive Markov realizations is an upper bound of the minimal positive realization dimension. However, we show that these two dimensions are equal for certain systems.
Non-overshooting output shaping for switched linear systems under arbitrary switching using eigenstructure assignment
We consider the analytical control design for a pair of switched linear multiple-input multiple-output (MIMO) systems that are subject to arbitrary switching signals. A state feedback controller design method is proposed to obtain an eigenstructure assignment that ensures that the closed-loop switched system is globally asymptotically stable, and the outputs achieve the non-overshooting tracking of a step reference. Our analysis indicates whether non-overshooting or even monotonic tracking is achievable for the given system and considered outputs and provides a choice of possible eigenstructures to be assigned to the constituent subsystems. We derive a structural condition that verifies the feasibility of the chosen assignment. A constructive algorithm to obtain suitable feedback matrices is provided, and the method is illustrated with numerical examples.
1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such \emph{huge} MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs. The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
comment: Extended version of the paper accepted at VMCAI 2025
Designing Heterogeneous GNNs with Desired Permutation Properties for Wireless Resource Allocation
Graph neural networks (GNNs) have been designed for learning a variety of wireless policies, i.e., the mappings from environment parameters to decision variables, thanks to their superior performance, and the potential in enabling scalability and size generalizability. These merits are rooted in leveraging permutation prior, i.e., satisfying the permutation property of the policy to be learned (referred to as desired permutation property). Many wireless policies are with complicated permutation properties. To satisfy these properties, heterogeneous GNNs (HetGNNs) should be used to learn such policies. There are two critical factors that enable a HetGNN to satisfy a desired permutation property: constructing an appropriate heterogeneous graph and judiciously designing the architecture of the HetGNN. However, both the graph and the HetGNN are designed heuristically so far. In this paper, we strive to provide a systematic approach for the design to satisfy the desired permutation property. We first propose a method for constructing a graph for a policy, where the edges and their types are defined for the sake of satisfying complicated permutation properties. Then, we provide and prove three sufficient conditions to design a HetGNN such that it can satisfy the desired permutation property when learning over an appropriate graph. These conditions suggest a method of designing the HetGNN with desired permutation property by sharing the processing, combining, and pooling functions according to the types of vertices and edges of the graph. We take power allocation and hybrid precoding policies as examples for demonstrating how to apply the proposed methods and validating the impact of the permutation prior by simulations.
Markov $α$-Potential Games
We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
comment: 33 pages, 5 figures
Decentralized State Estimation and Opacity Verification Based on Partially Ordered Observation Sequences
In this paper, we investigate state estimation and opacity verification problems within a decentralized observation architecture. Specifically, we consider a discrete event system whose behavior is recorded by a set of observation sites. These sites transmit the partially ordered sequences of observations that they record to a coordinator whenever a \textit{synchronization} occurs. To properly analyze the system behavior from the coordinator's viewpoint, we first introduce the notion of a Complete Synchronizing Sequence structure (CSS structure), which concisely captures the state evolution of each system state upon different information provided by the observation sites. Based on the CSS structure, we then construct corresponding current-state and initial-state estimators for offline state estimation at the coordinator. When used to verify state-isolation properties under this decentralized architecture, the use of CSS structure demonstrates a significant reduction in complexity compared with existing approaches in the literature. In particular, we discuss how to verify initial-state opacity at the coordinator, as well as a novel opacity notion, namely current-state-at-synchronization opacity.
Battery Operations in Electricity Markets: Strategic Behavior and Distortions
Electric power systems are undergoing a major transformation as they integrate intermittent renewable energy sources, and batteries to smooth out variations in renewable energy production. As privately-owned batteries grow from their role as marginal "price-takers" to significant players in the market, a natural question arises: How do batteries operate in electricity markets, and how does the strategic behavior of decentralized batteries distort decisions compared to centralized batteries? We propose an analytically tractable model that captures salient features of the highly complex electricity market. We derive in closed form the resulting battery behavior and generation cost in three operating regimes: (i) no battery, (ii) centralized battery, and (ii) decentralized profit-maximizing battery. We establish that a decentralized battery distorts its discharge decisions in three ways. First, there is quantity withholding, i.e., discharging less than centrally optimal. Second, there is a shift in participation from day-ahead to real-time, i.e., postponing some of its discharge from day-ahead to real-time. Third, there is reduction in real-time responsiveness, or discharging less in response to smoothing real-time demand than centrally optimal. We also quantify the impact of the battery market power on total system cost via the Price of Anarchy metric, and prove that the it is always between $9/8$ and $4/3$. That is, incentive misalignment always exists, but it is bounded even in the worst case. We calibrate our model to real data from Los Angeles and Houston. Lastly, we show that competition is very effective at reducing distortions, but many market power mitigation mechanisms backfire, and lead to higher total cost.
Independent and Decentralized Learning in Markov Potential Games
We study a multi-agent reinforcement learning dynamics, and analyze its asymptotic behavior in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players do not know the game parameters, and cannot communicate or coordinate. In each stage, players update their estimate of Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating an optimal one-stage deviation strategy based on the estimated Q-function. Inspired by the actor-critic algorithm in single-agent reinforcement learning, a key feature of our learning dynamics is that agents update their Q-function estimates at a faster timescale than the policies. Leveraging tools from two-timescale asynchronous stochastic approximation theory, we characterize the convergent set of learning dynamics.
comment: 43 pages, 1 figure
Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games
Markov games provide a powerful framework for modeling strategic multi-agent interactions in dynamic environments. Traditionally, convergence properties of decentralized learning algorithms in these settings have been established only for special cases, such as Markov zero-sum and potential games, which do not fully capture real-world interactions. In this paper, we address this gap by studying the asymptotic properties of learning algorithms in general-sum Markov games. In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic with asynchronous step sizes. This decentralized approach enables agents to operate independently, without requiring knowledge of others' strategies or payoffs. We introduce the concept of a Markov Near-Potential Function (MNPF) and demonstrate that it serves as an approximate Lyapunov function for the policy updates in the decentralized learning dynamics, which allows us to characterize the convergent set of strategies. We further strengthen our result under specific regularity conditions and with finite Nash equilibria.
comment: 18 pages, 3 figure
Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
Fast-Converged Deep Reinforcement Learning for Optimal Dispatch of Large-Scale Power Systems under Transient Security Constraints
Power system optimal dispatch with transient security constraints is commonly represented as Transient Security-Constrained Optimal Power Flow (TSC-OPF). Deep Reinforcement Learning (DRL)-based TSC-OPF trains efficient decision-making agents that are adaptable to various scenarios and provide solution results quickly. However, due to the high dimensionality of the state space and action spaces, as well as the non-smoothness of dynamic constraints, existing DRL-based TSC-OPF solution methods face a significant challenge of the sparse reward problem. To address this issue, a fast-converged DRL method for TSC-OPF is proposed in this paper. The Markov Decision Process (MDP) modeling of TSC-OPF is improved by reducing the observation space and smoothing the reward design, thus facilitating agent training. An improved Deep Deterministic Policy Gradient algorithm with Curriculum learning, Parallel exploration, and Ensemble decision-making (DDPG-CPEn) is introduced to drastically enhance the efficiency of agent training and the accuracy of decision-making. The effectiveness, efficiency, and accuracy of the proposed method are demonstrated through experiments in the IEEE 39-bus system and a practical 710-bus regional power grid. The source code of the proposed method is made public on GitHub.
comment: 12 pages, 12 figures
Stochastic Reservoir Computers
Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Many recent advancements in reservoir computing, in particular quantum reservoir computing, make use of reservoirs that are inherently stochastic. However, the theoretical justification for using these systems has not yet been well established. In this paper, we investigate the universality of stochastic reservoir computers, in which we use a stochastic system for reservoir computing using the probabilities of each reservoir state as the readout instead of the states themselves. In stochastic reservoir computing, the number of distinct states of the entire reservoir computer can potentially scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks, and therefore the class of all stochastic reservoir computers, are universal approximating classes. We also investigate the performance of two practical examples of stochastic reservoir computers in classification and chaotic time series prediction. While shot noise is a limiting factor in the performance of stochastic reservoir computing, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware in cases where the effects of noise are small.
comment: 34 pages, 8 figures
Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles
This article introduces XPLORER, a passive deformable UAV with a spring-augmented chassis and proprioceptive state awareness, designed to endure collisions and maintain smooth contact. We develop a fast-converging external force estimation algorithm for XPLORER that leverages onboard sensors and proprioceptive data for contact and collision detection. Using this force information, we propose four motion primitives, including three novel tactile-based primitives: tactile-traversal, tactile-turning, and ricocheting-to aid XPLORER in navigating unknown environments. These primitives are synthesized autonomously in real-time to enable efficient exploration and navigation by leveraging collisions and contacts. Experimental results demonstrate the effectiveness of our approach, highlighting the potential of passive deformable UAVs for contact-rich real-world tasks such as non-destructive inspection, surveillance and mapping, and pursuit/evasion.
Towards a Blockchain and Opportunistic Edge Driven Metaverse of Everything
Decentralized Metaverses, built on Web 3.0 and Web 4.0 technologies, have attracted significant attention across various fields. This innovation leverages blockchain, Decentralized Autonomous Organizations (DAOs), Extended Reality (XR) and advanced technologies to create immersive and interconnected digital environments that mirror the real world. This article delves into the Metaverse of Everything (MoE), a platform that fuses the Metaverse concept with the Internet of Everything (IoE), an advanced version of the Internet of Things (IoT) that connects not only physical devices but also people, data and processes within a networked environment. Thus, the MoE integrates generated data and virtual entities, creating an extensive network of interconnected components. This article seeks to advance current MoE, examining decentralization and the application of Opportunistic Edge Computing (OEC) for interactions with surrounding IoT devices and IoE entities. Moreover, it outlines the main challenges to guide researchers and businesses towards building a future cyber-resilient opportunistic MoE.
Systems and Control (EESS)
R2DN: Scalable Parameterization of Contracting and Lipschitz Recurrent Deep Networks
This paper presents the Robust Recurrent Deep Network (R2DN), a scalable parameterization of robust recurrent neural networks for machine learning and data-driven control. We construct R2DNs as a feedback interconnection of a linear time-invariant system and a 1-Lipschitz deep feedforward network, and directly parameterize the weights so that our models are stable (contracting) and robust to small input perturbations (Lipschitz) by design. Our parameterization uses a structure similar to the previously-proposed recurrent equilibrium networks (RENs), but without the requirement to iteratively solve an equilibrium layer at each time-step. This speeds up model evaluation and backpropagation on GPUs, and makes it computationally feasible to scale up the network size, batch size, and input sequence length in comparison to RENs. We compare R2DNs to RENs on three representative problems in nonlinear system identification, observer design, and learning-based feedback control and find that training and inference are both up to an order of magnitude faster with similar test set performance, and that training/inference times scale more favorably with respect to model expressivity.
An Adaptive Control Approach to Treatment Selection for Substance Use Disorders
Despite the massive costs and widespread harms of substance use, most individuals with substance use disorders (SUDs) receive no treatment at all. Digital therapeutics platforms are an emerging low-cost and low-barrier means of extending treatment to those who need it. While there is a growing body of research focused on how treatment providers can identify which patients need SUD support (or when they need it), there is very little work that addresses how providers should select treatments that are most appropriate for a given patient. Because SUD treatment involves months or years of voluntary compliance from the patient, treatment adherence is a critical consideration for the treatment provider. In this paper we focus on algorithms that a treatment provider can use to match the burden-level of proposed treatments to the time-varying engagement state of the patient to promote adherence. We propose structured models for a patient's engagement over time and their treatment adherence decisions. Using these models we pose a stochastic control formulation of the treatment-provider's burden selection problem. We propose an adaptive control approach that estimates unknown patient parameters as new data are observed. We show that these estimates are consistent and propose algorithms that use these estimates to make appropriate treatment recommendations.
comment: 8 pages, 2 figures
Long-Range Rendezvous and Docking Maneuver Control of Satellite using Cross-Feedback Sliding Mode Controller
Satellite rendezvous and docking (RvD) maneuvers are essential for satellite servicing and in-orbit assembly. Traditional approaches often treat translational and rotational motions independently, simplifying control design but potentially leading to inefficiencies in maneuver time and fuel consumption. To address these challenges, a novel cross-feedback sliding mode controller has been proposed, developing an interdependent regulation system for translational and rotational motion. This method decouples the relative translational and rotational motion of chaser satellite with respect to target satellite while incorporating cross-feedback mechanisms to account for their inherent coupling. By incorporating rotational state information into translational control laws and vice versa, the approach ensures coordinated adjustments, enhancing maneuver efficiency. The chaser satellite manages both translational and rotational adjustments to rendezvous and dock with the target satellite. The stability of the cross-feedback sliding mode controller is established within the Lyapunov framework, and simulation results substantiate the effectiveness of this strategy.
How to Maximize Efficiency in Systems with Exhausted Workers
We consider the problem of assigning tasks efficiently to a set of workers that can exhaust themselves as a result of processing tasks. If a worker is exhausted, it will take a longer time to recover. To model efficiency of workers with exhaustion, we use a continuous-time Markov chain (CTMC). By taking samples from the internal states of the workers, the source assigns tasks to the workers when they are found to be in their efficient states. We consider two different settings where (i) the source can assign tasks to the workers only when they are in their most efficient state, and (ii) it can assign tasks to workers when they are also moderately efficient in spite of a potentially reduced success probability. In the former case, we find the optimal policy to be a threshold-based sampling policy where the thresholds depend on the workers' recovery and exhaustion rates. In the latter case, we solve a non-convex sum-of-ratios problem using a branch-and-bound approach which performs well compared with the globally optimal solution.
Value Iteration for Learning Concurrently Executable Robotic Control Tasks AAMAS 2025
Many modern robotic systems such as multi-robot systems and manipulators exhibit redundancy, a property owing to which they are capable of executing multiple tasks. This work proposes a novel method, based on the Reinforcement Learning (RL) paradigm, to train redundant robots to be able to execute multiple tasks concurrently. Our approach differs from typical multi-objective RL methods insofar as the learned tasks can be combined and executed in possibly time-varying prioritized stacks. We do so by first defining a notion of task independence between learned value functions. We then use our definition of task independence to propose a cost functional that encourages a policy, based on an approximated value function, to accomplish its control objective while minimally interfering with the execution of higher priority tasks. This allows us to train a set of control policies that can be executed simultaneously. We also introduce a version of fitted value iteration to learn to approximate our proposed cost functional efficiently. We demonstrate our approach on several scenarios and robotic systems.
comment: To be published in AAMAS 2025 conference: https://aamas2025.org/
Extended Hybrid Zero Dynamics for Bipedal Walking of the Knee-less Robot SLIDER
Knee-less bipedal robots like SLIDER have the advantage of ultra-lightweight legs and improved walking energy efficiency compared to traditional humanoid robots. In this paper, we firstly introduce an improved hardware design of the bipedal robot SLIDER with new line-feet and more optimized mass distribution which enables higher locomotion speeds. Secondly, we propose an extended Hybrid Zero Dynamics (eHZD) method, which can be applied to prismatic joint robots like SLIDER. The eHZD method is then used to generate a library of gaits with varying reference velocities in an offline way. Thirdly, a Guided Deep Reinforcement Learning (DRL) algorithm is proposed to use the pre-generated library to create walking control policies in real-time. This approach allows us to combine the advantages of both HZD (for generating stable gaits with a full-dynamics model) and DRL (for real-time adaptive gait generation). The experimental results show that this approach achieves 150% higher walking velocity than the previous MPC-based approach.
Incompressible Optimal Transport and Applications in Fluid Mixing
The problem of incompressible fluid mixing arises in numerous engineering applications and has been well-studied over the years, yet many open questions remain. This paper aims to address the question "what do efficient flow fields for mixing look like, and how do they behave?" We approach this question by developing a framework which is inspired by the dynamic and geometric approach to optimal mass transport. Specifically, we formulate the fluid mixing problem as an optimal control problem where the dynamics are given by the continuity equation together with an incompressibility constraint. We show that within this framework, the set of reachable fluid configurations can formally be endowed with the structure of an infinite-dimensional Riemannian manifold, with a metric which is induced by the control effort, and that flow fields which are maximally efficient at mixing correspond to geodesics in this Riemannian space.
comment: 8 pages
LQR based $ω-$stabilization of a heat equation with memory
We consider a heat equation with memory which is defined on a bounded domain in $\mathbb{R}^d$ and is driven by $m$ control inputs acting on the interior of the domain. Our objective is to numerically construct a state feedback controller for this equation such that, for each initial state, the solution of the closed-loop system decays exponentially to zero with a decay rate larger than a given rate $\omega>0$, i.e. we want to solve the $\omega$-stabilization problem for the heat equation with memory. We first show that the spectrum of the state operator $A$ associated with this equation has an accumulation point at $-\omega_0<0$. Given a $\omega\in(0,\omega_0)$, we show that the $\omega$-stabilization problem for the heat equation with memory is solvable provided certain verifiable conditions on the control operator $B$ associated with this equation hold. We then consider an appropriate LQR problem for the heat equation with memory. For each $n\in\mathbb{N}$, we construct finite-dimensional approximations $A_n$ and $B_n$ of $A$ and $B$, respectively, and then show that by solving a corresponding approximation of the LQR problem a feedback operator $K_n$ can be computed such that all the eigenvalues of $A_n + B_n K_n$ have real part less than $-\omega$. We prove that $K_n$ for $n$ sufficiently large solves the $\omega$-stabilization problem for the heat equation with memory. A crucial and nontrivial step in our proof is establishing the uniform (in $n$) stabilizability of the pair $(A_n+\omega I, B_n)$. We have validated our theoretical results numerically using two examples: an 1D example on a unit interval and a 2D example on a square domain.
MPCritic: A plug-and-play MPC architecture for reinforcement learning
The reinforcement learning (RL) and model predictive control (MPC) communities have developed vast ecosystems of theoretical approaches and computational tools for solving optimal control problems. Given their conceptual similarities but differing strengths, there has been increasing interest in synergizing RL and MPC. However, existing approaches tend to be limited for various reasons, including computational cost of MPC in an RL algorithm and software hurdles towards seamless integration of MPC and RL tools. These challenges often result in the use of "simple" MPC schemes or RL algorithms, neglecting the state-of-the-art in both areas. This paper presents MPCritic, a machine learning-friendly architecture that interfaces seamlessly with MPC tools. MPCritic utilizes the loss landscape defined by a parameterized MPC problem, focusing on "soft" optimization over batched training steps; thereby updating the MPC parameters while avoiding costly minimization and parametric sensitivities. Since the MPC structure is preserved during training, an MPC agent can be readily used for online deployment, where robust constraint satisfaction is paramount. We demonstrate the versatility of MPCritic, in terms of MPC architectures and RL algorithms that it can accommodate, on classic control benchmarks.
comment: Preprint for CDC 2025
Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
comment: Submitted to CDC 2025
A Parametric Model for Near-Optimal Online Synthesis with Robust Reach-Avoid Guarantees
Objective: To obtain explainable guarantees in the online synthesis of optimal controllers for high-integrity cyber-physical systems, we re-investigate the use of exhaustive search as an alternative to reinforcement learning. Approach: We model an application scenario as a hybrid game automaton, enabling the synthesis of robustly correct and near-optimal controllers online without prior training. For modal synthesis, we employ discretised games solved via scope-adaptive and step-pre-shielded discrete dynamic programming. Evaluation: In a simulation-based experiment, we apply our approach to an autonomous aerial vehicle scenario. Contribution: We propose a parametric system model and a parametric online synthesis.
comment: 17 pages, 9 figures
Time-optimal Convexified Reeds-Shepp Paths on a Sphere
This article addresses time-optimal path planning for a vehicle capable of moving both forward and backward on a unit sphere with a unit maximum speed, and constrained by a maximum absolute turning rate $U_{max}$. The proposed formulation can be utilized for optimal attitude control of underactuated satellites, optimal motion planning for spherical rolling robots, and optimal path planning for mobile robots on spherical surfaces or uneven terrains. By utilizing Pontryagin's Maximum Principle and analyzing phase portraits, it is shown that for $U_{max}\geq1$, the optimal path connecting a given initial configuration to a desired terminal configuration falls within a sufficient list of 23 path types, each comprising at most 6 segments. These segments belong to the set $\{C,G,T\}$, where $C$ represents a tight turn with radius $r=\frac{1}{\sqrt{1+U_{max}^2}}$, $G$ represents a great circular arc, and $T$ represents a turn-in-place motion. Closed-form expressions for the angles of each path in the sufficient list are derived. The source code for solving the time-optimal path problem and visualization is publicly available at https://github.com/sixuli97/Optimal-Spherical-Convexified-Reeds-Shepp-Paths.
Analyzing cell-to-cell heterogeneities and cell configurations in parallel-connected battery modules using physics-based modeling
In parallel-connected cells, cell-to-cell (CtC) heterogeneities can lead to current and thermal gradients that may adversely impact the battery performance and aging. Sources of CtC heterogeneity include manufacturing process tolerances, poor module configurations, and inadequate thermal management. Understanding which CtC heterogeneity sources most significantly impact battery performance is crucial, as it can provide valuable insights. In this study, we use an experimentally validated electrochemical battery model to simulate hundreds of battery configurations, each consisting of four cells in parallel. We conduct a statistical analysis to evaluate the relative importance of key cell-level parameters, interconnection resistance, cell spacing, and location on performance and aging. The analysis reveals that heterogeneities in electrode active material volume fractions primarily impact module capacity, energy, and cell current, leading to substantial thermal gradients. However, to fully capture the output behavior, interconnection resistance, state of charge gradients and the effect of the temperature on parameter values must also be considered. Additionally, module design configurations, particularly cell location, exacerbate thermal gradients, accelerating long-term module degradation. This study also offers insights into optimizing cell arrangement during module design to reduce thermal gradients and enhance overall battery performance and longevity. Simulation results with four cells indicate a reduction of 51.8% in thermal gradients, leading to a 5.2% decrease in long-term energy loss.
Physics-informed machine learning for building performance simulation-A review of a nascent field
Building performance simulation (BPS) is critical for understanding building dynamics and behavior, analyzing performance of the built environment, optimizing energy efficiency, improving demand flexibility, and enhancing building resilience. However, conducting BPS is not trivial. Traditional BPS relies on an accurate building energy model, mostly physics-based, which depends heavily on detailed building information, expert knowledge, and case-by-case model calibrations, thereby significantly limiting their scalability. With the development of sensing technology and increased data availability, there is a growing attention and interest in data-driven BPS. However, purely data-driven models often suffer from limited generalization ability and a lack of physical consistency, resulting in poor performance in real-world applications. To address these limitations, recent studies have started to incorporate physics priors into data-driven models, a methodology called physics-informed machine learning (PIML). PIML is an emerging field with the definitions, methodologies, evaluation criteria, application scenarios, and future directions that remain open. To bridge those gaps, this study systematically reviews the state-of-art PIML for BPS, offering a comprehensive definition of PIML, and comparing it to traditional BPS approaches regarding data requirements, modeling effort, performance and computation cost. We also summarize the commonly used methodologies, validation approaches, application domains, available data sources, open-source packages and testbeds. In addition, this study provides a general guideline for selecting appropriate PIML models based on BPS applications. Finally, this study identifies key challenges and outlines future research directions, providing a solid foundation and valuable insights to advance R&D of PIML in BPS.
Timely Trajectory Reconstruction in Finite Buffer Remote Tracking Systems
Remote tracking systems play a critical role in applications such as IoT, monitoring, surveillance and healthcare. In such systems, maintaining both real-time state awareness (for online decision making) and accurate reconstruction of historical trajectories (for offline post-processing) are essential. While the Age of Information (AoI) metric has been extensively studied as a measure of freshness, it does not capture the accuracy with which past trajectories can be reconstructed. In this work, we investigate reconstruction error as a complementary metric to AoI, addressing the trade-off between timely updates and historical accuracy. Specifically, we consider three policies, each prioritizing different aspects of information management: Keep-Old, Keep-Fresh, and our proposed Inter-arrival-Aware dropping policy. We compare these policies in terms of impact on both AoI and reconstruction error in a remote tracking system with a finite buffer. Through theoretical analysis and numerical simulations of queueing behavior, we demonstrate that while the Keep-Fresh policy minimizes AoI, it does not necessarily minimize reconstruction error. In contrast, our proposed Inter-arrival-Aware dropping policy dynamically adjusts packet retention decisions based on generation times, achieving a balance between AoI and reconstruction error. Our results provide key insights into the design of efficient update policies for resource-constrained IoT networks.
Boosting the transient performance of reference tracking controllers with neural networks
Reference tracking is a key objective in many control systems, including those characterized by complex nonlinear dynamics. In these settings, traditional control approaches can effectively ensure steady-state accuracy but often struggle to explicitly optimize transient performance. Neural network controllers have gained popularity due to their adaptability to nonlinearities and disturbances; however, they often lack formal closed-loop stability and performance guarantees. To address these challenges, a recently proposed neural-network control framework known as Performance Boosting (PB) has demonstrated the ability to maintain $\mathcal{L}_p$ stability properties of nonlinear systems while optimizing generic transient costs. This paper extends the PB approach to reference tracking problems. First, we characterize the complete set of nonlinear controllers that preserve desired tracking properties for nonlinear systems equipped with base reference-tracking controllers. Then, we show how to optimize transient costs while searching within subsets of tracking controllers that incorporate expressive neural network models. Furthermore, we analyze the robustness of our method to uncertainties in the underlying system dynamics. Numerical simulations on a robotic system demonstrate the advantages of our approach over the standard PB framework.
Feedback Optimization with State Constraints through Control Barrier Functions
Recently, there has been a surge of research on a class of methods called feedback optimization. These are methods to steer the state of a control system to an equilibrium that arises as the solution of an optimization problem. Despite the growing literature on the topic, the important problem of enforcing state constraints at all times remains unaddressed. In this work, we present the first feedback-optimization method that enforces state constraints. The method combines a class of dynamics called safe gradient flows with high-order control barrier functions. We provide a number of results on our proposed controller, including well-posedness guarantees, anytime constraint-satisfaction guarantees, equivalence between the closed-loop's equilibria and the optimization problem's critical points, and local asymptotic stability of optima.
Semi-Data-Driven Model Predictive Control: A Physics-Informed Data-Driven Control Approach
Data-enabled predictive control (DeePC) has emerged as a powerful technique to control complex systems without the need for extensive modeling efforts. However, relying solely on offline collected data trajectories to represent the system dynamics introduces certain drawbacks. Therefore, we present a novel semi-data-driven model predictive control (SD-MPC) framework that combines (limited) model information with DeePC to address a range of these drawbacks, including sensitivity to noisy data, lack of robustness, and a high computational burden. In this work we focus on the performance of DeePC in operating regimes not captured by the offline collected data trajectories and demonstrate how incorporating an underlying parametric model can counteract this issue. SD-MPC exhibits equivalent closed-loop performance as DeePC for deterministic linear time-invariant systems. Simulations demonstrate the general control performance of the proposed SD-MPC for both a linear time-invariant system and a nonlinear system modeled as a linear parameter-varying system. These results provide numerical evidence of the enhanced robustness of SD-MPC over classical DeePC.
comment: 8 pages, 5 figures
Reinforcement learning for robust dynamic metabolic control
Dynamic metabolic control can enhance bioprocess flexibility and expand the available optimization degrees of freedom via real-time modulation of metabolic enzyme expression. This allows target metabolic fluxes to be dynamically tuned throughout the process. However, identifying optimal dynamic control policies is challenging due to the presence of potential metabolic burden, cytotoxic effects, and the generally high-dimensional solution space, making exhaustive experimentation impractical. Here, we propose an approach based on reinforcement learning to derive optimal dynamic metabolic control policies by allowing an agent or controller to interact with a surrogate dynamic model $\textit{in silico}$. To incorporate and test robustness, we apply domain randomization, enabling the controller to generalize across system uncertainties. Our approach provides an alternative to conventional model-based control such as model predictive control, which requires differentiating the models with respect to decision variables; an often impractical task when dealing with complex stochastic, nonlinear, stiff, or piecewise-defined dynamics. In contrast, our approach only requires forward integration, making the task computationally much simpler with off-the-shelf solvers. We demonstrate our approach with a case study on the dynamic control of acetyl-CoA carboxylase in $\textit{Escherichia coli}$ for fatty acid biosynthesis. The derived dynamic metabolic control policies outperform static control, achieving up to 40 % higher titers while remaining robust under uncertainty.
Design and Validation of an Intention-Aware Probabilistic Framework for Trajectory Prediction: Integrating COLREGS, Grounding Hazards, and Planned Routes
Collision avoidance capability is an essential component in an autonomous vessel navigation system. To this end, an accurate prediction of dynamic obstacle trajectories is vital. Traditional approaches to trajectory prediction face limitations in generalizability and often fail to account for the intentions of other vessels. While recent research has considered incorporating the intentions of dynamic obstacles, these efforts are typically based on the own-ship's interpretation of the situation. The current state-of-the-art in this area is a Dynamic Bayesian Network (DBN) model, which infers target vessel intentions by considering multiple underlying causes and allowing for different interpretations of the situation by different vessels. However, since its inception, there have not been any significant structural improvements to this model. In this paper, we propose enhancing the DBN model by incorporating considerations for grounding hazards and vessel waypoint information. The proposed model is validated using real vessel encounters extracted from historical Automatic Identification System (AIS) data.
Intermodal Network of Autonomous Mobility-on-Demand and Micromobility Systems
This paper studies models for Autonomous Micromobility-on-Demand (AMoD), a paradigm in which a fleet of autonomous vehicles delivers mobility services on demand in conjunction with micromobility systems. Specifically, we introduce a network flow model to encapsulate the interaction between AMoD and micromobility under an intermodal connection scenario. The primary objective is to analyze the system's behavior, optimizing passenger travel time. Following this theoretical development, we apply these models to the transportation networks of Sioux Falls, enabling a quantifiable evaluation of the reciprocal influences between the two transportation modes. We found that increasing the number of vehicles in any of these two modes of transportation also incentivizes users to use the other. Moreover, increasing the rebalancing capacity of the micromobility system will make the AMoD system need less rebalancing.
comment: 7 pages, 5 figures, to be published in the proceedings of the 2025 33rd International Conference on Electrical Engineering (ICEE'2025) and will appear in IEEE Xplore
Stochastic Model Predictive Control of Charging Energy Hubs with Conformal Prediction
This paper presents an online energy management system for an energy hub where electric vehicles are charged combining on-site photovoltaic generation and battery energy storage with the power grid, with the objective to decide on the battery (dis)charging to minimize the costs of operation. To this end, we devise a scenario-based stochastic model predictive control (MPC) scheme that leverages probabilistic 24-hour-ahead forecasts of charging load, solar generation and day-ahead electricity prices to achieve a cost-optimal operation of the energy hub. The probabilistic forecasts leverage conformal prediction providing calibrated distribution-free confidence intervals starting from a machine learning model that generates no uncertainty quantification. We showcase our controller by running it over a 280-day evaluation in a closed-loop simulated environment to compare the observed cost of two scenario-based MPCs with two deterministic alternatives: a version with point forecast and a version with perfect forecast. Our results indicate that, compared to the perfect forecast implementation, our proposed scenario-based MPCs are 11\% more expensive, and 1\% better than their deterministic point-forecast counterpart.
In-Context Learning for Zero-Shot Speed Estimation of BLDC motors
Accurate speed estimation in sensorless brushless DC motors is essential for high-performance control and monitoring, yet conventional model-based approaches struggle with system nonlinearities and parameter uncertainties. In this work, we propose an in-context learning framework leveraging transformer-based models to perform zero-shot speed estimation using only electrical measurements. By training the filter offline on simulated motor trajectories, we enable real-time inference on unseen real motors without retraining, eliminating the need for explicit system identification while retaining adaptability to varying operating conditions. Experimental results demonstrate that our method outperforms traditional Kalman filter-based estimators, especially in low-speed regimes that are crucial during motor startup.
Adaptive Pricing for Optimal Coordination in Networked Energy Systems with Nonsmooth Cost Functions
Incentive-based coordination mechanisms for distributed energy consumption have shown promise in aligning individual user objectives with social welfare, especially under privacy constraints. Our prior work proposed a two-timescale adaptive pricing framework, where users respond to prices by minimizing their local cost, and the system operator iteratively updates the prices based on aggregate user responses. A key assumption was that the system cost need to smoothly depend on the aggregate of the user demands. In this paper, we relax this assumption by considering the more realistic model of where the cost are determined by solving a DCOPF problem with constraints. We present a generalization of the pricing update rule that leverages the generalized gradients of the system cost function, which may be nonsmooth due to the structure of DCOPF. We prove that the resulting dynamic system converges to a unique equilibrium, which solves the social welfare optimization problem. Our theoretical results provide guarantees on convergence and stability using tools from nonsmooth analysis and Lyapunov theory. Numerical simulations on networked energy systems illustrate the effectiveness and robustness of the proposed scheme.
Probabilistically safe and efficient model-based Reinforcement Learning
This paper proposes tackling safety-critical stochastic Reinforcement Learning (RL) tasks with a samplebased, model-based approach. At the core of the method lies a Model Predictive Control (MPC) scheme that acts as function approximation, providing a model-based predictive control policy. To ensure safety, a probabilistic Control Barrier Function (CBF) is integrated into the MPC controller. A sample-based approach with guarantees is employed to approximate the effects of stochasticies in the optimal control formulation and to guarantee the probabilistic CBF condition. A learnable terminal cost formulation is included in the MPC objective to counterbalance the additional computational burden due to sampling. An RL algorithm is deployed to learn both the terminal cost and the CBF constraint. Results from our numerical experiment on a constrained LTI problem corroborate the effectiveness of the proposed methodology in reducing computation time while preserving control performance and safety.
comment: 7 pages, 3 figures, submitted to 2025 CDC
New Insights into the Decidability of Opacity in Timed Automata
This paper investigates the decidability of opacity in timed automata (TA), a property that has been proven to be undecidable in general. First, we address a theoretical gap in recent work by J. An et al. (FM 2024) by providing necessary and sufficient conditions for the decidability of location-based opacity in TA. Based on these conditions, we identify a new decidable subclass of TA, called timed automata with integer resets (IRTA), where clock resets are restricted to occurring at integer time points. We also present a verification algorithm for opacity in IRTA. On the other hand, we consider achieving decidable timed opacity by weakening the capabilities of intruders. Specifically, we show that opacity in general TA becomes decidable under the assumption that intruders can only observe time in discrete units. These results establish theoretical foundations for modeling timed systems and intruders in security analysis, enabling an effective balance between expressiveness and decidability.
Contextualized Autonomous Drone Navigation using LLMs Deployed in Edge-Cloud Computing
Autonomous navigation is usually trained offline in diverse scenarios and fine-tuned online subject to real-world experiences. However, the real world is dynamic and changeable, and many environmental encounters/effects are not accounted for in real-time due to difficulties in describing them within offline training data or hard to describe even in online scenarios. However, we know that the human operator can describe these dynamic environmental encounters through natural language, adding semantic context. The research is to deploy Large Language Models (LLMs) to perform real-time contextual code adjustment to autonomous navigation. The challenge not evaluated in literature is what LLMs are appropriate and where should these computationally heavy algorithms sit in the computation-communication edge-cloud computing architectures. In this paper, we evaluate how different LLMs can adjust both the navigation map parameters dynamically (e.g., contour map shaping) and also derive navigation task instruction sets. We then evaluate which LLMs are most suitable and where they should sit in future edge-cloud of 6G telecommunication architectures.
Symmetry-based observers for ODE systems
In this paper we introduce an observer design framework for ordinary differential equation (ODE) systems based on various types of existing or even novel one-parameter symmetries (exact, asymptotic and variational) ending up with a certain number of semi-global and global observers, with bounded or unbounded system's solutions and with infinite- or finite-time convergence. We compare some of these symmetry-based observers with existing observers, recovering for instance the same performances of high-gain semiglobal observers and the finite-time convergence capabilities of sliding mode observers, while obtaining novel global observers where existing techniques are not able to provide any.
comment: 16 pages, submitted to journal
Carbon and Reliability-Aware Computing for Heterogeneous Data Centers
The rapid expansion of data centers (DCs) has intensified energy and carbon footprint, incurring a massive environmental computing cost. While carbon-aware workload migration strategies have been examined, existing approaches often overlook reliability metrics such as server lifetime degradation, and quality-of-service (QoS) that substantially affects both carbon and operational efficiency of DCs. Hence, this paper proposes a comprehensive optimization framework for spatio-temporal workload migration across distributed DCs that jointly minimizes operational and embodied carbon emissions while complying with service-level agreements (SLA). A key contribution is the development of an embodied carbon emission model based on servers' expected lifetime analysis, which explicitly considers server heterogeneity resulting from aging and utilization conditions. These issues are accommodated using new server dispatch strategies, and backup resource allocation model, accounting hardware, software and workload-induced failure. The overall model is formulated as a mixed-integer optimization problem with multiple linearization techniques to ensure computational tractability. Numerical case studies demonstrate that the proposed method reduces total carbon emissions by up to 21%, offering a pragmatic approach to sustainable DC operations.
comment: The manuscript has been submitted for review to IEEE Transactions on Smart Grid
Perturbation-Based Pinning Control Strategy for Enhanced Synchronization in Complex Networks
Synchronization is essential for the stability and coordinated operation of complex networked systems. Pinning control, which selectively controls a subset of nodes, provides a scalable solution to enhance network synchronizability. However, existing strategies face key limitations: heuristic centrality-based methods lack a direct connection to synchronization dynamics, while spectral approaches, though effective, are computationally intensive. To address these challenges, we propose a perturbation-based optimized strategy (PBO) that dynamically evaluates each node's spectral impact on the Laplacian matrix, achieving improved synchronizability with significantly reduced computational costs (with complexity O(kM)). Extensive experiments demonstrate that the proposed method outperforms traditional strategies in synchronizability, convergence rate, and pinning robustness to node failures. Notably, in all the empirical networks tested and some generated networks, PBO significantly outperforms the brute-force greedy strategy, demonstrating its ability to avoid local optima and adapt to complex connectivity patterns. Our study establishes the theoretical relationship between network synchronizability and convergence rate, offering new insights into efficient synchronization strategies for large-scale complex networks.
comment: 26 pages, 6 figures
Aggregate Flexibility of Thermostatically Controlled Loads using Generalized Polymatroids
Leveraging populations of thermostatically controlled loads could provide vast storage capacity to the grid. To realize this potential, their flexibility must be accurately aggregated and represented to the system operator as a single, controllable virtual device. Mathematically this is computed by calculating the Minkowski sum of the individual flexibility of each of the devices. Previous work showed how to exactly characterize the flexibility of lossless storage devices as generalized polymatroids-a family of polytope that enable an efficient computation of the Minkowski sum. In this paper we build on these results to encompass devices with dissipative storage dynamics. In doing so we are able to provide tractable methods of accurately characterizing the flexibility in populations consisting of a variety of heterogeneous devices. Numerical results demonstrate that the proposed characterizations are tight.
Learning-Based Approximate Nonlinear Model Predictive Control Motion Cueing
Motion Cueing Algorithms (MCAs) encode the movement of simulated vehicles into movement that can be reproduced with a motion simulator to provide a realistic driving experience within the capabilities of the machine. This paper introduces a novel learning-based MCA for serial robot-based motion simulators. Building on the differentiable predictive control framework, the proposed method merges the advantages of Nonlinear Model Predictive Control (NMPC) - notably nonlinear constraint handling and accurate kinematic modeling - with the computational efficiency of machine learning. By shifting the computational burden to offline training, the new algorithm enables real-time operation at high control rates, thus overcoming the key challenge associated with NMPC-based motion cueing. The proposed MCA incorporates a nonlinear joint-space plant model and a policy network trained to mimic NMPC behavior while accounting for joint acceleration, velocity, and position limits. Simulation experiments across multiple motion cueing scenarios showed that the proposed algorithm performed on par with a state-of-the-art NMPC-based alternative in terms of motion cueing quality as quantified by the RMSE and correlation coefficient with respect to reference signals. However, the proposed algorithm was on average 400 times faster than the NMPC baseline. In addition, the algorithm successfully generalized to unseen operating conditions, including motion cueing scenarios on a different vehicle and real-time physics-based simulations.
Egocentric Conformal Prediction for Safe and Efficient Navigation in Dynamic Cluttered Environments
Conformal prediction (CP) has emerged as a powerful tool in robotics and control, thanks to its ability to calibrate complex, data-driven models with formal guarantees. However, in robot navigation tasks, existing CP-based methods often decouple prediction from control, evaluating models without considering whether prediction errors actually compromise safety. Consequently, ego-vehicles may become overly conservative or even immobilized when all potential trajectories appear infeasible. To address this issue, we propose a novel CP-based navigation framework that responds exclusively to safety-critical prediction errors. Our approach introduces egocentric score functions that quantify how much closer obstacles are to a candidate vehicle position than anticipated. These score functions are then integrated into a model predictive control scheme, wherein each candidate state is individually evaluated for safety. Combined with an adaptive CP mechanism, our framework dynamically adjusts to changes in obstacle motion without resorting to unnecessary conservatism. Theoretical analyses indicate that our method outperforms existing CP-based approaches in terms of cost-efficiency while maintaining the desired safety levels, as further validated through experiments on real-world datasets featuring densely populated pedestrian environments.
Interpreting and Improving Optimal Control Problems with Directional Corrections
Many robotics tasks, such as path planning or trajectory optimization, are formulated as optimal control problems (OCPs). The key to obtaining high performance lies in the design of the OCP's objective function. In practice, the objective function consists of a set of individual components that must be carefully modeled and traded off such that the OCP has the desired solution. It is often challenging to balance multiple components to achieve the desired solution and to understand, when the solution is undesired, the impact of individual cost components. In this paper, we present a framework addressing these challenges based on the concept of directional corrections. Specifically, given the solution to an OCP that is deemed undesirable, and access to an expert providing the direction of change that would increase the desirability of the solution, our method analyzes the individual cost components for their "consistency" with the provided directional correction. This information can be used to improve the OCP formulation, e.g., by increasing the weight of consistent cost components, or reducing the weight of - or even redesigning - inconsistent cost components. We also show that our framework can automatically tune parameters of the OCP to achieve consistency with a set of corrections.
comment: Paper accepted for publication at IEEE Robotics and Automation Letters (RA-L)
Control Barrier Function Synthesis for Nonlinear Systems with Dual Relative Degree
Control barrier functions (CBFs) are a powerful tool for synthesizing safe control actions; however, constructing CBFs remains difficult for general nonlinear systems. In this work, we provide a constructive framework for synthesizing CBFs for systems with dual relative degree -- where different inputs influence the outputs at two different orders of differentiation; this is common in systems with orientation-based actuation, such as unicycles and quadrotors. In particular, we propose dual relative degree CBFs (DRD-CBFs) and show that these DRD-CBFs can be constructively synthesized and used to guarantee system safety. Our method constructs DRD-CBFs by leveraging the dual relative degree property -- combining a CBF for an integrator chain with a Lyapunov function certifying the tracking of safe inputs generated for this linear system. We apply these results to dual relative degree systems, both in simulation and experimentally on hardware using quadruped and quadrotor robotic platforms.
Robust Continuous-Time Generation Scheduling under Power Demand Uncertainty: An Affine Decision Rule Approach
Most existing generation scheduling models for power systems under demand uncertainty rely on energy-based formulations with a finite number of time periods, which may fail to ensure that power supply and demand are balanced continuously over time. To address this issue, we propose a robust generation scheduling model in a continuous-time framework, employing a decision rule approach. First, for a given set of demand trajectories, we formulate a general robust generation scheduling problem to determine a decision rule that maps these demand trajectories and time points to the power outputs of generators. Subsequently, we derive a surrogate of it as our model by carefully designing a class of decision rules that are affine in the current demand, with coefficients invariant over time and constant terms that are continuous piecewise affine functions of time. As a result, our model can be recast as a finite-dimensional linear program to determine the coefficients and the function values of the constant terms at each breakpoint, solvable via the cutting-plane method. Our model is non-anticipative unlike most existing continuous-time models, which use Bernstein polynomials, making it more practical. We also provide illustrative numerical examples.
comment: 9 pages, 4 figures
Integrated LLM-Based Intrusion Detection with Secure Slicing xApp for Securing O-RAN-Enabled Wireless Network Deployments
The Open Radio Access Network (O-RAN) architecture is reshaping telecommunications by promoting openness, flexibility, and intelligent closed-loop optimization. By decoupling hardware and software and enabling multi-vendor deployments, O-RAN reduces costs, enhances performance, and allows rapid adaptation to new technologies. A key innovation is intelligent network slicing, which partitions networks into isolated slices tailored for specific use cases or quality of service requirements. The RAN Intelligent Controller further optimizes resource allocation, ensuring efficient utilization and improved service quality for user equipment (UEs). However, the modular and dynamic nature of O-RAN expands the threat surface, necessitating advanced security measures to maintain network integrity, confidentiality, and availability. Intrusion detection systems have become essential for identifying and mitigating attacks. This research explores using large language models (LLMs) to generate security recommendations based on the temporal traffic patterns of connected UEs. The paper introduces an LLM-driven intrusion detection framework and demonstrates its efficacy through experimental deployments, comparing non fine-tuned and fine-tuned models for task-specific accuracy.
comment: This article has been accepted for publication in the IEEE 2025 International Conference on Communications (ICC2025)
A Hybrid Systems Model of Feedback Optimization for Linear Systems
Feedback optimization algorithms compute inputs to a system in real time, which helps mitigate the effects of unknown disturbances. However, existing work models both system dynamics and computations in either discrete or continuous time, which does not faithfully model some applications. In this work, we model linear system dynamics in continuous time, and we model the computations of inputs in discrete time. Therefore, we present a novel hybrid systems framework for modeling feedback optimization of linear time-invariant systems that are subject to unknown, constant disturbances. For this setup, we first establish the well-posedness of the hybrid model and establish completeness of solutions while ruling out Zeno behavior. Then, our main result derives a convergence rate and an error bound for the full hybrid computation-in-theloop system and shows that it converges exponentially towards a ball of known radius about a desired fixed point. Simulation results show that this approach successfully mitigates the effects of disturbances, with the magnitude of steady-state error being 81% less than the magnitude of the disturbances in the system.
comment: 14 Pages, 3 Figures, submitted to Conference on Decision and Control 2025
An Iterative Algorithm to Symbolically Derive Generalized n-Trailer Vehicle Kinematics
Articulated multi-axle vehicles are interesting from a control-theoretic perspective due to their peculiar kinematic offtracking characteristics, instability modes, and singularities. Holonomic and nonholonomic constraints affecting the kinematic behavior is investigated in order to develop control-oriented kinematic models representative of these peculiarities. Then, the structure of these constraints is exploited to develop an iterative algorithm to symbolically derive yaw-plane kinematic models of generalized $n$-trailer articulated vehicles with an arbitrary number of multi-axle vehicle units. A formal proof is provided for the maximum number of kinematic controls admissible to a large-scale generalized articulated vehicle system, which leads to a generalized Ackermann steering law for $n$-trailer systems. Moreover, kinematic data collected from a test vehicle is used to validate the kinematic models and, to understand the rearward yaw rate amplification behavior of the vehicle pulling multiple simulated trailers.
Inverted Gaussian Process Optimization for Nonparametric Koopman Operator Discovery
The Koopman Operator Theory opens the door for application of rich linear systems theory for computationally efficient modeling and optimal control of nonlinear systems by providing a globally linear representation for complex nonlinear systems. However, methodologies for Koopman Operator discovery struggle with the dependency on the set of selected observable functions and meaningful uncertainty quantification. The primary objective of this work is to leverage Gaussian process regression (GPR) to develop a probabilistic Koopman linear model while removing the need for heuristic observable specification. In this work, we present inverted Gaussian process optimization based Koopman Operator learning (iGPK), an automatic differentiation-based approach to simultaneously learn the observable-operator combination. We show that the proposed iGPK method is robust to observation noise in the training data, while also providing good uncertainty quantification, such that the predicted distribution consistently encapsulates the ground truth, even for noisy training data.
Off-Policy Evaluation for Sequential Persuasion Process with Unobserved Confounding
In this paper, we expand the Bayesian persuasion framework to account for unobserved confounding variables in sender-receiver interactions. While traditional models assume that belief updates follow Bayesian principles, real-world scenarios often involve hidden variables that impact the receiver's belief formation and decision-making. We conceptualize this as a sequential decision-making problem, where the sender and receiver interact over multiple rounds. In each round, the sender communicates with the receiver, who also interacts with the environment. Crucially, the receiver's belief update is affected by an unobserved confounding variable. By reformulating this scenario as a Partially Observable Markov Decision Process (POMDP), we capture the sender's incomplete information regarding both the dynamics of the receiver's beliefs and the unobserved confounder. We prove that finding an optimal observation-based policy in this POMDP is equivalent to solving for an optimal signaling strategy in the original persuasion framework. Furthermore, we demonstrate how this reformulation facilitates the application of proximal learning for off-policy evaluation in the persuasion process. This advancement enables the sender to evaluate alternative signaling strategies using only observational data from a behavioral policy, thus eliminating the necessity for costly new experiments.
comment: 8 pages, 4 Figures
System Identification and Adaptive Input Estimation on the Jaiabot Micro Autonomous Underwater Vehicle
This paper reports an attempt to model the system dynamics and estimate both the unknown internal control input and the state of a recently developed marine autonomous vehicle, the Jaiabot. Although the Jaiabot has shown promise in many applications, process and sensor noise necessitates state estimation and noise filtering. In this work, we present the first surge and heading linear dynamical model for Jaiabots derived from real data collected during field testing. An adaptive input estimation algorithm is implemented to accurately estimate the control input and hence the state. For validation, this approach is compared to the classical Kalman filter, highlighting its advantages in handling unknown control inputs.
comment: 9 pages, 8 figures
Minimally Conservative Controlled-Invariant Set Synthesis Using Control Barrier Certificates
Finding a controlled-invariant set for a system with state and control constraints is crucial for safety-critical applications. However, existing methods often produce overly conservative solutions. This paper presents a method for generating controlled-invariant (safe) sets for nonlinear polynomial control-affine systems using Control Barrier Certificates (CBCs). We formulate CBC conditions as Sum-of-Squares (SOS) constraints and solve them via an SOS Program (SOSP). First, we generalize existing SOSPs for CBC synthesis to handle environments with complex unsafe state representations. Then, we propose an iterative algorithm that progressively enlarges the safe set constructed by the synthesized CBCs by maximizing boundary expansion at each iteration. We theoretically prove that our method guarantees strict safe set expansion at every step. Finally, we validate our approach with numerical simulations in 2D and 3D for single-input and multi-input systems. Empirical results show that the safe set generated by our method covers in most part a larger portion of the state space compared to two state-of-the-art techniques.
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
PDEs with periodic boundary conditions are frequently used to model processes in large spatial environments, assuming solutions to extend periodically beyond some bounded interval. However, for 2nd order PDEs with periodic boundary conditions, the nullspace of the differential operator $\frac{\partial^2}{\partial x^2}$ is nontrivial on the PDE domain, and solutions may converge to non-stationary trajectories existing in this nullspace. To test this convergence behaviour, in this paper, it is shown how we can model these trajectories for a broad class of linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions, using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any function $\mathbf{u}(t)$ in the PDE domain can be decomposed into a component defined by $\mathbf{u}_{xx}(t)$, and a component $\bar{\mathbf{u}}(t)$ existing in the nullspace of $\frac{\partial^2}{\partial x^2}$. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both $\mathbf{u}_{xx}(t)$ and $\bar{\mathbf{u}}(t)$. Finally, a notion of exponential stability is defined for trajectories $\mathbf{u}^*(t)=\bar{\mathbf{u}}(t)$, and it is shown that stability of these trajectories as well as of the equilibrium $\mathbf{u}^*\equiv0$ can be tested by solving a linear operator inequality. The proposed methodology is applied to two examples, demonstrating that stability can be verified with tight bounds on the rate of exponential decay.
Analysis and Optimization of Robustness in Multiplex Flow Networks Against Cascading Failures
Networked systems are susceptible to cascading failures, where the failure of an initial set of nodes propagates through the network, often leading to system-wide failures. In this work, we propose a multiplex flow network model to study robustness against cascading failures triggered by random failures. The model is inspired by systems where nodes carry or support multiple types of flows, and failures result in the redistribution of flows within the same layer rather than between layers. To represent different types of interdependencies between the layers of the multiplex network, we define two cases of failure conditions: layer-independent overload and layer-influenced overload. We provide recursive equations and their solutions to calculate the steady-state fraction of surviving nodes, validate them through a set of simulation experiments, and discuss optimal load-capacity allocation strategies. Our results demonstrate that allocating the total excess capacity to each layer proportional to the mean effective load in the layer and distributing that excess capacity equally among the nodes within the layer ensures maximum robustness. The proposed framework for different failure conditions allows us to analyze the two overload conditions presented and can be extended to explore more complex interdependent relationships.
Routing Guidance for Emerging Transportation Systems with Improved Dynamic Trip Equity
In this paper, we present a dynamic routing guidance system that optimizes route recommendations for individual vehicles within an emerging transportation system while enhancing travelers' trip equity. We develop a framework to quantify trip quality and equity in a dynamic travel environment, providing new insights into how routing guidance influences equity in road transportation. Our approach enables real-time routing by incorporating both monitored and anticipated traffic congestion. We provide conditions that ensure achieving perfect trip equity for all travelers in a free-flow network. Finally, simulation studies on 1,000 vehicles traversing an urban road network in Boston demonstrate that our proposed method improves trip equity by approximately 11.4\% compared to the shortest-route strategy. In addition, the results reveal that our approach redistributes travel costs across vehicle types through route optimization, contributing to a more equitable transportation system.
Design, Implementation and Practical Energy-Efficiency Evaluation of a Blockchain Based Academic Credential Verification System for Low-Power Nodes
The educational system manages extensive documentation and paperwork, which can lead to human errors and sometimes abuse or fraud, such as the falsification of diplomas, certificates or other credentials. In fact, in the last years, multiple cases of fraud have been detected, which have a significant cost to society, since they harm the trustworthiness of certificates and academic institutions. To tackle such an issue, this article proposes a solution aimed at recording and verifying academic records through a decentralized application that is supported by a smart contract deployed in the Ethereum blockchain and by a decentralized storage system based on Inter-Planetary File System (IPFS). The proposed solution is evaluated in terms of performance and energy-efficiency, comparing the results obtained with a traditional Proof-of-Work (PoW) consensus protocol and the new Proof-of-Authority (PoA) protocol. The results shown in this paper indicate that the latter is clearly greener and demands less CPU load. Moreover, this article compares the performance of a traditional computer and two SBCs (a Raspberry Pi 4 and an Orange Pi One), showing that is possible to make use of the latter low-power devices to implement blockchain nodes but at the cost of higher response latency. Furthermore, the impact of Ethereum gas limit is evaluated, demonstrating its significant influence on the blockchain network performance. Thus, this article provides guidelines, useful practical evaluations and key findings that will help the next generation of green blockchain developers and researchers.
Gaussian Processes with Noisy Regression Inputs for Dynamical Systems
This paper is centered around the approximation of dynamical systems by means of Gaussian processes. To this end, trajectories of such systems must be collected to be used as training data. The measurements of these trajectories are typically noisy, which implies that both the regression inputs and outputs are corrupted by noise. However, most of the literature considers only noise in the regression outputs. In this paper, we show how to account for the noise in the regression inputs in an extended Gaussian process framework to approximate scalar and multidimensional systems. We demonstrate the potential of our framework by comparing it to different state-of-the-art methods in several simulation examples.
comment: 6 pages
Harmonic model predictive control for tracking sinusoidal references and its application to trajectory tracking
Harmonic model predictive control (HMPC) is a recent model predictive control (MPC) formulation for tracking piece-wise constant references that includes a parameterized artificial harmonic reference as a decision variable, resulting in an increased performance and domain of attraction with respect to other MPC formulations. This article presents an extension of the HMPC formulation to track periodic harmonic/sinusoidal references and discusses its use for tracking arbitrary trajectories. The proposed formulation inherits the benefits of its predecessor, namely its good performance and large domain of attraction when using small prediction horizons, and that the complexity of its optimization problem does not depend on the period of the reference. We show closed-loop results discussing its performance and comparing it to other MPC formulations.
comment: Accepted version of the article published in IEEE Transactions on Automatic Control (8 pages, 5 figures)
Data-Efficient Extremum-Seeking Control Using Kernel-Based Function Approximation
Existing extremum-seeking control (ESC) approaches typically rely on applying repeated perturbations to input parameters and performing measurements of the corresponding performance output. The required separation between the different timescales in the ESC loop means that performing these measurements can be time-consuming. Moreover, performing these measurements can be costly in practice, e.g., due to the use of resources. With these challenges in mind, it is desirable to reduce the number of measurements needed to optimize performance. Therefore, in this work, we present a sampled-data ESC approach aimed at reducing the number of measurements that need to be performed. In the proposed approach, we use input-output data obtained during regular operation of the extremum-seeking controller to construct online an approximation of the system's underlying cost function. By using this approximation to perform parameter updates when a decrease in the cost can be guaranteed, instead of performing additional measurements to perform this update, we make more efficient use of data collected during regular operation of the extremum-seeking controller. As a result, we indeed obtain a reduction in the required number of measurements to achieve optimization. We provide a stability analysis of the novel sampled-data ESC approach, and demonstrate the benefits of the synergy between kernel-based function approximation and standard ESC in simulation on a multi-input dynamical system.
comment: 16 pages, 5 figures, extended version of the paper submitted to Automatica
Minimal positive Markov realizations
Finding a positive state-space realization with the minimum dimension for a given transfer function is an open problem in control theory. In this paper, we focus on positive realizations in Markov form and propose a linear programming approach that computes them with a minimum dimension. Such minimum dimension of positive Markov realizations is an upper bound of the minimal positive realization dimension. However, we show that these two dimensions are equal for certain systems.
Non-overshooting output shaping for switched linear systems under arbitrary switching using eigenstructure assignment
We consider the analytical control design for a pair of switched linear multiple-input multiple-output (MIMO) systems that are subject to arbitrary switching signals. A state feedback controller design method is proposed to obtain an eigenstructure assignment that ensures that the closed-loop switched system is globally asymptotically stable, and the outputs achieve the non-overshooting tracking of a step reference. Our analysis indicates whether non-overshooting or even monotonic tracking is achievable for the given system and considered outputs and provides a choice of possible eigenstructures to be assigned to the constituent subsystems. We derive a structural condition that verifies the feasibility of the chosen assignment. A constructive algorithm to obtain suitable feedback matrices is provided, and the method is illustrated with numerical examples.
1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such \emph{huge} MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs. The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
comment: Extended version of the paper accepted at VMCAI 2025
Designing Heterogeneous GNNs with Desired Permutation Properties for Wireless Resource Allocation
Graph neural networks (GNNs) have been designed for learning a variety of wireless policies, i.e., the mappings from environment parameters to decision variables, thanks to their superior performance, and the potential in enabling scalability and size generalizability. These merits are rooted in leveraging permutation prior, i.e., satisfying the permutation property of the policy to be learned (referred to as desired permutation property). Many wireless policies are with complicated permutation properties. To satisfy these properties, heterogeneous GNNs (HetGNNs) should be used to learn such policies. There are two critical factors that enable a HetGNN to satisfy a desired permutation property: constructing an appropriate heterogeneous graph and judiciously designing the architecture of the HetGNN. However, both the graph and the HetGNN are designed heuristically so far. In this paper, we strive to provide a systematic approach for the design to satisfy the desired permutation property. We first propose a method for constructing a graph for a policy, where the edges and their types are defined for the sake of satisfying complicated permutation properties. Then, we provide and prove three sufficient conditions to design a HetGNN such that it can satisfy the desired permutation property when learning over an appropriate graph. These conditions suggest a method of designing the HetGNN with desired permutation property by sharing the processing, combining, and pooling functions according to the types of vertices and edges of the graph. We take power allocation and hybrid precoding policies as examples for demonstrating how to apply the proposed methods and validating the impact of the permutation prior by simulations.
Markov $α$-Potential Games
We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
comment: 33 pages, 5 figures
Decentralized State Estimation and Opacity Verification Based on Partially Ordered Observation Sequences
In this paper, we investigate state estimation and opacity verification problems within a decentralized observation architecture. Specifically, we consider a discrete event system whose behavior is recorded by a set of observation sites. These sites transmit the partially ordered sequences of observations that they record to a coordinator whenever a \textit{synchronization} occurs. To properly analyze the system behavior from the coordinator's viewpoint, we first introduce the notion of a Complete Synchronizing Sequence structure (CSS structure), which concisely captures the state evolution of each system state upon different information provided by the observation sites. Based on the CSS structure, we then construct corresponding current-state and initial-state estimators for offline state estimation at the coordinator. When used to verify state-isolation properties under this decentralized architecture, the use of CSS structure demonstrates a significant reduction in complexity compared with existing approaches in the literature. In particular, we discuss how to verify initial-state opacity at the coordinator, as well as a novel opacity notion, namely current-state-at-synchronization opacity.
Battery Operations in Electricity Markets: Strategic Behavior and Distortions
Electric power systems are undergoing a major transformation as they integrate intermittent renewable energy sources, and batteries to smooth out variations in renewable energy production. As privately-owned batteries grow from their role as marginal "price-takers" to significant players in the market, a natural question arises: How do batteries operate in electricity markets, and how does the strategic behavior of decentralized batteries distort decisions compared to centralized batteries? We propose an analytically tractable model that captures salient features of the highly complex electricity market. We derive in closed form the resulting battery behavior and generation cost in three operating regimes: (i) no battery, (ii) centralized battery, and (ii) decentralized profit-maximizing battery. We establish that a decentralized battery distorts its discharge decisions in three ways. First, there is quantity withholding, i.e., discharging less than centrally optimal. Second, there is a shift in participation from day-ahead to real-time, i.e., postponing some of its discharge from day-ahead to real-time. Third, there is reduction in real-time responsiveness, or discharging less in response to smoothing real-time demand than centrally optimal. We also quantify the impact of the battery market power on total system cost via the Price of Anarchy metric, and prove that the it is always between $9/8$ and $4/3$. That is, incentive misalignment always exists, but it is bounded even in the worst case. We calibrate our model to real data from Los Angeles and Houston. Lastly, we show that competition is very effective at reducing distortions, but many market power mitigation mechanisms backfire, and lead to higher total cost.
Independent and Decentralized Learning in Markov Potential Games
We study a multi-agent reinforcement learning dynamics, and analyze its asymptotic behavior in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players do not know the game parameters, and cannot communicate or coordinate. In each stage, players update their estimate of Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating an optimal one-stage deviation strategy based on the estimated Q-function. Inspired by the actor-critic algorithm in single-agent reinforcement learning, a key feature of our learning dynamics is that agents update their Q-function estimates at a faster timescale than the policies. Leveraging tools from two-timescale asynchronous stochastic approximation theory, we characterize the convergent set of learning dynamics.
comment: 43 pages, 1 figure
Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games
Markov games provide a powerful framework for modeling strategic multi-agent interactions in dynamic environments. Traditionally, convergence properties of decentralized learning algorithms in these settings have been established only for special cases, such as Markov zero-sum and potential games, which do not fully capture real-world interactions. In this paper, we address this gap by studying the asymptotic properties of learning algorithms in general-sum Markov games. In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic with asynchronous step sizes. This decentralized approach enables agents to operate independently, without requiring knowledge of others' strategies or payoffs. We introduce the concept of a Markov Near-Potential Function (MNPF) and demonstrate that it serves as an approximate Lyapunov function for the policy updates in the decentralized learning dynamics, which allows us to characterize the convergent set of strategies. We further strengthen our result under specific regularity conditions and with finite Nash equilibria.
comment: 18 pages, 3 figure
Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
Fast-Converged Deep Reinforcement Learning for Optimal Dispatch of Large-Scale Power Systems under Transient Security Constraints
Power system optimal dispatch with transient security constraints is commonly represented as Transient Security-Constrained Optimal Power Flow (TSC-OPF). Deep Reinforcement Learning (DRL)-based TSC-OPF trains efficient decision-making agents that are adaptable to various scenarios and provide solution results quickly. However, due to the high dimensionality of the state space and action spaces, as well as the non-smoothness of dynamic constraints, existing DRL-based TSC-OPF solution methods face a significant challenge of the sparse reward problem. To address this issue, a fast-converged DRL method for TSC-OPF is proposed in this paper. The Markov Decision Process (MDP) modeling of TSC-OPF is improved by reducing the observation space and smoothing the reward design, thus facilitating agent training. An improved Deep Deterministic Policy Gradient algorithm with Curriculum learning, Parallel exploration, and Ensemble decision-making (DDPG-CPEn) is introduced to drastically enhance the efficiency of agent training and the accuracy of decision-making. The effectiveness, efficiency, and accuracy of the proposed method are demonstrated through experiments in the IEEE 39-bus system and a practical 710-bus regional power grid. The source code of the proposed method is made public on GitHub.
comment: 12 pages, 12 figures
Stochastic Reservoir Computers
Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Many recent advancements in reservoir computing, in particular quantum reservoir computing, make use of reservoirs that are inherently stochastic. However, the theoretical justification for using these systems has not yet been well established. In this paper, we investigate the universality of stochastic reservoir computers, in which we use a stochastic system for reservoir computing using the probabilities of each reservoir state as the readout instead of the states themselves. In stochastic reservoir computing, the number of distinct states of the entire reservoir computer can potentially scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks, and therefore the class of all stochastic reservoir computers, are universal approximating classes. We also investigate the performance of two practical examples of stochastic reservoir computers in classification and chaotic time series prediction. While shot noise is a limiting factor in the performance of stochastic reservoir computing, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware in cases where the effects of noise are small.
comment: 34 pages, 8 figures
Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles
This article introduces XPLORER, a passive deformable UAV with a spring-augmented chassis and proprioceptive state awareness, designed to endure collisions and maintain smooth contact. We develop a fast-converging external force estimation algorithm for XPLORER that leverages onboard sensors and proprioceptive data for contact and collision detection. Using this force information, we propose four motion primitives, including three novel tactile-based primitives: tactile-traversal, tactile-turning, and ricocheting-to aid XPLORER in navigating unknown environments. These primitives are synthesized autonomously in real-time to enable efficient exploration and navigation by leveraging collisions and contacts. Experimental results demonstrate the effectiveness of our approach, highlighting the potential of passive deformable UAVs for contact-rich real-world tasks such as non-destructive inspection, surveillance and mapping, and pursuit/evasion.
Towards a Blockchain and Opportunistic Edge Driven Metaverse of Everything
Decentralized Metaverses, built on Web 3.0 and Web 4.0 technologies, have attracted significant attention across various fields. This innovation leverages blockchain, Decentralized Autonomous Organizations (DAOs), Extended Reality (XR) and advanced technologies to create immersive and interconnected digital environments that mirror the real world. This article delves into the Metaverse of Everything (MoE), a platform that fuses the Metaverse concept with the Internet of Everything (IoE), an advanced version of the Internet of Things (IoT) that connects not only physical devices but also people, data and processes within a networked environment. Thus, the MoE integrates generated data and virtual entities, creating an extensive network of interconnected components. This article seeks to advance current MoE, examining decentralization and the application of Opportunistic Edge Computing (OEC) for interactions with surrounding IoT devices and IoE entities. Moreover, it outlines the main challenges to guide researchers and businesses towards building a future cyber-resilient opportunistic MoE.
Multiagent Systems
An Agent-based Model Simulation Approach to Demonstrate Effects of Aging Population and Social Service Policies on Pensions Fund and Its Long-term Socio-economic Consequences
Agent-based modeling (ABM) has emerged as a powerful tool in social policy-making and socio-economics, offering a flexible and dynamic approach to understanding and simulating complex systems. While traditional analytic methods may be less effective in unpredictable situations, ABM can provide valuable support for policy-making by generating large ensembles of scenarios and evaluating adaptive policies. This approach has been applied in various fields, including economics, management, sociology, and politics, and has the potential to deepen our understanding of economic policy in the cooperative sector.
comment: Thesis for Bachelor of Science degree in Industrial Engineering, University of Tehran
First Field-Trial Demonstration of L4 Autonomous Optical Network for Distributed AI Training Communication: An LLM-Powered Multi-AI-Agent Solution
We demonstrate the first cross-domain cross-layer level-4 autonomous optical network via a multi-AI-agent system. Field trials show 98 percent task completion rate across the distributed AI training lifecycle-3.2x higher than single agents using state-of-the-art LLMs.
comment: Submitted to the PDP session of the Optical Fiber Communications Conference (OFC) 2025
Remember, but also, Forget: Bridging Myopic and Perfect Recall Fairness with Past-Discounting
Dynamic resource allocation in multi-agent settings often requires balancing efficiency with fairness over time--a challenge inadequately addressed by conventional, myopic fairness measures. Motivated by behavioral insights that human judgments of fairness evolve with temporal distance, we introduce a novel framework for temporal fairness that incorporates past-discounting mechanisms. By applying a tunable discount factor to historical utilities, our approach interpolates between instantaneous and perfect-recall fairness, thereby capturing both immediate outcomes and long-term equity considerations. Beyond aligning more closely with human perceptions of fairness, this past-discounting method ensures that the augmented state space remains bounded, significantly improving computational tractability in sequential decision-making settings. We detail the formulation of discounted-recall fairness in both additive and averaged utility contexts, illustrate its benefits through practical examples, and discuss its implications for designing balanced, scalable resource allocation strategies.
An Investigation into the Causal Mechanism of Political Opinion Dynamics: A Model of Hierarchical Coarse-Graining with Community-Bounded Social Influence
Increasing polarization in democratic societies is an emergent outcome of political opinion dynamics. Yet, the fundamental mechanisms behind the formation of political opinions, from individual beliefs to collective consensus, remain unknown. Understanding that a causal mechanism must account for both bottom-up and top-down influences, we conceptualize political opinion dynamics as hierarchical coarse-graining, where microscale opinions integrate into a macro-scale state variable. Using the CODA (Continuous Opinions Discrete Actions) model, we simulate Bayesian opinion updating, social identity-based information integration, and migration between social identity groups to represent higher-level connectivity. This results in coarse-graining across micro, meso, and macro levels. Our findings show that higher-level connectivity shapes information integration, yielding three regimes: independent (disconnected, local convergence), parallel (fast, global convergence), and iterative (slow, stepwise convergence). In the iterative regime, low connectivity fosters transient diversity, indicating an informed consensus. In all regimes, time-scale separation leads to downward causation, where agents converge on the aggregate majority choice, driving consensus. Critically, any degree of coherent higher-level information integration can overcome misalignment via global downward causation. The results highlight how emergent properties of the causal mechanism, such as downward causation, are essential for consensus and may inform more precise investigations into polarized political discourse.
comment: This is a draft of a chapter forthcoming in Computational Social Science of Social Cohesion and Polarization, edited by Marijn Keijzer, Jan Lorenz and Michal Bojanowski
Provably Stable Multi-Agent Routing with Bounded-Delay Adversaries in the Decision Loop
In this work, we are interested in studying multi-agent routing settings, where adversarial agents are part of the assignment and decision loop, degrading the performance of the fleet by incurring bounded delays while servicing pickup-and-delivery requests. Specifically, we are interested in characterizing conditions on the fleet size and the proportion of adversarial agents for which a routing policy remains stable, where stability for a routing policy is achieved if the number of outstanding requests is uniformly bounded over time. To obtain this characterization, we first establish a threshold on the proportion of adversarial agents above which previously stable routing policies for fully cooperative fleets are provably unstable. We then derive a sufficient condition on the fleet size to recover stability given a maximum proportion of adversarial agents. We empirically validate our theoretical results on a case study on autonomous taxi routing, where we consider transportation requests from real San Francisco taxicab data.
comment: 14 pages, 4 figures
Personality-Driven Decision-Making in LLM-Based Autonomous Agents AAMAS 2025
The embedding of Large Language Models (LLMs) into autonomous agents is a rapidly developing field which enables dynamic, configurable behaviours without the need for extensive domain-specific training. In our previous work, we introduced SANDMAN, a Deceptive Agent architecture leveraging the Five-Factor OCEAN personality model, demonstrating that personality induction significantly influences agent task planning. Building on these findings, this study presents a novel method for measuring and evaluating how induced personality traits affect task selection processes - specifically planning, scheduling, and decision-making - in LLM-based agents. Our results reveal distinct task-selection patterns aligned with induced OCEAN attributes, underscoring the feasibility of designing highly plausible Deceptive Agents for proactive cyber defense strategies.
comment: 10 pages, 8 figures. To be included in Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
Simulation of Autonomous Industrial Vehicle Fleet Using Fuzzy Agents: Application to Task Allocation and Battery Charge Management
The research introduces a multi-agent simulation that uses fuzzy inference to investigate the work distribution and battery charging control of mobile baggage conveyor robots in an airport in a comprehensive manner. Thanks to a distributed system, this simulation approach provides high adaptability, adjusting to changes in conveyor agent availability, battery capacity, awareness of the activities of the conveyor fleet, and knowledge of the context of infrastructure resource availability. Dynamic factors, such as workload variations and communication between the conveyor agents and infrastructure are considered as heuristics, highlighting the importance of flexible and collaborative approaches in autonomous systems. The results highlight the effectiveness of adaptive fuzzy multi-agent models to optimize dynamic task allocation, adapt to the variation of baggage arrival flows, improve the overall operational efficiency of conveyor agents, and reduce their energy consumption.
Asynchronous Multi-Agent Systems with Petri nets
Modeling the interaction between components is crucial for many applications and serves as a fundamental step in analyzing and verifying properties in multi-agent systems. In this paper, we propose a method based on 1-safe Petri nets to model Asynchronous Multi-Agent Systems (AMAS), starting from two semantics defined on AMAS represented as transition systems. Specifically, we focus on two types of synchronization: synchronization on transitions and synchronization on data. For both, we define an operator that composes 1-safe Petri nets and demonstrate the relationships between the composed Petri net and the global transition systems as defined in theliterature. Additionally, we analyze the relationships between the two semantics on Petri nets, proposing two constructions that enable switching between them. These transformations are particularly useful for system analysis, as they allow the selection of the most suitable model based on the property that needs to be verified.
AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems
The rapid advancement of Large Language Models (LLMs) has catalyzed the development of multi-agent systems, where multiple LLM-based agents collaborate to solve complex tasks. However, existing systems predominantly rely on centralized coordination, which introduces scalability bottlenecks, limits adaptability, and creates single points of failure. Additionally, concerns over privacy and proprietary knowledge sharing hinder cross-organizational collaboration, leading to siloed expertise. To address these challenges, we propose AgentNet, a decentralized, Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based agents to autonomously evolve their capabilities and collaborate efficiently in a Directed Acyclic Graph (DAG)-structured network. Unlike traditional multi-agent systems that depend on static role assignments or centralized control, AgentNet allows agents to specialize dynamically, adjust their connectivity, and route tasks without relying on predefined workflows. AgentNet's core design is built upon several key innovations: (1) Fully Decentralized Paradigm: Removing the central orchestrator, allowing agents to coordinate and specialize autonomously, fostering fault tolerance and emergent collective intelligence. (2) Dynamically Evolving Graph Topology: Real-time adaptation of agent connections based on task demands, ensuring scalability and resilience.(3) Adaptive Learning for Expertise Refinement: A retrieval-based memory system that enables agents to continuously update and refine their specialized skills. By eliminating centralized control, AgentNet enhances fault tolerance, promotes scalable specialization, and enables privacy-preserving collaboration across organizations. Through decentralized coordination and minimal data exchange, agents can leverage diverse knowledge sources while safeguarding sensitive information.
Agentic Multimodal AI for Hyperpersonalized B2B and B2C Advertising in Competitive Markets: An AI-Driven Competitive Advertising Framework
The growing use of foundation models (FMs) in real-world applications demands adaptive, reliable, and efficient strategies for dynamic markets. In the chemical industry, AI-discovered materials drive innovation, but commercial success hinges on market adoption, requiring FM-driven advertising frameworks that operate in-the-wild. We present a multilingual, multimodal AI framework for autonomous, hyper-personalized advertising in B2B and B2C markets. By integrating retrieval-augmented generation (RAG), multimodal reasoning, and adaptive persona-based targeting, our system generates culturally relevant, market-aware ads tailored to shifting consumer behaviors and competition. Validation combines real-world product experiments with a Simulated Humanistic Colony of Agents to model consumer personas, optimize strategies at scale, and ensure privacy compliance. Synthetic experiments mirror real-world scenarios, enabling cost-effective testing of ad strategies without risky A/B tests. Combining structured retrieval-augmented reasoning with in-context learning (ICL), the framework boosts engagement, prevents market cannibalization, and maximizes ROAS. This work bridges AI-driven innovation and market adoption, advancing multimodal FM deployment for high-stakes decision-making in commercial marketing.
Scalable Safe Multi-Agent Reinforcement Learning for Multi-Agent System
Safety and scalability are two critical challenges faced by practical Multi-Agent Systems (MAS). However, existing Multi-Agent Reinforcement Learning (MARL) algorithms that rely solely on reward shaping are ineffective in ensuring safety, and their scalability is rather limited due to the fixed-size network output. To address these issues, we propose a novel framework, Scalable Safe MARL (SS-MARL), to enhance the safety and scalability of MARL methods. Leveraging the inherent graph structure of MAS, we design a multi-layer message passing network to aggregate local observations and communications of varying sizes. Furthermore, we develop a constrained joint policy optimization method in the setting of local observation to improve safety. Simulation experiments demonstrate that SS-MARL achieves a better trade-off between optimality and safety compared to baselines, and its scalability significantly outperforms the latest methods in scenarios with a large number of agents.
Learning in Conjectural Stackelberg Games
We extend the formalism of Conjectural Variations games to Stackelberg games involving multiple leaders and a single follower. To solve these nonconvex games, a common assumption is that the leaders compute their strategies having perfect knowledge of the follower's best response. However, in practice, the leaders may have little to no knowledge about the other players' reactions. To deal with this lack of knowledge, we assume that each leader can form conjectures about the other players' best responses, and update its strategy relying on these conjectures. Our contributions are twofold: (i) On the theoretical side, we introduce the concept of Conjectural Stackelberg Equilibrium -- keeping our formalism conjecture agnostic -- with Stackelberg Equilibrium being a refinement of it. (ii) On the algorithmic side, we introduce a two-stage algorithm with guarantees of convergence, which allows the leaders to first learn conjectures on a training data set, and then update their strategies. Theoretical results are illustrated numerically.
Markov $α$-Potential Games
We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
comment: 33 pages, 5 figures
Independent and Decentralized Learning in Markov Potential Games
We study a multi-agent reinforcement learning dynamics, and analyze its asymptotic behavior in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players do not know the game parameters, and cannot communicate or coordinate. In each stage, players update their estimate of Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating an optimal one-stage deviation strategy based on the estimated Q-function. Inspired by the actor-critic algorithm in single-agent reinforcement learning, a key feature of our learning dynamics is that agents update their Q-function estimates at a faster timescale than the policies. Leveraging tools from two-timescale asynchronous stochastic approximation theory, we characterize the convergent set of learning dynamics.
comment: 43 pages, 1 figure
Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games
Markov games provide a powerful framework for modeling strategic multi-agent interactions in dynamic environments. Traditionally, convergence properties of decentralized learning algorithms in these settings have been established only for special cases, such as Markov zero-sum and potential games, which do not fully capture real-world interactions. In this paper, we address this gap by studying the asymptotic properties of learning algorithms in general-sum Markov games. In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic with asynchronous step sizes. This decentralized approach enables agents to operate independently, without requiring knowledge of others' strategies or payoffs. We introduce the concept of a Markov Near-Potential Function (MNPF) and demonstrate that it serves as an approximate Lyapunov function for the policy updates in the decentralized learning dynamics, which allows us to characterize the convergent set of strategies. We further strengthen our result under specific regularity conditions and with finite Nash equilibria.
comment: 18 pages, 3 figure
Robotics
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
Pseudo-Random UAV Test Generation Using Low-Fidelity Path Simulator
Simulation-based testing provides a safe and cost-effective environment for verifying the safety of Uncrewed Aerial Vehicles (UAVs). However, simulation can be resource-consuming, especially when High-Fidelity Simulators (HFS) are used. To optimise simulation resources, we propose a pseudo-random test generator that uses a Low-Fidelity Simulator (LFS) to estimate UAV flight paths. This work simplifies the PX4 autopilot HFS to develop a LFS, which operates one order of magnitude faster than the HFS.Test cases predicted to cause safety violations in the LFS are subsequently validated using the HFS.
Reinforcement Learning for Safe Autonomous Two Device Navigation of Cerebral Vessels in Mechanical Thrombectomy
Purpose: Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device RL algorithm that can navigate beyond the carotid arteries to cerebral vessels. Methods: We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires. We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with demonstrator data on 12 patient-specific vascular cases. Results: Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96% success rate, 7.0s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold. Conclusion: To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way towards deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing new methodology.
Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
Toward Anxiety-Reducing Pocket Robots for Children
A common denominator for most therapy treatments for children who suffer from an anxiety disorder is daily practice routines to learn techniques needed to overcome anxiety. However, applying those techniques while experiencing anxiety can be highly challenging. This paper presents the design, implementation, and pilot study of a tactile hand-held pocket robot AffectaPocket, designed to work alongside therapy as a focus object to facilitate coping during an anxiety attack. The robot does not require daily practice to be used, has a small form factor, and has been designed for children 7 to 12 years old. The pocket robot works by sensing when it is being held and attempts to shift the child's focus by presenting them with a simple three-note rhythm-matching game. We conducted a pilot study of the pocket robot involving four children aged 7 to 10 years, and then a main study with 18 children aged 6 to 8 years; neither study involved children with anxiety. Both studies aimed to assess the reliability of the robot's sensor configuration, its design, and the effectiveness of the user tutorial. The results indicate that the morphology and sensor setup performed adequately and the tutorial process enabled the children to use the robot with little practice. This work demonstrates that the presented pocket robot could represent a step toward developing low-cost accessible technologies to help children suffering from anxiety disorders.
comment: 8 pages
Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
A Reactive Framework for Whole-Body Motion Planning of Mobile Manipulators Combining Reinforcement Learning and SDF-Constrained Quadratic Programmi
As an important branch of embodied artificial intelligence, mobile manipulators are increasingly applied in intelligent services, but their redundant degrees of freedom also limit efficient motion planning in cluttered environments. To address this issue, this paper proposes a hybrid learning and optimization framework for reactive whole-body motion planning of mobile manipulators. We develop the Bayesian distributional soft actor-critic (Bayes-DSAC) algorithm to improve the quality of value estimation and the convergence performance of the learning. Additionally, we introduce a quadratic programming method constrained by the signed distance field to enhance the safety of the obstacle avoidance motion. We conduct experiments and make comparison with standard benchmark. The experimental results verify that our proposed framework significantly improves the efficiency of reactive whole-body motion planning, reduces the planning time, and improves the success rate of motion planning. Additionally, the proposed reinforcement learning method ensures a rapid learning process in the whole-body planning task. The novel framework allows mobile manipulators to adapt to complex environments more safely and efficiently.
Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
MAER-Nav: Bidirectional Motion Learning Through Mirror-Augmented Experience Replay for Robot Navigation
Deep Reinforcement Learning (DRL) based navigation methods have demonstrated promising results for mobile robots, but suffer from limited action flexibility in confined spaces. Conventional DRL approaches predominantly learn forward-motion policies, causing robots to become trapped in complex environments where backward maneuvers are necessary for recovery. This paper presents MAER-Nav (Mirror-Augmented Experience Replay for Robot Navigation), a novel framework that enables bidirectional motion learning without requiring explicit failure-driven hindsight experience replay or reward function modifications. Our approach integrates a mirror-augmented experience replay mechanism with curriculum learning to generate synthetic backward navigation experiences from successful trajectories. Experimental results in both simulation and real-world environments demonstrate that MAER-Nav significantly outperforms state-of-the-art methods while maintaining strong forward navigation capabilities. The framework effectively bridges the gap between the comprehensive action space utilization of traditional planning methods and the environmental adaptability of learning-based approaches, enabling robust navigation in scenarios where conventional DRL methods consistently fail.
comment: 8 pages, 8 figures
Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
Disambiguate Gripper State in Grasp-Based Tasks: Pseudo-Tactile as Feedback Enables Pure Simulation Learning IROS 2025
Grasp-based manipulation tasks are fundamental to robots interacting with their environments, yet gripper state ambiguity significantly reduces the robustness of imitation learning policies for these tasks. Data-driven solutions face the challenge of high real-world data costs, while simulation data, despite its low costs, is limited by the sim-to-real gap. We identify the root cause of gripper state ambiguity as the lack of tactile feedback. To address this, we propose a novel approach employing pseudo-tactile as feedback, inspired by the idea of using a force-controlled gripper as a tactile sensor. This method enhances policy robustness without additional data collection and hardware involvement, while providing a noise-free binary gripper state observation for the policy and thus facilitating pure simulation learning to unleash the power of simulation. Experimental results across three real-world grasp-based tasks demonstrate the necessity, effectiveness, and efficiency of our approach.
comment: 8 pages, 5 figures, submitted to IROS 2025, project page: https://yifei-y.github.io/project-pages/Pseudo-Tactile-Feedback/
Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
Towards a cognitive architecture to enable natural language interaction in co-constructive task learning
This research addresses the question, which characteristics a cognitive architecture must have to leverage the benefits of natural language in Co-Constructive Task Learning (CCTL). To provide context, we first discuss Interactive Task Learning (ITL), the mechanisms of the human memory system, and the significance of natural language and multi-modality. Next, we examine the current state of cognitive architectures, analyzing their capabilities to inform a concept of CCTL grounded in multiple sources. We then integrate insights from various research domains to develop a unified framework. Finally, we conclude by identifying the remaining challenges and requirements necessary to achieve CCTL in Human-Robot Interaction (HRI).
comment: 8 pages, 5 figures, submitted to: IEEE RO-MAN 2025
Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
comment: 21 pages, 5 figures
Co-design Optimization of Moving Parts for Compliance and Collision Avoidance
Design requirements for moving parts in mechanical assemblies are typically specified in terms of interactions with other parts. Some are purely kinematic (e.g., pairwise collision avoidance) while others depend on physics and material properties (e.g., deformation under loads). Kinematic design methods and physics-based shape/topology optimization (SO/TO) deal separately with these requirements. They rarely talk to each other as the former uses set algebra and group theory while the latter requires discretizing and solving differential equations. Hence, optimizing a moving part based on physics typically relies on either neglecting or pruning kinematic constraints in advance, e.g., by restricting the design domain to a collision-free space using an unsweep operation. In this paper, we show that TO can be used to co-design two or more parts in relative motion to simultaneously satisfy physics-based criteria and collision avoidance. We restrict our attention to maximizing linear-elastic stiffness while penalizing collision measures aggregated in time. We couple the TO loops for two parts in relative motion so that the evolution of each part's shape is accounted for when penalizing collision for the other part. The collision measures are computed by a correlation functional that can be discretized by left- and right-multiplying the shape design variables by a pre-computed matrix that depends solely on the motion. This decoupling is key to making the computations scalable for TO iterations. We demonstrate the effectiveness of the approach with 2D and 3D examples.
PneuDrive: An Embedded Pressure Control System and Modeling Toolkit for Large-Scale Soft Robots
In this paper, we present a modular pressure control system called PneuDrive that can be used for large-scale, pneumatically-actuated soft robots. The design is particularly suited for situations which require distributed pressure control and high flow rates. Up to four embedded pressure control modules can be daisy-chained together as peripherals on a robust RS-485 bus, enabling closed-loop control of up to 16 valves with pressures ranging from 0-100 psig (0-689 kPa) over distances of more than 10 meters. The system is configured as a C++ ROS node by default. However, independent of ROS, we provide a Python interface with a scripting API for added flexibility. We demonstrate our implementation of PneuDrive through various trajectory tracking experiments for a three-joint, continuum soft robot with 12 different pressure inputs. Finally, we present a modeling toolkit with implementations of three dynamic actuation models, all suitable for real-time simulation and control. We demonstrate the use of this toolkit in customizing each model with real-world data and evaluating the performance of each model. The results serve as a reference guide for choosing between several actuation models in a principled manner. A video summarizing our results can be found here: https://bit.ly/3QkrEqO.
comment: Proceedings of the 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)
Enhancing Physical Human-Robot Interaction: Recognizing Digits via Intrinsic Robot Tactile Sensing
Physical human-robot interaction (pHRI) remains a key challenge for achieving intuitive and safe interaction with robots. Current advancements often rely on external tactile sensors as interface, which increase the complexity of robotic systems. In this study, we leverage the intrinsic tactile sensing capabilities of collaborative robots to recognize digits drawn by humans on an uninstrumented touchpad mounted to the robot's flange. We propose a dataset of robot joint torque signals along with corresponding end-effector (EEF) forces and moments, captured from the robot's integrated torque sensors in each joint, as users draw handwritten digits (0-9) on the touchpad. The pHRI-DIGI-TACT dataset was collected from different users to capture natural variations in handwriting. To enhance classification robustness, we developed a data augmentation technique to account for reversed and rotated digits inputs. A Bidirectional Long Short-Term Memory (Bi-LSTM) network, leveraging the spatiotemporal nature of the data, performs online digit classification with an overall accuracy of 94\% across various test scenarios, including those involving users who did not participate in training the system. This methodology is implemented on a real robot in a fruit delivery task, demonstrating its potential to assist individuals in everyday life. Dataset and video demonstrations are available at: https://TS-Robotics.github.io/pHRI-DIGI/.
SACA: A Scenario-Aware Collision Avoidance Framework for Autonomous Vehicles Integrating LLMs-Driven Reasoning
Reliable collision avoidance under extreme situations remains a critical challenge for autonomous vehicles. While large language models (LLMs) offer promising reasoning capabilities, their application in safety-critical evasive maneuvers is limited by latency and robustness issues. Even so, LLMs stand out for their ability to weigh emotional, legal, and ethical factors, enabling socially responsible and context-aware collision avoidance. This paper proposes a scenario-aware collision avoidance (SACA) framework for extreme situations by integrating predictive scenario evaluation, data-driven reasoning, and scenario-preview-based deployment to improve collision avoidance decision-making. SACA consists of three key components. First, a predictive scenario analysis module utilizes obstacle reachability analysis and motion intention prediction to construct a comprehensive situational prompt. Second, an online reasoning module refines decision-making by leveraging prior collision avoidance knowledge and fine-tuning with scenario data. Third, an offline evaluation module assesses performance and stores scenarios in a memory bank. Additionally, A precomputed policy method improves deployability by previewing scenarios and retrieving or reasoning policies based on similarity and confidence levels. Real-vehicle tests show that, compared with baseline methods, SACA effectively reduces collision losses in extreme high-risk scenarios and lowers false triggering under complex conditions. Project page: https://sean-shiyuez.github.io/SACA/.
comment: 10 pages,10 figures. This work has been submitted to the IEEE Robotics and Automation Letters (RAL) for possible publication
Coarse-to-Fine Learning for Multi-Pipette Localisation in Robot-Assisted In Vivo Patch-Clamp
In vivo image-guided multi-pipette patch-clamp is essential for studying cellular interactions and network dynamics in neuroscience. However, current procedures mainly rely on manual expertise, which limits accessibility and scalability. Robotic automation presents a promising solution, but achieving precise real-time detection of multiple pipettes remains a challenge. Existing methods focus on ex vivo experiments or single pipette use, making them inadequate for in vivo multi-pipette scenarios. To address these challenges, we propose a heatmap-augmented coarse-to-fine learning technique to facilitate multi-pipette real-time localisation for robot-assisted in vivo patch-clamp. More specifically, we introduce a Generative Adversarial Network (GAN)-based module to remove background noise and enhance pipette visibility. We then introduce a two-stage Transformer model that starts with predicting the coarse heatmap of the pipette tips, followed by the fine-grained coordination regression module for precise tip localisation. To ensure robust training, we use the Hungarian algorithm for optimal matching between the predicted and actual locations of tips. Experimental results demonstrate that our method achieved > 98% accuracy within 10 {\mu}m, and > 89% accuracy within 5 {\mu}m for the localisation of multi-pipette tips. The average MSE is 2.52 {\mu}m.
Cal or No Cal? -- Real-Time Miscalibration Detection of LiDAR and Camera Sensors
The goal of extrinsic calibration is the alignment of sensor data to ensure an accurate representation of the surroundings and enable sensor fusion applications. From a safety perspective, sensor calibration is a key enabler of autonomous driving. In the current state of the art, a trend from target-based offline calibration towards targetless online calibration can be observed. However, online calibration is subject to strict real-time and resource constraints which are not met by state-of-the-art methods. This is mainly due to the high number of parameters to estimate, the reliance on geometric features, or the dependence on specific vehicle maneuvers. To meet these requirements and ensure the vehicle's safety at any time, we propose a miscalibration detection framework that shifts the focus from the direct regression of calibration parameters to a binary classification of the calibration state, i.e., calibrated or miscalibrated. Therefore, we propose a contrastive learning approach that compares embedded features in a latent space to classify the calibration state of two different sensor modalities. Moreover, we provide a comprehensive analysis of the feature embeddings and challenging calibration errors that highlight the performance of our approach. As a result, our method outperforms the current state-of-the-art in terms of detection performance, inference time, and resource demand. The code is open source and available on https://github.com/TUMFTM/MiscalibrationDetection.
Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
We consider the nonprehensile object transportation task known as the waiter's problem - in which a robot must move an object on a tray from one location to another - when the transported object has uncertain inertial parameters. In contrast to existing approaches that completely ignore uncertainty in the inertia matrix or which only consider small parameter errors, we are interested in pushing the limits of the amount of inertial parameter uncertainty that can be handled. We first show how constraints that are robust to inertial parameter uncertainty can be incorporated into an optimization-based motion planning framework to transport objects while moving quickly. Next, we develop necessary conditions for the inertial parameters to be realizable on a bounding shape based on moment relaxations, allowing us to verify whether a trajectory will violate the constraints for any realizable inertial parameters. Finally, we demonstrate our approach on a mobile manipulator in simulations and real hardware experiments: our proposed robust constraints consistently successfully transport a 56 cm tall object with substantial inertial parameter uncertainty in the real world, while the baseline approaches drop the object while transporting it.
comment: 8 pages, 7 figures. Published in IEEE Robotics and Automation Letters
CALMM-Drive: Confidence-Aware Autonomous Driving with Large Multimodal Model
Decision-making and motion planning constitute critical components for ensuring the safety and efficiency of autonomous vehicles (AVs). Existing methodologies typically adopt two paradigms: decision then planning or generation then scoring. However, the former architecture often suffers from decision-planning misalignment that incurs risky situations. Meanwhile, the latter struggles to balance short-term operational metrics (e.g., immediate motion smoothness) with long-term tactical goals (e.g., route efficiency), resulting in myopic or overly conservative behaviors. To address these issues, we introduce CALMM-Drive, a novel Confidence-Aware Large Multimodal Model (LMM) empowered Autonomous Driving framework. Our approach integrates driving task-oriented Chain-of-Thought (CoT) reasoning coupled with Top-K confidence elicitation, which facilitates high-level reasoning to generate multiple candidate decisions with their confidence levels. Furthermore, we propose a novel planning module that integrates a diffusion model for trajectory generation and a hierarchical refinement process to find the optimal trajectory. This framework enables the selection over trajectory candidates accounting for both low-level solution quality and high-level tactical confidence, which avoids the risks within one-shot decisions and overcomes the limitations in short-sighted scoring mechanisms. Comprehensive evaluations in nuPlan closed-loop simulation environments demonstrate the competitive performance of CALMM-Drive across both common and long-tail benchmarks, showcasing a significant advancement in the integration of uncertainty in LMM-empowered AVs. The code will be released upon acceptance.
comment: 14 pages, 7 figures
Tactile Ergodic Coverage on Curved Surfaces
In this article, we present a feedback control method for tactile coverage tasks, such as cleaning or surface inspection. These tasks are challenging to plan due to complex continuous physical interactions. In these tasks, the coverage target and progress can be easily measured using a camera and encoded in a point cloud. We propose an ergodic coverage method that operates directly on point clouds, guiding the robot to spend more time on regions requiring more coverage. For robot control and contact behavior, we use geometric algebra to formulate a task-space impedance controller that tracks a line while simultaneously exerting a desired force along that line. We evaluate the performance of our method in kinematic simulations and demonstrate its applicability in real-world experiments on kitchenware. Our source codes, experimental data, and videos are available as open access at https://sites.google.com/view/tactile-ergodic-control/
Fast and Accurate Task Planning using Neuro-Symbolic Language Models and Multi-level Goal Decomposition
In robotic task planning, symbolic planners using rule-based representations like PDDL are effective but struggle with long-sequential tasks in complicated environments due to exponentially increasing search space. Meanwhile, LLM-based approaches, which are grounded in artificial neural networks, offer faster inference and commonsense reasoning but suffer from lower success rates. To address the limitations of the current symbolic (slow speed) or LLM-based approaches (low accuracy), we propose a novel neuro-symbolic task planner that decomposes complex tasks into subgoals using LLM and carries out task planning for each subgoal using either symbolic or MCTS-based LLM planners, depending on the subgoal complexity. This decomposition reduces planning time and improves success rates by narrowing the search space and enabling LLMs to focus on more manageable tasks. Our method significantly reduces planning time while maintaining high success rates across task planning domains, as well as real-world and simulated robotics environments. More details are available at http://graphics.ewha.ac.kr/LLMTAMP/.
Fast Online Learning of CLiFF-maps in Changing Environments ICRA
Maps of dynamics are effective representations of motion patterns learned from prior observations, with recent research demonstrating their ability to enhance various downstream tasks such as human-aware robot navigation, long-term human motion prediction, and robot localization. Current advancements have primarily concentrated on methods for learning maps of human flow in environments where the flow is static, i.e., not assumed to change over time. In this paper we propose an online update method of the CLiFF-map (an advanced map of dynamics type that models motion patterns as velocity and orientation mixtures) to actively detect and adapt to human flow changes. As new observations are collected, our goal is to update a CLiFF-map to effectively and accurately integrate them, while retaining relevant historic motion patterns. The proposed online update method maintains a probabilistic representation in each observed location, updating parameters by continuously tracking sufficient statistics. In experiments using both synthetic and real-world datasets, we show that our method is able to maintain accurate representations of human motion dynamics, contributing to high performance flow-compliant planning downstream tasks, while being orders of magnitude faster than the comparable baselines.
comment: Accepted to the 2025 IEEE International Conference on Robotics and Automation (ICRA)
Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
Beyond Omakase: Designing Shared Control for Navigation Robots with Blind People
Autonomous navigation robots can increase the independence of blind people but often limit user control, following what is called in Japanese an "omakase" approach where decisions are left to the robot. This research investigates ways to enhance user control in social robot navigation, based on two studies conducted with blind participants. The first study, involving structured interviews (N=14), identified crowded spaces as key areas with significant social challenges. The second study (N=13) explored navigation tasks with an autonomous robot in these environments and identified design strategies across different modes of autonomy. Participants preferred an active role, termed the "boss" mode, where they managed crowd interactions, while the "monitor" mode helped them assess the environment, negotiate movements, and interact with the robot. These findings highlight the importance of shared control and user involvement for blind users, offering valuable insights for designing future social navigation robots.
comment: Preprint, ACM CHI Conference on Human Factors in Computing Systems (CHI 2025)
Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
Joint Moment Estimation for Hip Exoskeleton Control: A Generalized Moment Feature Generation Method
Hip joint moments during walking are the key foundation for hip exoskeleton assistance control. Most recent studies have shown estimating hip joint moments instantaneously offers a lot of advantages compared to generating assistive torque profiles based on gait estimation, such as simple sensor requirements and adaptability to variable walking speeds. However, existing joint moment estimation methods still suffer from a lack of personalization, leading to estimation accuracy degradation for new users. To address the challenges, this paper proposes a hip joint moment estimation method based on generalized moment features (GMF). A GMF generator is constructed to learn GMF of the joint moment which is invariant to individual variations while remaining decodable into joint moments through a dedicated decoder. Utilizing this well-featured representation, a GRU-based neural network is used to predict GMF with joint kinematics data, which can easily be acquired by hip exoskeleton encoders. The proposed estimation method achieves a root mean square error of 0.1180 Nm/kg under 28 walking speed conditions on a treadmill dataset, improved by 6.5% compared to the model without body parameter fusion, and by 8.3% for the conventional fusion model with body parameter. Furthermore, the proposed method was employed on a hip exoskeleton with only encoder sensors and achieved an average 20.5% metabolic reduction (p<0.01) for users compared to assist-off condition in level-ground walking.
comment: 13 pages, 10 figures, Submitted to Biomimetic Intelligence and Robotics
Efficiently Generating Expressive Quadruped Behaviors via Language-Guided Preference Learning
Expressive robotic behavior is essential for the widespread acceptance of robots in social environments. Recent advancements in learned legged locomotion controllers have enabled more dynamic and versatile robot behaviors. However, determining the optimal behavior for interactions with different users across varied scenarios remains a challenge. Current methods either rely on natural language input, which is efficient but low-resolution, or learn from human preferences, which, although high-resolution, is sample inefficient. This paper introduces a novel approach that leverages priors generated by pre-trained LLMs alongside the precision of preference learning. Our method, termed Language-Guided Preference Learning (LGPL), uses LLMs to generate initial behavior samples, which are then refined through preference-based feedback to learn behaviors that closely align with human expectations. Our core insight is that LLMs can guide the sampling process for preference learning, leading to a substantial improvement in sample efficiency. We demonstrate that LGPL can quickly learn accurate and expressive behaviors with as few as four queries, outperforming both purely language-parameterized models and traditional preference learning approaches. Website with videos: https://lgpl-gaits.github.io/
comment: 8 pages 5 figures
FSOCO: The Formula Student Objects in Context Dataset
This paper presents the FSOCO dataset, a collaborative dataset for vision-based cone detection systems in Formula Student Driverless competitions. It contains human annotated ground truth labels for both bounding boxes and instance-wise segmentation masks. The data buy-in philosophy of FSOCO asks student teams to contribute to the database first before being granted access ensuring continuous growth. By providing clear labeling guidelines and tools for a sophisticated raw image selection, new annotations are guaranteed to meet the desired quality. The effectiveness of the approach is shown by comparing prediction results of a network trained on FSOCO and its unregulated predecessor. The FSOCO dataset can be found at https://fsoco.github.io/fsoco-dataset/.
Multiagent Systems
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
PAARS: Persona Aligned Agentic Retail Shoppers
In e-commerce, behavioral data is collected for decision making which can be costly and slow. Simulation with LLM powered agents is emerging as a promising alternative for representing human population behavior. However, LLMs are known to exhibit certain biases, such as brand bias, review rating bias and limited representation of certain groups in the population, hence they need to be carefully benchmarked and aligned to user behavior. Ultimately, our goal is to synthesise an agent population and verify that it collectively approximates a real sample of humans. To this end, we propose a framework that: (i) creates synthetic shopping agents by automatically mining personas from anonymised historical shopping data, (ii) equips agents with retail-specific tools to synthesise shopping sessions and (iii) introduces a novel alignment suite measuring distributional differences between humans and shopping agents at the group (i.e. population) level rather than the traditional "individual" level. Experimental results demonstrate that using personas improves performance on the alignment suite, though a gap remains to human behaviour. We showcase an initial application of our framework for automated agentic A/B testing and compare the findings to human results. Finally, we discuss applications, limitations and challenges setting the stage for impactful future work.
Ride-Sourcing Vehicle Rebalancing with Service Accessibility Guarantees via Constrained Mean-Field Reinforcement Learning
The rapid expansion of ride-sourcing services such as Uber, Lyft, and Didi Chuxing has fundamentally reshaped urban transportation by offering flexible, on-demand mobility via mobile applications. Despite their convenience, these platforms confront significant operational challenges, particularly vehicle rebalancing - the strategic repositioning of thousands of vehicles to address spatiotemporal mismatches in supply and demand. Inadequate rebalancing results in prolonged rider waiting times, inefficient vehicle utilization, and inequitable distribution of services, leading to disparities in driver availability and income. To tackle these complexities, we introduce scalable continuous-state mean-field control (MFC) and reinforcement learning (MFRL) models that explicitly represent each vehicle's precise location and employ continuous repositioning actions guided by the distribution of other vehicles. To ensure equitable service distribution, an accessibility constraint is integrated within our optimal control formulation, balancing operational efficiency with equitable access to the service across geographic regions. Our approach acknowledges realistic conditions, including inherent stochasticity in transitions, the simultaneous occurrence of vehicle-rider matching, vehicles' rebalancing and cruising, and variability in rider behaviors. Crucially, we relax the traditional mean-field assumption of equal supply-demand volume, better reflecting practical scenarios. Extensive empirical evaluation using real-world data-driven simulation of Shenzhen demonstrates the real-time efficiency and robustness of our approach at the scale of tens of thousands of vehicles. The code is available at https://github.com/mjusup1501/mf-vehicle-rebalancing.
comment: 30 pages, 12 figures
Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
comment: 34 pages, 10 figures
Consensus on Open Multi-Agent Systems Over Graphs Sampled from Graphons
We show how graphons can be used to model and analyze open multi-agent systems, which are multi-agent systems subject to arrivals and departures, in the specific case of linear consensus. First, we analyze the case of replacements, where under the assumption of a deterministic interval between two replacements, we derive an upper bound for the disagreement in expectation. Then, we study the case of arrivals and departures, where we define a process for the evolution of the number of agents that guarantees a minimum and a maximum number of agents. Next, we derive an upper bound for the disagreement in expectation, and we establish a link with the spectrum of the expected graph used to generate the graph topologies. Finally, for stochastic block model (SBM) graphons, we prove that the computation of the spectrum of the expected graph can be performed based on a matrix whose dimension depends only on the graphon and it is independent of the number of agents.
comment: 8 pages, 1 figure
GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
Get the Agents Drunk: Memory Perturbations in Autonomous Agent-based Recommender Systems
Large language model-based agents are increasingly used in recommender systems (Agent4RSs) to achieve personalized behavior modeling. Specifically, Agent4RSs introduces memory mechanisms that enable the agents to autonomously learn and self-evolve from real-world interactions. However, to the best of our knowledge, how robust Agent4RSs are remains unexplored. As such, in this paper, we propose the first work to attack Agent4RSs by perturbing agents' memories, not only to uncover their limitations but also to enhance their security and robustness, ensuring the development of safer and more reliable AI agents. Given the security and privacy concerns, it is more practical to launch attacks under a black-box setting, where the accurate knowledge of the victim models cannot be easily obtained. Moreover, the practical attacks are often stealthy to maximize the impact. To this end, we propose a novel practical attack framework named DrunkAgent. DrunkAgent consists of a generation module, a strategy module, and a surrogate module. The generation module aims to produce effective and coherent adversarial textual triggers, which can be used to achieve attack objectives such as promoting the target items. The strategy module is designed to `get the target agents drunk' so that their memories cannot be effectively updated during the interaction process. As such, the triggers can play the best role. Both of the modules are optimized on the surrogate module to improve the transferability and imperceptibility of the attacks. By identifying and analyzing the vulnerabilities, our work provides critical insights that pave the way for building safer and more resilient Agent4RSs. Extensive experiments across various real-world datasets demonstrate the effectiveness of DrunkAgent.
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
$\textit{Agents Under Siege}$: Breaking Pragmatic Multi-Agent LLM Systems with Optimized Prompt Attacks
Most discussions about Large Language Model (LLM) safety have focused on single-agent settings but multi-agent LLM systems now create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning. In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms. We design a $\textit{permutation-invariant adversarial attack}$ that optimizes prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms within the system. Formulating the attack path as a problem of $\textit{maximum-flow minimum-cost}$, coupled with the novel $\textit{Permutation-Invariant Evasion Loss (PIEL)}$, we leverage graph-based optimization to maximize attack success rate while minimizing detection risk. Evaluating across models including $\texttt{Llama}$, $\texttt{Mistral}$, $\texttt{Gemma}$, $\texttt{DeepSeek}$ and other variants on various datasets like $\texttt{JailBreakBench}$ and $\texttt{AdversarialBench}$, our method outperforms conventional attacks by up to $7\times$, exposing critical vulnerabilities in multi-agent systems. Moreover, we demonstrate that existing defenses, including variants of $\texttt{Llama-Guard}$ and $\texttt{PromptGuard}$, fail to prohibit our attack, emphasizing the urgent need for multi-agent specific safety mechanisms.
Distributed Fractional Bayesian Learning for Adaptive Optimization
This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter, whereas they mean to collaboratively estimate the true parameter and find the optimal solution over a connected network. A general mathematical framework for such a problem has not been studied yet. We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution. Thus, we propose a novel Prediction while Optimization scheme, which utilizes distributed fractional Bayesian learning through weighted averaging on the log-beliefs to update the beliefs of unknown parameters, and distributed gradient descent for renewing the estimation of the optimal solution. Then under suitable assumptions, we prove that all agents' beliefs and decision variables converge almost surely to the true parameter and the optimal solution under the true parameter, respectively. We further establish a sublinear convergence rate for the belief sequence. Finally, numerical experiments are implemented to corroborate the theoretical analysis.
Collisionless and Decentralized Formation Control for Strings
A decentralized feedback controller for multi-agent systems, inspired by vehicle platooning, is proposed. The closed loop resulting from the decentralized control action has three distinctive features: the generation of collision-free trajectories, flocking of the system towards a consensus state in velocity, and asymptotic convergence to a prescribed pattern of distances between agents. For each feature, a rigorous dynamical analysis is provided, yielding a characterization of the set of parameters and initial configurations where collision avoidance, flocking, and pattern formation are guaranteed. Numerical tests assess the theoretical results presented.
Systems and Control (CS)
Policy Gradient for LQR with Domain Randomization
Domain randomization (DR) enables sim-to-real transfer by training controllers on a distribution of simulated environments, with the goal of achieving robust performance in the real world. Although DR is widely used in practice and is often solved using simple policy gradient (PG) methods, understanding of its theoretical guarantees remains limited. Toward addressing this gap, we provide the first convergence analysis of PG methods for domain-randomized linear quadratic regulation (LQR). We show that PG converges globally to the minimizer of a finite-sample approximation of the DR objective under suitable bounds on the heterogeneity of the sampled systems. We also quantify the sample-complexity associated with achieving a small performance gap between the sample-average and population-level objectives. Additionally, we propose and analyze a discount-factor annealing algorithm that obviates the need for an initial jointly stabilizing controller, which may be challenging to find. Empirical results support our theoretical findings and highlight promising directions for future work, including risk-sensitive DR formulations and stochastic PG algorithms.
Coordinating Distributed Energy Resources with Nodal Pricing in Distribution Networks: a Game-Theoretic Approach
We propose a real-time nodal pricing mechanism for cost minimization and voltage control in a distribution network with autonomous distributed energy resources and analyze the resulting market using stochastic game theory. Unlike existing methods, the proposed pricing scheme does not require device-aware centralized coordination or communication between prosumers. By developing new sufficient conditions under which a stochastic game is a Markov potential game, we show that the problem of computing an equilibrium for the proposed model is equivalent to solving a single-agent Markov Decision Process. These new conditions are general and may apply to other applications. We compute the equilibrium for an IEEE test system to empirically demonstrate the effectiveness of the pricing policy.
Analysis of the French system imbalance paving the way for a novel operating reserve sizing approach
This paper examines the relationship between system imbalance and several explanatory variables within the French electricity system. The factors considered include lagged imbalance values, observations of renewable energy sources (RES) generation and consumption, and forecasts for RES generation and consumption. The study analyzes the distribution of system imbalance in relation to these variables. Additionally, an HGBR machine-learning model is employed to assess the predictability of imbalances and the explanatory power of the input variables studied. The results indicate no clear correlation between RES generation or consumption and the observed imbalances. However, it is possible to predict the imbalance adequately using forecasts available a few hours before real-time, along with the lagged values of the imbalance. Predicting the imbalance a day in advance proves to be complex with the variables examined; however, the extreme quantiles of the imbalance used for reserve sizing and contracting can be predicted with sufficient accuracy.
comment: Paper accepted to be presented at the EEM 2025 conference
Disturbance-adaptive Model Predictive Control for Bounded Average Constraint Violations
This paper considers stochastic linear time-invariant systems subject to constraints on the average number of state-constraint violations over time without knowing the disturbance distribution. We present a novel disturbance-adaptive model predictive control (DAD-MPC) framework, which adjusts the disturbance model based on measured constraint violations. Using a robust invariance method, DAD-MPC ensures recursive feasibility and guarantees asymptotic or robust bounds on average constraint violations. Additionally, the bounds hold even with an inaccurate disturbance model, which allows for data-driven disturbance quantification methods to be used, such as conformal prediction. Simulation results demonstrate that the proposed approach outperforms state-of-the-art methods while satisfying average violation constraints.
A system level approach to generalised feedback Nash equilibrium seeking in partially-observed games
This work proposes an algorithm for seeking generalised feedback Nash equilibria (GFNE) in noncooperative dynamic games. The focus is on cyber-physical systems with dynamics which are linear, stochastic, potentially unstable, and partially observed. We employ System Level Synthesis (SLS) to reformulate the problem as the search for an equilibrium profile of closed-loop responses to noise, which can then be used to reconstruct a stabilising output-feedback policy. Under this setup, we leverage monotone operator theory to design a GFNE-seeking algorithm capable to enforce closed-loop stability, operational constraints, and communication constraints onto the control policies. This algorithm is amenable to numerical implementation and we provide conditions for its convergence. We demonstrate our approach in a simulated experiment on the noncooperative stabilisation of a decentralised power-grid.
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Stability
Grid-Forming (GFM) technology is considered a promising solution to build power electronics-dominated power systems. However, the impact of GFM converters on the system stability is still unquantified, creating a gap between the system- and device-level perspectives. To fill this gap, at the device-level, we propose a Forming Index to quantify a converter's response to grid voltage variations, providing a characterization of its GFM behavior. At the system-level, a quantitative notion of System Strength is introduced to capture the fundamental requirements for power system formation. Finally, we establish the alignment between device- and system-level metrics by demonstrating that GFM converters provably enhance system strength.
Robust Feedback Optimization with Model Uncertainty: A Regularization Approach
Feedback optimization optimizes the steady state of a dynamical system by implementing optimization iterations in closed loop with the plant. It relies on online measurements and limited model information, namely, the input-output sensitivity. In practice, various issues including inaccurate modeling, lack of observation, or changing conditions can lead to sensitivity mismatches, causing closed-loop sub-optimality or even instability. To handle such uncertainties, we pursue robust feedback optimization, where we optimize the closed-loop performance against all possible sensitivities lying in specific uncertainty sets. We provide tractable reformulations for the corresponding min-max problems via regularizations and characterize the online closed-loop performance through the tracking error in case of time-varying optimal solutions. Simulations on a distribution grid illustrate the effectiveness of our robust feedback optimization controller in addressing sensitivity mismatches in a non-stationary environment.
Data-Driven Distributed Output Synchronization of Heterogeneous Discrete-Time Multi-Agent Systems
In this paper, we assume that an autonomous exosystem generates a reference output, and we consider the problem of designing a distributed data-driven control law for a family of discrete-time heterogeneous LTI agents, connected through a directed graph, in order to synchronize the agents' outputs to the reference one. The agents of the network are split into two categories: leaders, with direct access to the exosystem output, and followers, that only receive information from their neighbors. All agents aim to achieve output synchronization by means of a state feedback that makes use of their own states as well as of an estimate of the exogenous system state, provided by an internal state observer. Such observer has a different structure for leaders and followers. Necessary and sufficient conditions for the existence of a solution are first derived in the model-based set-up and then in a data-driven context. An example illustrates both the implementation procedure and the performance of the proposed approach.
comment: Extended version of the conference paper submitted to 64th IEEE Conference on Decision and Control
Application of Battery Storage to Switching Predictive Control of Power Distribution Systems Including Road Heating
A road heating system is an electrical device which promotes snow melting by burying a heating cable as a thermal source underground. When integrating road heating into the power distribution system, we need to optimize the flow of electric power by appropriately integrating distributed power sources and conventional power distribution equipment. In this paper, we extend the power distribution system considered in the authors' previous study to the case where battery storage is installed. As a main result, we propose a predictive switching control that achieves the reduction of distribution loss, attenuation of voltage fluctuation, and efficient snow melting, simultaneously. We verify the effectiveness of the application of battery storage through numerical simulation.
comment: 13 pages, 14 figures
Initial State Privacy of Nonlinear Systems on Riemannian Manifolds
In this paper, we investigate initial state privacy protection for discrete-time nonlinear closed systems. By capturing Riemannian geometric structures inherent in such privacy challenges, we refine the concept of differential privacy through the introduction of an initial state adjacency set based on Riemannian distances. A new differential privacy condition is formulated using incremental output boundedness, enabling the design of time-varying Laplacian noise to achieve specified privacy guarantees. The proposed framework extends beyond initial state protection to also cover system parameter privacy, which is demonstrated as a special application.
Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems
This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
Unraveling tensor structures in correct-by-design controller synthesis
Formal safety guarantees on the synthesis of controllers for stochastic systems can be obtained using correct-by-design approaches. These approaches often use abstractions as finite-state Markov Decision Processes. As the state space of these MDPs grows, the curse of dimensionality makes the computational and memory cost of the probabilistic guarantees, quantified with dynamic programming, scale exponentially. In this work, we leverage decoupled dynamics and unravel, via dynamic programming operations, a tree structure in the Canonical Polyadic Decomposition (CPD) of the value functions. For discrete-time stochastic systems with syntactically co-safe linear temporal logic (scLTL) specifications, we provide provable probabilistic safety guarantees and significantly alleviate the computational burden. We provide an initial validation of the theoretical results on several typical case studies and showcase that the uncovered tree structure enables efficient reductions in the computational burden.
A robot-assisted pipeline to rapidly scan 1.7 million historical aerial photographs
During the 20th Century, aerial surveys captured hundreds of millions of high-resolution photographs of the earth's surface. These images, the precursors to modern satellite imagery, represent an extraordinary visual record of the environmental and social upheavals of the 20th Century. However, most of these images currently languish in physical archives where retrieval is difficult and costly. Digitization could revolutionize access, but manual scanning is slow and expensive. Here, we describe and validate a novel robot-assisted pipeline that increases worker productivity in scanning 30-fold, applied at scale to digitize an archive of 1.7 million historical aerial photographs from 65 countries.
An ANN-Enhanced Approach for Flatness-Based Constrained Control of Nonlinear Systems
Neural networks have proven practical for a synergistic combination of advanced control techniques. This work analyzes the implementation of rectified linear unit neural networks to achieve constrained control in differentially flat systems. Specifically, the class of flat systems enjoys the benefit of feedback linearizability, i.e., the systems can be linearized by means of a proper variable transformation. However, the price for linearizing the dynamics is that the constraint descriptions are distorted geometrically. Our results show that, by using neural networks, these constraints can be represented as a union of polytopes, enabling the use of mixed-integer programming tools to guarantee constraint satisfaction. We further analyze the integration of the characterization into efficient settings such as control Lyapunov function-based and model predictive control (MPC). Interestingly, this description also allows us to explicitly compute the solution of the MPC problem for the nonlinear system. Several examples are provided to illustrate the effectiveness of our framework.
Consensus on Open Multi-Agent Systems Over Graphs Sampled from Graphons
We show how graphons can be used to model and analyze open multi-agent systems, which are multi-agent systems subject to arrivals and departures, in the specific case of linear consensus. First, we analyze the case of replacements, where under the assumption of a deterministic interval between two replacements, we derive an upper bound for the disagreement in expectation. Then, we study the case of arrivals and departures, where we define a process for the evolution of the number of agents that guarantees a minimum and a maximum number of agents. Next, we derive an upper bound for the disagreement in expectation, and we establish a link with the spectrum of the expected graph used to generate the graph topologies. Finally, for stochastic block model (SBM) graphons, we prove that the computation of the spectrum of the expected graph can be performed based on a matrix whose dimension depends only on the graphon and it is independent of the number of agents.
comment: 8 pages, 1 figure
Two-wheel-driven Electric Superbike Powertrain Optimization
In this paper, we propose an optimization framework for the powertrain design of a two-wheel-driven electric superbike, minimizing energy consumption. Specifically, we jointly optimize the force distribution between the wheels with the gear ratio, and rear motor and battery sizing while explicitly considering vehicle dynamics and performance constraints. First, we present an energy consumption model of the vehicle, including a scalable model of the electric machine based on data from the industry, accounting for iron, copper, and mechanical losses. Then, we analyze the propulsive blending strategy to distribute the required power to the wheels while considering adherence limits. Finally, we demonstrate the effectiveness of our approach by analyzing the design of a superbike, based on regulatory driving cycles and a custom high-performance circuit by comparing the force distribution approaches. The results underline the significance of joint optimization of powertrain components and propulsive bias, achieving a reduction of up to 22.36% in energy consumption for the Sport high-performance driving cycle.
comment: 6 pages, 3 figures, 3 tables
Distributionally Robust Model Order Reduction for Linear Systems
In this paper, we investigate distributionally robust model order reduction for linear, discrete-time, time-invariant systems. The external input is assumed to follow an uncertain distribution within a Wasserstein ambiguity set. We begin by considering the case where the distribution is certain and formulate an optimization problem to obtain the reduced model. When the distribution is uncertain, the interaction between the reduced-order model and the distribution is modeled by a Stackelberg game. To ensure solvability, we first introduce the Gelbrich distance and demonstrate that the Stackelberg game within a Wasserstein ambiguity set is equivalent to that within a Gelbrich ambiguity set. Then, we propose a nested optimization problem to solve the Stackelberg game. Furthermore, the nested optimization problem is relaxed into a nested convex optimization problem, ensuring computational feasibility. Finally, a simulation is presented to illustrate the effectiveness of the proposed method.
Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets
Recent approaches to leveraging deep learning for computing reachable sets of continuous-time dynamical systems have gained popularity over traditional level-set methods, as they overcome the curse of dimensionality. However, as with level-set methods, considerable care needs to be taken in limiting approximation errors, particularly since no guarantees are provided during training on the accuracy of the learned reachable set. To address this limitation, we introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set. To formally certify this approximation, we leverage Satisfiability Modulo Theories (SMT) solvers to bound the residual error of the HJ-based loss function across the domain of interest. Leveraging Counter Example Guided Inductive Synthesis (CEGIS), we close the loop around learning and verification, by fine-tuning the neural network on counterexamples found by the SMT solver, thus improving the accuracy of the learned reachable set. To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
Privacy Preservation for Statistical Input in Dynamical Systems
This paper addresses the challenge of privacy preservation for statistical inputs in dynamical systems. Motivated by an autonomous building application, we formulate a privacy preservation problem for statistical inputs in linear time-invariant systems. What makes this problem widely applicable is that the inputs, rather than being assumed to be deterministic, follow a probability distribution, inherently embedding privacy-sensitive information that requires protection. This formulation also presents a technical challenge as conventional differential privacy mechanisms are not directly applicable. Through rigorous analysis, we develop strategy to achieve $(0, \delta)$ differential privacy through adding noise. Finally, the effectiveness of our methods is demonstrated by revisiting the autonomous building application.
Surveying Uncertainty Representation: A Unified Model for Cyber-Physical Systems
Cyber-Physical Systems (CPS) operate in dynamic environments, leading to different types of uncertainty. This work provides a comprehensive review of uncertainty representations and categorizes them based on the dimensions used to represent uncertainty. Through this categorization, key gaps and limitations in existing approaches are identified. To address these issues, a Conceptual Model of Uncertainty Representations in CPS is introduced, integrating and extending existing models. Its applicability is demonstrated through examples from the automotive domain, showing its effectiveness in capturing and structuring uncertainty in real-world scenarios.
Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
Robust Suboptimal Local Basis Function Algorithms for Identification of Nonstationary FIR Systems in Impulsive Noise Environments
While local basis function (LBF) estimation algorithms, commonly used for identifying/tracking systems with time-varying parameters, demonstrate good performance under the assumption of normally distributed measurement noise, the estimation results may significantly deviate from satisfactory when the noise distribution is impulsive in nature, for example, corrupted by outliers. This paper introduces a computationally efficient method to make the LBF estimator robust, enhancing its resistance to impulsive noise. First, the choice of basis functions is optimized based on the knowledge of parameter variation statistics. Then, the parameter tracking algorithm is made robust using the sequential data trimming technique. Finally, it is demonstrated that the proposed algorithm can undergo online tuning through parallel estimation and leave-one-out cross-validation.
Incremental capacity-based multi-feature fusion model for predicting state-of-health of lithium-ion batteries
Lithium-ion batteries have become an indispensable part of human industrial production and daily life. For the safe use, management and maintenance of lithium-ion batteries, the state of health (SOH) of lithium-ion batteries is an important indicator so that the SOH estimation is of significant practical value. In order to accurately predict SOH, this paper proposes a fusion prediction model which combines particle swarm optimization (PSO) algorithm, bi-directional long-short time memory network (BiLSTM) and adaptive boosting (AdaBoost) algorithm. In the proposed prediction model, indirect health indicators (HIs), which characterize battery degradation, are obtained with the help of incremental capacity analysis (ICA), and is fed into BiLSTM to extract time-series features, whose parameters are optimized by employing PSO algorithm. On this basis, the AdaBoost algorithm is applied to reduce the risk of overfitting the PSO-BiLSTM model. The study based on lithium-ion battery data from Center for Advanced Life Cycle Engineering (CALCE) shows that the PSO-BiLSTM-AdaBoost model has higher accuracy, better robustness, and generalization ability.
Free Parametrization of L2-bounded State Space Models
Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
comment: 8 pages
On the Analysis of Qualitative Nyquist Plots
A powerful tool in control and systems engineering is represented by Nyquist plots, for which a qualitative representation often gives a clearer visualization of the frequency response function that is typically not given by computer programs, especially if portions of the Nyquist plot extend to infinity. This letter addresses the graphical analysis of the frequency response function, with the objective of enhancing the procedure for the qualitative construction of Nyquist plots. Several results supported by analytical proofs are derived for what concerns the low and high frequency behavior, which enable to improve the qualitative construction of Nyquist plots in the vicinity of the initial and final points.
Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
On the Steady-State Distributionally Robust Kalman Filter
State estimation in the presence of uncertain or data-driven noise distributions remains a critical challenge in control and robotics. Although the Kalman filter is the most popular choice, its performance degrades significantly when distributional mismatches occur, potentially leading to instability or divergence. To address this limitation, we introduce a novel steady-state distributionally robust (DR) Kalman filter that leverages Wasserstein ambiguity sets to explicitly account for uncertainties in both process and measurement noise distributions. Our filter achieves computational efficiency by requiring merely the offline solution of a single convex semidefinite program, which yields a constant DR Kalman gain for robust state estimation under distributional mismatches. Additionally, we derive explicit theoretical conditions on the ambiguity set radius that ensure the asymptotic convergence of the time-varying DR Kalman filter to the proposed steady-state solution. Numerical simulations demonstrate that our approach outperforms existing baseline filters in terms of robustness and accuracy across both Gaussian and non-Gaussian uncertainty scenarios, highlighting its significant potential for real-world control and estimation applications.
Stability and Controllability of Revenue Systems via the Bode Approach
In online revenue systems, e.g. an advertising system, budget pacing plays a critical role in ensuring that the spend aligns with desired financial objectives. Pacing systems dynamically control the velocity of spending to balance auction intensity, traffic fluctuations, and other stochastic variables. Current industry practices rely heavily on trial-and-error approaches, often leading to inefficiencies and instability. This paper introduces a principled methodology rooted in Classical Control Theory to address these challenges. By modeling the pacing system as a linear time-invariant (LTI) proxy and leveraging compensator design techniques using Bode methodology, we derive a robust controller to minimize pacing errors and enhance stability. The proposed methodology is validated through simulation and tested by our in-house auction system, demonstrating superior performance in achieving precise budget allocation while maintaining resilience to traffic and auction dynamics. Our findings bridge the gap between traditional control theory and modern advertising systems in modeling, simulation, and validation, offering a scalable and systematic approach to budget pacing optimization.
Optimizing Age of Information in Networks with Large and Small Updates
Modern sensing and monitoring applications typically consist of sources transmitting updates of different sizes, ranging from a few bytes (position, temperature, etc.) to multiple megabytes (images, video frames, LIDAR point scans, etc.). Existing approaches to wireless scheduling for information freshness typically ignore this mix of large and small updates, leading to suboptimal performance. In this paper, we consider a single-hop wireless broadcast network with sources transmitting updates of different sizes to a base station over unreliable links. Some sources send large updates spanning many time slots while others send small updates spanning only a few time slots. Due to medium access constraints, only one source can transmit to the base station at any given time, thus requiring careful design of scheduling policies that takes the sizes of updates into account. First, we derive a lower bound on the achievable Age of Information (AoI) by any transmission scheduling policy. Second, we develop optimal randomized policies that consider both switching and no-switching during the transmission of large updates. Third, we introduce a novel Lyapunov function and associated analysis to propose an AoI-based Max-Weight policy that has provable constant factor optimality guarantees. Finally, we evaluate and compare the performance of our proposed scheduling policies through simulations, which show that our Max-Weight policy achieves near-optimal AoI performance.
comment: To appear in WiOpt 2025
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
Directional excitability in Hilbert spaces
We introduce a generalized excitable system in which spikes can happen in a continuum of directions, therefore drastically enriching the expressivity and control capability of the spiking dynamics. In this generalized excitable system, spiking trajectories happen in a Hilbert space with an excitable resting state at the origin and spike responses that can be triggered in any direction as a function of the system's state and inputs. State-dependence of the spiking direction provide the system with a vanishing spiking memory trace, which enables robust tracking and integration of inputs in the spiking direction history. The model exhibits generalized forms of both Hodgkin's Type I and Type II excitability, capturing their usual bifurcation behaviors in an abstract setting. When used as the controller of a two-dimensional navigation task, this model facilitates both the sparseness of the actuation and its sensitivity to environmental inputs. These results highlight the potential of the proposed generalized excitable model for excitable control in high- and infinite-dimensional spaces.
comment: 6 pages, 7 figures
On-the-fly Surrogation for Complex Nonlinear Dynamics
High-fidelity models are essential for accurately capturing nonlinear system dynamics. However, simulation of these models is often computationally too expensive and, due to their complexity, they are not directly suitable for analysis, control design or real-time applications. Surrogate modelling techniques seek to construct simplified representations of these systems with minimal complexity, but adequate information on the dynamics given a simulation, analysis or synthesis objective at hand. Despite the widespread availability of system linearizations and the growing computational potential of autograd methods, there is no established approach that systematically exploits them to capture the underlying global nonlinear dynamics. This work proposes a novel surrogate modelling approach that can efficiently build a global representation of the dynamics on-the-fly from local system linearizations without ever explicitly computing a model. Using radial basis function interpolation and the second fundamental theorem of calculus, the surrogate model is only computed at its evaluation, enabling rapid computation for simulation and analysis and seamless incorporation of new linearization data. The efficiency and modelling capabilities of the method are demonstrated on simulation examples.
comment: Preprint submitted to the 2025 64th IEEE Conference on Decision and Control (CDC)
Learning from Disengagements: An Analysis of Safety Driver Interventions during Remote Driving
This study investigates disengagements of Remote Driving Systems (RDS) based on interventions by an in-vehicle Safety Drivers (SD) in real-world Operational Design Domains (ODD) with a focus on Remote Driver (RD) performance during their driving training. Based on an analysis of over 14,000 km on remote driving data, the relationship between the driving experience of 25 RD and the frequency of disengagements is systematically investigated. The results show that the number of SD interventions decreases significantly within the first 400 km of driving experience, which illustrates a clear learning curve of the RD. In addition, the most common causes for 183 disengagements analyzed are identified and categorized, whereby four main scenarios for SD interventions were identified and illustrated. The results emphasize the need for experience-based and targeted training programs aimed at developing basic driving skills early on, thereby increasing the safety, controllability and efficiency of RDS, especially in complex urban environment ODDs.
comment: This work was accepted for the IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2025)
System Identification from Partial Observations under Adversarial Attacks
This paper is concerned with the partially observed linear system identification, where the goal is to obtain reasonably accurate estimation of the balanced truncation of the true system up to the order $k$ from output measurements. We consider the challenging case of system identification under adversarial attacks, where the probability of having an attack at each time is $\Theta(1/k)$ while the value of the attack is arbitrary. We first show that the $l_1$-norm estimator exactly identifies the true Markov parameter matrix for nilpotent systems under any type of attack. We then build on this result to extend it to general systems and show that the estimation error exponentially decays as $k$ grows. The estimated balanced truncation model accordingly shows an exponentially decaying error for the identification of the true system up to the similarity transformation. This work is the first to provide the input-output analysis of the system with partial observations under arbitrary attacks.
comment: 9 pages, 2 figures
Distributed Model Predictive Control for Dynamic Cooperation of Multi-Agent Systems
We propose a distributed model predictive control (MPC) framework for coordinating heterogeneous, nonlinear multi-agent systems under individual and coupling constraints. The cooperative task is encoded as a shared objective function minimized collectively by the agents. Each agent optimizes an artificial reference as an intermediate step towards the cooperative objective, along with a control input to track it. We establish recursive feasibility, asymptotic stability, and transient performance bounds under suitable assumptions. The solution to the cooperative task is not predetermined but emerges from the optimized interactions of the agents. We demonstrate the framework on numerical examples inspired by satellite constellation control, collision-free narrow passage traversal, and coordinated quadrotor flight.
Non-Asymptotic Analysis of Classical Spectrum Estimators for $L$-mixing Time-series Data with Unknown Means
Spectral estimation is an important tool in time series analysis, with applications including economics, astronomy, and climatology. The asymptotic theory for non-parametric estimation is well-known but the development of non-asymptotic theory is still ongoing. Our recent work obtained the first non-asymptotic error bounds on the Bartlett and Welch methods for $L$-mixing stochastic processes. The class of $L$-mixing processes contains common models in time series analysis, including autoregressive processes and measurements of geometrically ergodic Markov chains. Our prior analysis assumes that the process has zero mean. While zero-mean assumptions are common, real-world time-series data often has unknown, non-zero mean. In this work, we derive non-asymptotic error bounds for both Bartlett and Welch estimators for $L$-mixing time-series data with unknown means. The obtained error bounds are of $O(\frac{1}{\sqrt{k}})$, where $k$ is the number of data segments used in the algorithm, which are tighter than our previous results under the zero-mean assumption.
comment: 7 pages, 2 figures, Under Review for Conference on Decision and Control 2025
Output-feedback model predictive control under dynamic uncertainties using integral quadratic constraints
In this work, we propose an output-feedback tube-based model predictive control (MPC) scheme for linear systems under dynamic uncertainties that are described via integral quadratic constraints (IQC). By leveraging IQCs, a large class of nonlinear and dynamic uncertainties can be addressed. We leverage recent IQC synthesis tools to design a dynamic controller and an observer that are robust to these uncertainties and minimize the size of the resulting constraint tightening in the MPC. Thereby, we show that the robust estimation problem using IQCs with peak-to-peak performance can be convexified. We guarantee recursive feasibility, robust constraint satisfaction, and input-to-state stability of the resulting MPC scheme.
Robust Control of General Linear Delay Systems under Dissipativity Part I: A KSD based Framework
This paper introduces an effective framework for designing memoryless dissipative full-state feedbacks for general linear delay systems via the Krasovski\u{i} functional (KF) approach, where an unlimited number of pointwise and general distributed delays (DDs) exists in the state, input and output. To handle the infinite dimensionality of DDs, we employ the Kronecker-Seuret Decomposition (KSD) which we recently proposed for analyzing matrix-valued functions in the context of delay systems. The KSD enables factorization or least-squares approximation of any number of $\fL^2$ DD kernel from any number of DDs without introducing conservatism. This also facilitates the construction of a complete-type KF with flexible integral kernels, following from an application of a novel integral inequalities derived from the least-squares principle. Our solution includes two theorems and an iterative algorithm to compute controller gains without relying on nonlinear solvers. A challenging numerical example, intractable for existing methods, underscores the efficacy of this approach.
comment: Submitted to 2025 IEEE Control and Decision Conference
Nuclear Microreactor Control with Deep Reinforcement Learning
The economic feasibility of nuclear microreactors will depend on minimizing operating costs through advancements in autonomous control, especially when these microreactors are operating alongside other types of energy systems (e.g., renewable energy). This study explores the application of deep reinforcement learning (RL) for real-time drum control in microreactors, exploring performance in regard to load-following scenarios. By leveraging a point kinetics model with thermal and xenon feedback, we first establish a baseline using a single-output RL agent, then compare it against a traditional proportional-integral-derivative (PID) controller. This study demonstrates that RL controllers, including both single- and multi-agent RL (MARL) frameworks, can achieve similar or even superior load-following performance as traditional PID control across a range of load-following scenarios. In short transients, the RL agent was able to reduce the tracking error rate in comparison to PID. Over extended 300-minute load-following scenarios in which xenon feedback becomes a dominant factor, PID maintained better accuracy, but RL still remained within a 1% error margin despite being trained only on short-duration scenarios. This highlights RL's strong ability to generalize and extrapolate to longer, more complex transients, affording substantial reductions in training costs and reduced overfitting. Furthermore, when control was extended to multiple drums, MARL enabled independent drum control as well as maintained reactor symmetry constraints without sacrificing performance -- an objective that standard single-agent RL could not learn. We also found that, as increasing levels of Gaussian noise were added to the power measurements, the RL controllers were able to maintain lower error rates than PID, and to do so with less control effort.
comment: 28 pages, 11 figures, 2 tables
Performance analysis of metasurface-based spatial multimode transmission for 6G wireless communications
In 6th generation wireless communication technology, it is important to utilize space resources efficiently. Recently, holographic multiple-input multiple-output (HMIMO) and meta-surface technology have attracted attention as technologies that maximize space utilization for 6G mobile communications. However, studies on HMIMO communications are still in an initial stage and its fundamental limits are yet to be unveiled. It is well known that the Fourier transform relationship can be obtained using a lens in the optical field, but research to apply it to the mobile communication field is in the early stages. In this paper, we show that the Fourier transform relationship between signals can be obtained when two metasurfaces are aligned or unaligned, and analyze the transmission and reception power, and the maximum number of spatial multimodes that can be transmitted. In addition, to reduce transmission complexity, we propose a spatial multimode transmission system using three metasurfaces and analyze signal characteristics on the meta-surfaces. In numerical results, we provide the performance of spatial multimode transmission in case of using rectangular and Gaussian signals.
Data-driven Power Loss Identification through Physics-Based Thermal Model Backpropagation
Digital twins for power electronics require accurate power losses whose direct measurements are often impractical or impossible in real-world applications. This paper presents a novel hybrid framework that combines physics-based thermal modeling with data-driven techniques to identify and correct power losses accurately using only temperature measurements. Our approach leverages a cascaded architecture where a neural network learns to correct the outputs of a nominal power loss model by backpropagating through a reduced-order thermal model. We explore two neural architectures, a bootstrapped feedforward network, and a recurrent neural network, demonstrating that the bootstrapped feedforward approach achieves superior performance while maintaining computational efficiency for real-time applications. Between the interconnection, we included normalization strategies and physics-guided training loss functions to preserve stability and ensure physical consistency. Experimental results show that our hybrid model reduces both temperature estimation errors (from 7.2+-6.8{\deg}C to 0.3+-0.3{\deg}C) and power loss prediction errors (from 5.4+-6.6W to 0.2+-0.3W) compared to traditional physics-based approaches, even in the presence of thermal model uncertainties. This methodology allows us to accurately estimate power losses without direct measurements, making it particularly helpful for real-time industrial applications where sensor placement is hindered by cost and physical limitations.
comment: Accepted by European Control Conference (ECC) 2020, 8 pages, 7 figures
Set-based state estimation of nonlinear discrete-time systems using constrained zonotopes and polyhedral relaxations
This paper presents a new algorithm for set-based state estimation of nonlinear discrete-time systems with bounded uncertainties. The novel method builds upon essential properties and computational advantages of constrained zonotopes (CZs) and polyhedral relaxations of factorable representations of nonlinear functions to propagate CZs through nonlinear functions, which is usually done using conservative linearization in the literature. The new method also refines the propagated enclosure using nonlinear measurements. To achieve this, a lifted polyhedral relaxation is computed for the composite nonlinear function of the system dynamics and measurement equations, in addition to incorporating the measured output through equality constraints. Polyhedral relaxations of trigonometric functions are enabled for the first time, allowing to address a broader class of nonlinear systems than our previous works. Additionally, an approach to obtain an equivalent enclosure with fewer generators and constraints is developed. Thanks to the advantages of the polyhedral enclosures based on factorable representations, the new state estimation method provides better approximations than those resulting from linearization procedures. This led to significant improvements in the computation of convex sets enclosing the system states consistent with measured outputs. Numerical examples highlight the advantages of the novel algorithm in comparison to existing CZ methods based on the Mean Value Theorem and DC programming principles.
comment: 13 pages, 10 figures
SACA: A Scenario-Aware Collision Avoidance Framework for Autonomous Vehicles Integrating LLMs-Driven Reasoning
Reliable collision avoidance under extreme situations remains a critical challenge for autonomous vehicles. While large language models (LLMs) offer promising reasoning capabilities, their application in safety-critical evasive maneuvers is limited by latency and robustness issues. Even so, LLMs stand out for their ability to weigh emotional, legal, and ethical factors, enabling socially responsible and context-aware collision avoidance. This paper proposes a scenario-aware collision avoidance (SACA) framework for extreme situations by integrating predictive scenario evaluation, data-driven reasoning, and scenario-preview-based deployment to improve collision avoidance decision-making. SACA consists of three key components. First, a predictive scenario analysis module utilizes obstacle reachability analysis and motion intention prediction to construct a comprehensive situational prompt. Second, an online reasoning module refines decision-making by leveraging prior collision avoidance knowledge and fine-tuning with scenario data. Third, an offline evaluation module assesses performance and stores scenarios in a memory bank. Additionally, A precomputed policy method improves deployability by previewing scenarios and retrieving or reasoning policies based on similarity and confidence levels. Real-vehicle tests show that, compared with baseline methods, SACA effectively reduces collision losses in extreme high-risk scenarios and lowers false triggering under complex conditions. Project page: https://sean-shiyuez.github.io/SACA/.
comment: 10 pages,10 figures. This work has been submitted to the IEEE Robotics and Automation Letters (RAL) for possible publication
Feasibility Evaluation of Quadratic Programs for Constrained Control
This paper presents a computationally-efficient method for evaluating the feasibility of Quadratic Programs (QPs) for online constrained control. Based on the duality principle, we first show that the feasibility of a QP can be determined by the solution of a properly-defined Linear Program (LP). Our analysis yields a LP that can be solved more efficiently compared to the original QP problem, and more importantly, is simpler in form and can be solved more efficiently compared to existing methods that assess feasibility via LPs. The computational efficiency of the proposed method compared to existing methods for feasibility evaluation is demonstrated in comparative case studies as well as a feasible-constraint selection problem, indicating its promise for online feasibility evaluation of optimization-based controllers.
comment: Submitted to CDC 2025
Safety Filter Design for Articulated Frame Steering Vehicles In the Presence of Actuator Dynamics Using High-Order Control Barrier Functions
Articulated Frame Steering (AFS) vehicles are widely used in heavy-duty industries, where they often operate near operators and laborers. Therefore, designing safe controllers for AFS vehicles is essential. In this paper, we develop a Quadratic Program (QP)-based safety filter that ensures feasibility for AFS vehicles with affine actuator dynamics. To achieve this, we first derive the general equations of motion for AFS vehicles, incorporating affine actuator dynamics. We then introduce a novel High-Order Control Barrier Function (HOCBF) candidate with equal relative degrees for both system controls. Finally, we design a Parametric Adaptive HOCBF (PACBF) and an always-feasible, QP-based safety filter. Numerical simulations of AFS vehicle kinematics demonstrate the effectiveness of our approach.
Minimally Conservative Controlled-Invariant Set Synthesis Using Control Barrier Certificates
Finding a controlled-invariant set for a system with state and control constraints is crucial for safety-critical applications. However, existing methods often produce overly conservative solutions. This paper presents a method for generating controlled-invariant (safe) sets for nonlinear polynomial control-affine systems using Control Barrier Certificates (CBCs). We formulate CBC conditions as Sum-of-Squares (SOS) constraints and solve them via an SOS Program (SOSP). First, we generalize existing SOSPs for CBC synthesis to handle environments with complex unsafe state representations. Then, we propose an iterative algorithm that progressively enlarges the safe set constructed by the synthesized CBCs by maximizing boundary expansion at each iteration. We theoretically prove that our method guarantees strict safe set expansion at every step. Finally, we validate our approach with numerical simulations in 2D and 3D for single-input and multi-input systems. Empirical results show that the safe set generated by our method covers in most part a larger portion of the state space compared to two state-of-the-art techniques.
Understanding long-term energy use in off-grid solar home systems in sub-Saharan Africa
Solar home systems provide low-cost electricity access for rural off-grid communities. As access to them increases, more long-term data becomes available on how these systems are used throughout their lifetime. This work analyses a dataset of 1,000 systems across sub-Saharan Africa. Dynamic time warping clustering was applied to the load demand data from the systems, identifying five distinct archetypal daily load profiles and their occurrence across the dataset. Temporal analysis reveals a general decline in daily energy consumption over time, with 77% of households reducing their usage compared to the start of ownership. On average, there is a 33% decrease in daily consumption by the end of the second year compared to the peak demand, which occurs on the 96th day. Combining the load demand analysis with payment data shows that this decrease in energy consumption is observed even in households that are not experiencing economic hardship, indicating there are reasons beyond financial constraints for decreasing energy use once energy access is obtained.
comment: Draft updates, including text and figure changes
Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
Stability results for MIMO LTI systems via Scaled Relative Graphs
This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems.
comment: Submitted to CDC 2025
Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
Cascade Reinforcement Learning with State Space Factorization for O-RAN-based Traffic Steering
The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.
comment: 9 pages, 8 figures
Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
General Distribution Steering: A Sub-Optimal Solution by Convex Optimization
General distribution steering is intrinsically an infinite-dimensional problem, when the continuous distributions to steer are arbitrary. We put forward a moment representation of the primal system for control in [42]. However, the system trajectory was a predetermined one without optimization towards a design criterion, which doesn't always ensure a most satisfactory solution. In this paper, we propose an optimization approach to the general distribution steering problem of the first-order discrete-time linear system, i.e., an optimal control law for the corresponding moment system. The domain of all feasible control inputs is non-convex and has a complex topology. We obtain a subset of it by minimizing a weighted sum of squared integral distances alongside the system trajectory. The feasible domain is then proved convex, and the optimal control problem can be treated as a convex optimization or by exhaustive search, based on the type of the cost function. Algorithms of steering for continuous and discrete distributions are then put forward respectively, by adopting a realization scheme of control inputs. We also provide an explicit advantage of our proposed algorithm by truncated power moments to the prevailing Gaussian Mixture Models. Experiments on different types of cost functions are given to validate the performance of our proposed algorithm. Since the moment system is a dimension-reduced counterpart of the primal system, we call this solution a sub-optimal one to the primal general distribution steering problem.
comment: 16 pages, 23 figures
A Minimal Control Family of Dynamical Systems for Universal Approximation
The universal approximation property (UAP) holds a fundamental position in deep learning, as it provides a theoretical foundation for the expressive power of neural networks. It is widely recognized that a composition of linear and nonlinear functions, such as the rectified linear unit (ReLU) activation function, can approximate continuous functions on compact domains. In this paper, we extend this efficacy to a scenario containing dynamical systems with controls. We prove that the control family $\mathcal{F}_1$ containing all affine maps and the nonlinear ReLU map is sufficient for generating flow maps that can approximate orientation-preserving (OP) diffeomorphisms on any compact domain. Since $\mathcal{F}_1$ contains only one nonlinear function and the UAP does not hold if we remove the nonlinear function, we call $\mathcal{F}_1$ a minimal control family for the UAP. On this basis, several mild sufficient conditions, such as affine invariance, are established for the control family and discussed. Our results reveal an underlying connection between the approximation power of neural networks and control systems and could provide theoretical guidance for examining the approximation power of flow-based models.
comment: 12 pages
An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a flexible and computationally tractable methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information from the model with respect to the parameters. Our algorithm consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and use a linear Gaussian model approximation to iteratively optimize the model's parameters. In each iteration, we propose to use the input-output data to tune the covariance of the linear Gaussian model. This statistically calibrates the approach. Secondly, we define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. We test our method with linear and nonlinear dynamics.
comment: Submitted to the IEEE CDC
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. Our numerical study confirms these findings, highlighting the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
Set-point control and local stability for flat nonlinear systems using model-following control
We consider the set-point control problem for nonlinear systems with flat output that are subject to perturbations. The nonlinear dynamics as well as the perturbations are locally Lipschitz. We apply the model-following control (MFC) approach which consists of a model control loop (MCL) for a feedforward generation and a process control loop (PCL) that compensates the perturbations using high-gain feedback. We analyse the resulting closed-loop system and discuss its relation to a standard flatness-based high-gain approach. In particular we analyse the estimated region of attraction provided by a quadratic Lyapunov function. A case study illustrates the approach and quantifies the region of attraction obtained for each control approach. Using the initial condition of the model control loop as tuning parameter for the MFC design, provides that a significantly larger region of attraction can be guaranteed compared to a conventional single-loop high-gain design.
Learning Algorithms for Verification of Markov Decision Processes
We present a general framework for applying learning algorithms and heuristical guidance to the verification of Markov decision processes (MDPs). The primary goal of our techniques is to improve performance by avoiding an exhaustive exploration of the state space, instead focussing on particularly relevant areas of the system, guided by heuristics. Our work builds on the previous results of Br{\'{a}}zdil et al., significantly extending it as well as refining several details and fixing errors. The presented framework focuses on probabilistic reachability, which is a core problem in verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP without knowing the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. In particular, the latter is an extension of statistical model-checking (SMC) for unbounded properties in MDPs. In contrast to other related approaches, we do not restrict our attention to time-bounded (finite-horizon) or discounted properties, nor assume any particular structural properties of the MDP.
comment: 82 pages. This is the TheoretiCS journal version
Optimal robust exact first-order differentiators with Lipschitz continuous output
The signal differentiation problem involves the development of algorithms that allow to recover a signal's derivatives from noisy measurements. This paper develops a first-order differentiator with the following combination of properties: robustness to measurement noise, exactness in the absence of noise, optimal worst-case differentiation error, and Lipschitz continuous output where the output's Lipschitz constant is a tunable parameter. This combination of advantageous properties is not shared by any existing differentiator. Both continuous-time and sample-based versions of the differentiator are developed and theoretical guarantees are established for both. The continuous-time version of the differentiator consists in a regularized and sliding-mode-filtered linear adaptive differentiator. The sample-based, implementable version is then obtained through appropriate discretization. An illustrative example is provided to highlight the features of the developed differentiator.
Emergent Cooperation for Energy-efficient Connectivity via Wireless Power Transfer
This paper addresses the challenge of incentivizing energy-constrained, non-cooperative user equipment (UE) to serve as cooperative relays. We consider a source UE with a non-line-of-sight channel to an access point (AP), where direct communication may be infeasible or may necessitate a substantial transmit power. Other UEs in the vicinity are viewed as relay candidates, and our aim is to enable energy-efficient connectivity for the source, while accounting for the self-interested behavior and private channel state information of these candidates, by allowing the source to ``pay" the candidates via wireless power transfer (WPT). We propose a cooperation-inducing protocol, inspired by Myerson auction theory, which ensures that candidates truthfully report power requirements while minimizing the expected power used by the source. Through rigorous analysis, we establish the regularity of valuations for lognormal fading channels, which allows for the efficient determination of the optimal source transmit power. Extensive simulation experiments, employing real-world communication and WPT parameters, validate our theoretical framework. Our results demonstrate over 71% reduction in outage probability with as few as 4 relay candidates, compared to the non-cooperative scenario, and as much as 70% source power savings compared to a baseline approach, highlighting the efficacy of our proposed methodology.
Uncrewed Vehicles in 6G Networks: A Unifying Treatment of Problems, Formulations, and Tools
Uncrewed Vehicles (UVs) functioning as autonomous agents are anticipated to play a crucial role in the 6th Generation of wireless networks. Their seamless integration, cost-effectiveness, and the additional controllability through motion planning make them an attractive deployment option for a wide range of applications, both as assets in the network (e.g., mobile base stations) and as consumers of network services (e.g., autonomous delivery systems). However, despite their potential, the convergence of UVs and wireless systems brings forth numerous challenges that require attention from both academia and industry. This paper then aims to offer a comprehensive overview encompassing the transformative possibilities as well as the significant challenges associated with UV-assisted next-generation wireless communications. Considering the diverse landscape of possible application scenarios, problem formulations, and mathematical tools related to UV-assisted wireless systems, the underlying core theme of this paper is the unification of the problem space, providing a structured framework to understand the use cases, problem formulations, and necessary mathematical tools. Overall, the paper sets forth a clear understanding of how uncrewed vehicles can be integrated in the 6G ecosystem, paving the way towards harnessing the full potential at this intersection.
Systems and Control (EESS)
Policy Gradient for LQR with Domain Randomization
Domain randomization (DR) enables sim-to-real transfer by training controllers on a distribution of simulated environments, with the goal of achieving robust performance in the real world. Although DR is widely used in practice and is often solved using simple policy gradient (PG) methods, understanding of its theoretical guarantees remains limited. Toward addressing this gap, we provide the first convergence analysis of PG methods for domain-randomized linear quadratic regulation (LQR). We show that PG converges globally to the minimizer of a finite-sample approximation of the DR objective under suitable bounds on the heterogeneity of the sampled systems. We also quantify the sample-complexity associated with achieving a small performance gap between the sample-average and population-level objectives. Additionally, we propose and analyze a discount-factor annealing algorithm that obviates the need for an initial jointly stabilizing controller, which may be challenging to find. Empirical results support our theoretical findings and highlight promising directions for future work, including risk-sensitive DR formulations and stochastic PG algorithms.
Coordinating Distributed Energy Resources with Nodal Pricing in Distribution Networks: a Game-Theoretic Approach
We propose a real-time nodal pricing mechanism for cost minimization and voltage control in a distribution network with autonomous distributed energy resources and analyze the resulting market using stochastic game theory. Unlike existing methods, the proposed pricing scheme does not require device-aware centralized coordination or communication between prosumers. By developing new sufficient conditions under which a stochastic game is a Markov potential game, we show that the problem of computing an equilibrium for the proposed model is equivalent to solving a single-agent Markov Decision Process. These new conditions are general and may apply to other applications. We compute the equilibrium for an IEEE test system to empirically demonstrate the effectiveness of the pricing policy.
Analysis of the French system imbalance paving the way for a novel operating reserve sizing approach
This paper examines the relationship between system imbalance and several explanatory variables within the French electricity system. The factors considered include lagged imbalance values, observations of renewable energy sources (RES) generation and consumption, and forecasts for RES generation and consumption. The study analyzes the distribution of system imbalance in relation to these variables. Additionally, an HGBR machine-learning model is employed to assess the predictability of imbalances and the explanatory power of the input variables studied. The results indicate no clear correlation between RES generation or consumption and the observed imbalances. However, it is possible to predict the imbalance adequately using forecasts available a few hours before real-time, along with the lagged values of the imbalance. Predicting the imbalance a day in advance proves to be complex with the variables examined; however, the extreme quantiles of the imbalance used for reserve sizing and contracting can be predicted with sufficient accuracy.
comment: Paper accepted to be presented at the EEM 2025 conference
Disturbance-adaptive Model Predictive Control for Bounded Average Constraint Violations
This paper considers stochastic linear time-invariant systems subject to constraints on the average number of state-constraint violations over time without knowing the disturbance distribution. We present a novel disturbance-adaptive model predictive control (DAD-MPC) framework, which adjusts the disturbance model based on measured constraint violations. Using a robust invariance method, DAD-MPC ensures recursive feasibility and guarantees asymptotic or robust bounds on average constraint violations. Additionally, the bounds hold even with an inaccurate disturbance model, which allows for data-driven disturbance quantification methods to be used, such as conformal prediction. Simulation results demonstrate that the proposed approach outperforms state-of-the-art methods while satisfying average violation constraints.
A system level approach to generalised feedback Nash equilibrium seeking in partially-observed games
This work proposes an algorithm for seeking generalised feedback Nash equilibria (GFNE) in noncooperative dynamic games. The focus is on cyber-physical systems with dynamics which are linear, stochastic, potentially unstable, and partially observed. We employ System Level Synthesis (SLS) to reformulate the problem as the search for an equilibrium profile of closed-loop responses to noise, which can then be used to reconstruct a stabilising output-feedback policy. Under this setup, we leverage monotone operator theory to design a GFNE-seeking algorithm capable to enforce closed-loop stability, operational constraints, and communication constraints onto the control policies. This algorithm is amenable to numerical implementation and we provide conditions for its convergence. We demonstrate our approach in a simulated experiment on the noncooperative stabilisation of a decentralised power-grid.
Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Stability
Grid-Forming (GFM) technology is considered a promising solution to build power electronics-dominated power systems. However, the impact of GFM converters on the system stability is still unquantified, creating a gap between the system- and device-level perspectives. To fill this gap, at the device-level, we propose a Forming Index to quantify a converter's response to grid voltage variations, providing a characterization of its GFM behavior. At the system-level, a quantitative notion of System Strength is introduced to capture the fundamental requirements for power system formation. Finally, we establish the alignment between device- and system-level metrics by demonstrating that GFM converters provably enhance system strength.
Robust Feedback Optimization with Model Uncertainty: A Regularization Approach
Feedback optimization optimizes the steady state of a dynamical system by implementing optimization iterations in closed loop with the plant. It relies on online measurements and limited model information, namely, the input-output sensitivity. In practice, various issues including inaccurate modeling, lack of observation, or changing conditions can lead to sensitivity mismatches, causing closed-loop sub-optimality or even instability. To handle such uncertainties, we pursue robust feedback optimization, where we optimize the closed-loop performance against all possible sensitivities lying in specific uncertainty sets. We provide tractable reformulations for the corresponding min-max problems via regularizations and characterize the online closed-loop performance through the tracking error in case of time-varying optimal solutions. Simulations on a distribution grid illustrate the effectiveness of our robust feedback optimization controller in addressing sensitivity mismatches in a non-stationary environment.
Data-Driven Distributed Output Synchronization of Heterogeneous Discrete-Time Multi-Agent Systems
In this paper, we assume that an autonomous exosystem generates a reference output, and we consider the problem of designing a distributed data-driven control law for a family of discrete-time heterogeneous LTI agents, connected through a directed graph, in order to synchronize the agents' outputs to the reference one. The agents of the network are split into two categories: leaders, with direct access to the exosystem output, and followers, that only receive information from their neighbors. All agents aim to achieve output synchronization by means of a state feedback that makes use of their own states as well as of an estimate of the exogenous system state, provided by an internal state observer. Such observer has a different structure for leaders and followers. Necessary and sufficient conditions for the existence of a solution are first derived in the model-based set-up and then in a data-driven context. An example illustrates both the implementation procedure and the performance of the proposed approach.
comment: Extended version of the conference paper submitted to 64th IEEE Conference on Decision and Control
Application of Battery Storage to Switching Predictive Control of Power Distribution Systems Including Road Heating
A road heating system is an electrical device which promotes snow melting by burying a heating cable as a thermal source underground. When integrating road heating into the power distribution system, we need to optimize the flow of electric power by appropriately integrating distributed power sources and conventional power distribution equipment. In this paper, we extend the power distribution system considered in the authors' previous study to the case where battery storage is installed. As a main result, we propose a predictive switching control that achieves the reduction of distribution loss, attenuation of voltage fluctuation, and efficient snow melting, simultaneously. We verify the effectiveness of the application of battery storage through numerical simulation.
comment: 13 pages, 14 figures
Initial State Privacy of Nonlinear Systems on Riemannian Manifolds
In this paper, we investigate initial state privacy protection for discrete-time nonlinear closed systems. By capturing Riemannian geometric structures inherent in such privacy challenges, we refine the concept of differential privacy through the introduction of an initial state adjacency set based on Riemannian distances. A new differential privacy condition is formulated using incremental output boundedness, enabling the design of time-varying Laplacian noise to achieve specified privacy guarantees. The proposed framework extends beyond initial state protection to also cover system parameter privacy, which is demonstrated as a special application.
Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems
This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
Unraveling tensor structures in correct-by-design controller synthesis
Formal safety guarantees on the synthesis of controllers for stochastic systems can be obtained using correct-by-design approaches. These approaches often use abstractions as finite-state Markov Decision Processes. As the state space of these MDPs grows, the curse of dimensionality makes the computational and memory cost of the probabilistic guarantees, quantified with dynamic programming, scale exponentially. In this work, we leverage decoupled dynamics and unravel, via dynamic programming operations, a tree structure in the Canonical Polyadic Decomposition (CPD) of the value functions. For discrete-time stochastic systems with syntactically co-safe linear temporal logic (scLTL) specifications, we provide provable probabilistic safety guarantees and significantly alleviate the computational burden. We provide an initial validation of the theoretical results on several typical case studies and showcase that the uncovered tree structure enables efficient reductions in the computational burden.
A robot-assisted pipeline to rapidly scan 1.7 million historical aerial photographs
During the 20th Century, aerial surveys captured hundreds of millions of high-resolution photographs of the earth's surface. These images, the precursors to modern satellite imagery, represent an extraordinary visual record of the environmental and social upheavals of the 20th Century. However, most of these images currently languish in physical archives where retrieval is difficult and costly. Digitization could revolutionize access, but manual scanning is slow and expensive. Here, we describe and validate a novel robot-assisted pipeline that increases worker productivity in scanning 30-fold, applied at scale to digitize an archive of 1.7 million historical aerial photographs from 65 countries.
An ANN-Enhanced Approach for Flatness-Based Constrained Control of Nonlinear Systems
Neural networks have proven practical for a synergistic combination of advanced control techniques. This work analyzes the implementation of rectified linear unit neural networks to achieve constrained control in differentially flat systems. Specifically, the class of flat systems enjoys the benefit of feedback linearizability, i.e., the systems can be linearized by means of a proper variable transformation. However, the price for linearizing the dynamics is that the constraint descriptions are distorted geometrically. Our results show that, by using neural networks, these constraints can be represented as a union of polytopes, enabling the use of mixed-integer programming tools to guarantee constraint satisfaction. We further analyze the integration of the characterization into efficient settings such as control Lyapunov function-based and model predictive control (MPC). Interestingly, this description also allows us to explicitly compute the solution of the MPC problem for the nonlinear system. Several examples are provided to illustrate the effectiveness of our framework.
Consensus on Open Multi-Agent Systems Over Graphs Sampled from Graphons
We show how graphons can be used to model and analyze open multi-agent systems, which are multi-agent systems subject to arrivals and departures, in the specific case of linear consensus. First, we analyze the case of replacements, where under the assumption of a deterministic interval between two replacements, we derive an upper bound for the disagreement in expectation. Then, we study the case of arrivals and departures, where we define a process for the evolution of the number of agents that guarantees a minimum and a maximum number of agents. Next, we derive an upper bound for the disagreement in expectation, and we establish a link with the spectrum of the expected graph used to generate the graph topologies. Finally, for stochastic block model (SBM) graphons, we prove that the computation of the spectrum of the expected graph can be performed based on a matrix whose dimension depends only on the graphon and it is independent of the number of agents.
comment: 8 pages, 1 figure
Two-wheel-driven Electric Superbike Powertrain Optimization
In this paper, we propose an optimization framework for the powertrain design of a two-wheel-driven electric superbike, minimizing energy consumption. Specifically, we jointly optimize the force distribution between the wheels with the gear ratio, and rear motor and battery sizing while explicitly considering vehicle dynamics and performance constraints. First, we present an energy consumption model of the vehicle, including a scalable model of the electric machine based on data from the industry, accounting for iron, copper, and mechanical losses. Then, we analyze the propulsive blending strategy to distribute the required power to the wheels while considering adherence limits. Finally, we demonstrate the effectiveness of our approach by analyzing the design of a superbike, based on regulatory driving cycles and a custom high-performance circuit by comparing the force distribution approaches. The results underline the significance of joint optimization of powertrain components and propulsive bias, achieving a reduction of up to 22.36% in energy consumption for the Sport high-performance driving cycle.
comment: 6 pages, 3 figures, 3 tables
Distributionally Robust Model Order Reduction for Linear Systems
In this paper, we investigate distributionally robust model order reduction for linear, discrete-time, time-invariant systems. The external input is assumed to follow an uncertain distribution within a Wasserstein ambiguity set. We begin by considering the case where the distribution is certain and formulate an optimization problem to obtain the reduced model. When the distribution is uncertain, the interaction between the reduced-order model and the distribution is modeled by a Stackelberg game. To ensure solvability, we first introduce the Gelbrich distance and demonstrate that the Stackelberg game within a Wasserstein ambiguity set is equivalent to that within a Gelbrich ambiguity set. Then, we propose a nested optimization problem to solve the Stackelberg game. Furthermore, the nested optimization problem is relaxed into a nested convex optimization problem, ensuring computational feasibility. Finally, a simulation is presented to illustrate the effectiveness of the proposed method.
Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets
Recent approaches to leveraging deep learning for computing reachable sets of continuous-time dynamical systems have gained popularity over traditional level-set methods, as they overcome the curse of dimensionality. However, as with level-set methods, considerable care needs to be taken in limiting approximation errors, particularly since no guarantees are provided during training on the accuracy of the learned reachable set. To address this limitation, we introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set. To formally certify this approximation, we leverage Satisfiability Modulo Theories (SMT) solvers to bound the residual error of the HJ-based loss function across the domain of interest. Leveraging Counter Example Guided Inductive Synthesis (CEGIS), we close the loop around learning and verification, by fine-tuning the neural network on counterexamples found by the SMT solver, thus improving the accuracy of the learned reachable set. To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
Privacy Preservation for Statistical Input in Dynamical Systems
This paper addresses the challenge of privacy preservation for statistical inputs in dynamical systems. Motivated by an autonomous building application, we formulate a privacy preservation problem for statistical inputs in linear time-invariant systems. What makes this problem widely applicable is that the inputs, rather than being assumed to be deterministic, follow a probability distribution, inherently embedding privacy-sensitive information that requires protection. This formulation also presents a technical challenge as conventional differential privacy mechanisms are not directly applicable. Through rigorous analysis, we develop strategy to achieve $(0, \delta)$ differential privacy through adding noise. Finally, the effectiveness of our methods is demonstrated by revisiting the autonomous building application.
Surveying Uncertainty Representation: A Unified Model for Cyber-Physical Systems
Cyber-Physical Systems (CPS) operate in dynamic environments, leading to different types of uncertainty. This work provides a comprehensive review of uncertainty representations and categorizes them based on the dimensions used to represent uncertainty. Through this categorization, key gaps and limitations in existing approaches are identified. To address these issues, a Conceptual Model of Uncertainty Representations in CPS is introduced, integrating and extending existing models. Its applicability is demonstrated through examples from the automotive domain, showing its effectiveness in capturing and structuring uncertainty in real-world scenarios.
Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
Robust Suboptimal Local Basis Function Algorithms for Identification of Nonstationary FIR Systems in Impulsive Noise Environments
While local basis function (LBF) estimation algorithms, commonly used for identifying/tracking systems with time-varying parameters, demonstrate good performance under the assumption of normally distributed measurement noise, the estimation results may significantly deviate from satisfactory when the noise distribution is impulsive in nature, for example, corrupted by outliers. This paper introduces a computationally efficient method to make the LBF estimator robust, enhancing its resistance to impulsive noise. First, the choice of basis functions is optimized based on the knowledge of parameter variation statistics. Then, the parameter tracking algorithm is made robust using the sequential data trimming technique. Finally, it is demonstrated that the proposed algorithm can undergo online tuning through parallel estimation and leave-one-out cross-validation.
Incremental capacity-based multi-feature fusion model for predicting state-of-health of lithium-ion batteries
Lithium-ion batteries have become an indispensable part of human industrial production and daily life. For the safe use, management and maintenance of lithium-ion batteries, the state of health (SOH) of lithium-ion batteries is an important indicator so that the SOH estimation is of significant practical value. In order to accurately predict SOH, this paper proposes a fusion prediction model which combines particle swarm optimization (PSO) algorithm, bi-directional long-short time memory network (BiLSTM) and adaptive boosting (AdaBoost) algorithm. In the proposed prediction model, indirect health indicators (HIs), which characterize battery degradation, are obtained with the help of incremental capacity analysis (ICA), and is fed into BiLSTM to extract time-series features, whose parameters are optimized by employing PSO algorithm. On this basis, the AdaBoost algorithm is applied to reduce the risk of overfitting the PSO-BiLSTM model. The study based on lithium-ion battery data from Center for Advanced Life Cycle Engineering (CALCE) shows that the PSO-BiLSTM-AdaBoost model has higher accuracy, better robustness, and generalization ability.
Free Parametrization of L2-bounded State Space Models
Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
comment: 8 pages
On the Analysis of Qualitative Nyquist Plots
A powerful tool in control and systems engineering is represented by Nyquist plots, for which a qualitative representation often gives a clearer visualization of the frequency response function that is typically not given by computer programs, especially if portions of the Nyquist plot extend to infinity. This letter addresses the graphical analysis of the frequency response function, with the objective of enhancing the procedure for the qualitative construction of Nyquist plots. Several results supported by analytical proofs are derived for what concerns the low and high frequency behavior, which enable to improve the qualitative construction of Nyquist plots in the vicinity of the initial and final points.
Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
On the Steady-State Distributionally Robust Kalman Filter
State estimation in the presence of uncertain or data-driven noise distributions remains a critical challenge in control and robotics. Although the Kalman filter is the most popular choice, its performance degrades significantly when distributional mismatches occur, potentially leading to instability or divergence. To address this limitation, we introduce a novel steady-state distributionally robust (DR) Kalman filter that leverages Wasserstein ambiguity sets to explicitly account for uncertainties in both process and measurement noise distributions. Our filter achieves computational efficiency by requiring merely the offline solution of a single convex semidefinite program, which yields a constant DR Kalman gain for robust state estimation under distributional mismatches. Additionally, we derive explicit theoretical conditions on the ambiguity set radius that ensure the asymptotic convergence of the time-varying DR Kalman filter to the proposed steady-state solution. Numerical simulations demonstrate that our approach outperforms existing baseline filters in terms of robustness and accuracy across both Gaussian and non-Gaussian uncertainty scenarios, highlighting its significant potential for real-world control and estimation applications.
Stability and Controllability of Revenue Systems via the Bode Approach
In online revenue systems, e.g. an advertising system, budget pacing plays a critical role in ensuring that the spend aligns with desired financial objectives. Pacing systems dynamically control the velocity of spending to balance auction intensity, traffic fluctuations, and other stochastic variables. Current industry practices rely heavily on trial-and-error approaches, often leading to inefficiencies and instability. This paper introduces a principled methodology rooted in Classical Control Theory to address these challenges. By modeling the pacing system as a linear time-invariant (LTI) proxy and leveraging compensator design techniques using Bode methodology, we derive a robust controller to minimize pacing errors and enhance stability. The proposed methodology is validated through simulation and tested by our in-house auction system, demonstrating superior performance in achieving precise budget allocation while maintaining resilience to traffic and auction dynamics. Our findings bridge the gap between traditional control theory and modern advertising systems in modeling, simulation, and validation, offering a scalable and systematic approach to budget pacing optimization.
Optimizing Age of Information in Networks with Large and Small Updates
Modern sensing and monitoring applications typically consist of sources transmitting updates of different sizes, ranging from a few bytes (position, temperature, etc.) to multiple megabytes (images, video frames, LIDAR point scans, etc.). Existing approaches to wireless scheduling for information freshness typically ignore this mix of large and small updates, leading to suboptimal performance. In this paper, we consider a single-hop wireless broadcast network with sources transmitting updates of different sizes to a base station over unreliable links. Some sources send large updates spanning many time slots while others send small updates spanning only a few time slots. Due to medium access constraints, only one source can transmit to the base station at any given time, thus requiring careful design of scheduling policies that takes the sizes of updates into account. First, we derive a lower bound on the achievable Age of Information (AoI) by any transmission scheduling policy. Second, we develop optimal randomized policies that consider both switching and no-switching during the transmission of large updates. Third, we introduce a novel Lyapunov function and associated analysis to propose an AoI-based Max-Weight policy that has provable constant factor optimality guarantees. Finally, we evaluate and compare the performance of our proposed scheduling policies through simulations, which show that our Max-Weight policy achieves near-optimal AoI performance.
comment: To appear in WiOpt 2025
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
Directional excitability in Hilbert spaces
We introduce a generalized excitable system in which spikes can happen in a continuum of directions, therefore drastically enriching the expressivity and control capability of the spiking dynamics. In this generalized excitable system, spiking trajectories happen in a Hilbert space with an excitable resting state at the origin and spike responses that can be triggered in any direction as a function of the system's state and inputs. State-dependence of the spiking direction provide the system with a vanishing spiking memory trace, which enables robust tracking and integration of inputs in the spiking direction history. The model exhibits generalized forms of both Hodgkin's Type I and Type II excitability, capturing their usual bifurcation behaviors in an abstract setting. When used as the controller of a two-dimensional navigation task, this model facilitates both the sparseness of the actuation and its sensitivity to environmental inputs. These results highlight the potential of the proposed generalized excitable model for excitable control in high- and infinite-dimensional spaces.
comment: 6 pages, 7 figures
On-the-fly Surrogation for Complex Nonlinear Dynamics
High-fidelity models are essential for accurately capturing nonlinear system dynamics. However, simulation of these models is often computationally too expensive and, due to their complexity, they are not directly suitable for analysis, control design or real-time applications. Surrogate modelling techniques seek to construct simplified representations of these systems with minimal complexity, but adequate information on the dynamics given a simulation, analysis or synthesis objective at hand. Despite the widespread availability of system linearizations and the growing computational potential of autograd methods, there is no established approach that systematically exploits them to capture the underlying global nonlinear dynamics. This work proposes a novel surrogate modelling approach that can efficiently build a global representation of the dynamics on-the-fly from local system linearizations without ever explicitly computing a model. Using radial basis function interpolation and the second fundamental theorem of calculus, the surrogate model is only computed at its evaluation, enabling rapid computation for simulation and analysis and seamless incorporation of new linearization data. The efficiency and modelling capabilities of the method are demonstrated on simulation examples.
comment: Preprint submitted to the 2025 64th IEEE Conference on Decision and Control (CDC)
Learning from Disengagements: An Analysis of Safety Driver Interventions during Remote Driving
This study investigates disengagements of Remote Driving Systems (RDS) based on interventions by an in-vehicle Safety Drivers (SD) in real-world Operational Design Domains (ODD) with a focus on Remote Driver (RD) performance during their driving training. Based on an analysis of over 14,000 km on remote driving data, the relationship between the driving experience of 25 RD and the frequency of disengagements is systematically investigated. The results show that the number of SD interventions decreases significantly within the first 400 km of driving experience, which illustrates a clear learning curve of the RD. In addition, the most common causes for 183 disengagements analyzed are identified and categorized, whereby four main scenarios for SD interventions were identified and illustrated. The results emphasize the need for experience-based and targeted training programs aimed at developing basic driving skills early on, thereby increasing the safety, controllability and efficiency of RDS, especially in complex urban environment ODDs.
comment: This work was accepted for the IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2025)
System Identification from Partial Observations under Adversarial Attacks
This paper is concerned with the partially observed linear system identification, where the goal is to obtain reasonably accurate estimation of the balanced truncation of the true system up to the order $k$ from output measurements. We consider the challenging case of system identification under adversarial attacks, where the probability of having an attack at each time is $\Theta(1/k)$ while the value of the attack is arbitrary. We first show that the $l_1$-norm estimator exactly identifies the true Markov parameter matrix for nilpotent systems under any type of attack. We then build on this result to extend it to general systems and show that the estimation error exponentially decays as $k$ grows. The estimated balanced truncation model accordingly shows an exponentially decaying error for the identification of the true system up to the similarity transformation. This work is the first to provide the input-output analysis of the system with partial observations under arbitrary attacks.
comment: 9 pages, 2 figures
Distributed Model Predictive Control for Dynamic Cooperation of Multi-Agent Systems
We propose a distributed model predictive control (MPC) framework for coordinating heterogeneous, nonlinear multi-agent systems under individual and coupling constraints. The cooperative task is encoded as a shared objective function minimized collectively by the agents. Each agent optimizes an artificial reference as an intermediate step towards the cooperative objective, along with a control input to track it. We establish recursive feasibility, asymptotic stability, and transient performance bounds under suitable assumptions. The solution to the cooperative task is not predetermined but emerges from the optimized interactions of the agents. We demonstrate the framework on numerical examples inspired by satellite constellation control, collision-free narrow passage traversal, and coordinated quadrotor flight.
Non-Asymptotic Analysis of Classical Spectrum Estimators for $L$-mixing Time-series Data with Unknown Means
Spectral estimation is an important tool in time series analysis, with applications including economics, astronomy, and climatology. The asymptotic theory for non-parametric estimation is well-known but the development of non-asymptotic theory is still ongoing. Our recent work obtained the first non-asymptotic error bounds on the Bartlett and Welch methods for $L$-mixing stochastic processes. The class of $L$-mixing processes contains common models in time series analysis, including autoregressive processes and measurements of geometrically ergodic Markov chains. Our prior analysis assumes that the process has zero mean. While zero-mean assumptions are common, real-world time-series data often has unknown, non-zero mean. In this work, we derive non-asymptotic error bounds for both Bartlett and Welch estimators for $L$-mixing time-series data with unknown means. The obtained error bounds are of $O(\frac{1}{\sqrt{k}})$, where $k$ is the number of data segments used in the algorithm, which are tighter than our previous results under the zero-mean assumption.
comment: 7 pages, 2 figures, Under Review for Conference on Decision and Control 2025
Output-feedback model predictive control under dynamic uncertainties using integral quadratic constraints
In this work, we propose an output-feedback tube-based model predictive control (MPC) scheme for linear systems under dynamic uncertainties that are described via integral quadratic constraints (IQC). By leveraging IQCs, a large class of nonlinear and dynamic uncertainties can be addressed. We leverage recent IQC synthesis tools to design a dynamic controller and an observer that are robust to these uncertainties and minimize the size of the resulting constraint tightening in the MPC. Thereby, we show that the robust estimation problem using IQCs with peak-to-peak performance can be convexified. We guarantee recursive feasibility, robust constraint satisfaction, and input-to-state stability of the resulting MPC scheme.
Robust Control of General Linear Delay Systems under Dissipativity Part I: A KSD based Framework
This paper introduces an effective framework for designing memoryless dissipative full-state feedbacks for general linear delay systems via the Krasovski\u{i} functional (KF) approach, where an unlimited number of pointwise and general distributed delays (DDs) exists in the state, input and output. To handle the infinite dimensionality of DDs, we employ the Kronecker-Seuret Decomposition (KSD) which we recently proposed for analyzing matrix-valued functions in the context of delay systems. The KSD enables factorization or least-squares approximation of any number of $\fL^2$ DD kernel from any number of DDs without introducing conservatism. This also facilitates the construction of a complete-type KF with flexible integral kernels, following from an application of a novel integral inequalities derived from the least-squares principle. Our solution includes two theorems and an iterative algorithm to compute controller gains without relying on nonlinear solvers. A challenging numerical example, intractable for existing methods, underscores the efficacy of this approach.
comment: Submitted to 2025 IEEE Control and Decision Conference
Nuclear Microreactor Control with Deep Reinforcement Learning
The economic feasibility of nuclear microreactors will depend on minimizing operating costs through advancements in autonomous control, especially when these microreactors are operating alongside other types of energy systems (e.g., renewable energy). This study explores the application of deep reinforcement learning (RL) for real-time drum control in microreactors, exploring performance in regard to load-following scenarios. By leveraging a point kinetics model with thermal and xenon feedback, we first establish a baseline using a single-output RL agent, then compare it against a traditional proportional-integral-derivative (PID) controller. This study demonstrates that RL controllers, including both single- and multi-agent RL (MARL) frameworks, can achieve similar or even superior load-following performance as traditional PID control across a range of load-following scenarios. In short transients, the RL agent was able to reduce the tracking error rate in comparison to PID. Over extended 300-minute load-following scenarios in which xenon feedback becomes a dominant factor, PID maintained better accuracy, but RL still remained within a 1% error margin despite being trained only on short-duration scenarios. This highlights RL's strong ability to generalize and extrapolate to longer, more complex transients, affording substantial reductions in training costs and reduced overfitting. Furthermore, when control was extended to multiple drums, MARL enabled independent drum control as well as maintained reactor symmetry constraints without sacrificing performance -- an objective that standard single-agent RL could not learn. We also found that, as increasing levels of Gaussian noise were added to the power measurements, the RL controllers were able to maintain lower error rates than PID, and to do so with less control effort.
comment: 28 pages, 11 figures, 2 tables
Performance analysis of metasurface-based spatial multimode transmission for 6G wireless communications
In 6th generation wireless communication technology, it is important to utilize space resources efficiently. Recently, holographic multiple-input multiple-output (HMIMO) and meta-surface technology have attracted attention as technologies that maximize space utilization for 6G mobile communications. However, studies on HMIMO communications are still in an initial stage and its fundamental limits are yet to be unveiled. It is well known that the Fourier transform relationship can be obtained using a lens in the optical field, but research to apply it to the mobile communication field is in the early stages. In this paper, we show that the Fourier transform relationship between signals can be obtained when two metasurfaces are aligned or unaligned, and analyze the transmission and reception power, and the maximum number of spatial multimodes that can be transmitted. In addition, to reduce transmission complexity, we propose a spatial multimode transmission system using three metasurfaces and analyze signal characteristics on the meta-surfaces. In numerical results, we provide the performance of spatial multimode transmission in case of using rectangular and Gaussian signals.
Data-driven Power Loss Identification through Physics-Based Thermal Model Backpropagation
Digital twins for power electronics require accurate power losses whose direct measurements are often impractical or impossible in real-world applications. This paper presents a novel hybrid framework that combines physics-based thermal modeling with data-driven techniques to identify and correct power losses accurately using only temperature measurements. Our approach leverages a cascaded architecture where a neural network learns to correct the outputs of a nominal power loss model by backpropagating through a reduced-order thermal model. We explore two neural architectures, a bootstrapped feedforward network, and a recurrent neural network, demonstrating that the bootstrapped feedforward approach achieves superior performance while maintaining computational efficiency for real-time applications. Between the interconnection, we included normalization strategies and physics-guided training loss functions to preserve stability and ensure physical consistency. Experimental results show that our hybrid model reduces both temperature estimation errors (from 7.2+-6.8{\deg}C to 0.3+-0.3{\deg}C) and power loss prediction errors (from 5.4+-6.6W to 0.2+-0.3W) compared to traditional physics-based approaches, even in the presence of thermal model uncertainties. This methodology allows us to accurately estimate power losses without direct measurements, making it particularly helpful for real-time industrial applications where sensor placement is hindered by cost and physical limitations.
comment: Accepted by European Control Conference (ECC) 2020, 8 pages, 7 figures
Set-based state estimation of nonlinear discrete-time systems using constrained zonotopes and polyhedral relaxations
This paper presents a new algorithm for set-based state estimation of nonlinear discrete-time systems with bounded uncertainties. The novel method builds upon essential properties and computational advantages of constrained zonotopes (CZs) and polyhedral relaxations of factorable representations of nonlinear functions to propagate CZs through nonlinear functions, which is usually done using conservative linearization in the literature. The new method also refines the propagated enclosure using nonlinear measurements. To achieve this, a lifted polyhedral relaxation is computed for the composite nonlinear function of the system dynamics and measurement equations, in addition to incorporating the measured output through equality constraints. Polyhedral relaxations of trigonometric functions are enabled for the first time, allowing to address a broader class of nonlinear systems than our previous works. Additionally, an approach to obtain an equivalent enclosure with fewer generators and constraints is developed. Thanks to the advantages of the polyhedral enclosures based on factorable representations, the new state estimation method provides better approximations than those resulting from linearization procedures. This led to significant improvements in the computation of convex sets enclosing the system states consistent with measured outputs. Numerical examples highlight the advantages of the novel algorithm in comparison to existing CZ methods based on the Mean Value Theorem and DC programming principles.
comment: 13 pages, 10 figures
SACA: A Scenario-Aware Collision Avoidance Framework for Autonomous Vehicles Integrating LLMs-Driven Reasoning
Reliable collision avoidance under extreme situations remains a critical challenge for autonomous vehicles. While large language models (LLMs) offer promising reasoning capabilities, their application in safety-critical evasive maneuvers is limited by latency and robustness issues. Even so, LLMs stand out for their ability to weigh emotional, legal, and ethical factors, enabling socially responsible and context-aware collision avoidance. This paper proposes a scenario-aware collision avoidance (SACA) framework for extreme situations by integrating predictive scenario evaluation, data-driven reasoning, and scenario-preview-based deployment to improve collision avoidance decision-making. SACA consists of three key components. First, a predictive scenario analysis module utilizes obstacle reachability analysis and motion intention prediction to construct a comprehensive situational prompt. Second, an online reasoning module refines decision-making by leveraging prior collision avoidance knowledge and fine-tuning with scenario data. Third, an offline evaluation module assesses performance and stores scenarios in a memory bank. Additionally, A precomputed policy method improves deployability by previewing scenarios and retrieving or reasoning policies based on similarity and confidence levels. Real-vehicle tests show that, compared with baseline methods, SACA effectively reduces collision losses in extreme high-risk scenarios and lowers false triggering under complex conditions. Project page: https://sean-shiyuez.github.io/SACA/.
comment: 10 pages,10 figures. This work has been submitted to the IEEE Robotics and Automation Letters (RAL) for possible publication
Feasibility Evaluation of Quadratic Programs for Constrained Control
This paper presents a computationally-efficient method for evaluating the feasibility of Quadratic Programs (QPs) for online constrained control. Based on the duality principle, we first show that the feasibility of a QP can be determined by the solution of a properly-defined Linear Program (LP). Our analysis yields a LP that can be solved more efficiently compared to the original QP problem, and more importantly, is simpler in form and can be solved more efficiently compared to existing methods that assess feasibility via LPs. The computational efficiency of the proposed method compared to existing methods for feasibility evaluation is demonstrated in comparative case studies as well as a feasible-constraint selection problem, indicating its promise for online feasibility evaluation of optimization-based controllers.
comment: Submitted to CDC 2025
Safety Filter Design for Articulated Frame Steering Vehicles In the Presence of Actuator Dynamics Using High-Order Control Barrier Functions
Articulated Frame Steering (AFS) vehicles are widely used in heavy-duty industries, where they often operate near operators and laborers. Therefore, designing safe controllers for AFS vehicles is essential. In this paper, we develop a Quadratic Program (QP)-based safety filter that ensures feasibility for AFS vehicles with affine actuator dynamics. To achieve this, we first derive the general equations of motion for AFS vehicles, incorporating affine actuator dynamics. We then introduce a novel High-Order Control Barrier Function (HOCBF) candidate with equal relative degrees for both system controls. Finally, we design a Parametric Adaptive HOCBF (PACBF) and an always-feasible, QP-based safety filter. Numerical simulations of AFS vehicle kinematics demonstrate the effectiveness of our approach.
Minimally Conservative Controlled-Invariant Set Synthesis Using Control Barrier Certificates
Finding a controlled-invariant set for a system with state and control constraints is crucial for safety-critical applications. However, existing methods often produce overly conservative solutions. This paper presents a method for generating controlled-invariant (safe) sets for nonlinear polynomial control-affine systems using Control Barrier Certificates (CBCs). We formulate CBC conditions as Sum-of-Squares (SOS) constraints and solve them via an SOS Program (SOSP). First, we generalize existing SOSPs for CBC synthesis to handle environments with complex unsafe state representations. Then, we propose an iterative algorithm that progressively enlarges the safe set constructed by the synthesized CBCs by maximizing boundary expansion at each iteration. We theoretically prove that our method guarantees strict safe set expansion at every step. Finally, we validate our approach with numerical simulations in 2D and 3D for single-input and multi-input systems. Empirical results show that the safe set generated by our method covers in most part a larger portion of the state space compared to two state-of-the-art techniques.
Understanding long-term energy use in off-grid solar home systems in sub-Saharan Africa
Solar home systems provide low-cost electricity access for rural off-grid communities. As access to them increases, more long-term data becomes available on how these systems are used throughout their lifetime. This work analyses a dataset of 1,000 systems across sub-Saharan Africa. Dynamic time warping clustering was applied to the load demand data from the systems, identifying five distinct archetypal daily load profiles and their occurrence across the dataset. Temporal analysis reveals a general decline in daily energy consumption over time, with 77% of households reducing their usage compared to the start of ownership. On average, there is a 33% decrease in daily consumption by the end of the second year compared to the peak demand, which occurs on the 96th day. Combining the load demand analysis with payment data shows that this decrease in energy consumption is observed even in households that are not experiencing economic hardship, indicating there are reasons beyond financial constraints for decreasing energy use once energy access is obtained.
comment: Draft updates, including text and figure changes
Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
Stability results for MIMO LTI systems via Scaled Relative Graphs
This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems.
comment: Submitted to CDC 2025
Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
Cascade Reinforcement Learning with State Space Factorization for O-RAN-based Traffic Steering
The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.
comment: 9 pages, 8 figures
Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
General Distribution Steering: A Sub-Optimal Solution by Convex Optimization
General distribution steering is intrinsically an infinite-dimensional problem, when the continuous distributions to steer are arbitrary. We put forward a moment representation of the primal system for control in [42]. However, the system trajectory was a predetermined one without optimization towards a design criterion, which doesn't always ensure a most satisfactory solution. In this paper, we propose an optimization approach to the general distribution steering problem of the first-order discrete-time linear system, i.e., an optimal control law for the corresponding moment system. The domain of all feasible control inputs is non-convex and has a complex topology. We obtain a subset of it by minimizing a weighted sum of squared integral distances alongside the system trajectory. The feasible domain is then proved convex, and the optimal control problem can be treated as a convex optimization or by exhaustive search, based on the type of the cost function. Algorithms of steering for continuous and discrete distributions are then put forward respectively, by adopting a realization scheme of control inputs. We also provide an explicit advantage of our proposed algorithm by truncated power moments to the prevailing Gaussian Mixture Models. Experiments on different types of cost functions are given to validate the performance of our proposed algorithm. Since the moment system is a dimension-reduced counterpart of the primal system, we call this solution a sub-optimal one to the primal general distribution steering problem.
comment: 16 pages, 23 figures
A Minimal Control Family of Dynamical Systems for Universal Approximation
The universal approximation property (UAP) holds a fundamental position in deep learning, as it provides a theoretical foundation for the expressive power of neural networks. It is widely recognized that a composition of linear and nonlinear functions, such as the rectified linear unit (ReLU) activation function, can approximate continuous functions on compact domains. In this paper, we extend this efficacy to a scenario containing dynamical systems with controls. We prove that the control family $\mathcal{F}_1$ containing all affine maps and the nonlinear ReLU map is sufficient for generating flow maps that can approximate orientation-preserving (OP) diffeomorphisms on any compact domain. Since $\mathcal{F}_1$ contains only one nonlinear function and the UAP does not hold if we remove the nonlinear function, we call $\mathcal{F}_1$ a minimal control family for the UAP. On this basis, several mild sufficient conditions, such as affine invariance, are established for the control family and discussed. Our results reveal an underlying connection between the approximation power of neural networks and control systems and could provide theoretical guidance for examining the approximation power of flow-based models.
comment: 12 pages
An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a flexible and computationally tractable methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information from the model with respect to the parameters. Our algorithm consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and use a linear Gaussian model approximation to iteratively optimize the model's parameters. In each iteration, we propose to use the input-output data to tune the covariance of the linear Gaussian model. This statistically calibrates the approach. Secondly, we define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. We test our method with linear and nonlinear dynamics.
comment: Submitted to the IEEE CDC
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. Our numerical study confirms these findings, highlighting the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
Set-point control and local stability for flat nonlinear systems using model-following control
We consider the set-point control problem for nonlinear systems with flat output that are subject to perturbations. The nonlinear dynamics as well as the perturbations are locally Lipschitz. We apply the model-following control (MFC) approach which consists of a model control loop (MCL) for a feedforward generation and a process control loop (PCL) that compensates the perturbations using high-gain feedback. We analyse the resulting closed-loop system and discuss its relation to a standard flatness-based high-gain approach. In particular we analyse the estimated region of attraction provided by a quadratic Lyapunov function. A case study illustrates the approach and quantifies the region of attraction obtained for each control approach. Using the initial condition of the model control loop as tuning parameter for the MFC design, provides that a significantly larger region of attraction can be guaranteed compared to a conventional single-loop high-gain design.
Learning Algorithms for Verification of Markov Decision Processes
We present a general framework for applying learning algorithms and heuristical guidance to the verification of Markov decision processes (MDPs). The primary goal of our techniques is to improve performance by avoiding an exhaustive exploration of the state space, instead focussing on particularly relevant areas of the system, guided by heuristics. Our work builds on the previous results of Br{\'{a}}zdil et al., significantly extending it as well as refining several details and fixing errors. The presented framework focuses on probabilistic reachability, which is a core problem in verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP without knowing the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. In particular, the latter is an extension of statistical model-checking (SMC) for unbounded properties in MDPs. In contrast to other related approaches, we do not restrict our attention to time-bounded (finite-horizon) or discounted properties, nor assume any particular structural properties of the MDP.
comment: 82 pages. This is the TheoretiCS journal version
Optimal robust exact first-order differentiators with Lipschitz continuous output
The signal differentiation problem involves the development of algorithms that allow to recover a signal's derivatives from noisy measurements. This paper develops a first-order differentiator with the following combination of properties: robustness to measurement noise, exactness in the absence of noise, optimal worst-case differentiation error, and Lipschitz continuous output where the output's Lipschitz constant is a tunable parameter. This combination of advantageous properties is not shared by any existing differentiator. Both continuous-time and sample-based versions of the differentiator are developed and theoretical guarantees are established for both. The continuous-time version of the differentiator consists in a regularized and sliding-mode-filtered linear adaptive differentiator. The sample-based, implementable version is then obtained through appropriate discretization. An illustrative example is provided to highlight the features of the developed differentiator.
Emergent Cooperation for Energy-efficient Connectivity via Wireless Power Transfer
This paper addresses the challenge of incentivizing energy-constrained, non-cooperative user equipment (UE) to serve as cooperative relays. We consider a source UE with a non-line-of-sight channel to an access point (AP), where direct communication may be infeasible or may necessitate a substantial transmit power. Other UEs in the vicinity are viewed as relay candidates, and our aim is to enable energy-efficient connectivity for the source, while accounting for the self-interested behavior and private channel state information of these candidates, by allowing the source to ``pay" the candidates via wireless power transfer (WPT). We propose a cooperation-inducing protocol, inspired by Myerson auction theory, which ensures that candidates truthfully report power requirements while minimizing the expected power used by the source. Through rigorous analysis, we establish the regularity of valuations for lognormal fading channels, which allows for the efficient determination of the optimal source transmit power. Extensive simulation experiments, employing real-world communication and WPT parameters, validate our theoretical framework. Our results demonstrate over 71% reduction in outage probability with as few as 4 relay candidates, compared to the non-cooperative scenario, and as much as 70% source power savings compared to a baseline approach, highlighting the efficacy of our proposed methodology.
Uncrewed Vehicles in 6G Networks: A Unifying Treatment of Problems, Formulations, and Tools
Uncrewed Vehicles (UVs) functioning as autonomous agents are anticipated to play a crucial role in the 6th Generation of wireless networks. Their seamless integration, cost-effectiveness, and the additional controllability through motion planning make them an attractive deployment option for a wide range of applications, both as assets in the network (e.g., mobile base stations) and as consumers of network services (e.g., autonomous delivery systems). However, despite their potential, the convergence of UVs and wireless systems brings forth numerous challenges that require attention from both academia and industry. This paper then aims to offer a comprehensive overview encompassing the transformative possibilities as well as the significant challenges associated with UV-assisted next-generation wireless communications. Considering the diverse landscape of possible application scenarios, problem formulations, and mathematical tools related to UV-assisted wireless systems, the underlying core theme of this paper is the unification of the problem space, providing a structured framework to understand the use cases, problem formulations, and necessary mathematical tools. Overall, the paper sets forth a clear understanding of how uncrewed vehicles can be integrated in the 6G ecosystem, paving the way towards harnessing the full potential at this intersection.
Robotics
Exploring GPT-4 for Robotic Agent Strategy with Real-Time State Feedback and a Reactive Behaviour Framework
We explore the use of GPT-4 on a humanoid robot in simulation and the real world as proof of concept of a novel large language model (LLM) driven behaviour method. LLMs have shown the ability to perform various tasks, including robotic agent behaviour. The problem involves prompting the LLM with a goal, and the LLM outputs the sub-tasks to complete to achieve that goal. Previous works focus on the executability and correctness of the LLM's generated tasks. We propose a method that successfully addresses practical concerns around safety, transitions between tasks, time horizons of tasks and state feedback. In our experiments we have found that our approach produces output for feasible requests that can be executed every time, with smooth transitions. User requests are achieved most of the time across a range of goal time horizons.
PhysPose: Refining 6D Object Poses with Physical Constraints
Accurate 6D object pose estimation from images is a key problem in object-centric scene understanding, enabling applications in robotics, augmented reality, and scene reconstruction. Despite recent advances, existing methods often produce physically inconsistent pose estimates, hindering their deployment in real-world scenarios. We introduce PhysPose, a novel approach that integrates physical reasoning into pose estimation through a postprocessing optimization enforcing non-penetration and gravitational constraints. By leveraging scene geometry, PhysPose refines pose estimates to ensure physical plausibility. Our approach achieves state-of-the-art accuracy on the YCB-Video dataset from the BOP benchmark and improves over the state-of-the-art pose estimation methods on the HOPE-Video dataset. Furthermore, we demonstrate its impact in robotics by significantly improving success rates in a challenging pick-and-place task, highlighting the importance of physical consistency in real-world applications.
comment: Project page: https://data.ciirc.cvut.cz/public/projects/2025PhysPose
Can Visuo-motor Policies Benefit from Random Exploration Data? A Case Study on Stacking
Human demonstrations have been key to recent advancements in robotic manipulation, but their scalability is hampered by the substantial cost of the required human labor. In this paper, we focus on random exploration data-video sequences and actions produced autonomously via motions to randomly sampled positions in the workspace-as an often overlooked resource for training visuo-motor policies in robotic manipulation. Within the scope of imitation learning, we examine random exploration data through two paradigms: (a) by investigating the use of random exploration video frames with three self-supervised learning objectives-reconstruction, contrastive, and distillation losses-and evaluating their applicability to visual pre-training; and (b) by analyzing random motor commands in the context of a staged learning framework to assess their effectiveness in autonomous data collection. Towards this goal, we present a large-scale experimental study based on over 750 hours of robot data collection, comprising 400 successful and 12,000 failed episodes. Our results indicate that: (a) among the three self-supervised learning objectives, contrastive loss appears most effective for visual pre-training while leveraging random exploration video frames; (b) data collected with random motor commands may play a crucial role in balancing the training data distribution and improving success rates in autonomous data collection within this study. The source code and dataset will be made publicly available at https://cloudgripper.org.
comment: This work has been submitted to the IEEE for possible publication
Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
Improving Indoor Localization Accuracy by Using an Efficient Implicit Neural Map Representation ICRA 2025
Globally localizing a mobile robot in a known map is often a foundation for enabling robots to navigate and operate autonomously. In indoor environments, traditional Monte Carlo localization based on occupancy grid maps is considered the gold standard, but its accuracy is limited by the representation capabilities of the occupancy grid map. In this paper, we address the problem of building an effective map representation that allows to accurately perform probabilistic global localization. To this end, we propose an implicit neural map representation that is able to capture positional and directional geometric features from 2D LiDAR scans to efficiently represent the environment and learn a neural network that is able to predict both, the non-projective signed distance and a direction-aware projective distance for an arbitrary point in the mapped environment. This combination of neural map representation with a light-weight neural network allows us to design an efficient observation model within a conventional Monte Carlo localization framework for pose estimation of a robot in real time. We evaluated our approach to indoor localization on a publicly available dataset for global localization and the experimental results indicate that our approach is able to more accurately localize a mobile robot than other localization approaches employing occupancy or existing neural map representations. In contrast to other approaches employing an implicit neural map representation for 2D LiDAR localization, our approach allows to perform real-time pose tracking after convergence and near real-time global localization. The code of our approach is available at: https://github.com/PRBonn/enm-mcl.
comment: 8 pages, 5 figures. Accepted to ICRA 2025
Handling Delay in Real-Time Reinforcement Learning ICLR 2025
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $\tau$, an $N$-layer feed-forward network experiences observation delay of $\tau N$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.
comment: Accepted at ICLR 2025. Code available at https://github.com/avecplezir/realtime-agent
SparseLoc: Sparse Open-Set Landmark-based Global Localization for Autonomous Navigation
Global localization is a critical problem in autonomous navigation, enabling precise positioning without reliance on GPS. Modern global localization techniques often depend on dense LiDAR maps, which, while precise, require extensive storage and computational resources. Recent approaches have explored alternative methods, such as sparse maps and learned features, but they suffer from poor robustness and generalization. We propose SparseLoc, a global localization framework that leverages vision-language foundation models to generate sparse, semantic-topometric maps in a zero-shot manner. It combines this map representation with a Monte Carlo localization scheme enhanced by a novel late optimization strategy, ensuring improved pose estimation. By constructing compact yet highly discriminative maps and refining localization through a carefully designed optimization schedule, SparseLoc overcomes the limitations of existing techniques, offering a more efficient and robust solution for global localization. Our system achieves over a 5X improvement in localization accuracy compared to existing sparse mapping techniques. Despite utilizing only 1/500th of the points of dense mapping methods, it achieves comparable performance, maintaining an average global localization error below 5m and 2 degrees on KITTI sequences.
Design and Experimental Validation of an Autonomous USV for Sensor Fusion-Based Navigation in GNSS-Denied Environments
This paper presents the design, development, and experimental validation of MARVEL, an autonomous unmanned surface vehicle built for real-world testing of sensor fusion-based navigation algorithms in GNSS-denied environments. MARVEL was developed under strict constraints of cost-efficiency, portability, and seaworthiness, with the goal of creating a modular, accessible platform for high-frequency data acquisition and experimental learning. It integrates electromagnetic logs, Doppler velocity logs, inertial sensors, and real-time kinematic GNSS positioning. MARVEL enables real-time, in-situ validation of advanced navigation and AI-driven algorithms using redundant, synchronized sensors. Field experiments demonstrate the system's stability, maneuverability, and adaptability in challenging sea conditions. The platform offers a novel, scalable approach for researchers seeking affordable, open-ended tools to evaluate sensor fusion techniques under real-world maritime constraints.
comment: submitted to IEEE OCEANS 2025 Brest
VET: A Visual-Electronic Tactile System for Immersive Human-Machine Interaction
In the pursuit of deeper immersion in human-machine interaction, achieving higher-dimensional tactile input and output on a single interface has become a key research focus. This study introduces the Visual-Electronic Tactile (VET) System, which builds upon vision-based tactile sensors (VBTS) and integrates electrical stimulation feedback to enable bidirectional tactile communication. We propose and implement a system framework that seamlessly integrates an electrical stimulation film with VBTS using a screen-printing preparation process, eliminating interference from traditional methods. While VBTS captures multi-dimensional input through visuotactile signals, electrical stimulation feedback directly stimulates neural pathways, preventing interference with visuotactile information. The potential of the VET system is demonstrated through experiments on finger electrical stimulation sensitivity zones, as well as applications in interactive gaming and robotic arm teleoperation. This system paves the way for new advancements in bidirectional tactile interaction and its broader applications.
A Visual-Inertial Motion Prior SLAM for Dynamic Environments
The Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) algorithms which are mostly based on static assumption are widely used in fields such as robotics, UAVs, VR, and autonomous driving. To overcome the localization risks caused by dynamic landmarks in most VI-SLAM systems, a robust visual-inertial motion prior SLAM system, named (IDY-VINS), is proposed in this paper which effectively handles dynamic landmarks using inertial motion prior for dynamic environments to varying degrees. Specifically, potential dynamic landmarks are preprocessed during the feature tracking phase by the probabilistic model of landmarks' minimum projection errors which are obtained from inertial motion prior and epipolar constraint. Subsequently, a bundle adjustment (BA) residual is proposed considering the minimum projection error prior for dynamic candidate landmarks. This residual is integrated into a sliding window based nonlinear optimization process to estimate camera poses, IMU states and landmark positions while minimizing the impact of dynamic candidate landmarks that deviate from the motion prior. Finally, experimental results demonstrate that our proposed system outperforms state-of-the-art methods in terms of localization accuracy and time cost by robustly mitigating the influence of dynamic landmarks.
Proprioceptive multistable mechanical metamaterial via soft capacitive sensors
The technological transition from soft machines to soft robots necessarily passes through the integration of soft electronics and sensors. This allows for the establishment of feedback control systems while preserving the softness of the robot embodiment. Multistable mechanical metamaterials are excellent building blocks of soft machines, as their nonlinear response can be tuned by design to accomplish several functions. In this work, we present the integration of soft capacitive sensors in a multistable mechanical metamaterial, to enable proprioceptive sensing of state changes. The metamaterial is a periodic arrangement of 4 bistable unit cells. Each unit cell has an integrated capacitive sensor. Both the metastructure and the sensors are made of soft materials (TPU) and are 3D printed. Our preliminary results show that the capacitance variation of the sensors can be linked to state transitions of the metamaterial, by capturing the nonlinear deformation.
comment: 2024 IEEE International Flexible Electronics Technology Conference (IFETC)
Meta-Ori: monolithic meta-origami for nonlinear inflatable soft actuators
The nonlinear mechanical response of soft materials and slender structures is purposefully harnessed to program functions by design in soft robotic actuators, such as sequencing, amplified response, fast energy release, etc. However, typical designs of nonlinear actuators - e.g. balloons, inverted membranes, springs - have limited design parameters space and complex fabrication processes, hindering the achievement of more elaborated functions. Mechanical metamaterials, on the other hand, have very large design parameter spaces, which allow fine-tuning of nonlinear behaviours. In this work, we present a novel approach to fabricate nonlinear inflatables based on metamaterials and origami (Meta-Ori) as monolithic parts that can be fully 3D printed via Fused Deposition Modeling (FDM) using thermoplastic polyurethane (TPU) commercial filaments. Our design consists of a metamaterial shell with cylindrical topology and nonlinear mechanical response combined with a Kresling origami inflatable acting as a pneumatic transmitter. We develop and release a design tool in the visual programming language Grasshopper to interactively design our Meta-Ori. We characterize the mechanical response of the metashell and the origami, and the nonlinear pressure-volume curve of the Meta-Ori inflatable and, lastly, we demonstrate the actuation sequencing of a bi-segment monolithic Meta-Ori soft actuator.
comment: 8th IEEE-RAS International Conference on Soft Robotics
OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
With the acceleration of urbanization and the growth of transportation demands, the safety of vulnerable road users (VRUs, such as pedestrians and cyclists) in mixed traffic flows has become increasingly prominent, necessitating high-precision and diverse trajectory data to support the development and optimization of autonomous driving systems. However, existing datasets fall short in capturing the diversity and dynamics of VRU behaviors, making it difficult to meet the research demands of complex traffic environments. To address this gap, this study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages. These datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds. The datasets integrate both aerial-view natural driving data and onboard real-time dynamic detection data, along with environmental information such as traffic signals, obstacles, and real-time maps, enabling a comprehensive reconstruction of interaction events. The results demonstrate that VRU\_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics. This provides critical support for traffic flow modeling, trajectory prediction, and autonomous driving virtual testing. The dataset is publicly available for download at: https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai.
Physically Ground Commonsense Knowledge for Articulated Object Manipulation with Analytic Concepts
We human rely on a wide range of commonsense knowledge to interact with an extensive number and categories of objects in the physical world. Likewise, such commonsense knowledge is also crucial for robots to successfully develop generalized object manipulation skills. While recent advancements in Large Language Models (LLM) have showcased their impressive capabilities in acquiring commonsense knowledge and conducting commonsense reasoning, effectively grounding this semantic-level knowledge produced by LLMs to the physical world to thoroughly guide robots in generalized articulated object manipulation remains a challenge that has not been sufficiently addressed. To this end, we introduce analytic concepts, procedurally defined upon mathematical symbolism that can be directly computed and simulated by machines. By leveraging the analytic concepts as a bridge between the semantic-level knowledge inferred by LLMs and the physical world where real robots operate, we are able to figure out the knowledge of object structure and functionality with physics-informed representations, and then use the physically grounded knowledge to instruct robot control policies for generalized, interpretable and accurate articulated object manipulation. Extensive experiments in both simulation and real-world environments demonstrate the superiority of our approach.
MagicGel: A Novel Visual-Based Tactile Sensor Design with MagneticGel
Force estimation is the core indicator for evaluating the performance of tactile sensors, and it is also the key technical path to achieve precise force feedback mechanisms. This study proposes a design method for a visual tactile sensor (VBTS) that integrates a magnetic perception mechanism, and develops a new tactile sensor called MagicGel. The sensor uses strong magnetic particles as markers and captures magnetic field changes in real time through Hall sensors. On this basis, MagicGel achieves the coordinated optimization of multimodal perception capabilities: it not only has fast response characteristics, but also can perceive non-contact status information of home electronic products. Specifically, MagicGel simultaneously analyzes the visual characteristics of magnetic particles and the multimodal data of changes in magnetic field intensity, ultimately improving force estimation capabilities.
Reinforcement Learning for Active Matter
Active matter refers to systems composed of self-propelled entities that consume energy to produce motion, exhibiting complex non-equilibrium dynamics that challenge traditional models. With the rapid advancements in machine learning, reinforcement learning (RL) has emerged as a promising framework for addressing the complexities of active matter. This review systematically introduces the integration of RL for guiding and controlling active matter systems, focusing on two key aspects: optimal motion strategies for individual active particles and the regulation of collective dynamics in active swarms. We discuss the use of RL to optimize the navigation, foraging, and locomotion strategies for individual active particles. In addition, the application of RL in regulating collective behaviors is also examined, emphasizing its role in facilitating the self-organization and goal-directed control of active swarms. This investigation offers valuable insights into how RL can advance the understanding, manipulation, and control of active matter, paving the way for future developments in fields such as biological systems, robotics, and medical science.
comment: 16 pages, 8 figures
Learning Predictive Visuomotor Coordination
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies. This work introduces a forecasting-based task for visuomotor modeling, where the goal is to predict head pose, gaze, and upper-body motion from egocentric visual and kinematic observations. We propose a \textit{Visuomotor Coordination Representation} (VCR) that learns structured temporal dependencies across these multimodal signals. We extend a diffusion-based motion modeling framework that integrates egocentric vision and kinematic sequences, enabling temporally coherent and accurate visuomotor predictions. Our approach is evaluated on the large-scale EgoExo4D dataset, demonstrating strong generalization across diverse real-world activities. Our results highlight the importance of multimodal integration in understanding visuomotor coordination, contributing to research in visuomotor learning and human behavior modeling.
Learning Coordinated Bimanual Manipulation Policies using State Diffusion and Inverse Dynamics Models ICRA 2025
When performing tasks like laundry, humans naturally coordinate both hands to manipulate objects and anticipate how their actions will change the state of the clothes. However, achieving such coordination in robotics remains challenging due to the need to model object movement, predict future states, and generate precise bimanual actions. In this work, we address these challenges by infusing the predictive nature of human manipulation strategies into robot imitation learning. Specifically, we disentangle task-related state transitions from agent-specific inverse dynamics modeling to enable effective bimanual coordination. Using a demonstration dataset, we train a diffusion model to predict future states given historical observations, envisioning how the scene evolves. Then, we use an inverse dynamics model to compute robot actions that achieve the predicted states. Our key insight is that modeling object movement can help learning policies for bimanual coordination manipulation tasks. Evaluating our framework across diverse simulation and real-world manipulation setups, including multimodal goal configurations, bimanual manipulation, deformable objects, and multi-object setups, we find that it consistently outperforms state-of-the-art state-to-action mapping policies. Our method demonstrates a remarkable capacity to navigate multimodal goal configurations and action distributions, maintain stability across different control modes, and synthesize a broader range of behaviors than those present in the demonstration dataset.
comment: Project Page: https://haonan16.github.io/coord_bimanual_page/. 12 pages, 12 figures, Accepted at ICRA 2025
Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
Integral Forms in Matrix Lie Groups
Matrix Lie groups provide a language for describing motion in such fields as robotics, computer vision, and graphics. When using these tools, we are often faced with turning infinite-series expressions into more compact finite series (e.g., the Euler-Rodrigues formula), which can sometimes be onerous. In this paper, we identify some useful integral forms in matrix Lie group expressions that offer a more streamlined pathway for computing compact analytic results. Moreover, we present some recursive structures in these integral forms that show many of these expressions are interrelated. Key to our approach is that we are able to apply the minimal polynomial for a Lie algebra quite early in the process to keep expressions compact throughout the derivations. With the series approach, the minimal polynomial is usually applied at the end, making it hard to recognize common analytic expressions in the result. We show that our integral method can reproduce several series-derived results from the literature.
comment: 23 pages, 1 table
ROVER: A Multi-Season Dataset for Visual SLAM
Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.
comment: 19 pages, 9 figures, 12 tables
Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
Safe Navigation for Robotic Digestive Endoscopy via Human Intervention-based Reinforcement Learning
With the increasing application of automated robotic digestive endoscopy (RDE), ensuring safe and efficient navigation in the unstructured and narrow digestive tract has become a critical challenge. Existing automated reinforcement learning navigation algorithms often result in potentially risky collisions due to the absence of essential human intervention, which significantly limits the safety and effectiveness of RDE in actual clinical practice. To address this limitation, we proposed a Human Intervention (HI)-based Proximal Policy Optimization (PPO) framework, dubbed HI-PPO, which incorporates expert knowledge to enhance RDE's safety. Specifically, HI-PPO combines Enhanced Exploration Mechanism (EEM), Reward-Penalty Adjustment (RPA), and Behavior Cloning Similarity (BCS) to address PPO's exploration inefficiencies for safe navigation in complex gastrointestinal environments. Comparative experiments were conducted on a simulation platform, and the results showed that HI-PPO achieved a mean ATE (Average Trajectory Error) of \(8.02\ \text{mm}\) and a Security Score of \(0.862\), demonstrating performance comparable to human experts. The code will be publicly available once this paper is published.
Verifiably Following Complex Robot Instructions with Foundation Models
When instructing robots, users want to flexibly express constraints, refer to arbitrary landmarks, and verify robot behavior, while robots must disambiguate instructions into specifications and ground instruction referents in the real world. To address this problem, we propose Language Instruction grounding for Motion Planning (LIMP), an approach that enables robots to verifiably follow complex, open-ended instructions in real-world environments without prebuilt semantic maps. LIMP constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of correct-by-construction robot behaviors. We conduct a large-scale evaluation of LIMP on 150 instructions across five real-world environments, demonstrating its versatility and ease of deployment in diverse, unstructured domains. LIMP performs comparably to state-of-the-art baselines on standard open-vocabulary tasks and additionally achieves a 79\% success rate on complex spatiotemporal instructions, significantly outperforming baselines that only reach 38\%. See supplementary materials and demo videos at https://robotlimp.github.io
Multi-layered Safety of Redundant Robot Manipulators via Task-oriented Planning and Control ICRA
Ensuring safety is crucial to promote the application of robot manipulators in open workspaces. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control (MPC) method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur.
comment: 7 pages, 8 figures, accepted by IEEE International Conference on Robotics and Automation (ICRA) 2025
Multiagent Systems
A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control
Traffic congestion in modern cities is exacerbated by the limitations of traditional fixed-time traffic signal systems, which fail to adapt to dynamic traffic patterns. Adaptive Traffic Signal Control (ATSC) algorithms have emerged as a solution by dynamically adjusting signal timing based on real-time traffic conditions. However, the main limitation of such methods is that they are not transferable to environments under real-world constraints, such as balancing efficiency, minimizing collisions, and ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies. Our approach integrates the Lagrange multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three constraints on the traffic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traffic policies that do not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE outperforms three baseline MARL algorithms by across all environments and traffic constraints (improving on MAPPO by 12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traffic planners to deploy scalable and efficient ATSC methods in real-world traffic networks. We provide code at https://github.com/Asatheesh6561/MAPPO-LCE.
comment: Submitted to ACM Journal for Autonomous Transportation Systems
SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
comment: Under Review
VFlow: Discovering Optimal Agentic Workflows for Verilog Generation
Hardware design automation faces challenges in generating high-quality Verilog code efficiently. This paper introduces VFlow, an automated framework that optimizes agentic workflows for Verilog code generation. Unlike existing approaches that rely on pre-defined prompting strategies, VFlow leverages Monte Carlo Tree Search (MCTS) to discover effective sequences of Large Language Models invocations that maximize code quality while minimizing computational costs. VFlow extends the AFLOW methodology with domain-specific operators addressing hardware design requirements, including syntax validation, simulation-based verification, and synthesis optimization. Experimental evaluation on the VerilogEval benchmark demonstrates VFlow's superiority, achieving an 83.6% average pass@1 rate-a 6.1\% improvement over state-of-the-art PromptV and a 36.9\% gain compared to direct LLM invocation. Most significantly, VFlow enhances the capabilities of smaller models, enabling DeepSeek-V3 to achieve 141.2\% of GPT-4o's performance while reducing API costs to just 13\%. These findings indicate that intelligently optimized workflows enable cost-efficient LLMs to outperform larger models on hardware design tasks, potentially democratizing access to advanced digital circuit development tools and accelerating innovation in the semiconductor industry
comment: 6 pages
Data Spatial Programming
We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate the topological relationships between data entities and the execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures or finite states. By formalizing the relationships between data elements in this topological space, our approach allows for more intuitive modeling of complex systems where a topology of connections is formed for the underlying computational model. This paradigm addresses limitations in traditional OOP when representing a wide range of problems in computer science such as agent-based systems, social networks, processing on relational data, neural networks, distributed systems, finite state machines, and other spatially-oriented computational problems.
comment: 9 pages, 16 pages with appendix
Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities). In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 14 real-world vulnerabilities and show that our team of agents improve over prior agent frameworks by up to 4.3X.
comment: 10 pages, 4 figures
Systems and Control (CS)
Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
Intent-Aware MPC for Aircraft Detect-and-Avoid with Response Delay: A Comparative Study with ACAS Xu
In this paper, we propose an intent-aware Model Predictive Control (MPC) approach for the remain-well-clear (RWC) functionality of a multi-agent aircraft detect-and-avoid (DAA) system and compare its performance with the standardized Airborne Collision Avoidance System Xu (ACAS Xu). The aircraft system is modeled as a linear system for horizontal maneuvering, with advisories on the rate of turn as the control input. Both deterministic and stochastic time delays are considered to account for the lag between control guidance issuance and the response of the aircraft. The capability of the MPC scheme in producing an optimal control profile over the entire horizon is used to mitigate the impact of the delay. We compare the proposed MPC method with ACAS Xu using various evaluation metrics, including loss of DAA well-clear percentage, near mid-air collision percentage, horizontal miss distance, and additional flight distance across different encounter scenarios. It is shown that the MPC scheme achieves better evaluation metrics than ACAS Xu for both deterministic and stochastic scenarios.
comment: 8 Pages, 14 Figures, 1 Table
Loss-aware Pricing Strategies for Peer-to-Peer Energy Trading
Peer-to-peer(P2P) energy trading may increase efficiency and reduce costs, but introduces significant challenges for network operators such as maintaining grid reliability, accounting for network losses, and redistributing costs equitably. We propose a novel loss-aware pricing strategy for P2P energy markets that addresses these challenges while incentivizing participation in the cooperative energy trading market. The problem is formulated as a hierarchical Stackelberg game, where a grid operator determines network tariffs while prosumers optimize their trades based on these tariffs while guaranteeing that network constraints are satisfied. The algorithm is designed to minimize and recover their cost from the trading parties, while also minimizing the total cost of the hubs. The mechanism dynamically adjusts tariffs based on location and network topology, discouraging loss-intensive trades. Finally, the complete framework includes the computation of fair trading prices, ensuring all market participants benefit equitably. An ADMM-based hyper-gradient descent method is proposed for solving this problem. Extensive numerical simulations using the benchmark IEEE 33-bus system demonstrate significant cost reductions and improved network efficiency through reduction in network losses compared to constant tariff schemes. Results highlight the adaptability and scalability of the proposed mechanism to varying network configurations and size, demand profiles, and seasonal conditions.
Exact Characterization of Aggregate Flexibility via Generalized Polymatroids
There is growing interest in utilizing the flexibility in populations of distributed energy resources (DER) to mitigate the intermittency and uncertainty of renewable generation and provide additional grid services. To enable this, aggregators must effectively represent the flexibility in the populations they control to the market or system operator. A key challenge is accurately computing the aggregate flexibility of a population, which can be formally expressed as the Minkowski sum of a collection of polytopes - a problem that is generally computationally intractable. However, the flexibility polytopes of many DERs exhibit structural symmetries that can be exploited for computational efficiency. To this end, we introduce generalized polymatroids - a family of polytope - into the flexibility aggregation literature. We demonstrate that individual flexibility sets belong to this family, enabling efficient computation of their Minkowski sum. For homogeneous populations of DERs we further derive simplifications that yield more succinct representations of aggregate flexibility. Additionally, we develop an efficient optimization framework over these sets and propose a vertex-based disaggregation method, to allocate aggregate flexibility among individual DERs. Finally, we validate the optimality and computational efficiency of our approach through comparisons with existing methods.
Distributed Design of Ultra Large-Scale Control Systems: Progress, Challenges, and Prospects
The transition from large centralized complex control systems to distributed configurations that rely on a network of a very large number of interconnected simpler subsystems is ongoing and inevitable in many applications. It is attributed to the quest for resilience, flexibility, and scalability in a multitude of engineering fields with far-reaching societal impact. Although many design methods for distributed and decentralized control systems are available, most of them rely on a centralized design procedure requiring some form of global information of the whole system. Clearly, beyond a certain scale of the network, these centralized design procedures for distributed controllers are no longer feasible and we refer to the corresponding systems as ultra large-scale systems (ULSS). For these ULSS, design algorithms are needed that are distributed themselves among the subsystems and are subject to stringent requirements regarding communication, computation, and memory usage of each subsystem. In this paper, a set of requirements is provided that assures a feasible real-time implementation of all phases of a control solution on an ultra large scale. State-of-the-art approaches are reviewed in the light of these requirements and the challenges hampering the development of befitting control algorithms are pinpointed. Comparing the challenges with the current progress leads to the identification and motivation of promising research directions.
comment: (in press)
Physics-Informed Adaptive Deep Koopman Operator Modeling for Autonomous Vehicle Dynamics
Koopman operator has been recognized as an ongoing data-driven modeling method for vehicle dynamics which lifts the original state space into a high-dimensional linear state space. The deep neural networks (DNNs) are verified to be useful for the approximation of Koopman operator. To further improve the accuracy of Koopman operator approximation, this paper introduces a physical loss function term from the concept of physics-informed neural networks (PINNs), i.e., the acceleration loss between neural network output and sensor measurements, to improve the efficiency of network learning and its interpretability. Moreover, we utilize the sliding window least squares (SWLS) to update the system matrix and input matrix online in the lifted space, therefore enabling the deep Koopman operator to adapt to the rapid dynamics of autonomous vehicles in real events. The data collection and validation are conducted on CarSim/Simlink co-simulation platform. With comparison to other physics-based and data-driven approaches on various scenarios, the results reveal that the acceleration loss-informed network refines the accuracy of Koopman operator approximation and renders it with inherent generalization, and the SWLS enforces the deep Koopman operator's capability to cope with changes in vehicle parameters, road conditions, and rapid maneuvers. This indicates the proposed physics-informed adaptive deep Koopman operator is a performant and efficient data-driven modeling tool.
comment: 21 pages, 9 figures
A Time Splitting Based Optimization Method for Nonlinear MHE
Moving Horizon Estimation~(MHE) is essentially an optimization-based approach designed to estimate the states of dynamic systems within a moving time horizon. Traditional MHE solutions become computationally prohibitive due to the \textit{curse of dimensionality} arising from increasing problem complexity and growing length of time horizon. To address this issue, we propose novel computationally efficient algorithms for solving nonlinear MHE problems. Specifically, we first introduce a distributed reformulation utilizing a time-splitting technique. Leveraging this reformulation, we develop the Efficient Gauss-Newton Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) to achieve computational efficiency. Additionally, to accommodate limited computational capabilities inherent in some sub-problem solvers, we propose the Efficient Sensitivity Assisted ALADIN, which enables sub-problems to be solved inexactly without hindering computational efficiency. Furthermore, recognizing scenarios where sub-problem solvers possess no computational power, we propose a Distributed Sequential Quadratic Programming (SQP) that relies solely on first- and second-order information of local objective functions. We demonstrate the performance and advantages of our proposed methods through numerical experiments on differential drive robots case, a practical nonlinear MHE problem. Our results demonstrate that the three proposed algorithms achieve computational efficiency while preserving high accuracy, thereby satisfying the real-time requirements of MHE.
Ensuring Safe and Smooth Control in Safety-Critical Systems via Filtered Control Barrier Functions
In safety-critical control systems, ensuring both system safety and smooth control input variation is essential for theoretical guarantees and practical deployment. Existing Control Barrier Function (CBF) frameworks, especially High-Order CBFs (HOCBFs), effectively enforce safety constraints but often lead to nonsmooth or discontinuous control inputs that can degrade system performance or violate actuator limitations. This paper introduces Filtered Control Barrier Functions (FCBFs), a novel extension of HOCBFs that incorporates an auxiliary dynamic system-referred to as an input regularization filter-to produce Lipschitz continuous control inputs. The proposed framework ensures safety, control bounds, and smoothness simultaneously by integrating FCBFs and HOCBFs within a unified quadratic program (QP). Theoretical guarantees are provided, and simulations on a unicycle model demonstrate the effectiveness of the proposed method compared to standard and smoothness-penalized HOCBF approaches.
comment: 7 pages, 4 figures
Dissipative Avoidance Feedback for Reactive Navigation Under Second-Order Dynamics
This paper addresses the problem of autonomous robot navigation in unknown, obstacle-filled environments with second-order dynamics by proposing a Dissipative Avoidance Feedback (DAF). Compared to the Artificial Potential Field (APF), which primarily uses repulsive forces based on position, DAF employs a dissipative feedback mechanism that accounts for both position and velocity, contributing to smoother and more natural obstacle avoidance. The proposed continuously differentiable controller solves the motion-to-goal problem while guaranteeing collision-free navigation by using the robot's state and local obstacle distance information. We show that the controller guarantees safe navigation in generic $n$-dimensional environments and that all undesired $\omega$-limit points are unstable under certain controlled curvature conditions. Designed for real-time implementation, DAF requires only locally measured data from limited-range sensors (e.g., LiDAR, depth cameras), making it particularly effective for robots navigating unknown workspaces. Simulations in 2D and 3D environments are conducted to validate the theoretical results and to showcase the effectiveness of our approach.
comment: 8 pages, 6 figures
Safe and Stable Formation Control with Autonomous Multi-Agents Using Adaptive Control
This manuscript considers the problem of ensuring stability and safety during formation control with distributed multi-agent systems in the presence of parametric uncertainty in the dynamics and limited communication. We propose an integrative approach that combines Adaptive Control, Control Barrier Functions (CBFs), and connected graphs. The main elements employed in the integrative approach are an adaptive control design that ensures stability, a CBF-based safety filter that generates safe commands based on a reference model dynamics, and a reference model that ensures formation control with multi-agent systems when no uncertainties are present. The overall control design is shown to lead to a closed-loop adaptive system that is stable, avoids unsafe regions, and converges to a desired formation of the multi-agents. Numerical examples are provided to support the theoretical derivations.
comment: Under Review - Modeling, Estimation and Control Conference 2025
Goal-oriented Semantic Communications for Metaverse Construction via Generative AI and Optimal Transport
The emergence of the metaverse has boosted productivity and creativity, driving real-time updates and personalized content, which will substantially increase data traffic. However, current bit-oriented communication networks struggle to manage this high volume of dynamic information, restricting metaverse applications interactivity. To address this research gap, we propose a goal-oriented semantic communication (GSC) framework for metaverse. Building on an existing metaverse wireless construction task, our proposed GSC framework includes an hourglass network-based (HgNet) encoder to extract semantic information of objects in the metaverse; and a semantic decoder that uses this extracted information to reconstruct the metaverse content after wireless transmission, enabling efficient communication and real-time object behaviour updates to the scenery for metaverse construction task. To overcome the wireless channel noise at the receiver, we design an optimal transport (OT)-enabled semantic denoiser, which enhances the accuracy of metaverse scenery through wireless communication. Experimental results show that compared to the conventional metaverse construction, our proposed GSC framework significantly reduces wireless metaverse construction latency by 92.6\%, while improving metaverse object status accuracy and viewing experience by 45.6\% and 44.7\%, respectively.
Robust Model Predictive Control for Aircraft Intent-Aware Collision Avoidance
This paper presents the use of robust model predictive control for the design of an intent-aware collision avoidance system for multi-agent aircraft engaged in horizontal maneuvering scenarios. We assume that information from other agents is accessible in the form of waypoints or destinations. Consequently, we consider that other agents follow their optimal Dubin's path--a trajectory that connects their current state to their intended state--while accounting for potential uncertainties. We propose using scenario tree model predictive control as a robust approach that demonstrates computational efficiency. We demonstrate that the proposed method can easily integrate intent information and offer a robust scheme that handles different uncertainties. The method is illustrated through simulation results.
comment: 8 Pages, 10 Figs, Accepted for presentation at ECC 2025
Carbon-Aware Optimal Power Flow
To facilitate effective decarbonization of the electric power sector, this paper introduces the generic Carbon-aware Optimal Power Flow (C-OPF) method for power system decision-making that considers demand-side carbon accounting and emission management. Built upon the classic optimal power flow (OPF) model, the C-OPF method incorporates carbon emission flow equations and constraints, as well as carbon-related objectives, to jointly optimize power flow and carbon flow. In particular, this paper establishes the feasibility and solution uniqueness of the carbon emission flow equations, and proposes modeling and linearization techniques to address the issues of undetermined power flow directions and bilinear terms in the C-OPF model. Additionally, two novel carbon emission models, together with the carbon accounting schemes, for energy storage systems are developed and integrated into the C-OPF model. Numerical simulations demonstrate the characteristics and effectiveness of the C-OPF method, in comparison with OPF solutions.
Can Large Language Model Agents Balance Energy Systems?
This paper presents a hybrid approach that integrates Large Language Models (LLMs) with a multi-scenario Stochastic Unit Commitment (SUC) framework to enhance both efficiency and reliability under high wind generation uncertainties. In a 10-trial study on the test energy system, the traditional SUC approach incurs an average total cost of 187.68 million dollars, whereas the LLM-assisted SUC (LLM-SUC) achieves a mean cost of 185.58 million dollars (range: 182.61 to 188.65 million dollars), corresponding to a cost reduction of 1.1 to 2.7 percent. Furthermore, LLM-SUC reduces load curtailment by 26.3 percent (2.24 plus/minus 0.31 GWh versus 3.04 GWh for SUC), while both methods maintain zero wind curtailment. Detailed temporal analysis shows that LLM-SUC achieves lower costs in the majority of time intervals and consistently outperforms SUC in 90 percent of cases, with solutions clustering in a favorable cost-reliability region (Coefficient of Variation = 0.93 percent for total cost and 13.8 percent for load curtailment). By leveraging an LLM agent to guide generator commitment decisions and dynamically adjust to stochastic conditions, the proposed framework improves demand fulfillment and operational resilience.
Correct by construction requirement decomposition
In systems engineering, accurately decomposing requirements is crucial for creating well-defined and manageable system components, particularly in safety-critical domains. Despite the critical need, rigorous, top-down methodologies for effectively breaking down complex requirements into precise, actionable sub-requirements are scarce, especially compared to the wealth of bottom-up verification techniques. Addressing this gap, we introduce a formal decomposition for contract-based design that guarantees the correctness of decomposed requirements if specific conditions are met. Our (semi-)automated methodology augments contract-based design with reachability analysis and constraint programming to systematically identify, verify, and validate sub-requirements representable by continuous bounded sets -- continuous relations between real-valued inputs and outputs. We demonstrate the efficacy and practicality of a correct-by-construction approach through a comprehensive case study on a cruise control system, highlighting how our methodology improves the interpretability, tractability, and verifiability of system requirements.
Systems and Control (EESS)
Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
Intent-Aware MPC for Aircraft Detect-and-Avoid with Response Delay: A Comparative Study with ACAS Xu
In this paper, we propose an intent-aware Model Predictive Control (MPC) approach for the remain-well-clear (RWC) functionality of a multi-agent aircraft detect-and-avoid (DAA) system and compare its performance with the standardized Airborne Collision Avoidance System Xu (ACAS Xu). The aircraft system is modeled as a linear system for horizontal maneuvering, with advisories on the rate of turn as the control input. Both deterministic and stochastic time delays are considered to account for the lag between control guidance issuance and the response of the aircraft. The capability of the MPC scheme in producing an optimal control profile over the entire horizon is used to mitigate the impact of the delay. We compare the proposed MPC method with ACAS Xu using various evaluation metrics, including loss of DAA well-clear percentage, near mid-air collision percentage, horizontal miss distance, and additional flight distance across different encounter scenarios. It is shown that the MPC scheme achieves better evaluation metrics than ACAS Xu for both deterministic and stochastic scenarios.
comment: 8 Pages, 14 Figures, 1 Table
Loss-aware Pricing Strategies for Peer-to-Peer Energy Trading
Peer-to-peer(P2P) energy trading may increase efficiency and reduce costs, but introduces significant challenges for network operators such as maintaining grid reliability, accounting for network losses, and redistributing costs equitably. We propose a novel loss-aware pricing strategy for P2P energy markets that addresses these challenges while incentivizing participation in the cooperative energy trading market. The problem is formulated as a hierarchical Stackelberg game, where a grid operator determines network tariffs while prosumers optimize their trades based on these tariffs while guaranteeing that network constraints are satisfied. The algorithm is designed to minimize and recover their cost from the trading parties, while also minimizing the total cost of the hubs. The mechanism dynamically adjusts tariffs based on location and network topology, discouraging loss-intensive trades. Finally, the complete framework includes the computation of fair trading prices, ensuring all market participants benefit equitably. An ADMM-based hyper-gradient descent method is proposed for solving this problem. Extensive numerical simulations using the benchmark IEEE 33-bus system demonstrate significant cost reductions and improved network efficiency through reduction in network losses compared to constant tariff schemes. Results highlight the adaptability and scalability of the proposed mechanism to varying network configurations and size, demand profiles, and seasonal conditions.
Exact Characterization of Aggregate Flexibility via Generalized Polymatroids
There is growing interest in utilizing the flexibility in populations of distributed energy resources (DER) to mitigate the intermittency and uncertainty of renewable generation and provide additional grid services. To enable this, aggregators must effectively represent the flexibility in the populations they control to the market or system operator. A key challenge is accurately computing the aggregate flexibility of a population, which can be formally expressed as the Minkowski sum of a collection of polytopes - a problem that is generally computationally intractable. However, the flexibility polytopes of many DERs exhibit structural symmetries that can be exploited for computational efficiency. To this end, we introduce generalized polymatroids - a family of polytope - into the flexibility aggregation literature. We demonstrate that individual flexibility sets belong to this family, enabling efficient computation of their Minkowski sum. For homogeneous populations of DERs we further derive simplifications that yield more succinct representations of aggregate flexibility. Additionally, we develop an efficient optimization framework over these sets and propose a vertex-based disaggregation method, to allocate aggregate flexibility among individual DERs. Finally, we validate the optimality and computational efficiency of our approach through comparisons with existing methods.
Distributed Design of Ultra Large-Scale Control Systems: Progress, Challenges, and Prospects
The transition from large centralized complex control systems to distributed configurations that rely on a network of a very large number of interconnected simpler subsystems is ongoing and inevitable in many applications. It is attributed to the quest for resilience, flexibility, and scalability in a multitude of engineering fields with far-reaching societal impact. Although many design methods for distributed and decentralized control systems are available, most of them rely on a centralized design procedure requiring some form of global information of the whole system. Clearly, beyond a certain scale of the network, these centralized design procedures for distributed controllers are no longer feasible and we refer to the corresponding systems as ultra large-scale systems (ULSS). For these ULSS, design algorithms are needed that are distributed themselves among the subsystems and are subject to stringent requirements regarding communication, computation, and memory usage of each subsystem. In this paper, a set of requirements is provided that assures a feasible real-time implementation of all phases of a control solution on an ultra large scale. State-of-the-art approaches are reviewed in the light of these requirements and the challenges hampering the development of befitting control algorithms are pinpointed. Comparing the challenges with the current progress leads to the identification and motivation of promising research directions.
comment: (in press)
Physics-Informed Adaptive Deep Koopman Operator Modeling for Autonomous Vehicle Dynamics
Koopman operator has been recognized as an ongoing data-driven modeling method for vehicle dynamics which lifts the original state space into a high-dimensional linear state space. The deep neural networks (DNNs) are verified to be useful for the approximation of Koopman operator. To further improve the accuracy of Koopman operator approximation, this paper introduces a physical loss function term from the concept of physics-informed neural networks (PINNs), i.e., the acceleration loss between neural network output and sensor measurements, to improve the efficiency of network learning and its interpretability. Moreover, we utilize the sliding window least squares (SWLS) to update the system matrix and input matrix online in the lifted space, therefore enabling the deep Koopman operator to adapt to the rapid dynamics of autonomous vehicles in real events. The data collection and validation are conducted on CarSim/Simlink co-simulation platform. With comparison to other physics-based and data-driven approaches on various scenarios, the results reveal that the acceleration loss-informed network refines the accuracy of Koopman operator approximation and renders it with inherent generalization, and the SWLS enforces the deep Koopman operator's capability to cope with changes in vehicle parameters, road conditions, and rapid maneuvers. This indicates the proposed physics-informed adaptive deep Koopman operator is a performant and efficient data-driven modeling tool.
comment: 21 pages, 9 figures
A Time Splitting Based Optimization Method for Nonlinear MHE
Moving Horizon Estimation~(MHE) is essentially an optimization-based approach designed to estimate the states of dynamic systems within a moving time horizon. Traditional MHE solutions become computationally prohibitive due to the \textit{curse of dimensionality} arising from increasing problem complexity and growing length of time horizon. To address this issue, we propose novel computationally efficient algorithms for solving nonlinear MHE problems. Specifically, we first introduce a distributed reformulation utilizing a time-splitting technique. Leveraging this reformulation, we develop the Efficient Gauss-Newton Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) to achieve computational efficiency. Additionally, to accommodate limited computational capabilities inherent in some sub-problem solvers, we propose the Efficient Sensitivity Assisted ALADIN, which enables sub-problems to be solved inexactly without hindering computational efficiency. Furthermore, recognizing scenarios where sub-problem solvers possess no computational power, we propose a Distributed Sequential Quadratic Programming (SQP) that relies solely on first- and second-order information of local objective functions. We demonstrate the performance and advantages of our proposed methods through numerical experiments on differential drive robots case, a practical nonlinear MHE problem. Our results demonstrate that the three proposed algorithms achieve computational efficiency while preserving high accuracy, thereby satisfying the real-time requirements of MHE.
Ensuring Safe and Smooth Control in Safety-Critical Systems via Filtered Control Barrier Functions
In safety-critical control systems, ensuring both system safety and smooth control input variation is essential for theoretical guarantees and practical deployment. Existing Control Barrier Function (CBF) frameworks, especially High-Order CBFs (HOCBFs), effectively enforce safety constraints but often lead to nonsmooth or discontinuous control inputs that can degrade system performance or violate actuator limitations. This paper introduces Filtered Control Barrier Functions (FCBFs), a novel extension of HOCBFs that incorporates an auxiliary dynamic system-referred to as an input regularization filter-to produce Lipschitz continuous control inputs. The proposed framework ensures safety, control bounds, and smoothness simultaneously by integrating FCBFs and HOCBFs within a unified quadratic program (QP). Theoretical guarantees are provided, and simulations on a unicycle model demonstrate the effectiveness of the proposed method compared to standard and smoothness-penalized HOCBF approaches.
comment: 7 pages, 4 figures
Dissipative Avoidance Feedback for Reactive Navigation Under Second-Order Dynamics
This paper addresses the problem of autonomous robot navigation in unknown, obstacle-filled environments with second-order dynamics by proposing a Dissipative Avoidance Feedback (DAF). Compared to the Artificial Potential Field (APF), which primarily uses repulsive forces based on position, DAF employs a dissipative feedback mechanism that accounts for both position and velocity, contributing to smoother and more natural obstacle avoidance. The proposed continuously differentiable controller solves the motion-to-goal problem while guaranteeing collision-free navigation by using the robot's state and local obstacle distance information. We show that the controller guarantees safe navigation in generic $n$-dimensional environments and that all undesired $\omega$-limit points are unstable under certain controlled curvature conditions. Designed for real-time implementation, DAF requires only locally measured data from limited-range sensors (e.g., LiDAR, depth cameras), making it particularly effective for robots navigating unknown workspaces. Simulations in 2D and 3D environments are conducted to validate the theoretical results and to showcase the effectiveness of our approach.
comment: 8 pages, 6 figures
Safe and Stable Formation Control with Autonomous Multi-Agents Using Adaptive Control
This manuscript considers the problem of ensuring stability and safety during formation control with distributed multi-agent systems in the presence of parametric uncertainty in the dynamics and limited communication. We propose an integrative approach that combines Adaptive Control, Control Barrier Functions (CBFs), and connected graphs. The main elements employed in the integrative approach are an adaptive control design that ensures stability, a CBF-based safety filter that generates safe commands based on a reference model dynamics, and a reference model that ensures formation control with multi-agent systems when no uncertainties are present. The overall control design is shown to lead to a closed-loop adaptive system that is stable, avoids unsafe regions, and converges to a desired formation of the multi-agents. Numerical examples are provided to support the theoretical derivations.
comment: Under Review - Modeling, Estimation and Control Conference 2025
Goal-oriented Semantic Communications for Metaverse Construction via Generative AI and Optimal Transport
The emergence of the metaverse has boosted productivity and creativity, driving real-time updates and personalized content, which will substantially increase data traffic. However, current bit-oriented communication networks struggle to manage this high volume of dynamic information, restricting metaverse applications interactivity. To address this research gap, we propose a goal-oriented semantic communication (GSC) framework for metaverse. Building on an existing metaverse wireless construction task, our proposed GSC framework includes an hourglass network-based (HgNet) encoder to extract semantic information of objects in the metaverse; and a semantic decoder that uses this extracted information to reconstruct the metaverse content after wireless transmission, enabling efficient communication and real-time object behaviour updates to the scenery for metaverse construction task. To overcome the wireless channel noise at the receiver, we design an optimal transport (OT)-enabled semantic denoiser, which enhances the accuracy of metaverse scenery through wireless communication. Experimental results show that compared to the conventional metaverse construction, our proposed GSC framework significantly reduces wireless metaverse construction latency by 92.6\%, while improving metaverse object status accuracy and viewing experience by 45.6\% and 44.7\%, respectively.
Robust Model Predictive Control for Aircraft Intent-Aware Collision Avoidance
This paper presents the use of robust model predictive control for the design of an intent-aware collision avoidance system for multi-agent aircraft engaged in horizontal maneuvering scenarios. We assume that information from other agents is accessible in the form of waypoints or destinations. Consequently, we consider that other agents follow their optimal Dubin's path--a trajectory that connects their current state to their intended state--while accounting for potential uncertainties. We propose using scenario tree model predictive control as a robust approach that demonstrates computational efficiency. We demonstrate that the proposed method can easily integrate intent information and offer a robust scheme that handles different uncertainties. The method is illustrated through simulation results.
comment: 8 Pages, 10 Figs, Accepted for presentation at ECC 2025
Carbon-Aware Optimal Power Flow
To facilitate effective decarbonization of the electric power sector, this paper introduces the generic Carbon-aware Optimal Power Flow (C-OPF) method for power system decision-making that considers demand-side carbon accounting and emission management. Built upon the classic optimal power flow (OPF) model, the C-OPF method incorporates carbon emission flow equations and constraints, as well as carbon-related objectives, to jointly optimize power flow and carbon flow. In particular, this paper establishes the feasibility and solution uniqueness of the carbon emission flow equations, and proposes modeling and linearization techniques to address the issues of undetermined power flow directions and bilinear terms in the C-OPF model. Additionally, two novel carbon emission models, together with the carbon accounting schemes, for energy storage systems are developed and integrated into the C-OPF model. Numerical simulations demonstrate the characteristics and effectiveness of the C-OPF method, in comparison with OPF solutions.
Can Large Language Model Agents Balance Energy Systems?
This paper presents a hybrid approach that integrates Large Language Models (LLMs) with a multi-scenario Stochastic Unit Commitment (SUC) framework to enhance both efficiency and reliability under high wind generation uncertainties. In a 10-trial study on the test energy system, the traditional SUC approach incurs an average total cost of 187.68 million dollars, whereas the LLM-assisted SUC (LLM-SUC) achieves a mean cost of 185.58 million dollars (range: 182.61 to 188.65 million dollars), corresponding to a cost reduction of 1.1 to 2.7 percent. Furthermore, LLM-SUC reduces load curtailment by 26.3 percent (2.24 plus/minus 0.31 GWh versus 3.04 GWh for SUC), while both methods maintain zero wind curtailment. Detailed temporal analysis shows that LLM-SUC achieves lower costs in the majority of time intervals and consistently outperforms SUC in 90 percent of cases, with solutions clustering in a favorable cost-reliability region (Coefficient of Variation = 0.93 percent for total cost and 13.8 percent for load curtailment). By leveraging an LLM agent to guide generator commitment decisions and dynamically adjust to stochastic conditions, the proposed framework improves demand fulfillment and operational resilience.
Correct by construction requirement decomposition
In systems engineering, accurately decomposing requirements is crucial for creating well-defined and manageable system components, particularly in safety-critical domains. Despite the critical need, rigorous, top-down methodologies for effectively breaking down complex requirements into precise, actionable sub-requirements are scarce, especially compared to the wealth of bottom-up verification techniques. Addressing this gap, we introduce a formal decomposition for contract-based design that guarantees the correctness of decomposed requirements if specific conditions are met. Our (semi-)automated methodology augments contract-based design with reachability analysis and constraint programming to systematically identify, verify, and validate sub-requirements representable by continuous bounded sets -- continuous relations between real-valued inputs and outputs. We demonstrate the efficacy and practicality of a correct-by-construction approach through a comprehensive case study on a cruise control system, highlighting how our methodology improves the interpretability, tractability, and verifiability of system requirements.
Robotics
Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
Incorporating GNSS Information with LIDAR-Inertial Odometry for Accurate Land-Vehicle Localization
Currently, visual odometry and LIDAR odometry are performing well in pose estimation in some typical environments, but they still cannot recover the localization state at high speed or reduce accumulated drifts. In order to solve these problems, we propose a novel LIDAR-based localization framework, which achieves high accuracy and provides robust localization in 3D pointcloud maps with information of multi-sensors. The system integrates global information with LIDAR-based odometry to optimize the localization state. To improve robustness and enable fast resumption of localization, this paper uses offline pointcloud maps for prior knowledge and presents a novel registration method to speed up the convergence rate. The algorithm is tested on various maps of different data sets and has higher robustness and accuracy than other localization algorithms.
Deep Visual Servoing of an Aerial Robot Using Keypoint Feature Extraction
The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.
comment: 7 Pages, Accepted for presentation in the 2025 International Conference on Unmanned Aircraft Systems (ICUAS 2025)
Can DeepSeek-V3 Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek-V3, a recently emerging Large Language Model (LLM), demonstrates outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of DeepSeek-V3 in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
Dexterous Non-Prehensile Manipulation for Ungraspable Object via Extrinsic Dexterity
Objects with large base areas become ungraspable when they exceed the end-effector's maximum aperture. Existing approaches address this limitation through extrinsic dexterity, which exploits environmental features for non-prehensile manipulation. While grippers have shown some success in this domain, dexterous hands offer superior flexibility and manipulation capabilities that enable richer environmental interactions, though they present greater control challenges. Here we present ExDex, a dexterous arm-hand system that leverages reinforcement learning to enable non-prehensile manipulation for grasping ungraspable objects. Our system learns two strategic manipulation sequences: relocating objects from table centers to edges for direct grasping, or to walls where extrinsic dexterity enables grasping through environmental interaction. We validate our approach through extensive experiments with dozens of diverse household objects, demonstrating both superior performance and generalization capabilities with novel objects. Furthermore, we successfully transfer the learned policies from simulation to a real-world robot system without additional training, further demonstrating its applicability in real-world scenarios. Project website: https://tangty11.github.io/ExDex/.
comment: 14 pages, 6 figures
Microscopic Robots That Sense, Think, Act, and Compute
While miniaturization has been a goal in robotics for nearly 40 years, roboticists have struggled to access sub-millimeter dimensions without making sacrifices to on-board information processing due to the unique physics of the microscale. Consequently, microrobots often lack the key features that distinguish their macroscopic cousins from other machines, namely on-robot systems for decision making, sensing, feedback, and programmable computation. Here, we take up the challenge of building a microrobot comparable in size to a single-celled paramecium that can sense, think, and act using onboard systems for computation, sensing, memory, locomotion, and communication. Built massively in parallel with fully lithographic processing, these microrobots can execute digitally defined algorithms and autonomously change behavior in response to their surroundings. Combined, these results pave the way for general purpose microrobots that can be programmed many times in a simple setup, cost under $0.01 per machine, and work together to carry out tasks without supervision in uncertain environments.
comment: 17 pages, 5 figures with supplement
VLM-C4L: Continual Core Dataset Learning with Corner Case Optimization via Vision-Language Models for Autonomous Driving
With the widespread adoption and deployment of autonomous driving, handling complex environments has become an unavoidable challenge. Due to the scarcity and diversity of extreme scenario datasets, current autonomous driving models struggle to effectively manage corner cases. This limitation poses a significant safety risk, according to the National Highway Traffic Safety Administration (NHTSA), autonomous vehicle systems have been involved in hundreds of reported crashes annually in the United States, occurred in corner cases like sun glare and fog, which caused a few fatal accident. Furthermore, in order to consistently maintain a robust and reliable autonomous driving system, it is essential for models not only to perform well on routine scenarios but also to adapt to newly emerging scenarios, especially those corner cases that deviate from the norm. This requires a learning mechanism that incrementally integrates new knowledge without degrading previously acquired capabilities. However, to the best of our knowledge, no existing continual learning methods have been proposed to ensure consistent and scalable corner case learning in autonomous driving. To address these limitations, we propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets, and VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases while preserving performance on previously routine scenarios, thus ensuring long-term stability and adaptability in real-world autonomous driving. We evaluate VLM-C4L on large-scale real-world autonomous driving datasets, including Waymo and the corner case dataset CODA.
Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
Distortion Bounds of Subdivision Models for SO(3)
In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.
comment: 9 pages, 1 figure. Submitted to 3rd IMA Robotics Conferences, 2025
Towards Mobile Sensing with Event Cameras on High-mobility Resource-constrained Devices: A Survey
With the increasing complexity of mobile device applications, these devices are evolving toward high mobility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-mobility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.
comment: 32 pages, 9 figures
Adaptive Interactive Navigation of Quadruped Robots using Large Language Models
Robotic navigation in complex environments remains a critical research challenge. Traditional navigation methods focus on optimal trajectory generation within free space, struggling in environments lacking viable paths to the goal, such as disaster zones or cluttered warehouses. To address this gap, we propose an adaptive interactive navigation approach that proactively interacts with environments to create feasible paths to reach originally unavailable goals. Specifically, we present a primitive tree for task planning with large language models (LLMs), facilitating effective reasoning to determine interaction objects and sequences. To ensure robust subtask execution, we adopt reinforcement learning to pre-train a comprehensive skill library containing versatile locomotion and interaction behaviors for motion planning. Furthermore, we introduce an adaptive replanning method featuring two LLM-based modules: an advisor serving as a flexible replanning trigger and an arborist for autonomous plan adjustment. Integrated with the tree structure, the replanning mechanism allows for convenient node addition and pruning, enabling rapid plan modification in unknown environments. Comprehensive simulations and experiments have demonstrated our method's effectiveness and adaptivity in diverse scenarios. The supplementary video is available at page: https://youtu.be/W5ttPnSap2g.
comment: 10 pages, 9 figures
SR-LIO++: Efficient LiDAR-Inertial Odometry and Quantized Mapping with Sweep Reconstruction
Addressing the inherent low acquisition frequency limitation of 3D LiDAR to achieve high-frequency output has become a critical research focus in the LiDAR-Inertial Odometry (LIO) domain. To ensure real-time performance, frequency-enhanced LIO systems must process each sweep within significantly reduced timeframe, which presents substantial challenges for deployment on low-computational-power platforms. To address these limitations, we introduce SR-LIO++, an innovative LIO system capable of achieving doubled output frequency relative to input frequency on resource-constrained hardware platforms, including the Raspberry Pi 4B. Our system employs a sweep reconstruction methodology to enhance LiDAR sweep frequency, generating high-frequency reconstructed sweeps. Building upon this foundation, we propose a caching mechanism for intermediate results (i.e., surface parameters) of the most recent segments, effectively minimizing redundant processing of common segments in adjacent reconstructed sweeps. This method decouples processing time from the traditionally linear dependence on reconstructed sweep frequency. Furthermore, we present a quantized map point management based on index table mapping, significantly reducing memory usage by converting global 3D point storage from 64-bit double precision to 8-bit char representation. This method also converts the computationally intensive Euclidean distance calculations in nearest neighbor searches from 64-bit double precision to 16-bit short and 32-bit integer formats, significantly reducing both memory and computational cost. Extensive experimental evaluations across three distinct computing platforms and four public datasets demonstrate that SR-LIO++ maintains state-of-the-art accuracy while substantially enhancing efficiency. Notably, our system successfully achieves 20Hz state output on Raspberry Pi 4B hardware.
comment: 10 pages, 12 figures
Predictive Traffic Rule Compliance using Reinforcement Learning SC 2025
Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents a new approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. In this setup, the predictions of the critic directly affect the cost function of the motion planner, guiding the choices of the trajectory. We incorporate key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Our main innovation is replacing the standard actor network in an actor-critic setup with a motion planning module, which ensures both predictable trajectory generation and prevention of long-term rule violations. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, significantly increasing safety in challenging traffic conditions.
comment: 12 pages, 7 figures. Preprint submitted to IEEE ITSC 2025
LiDAR-based Quadrotor Autonomous Inspection System in Cluttered Environments
In recent years, autonomous unmanned aerial vehicle (UAV) technology has seen rapid advancements, significantly improving operational efficiency and mitigating risks associated with manual tasks in domains such as industrial inspection, agricultural monitoring, and search-and-rescue missions. Despite these developments, existing UAV inspection systems encounter two critical challenges: limited reliability in complex, unstructured, and GNSS-denied environments, and a pronounced dependency on skilled operators. To overcome these limitations, this study presents a LiDAR-based UAV inspection system employing a dual-phase workflow: human-in-the-loop inspection and autonomous inspection. During the human-in-the-loop phase, untrained pilots are supported by autonomous obstacle avoidance, enabling them to generate 3D maps, specify inspection points, and schedule tasks. Inspection points are then optimized using the Traveling Salesman Problem (TSP) to create efficient task sequences. In the autonomous phase, the quadrotor autonomously executes the planned tasks, ensuring safe and efficient data acquisition. Comprehensive field experiments conducted in various environments, including slopes, landslides, agricultural fields, factories, and forests, confirm the system's reliability and flexibility. Results reveal significant enhancements in inspection efficiency, with autonomous operations reducing trajectory length by up to 40\% and flight time by 57\% compared to human-in-the-loop operations. These findings underscore the potential of the proposed system to enhance UAV-based inspections in safety-critical and resource-constrained scenarios.
Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models ICRA 2025
Leveraging the powerful reasoning capabilities of large language models (LLMs), recent LLM-based robot task planning methods yield promising results. However, they mainly focus on single or multiple homogeneous robots on simple tasks. Practically, complex long-horizon tasks always require collaboration among multiple heterogeneous robots especially with more complex action spaces, which makes these tasks more challenging. To this end, we propose COHERENT, a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems including quadrotors, robotic dogs, and robotic arms. Specifically, a Proposal-Execution-Feedback-Adjustment (PEFA) mechanism is designed to decompose and assign actions for individual robots, where a centralized task assigner makes a task planning proposal to decompose the complex task into subtasks, and then assigns subtasks to robot executors. Each robot executor selects a feasible action to implement the assigned subtask and reports self-reflection feedback to the task assigner for plan adjustment. The PEFA loops until the task is completed. Moreover, we create a challenging heterogeneous multi-robot task planning benchmark encompassing 100 complex long-horizon tasks. The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency. The experimental videos, code, and benchmark are released at https://github.com/MrKeee/COHERENT.
comment: Accepted by ICRA 2025
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators ICRA
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
Gen-Swarms: Adapting Deep Generative Models to Swarms of Drones
Gen-Swarms is an innovative method that leverages and combines the capabilities of deep generative models with reactive navigation algorithms to automate the creation of drone shows. Advancements in deep generative models, particularly diffusion models, have demonstrated remarkable effectiveness in generating high-quality 2D images. Building on this success, various works have extended diffusion models to 3D point cloud generation. In contrast, alternative generative models such as flow matching have been proposed, offering a simple and intuitive transition from noise to meaningful outputs. However, the application of flow matching models to 3D point cloud generation remains largely unexplored. Gen-Swarms adapts these models to automatically generate drone shows. Existing 3D point cloud generative models create point trajectories which are impractical for drone swarms. In contrast, our method not only generates accurate 3D shapes but also guides the swarm motion, producing smooth trajectories and accounting for potential collisions through a reactive navigation algorithm incorporated into the sampling process. For example, when given a text category like Airplane, Gen-Swarms can rapidly and continuously generate numerous variations of 3D airplane shapes. Our experiments demonstrate that this approach is particularly well-suited for drone shows, providing feasible trajectories, creating representative final shapes, and significantly enhancing the overall performance of drone show generation.
Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
Systems and Control (CS)
Iterative VCG-based Mechanism Fosters Cooperation in Multi-Regional Network Design
Transportation network design often involves multiple stakeholders with diverse priorities. We consider a system with a hierarchical multi-agent structure, featuring self-optimized subnetwork operators at the lower level and a central organization at the upper level. Independent regional planning can lead to inefficiencies due to the lack of coordination, hindering interregional travel and cross-border infrastructure development, while centralized methods may struggle to align local interests and can be impractical to implement. To support decision making for such a system, we introduce an iterative VCG-based mechanism for multi-regional network design that fosters cooperation among subnetwork operators. By leveraging the Vickery-Clarke-Groves (VCG) mechanism, the framework determines collective investment decisions and the necessary payments from both operators and the central organization to achieve efficient outcomes. A case study on the European Railway System validates the effectiveness of the proposed method, demonstrating significant improvements in overall network performance through enhanced cross-region cooperation.
Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
An Adaptive Collaborative Neurodynamic Approach to Compute Nash Equilibrium in Normal-Form Games
The Nash Equilibrium (NE), one of the elegant and fundamental concepts in game theory, plays a crucial part within various fields, including engineering and computer science. However, efficiently computing an NE in normal-form games remains a significant challenge, particularly for large-scale problems. In contrast to widely applied simplicial and homotopy methods, this paper designs a novel Adaptive Collaborative Neurodynamic Approach (ACNA), which for the first time guarantees both exact and global NE computation for general $N$-player normal-form games with mixed strategies, where the payoff functions are non-convex and the pseudo-gradient is non-monotone. Additionally, leveraging the adaptive penalty method, the ACNA ensures its state enters the constraint set in finite time, which avoids the second-order sufficiency conditions required by Lagrangian methods, and the computationally complicated penalty parameter estimation needed by exact penalty methods. Furthermore, by incorporating the particle swarm algorithm, it is demonstrated that the ACNA achieves global convergence to an exact NE with probability one. At last, a simulation is conducted to validate the effectiveness of the proposed approach.
Optimal Control of an Epidemic with Intervention Design
In this paper, I propose a controlled SEIR model that advances epidemic management through optimal control theory. I improve the traditional framework by incorporating practical intervention constraints and economic considerations. Approaching this problem using modern methods of calculus of variations, I first conduct a rigorous mathematical analysis of the controlled system. Then, I formulate an infinite time horizon control problem and investigate its mathematical connections with finite time, setting the stage for applying the Hamiltonian procedure.
comment: For code and computational details in Python, please refer to \url{https://github.com/BehroozMoosavi/Codes/blob/main/Epidemic\%20With\%20Intervention/Epidemic.ipynb}
Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
Inverse Particle Filter
In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system's cognitive response. This approach, known as inverse cognition, arises in counter-adversarial applications and has motivated the development of inverse Bayesian filters. In this context, a cognitive adversary, such as a radar, uses a forward Bayesian filter to track its target of interest. An inverse filter is then employed to infer the adversary's estimate of the target's or defender's state. Previous studies have addressed this inverse filtering problem by introducing methods like the inverse Kalman filter (KF), inverse extended KF, and inverse unscented KF. However, these filters typically assume additive Gaussian noise models and/or rely on local approximations of non-linear dynamics at the state estimates, limiting their practical application. In contrast, this paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF). The particle filter framework employs Monte Carlo (MC) methods to approximate arbitrary posterior distributions. Moreover, under mild system-level conditions, the proposed I-PF demonstrates convergence to the optimal inverse filter. Additionally, we propose the differentiable I-PF to address scenarios where system information is unknown to the defender. Using the recursive Cramer-Rao lower bound and non-credibility index (NCI), our numerical experiments for different systems demonstrate the estimation performance and time complexity of the proposed filter.
comment: 16 pages, 5 figures, 4 tables
Accurate Calculation of Switching Events in Electromagnetic Transient Simulation Considering State Variable Discontinuities
Accurate calculation of switching events is important for electromagnetic transient simulation to obtain reliable results. The common presumption of continuous differential state variables could prevent the accurate calculation, thus leading to unreliable results. This paper explores accurately calculating switching events without presuming continuous differential state variables. Possibility of the calculation is revealed by the proposal of related methods. Feasibility and accuracy of the proposed methods are demonstrated and analyzed via numerical case studies.
comment: Accepted by the 2025 IEEE PES General Meeting
Balancing Operators Risk Averseness in Model Predictive Control for Real-time Reservoir Flood Control
Model Predictive Control (MPC) is an optimal control strategy suited for flood control of water resources infrastructure. Despite many studies on reservoir flood control and their theoretical contribution, optimisation methodologies have not been widely applied in real-time operation due to disparities between research assumptions and practical requirements. To address this gap, we include practical objectives, such as minimising the magnitude and frequency of changes in the existing outflow schedule. Incorporating these objectives transforms the problem into a multi-objective nonlinear optimisation problem that is difficult to solve in real-time. Additionally, it is reasonable to assume that the weights and some parameters, considered the operators' preferences, vary depending on the system state. To overcome these limitations, we propose a framework that converts the original intractable problem into parameterized linear MPC problems with dynamic optimisation of weights and parameters. This is done by introducing a model-based learning concept. We refer to this framework as Parameterised Dynamic MPC (PD-MPC). The effectiveness of this framework is demonstrated through a numerical experiment for the Daecheong multipurpose reservoir in South Korea. We find that PD-MPC outperforms standard MPC-based designs without a dynamic optimisation process for the objective weights and model parameters. Moreover, we demonstrate that the weights and parameters vary with changing hydrological conditions.
comment: This article was published at the Journal of Hydroinformatics in 2025. (Koo, Ja-Ho, Edo Abraham, Andreja Jonoski, and Dimitri P. Solomatine. Balancing operators risk averseness in model predictive control for real-time reservoir flood control. Journal of Hydroinformatics (2025): jh2025019.)
Adaptive Curves for Optimally Efficient Market Making
Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker's prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.
Certainty-Equivalence Model Predictive Control: Stability, Performance, and Beyond
Handling model mismatch is a common challenge in model-based controller design, particularly in model predictive control (MPC). While robust MPC is effective in managing uncertainties, its conservatism often makes it less desirable in practice. Certainty-equivalence MPC (CE-MPC), which relies on a nominal model, offers an appealing alternative due to its design simplicity and low computational requirements. Contrary to the existing analyses where MPC has access to the true model, this paper investigates CE-MPC for uncertain nonlinear systems with input constraints and parametric uncertainty. The primary contributions of the paper are two-fold. First, a novel perturbation analysis of the MPC value function is provided, without relying on the common assumption of Lipschitz continuity of the stage cost, better tailoring the popular quadratic cost and having broader applicability to value function approximation, online model learning in MPC, and performance-driven MPC design. Second, the stability and performance analysis of CE-MPC are provided, with a quantification of the suboptimality of CE-MPC compared to the infinite-horizon optimal controller with perfect model knowledge. The results provide valuable insights in how the prediction horizon and model mismatch jointly affect stability and performance. Furthermore, the general results are specialized to linear quadratic control, and a competitive ratio bound is derived, serving as the first competitive-ratio bound for MPC of uncertain linear systems with input constraints and multiplicative uncertainty.
comment: 16 pages with some proofs omitted for brevity; simulation is included. Submitted to IEEE Transactions on Automatic Control
Systems and Control (EESS)
Iterative VCG-based Mechanism Fosters Cooperation in Multi-Regional Network Design
Transportation network design often involves multiple stakeholders with diverse priorities. We consider a system with a hierarchical multi-agent structure, featuring self-optimized subnetwork operators at the lower level and a central organization at the upper level. Independent regional planning can lead to inefficiencies due to the lack of coordination, hindering interregional travel and cross-border infrastructure development, while centralized methods may struggle to align local interests and can be impractical to implement. To support decision making for such a system, we introduce an iterative VCG-based mechanism for multi-regional network design that fosters cooperation among subnetwork operators. By leveraging the Vickery-Clarke-Groves (VCG) mechanism, the framework determines collective investment decisions and the necessary payments from both operators and the central organization to achieve efficient outcomes. A case study on the European Railway System validates the effectiveness of the proposed method, demonstrating significant improvements in overall network performance through enhanced cross-region cooperation.
Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
An Adaptive Collaborative Neurodynamic Approach to Compute Nash Equilibrium in Normal-Form Games
The Nash Equilibrium (NE), one of the elegant and fundamental concepts in game theory, plays a crucial part within various fields, including engineering and computer science. However, efficiently computing an NE in normal-form games remains a significant challenge, particularly for large-scale problems. In contrast to widely applied simplicial and homotopy methods, this paper designs a novel Adaptive Collaborative Neurodynamic Approach (ACNA), which for the first time guarantees both exact and global NE computation for general $N$-player normal-form games with mixed strategies, where the payoff functions are non-convex and the pseudo-gradient is non-monotone. Additionally, leveraging the adaptive penalty method, the ACNA ensures its state enters the constraint set in finite time, which avoids the second-order sufficiency conditions required by Lagrangian methods, and the computationally complicated penalty parameter estimation needed by exact penalty methods. Furthermore, by incorporating the particle swarm algorithm, it is demonstrated that the ACNA achieves global convergence to an exact NE with probability one. At last, a simulation is conducted to validate the effectiveness of the proposed approach.
Optimal Control of an Epidemic with Intervention Design
In this paper, I propose a controlled SEIR model that advances epidemic management through optimal control theory. I improve the traditional framework by incorporating practical intervention constraints and economic considerations. Approaching this problem using modern methods of calculus of variations, I first conduct a rigorous mathematical analysis of the controlled system. Then, I formulate an infinite time horizon control problem and investigate its mathematical connections with finite time, setting the stage for applying the Hamiltonian procedure.
comment: For code and computational details in Python, please refer to \url{https://github.com/BehroozMoosavi/Codes/blob/main/Epidemic\%20With\%20Intervention/Epidemic.ipynb}
Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
Inverse Particle Filter
In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system's cognitive response. This approach, known as inverse cognition, arises in counter-adversarial applications and has motivated the development of inverse Bayesian filters. In this context, a cognitive adversary, such as a radar, uses a forward Bayesian filter to track its target of interest. An inverse filter is then employed to infer the adversary's estimate of the target's or defender's state. Previous studies have addressed this inverse filtering problem by introducing methods like the inverse Kalman filter (KF), inverse extended KF, and inverse unscented KF. However, these filters typically assume additive Gaussian noise models and/or rely on local approximations of non-linear dynamics at the state estimates, limiting their practical application. In contrast, this paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF). The particle filter framework employs Monte Carlo (MC) methods to approximate arbitrary posterior distributions. Moreover, under mild system-level conditions, the proposed I-PF demonstrates convergence to the optimal inverse filter. Additionally, we propose the differentiable I-PF to address scenarios where system information is unknown to the defender. Using the recursive Cramer-Rao lower bound and non-credibility index (NCI), our numerical experiments for different systems demonstrate the estimation performance and time complexity of the proposed filter.
comment: 16 pages, 5 figures, 4 tables
Accurate Calculation of Switching Events in Electromagnetic Transient Simulation Considering State Variable Discontinuities
Accurate calculation of switching events is important for electromagnetic transient simulation to obtain reliable results. The common presumption of continuous differential state variables could prevent the accurate calculation, thus leading to unreliable results. This paper explores accurately calculating switching events without presuming continuous differential state variables. Possibility of the calculation is revealed by the proposal of related methods. Feasibility and accuracy of the proposed methods are demonstrated and analyzed via numerical case studies.
comment: Accepted by the 2025 IEEE PES General Meeting
Balancing Operators Risk Averseness in Model Predictive Control for Real-time Reservoir Flood Control
Model Predictive Control (MPC) is an optimal control strategy suited for flood control of water resources infrastructure. Despite many studies on reservoir flood control and their theoretical contribution, optimisation methodologies have not been widely applied in real-time operation due to disparities between research assumptions and practical requirements. To address this gap, we include practical objectives, such as minimising the magnitude and frequency of changes in the existing outflow schedule. Incorporating these objectives transforms the problem into a multi-objective nonlinear optimisation problem that is difficult to solve in real-time. Additionally, it is reasonable to assume that the weights and some parameters, considered the operators' preferences, vary depending on the system state. To overcome these limitations, we propose a framework that converts the original intractable problem into parameterized linear MPC problems with dynamic optimisation of weights and parameters. This is done by introducing a model-based learning concept. We refer to this framework as Parameterised Dynamic MPC (PD-MPC). The effectiveness of this framework is demonstrated through a numerical experiment for the Daecheong multipurpose reservoir in South Korea. We find that PD-MPC outperforms standard MPC-based designs without a dynamic optimisation process for the objective weights and model parameters. Moreover, we demonstrate that the weights and parameters vary with changing hydrological conditions.
comment: This article was published at the Journal of Hydroinformatics in 2025. (Koo, Ja-Ho, Edo Abraham, Andreja Jonoski, and Dimitri P. Solomatine. Balancing operators risk averseness in model predictive control for real-time reservoir flood control. Journal of Hydroinformatics (2025): jh2025019.)
Adaptive Curves for Optimally Efficient Market Making
Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker's prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.
Certainty-Equivalence Model Predictive Control: Stability, Performance, and Beyond
Handling model mismatch is a common challenge in model-based controller design, particularly in model predictive control (MPC). While robust MPC is effective in managing uncertainties, its conservatism often makes it less desirable in practice. Certainty-equivalence MPC (CE-MPC), which relies on a nominal model, offers an appealing alternative due to its design simplicity and low computational requirements. Contrary to the existing analyses where MPC has access to the true model, this paper investigates CE-MPC for uncertain nonlinear systems with input constraints and parametric uncertainty. The primary contributions of the paper are two-fold. First, a novel perturbation analysis of the MPC value function is provided, without relying on the common assumption of Lipschitz continuity of the stage cost, better tailoring the popular quadratic cost and having broader applicability to value function approximation, online model learning in MPC, and performance-driven MPC design. Second, the stability and performance analysis of CE-MPC are provided, with a quantification of the suboptimality of CE-MPC compared to the infinite-horizon optimal controller with perfect model knowledge. The results provide valuable insights in how the prediction horizon and model mismatch jointly affect stability and performance. Furthermore, the general results are specialized to linear quadratic control, and a competitive ratio bound is derived, serving as the first competitive-ratio bound for MPC of uncertain linear systems with input constraints and multiplicative uncertainty.
comment: 16 pages with some proofs omitted for brevity; simulation is included. Submitted to IEEE Transactions on Automatic Control
Multiagent Systems
EncGPT: A Multi-Agent Workflow for Dynamic Encryption Algorithms
Communication encryption is crucial in computer technology, but existing algorithms struggle with balancing cost and security. We propose EncGPT, a multi-agent framework using large language models (LLM). It includes rule, encryption, and decryption agents that generate encryption rules and apply them dynamically. This approach addresses gaps in LLM-based multi-agent systems for communication security. We tested GPT-4o's rule generation and implemented a substitution encryption workflow with homomorphism preservation, achieving an average execution time of 15.99 seconds.
An impossibility theorem concerning positive involvement in voting
In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.
comment: Fixed typos in bibliography
Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
Robotics
Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels IROS 2025
In imitation learning for robotics, cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap. This work seeks to elucidate basic principles of this sim-and-real cotraining to help inform simulation design, sim-and-real dataset creation, and policy training. Focusing narrowly on the canonical task of planar pushing from camera inputs enabled us to be thorough in our study. These experiments confirm that cotraining with simulated data \emph{can} dramatically improve performance in real, especially when real data is limited. Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling. The results also suggest that reducing the domain gap in physics may be more important than visual fidelity for non-prehensile manipulation tasks. Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. In total, our experiments span over 40 real-world policies (evaluated on 800+ trials) and 200 simulated policies (evaluated on 40,000+ trials).
comment: 9 pages, 15 figures, In Submission to IROS 2025
Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
Robust Offline Imitation Learning Through State-level Trajectory Stitching
Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
Scaling Laws of Scientific Discovery with AI and Robot Scientists
The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
comment: 22 pages, 7 figures
Collapse and Collision Aware Grasping for Cluttered Shelf Picking
Efficient and safe retrieval of stacked objects in warehouse environments is a significant challenge due to complex spatial dependencies and structural inter-dependencies. Traditional vision-based methods excel at object localization but often lack the physical reasoning required to predict the consequences of extraction, leading to unintended collisions and collapses. This paper proposes a collapse and collision aware grasp planner that integrates dynamic physics simulations for robotic decision-making. Using a single image and depth map, an approximate 3D representation of the scene is reconstructed in a simulation environment, enabling the robot to evaluate different retrieval strategies before execution. Two approaches 1) heuristic-based and 2) physics-based are proposed for both single-box extraction and shelf clearance tasks. Extensive real-world experiments on structured and unstructured box stacks, along with validation using datasets from existing databases, show that our physics-aware method significantly improves efficiency and success rates compared to baseline heuristics.
Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
Robust simultaneous UWB-anchor calibration and robot localization for emergency situations
In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.
FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
comment: 8 pages, 7 figures
CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving AAMAS 2025
Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.
comment: Accepted at AAMAS 2025 (Demonstration Track), 3 pages, 2 figures, 1 table
Bimanual Regrasp Planning and Control for Eliminating Object Pose Uncertainty
Precisely grasping an object is a challenging task due to pose uncertainties. Conventional methods have used cameras and fixtures to reduce object uncertainty. They are effective but require intensive preparation, such as designing jigs based on the object geometry and calibrating cameras with high-precision tools fabricated using lasers. In this study, we propose a method to reduce the uncertainty of the position and orientation of a grasped object without using a fixture or a camera. Our method is based on the concept that the flat finger pads of a parallel gripper can reduce uncertainty along its opening/closing direction through flat surface contact. Three orthogonal grasps by parallel grippers with flat finger pads collectively constrain an object's position and orientation to a unique state. Guided by the concepts, we develop a regrasp planning and admittance control approach that sequentially finds and leverages three orthogonal grasps of two robotic arms to eliminate uncertainties in the object pose. We evaluated the proposed method on different initial object uncertainties and verified that the method has satisfactory repeatability accuracy. It outperforms an AR marker detection method implemented using cameras and laser jet printers under standard laboratory conditions.
IKSel: Selecting Good Seed Joint Values for Fast Numerical Inverse Kinematics Iterations
This paper revisits the numerical inverse kinematics (IK) problem, leveraging modern computational resources and refining the seed selection process to develop a solver that is competitive with analytical-based methods. The proposed seed selection strategy consists of three key stages: (1) utilizing a K-Dimensional Tree (KDTree) to identify seed candidates based on workspace proximity, (2) sorting candidates by joint space adjustment and attempting numerical iterations with the one requiring minimal adjustment, and (3) re-selecting the most distant joint configurations for new attempts in case of failures. The joint space adjustment-based seed selection increases the likelihood of rapid convergence, while the re-attempt strategy effectively helps circumvent local minima and joint limit constraints. Comparison results with both traditional numerical solvers and learning-based methods demonstrate the strengths of the proposed approach in terms of success rate, time efficiency, and accuracy. Additionally, we conduct detailed ablation studies to analyze the effects of various parameters and solver settings, providing practical insights for customization and optimization. The proposed method consistently exhibits high success rates and computational efficiency. It is suitable for time-sensitive applications.
3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
Cooperative Hybrid Multi-Agent Pathfinding Based on Shared Exploration Maps
Multi-Agent Pathfinding is used in areas including multi-robot formations, warehouse logistics, and intelligent vehicles. However, many environments are incomplete or frequently change, making it difficult for standard centralized planning or pure reinforcement learning to maintain both global solution quality and local flexibility. This paper introduces a hybrid framework that integrates D* Lite global search with multi-agent reinforcement learning, using a switching mechanism and a freeze-prevention strategy to handle dynamic conditions and crowded settings. We evaluate the framework in the discrete POGEMA environment and compare it with baseline methods. Experimental outcomes indicate that the proposed framework substantially improves success rate, collision rate, and path efficiency. The model is further tested on the EyeSim platform, where it maintains feasible Pathfinding under frequent changes and large-scale robot deployments.
comment: 22 pages,7 figures
REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
Deep Depth Estimation from Thermal Image: Dataset, Benchmark, and Challenges
Achieving robust and accurate spatial perception under adverse weather and lighting conditions is crucial for the high-level autonomy of self-driving vehicles and robots. However, existing perception algorithms relying on the visible spectrum are highly affected by weather and lighting conditions. A long-wave infrared camera (i.e., thermal imaging camera) can be a potential solution to achieve high-level robustness. However, the absence of large-scale datasets and standardized benchmarks remains a significant bottleneck to progress in active research for robust visual perception from thermal images. To this end, this manuscript provides a large-scale Multi-Spectral Stereo (MS$^2$) dataset that consists of stereo RGB, stereo NIR, stereo thermal, stereo LiDAR data, and GNSS/IMU information along with semi-dense depth ground truth. MS$^2$ dataset includes 162K synchronized multi-modal data pairs captured across diverse locations (e.g., urban city, residential area, campus, and high-way road) at different times (e.g., morning, daytime, and nighttime) and under various weather conditions (e.g., clear-sky, cloudy, and rainy). Secondly, we conduct a thorough evaluation of monocular and stereo depth estimation networks across RGB, NIR, and thermal modalities to establish standardized benchmark results on MS$^2$ depth test sets (e.g., day, night, and rainy). Lastly, we provide in-depth analyses and discuss the challenges revealed by the benchmark results, such as the performance variability for each modality under adverse conditions, domain shift between different sensor modalities, and potential research direction for thermal perception. Our dataset and source code are publicly available at https://sites.google.com/view/multi-spectral-stereo-dataset and https://github.com/UkcheolShin/SupDepth4Thermal.
comment: MS^2 dataset: https://sites.google.com/view/multi-spectral-stereo-dataset, Source code: https://github.com/UkcheolShin/SupDepth4Thermal
Task Tokens: A Flexible Approach to Adapting Behavior Foundation Models
Recent advancements in imitation learning have led to transformer-based behavior foundation models (BFMs) that enable multi-modal, human-like control for humanoid agents. While excelling at zero-shot generation of robust behaviors, BFMs often require meticulous prompt engineering for specific tasks, potentially yielding suboptimal results. We introduce "Task Tokens", a method to effectively tailor BFMs to specific tasks while preserving their flexibility. Our approach leverages the transformer architecture of BFMs to learn a new task-specific encoder through reinforcement learning, keeping the original BFM frozen. This allows incorporation of user-defined priors, balancing reward design and prompt engineering. By training a task encoder to map observations to tokens, used as additional BFM inputs, we guide performance improvement while maintaining the model's diverse control characteristics. We demonstrate Task Tokens' efficacy across various tasks, including out-of-distribution scenarios, and show their compatibility with other prompting modalities. Our results suggest that Task Tokens offer a promising approach for adapting BFMs to specific control tasks while retaining their generalization capabilities.
VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present \textit{VizFlyt}, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on \textit{VizFlyt} for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
A reduced-scale autonomous morphing vehicle prototype with enhanced aerodynamic efficiency
Road vehicles contribute to significant levels of greenhouse gas (GHG) emissions. A potential strategy for improving their aerodynamic efficiency and reducing emissions is through active adaptation of their exterior shapes to the aerodynamic environment. In this study, we present a reduced-scale morphing vehicle prototype capable of actively interacting with the aerodynamic environment to enhance fuel economy. Morphing is accomplished by retrofitting a deformable structure actively actuated by built-in motors. The morphing vehicle prototype is integrated with an optimization algorithm that can autonomously identify the structural shape that minimizes aerodynamic drag. The performance of the morphing vehicle prototype is investigated through an extensive experimental campaign in a large-scale wind tunnel facility. The autonomous optimization algorithm identifies an optimal morphing shape that can elicit an 8.5% reduction in the mean drag force. Our experiments provide a comprehensive dataset that validates the efficiency of shape morphing, demonstrating a clear and consistent decrease in the drag force as the vehicle transitions from a suboptimal to the optimal shape. Insights gained from experiments on scaled-down models provide valuable guidelines for the design of full-size morphing vehicles, which could lead to appreciable energy savings and reductions in GHG emissions. This study highlights the feasibility and benefits of real-time shape morphing under conditions representative of realistic road environments, paving the way for the realization of full-scale morphing vehicles with enhanced aerodynamic efficiency and reduced GHG emissions.
Co-design of materials, structures and stimuli for magnetic soft robots with large deformation and dynamic contacts
Magnetic soft robots embedded with hard magnetic particles enable untethered actuation via external magnetic fields, offering remote, rapid, and precise control, which is highly promising for biomedical applications. However, designing such systems is challenging due to the complex interplay of magneto-elastic dynamics, large deformation, solid contacts, time-varying stimuli, and posture-dependent loading. As a result, most existing research relies on heuristics and trial-and-error methods or focuses on the independent design of stimuli or structures under static conditions. We propose a topology optimization framework for magnetic soft robots that simultaneously designs structures, location-specific material magnetization and time-varying magnetic stimuli, accounting for large deformations, dynamic motion, and solid contacts. This is achieved by integrating generalized topology optimization with the magneto-elastic material point method, which supports GPU-accelerated parallel simulations and auto-differentiation for sensitivity analysis. We applied this framework to design magnetic robots for various tasks, including multi-task shape morphing and locomotion, in both 2D and 3D. The method autonomously generates optimized robotic systems to achieve target behaviors without requiring human intervention. Despite the nonlinear physics and large design space, it demonstrates exceptional efficiency, completing all cases within minutes. This proposed framework represents a significant step toward the automatic co-design of magnetic soft robots for applications such as metasurfaces, drug delivery, and minimally invasive procedures.
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 16 figures
Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
Continuous-Time State Estimation Methods in Robotics: A Survey
Accurate, efficient, and robust state estimation is more important than ever in robotics as the variety of platforms and complexity of tasks continue to grow. Historically, discrete-time filters and smoothers have been the dominant approach, in which the estimated variables are states at discrete sample times. The paradigm of continuous-time state estimation proposes an alternative strategy by estimating variables that express the state as a continuous function of time, which can be evaluated at any query time. Not only can this benefit downstream tasks such as planning and control, but it also significantly increases estimator performance and flexibility, as well as reduces sensor preprocessing and interfacing complexity. Despite this, continuous-time methods remain underutilized, potentially because they are less well-known within robotics. To remedy this, this work presents a unifying formulation of these methods and the most exhaustive literature review to date, systematically categorizing prior work by methodology, application, state variables, historical context, and theoretical contribution to the field. By surveying splines and Gaussian processes together and contextualizing works from other research domains, this work identifies and analyzes open problems in continuous-time state estimation and suggests new research directions.
comment: Submitted to IEEE Transactions on Robotics (T-RO)
SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
Preferenced Oracle Guided Multi-mode Policies for Dynamic Bipedal Loco-Manipulation
Dynamic loco-manipulation calls for effective whole-body control and contact-rich interactions with the object and the environment. Existing learning-based control synthesis relies on training low-level skill policies and explicitly switching with a high-level policy or a hand-designed finite state machine, leading to quasi-static behaviors. In contrast, dynamic tasks such as soccer require the robot to run towards the ball, decelerate to an optimal approach to dribble, and eventually kick a goal - a continuum of smooth motion. To this end, we propose Preferenced Oracle Guided Multi-mode Policies (OGMP) to learn a single policy mastering all the required modes and preferred sequence of transitions to solve uni-object loco-manipulation tasks. We design hybrid automatons as oracles to generate references with continuous dynamics and discrete mode jumps to perform a guided policy optimization through bounded exploration. To enforce learning a desired sequence of mode transitions, we present a task-agnostic preference reward that enhances performance. The proposed approach demonstrates successful loco-manipulation for tasks like soccer and moving boxes omnidirectionally through whole-body control. In soccer, a single policy learns to optimally reach the ball, transition to contact-rich dribbling, and execute successful goal kicks and ball stops. Leveraging the oracle's abstraction, we solve each loco-manipulation task on robots with varying morphologies, including HECTOR V1, Berkeley Humanoid, Unitree G1, and H1, using the same reward definition and weights.
comment: 7 pages, 8 figures
SuperLoc: The Key to Robust LiDAR-Inertial Localization Lies in Predicting Alignment Risks ICRA 2025
Map-based LiDAR localization, while widely used in autonomous systems, faces significant challenges in degraded environments due to lacking distinct geometric features. This paper introduces SuperLoc, a robust LiDAR localization package that addresses key limitations in existing methods. SuperLoc features a novel predictive alignment risk assessment technique, enabling early detection and mitigation of potential failures before optimization. This approach significantly improves performance in challenging scenarios such as corridors, tunnels, and caves. Unlike existing degeneracy mitigation algorithms that rely on post-optimization analysis and heuristic thresholds, SuperLoc evaluates the localizability of raw sensor measurements. Experimental results demonstrate significant performance improvements over state-of-the-art methods across various degraded environments. Our approach achieves a 54% increase in accuracy and exhibits the highest robustness. To facilitate further research, we release our implementation along with datasets from eight challenging scenarios
comment: 7 pages, 6 figures, accepted at ICRA 2025
Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods for human-robot translation either depend on paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically pairs human and robot trajectories using sequence-level optimal transport cost functions. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
MatchMaker: Automated Asset Generation for Robotic Assembly ICRA
Robotic assembly remains a significant challenge due to complexities in visual perception, functional grasping, contact-rich manipulation, and performing high-precision tasks. Simulation-based learning and sim-to-real transfer have led to recent success in solving assembly tasks in the presence of object pose variation, perception noise, and control error; however, the development of a generalist (i.e., multi-task) agent for a broad range of assembly tasks has been limited by the need to manually curate assembly assets, which greatly constrains the number and diversity of assembly problems that can be used for policy learning. Inspired by recent success of using generative AI to scale up robot learning, we propose MatchMaker, a pipeline to automatically generate diverse, simulation-compatible assembly asset pairs to facilitate learning assembly skills. Specifically, MatchMaker can 1) take a simulation-incompatible, interpenetrating asset pair as input, and automatically convert it into a simulation-compatible, interpenetration-free pair, 2) take an arbitrary single asset as input, and generate a geometrically-mating asset to create an asset pair, 3) automatically erode contact surfaces from (1) or (2) according to a user-specified clearance parameter to generate realistic parts. We demonstrate that data generated by MatchMaker outperforms previous work in terms of diversity and effectiveness for downstream assembly skill learning. For videos and additional details, please see our project website: https://wangyian-me.github.io/MatchMaker/.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
Systems and Control (CS)
Verifying Nonlinear Neural Feedback Systems using Polyhedral Enclosures
As dynamical systems equipped with neural network controllers (neural feedback systems) become increasingly prevalent, it is critical to develop methods to ensure their safe operation. Verifying safety requires extending control theoretic analysis methods to these systems. Although existing techniques can efficiently handle linear neural feedback systems, relatively few scalable methods address the nonlinear case. We propose a novel algorithm for forward reachability analysis of nonlinear neural feedback systems. The approach leverages the structure of the nonlinear transition functions of the systems to compute tight polyhedral enclosures (i.e., abstractions). These enclosures, combined with the neural controller, are then encoded as a mixed-integer linear program (MILP). Optimizing this MILP yields a sound over-approximation of the forward-reachable set. We evaluate our algorithm on representative benchmarks and demonstrate an order of magnitude improvement over the current state of the art.
Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report)
Simulation-based approaches are among the most practical means to search for safety violations, bugs, and other unexpected events in cyber-physical systems (CPS). Where existing approaches search for simulations violating a formal specification or maximizing a notion of coverage, in this work we propose a new goal for testing: to discover unknown rare behaviors by examining discrete mode sequences. We assume a CPS simulator outputs mode information, and strive to explore the sequences of modes produced by varying the initial state or time-varying uncertainties. We hypothesize that rare mode sequences are often the most interesting to a designer, and we develop two accelerated sampling algorithms that speed up the process of finding such sequences. We evaluate our approach on several benchmarks, ranging from synthetic examples to Simulink diagrams of a CPS, demonstrating in some cases a speedup of over 100x compared with a random sampling strategy.
Worst-Case Analysis of Decoupled Policies for Multi-Location Inventory Control Problems
The difference in performance between centralized and decentralized control strategies crucially informs design choices in real-world control systems. Although computing and executing centralized control algorithms is often more costly than decentralized methods, their performance enhancements may far outweigh these costs. In this work, we study the value of centralization within the context of the well-known inventory control problem, where a planner seeks to identify optimal inventory levels that meet stochastic demand while minimizing ordering costs, holding costs, and shortage costs. We consider multilocation systems in which the inventories are coupled through a single ordering channel and the associated ordering cost function belongs to one of two classes of nonlinear cost functions that often arise in practical settings. For each of these classes, we derive constant-factor competitive ratios between the optimal coupled and decoupled policies and show they are almost tight. We then demonstrate that online algorithms also achieve tight competitive ratios for this problem. We conclude with numerical simulations that validate these results.
Neural Identification of Feedback-Stabilized Nonlinear Systems
Neural networks have demonstrated remarkable success in modeling nonlinear dynamical systems. However, identifying these systems from closed-loop experimental data remains a challenge due to the correlations induced by the feedback loop. Traditional nonlinear closed-loop system identification methods struggle with reliance on precise noise models, robustness to data variations, or computational feasibility. Additionally, it is essential to ensure that the identified model is stabilized by the same controller used during data collection, ensuring alignment with the true system's closed-loop behavior. The dual Youla parameterization provides a promising solution for linear systems, offering statistical guarantees and closed-loop stability. However, extending this approach to nonlinear systems presents additional complexities. In this work, we propose a computationally tractable framework for identifying complex, potentially unstable systems while ensuring closed-loop stability using a complete parameterization of systems stabilized by a given controller. We establish asymptotic consistency in the linear case and validate our method through numerical comparisons, demonstrating superior accuracy over direct identification baselines and compatibility with the true system in stability properties.
Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Multi-stage model predictive control for slug flow crystallizers using uncertainty-aware surrogate models
This paper presents a novel dynamic model for slug flow crystallizers that addresses the challenges of spatial distribution without backmixing or diffusion, potentially enabling advanced model-based control. The developed model can accurately describe the main characteristics of slug flow crystallizers, including slug-to-slug variability but leads to a high computational complexity due to the consideration of partial differential equations and population balance equations. For that reason, the model cannot be directly used for process optimization and control. To solve this challenge, we propose two different approaches, conformalized quantile regression and Bayesian last layer neural networks, to develop surrogate models with uncertainty quantification capabilities. These surrogates output a prediction of the system states together with an uncertainty of these predictions to account for process variability and model uncertainty. We use the uncertainty of the predictions to formulate a robust model predictive control approach, enabling robust real-time advanced control of a slug flow crystallizer.
Design and Analysis of a Robust Control System for Triple Inverted Pendulum Stabilization
The design of robust controllers for triple inverted pendulum systems presents significant challenges due to their inherent instability and nonlinear dynamics. Furthermore, uncertainties in system parameters further complicate the control design. This paper investigates a robust control strategy for triple inverted pendulums under parameter uncertainty. Two control approaches, namely the $H_\infty$ controller and the $\mu$-synthesis controller, are compared in terms of their ability to achieve reference tracking and disturbance rejection. Simulation results demonstrate that the $H_\infty$ controller provides superior transient performance, making it a promising solution for the robust stabilization of such complex systems.
Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
A Multi-Objective Simultaneous Routing, Facility Location and Allocation Model for Earthquake Emergency Logistics
Emergency preparedness reduces the severity and impact of major disasters. In the case of earthquakes, a rapid and efficient emergency response is essential to reduce the number of fatalities. Therefore, the design and planning of an adequate emergency transportation network are crucial in earthquake-prone locations. In the context of emergency transportation modeling, the aim of emergency routing is to find the network with the minimum length that can provide access between the maximum number of Emergency Response Centers (ERCs) and damaged areas. Meanwhile, the goal of the facility location and allocation problem is to optimize the placement of temporary hospitals to increase coverage and accessibility, particularly in remote or severely impacted areas. This paper proposes a multi-objective, robust, multi-modal, and multi-time-period optimization problem that simultaneously optimizes routing, facility location, and hospital allocation. The objective function is to minimize unmet commodity demand, unserved injuries, and economic costs. We adopt a fuzzy goal programming approach to solve the multi-objective simultaneous routing, facility location, and allocation model.
Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
Multi-objective robust controller synthesis with integral quadratic constraints in discrete-time
This article presents a novel framework for the robust controller synthesis problem in discrete-time systems using dynamic Integral Quadratic Constraints (IQCs). We present an algorithm to minimize closed-loop performance measures such as the $\mathcal H_\infty$-norm, the energy-to-peak gain, the peak-to-peak gain, or a multi-objective mix thereof. While IQCs provide a powerful tool for modeling structured uncertainties and nonlinearities, existing synthesis methods are limited to the $\mathcal H_\infty$-norm, continuous-time systems, or special system structures. By minimizing the energy-to-peak and peak-to-peak gain, the proposed synthesis can be utilized to bound the peak of the output, which is crucial in many applications requiring robust constraint satisfaction, input-to-state stability, reachability analysis, or other pointwise-in-time bounds. Numerical examples demonstrate the robustness and performance of the controllers synthesized with the proposed algorithm.
Distributed Constrained Online Nonconvex Optimization with Compressed Communication
This paper considers distributed online nonconvex optimization with time-varying inequality constraints over a network of agents. For a time-varying graph, we propose a distributed online primal-dual algorithm with compressed communication to efficiently utilize communication resources. We show that the proposed algorithm establishes an $\mathcal{O}( {{T^{\max \{ {1 - {\theta_1},{\theta_1}} \}}}} )$ network regret bound and an $\mathcal{O}( {T^{1 - {\theta_1}/2}} )$ network cumulative constraint violation bound, where $T$ is the number of iterations and ${\theta_1} \in ( {0,1} )$ is a user-defined trade-off parameter. When Slater's condition holds (i.e, there is a point that strictly satisfies the inequality constraints at all iterations), the network cumulative constraint violation bound is reduced to $\mathcal{O}( {T^{1 - {\theta_1}}} )$. These bounds are comparable to the state-of-the-art results established by existing distributed online algorithms with perfect communication for distributed online convex optimization with (time-varying) inequality constraints. Finally, a simulation example is presented to validate the theoretical results.
comment: 35 pages, 2 figures. arXiv admin note: text overlap with arXiv:2411.11574
Reinforcement learning for efficient and robust multi-setpoint and multi-trajectory tracking in bioprocesses
Efficient and robust bioprocess control is essential for maximizing performance and adaptability in advanced biotechnological systems. In this work, we present a reinforcement-learning framework for multi-setpoint and multi-trajectory tracking. Tracking multiple setpoints and time-varying trajectories in reinforcement learning is challenging due to the complexity of balancing multiple objectives, a difficulty further exacerbated by system uncertainties such as uncertain initial conditions and stochastic dynamics. This challenge is relevant, e.g., in bioprocesses involving microbial consortia, where precise control over population compositions is required. We introduce a novel return function based on multiplicative reciprocal saturation functions, which explicitly couples reward gains to the simultaneous satisfaction of multiple references. Through a case study involving light-mediated cybergenetic growth control in microbial consortia, we demonstrate via computational experiments that our approach achieves faster convergence, improved stability, and superior control compliance compared to conventional quadratic-cost-based return functions. Moreover, our method enables tuning of the saturation function's parameters, shaping the learning process and policy updates. By incorporating system uncertainties, our framework also demonstrates robustness, a key requirement in industrial bioprocessing. Overall, this work advances reinforcement-learning-based control strategies in bioprocess engineering, with implications in the broader field of process and systems engineering.
Smart Sensing Breaks the Accuracy Barrier in Battery State Monitoring
Accurate state-of-charge (SOC) estimation is essential for optimizing battery performance, ensuring safety, and maximizing economic value. Conventional current and voltage measurements, however, have inherent limitations in fully inferring the multiphysics-resolved dynamics inside battery cells. This creates an accuracy barrier that constrains battery usage and reduces cost-competitiveness and sustainability across industries dependent on battery technology. In this work, we introduce an integrated sensor framework that combines novel mechanical, thermal, gas, optical, and electrical sensors with traditional measurements to break through this barrier. We generate three unique datasets with eleven measurement types and propose an explainable machine-learning approach for SOC estimation. This approach renders the measured signals and the predictive result of machine learning physically interpretable with respect to battery SOC, offering fundamental insights into the time-varying importance of different signals. Our experimental results reveal a marked increase in SOC estimation accuracy--enhanced from 46.1% to 74.5%--compared to conventional methods. This approach not only advances SOC monitoring precision but also establishes a foundation for monitoring additional battery states to further improve safety, extend lifespan, and facilitate fast charging.
Approximating Dispatchable Regions in Three-Phase Radial Networks with Conditions for Exact SDP Relaxation
The concept of dispatchable region plays a pivotal role in quantifying the capacity of power systems to accommodate renewable generation. In this paper, we extend the previous approximations of the dispatchable regions on direct current (DC), linearized, and nonlinear single-phase alternating current (AC) models to unbalanced three-phase radial (tree) networks and provide improved outer and inner approximations of dispatchable regions. Based on the nonlinear bus injection model (BIM), we relax the non-convex problem that defines the dispatchable region to a solvable semidefinite program (SDP) and derive its strong dual problem (which is also an SDP). Utilizing the special mathematical structure of the dual problem, an SDP-based projection algorithm is developed to construct a convex polytopic outer approximation to the SDP-relaxed dispatchable region. Moreover, we provide sufficient conditions to guarantee the exact SDP relaxation by adding the power loss as a penalty term, thereby providing a theoretical guarantee for determining an inner approximation of the dispatchable region. Through numerical simulations, we validate the accuracy of our approximation of the dispatchable region and verify the conditions for exact SDP relaxation.
comment: 10 pages, 6 figures, 4 tables, submitted to IEEE Transactions on Power Systems
Small-gain conditions for exponential incremental stability in feedback interconnections
We prove that under a small-gain condition, an interconnection of two globally incrementally exponentially stable systems inherits this property on any compact connected forward invariant set. It is also demonstrated that the interconnection inherits a weaker version of incremental exponential stability globally. An example illustrating the theoretical findings is given. The example also shows that the uniform negativity of the Jacobian is not necessary for incremental exponential stability.
comment: Submitter to the 2025 64th IEEE Conference on Decision and Control (CDC)
Open-loop control design for contraction in affine nonlinear systems
In this paper, first, it is shown that if a nonlinear time-varying system is contractive, then it is incrementally exponentially stable. Second, leveraging this result, under mild restrictions, an approach is proposed to design feedforward inputs for affine in control systems providing contraction/incremental exponential stability. Unlike standard stability notions, which have well-established control design techniques, this note can be considered among the first ones to provide such a tool for a kind of incremental stability. The theoretical findings are illustrated by examples.
comment: Submitted for L-CSS and CDC for the IEEE Control Systems Letters (L-CSS)
Route-and-Aggregate Decentralized Federated Learning Under Communication Errors
Decentralized federated learning (D-FL) allows clients to aggregate learning models locally, offering flexibility and scalability. Existing D-FL methods use gossip protocols, which are inefficient when not all nodes in the network are D-FL clients. This paper puts forth a new D-FL strategy, termed Route-and-Aggregate (R&A) D-FL, where participating clients exchange models with their peers through established routes (as opposed to flooding) and adaptively normalize their aggregation coefficients to compensate for communication errors. The impact of routing and imperfect links on the convergence of R&A D-FL is analyzed, revealing that convergence is minimized when routes with the minimum end-to-end packet error rates are employed to deliver models. Our analysis is experimentally validated through three image classification tasks and two next-word prediction tasks, utilizing widely recognized datasets and models. R&A D-FL outperforms the flooding-based D-FL method in terms of training accuracy by 35% in our tested 10-client network, and shows strong synergy between D-FL and networking. In another test with 10 D-FL clients, the training accuracy of R&A D-FL with communication errors approaches that of the ideal C-FL without communication errors, as the number of routing nodes (i.e., nodes that do not participate in the training of D-FL) rises to 28.
comment: 15 pages, 10 figures
Generalised Harmonic Domain Analysis for Transformer Core Hysteresis Modelling
This work identifies the general approach for linearising any power system component in the harmonic domain, that is with respect to its Fourier series coefficients. This ability enables detailed harmonic analysis, and is key as more power electronic devices inject harmonic currents into the power system to its shared detriment. The general approach requires a time domain model of the component, and is most applicable where a conversion to the frequency domain is impractical prior to linearisation. The outcome is a Norton equivalent current source, which expresses linear coupling between harmonic frequencies with admittance matrices. These are the so-called frequency coupling matrices. The general approach is demonstrated for magnetic hysteresis, where a Preisach model has been developed for this purpose. A new data driven approach is used to fit the test results of a small physical transformer to the Preisach model. Results show an improved accuracy in the frequency coupling matrices over models that only considered magnetic saturation. Maximum improvement is observed in the odd harmonic current to odd harmonic voltage couplings.
comment: 37 pages, 20 figures, submitted to Electric Power System Research
Multi-Task Semantic Communications via Large Models
Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.
comment: 7 pages, 6 figures
Development of a Miniaturized, Automated, and Cost-Effective Device for Enzyme-Linked Immunosorbent Assay
In this work, a miniaturized, automated, and cost-effective ELISA device is designed and implemented, without the utilization of conventional techniques such as pipetting or microfluidic valve technologies. The device has dimensions of 24 cm x 19 cm x 14 cm and weighs <3 Kg. The total hardware cost of the device is estimated to be approximately $1,200, which can be further reduced through optimization during scale-up production. 3D printed disposable parts, including the reagent reservoir disk and the microfluidic connector, have also been developed. IL-6 is used as a model system to demonstrate how the device provides an ELISA measurement. The cost per test is estimated to be less than ten dollars. The compactness, automated operation, along with the cost-effectiveness of this ELISA device, makes it suitable for point-of-care applications in resource-limited regions.
comment: references in page 12, before tables and figures
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
Periodic boundary conditions are frequently used to model processes on large or infinite domains using PDEs on finite intervals, assuming solutions within the interval to extend periodically to the larger domain. However, stability analysis of PDEs with periodic boundary conditions is complicated by underlying uniform solutions admitted by these conditions, potentially giving rise to non-isolated equilibria. To resolve this issue, in this paper, it is shown how such underlying solutions for linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions can be modeled separately using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any vector-valued function satisfying such boundary conditions is uniquely defined by its second-order derivative and some uniform or affine function, parameterized by auxiliary variables in $\mathbb{R}^{m}$. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both the second-order derivative and auxiliary variables. Finally, a stability test for the PIE representation is formulated as a linear operator inequality, which can be solved using semidefinite programming. The proposed methodology is applied to two PDE examples, demonstrating that stability can be verified with tight bounds on the rate of exponential decay.
Attitude Synchronization for Multi-Agent Systems on SO(3) Using Vector Measurements
In this paper, we address the problem of leaderless attitude synchronization for a group of rigid body systems evolving on SO(3), relying on local measurements of some inertial (unit-length) vectors. The interaction graph among agents is assumed to be undirected, acyclic, and connected. We first present a distributed attitude synchronization scheme designed at the kinematic level of SO(3), followed by an extended scheme designed at the dynamic level. Both schemes are supported by a rigorous stability analysis, which establishes their almost global asymptotic stability properties. Finally, numerical simulations demonstrate the effectiveness of both distributed attitude synchronization schemes.
Markov Potential Game Construction and Multi-Agent Reinforcement Learning with Applications to Autonomous Driving
Markov games (MGs) serve as the mathematical foundation for multi-agent reinforcement learning (MARL), enabling self-interested agents to learn their optimal policies while interacting with others in a shared environment. However, due to the complexities of an MG problem, seeking (Markov perfect) Nash equilibrium (NE) is often very challenging for a general-sum MG. Markov potential games (MPGs), which are a special class of MGs, have appealing properties such as guaranteed existence of pure NEs and guaranteed convergence of gradient play algorithms, thereby leading to desirable properties for many MARL algorithms in their NE-seeking processes. However, the question of how to construct MPGs has been open. This paper provides sufficient conditions on the reward design and on the Markov decision process (MDP), under which an MG is an MPG. Numerical results on autonomous driving applications are reported.
Sensorless Field Oriented Control of CSI-Fed PMSM Drives Used in Submersible Pumps
This paper proposes a practical startup strategy for current source inverter (CSI)-fed Permanent Magnet Synchronous Motor (PMSM) drives in submersible pump applications, focusing on ensuring a seamless shift to sensorless field-oriented control (FOC). The method effectively manages the transition to sensorless operation without requiring precise current or alignment error calculations, thereby simplifying implementation. By addressing speed and current oscillations directly during the startup and transition stages, the approach significantly enhances overall system stability and responsiveness. Validation through simulation and experimental testing demonstrates the strategy's success in maintaining low oscillation levels across various operating conditions, confirming its reliability for high-performance industrial applications.
comment: accepted at APEC 2025 conference
Passivity, No-Regret, and Convergent Learning in Contractive Games
We investigate the interplay between passivity, no-regret, and convergence in contractive games for various learning dynamic models and their higher-order variants. Our setting is continuous time. Building on prior work for replicator dynamics, we show that if learning dynamics satisfy a passivity condition between the payoff vector and the difference between its evolving strategy and any fixed strategy, then it achieves finite regret. We then establish that the passivity condition holds for various learning dynamics and their higher-order variants. Consequentially, the higher-order variants can achieve convergence to Nash equilibrium in cases where their standard order counterparts cannot, while maintaining a finite regret property. We provide numerical examples to illustrate the lack of finite regret of different evolutionary dynamic models that violate the passivity property. We also examine the fragility of the finite regret property in the case of perturbed learning dynamics. Continuing with passivity, we establish another connection between finite regret and passivity, but with the related equilibrium-independent passivity property. Finally, we present a passivity-based classification of dynamic models according to the various passivity notions they satisfy, namely, incremental passivity, $\delta$-passivity, and equilibrium-independent passivity. This passivity-based classification provides a framework to analyze the convergence of learning dynamic models in contractive games.
Distances between finite-horizon linear behaviors
The paper introduces a class of distances for linear behaviors over finite time horizons. These distances allow for comparisons between finite-horizon linear behaviors represented by matrices of possibly different dimensions. They remain invariant under coordinate changes, rotations, and permutations, ensuring independence from input-output partitions. Moreover, they naturally encode complexity-misfit trade-offs for Linear Time-Invariant (LTI) behaviors, providing a principled solution to a longstanding puzzle in behavioral systems theory. The resulting framework characterizes modeling as a minimum distance problem, identifying the Most Powerful Unfalsified Model (MPUM) as optimal among all systems unfalsified by a given dataset.
comment: IEEE Control Systems Letters / 64th IEEE Conference on Decision and Control
A Cooperative Compliance Control Framework for Socially Optimal Mixed Traffic Routing
In mixed traffic environments, where Connected and Autonomed Vehicles (CAVs) coexist with potentially non-cooperative Human-Driven Vehicles (HDVs), the self-centered behavior of human drivers may compromise the efficiency, optimality, and safety of the overall traffic network. In this paper, we propose a Cooperative Compliance Control (CCC) framework for mixed traffic routing, where a Social Planner (SP) optimizes vehicle routes for system-wide optimality while a compliance controller incentivizes human drivers to align their behavior with route guidance from the SP through a "refundable toll" scheme. A key challenge arises from the heterogeneous and unknown response models of different human driver types to these tolls, making it difficult to design a proper controller and achieve desired compliance probabilities over the traffic network. To address this challenge, we employ Control Lyapunov Functions (CLFs) to adaptively correct (learn) crucial components of our compliance probability model online, construct data-driven feedback controllers, and demonstrate that we can achieve the desired compliance probability for HDVs, thereby contributing to the social optimality of the traffic network.
A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
Bidding in Ancillary Service Markets: An Analytical Approach Using Extreme Value Theory
To encourage the participation of stochastic distributed energy resources in Nordic ancillary service markets, the Danish transmission system operator, Energinet, has introduced grid codes requiring a minimum 90% reliability for the full availability of reserve capacity bids. This paper addresses the bidding strategy of flexibility aggregators under Energinet's reliability requirement by proposing a chance-constrained optimization model. An analytical solution is developed using ideas from extreme value theory, focusing on the "tail" of the empirical data used for flexibility estimation, capturing extreme events where failures are more likely to occur. The proposed model is applied to an electric vehicle aggregator participating in the Nordic market for frequency containment reserve for disturbances (FCR-D). Our results from a realistic case study show that the proposed analytical solution outperforms a commonly used sample-based approach in terms of out-of-sample constraint violation rate.
Reduced Network Cumulative Constraint Violation for Distributed Bandit Convex Optimization under Slater Condition
This paper studies the distributed bandit convex optimization problem with time-varying inequality constraints, where the goal is to minimize network regret and cumulative constraint violation. To calculate network cumulative constraint violation, existing distributed bandit online algorithms solving this problem directly use the clipped constraint function to replace its original constraint function. However, the use of the clipping operation renders Slater condition (i.e, there exists a point that strictly satisfies the inequality constraints at all iterations) ineffective to achieve reduced network cumulative constraint violation. To tackle this challenge, we propose a new distributed bandit online primal-dual algorithm. If local loss functions are convex, we show that the proposed algorithm establishes sublinear network regret and cumulative constraint violation bounds. When Slater condition holds, the network cumulative constraint violation bound is reduced. In addition, if local loss functions are strongly convex, for the case where strongly convex parameters are unknown, the network regret bound is reduced. For the case where strongly convex parameters are known, the network regret and cumulative constraint violation bounds are further reduced. To the best of our knowledge, this paper is among the first to establish reduced (network) cumulative constraint violation bounds for (distributed) bandit convex optimization with time-varying constraints under Slater condition. Finally, a numerical example is provided to verify the theoretical results.
Reinforcement Learning-Based Controlled Switching Approach for Inrush Current Minimization in Power Transformers
Transformers are essential components for the reliable operation of power grids. The transformer core is constituted by a ferromagnetic material, and accordingly, depending on the magnetization state, the energization of the transformer can lead to high magnetizing inrush currents. Such high amplitudes shorten the life expectancy of a transformer and cause power quality issues in power grids. Various techniques have been proposed to minimize the inrush current; however, the application of Reinforcement Learning (RL) for this challenge has not been investigated. RL incorporates the ability to learn inrush minimization strategies adjusted to the dynamic transformer operation environment. This study proposes an inrush current minimization framework by combining controlled switching with RL. Depending on the opening angle of the circuit breaker and the remanent fluxes at disconnection, the proposed method learns the optimal closing instant of the circuit breaker. Two RL algorithms have been trained and tested through an equivalent duality-based model of a real 7.4 MVA power transformer. The evaluation of the RL algorithms is carried out with real measurement data and compared with real laboratory inrush currents. The results show that the inrush current is effectively minimized with the proposed framework.
Tomography of Quantum States from Structured Measurements via quantum-aware transformer
Quantum state tomography (QST) is the process of reconstructing the state of a quantum system (mathematically described as a density matrix) through a series of different measurements, which can be solved by learning a parameterized function to translate experimentally measured statistics into physical density matrices. However, the specific structure of quantum measurements for characterizing a quantum state has been neglected in previous work. In this paper, we explore the similarity between highly structured sentences in natural language and intrinsically structured measurements in QST. To fully leverage the intrinsic quantum characteristics involved in QST, we design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices. In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data and integrate the Bures distance into the loss function to evaluate quantum state fidelity, thereby enabling the reconstruction of quantum states from measured data with high fidelity. Extensive simulations and experiments (on IBM quantum computers) demonstrate the superiority of the QAT in reconstructing quantum states with favorable robustness against experimental noise.
Neural networks for quantum state tomography with constrained measurements
Quantum state tomography (QST) aiming at reconstructing the density matrix of a quantum state plays an important role in various emerging quantum technologies. Recognizing the challenges posed by imperfect measurement data, we develop a unified neural network(NN)-based approach for QST under constrained measurement scenarios, including limited measurement copies, incomplete measurements, and noisy measurements. Through comprehensive comparison with other estimation methods, we demonstrate that our method improves the estimation accuracy in scenarios with limited measurement resources, showcasing notable robustness in noisy measurement settings. These findings highlight the capability of NNs to enhance QST with constrained measurements.
Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies
Magnetic Tunnel Junctions (MTJs) have shown great promise as hardware sources for true random number generation (TRNG) due to their intrinsic stochastic switching behavior. However, practical deployment remains challenged by drift in switching probability caused by thermal fluctuations, device aging, and environmental instability. This work presents an engineering-oriented, drift-resilient MTJ-based TRNG architecture, enabled by a hybrid control strategy that combines self-stabilizing feedback with pulse width modulation. A key component is the Downcalibration-2 scheme, which updates the control parameter every two steps using only integer-resolution timing, ensuring excellent statistical quality without requiring bit discarding, pre-characterization, or external calibration. Extensive experimental measurements and numerical simulations demonstrate that this approach maintains stable randomness under dynamic temperature drift, using only simple digital logic. The proposed architecture offers high throughput, robustness, and scalability, making it well-suited for secure hardware applications, embedded systems, and edge computing environments.
comment: 16 pages, 9 figures, data shared at https://doi.org/10.6084/m9.figshare.28680899.v1
On the Standard Performance Criteria for Applied Control Design: PID, MPC or Machine Learning Controller?
The traditional control theory and its application to basic and complex systems have reached an advanced level of maturity. This includes aerial, marine, and ground vehicles, as well as robotics, chemical, transportation, and electrical systems widely used in our daily lives. The emerging era of data-driven methods, Large Language Models (LLMs), and AI-based controllers does not indicate a weakness in well-established control theory. Instead, it aims to reduce dependence on models and uncertainties, address increasingly complex systems, and potentially achieve decision-making capabilities comparable to human-level performance. This revolution integrates knowledge from computer science, machine learning, biology, and classical control, producing promising algorithms that are yet to demonstrate widespread real-world applicability. Despite the maturity of control theory and the presence of various performance criteria, there is still a lack of standardised metrics for testing, evaluation, Verification and Validation ($V\&V$) of algorithms. This gap can lead to algorithms that, while optimal in certain aspects, may fall short of practical implementation, sparking debates within the literature. For a controller to succeed in real-world applications, it must satisfy three key categories of performance metrics: tracking quality, control effort (energy consumption), and robustness. This paper rather takes an applied perspective, proposing and consolidating standard performance criteria for testing and analysing control systems, intended for researchers and students. The proposed framework ensures the post-design applicability of a black-box algorithm, aligning with modern data analysis and $V\&V$ perspectives to prevent resource allocation to systems with limited impact or imprecise claims.
Rational-Exponent Filters with Applications to Generalized Exponent Filters
We present filters with rational exponents in order to provide a continuum of filter behavior not classically achievable. We discuss their stability, the flexibility they afford, and various representations useful for analysis, design and implementations. We do this for a generalization of second-order filters which we refer to as rational-exponent Generalized Exponent Filters (GEFs) that are useful for a diverse array of applications. We present equivalent representations for rational-exponent GEFs in the time and frequency domains: transfer functions, impulse responses, and integral expressions - the last of which allows for efficient real-time processing without preprocessing requirements. Rational-exponent filters enable filter characteristics to be on a continuum rather than limiting them to discrete values thereby resulting in greater flexibility in the behavior of these filters without additional complexity in causality and stability analyses compared with classical filters. In the case of GEFs, this allows for having arbitrary continuous rather than discrete values for filter characteristics such as (1) the ratio of 3dB quality factor to maximum group delay - particularly important for filterbanks which have simultaneous requirements on frequency selectivity and synchronization; and (2) the ratio of 3dB to 15dB quality factors that dictates the shape of the frequency response magnitude.
comment: 14 pages, 9 figures, 2 tables, 32 equations. Submitted to IEEE TCAS-I
On the Uniqueness of Participation Factors in Nonlinear Dynamical Systems
In the modal analysis and control of nonlinear dynamical systems, the participation factors of state variables with respect to a critical or selected mode serve as a pivotal tool for simplifying stability studies by focusing on a subset of highly influential state variables. For linear systems, the participation factors of state variables regarding a mode are uniquely determined by the mode's composition and shape, defined by the system's left and right eigenvectors, respectively. However, the uniqueness of other types of participation factors necessitates further investigation. This paper establishes a sufficient condition for the uniqueness of nonlinear participation factors and five other variants of participation factors, accounting for uncertain scaling factors in a mode's shape and composition. These scaling factors arise from variations in the selection of physical units or the value ranges of state variables when analyzing and controlling real-world dynamical systems. Understanding the sufficient condition of the uniqueness is therefore crucial for the correct application of participation factors in practical scenarios. Additionally, the paper explores the relationship between perturbation magnitudes in state variables and the selection of optimal scaling factors.
comment: Accepted
Systems and Control (EESS)
Verifying Nonlinear Neural Feedback Systems using Polyhedral Enclosures
As dynamical systems equipped with neural network controllers (neural feedback systems) become increasingly prevalent, it is critical to develop methods to ensure their safe operation. Verifying safety requires extending control theoretic analysis methods to these systems. Although existing techniques can efficiently handle linear neural feedback systems, relatively few scalable methods address the nonlinear case. We propose a novel algorithm for forward reachability analysis of nonlinear neural feedback systems. The approach leverages the structure of the nonlinear transition functions of the systems to compute tight polyhedral enclosures (i.e., abstractions). These enclosures, combined with the neural controller, are then encoded as a mixed-integer linear program (MILP). Optimizing this MILP yields a sound over-approximation of the forward-reachable set. We evaluate our algorithm on representative benchmarks and demonstrate an order of magnitude improvement over the current state of the art.
Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report)
Simulation-based approaches are among the most practical means to search for safety violations, bugs, and other unexpected events in cyber-physical systems (CPS). Where existing approaches search for simulations violating a formal specification or maximizing a notion of coverage, in this work we propose a new goal for testing: to discover unknown rare behaviors by examining discrete mode sequences. We assume a CPS simulator outputs mode information, and strive to explore the sequences of modes produced by varying the initial state or time-varying uncertainties. We hypothesize that rare mode sequences are often the most interesting to a designer, and we develop two accelerated sampling algorithms that speed up the process of finding such sequences. We evaluate our approach on several benchmarks, ranging from synthetic examples to Simulink diagrams of a CPS, demonstrating in some cases a speedup of over 100x compared with a random sampling strategy.
Worst-Case Analysis of Decoupled Policies for Multi-Location Inventory Control Problems
The difference in performance between centralized and decentralized control strategies crucially informs design choices in real-world control systems. Although computing and executing centralized control algorithms is often more costly than decentralized methods, their performance enhancements may far outweigh these costs. In this work, we study the value of centralization within the context of the well-known inventory control problem, where a planner seeks to identify optimal inventory levels that meet stochastic demand while minimizing ordering costs, holding costs, and shortage costs. We consider multilocation systems in which the inventories are coupled through a single ordering channel and the associated ordering cost function belongs to one of two classes of nonlinear cost functions that often arise in practical settings. For each of these classes, we derive constant-factor competitive ratios between the optimal coupled and decoupled policies and show they are almost tight. We then demonstrate that online algorithms also achieve tight competitive ratios for this problem. We conclude with numerical simulations that validate these results.
Neural Identification of Feedback-Stabilized Nonlinear Systems
Neural networks have demonstrated remarkable success in modeling nonlinear dynamical systems. However, identifying these systems from closed-loop experimental data remains a challenge due to the correlations induced by the feedback loop. Traditional nonlinear closed-loop system identification methods struggle with reliance on precise noise models, robustness to data variations, or computational feasibility. Additionally, it is essential to ensure that the identified model is stabilized by the same controller used during data collection, ensuring alignment with the true system's closed-loop behavior. The dual Youla parameterization provides a promising solution for linear systems, offering statistical guarantees and closed-loop stability. However, extending this approach to nonlinear systems presents additional complexities. In this work, we propose a computationally tractable framework for identifying complex, potentially unstable systems while ensuring closed-loop stability using a complete parameterization of systems stabilized by a given controller. We establish asymptotic consistency in the linear case and validate our method through numerical comparisons, demonstrating superior accuracy over direct identification baselines and compatibility with the true system in stability properties.
Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
Multi-stage model predictive control for slug flow crystallizers using uncertainty-aware surrogate models
This paper presents a novel dynamic model for slug flow crystallizers that addresses the challenges of spatial distribution without backmixing or diffusion, potentially enabling advanced model-based control. The developed model can accurately describe the main characteristics of slug flow crystallizers, including slug-to-slug variability but leads to a high computational complexity due to the consideration of partial differential equations and population balance equations. For that reason, the model cannot be directly used for process optimization and control. To solve this challenge, we propose two different approaches, conformalized quantile regression and Bayesian last layer neural networks, to develop surrogate models with uncertainty quantification capabilities. These surrogates output a prediction of the system states together with an uncertainty of these predictions to account for process variability and model uncertainty. We use the uncertainty of the predictions to formulate a robust model predictive control approach, enabling robust real-time advanced control of a slug flow crystallizer.
Design and Analysis of a Robust Control System for Triple Inverted Pendulum Stabilization
The design of robust controllers for triple inverted pendulum systems presents significant challenges due to their inherent instability and nonlinear dynamics. Furthermore, uncertainties in system parameters further complicate the control design. This paper investigates a robust control strategy for triple inverted pendulums under parameter uncertainty. Two control approaches, namely the $H_\infty$ controller and the $\mu$-synthesis controller, are compared in terms of their ability to achieve reference tracking and disturbance rejection. Simulation results demonstrate that the $H_\infty$ controller provides superior transient performance, making it a promising solution for the robust stabilization of such complex systems.
Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
A Multi-Objective Simultaneous Routing, Facility Location and Allocation Model for Earthquake Emergency Logistics
Emergency preparedness reduces the severity and impact of major disasters. In the case of earthquakes, a rapid and efficient emergency response is essential to reduce the number of fatalities. Therefore, the design and planning of an adequate emergency transportation network are crucial in earthquake-prone locations. In the context of emergency transportation modeling, the aim of emergency routing is to find the network with the minimum length that can provide access between the maximum number of Emergency Response Centers (ERCs) and damaged areas. Meanwhile, the goal of the facility location and allocation problem is to optimize the placement of temporary hospitals to increase coverage and accessibility, particularly in remote or severely impacted areas. This paper proposes a multi-objective, robust, multi-modal, and multi-time-period optimization problem that simultaneously optimizes routing, facility location, and hospital allocation. The objective function is to minimize unmet commodity demand, unserved injuries, and economic costs. We adopt a fuzzy goal programming approach to solve the multi-objective simultaneous routing, facility location, and allocation model.
Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
Multi-objective robust controller synthesis with integral quadratic constraints in discrete-time
This article presents a novel framework for the robust controller synthesis problem in discrete-time systems using dynamic Integral Quadratic Constraints (IQCs). We present an algorithm to minimize closed-loop performance measures such as the $\mathcal H_\infty$-norm, the energy-to-peak gain, the peak-to-peak gain, or a multi-objective mix thereof. While IQCs provide a powerful tool for modeling structured uncertainties and nonlinearities, existing synthesis methods are limited to the $\mathcal H_\infty$-norm, continuous-time systems, or special system structures. By minimizing the energy-to-peak and peak-to-peak gain, the proposed synthesis can be utilized to bound the peak of the output, which is crucial in many applications requiring robust constraint satisfaction, input-to-state stability, reachability analysis, or other pointwise-in-time bounds. Numerical examples demonstrate the robustness and performance of the controllers synthesized with the proposed algorithm.
Distributed Constrained Online Nonconvex Optimization with Compressed Communication
This paper considers distributed online nonconvex optimization with time-varying inequality constraints over a network of agents. For a time-varying graph, we propose a distributed online primal-dual algorithm with compressed communication to efficiently utilize communication resources. We show that the proposed algorithm establishes an $\mathcal{O}( {{T^{\max \{ {1 - {\theta_1},{\theta_1}} \}}}} )$ network regret bound and an $\mathcal{O}( {T^{1 - {\theta_1}/2}} )$ network cumulative constraint violation bound, where $T$ is the number of iterations and ${\theta_1} \in ( {0,1} )$ is a user-defined trade-off parameter. When Slater's condition holds (i.e, there is a point that strictly satisfies the inequality constraints at all iterations), the network cumulative constraint violation bound is reduced to $\mathcal{O}( {T^{1 - {\theta_1}}} )$. These bounds are comparable to the state-of-the-art results established by existing distributed online algorithms with perfect communication for distributed online convex optimization with (time-varying) inequality constraints. Finally, a simulation example is presented to validate the theoretical results.
comment: 35 pages, 2 figures. arXiv admin note: text overlap with arXiv:2411.11574
Reinforcement learning for efficient and robust multi-setpoint and multi-trajectory tracking in bioprocesses
Efficient and robust bioprocess control is essential for maximizing performance and adaptability in advanced biotechnological systems. In this work, we present a reinforcement-learning framework for multi-setpoint and multi-trajectory tracking. Tracking multiple setpoints and time-varying trajectories in reinforcement learning is challenging due to the complexity of balancing multiple objectives, a difficulty further exacerbated by system uncertainties such as uncertain initial conditions and stochastic dynamics. This challenge is relevant, e.g., in bioprocesses involving microbial consortia, where precise control over population compositions is required. We introduce a novel return function based on multiplicative reciprocal saturation functions, which explicitly couples reward gains to the simultaneous satisfaction of multiple references. Through a case study involving light-mediated cybergenetic growth control in microbial consortia, we demonstrate via computational experiments that our approach achieves faster convergence, improved stability, and superior control compliance compared to conventional quadratic-cost-based return functions. Moreover, our method enables tuning of the saturation function's parameters, shaping the learning process and policy updates. By incorporating system uncertainties, our framework also demonstrates robustness, a key requirement in industrial bioprocessing. Overall, this work advances reinforcement-learning-based control strategies in bioprocess engineering, with implications in the broader field of process and systems engineering.
Smart Sensing Breaks the Accuracy Barrier in Battery State Monitoring
Accurate state-of-charge (SOC) estimation is essential for optimizing battery performance, ensuring safety, and maximizing economic value. Conventional current and voltage measurements, however, have inherent limitations in fully inferring the multiphysics-resolved dynamics inside battery cells. This creates an accuracy barrier that constrains battery usage and reduces cost-competitiveness and sustainability across industries dependent on battery technology. In this work, we introduce an integrated sensor framework that combines novel mechanical, thermal, gas, optical, and electrical sensors with traditional measurements to break through this barrier. We generate three unique datasets with eleven measurement types and propose an explainable machine-learning approach for SOC estimation. This approach renders the measured signals and the predictive result of machine learning physically interpretable with respect to battery SOC, offering fundamental insights into the time-varying importance of different signals. Our experimental results reveal a marked increase in SOC estimation accuracy--enhanced from 46.1% to 74.5%--compared to conventional methods. This approach not only advances SOC monitoring precision but also establishes a foundation for monitoring additional battery states to further improve safety, extend lifespan, and facilitate fast charging.
Approximating Dispatchable Regions in Three-Phase Radial Networks with Conditions for Exact SDP Relaxation
The concept of dispatchable region plays a pivotal role in quantifying the capacity of power systems to accommodate renewable generation. In this paper, we extend the previous approximations of the dispatchable regions on direct current (DC), linearized, and nonlinear single-phase alternating current (AC) models to unbalanced three-phase radial (tree) networks and provide improved outer and inner approximations of dispatchable regions. Based on the nonlinear bus injection model (BIM), we relax the non-convex problem that defines the dispatchable region to a solvable semidefinite program (SDP) and derive its strong dual problem (which is also an SDP). Utilizing the special mathematical structure of the dual problem, an SDP-based projection algorithm is developed to construct a convex polytopic outer approximation to the SDP-relaxed dispatchable region. Moreover, we provide sufficient conditions to guarantee the exact SDP relaxation by adding the power loss as a penalty term, thereby providing a theoretical guarantee for determining an inner approximation of the dispatchable region. Through numerical simulations, we validate the accuracy of our approximation of the dispatchable region and verify the conditions for exact SDP relaxation.
comment: 10 pages, 6 figures, 4 tables, submitted to IEEE Transactions on Power Systems
Small-gain conditions for exponential incremental stability in feedback interconnections
We prove that under a small-gain condition, an interconnection of two globally incrementally exponentially stable systems inherits this property on any compact connected forward invariant set. It is also demonstrated that the interconnection inherits a weaker version of incremental exponential stability globally. An example illustrating the theoretical findings is given. The example also shows that the uniform negativity of the Jacobian is not necessary for incremental exponential stability.
comment: Submitter to the 2025 64th IEEE Conference on Decision and Control (CDC)
Open-loop control design for contraction in affine nonlinear systems
In this paper, first, it is shown that if a nonlinear time-varying system is contractive, then it is incrementally exponentially stable. Second, leveraging this result, under mild restrictions, an approach is proposed to design feedforward inputs for affine in control systems providing contraction/incremental exponential stability. Unlike standard stability notions, which have well-established control design techniques, this note can be considered among the first ones to provide such a tool for a kind of incremental stability. The theoretical findings are illustrated by examples.
comment: Submitted for L-CSS and CDC for the IEEE Control Systems Letters (L-CSS)
Route-and-Aggregate Decentralized Federated Learning Under Communication Errors
Decentralized federated learning (D-FL) allows clients to aggregate learning models locally, offering flexibility and scalability. Existing D-FL methods use gossip protocols, which are inefficient when not all nodes in the network are D-FL clients. This paper puts forth a new D-FL strategy, termed Route-and-Aggregate (R&A) D-FL, where participating clients exchange models with their peers through established routes (as opposed to flooding) and adaptively normalize their aggregation coefficients to compensate for communication errors. The impact of routing and imperfect links on the convergence of R&A D-FL is analyzed, revealing that convergence is minimized when routes with the minimum end-to-end packet error rates are employed to deliver models. Our analysis is experimentally validated through three image classification tasks and two next-word prediction tasks, utilizing widely recognized datasets and models. R&A D-FL outperforms the flooding-based D-FL method in terms of training accuracy by 35% in our tested 10-client network, and shows strong synergy between D-FL and networking. In another test with 10 D-FL clients, the training accuracy of R&A D-FL with communication errors approaches that of the ideal C-FL without communication errors, as the number of routing nodes (i.e., nodes that do not participate in the training of D-FL) rises to 28.
comment: 15 pages, 10 figures
Generalised Harmonic Domain Analysis for Transformer Core Hysteresis Modelling
This work identifies the general approach for linearising any power system component in the harmonic domain, that is with respect to its Fourier series coefficients. This ability enables detailed harmonic analysis, and is key as more power electronic devices inject harmonic currents into the power system to its shared detriment. The general approach requires a time domain model of the component, and is most applicable where a conversion to the frequency domain is impractical prior to linearisation. The outcome is a Norton equivalent current source, which expresses linear coupling between harmonic frequencies with admittance matrices. These are the so-called frequency coupling matrices. The general approach is demonstrated for magnetic hysteresis, where a Preisach model has been developed for this purpose. A new data driven approach is used to fit the test results of a small physical transformer to the Preisach model. Results show an improved accuracy in the frequency coupling matrices over models that only considered magnetic saturation. Maximum improvement is observed in the odd harmonic current to odd harmonic voltage couplings.
comment: 37 pages, 20 figures, submitted to Electric Power System Research
Multi-Task Semantic Communications via Large Models
Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.
comment: 7 pages, 6 figures
Development of a Miniaturized, Automated, and Cost-Effective Device for Enzyme-Linked Immunosorbent Assay
In this work, a miniaturized, automated, and cost-effective ELISA device is designed and implemented, without the utilization of conventional techniques such as pipetting or microfluidic valve technologies. The device has dimensions of 24 cm x 19 cm x 14 cm and weighs <3 Kg. The total hardware cost of the device is estimated to be approximately $1,200, which can be further reduced through optimization during scale-up production. 3D printed disposable parts, including the reagent reservoir disk and the microfluidic connector, have also been developed. IL-6 is used as a model system to demonstrate how the device provides an ELISA measurement. The cost per test is estimated to be less than ten dollars. The compactness, automated operation, along with the cost-effectiveness of this ELISA device, makes it suitable for point-of-care applications in resource-limited regions.
comment: references in page 12, before tables and figures
Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
Periodic boundary conditions are frequently used to model processes on large or infinite domains using PDEs on finite intervals, assuming solutions within the interval to extend periodically to the larger domain. However, stability analysis of PDEs with periodic boundary conditions is complicated by underlying uniform solutions admitted by these conditions, potentially giving rise to non-isolated equilibria. To resolve this issue, in this paper, it is shown how such underlying solutions for linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions can be modeled separately using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any vector-valued function satisfying such boundary conditions is uniquely defined by its second-order derivative and some uniform or affine function, parameterized by auxiliary variables in $\mathbb{R}^{m}$. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both the second-order derivative and auxiliary variables. Finally, a stability test for the PIE representation is formulated as a linear operator inequality, which can be solved using semidefinite programming. The proposed methodology is applied to two PDE examples, demonstrating that stability can be verified with tight bounds on the rate of exponential decay.
Attitude Synchronization for Multi-Agent Systems on SO(3) Using Vector Measurements
In this paper, we address the problem of leaderless attitude synchronization for a group of rigid body systems evolving on SO(3), relying on local measurements of some inertial (unit-length) vectors. The interaction graph among agents is assumed to be undirected, acyclic, and connected. We first present a distributed attitude synchronization scheme designed at the kinematic level of SO(3), followed by an extended scheme designed at the dynamic level. Both schemes are supported by a rigorous stability analysis, which establishes their almost global asymptotic stability properties. Finally, numerical simulations demonstrate the effectiveness of both distributed attitude synchronization schemes.
Markov Potential Game Construction and Multi-Agent Reinforcement Learning with Applications to Autonomous Driving
Markov games (MGs) serve as the mathematical foundation for multi-agent reinforcement learning (MARL), enabling self-interested agents to learn their optimal policies while interacting with others in a shared environment. However, due to the complexities of an MG problem, seeking (Markov perfect) Nash equilibrium (NE) is often very challenging for a general-sum MG. Markov potential games (MPGs), which are a special class of MGs, have appealing properties such as guaranteed existence of pure NEs and guaranteed convergence of gradient play algorithms, thereby leading to desirable properties for many MARL algorithms in their NE-seeking processes. However, the question of how to construct MPGs has been open. This paper provides sufficient conditions on the reward design and on the Markov decision process (MDP), under which an MG is an MPG. Numerical results on autonomous driving applications are reported.
Sensorless Field Oriented Control of CSI-Fed PMSM Drives Used in Submersible Pumps
This paper proposes a practical startup strategy for current source inverter (CSI)-fed Permanent Magnet Synchronous Motor (PMSM) drives in submersible pump applications, focusing on ensuring a seamless shift to sensorless field-oriented control (FOC). The method effectively manages the transition to sensorless operation without requiring precise current or alignment error calculations, thereby simplifying implementation. By addressing speed and current oscillations directly during the startup and transition stages, the approach significantly enhances overall system stability and responsiveness. Validation through simulation and experimental testing demonstrates the strategy's success in maintaining low oscillation levels across various operating conditions, confirming its reliability for high-performance industrial applications.
comment: accepted at APEC 2025 conference
Passivity, No-Regret, and Convergent Learning in Contractive Games
We investigate the interplay between passivity, no-regret, and convergence in contractive games for various learning dynamic models and their higher-order variants. Our setting is continuous time. Building on prior work for replicator dynamics, we show that if learning dynamics satisfy a passivity condition between the payoff vector and the difference between its evolving strategy and any fixed strategy, then it achieves finite regret. We then establish that the passivity condition holds for various learning dynamics and their higher-order variants. Consequentially, the higher-order variants can achieve convergence to Nash equilibrium in cases where their standard order counterparts cannot, while maintaining a finite regret property. We provide numerical examples to illustrate the lack of finite regret of different evolutionary dynamic models that violate the passivity property. We also examine the fragility of the finite regret property in the case of perturbed learning dynamics. Continuing with passivity, we establish another connection between finite regret and passivity, but with the related equilibrium-independent passivity property. Finally, we present a passivity-based classification of dynamic models according to the various passivity notions they satisfy, namely, incremental passivity, $\delta$-passivity, and equilibrium-independent passivity. This passivity-based classification provides a framework to analyze the convergence of learning dynamic models in contractive games.
Distances between finite-horizon linear behaviors
The paper introduces a class of distances for linear behaviors over finite time horizons. These distances allow for comparisons between finite-horizon linear behaviors represented by matrices of possibly different dimensions. They remain invariant under coordinate changes, rotations, and permutations, ensuring independence from input-output partitions. Moreover, they naturally encode complexity-misfit trade-offs for Linear Time-Invariant (LTI) behaviors, providing a principled solution to a longstanding puzzle in behavioral systems theory. The resulting framework characterizes modeling as a minimum distance problem, identifying the Most Powerful Unfalsified Model (MPUM) as optimal among all systems unfalsified by a given dataset.
comment: IEEE Control Systems Letters / 64th IEEE Conference on Decision and Control
A Cooperative Compliance Control Framework for Socially Optimal Mixed Traffic Routing
In mixed traffic environments, where Connected and Autonomed Vehicles (CAVs) coexist with potentially non-cooperative Human-Driven Vehicles (HDVs), the self-centered behavior of human drivers may compromise the efficiency, optimality, and safety of the overall traffic network. In this paper, we propose a Cooperative Compliance Control (CCC) framework for mixed traffic routing, where a Social Planner (SP) optimizes vehicle routes for system-wide optimality while a compliance controller incentivizes human drivers to align their behavior with route guidance from the SP through a "refundable toll" scheme. A key challenge arises from the heterogeneous and unknown response models of different human driver types to these tolls, making it difficult to design a proper controller and achieve desired compliance probabilities over the traffic network. To address this challenge, we employ Control Lyapunov Functions (CLFs) to adaptively correct (learn) crucial components of our compliance probability model online, construct data-driven feedback controllers, and demonstrate that we can achieve the desired compliance probability for HDVs, thereby contributing to the social optimality of the traffic network.
A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
Bidding in Ancillary Service Markets: An Analytical Approach Using Extreme Value Theory
To encourage the participation of stochastic distributed energy resources in Nordic ancillary service markets, the Danish transmission system operator, Energinet, has introduced grid codes requiring a minimum 90% reliability for the full availability of reserve capacity bids. This paper addresses the bidding strategy of flexibility aggregators under Energinet's reliability requirement by proposing a chance-constrained optimization model. An analytical solution is developed using ideas from extreme value theory, focusing on the "tail" of the empirical data used for flexibility estimation, capturing extreme events where failures are more likely to occur. The proposed model is applied to an electric vehicle aggregator participating in the Nordic market for frequency containment reserve for disturbances (FCR-D). Our results from a realistic case study show that the proposed analytical solution outperforms a commonly used sample-based approach in terms of out-of-sample constraint violation rate.
Reduced Network Cumulative Constraint Violation for Distributed Bandit Convex Optimization under Slater Condition
This paper studies the distributed bandit convex optimization problem with time-varying inequality constraints, where the goal is to minimize network regret and cumulative constraint violation. To calculate network cumulative constraint violation, existing distributed bandit online algorithms solving this problem directly use the clipped constraint function to replace its original constraint function. However, the use of the clipping operation renders Slater condition (i.e, there exists a point that strictly satisfies the inequality constraints at all iterations) ineffective to achieve reduced network cumulative constraint violation. To tackle this challenge, we propose a new distributed bandit online primal-dual algorithm. If local loss functions are convex, we show that the proposed algorithm establishes sublinear network regret and cumulative constraint violation bounds. When Slater condition holds, the network cumulative constraint violation bound is reduced. In addition, if local loss functions are strongly convex, for the case where strongly convex parameters are unknown, the network regret bound is reduced. For the case where strongly convex parameters are known, the network regret and cumulative constraint violation bounds are further reduced. To the best of our knowledge, this paper is among the first to establish reduced (network) cumulative constraint violation bounds for (distributed) bandit convex optimization with time-varying constraints under Slater condition. Finally, a numerical example is provided to verify the theoretical results.
Reinforcement Learning-Based Controlled Switching Approach for Inrush Current Minimization in Power Transformers
Transformers are essential components for the reliable operation of power grids. The transformer core is constituted by a ferromagnetic material, and accordingly, depending on the magnetization state, the energization of the transformer can lead to high magnetizing inrush currents. Such high amplitudes shorten the life expectancy of a transformer and cause power quality issues in power grids. Various techniques have been proposed to minimize the inrush current; however, the application of Reinforcement Learning (RL) for this challenge has not been investigated. RL incorporates the ability to learn inrush minimization strategies adjusted to the dynamic transformer operation environment. This study proposes an inrush current minimization framework by combining controlled switching with RL. Depending on the opening angle of the circuit breaker and the remanent fluxes at disconnection, the proposed method learns the optimal closing instant of the circuit breaker. Two RL algorithms have been trained and tested through an equivalent duality-based model of a real 7.4 MVA power transformer. The evaluation of the RL algorithms is carried out with real measurement data and compared with real laboratory inrush currents. The results show that the inrush current is effectively minimized with the proposed framework.
Tomography of Quantum States from Structured Measurements via quantum-aware transformer
Quantum state tomography (QST) is the process of reconstructing the state of a quantum system (mathematically described as a density matrix) through a series of different measurements, which can be solved by learning a parameterized function to translate experimentally measured statistics into physical density matrices. However, the specific structure of quantum measurements for characterizing a quantum state has been neglected in previous work. In this paper, we explore the similarity between highly structured sentences in natural language and intrinsically structured measurements in QST. To fully leverage the intrinsic quantum characteristics involved in QST, we design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices. In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data and integrate the Bures distance into the loss function to evaluate quantum state fidelity, thereby enabling the reconstruction of quantum states from measured data with high fidelity. Extensive simulations and experiments (on IBM quantum computers) demonstrate the superiority of the QAT in reconstructing quantum states with favorable robustness against experimental noise.
Neural networks for quantum state tomography with constrained measurements
Quantum state tomography (QST) aiming at reconstructing the density matrix of a quantum state plays an important role in various emerging quantum technologies. Recognizing the challenges posed by imperfect measurement data, we develop a unified neural network(NN)-based approach for QST under constrained measurement scenarios, including limited measurement copies, incomplete measurements, and noisy measurements. Through comprehensive comparison with other estimation methods, we demonstrate that our method improves the estimation accuracy in scenarios with limited measurement resources, showcasing notable robustness in noisy measurement settings. These findings highlight the capability of NNs to enhance QST with constrained measurements.
Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies
Magnetic Tunnel Junctions (MTJs) have shown great promise as hardware sources for true random number generation (TRNG) due to their intrinsic stochastic switching behavior. However, practical deployment remains challenged by drift in switching probability caused by thermal fluctuations, device aging, and environmental instability. This work presents an engineering-oriented, drift-resilient MTJ-based TRNG architecture, enabled by a hybrid control strategy that combines self-stabilizing feedback with pulse width modulation. A key component is the Downcalibration-2 scheme, which updates the control parameter every two steps using only integer-resolution timing, ensuring excellent statistical quality without requiring bit discarding, pre-characterization, or external calibration. Extensive experimental measurements and numerical simulations demonstrate that this approach maintains stable randomness under dynamic temperature drift, using only simple digital logic. The proposed architecture offers high throughput, robustness, and scalability, making it well-suited for secure hardware applications, embedded systems, and edge computing environments.
comment: 16 pages, 9 figures, data shared at https://doi.org/10.6084/m9.figshare.28680899.v1
On the Standard Performance Criteria for Applied Control Design: PID, MPC or Machine Learning Controller?
The traditional control theory and its application to basic and complex systems have reached an advanced level of maturity. This includes aerial, marine, and ground vehicles, as well as robotics, chemical, transportation, and electrical systems widely used in our daily lives. The emerging era of data-driven methods, Large Language Models (LLMs), and AI-based controllers does not indicate a weakness in well-established control theory. Instead, it aims to reduce dependence on models and uncertainties, address increasingly complex systems, and potentially achieve decision-making capabilities comparable to human-level performance. This revolution integrates knowledge from computer science, machine learning, biology, and classical control, producing promising algorithms that are yet to demonstrate widespread real-world applicability. Despite the maturity of control theory and the presence of various performance criteria, there is still a lack of standardised metrics for testing, evaluation, Verification and Validation ($V\&V$) of algorithms. This gap can lead to algorithms that, while optimal in certain aspects, may fall short of practical implementation, sparking debates within the literature. For a controller to succeed in real-world applications, it must satisfy three key categories of performance metrics: tracking quality, control effort (energy consumption), and robustness. This paper rather takes an applied perspective, proposing and consolidating standard performance criteria for testing and analysing control systems, intended for researchers and students. The proposed framework ensures the post-design applicability of a black-box algorithm, aligning with modern data analysis and $V\&V$ perspectives to prevent resource allocation to systems with limited impact or imprecise claims.
Rational-Exponent Filters with Applications to Generalized Exponent Filters
We present filters with rational exponents in order to provide a continuum of filter behavior not classically achievable. We discuss their stability, the flexibility they afford, and various representations useful for analysis, design and implementations. We do this for a generalization of second-order filters which we refer to as rational-exponent Generalized Exponent Filters (GEFs) that are useful for a diverse array of applications. We present equivalent representations for rational-exponent GEFs in the time and frequency domains: transfer functions, impulse responses, and integral expressions - the last of which allows for efficient real-time processing without preprocessing requirements. Rational-exponent filters enable filter characteristics to be on a continuum rather than limiting them to discrete values thereby resulting in greater flexibility in the behavior of these filters without additional complexity in causality and stability analyses compared with classical filters. In the case of GEFs, this allows for having arbitrary continuous rather than discrete values for filter characteristics such as (1) the ratio of 3dB quality factor to maximum group delay - particularly important for filterbanks which have simultaneous requirements on frequency selectivity and synchronization; and (2) the ratio of 3dB to 15dB quality factors that dictates the shape of the frequency response magnitude.
comment: 14 pages, 9 figures, 2 tables, 32 equations. Submitted to IEEE TCAS-I
On the Uniqueness of Participation Factors in Nonlinear Dynamical Systems
In the modal analysis and control of nonlinear dynamical systems, the participation factors of state variables with respect to a critical or selected mode serve as a pivotal tool for simplifying stability studies by focusing on a subset of highly influential state variables. For linear systems, the participation factors of state variables regarding a mode are uniquely determined by the mode's composition and shape, defined by the system's left and right eigenvectors, respectively. However, the uniqueness of other types of participation factors necessitates further investigation. This paper establishes a sufficient condition for the uniqueness of nonlinear participation factors and five other variants of participation factors, accounting for uncertain scaling factors in a mode's shape and composition. These scaling factors arise from variations in the selection of physical units or the value ranges of state variables when analyzing and controlling real-world dynamical systems. Understanding the sufficient condition of the uniqueness is therefore crucial for the correct application of participation factors in practical scenarios. Additionally, the paper explores the relationship between perturbation magnitudes in state variables and the selection of optimal scaling factors.
comment: Accepted
Multiagent Systems
Cooperative Hybrid Multi-Agent Pathfinding Based on Shared Exploration Maps
Multi-Agent Pathfinding is used in areas including multi-robot formations, warehouse logistics, and intelligent vehicles. However, many environments are incomplete or frequently change, making it difficult for standard centralized planning or pure reinforcement learning to maintain both global solution quality and local flexibility. This paper introduces a hybrid framework that integrates D* Lite global search with multi-agent reinforcement learning, using a switching mechanism and a freeze-prevention strategy to handle dynamic conditions and crowded settings. We evaluate the framework in the discrete POGEMA environment and compare it with baseline methods. Experimental outcomes indicate that the proposed framework substantially improves success rate, collision rate, and path efficiency. The model is further tested on the EyeSim platform, where it maintains feasible Pathfinding under frequent changes and large-scale robot deployments.
comment: 22 pages,7 figures
Policy Optimization and Multi-agent Reinforcement Learning for Mean-variance Team Stochastic Games
We study a long-run mean-variance team stochastic game (MV-TSG), where each agent shares a common mean-variance objective for the system and takes actions independently to maximize it. MV-TSG has two main challenges. First, the variance metric is neither additive nor Markovian in a dynamic setting. Second, simultaneous policy updates of all agents lead to a non-stationary environment for each individual agent. Both challenges make dynamic programming inapplicable. In this paper, we study MV-TSGs from the perspective of sensitivity-based optimization. The performance difference and performance derivative formulas for joint policies are derived, which provide optimization information for MV-TSGs. We prove the existence of a deterministic Nash policy for this problem. Subsequently, we propose a Mean-Variance Multi-Agent Policy Iteration (MV-MAPI) algorithm with a sequential update scheme, where individual agent policies are updated one by one in a given order. We prove that the MV-MAPI algorithm converges to a first-order stationary point of the objective function. By analyzing the local geometry of stationary points, we derive specific conditions for stationary points to be (local) Nash equilibria, and further, strict local optima. To solve large-scale MV-TSGs in scenarios with unknown environmental parameters, we extend the idea of trust region methods to MV-MAPI and develop a multi-agent reinforcement learning algorithm named Mean-Variance Multi-Agent Trust Region Policy Optimization (MV-MATRPO). We derive a performance lower bound for each update of joint policies. Finally, numerical experiments on energy management in multiple microgrid systems are conducted.
Robotics
Enhancing Underwater Navigation through Cross-Correlation-Aware Deep INS/DVL Fusion
The accurate navigation of autonomous underwater vehicles critically depends on the precision of Doppler velocity log (DVL) velocity measurements. Recent advancements in deep learning have demonstrated significant potential in improving DVL outputs by leveraging spatiotemporal dependencies across multiple sensor modalities. However, integrating these estimates into model-based filters, such as the extended Kalman filter, introduces statistical inconsistencies, most notably, cross-correlations between process and measurement noise. This paper addresses this challenge by proposing a cross-correlation-aware deep INS/DVL fusion framework. Building upon BeamsNet, a convolutional neural network designed to estimate AUV velocity using DVL and inertial data, we integrate its output into a navigation filter that explicitly accounts for the cross-correlation induced between the noise sources. This approach improves filter consistency and better reflects the underlying sensor error structure. Evaluated on two real-world underwater trajectories, the proposed method outperforms both least squares and cross-correlation-neglecting approaches in terms of state uncertainty. Notably, improvements exceed 10% in velocity and misalignment angle confidence metrics. Beyond demonstrating empirical performance, this framework provides a theoretically principled mechanism for embedding deep learning outputs within stochastic filters.
Dataset and Analysis of Long-Term Skill Acquisition in Robot-Assisted Minimally Invasive Surgery
Objective: We aim to investigate long-term robotic surgical skill acquisition among surgical residents and the effects of training intervals and fatigue on performance. Methods: For six months, surgical residents participated in three training sessions once a month, surrounding a single 26-hour hospital shift. In each shift, they participated in training sessions scheduled before, during, and after the shift. In each training session, they performed three dry-lab training tasks: Ring Tower Transfer, Knot-Tying, and Suturing. We collected a comprehensive dataset, including videos synchronized with kinematic data, activity tracking, and scans of the suturing pads. Results: We collected a dataset of 972 trials performed by 18 residents of different surgical specializations. Participants demonstrated consistent performance improvement across all tasks. In addition, we found variations in between-shift learning and forgetting across metrics and tasks, and hints for possible effects of fatigue. Conclusion: The findings from our first analysis shed light on the long-term learning processes of robotic surgical skills with extended intervals and varying levels of fatigue. Significance: This study lays the groundwork for future research aimed at optimizing training protocols and enhancing AI applications in surgery, ultimately contributing to improved patient outcomes. The dataset will be made available upon acceptance of our journal submission.
comment: 12 pages, 8 figures
Cooking Task Planning using LLM and Verified by Graph Network
Cooking tasks remain a challenging problem for robotics due to their complexity. Videos of people cooking are a valuable source of information for such task, but introduces a lot of variability in terms of how to translate this data to a robotic environment. This research aims to streamline this process, focusing on the task plan generation step, by using a Large Language Model (LLM)-based Task and Motion Planning (TAMP) framework to autonomously generate cooking task plans from videos with subtitles, and execute them. Conventional LLM-based task planning methods are not well-suited for interpreting the cooking video data due to uncertainty in the videos, and the risk of hallucination in its output. To address both of these problems, we explore using LLMs in combination with Functional Object-Oriented Networks (FOON), to validate the plan and provide feedback in case of failure. This combination can generate task sequences with manipulation motions that are logically correct and executable by a robot. We compare the execution of the generated plans for 5 cooking recipes from our approach against the plans generated by a few-shot LLM-only approach for a dual-arm robot setup. It could successfully execute 4 of the plans generated by our approach, whereas only 1 of the plans generated by solely using the LLM could be executed.
Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
A Data-Driven Method for INS/DVL Alignment
Autonomous underwater vehicles (AUVs) are sophisticated robotic platforms crucial for a wide range of applications. The accuracy of AUV navigation systems is critical to their success. Inertial sensors and Doppler velocity logs (DVL) fusion is a promising solution for long-range underwater navigation. However, the effectiveness of this fusion depends heavily on an accurate alignment between the inertial sensors and the DVL. While current alignment methods show promise, there remains significant room for improvement in terms of accuracy, convergence time, and alignment trajectory efficiency. In this research we propose an end-to-end deep learning framework for the alignment process. By leveraging deep-learning capabilities, such as noise reduction and capture of nonlinearities in the data, we show using simulative data, that our proposed approach enhances both alignment accuracy and reduces convergence time beyond current model-based methods.
UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
Lidar-only Odometry based on Multiple Scan-to-Scan Alignments over a Moving Window
Lidar-only odometry considers the pose estimation of a mobile robot based on the accumulation of motion increments extracted from consecutive lidar scans. Many existing approaches to the problem use a scan-to-map registration, which neglects the accumulation of errors within the maintained map due to drift. Other methods use a refinement step that jointly optimizes the local map on a feature basis. We propose a solution that avoids this by using multiple independent scan-to-scan Iterative Closest Points (ICP) registrations to previous scans in order to derive constraints for a pose graph. The optimization of the pose graph then not only yields an accurate estimate for the latest pose, but also enables the refinement of previous scans in the optimization window. By avoiding the need to recompute the scan-to-scan alignments, the computational load is minimized. Extensive evaluation on the public KITTI and MulRan datasets as well as on a custom automotive lidar dataset is carried out. Results show that the proposed approach achieves state-of-the-art estimation accuracy, while alleviating the mentioned issues.
An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
Haptic bilateral teleoperation system for free-hand dental procedures
Free-hand dental procedures are typically repetitive, time-consuming and require high precision and manual dexterity. Dental robots can play a key role in improving procedural accuracy and safety, enhancing patient comfort, and reducing operator workload. However, robotic solutions for free-hand procedures remain limited or completely lacking, and their acceptance is still low. To address this gap, we develop a haptic bilateral teleoperation system (HBTS) for free-hand dental procedures. The system includes a dedicated mechanical end-effector, compatible with standard clinical tools, and equipped with an endoscopic camera for improved visibility of the intervention site. By ensuring motion and force correspondence between the operator's actions and the robot's movements, monitored through visual feedback, we enhance the operator's sensory awareness and motor accuracy. Furthermore, recognizing the need to ensure procedural safety, we limit interaction forces by scaling the motion references provided to the admittance controller based solely on measured contact forces. This ensures effective force limitation in all contact states without requiring prior knowledge of the environment. The proposed HBTS is validated in a dental scaling procedure using a dental phantom. The results show that the system improves the naturalness, safety, and accuracy of teleoperation, highlighting its potential to enhance free-hand dental procedures.
comment: 12 pages, 12 figures
Output-Feedback Boundary Control of Thermally and Flow-Induced Vibrations in Slender Timoshenko Beams
This work is motivated by the engineering challenge of suppressing vibrations in turbine blades of aero engines, which often operate under extreme thermal conditions and high-Mach aerodynamic environments that give rise to complex vibration phenomena, commonly referred to as thermally-induced and flow-induced vibrations. Using Hamilton's variational principle, the system is modeled as a rotating slender Timoshenko beam under thermal and aerodynamic loads, described by a mixed hyperbolic-parabolic PDE system where instabilities occur both within the PDE domain and at the uncontrolled boundary, and the two types of PDEs are cascaded in the domain. For such a system, we present the state-feedback control design based on the PDE backstepping method. Recognizing that the distributed temperature gradients and structural vibrations in the Timoshenko beam are typically unmeasurable in practice, we design a state observer for the mixed hyperbolic-parabolic PDE system. Based on this observer, an output-feedback controller is then built to regulate the overall system using only available boundary measurements. In the closed-loop system, the state of the uncontrolled boundary, i.e., the furthest state from the control input, is proved to be exponentially convergent to zero, and all signals are proved as uniformly ultimately bounded. The proposed control design is validated on an aero-engine flexible blade under extreme thermal and aerodynamic conditions.
OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
Dimensional optimization of single-DOF planar rigid link-flapping mechanisms for high lift and low power
Rigid link flapping mechanisms remain the most practical choice for flapping wing micro-aerial vehicles (MAVs) to carry useful payloads and onboard batteries for free flight due to their long-term durability and reliability. However, to achieve high agility and maneuverability-like insects-MAVs with these mechanisms require significant weight reduction. One approach involves using single-DOF planar rigid linkages, which are rarely optimized dimensionally for high lift and low power so that smaller motors and batteries could be used. We integrated a mechanism simulator based on a quasistatic nonlinear finite element method with an unsteady vortex lattice method-based aerodynamic analysis tool within an optimization routine. We optimized three different mechanism topologies from the literature. As a result, significant power savings were observed up to 42% in some cases, due to increased amplitude and higher lift coefficients resulting from optimized asymmetric sweeping velocity profiles. We also conducted an uncertainty analysis that revealed the need for high manufacturing tolerances to ensure reliable mechanism performance. The presented unified computational tool also facilitates the optimal selection of MAV components based on the payload and flight time requirements.
TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
Safe Human Robot Navigation in Warehouse Scenario
The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.
Fuzzy-Logic-based model predictive control: A paradigm integrating optimal and common-sense decision making
This paper introduces a novel concept, fuzzy-logic-based model predictive control (FLMPC), along with a multi-robot control approach for exploring unknown environments and locating targets. Traditional model predictive control (MPC) methods rely on Bayesian theory to represent environmental knowledge and optimize a stochastic cost function, often leading to high computational costs and lack of effectiveness in locating all the targets. Our approach instead leverages FLMPC and extends it to a bi-level parent-child architecture for enhanced coordination and extended decision making horizon. Extracting high-level information from probability distributions and local observations, FLMPC simplifies the optimization problem and significantly extends its operational horizon compared to other MPC methods. We conducted extensive simulations in unknown 2-dimensional environments with randomly placed obstacles and humans. We compared the performance and computation time of FLMPC against MPC with a stochastic cost function, then evaluated the impact of integrating the high-level parent FLMPC layer. The results indicate that our approaches significantly improve both performance and computation time, enhancing coordination of robots and reducing the impact of uncertainty in large-scale search and rescue environments.
comment: 50 Pages, 8 figures, 3 tables
Bayesian Inferential Motion Planning Using Heavy-Tailed Distributions
Robots rely on motion planning to navigate safely and efficiently while performing various tasks. In this paper, we investigate motion planning through Bayesian inference, where motion plans are inferred based on planning objectives and constraints. However, existing Bayesian motion planning methods often struggle to explore low-probability regions of the planning space, where high-quality plans may reside. To address this limitation, we propose the use of heavy-tailed distributions -- specifically, Student's-$t$ distributions -- to enhance probabilistic inferential search for motion plans. We develop a novel sequential single-pass smoothing approach that integrates Student's-$t$ distribution with Monte Carlo sampling. A special case of this approach is ensemble Kalman smoothing, which depends on short-tailed Gaussian distributions. We validate the proposed approach through simulations in autonomous vehicle motion planning, demonstrating its superior performance in planning, sampling efficiency, and constraint satisfaction compared to ensemble Kalman smoothing. While focused on motion planning, this work points to the broader potential of heavy-tailed distributions in enhancing probabilistic decision-making in robotics.
CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
Beyond Omakase: Designing Shared Control for Navigation Robots with Blind People
Autonomous navigation robots can increase the independence of blind people but often limit user control, following what is called in Japanese an "omakase" approach where decisions are left to the robot. This research investigates ways to enhance user control in social robot navigation, based on two studies conducted with blind participants. The first study, involving structured interviews (N=14), identified crowded spaces as key areas with significant social challenges. The second study (N=13) explored navigation tasks with an autonomous robot in these environments and identified design strategies across different modes of autonomy. Participants preferred an active role, termed the "boss" mode, where they managed crowd interactions, while the "monitor" mode helped them assess the environment, negotiate movements, and interact with the robot. These findings highlight the importance of shared control and user involvement for blind users, offering valuable insights for designing future social navigation robots.
comment: Preprint, ACM CHI Conference on Human Factors in Computing Systems (CHI 2025)
Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
comment: submitted to IEEE RA-L
Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
comment: initial upload 8 pages
Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
comment: initial upload 8 page
ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning CVPR 2025
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
comment: Accepted to CVPR 2025
Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: This paper is currently under security review and will be re-released once the review is complete
Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of language models for robotic manipulation in 3D Cartesian space. AlphaSpace employs a hierarchical semantics-based tokenization strategy that encodes spatial information at both coarse and fine-grained levels. Our approach represents objects with their attributes, positions, and height information through structured tokens, enabling precise spatial reasoning without relying on traditional vision-based embeddings. This approach enables LLMs to accurately manipulate objects by positioning them at specific (x, y, z) coordinates. Experimental results suggest that AlphaSpace demonstrates promising potential for improving manipulation tasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet. These results demonstrate the potential of structured spatial encoding for manipulation tasks and warrant further exploration.
Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
Towards Optimizing a Convex Cover of Collision-Free Space for Trajectory Generation
We propose an online iterative algorithm to optimize a convex cover to under-approximate the free space for autonomous navigation to delineate Safe Flight Corridors (SFC). The convex cover consists of a set of polytopes such that the union of the polytopes represents obstacle-free space, allowing us to find trajectories for robots that lie within the convex cover. In order to find the SFC that facilitates trajectory optimization, we iteratively find overlapping polytopes of maximum volumes that include specified waypoints initialized by a geometric or kinematic planner. Constraints at waypoints appear in two alternating stages of a joint optimization problem, which is solved by a novel heuristic-based iterative algorithm with partially distributed variables. We validate the effectiveness of our proposed algorithm using a range of parameterized environments and show its applications for two-stage motion planning.
How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
Integrating Naturalistic Insights in Objective Multi-Vehicle Safety Framework
As autonomous vehicle technology advances, the precise assessment of safety in complex traffic scenarios becomes crucial, especially in mixed-vehicle environments where human perception of safety must be taken into account. This paper presents a framework designed for assessing traffic safety in multi-vehicle situations, facilitating the simultaneous utilization of diverse objective safety metrics. Additionally, it allows the integration of subjective perception of safety by adjusting model parameters. The framework was applied to evaluate various model configurations in car-following scenarios on a highway, utilizing naturalistic driving datasets. The evaluation of the model showed an outstanding performance, particularly when integrating multiple objective safety measures. Furthermore, the performance was significantly enhanced when considering all surrounding vehicles.
Online POMDP Planning with Anytime Deterministic Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
Constrained Nonlinear Kaczmarz Projection on Intersections of Manifolds for Coordinated Multi-Robot Mobile Manipulation ICRA
Cooperative manipulation tasks impose various structure-, task-, and robot-specific constraints on mobile manipulators. However, current methods struggle to model and solve these myriad constraints simultaneously. We propose a twofold solution: first, we model constraints as a family of manifolds amenable to simultaneous solving. Second, we introduce the constrained nonlinear Kaczmarz (cNKZ) projection technique to produce constraint-satisfying solutions. Experiments show that cNKZ dramatically outperforms baseline approaches, which cannot find solutions at all. We integrate cNKZ with a sampling-based motion planning algorithm to generate complex, coordinated motions for 3 to 6 mobile manipulators (18--36 DoF), with cNKZ solving up to 80 nonlinear constraints simultaneously and achieving up to a 92% success rate in cluttered environments. We also demonstrate our approach on hardware using three Turtlebot3 Waffle Pi robots with OpenMANIPULATOR-X arms.
comment: Accepted for publication at IEEE International Conference on Robotics and Automation (ICRA) 2025
MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots
This paper introduces an innovative state estimator, MUSE (MUlti-sensor State Estimator), designed to enhance state estimation's accuracy and real-time performance in quadruped robot navigation. The proposed state estimator builds upon our previous work presented in [1]. It integrates data from a range of onboard sensors, including IMUs, encoders, cameras, and LiDARs, to deliver a comprehensive and reliable estimation of the robot's pose and motion, even in slippery scenarios. We tested MUSE on a Unitree Aliengo robot, successfully closing the locomotion control loop in difficult scenarios, including slippery and uneven terrain. Benchmarking against Pronto [2] and VILENS [3] showed 67.6% and 26.7% reductions in translational errors, respectively. Additionally, MUSE outperformed DLIO [4], a LiDAR-inertial odometry system in rotational errors and frequency, while the proprioceptive version of MUSE (P-MUSE) outperformed TSIF [5], with a 45.9% reduction in absolute trajectory error (ATE).
comment: Accepted for publication in IEEE Robotics and Automation Letters
Mirroring the Parking Target: An Optimal-Control-Based Parking Motion Planner with Strengthened Parking Reliability and Faster Parking Completion
Automated Parking Assist (APA) systems are now facing great challenges of low adoption in applications, due to users' concerns about parking capability, reliability, and completion efficiency. To upgrade the conventional APA planners and enhance user's acceptance, this research proposes an optimal-control-based parking motion planner. Its highlight lies in its control logic: planning trajectories by mirroring the parking target. This method enables: i) parking capability in narrow spaces; ii) better parking reliability by expanding Operation Design Domain (ODD); iii) faster completion of parking process; iv) enhanced computational efficiency; v) universal to all types of parking. A comprehensive evaluation is conducted. Results demonstrate the proposed planner does enhance parking success rate by 40.6%, improve parking completion efficiency by 18.0%, and expand ODD by 86.1%. It shows its superiority in difficult parking cases, such as the parallel parking scenario and narrow spaces. Moreover, the average computation time of the proposed planner is 74 milliseconds. Results indicate that the proposed planner is ready for real-time commercial applications.
comment: IEEE Transactions on Intelligent Transportation Systems (2024)
Safety-Aware Human-Lead Vehicle Platooning by Proactively Reacting to Uncertain Human Behaving
Human-Lead Cooperative Adaptive Cruise Control (HL-CACC) is regarded as a promising vehicle platooning technology in real-world implementation. By utilizing a Human-driven Vehicle (HV) as the platoon leader, HL-CACC reduces the cost and enhances the reliability of perception and decision-making. However, state-of-the-art HL-CACC technology still has a great limitation on driving safety due to the lack of considering the leading human driver's uncertain behavior. In this study, a HL-CACC controller is designed based on Stochastic Model Predictive Control (SMPC). It is enabled to predict the driving intention of the leading Connected Human-Driven Vehicle (CHV). The proposed controller has the following features: i) enhanced perceived safety in oscillating traffic; ii) guaranteed safety against hard brakes; iii) computational efficiency for real-time implementation. The proposed controller is evaluated on a PreScan&Simulink simulation platform. Real vehicle trajectory data is collected for the calibration of the simulation. Results reveal that the proposed controller: i) improves perceived safety by 19.17% in oscillating traffic; ii) enhances actual safety by 7.76% against hard brakes; iii) is confirmed with string stability. The computation time is approximately 3.2 milliseconds when running on a laptop equipped with an Intel i5-13500H CPU. This indicates the proposed controller is ready for real-time implementation.
DexForce: Extracting Force-informed Actions from Kinesthetic Demonstrations for Dexterous Manipulation
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by these concerns, we propose DexForce. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps most for tasks that require advanced levels of precision and coordination, like opening an AirPods case and unscrewing a nut.
comment: Videos can be found here: https://clairelc.github.io/dexforce.github.io/
GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
AnyBimanual: Transferring Unimanual Policy for General Bimanual Manipulation
Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
comment: Project page: https://anybimanual.github.io/
Dynamic Motion/Force Control of Mobile Manipulators via Extended-UDE
Mobile manipulators are known for their superior mobility over manipulators on fixed bases, offering promising applications in smart industry and housekeeping scenarios. The dynamic coupling nature between the mobile base and the manipulator presents challenges for force interactive tasks of the mobile manipulator. However, current strategies often fail to account for this coupling in such scenarios. To address this, this paper presents a dynamic coupling-integrated manipulator model that requires only the manipulator dynamics and the mobile base kinematics, which simplifies the modeling process. In addition, embedding the dynamic model, an extended uncertainty and disturbance estimator (UDE) is proposed for the mobile manipulator, which separately estimates the dynamic coupling terms and other unmodeled uncertainties, incorporating them into the feedforward and feedback control loops, respectively. The proposed approach increases the speed of response of the system and improves the dynamic robot-environment interaction (REI) performance of the mobile manipulator. A series of simulations and experiments of a wall-cleaning task are conducted to verify the effectiveness of the proposed approach. Ablation studies demonstrate that the proposed approach significantly improves the motion/force tracking performance when the mobile base is in dynamic motion.
VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Multiagent Systems
GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
Ensuring the reliability and effectiveness of software release decisions is critical, particularly in safety-critical domains like automotive systems. Precise analysis of release validation data, often presented in tabular form, plays a pivotal role in this process. However, traditional methods that rely on manual analysis of extensive test datasets and validation metrics are prone to delays and high costs. Large Language Models (LLMs) offer a promising alternative but face challenges in analytical reasoning, contextual understanding, handling out-of-scope queries, and processing structured test data consistently; limitations that hinder their direct application in safety-critical scenarios. This paper introduces GateLens, an LLM-based tool for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and then generates optimized Python code. It outperforms the baseline system on benchmarking datasets, achieving higher F1 scores and handling complex and ambiguous queries with greater robustness. Ablation studies confirm the critical role of the RA module, with performance dropping sharply when omitted. Industrial evaluations reveal that GateLens reduces analysis time by over 80% while maintaining high accuracy and reliability. As demonstrated by presented results, GateLens achieved high performance without relying on few-shot examples, showcasing strong generalization across various query types from diverse company roles. Insights from deploying GateLens with a partner automotive company offer practical guidance for integrating AI into critical workflows such as release validation. Results show that by automating test result analysis, GateLens enables faster, more informed, and dependable release decisions, and can thus advance software scalability and reliability in automotive systems.
Energy Minimization for Participatory Federated Learning in IoT Analyzed via Game Theory
The Internet of Things requires intelligent decision making in many scenarios. To this end, resources available at the individual nodes for sensing or computing, or both, can be leveraged. This results in approaches known as participatory sensing and federated learning, respectively. We investigate the simultaneous implementation of both, through a distributed approach based on empowering local nodes with game theoretic decision making. A global objective of energy minimization is combined with the individual node's optimization of local expenditure for sensing and transmitting data over multiple learning rounds. We present extensive evaluations of this technique, based on both a theoretical framework and experiments in a simulated network scenario with real data. Such a distributed approach can reach a desired level of accuracy for federated learning without a centralized supervision of the data collector. However, depending on the weight attributed to the local costs of the single node, it may also result in a significantly high Price of Anarchy (from 1.28 onwards). Thus, we argue for the need of incentive mechanisms, possibly based on Age of Information of the single nodes.
comment: 6 pages, 6 figures, 2 tables, conference
Static and Repeated Cooperative Games for the Optimization of the AoI in IoT Networks
Wireless sensing and the internet of things (IoT) are nowadays pervasive in 5G and beyond networks, and they are expected to play a crucial role in 6G. However, a centralized optimization of a distributed system is not always possible and cost-efficient. In this paper, we analyze a setting in which two sensors collaboratively update a common server seeking to minimize the age of information (AoI) of the latest sample of a common physical process. We consider a distributed and uncoordinated setting where each sensor lacks information about whether the other decides to update the server. This strategic setting is modeled through game theory (GT) and two games are defined: i) a static game of complete information with an incentive mechanism for cooperation, and ii) a repeated game over a finite horizon where the static game is played at each stage. We perform a mathematical analysis of the static game finding three Nash Equilibria (NEs) in pure strategies and one in mixed strategies. A numerical simulation of the repeated game is also presented and novel and valuable insight into the setting is given thanks to the definition of a new metric, the price of delayed updates (PoDU), which shows that the decentralized solution provides results close to the centralized optimum.
comment: 6 pages, 7 figures, submitted to MedComNet 2025
Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation
Learning cooperative multi-agent policy from offline multi-task data that can generalize to unseen tasks with varying numbers of agents and targets is an attractive problem in many scenarios. Although aggregating general behavior patterns among multiple tasks as skills to improve policy transfer is a promising approach, two primary challenges hinder the further advancement of skill learning in offline multi-task MARL. Firstly, extracting general cooperative behaviors from various action sequences as common skills lacks bringing cooperative temporal knowledge into them. Secondly, existing works only involve common skills and can not adaptively choose independent knowledge as task-specific skills in each task for fine-grained action execution. To tackle these challenges, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for generalizable offline multi-task MARL through skill learning. HiSSD leverages a hierarchical framework that jointly learns common and task-specific skills. The common skills learn cooperative temporal knowledge and enable in-sample exploitation for offline multi-task MARL. The task-specific skills represent the priors of each task and achieve a task-guided fine-grained action execution. To verify the advancement of our method, we conduct experiments on multi-agent MuJoCo and SMAC benchmarks. After training the policy using HiSSD on offline multi-task data, the empirical results show that HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.
Safe Human Robot Navigation in Warehouse Scenario
The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.
Debate-Driven Multi-Agent LLMs for Phishing Email Detection
Phishing attacks remain a critical cybersecurity threat. Attackers constantly refine their methods, making phishing emails harder to detect. Traditional detection methods, including rule-based systems and supervised machine learning models, either rely on predefined patterns like blacklists, which can be bypassed with slight modifications, or require large datasets for training and still can generate false positives and false negatives. In this work, we propose a multi-agent large language model (LLM) prompting technique that simulates debates among agents to detect whether the content presented on an email is phishing. Our approach uses two LLM agents to present arguments for or against the classification task, with a judge agent adjudicating the final verdict based on the quality of reasoning provided. This debate mechanism enables the models to critically analyze contextual cue and deceptive patterns in text, which leads to improved classification accuracy. The proposed framework is evaluated on multiple phishing email datasets and demonstrate that mixed-agent configurations consistently outperform homogeneous configurations. Results also show that the debate structure itself is sufficient to yield accurate decisions without extra prompting strategies.
comment: Accepted to the 13th International Symposium on Digital Forensics and Security (ISDFS 2025)
Monitoring Spatially Distributed Cyber-Physical Systems with Alternating Finite Automata SC
Modern cyber-physical systems (CPS) can consist of various networked components and agents interacting and communicating with each other. In the context of spatially distributed CPS, these connections can be dynamically dependent on the spatial configuration of the various components and agents. In these settings, robust monitoring of the distributed components is vital to ensuring complex behaviors are achieved, and safety properties are maintained. To this end, we look at defining the automaton semantics for the Spatio-Temporal Reach and Escape Logic (STREL), a formal logic designed to express and monitor spatio-temporal requirements over mobile, spatially distributed CPS. Specifically, STREL reasons about spatio-temporal behavior over dynamic weighted graphs. While STREL is endowed with well defined qualitative and quantitative semantics, in this paper, we propose a novel construction of (weighted) alternating finite automata from STREL specifications that efficiently encodes these semantics. Moreover, we demonstrate how this automaton semantics can be used to perform both, offline and online monitoring for STREL specifications using a simulated drone swarm environment.
comment: Accepted to HSCC 2025
Systems and Control (CS)
The Construction of Asymptotic Bode Plots: A New Direct Method
Bode plots represent an essential tool in control and systems engineering. In order to perform an initial qualitative analysis of the considered systems, the construction of asymptotic Bode plots is often sufficient. The standard methods for constructing asymptotic Bode plots are characterized by the same drawbacks: they are not systematic, may be not precise and time-consuming. This is because they require the detailed analysis of the different factors composing the considered transfer function, meaning that more and more intermediate steps are required as the number of factors increases. In this paper, a new method for the construction of asymptotic Bode plots is proposed, which is based on the systematic calculations of the so-called generalized approximating functions and on the use of well defined properties. The proposed method is referred to as a direct method since it allows to directly draw the asymptotic Bode magnitude and phase plots of the complete transfer function without requiring the detailed analysis nor the plots construction of each factor. This latter feature also makes the proposed direct method more systematic, potentially more precise and less time-consuming compared to standard methods, especially when dealing with a large number of factors in the transfer function. The comparison of the proposed direct method with the standard approaches is performed, in order to examine the benefits offered by the direct method.
Economy and sustainability analysis with a novel modular configurable multi-modal white-box building model
This paper presents a novel modeling approach for building performance simulation, characterized as a white-box model with a high degree of modularity and flexibility, enabling direct integration into complex large-scale energy system co-simulations. The introduced model is described in detail, with a focus on its modular structure, and proposes various configurations that include various building insulation, heating methods, occupancy patterns, and weather data to analyze different scenarios, and the energy consumption, CO2 emissions, and heating costs are compared and analyzed across 36 introduced scenarios. The thermodynamic behavior of the model is shown to be consistent with real-world conditions, and the comparison of the scenarios concludes that the use of heat pumps for indoor heating in well-insulated buildings has significant economic and sustainability benefits, whereas the use of natural gas-fueled boilers is more cost-effective for buildings with low energy ratings.
AUTOBargeSim: MATLAB(R) toolbox for the design and analysis of the guidance and control system for autonomous inland vessels
This paper introduces AUTOBargeSim, a simulation toolbox for autonomous inland vessel guidance and control system design. AUTOBargeSim is developed using MATLAB and provides an easy-to-use introduction to various aspects of autonomous inland navigation, including mapping, modelling, control design, and collision avoidance, through examples and extensively documented code. Applying modular design principles in the simulator structure allows it to be easily modified according to the user's requirements. Furthermore, a GUI interface facilitates a simple and quick execution. Key performance indices for evaluating the performance of the controller and collision avoidance method in confined space are also provided. The current version of AUTOBargeSim attempts to improve reproducibility in the design and simulation of marine systems while serving as a foundation for simulating and evaluating vessel behaviour considering operational, system, and environmental constraints.
Real-time Tracking System with partially coupled sources
We consider a pull-based real-time tracking system consisting of multiple partially coupled sources and a sink. The sink monitors the sources in real-time and can request one source for an update at each time instant. The sources send updates over an unreliable wireless channel. The sources are partially coupled, and updates about one source can provide partial knowledge about other sources. We study the problem of minimizing the sum of an average distortion function and a transmission cost. Since the controller is at the sink side, the controller (sink) has only partial knowledge about the source states, and thus, we model the problem as a partially observable Markov decision process (POMDP) and then cast it as a belief-MDP problem. Using the relative value iteration algorithm, we solve the problem and propose a control policy. Simulation results show the proposed policy's effectiveness and superiority compared to a baseline policy.
Combining Graph Attention Networks and Distributed Optimization for Multi-Robot Mixed-Integer Convex Programming
In this paper, we develop a fast mixed-integer convex programming (MICP) framework for multi-robot navigation by combining graph attention networks and distributed optimization. We formulate a mixed-integer optimization problem for receding horizon motion planning of a multi-robot system, taking into account the surrounding obstacles. To address the resulting multi-agent MICP problem in real time, we propose a framework that utilizes heterogeneous graph attention networks to learn the latent mapping from problem parameters to optimal binary solutions. Furthermore, we apply a distributed proximal alternating direction method of multipliers algorithm for solving the convex continuous optimization problem. We demonstrate the effectiveness of our proposed framework through experiments conducted on a robotic testbed.
comment: submitted to CDC 2025
consexpressionR: an R package for consensus differential gene expression analysis
Motivation: Bulk RNA-Seq is a widely used method for studying gene expression across a variety of contexts. The significance of RNA-Seq studies has grown with the advent of high-throughput sequencing technologies. Computational methods have been developed for each stage of the identification of differentially expressed genes. Nevertheless, there are few studies exploring the association between different types of methods. In this study, we evaluated the impact of the association of methodologies in the results of differential expression analysis. By adopting two data sets with qPCR data (to gold-standard reference), seven methods were implemented and assessed in R packages (EBSeq, edgeR, DESeq2, limma, SAMseq, NOISeq, and Knowseq), which was performed and assessed separately and in association. The results were evaluated considering the adopted qPCR data. Results: Here, we introduce consexpressionR, an R package that automates differential expression analysis using consensus of at least seven methodologies, producing more assertive results with a significant reduction in false positives. Availability: consexpressionR is an R package available via source code and support are available at GitHub (https://github.com/costasilvati/consexpressionR).
Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
Physics-Informed Neural Network-Based Control for Grid-Forming Converter's Stability Under Overload Conditions
Grid-forming converters (GFCs) are pivotal in maintaining frequency and voltage stability in modern distribution systems. However, a critical challenge arises when these converters encounter sudden power demands that exceed their rated capacity. Although GFCs are designed to manage DC source saturation and limit excessive AC currents, their ability to ensure sufficient power delivery under such constraints remains a significant concern. Existing studies often overlook this limitation, potentially compromising system stability during high-demand scenarios. This paper proposes a control strategy based on a physics-informed neural network (PINN) to improve GFC performance under overloaded conditions, effectively preventing switch failures and mitigating DC source saturation. The proposed approach outperforms conventional methods by maintaining stable voltage and frequency, even under significant load increases where traditional droop control alone proves inadequate. The post-disturbance operating point of GFCs remains unchanged using PINN-based control. Peak voltage deviation observed during transient reduced to 42.85\%. Furthermore, the proposed method ensures that the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV) remain within acceptable limits, significantly improving system resilience in inertia-less power networks.
Distributed observer-based leak detection in pipe flow with nonlinear friction
The problem of leak detection in a pipeline with nonlinear friction is considered. A distributed observer-based method is proposed which applies a linearised, distributed adaptive observer design to the nonlinear model. The methodology is tested in simulations for two different operating points.
comment: 4 pages, 3 figures, article was presented at IFAC CMWRS2022 (https://cmwrs2022.deib.polimi.it/) in the "Extended Abstract" category and is not available anywhere else
ALADIN-$β$: A Distributed Optimization Algorithm for Solving MPCC Problems
Mathematical Programs with Complementarity Constraints (MPCC) are critical in various real-world applications but notoriously challenging due to non-smoothness and degeneracy from complementarity constraints. The $\ell_1$-Exact Penalty-Barrier enhanced \texttt{IPOPT} improves performance and robustness by introducing additional inequality constraints and decision variables. However, this comes at the cost of increased computational complexity due to the higher dimensionality and additional constraints introduced in the centralized formulation. To mitigate this, we propose a distributed structure-splitting reformulation that decomposes these inequality constraints and auxiliary variables into independent sub-problems. Furthermore, we introduce Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)-$\beta$, a novel approach that integrates the $\ell_1$-Exact Penalty-Barrier method with ALADIN to efficiently solve the distributed reformulation. Numerical experiments demonstrate that even without a globalization strategy, the proposed distributed approach achieves fast convergence while maintaining high precision.
Distributed Forgetting-factor Regret-based Online Optimization over Undirected Connected Networks
The evaluation of final-iteration tracking performance is a formidable obstacle in distributed online optimization algorithms. To address this issue, this paper proposes a novel evaluation metric named distributed forgetting-factor regret (DFFR). It incorporates a weight into the loss function at each iteration, which progressively reduces the weights of historical loss functions while enabling dynamic weights allocation across optimization horizon. Furthermore, we develop two distributed online optimization algorithms based on DFFR over undirected connected networks: the Distributed Online Gradient-free Algorithm for bandit-feedback problems and the Distributed Online Projection-free Algorithm for high-dimensional problems. Through theoretical analysis, we derive the upper bounds of DFFR for both algorithms and further prove that under mild conditions, DFFR either converges to zero or maintains a tight upper bound as iterations approach infinity. Experimental simulation demonstrates the effectiveness of the algorithms and the superior performance of DFFR.
comment: 11 pages,6 figures
Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
On Tensor-based Polynomial Hamiltonian Systems
It is known that a linear system with a system matrix A constitutes a Hamiltonian system with a quadratic Hamiltonian if and only if A is a Hamiltonian matrix. This provides a straightforward method to verify whether a linear system is Hamiltonian or whether a given Hamiltonian function corresponds to a linear system. These techniques fundamentally rely on the properties of Hamiltonian matrices. Building on recent advances in tensor algebra, this paper generalizes such results to a broad class of polynomial systems. As the systems of interest can be naturally represented in tensor forms, we name them tensor-based polynomial systems. Our main contribution is that we formally define Hamiltonian cubical tensors and characterize their properties. Crucially, we demonstrate that a tensor-based polynomial system is a Hamiltonian system with a polynomial Hamiltonian if and only if all associated system tensors are Hamiltonian cubical tensors-a direct parallel to the linear case. Additionally, we establish a computationally tractable stability criterion for tensor-based polynomial Hamiltonian systems. Finally, we validate all theoretical results through numerical examples and provide a further intuitive discussion.
On Learning-Based Traffic Monitoring With a Swarm of Drones
Efficient traffic monitoring is crucial for managing urban transportation networks, especially under congested and dynamically changing traffic conditions. Drones offer a scalable and cost-effective alternative to fixed sensor networks. However, deploying fleets of low-cost drones for traffic monitoring poses challenges in adaptability, scalability, and real-time operation. To address these issues, we propose a learning-based framework for decentralized traffic monitoring with drone swarms, targeting the uneven and unpredictable distribution of monitoring needs across urban areas. Our approach introduces a semi-decentralized reinforcement learning model, which trains a single Q-function using the collective experience of the swarm. This model supports full scalability, flexible deployment, and, when hardware allows, the online adaptation of each drone's action-selection mechanism. We first train and evaluate the model in a synthetic traffic environment, followed by a case study using real traffic data from Shenzhen, China, to validate its performance and demonstrate its potential for real-world applications in complex urban monitoring tasks.
comment: Extended version of the paper accepted for presentation at the 23rd IEEE European Control Conference (ECC 2025), Thessaloniki, Greece
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
System-wide Instrument Transformer Calibration and Line Parameter Estimation Using PMU Data
Uncalibrated instrument transformers (ITs) can degrade the performance of downstream applications that rely on the voltage and current measurements that ITs provide. It is also well-known that phasor measurement unit (PMU)-based system-wide IT calibration and line parameter estimation (LPE) are interdependent problems. In this paper, we present a statistical framework for solving the simultaneous LPE and IT calibration (SLIC) problem using synchrophasor data. The proposed approach not only avoids the need for a perfect IT by judiciously placing a revenue quality meter (which is an expensive but non-perfect IT), but also accounts for the variations typically occurring in the line parameters. The results obtained using the IEEE 118-bus system as well as actual power system data demonstrate the high accuracy, robustness, and practical utility of the proposed approach.
TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
Extending Silicon Lifetime: A Review of Design Techniques for Reliable Integrated Circuits
Reliability has become an increasing concern in modern computing. Integrated circuits (ICs) are the backbone of modern computing devices across industries, including artificial intelligence (AI), consumer electronics, healthcare, automotive, industrial, and aerospace. Moore Law has driven the semiconductor IC industry toward smaller dimensions, improved performance, and greater energy efficiency. However, as transistors shrink to atomic scales, aging-related degradation mechanisms such as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Time-Dependent Dielectric Breakdown (TDDB), Electromigration (EM), and stochastic aging-induced variations have become major reliability threats. From an application perspective, applications like AI training and autonomous driving require continuous and sustainable operation to minimize recovery costs and enhance safety. Additionally, the high cost of chip replacement and reproduction underscores the need for extended lifespans. These factors highlight the urgency of designing more reliable ICs. This survey addresses the critical aging issues in ICs, focusing on fundamental degradation mechanisms and mitigation strategies. It provides a comprehensive overview of aging impact and the methods to counter it, starting with the root causes of aging and summarizing key monitoring techniques at both circuit and system levels. A detailed analysis of circuit-level mitigation strategies highlights the distinct aging characteristics of digital, analog, and SRAM circuits, emphasizing the need for tailored solutions. The survey also explores emerging software approaches in design automation, aging characterization, and mitigation, which are transforming traditional reliability optimization. Finally, it outlines the challenges and future directions for improving aging management and ensuring the long-term reliability of ICs across diverse applications.
comment: This work is under review by ACM
Cubature Kalman Filter as a Robust State Estimator Against Model Uncertainty and Cyber Attacks in Power Systems
It is known that the conventional estimators such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) may provide favorable performance; However, they may not guarantee the robustness against model uncertainty and cyber attacks. In this paper, we compare the performance of cubature Kalman filter (CKF) to the conventional nonlinear estimator, the EKF, under the affect of model uncertainty and cyber-attack. We show that the CKF has better estimation accuracy than the EKF under some conditions. In order to verify our claim, we have tested the performance various nonlinear estimators on the single machine infinite-bus (SMIB) system under different scenarios. We show that (1) the CKF provides better estimation results than the EKF; (2) the CKF is able to detect different types of cyber attacks reliably which is superior to the EKF.
Validation and Calibration of Energy Models with Real Vehicle Data from Chassis Dynamometer Experiments
Accurate estimation of vehicle fuel consumption typically requires detailed modeling of complex internal powertrain dynamics, often resulting in computationally intensive simulations. However, many transportation applications-such as traffic flow modeling, optimization, and control-require simplified models that are fast, interpretable, and easy to implement, while still maintaining fidelity to physical energy behavior. This work builds upon a recently developed model reduction pipeline that derives physics-like energy models from high-fidelity Autonomie vehicle simulations. These reduced models preserve essential vehicle dynamics, enabling realistic fuel consumption estimation with minimal computational overhead. While the reduced models have demonstrated strong agreement with their Autonomie counterparts, previous validation efforts have been confined to simulation environments. This study extends the validation by comparing the reduced energy model's outputs against real-world vehicle data. Focusing on the MidSUV category, we tune the baseline Autonomie model to closely replicate the characteristics of a Toyota RAV4. We then assess the accuracy of the resulting reduced model in estimating fuel consumption under actual drive conditions. Our findings suggest that, when the reference Autonomie model is properly calibrated, the simplified model produced by the reduction pipeline can provide reliable, semi-principled fuel rate estimates suitable for large-scale transportation applications.
Towards explainable data-driven predictive control with regularizations
Data-driven predictive control (DPC), using linear combinations of recorded trajectory data, has recently emerged as a popular alternative to traditional model predictive control (MPC). Without an explicitly enforced prediction model, the effects of commonly used regularization terms (and the resulting predictions) can be opaque. This opacity may lead to practical challenges, such as reliance on empirical tuning of regularization parameters based on closed-loop performance, and potentially misleading heuristic interpretations of norm-based regularizations. However, by examining the structure of the underlying optimal control problem (OCP), more precise and insightful interpretations of regularization effects can be derived. In this paper, we demonstrate how to analyze the predictive behavior of DPC through implicit predictors and the trajectory-specific effects of quadratic regularization. We further extend these results to cover typical DPC modifications, including DPC for affine systems, offset regularizations, slack variables, and terminal constraints. Additionally, we provide a simple but general result on (recursive) feasibility in DPC. This work aims to enhance the explainability and reliability of DPC by providing a deeper understanding of these regularization mechanisms.
comment: This is an Original Manuscript of an article to be published by De Gruyter in at - Automatisierungstechnik. 14 pages, 4 figures
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds via Oblique Projection
The dynamics in a primary Spectral Submanifold (SSM) constructed over the slowest modes of a dynamical system provide an ideal reduced-order model for nearby trajectories. Modeling the dynamics of trajectories further away from the primary SSM, however, is difficult if the linear part of the system exhibits strong non-normal behavior. Such non-normality implies that simply projecting trajectories onto SSMs along directions normal to the slow linear modes will not pair those trajectories correctly with their reduced counterparts on the SSMs. In principle, a well-defined nonlinear projection along a stable invariant foliation exists and would exactly match the full dynamics to the SSM-reduced dynamics. This foliation, however, cannot realistically be constructed from practically feasible amounts and distributions of experimental data. Here we develop an oblique projection technique that is able to approximate this foliation efficiently, even from a single experimental trajectory of a significantly non-normal and nonlinear beam.
Poster Abstract: Time Attacks using Kernel Vulnerabilities
Timekeeping is a fundamental component of modern computing; however, the security of system time remains an overlooked attack surface, leaving critical systems vulnerable to manipulation.
Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
Learning-based model augmentation with LFRs
Nonlinear system identification (NL-SI) has proven to be effective in obtaining accurate models for highly complex systems. In particular, recent encoder-based methods for artificial neural networks state-space (ANN-SS) models have achieved state-of-the-art performance on various benchmarks, while offering consistency and computational efficiency. Inclusion of prior knowledge of the system can be exploited to increase (i) estimation speed, (ii) accuracy, and (iii) interpretability of the resulting models. This paper proposes an encoder-based model augmentation method that incorporates prior knowledge from first-principles (FP) models. We introduce a novel \linear-fractional-representation (LFR) model structure that allows for the unified representation of various augmentation structures including the ones that are commonly used in the literature, and an identification algorithm for estimating the proposed structure together with appropriate initialization methods. The performance and generalization capabilities of the proposed method are demonstrated in a hardening mass-spring-damper simulation.
comment: Accepted for ECC 2025
Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
Predictable Interval MDPs through Entropy Regularization
Regularization of control policies using entropy can be instrumental in adjusting predictability of real-world systems. Applications benefiting from such approaches range from, e.g., cybersecurity, which aims at maximal unpredictability, to human-robot interaction, where predictable behavior is highly desirable. In this paper, we consider entropy regularization for interval Markov decision processes (IMDPs). IMDPs are uncertain MDPs, where transition probabilities are only known to belong to intervals. Lately, IMDPs have gained significant popularity in the context of abstracting stochastic systems for control design. In this work, we address robust minimization of the linear combination of entropy and a standard cumulative cost in IMDPs, thereby establishing a trade-off between optimality and predictability. We show that optimal deterministic policies exist, and devise a value-iteration algorithm to compute them. The algorithm solves a number of convex programs at each step. Finally, through an illustrative example we show the benefits of penalizing entropy in IMDPs.
comment: This paper has been presented at the 2024 63rd IEEE Conference on Decision and Control (CDC)
Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems
In a more connected world, modeling multi-agent systems with hyperbolic partial differential equations (PDEs) offers a potential solution to the curse of dimensionality. However, classical control tools need adaptation for these complex systems. Physics-informed neural networks (PINNs) provide a powerful framework to fix this issue by inferring solutions to PDEs by embedding governing equations into the neural network. A major limitation of original PINNs is their inability to capture steep gradients and discontinuities in hyperbolic PDEs. This paper proposes a stacked residual PINN method enhanced with a vanishing viscosity mechanism. Initially, a basic PINN with a small viscosity coefficient provides a stable, low-fidelity solution. Residual correction blocks with learnable scaling parameters then iteratively refine this solution, progressively decreasing the viscosity coefficient to transition from parabolic to hyperbolic PDEs. Applying this method to traffic state reconstruction improved results by an order of magnitude in relative $\mathcal{L}^2$ error, demonstrating its potential to accurately estimate solutions where original PINNs struggle with instability and low fidelity.
SPARC: Prediction-Based Safe Control for Coupled Controllable and Uncontrollable Agents with Conformal Predictions
We investigate the problem of safe control synthesis for systems operating in environments with uncontrollable agents whose dynamics are unknown but coupled with those of the controlled system. This scenario naturally arises in various applications, such as autonomous driving and human-robot collaboration, where the behavior of uncontrollable agents, like pedestrians, cannot be directly controlled but is influenced by the actions of the autonomous vehicle or robot. In this paper, we present SPARC (Safe Prediction-Based Robust Controller for Coupled Agents), a novel framework designed to ensure safe control in the presence of coupled uncontrollable agents. SPARC leverages conformal prediction to quantify uncertainty in data-driven prediction of agent behavior. Particularly, we introduce a joint distribution-based approach to account for the coupled dynamics of the controlled system and uncontrollable agents. By integrating the control barrier function (CBF) technique, SPARC provides provable safety guarantees at a high confidence level. We illustrate our framework with a case study involving an autonomous driving scenario with walking pedestrians.
Leader-Follower Formation and Tracking Control of Underactuated Surface Vessels
This Technical Note presents a simple control approach for global trajectory tracking and formation control of underactuated surface vessels equipped with only two propellers. The control approach exploits the inherent cascaded structure of the vehicle dynamics and is divided into control designs at the kinematics and kinetics levels. A controller with a low-gain feature is designed at the kinematics level by incorporating the cascaded system method, persistency of excitation, and the small-gain theorem. Furthermore, a PD+ controller is designed to achieve the velocity tracking at the kinetics level. The proposed control laws are partially linear and saturated linear and easy to implement. Based on a leader-follower scheme, our control approach applies to the formation tracking control problem of multi-vehicle systems under a directed spanning tree topology. Our main results guarantee uniform global asymptotic stability for the closed-loop system, which implies robustness with respect to bounded disturbances in the sense of Malkin's total stability, also known as local input-to-state stability.
Systems and Control (EESS)
The Construction of Asymptotic Bode Plots: A New Direct Method
Bode plots represent an essential tool in control and systems engineering. In order to perform an initial qualitative analysis of the considered systems, the construction of asymptotic Bode plots is often sufficient. The standard methods for constructing asymptotic Bode plots are characterized by the same drawbacks: they are not systematic, may be not precise and time-consuming. This is because they require the detailed analysis of the different factors composing the considered transfer function, meaning that more and more intermediate steps are required as the number of factors increases. In this paper, a new method for the construction of asymptotic Bode plots is proposed, which is based on the systematic calculations of the so-called generalized approximating functions and on the use of well defined properties. The proposed method is referred to as a direct method since it allows to directly draw the asymptotic Bode magnitude and phase plots of the complete transfer function without requiring the detailed analysis nor the plots construction of each factor. This latter feature also makes the proposed direct method more systematic, potentially more precise and less time-consuming compared to standard methods, especially when dealing with a large number of factors in the transfer function. The comparison of the proposed direct method with the standard approaches is performed, in order to examine the benefits offered by the direct method.
Economy and sustainability analysis with a novel modular configurable multi-modal white-box building model
This paper presents a novel modeling approach for building performance simulation, characterized as a white-box model with a high degree of modularity and flexibility, enabling direct integration into complex large-scale energy system co-simulations. The introduced model is described in detail, with a focus on its modular structure, and proposes various configurations that include various building insulation, heating methods, occupancy patterns, and weather data to analyze different scenarios, and the energy consumption, CO2 emissions, and heating costs are compared and analyzed across 36 introduced scenarios. The thermodynamic behavior of the model is shown to be consistent with real-world conditions, and the comparison of the scenarios concludes that the use of heat pumps for indoor heating in well-insulated buildings has significant economic and sustainability benefits, whereas the use of natural gas-fueled boilers is more cost-effective for buildings with low energy ratings.
AUTOBargeSim: MATLAB(R) toolbox for the design and analysis of the guidance and control system for autonomous inland vessels
This paper introduces AUTOBargeSim, a simulation toolbox for autonomous inland vessel guidance and control system design. AUTOBargeSim is developed using MATLAB and provides an easy-to-use introduction to various aspects of autonomous inland navigation, including mapping, modelling, control design, and collision avoidance, through examples and extensively documented code. Applying modular design principles in the simulator structure allows it to be easily modified according to the user's requirements. Furthermore, a GUI interface facilitates a simple and quick execution. Key performance indices for evaluating the performance of the controller and collision avoidance method in confined space are also provided. The current version of AUTOBargeSim attempts to improve reproducibility in the design and simulation of marine systems while serving as a foundation for simulating and evaluating vessel behaviour considering operational, system, and environmental constraints.
Real-time Tracking System with partially coupled sources
We consider a pull-based real-time tracking system consisting of multiple partially coupled sources and a sink. The sink monitors the sources in real-time and can request one source for an update at each time instant. The sources send updates over an unreliable wireless channel. The sources are partially coupled, and updates about one source can provide partial knowledge about other sources. We study the problem of minimizing the sum of an average distortion function and a transmission cost. Since the controller is at the sink side, the controller (sink) has only partial knowledge about the source states, and thus, we model the problem as a partially observable Markov decision process (POMDP) and then cast it as a belief-MDP problem. Using the relative value iteration algorithm, we solve the problem and propose a control policy. Simulation results show the proposed policy's effectiveness and superiority compared to a baseline policy.
Combining Graph Attention Networks and Distributed Optimization for Multi-Robot Mixed-Integer Convex Programming
In this paper, we develop a fast mixed-integer convex programming (MICP) framework for multi-robot navigation by combining graph attention networks and distributed optimization. We formulate a mixed-integer optimization problem for receding horizon motion planning of a multi-robot system, taking into account the surrounding obstacles. To address the resulting multi-agent MICP problem in real time, we propose a framework that utilizes heterogeneous graph attention networks to learn the latent mapping from problem parameters to optimal binary solutions. Furthermore, we apply a distributed proximal alternating direction method of multipliers algorithm for solving the convex continuous optimization problem. We demonstrate the effectiveness of our proposed framework through experiments conducted on a robotic testbed.
comment: submitted to CDC 2025
consexpressionR: an R package for consensus differential gene expression analysis
Motivation: Bulk RNA-Seq is a widely used method for studying gene expression across a variety of contexts. The significance of RNA-Seq studies has grown with the advent of high-throughput sequencing technologies. Computational methods have been developed for each stage of the identification of differentially expressed genes. Nevertheless, there are few studies exploring the association between different types of methods. In this study, we evaluated the impact of the association of methodologies in the results of differential expression analysis. By adopting two data sets with qPCR data (to gold-standard reference), seven methods were implemented and assessed in R packages (EBSeq, edgeR, DESeq2, limma, SAMseq, NOISeq, and Knowseq), which was performed and assessed separately and in association. The results were evaluated considering the adopted qPCR data. Results: Here, we introduce consexpressionR, an R package that automates differential expression analysis using consensus of at least seven methodologies, producing more assertive results with a significant reduction in false positives. Availability: consexpressionR is an R package available via source code and support are available at GitHub (https://github.com/costasilvati/consexpressionR).
Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
Physics-Informed Neural Network-Based Control for Grid-Forming Converter's Stability Under Overload Conditions
Grid-forming converters (GFCs) are pivotal in maintaining frequency and voltage stability in modern distribution systems. However, a critical challenge arises when these converters encounter sudden power demands that exceed their rated capacity. Although GFCs are designed to manage DC source saturation and limit excessive AC currents, their ability to ensure sufficient power delivery under such constraints remains a significant concern. Existing studies often overlook this limitation, potentially compromising system stability during high-demand scenarios. This paper proposes a control strategy based on a physics-informed neural network (PINN) to improve GFC performance under overloaded conditions, effectively preventing switch failures and mitigating DC source saturation. The proposed approach outperforms conventional methods by maintaining stable voltage and frequency, even under significant load increases where traditional droop control alone proves inadequate. The post-disturbance operating point of GFCs remains unchanged using PINN-based control. Peak voltage deviation observed during transient reduced to 42.85\%. Furthermore, the proposed method ensures that the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV) remain within acceptable limits, significantly improving system resilience in inertia-less power networks.
Distributed observer-based leak detection in pipe flow with nonlinear friction
The problem of leak detection in a pipeline with nonlinear friction is considered. A distributed observer-based method is proposed which applies a linearised, distributed adaptive observer design to the nonlinear model. The methodology is tested in simulations for two different operating points.
comment: 4 pages, 3 figures, article was presented at IFAC CMWRS2022 (https://cmwrs2022.deib.polimi.it/) in the "Extended Abstract" category and is not available anywhere else
ALADIN-$β$: A Distributed Optimization Algorithm for Solving MPCC Problems
Mathematical Programs with Complementarity Constraints (MPCC) are critical in various real-world applications but notoriously challenging due to non-smoothness and degeneracy from complementarity constraints. The $\ell_1$-Exact Penalty-Barrier enhanced \texttt{IPOPT} improves performance and robustness by introducing additional inequality constraints and decision variables. However, this comes at the cost of increased computational complexity due to the higher dimensionality and additional constraints introduced in the centralized formulation. To mitigate this, we propose a distributed structure-splitting reformulation that decomposes these inequality constraints and auxiliary variables into independent sub-problems. Furthermore, we introduce Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)-$\beta$, a novel approach that integrates the $\ell_1$-Exact Penalty-Barrier method with ALADIN to efficiently solve the distributed reformulation. Numerical experiments demonstrate that even without a globalization strategy, the proposed distributed approach achieves fast convergence while maintaining high precision.
Distributed Forgetting-factor Regret-based Online Optimization over Undirected Connected Networks
The evaluation of final-iteration tracking performance is a formidable obstacle in distributed online optimization algorithms. To address this issue, this paper proposes a novel evaluation metric named distributed forgetting-factor regret (DFFR). It incorporates a weight into the loss function at each iteration, which progressively reduces the weights of historical loss functions while enabling dynamic weights allocation across optimization horizon. Furthermore, we develop two distributed online optimization algorithms based on DFFR over undirected connected networks: the Distributed Online Gradient-free Algorithm for bandit-feedback problems and the Distributed Online Projection-free Algorithm for high-dimensional problems. Through theoretical analysis, we derive the upper bounds of DFFR for both algorithms and further prove that under mild conditions, DFFR either converges to zero or maintains a tight upper bound as iterations approach infinity. Experimental simulation demonstrates the effectiveness of the algorithms and the superior performance of DFFR.
comment: 11 pages,6 figures
Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
On Tensor-based Polynomial Hamiltonian Systems
It is known that a linear system with a system matrix A constitutes a Hamiltonian system with a quadratic Hamiltonian if and only if A is a Hamiltonian matrix. This provides a straightforward method to verify whether a linear system is Hamiltonian or whether a given Hamiltonian function corresponds to a linear system. These techniques fundamentally rely on the properties of Hamiltonian matrices. Building on recent advances in tensor algebra, this paper generalizes such results to a broad class of polynomial systems. As the systems of interest can be naturally represented in tensor forms, we name them tensor-based polynomial systems. Our main contribution is that we formally define Hamiltonian cubical tensors and characterize their properties. Crucially, we demonstrate that a tensor-based polynomial system is a Hamiltonian system with a polynomial Hamiltonian if and only if all associated system tensors are Hamiltonian cubical tensors-a direct parallel to the linear case. Additionally, we establish a computationally tractable stability criterion for tensor-based polynomial Hamiltonian systems. Finally, we validate all theoretical results through numerical examples and provide a further intuitive discussion.
On Learning-Based Traffic Monitoring With a Swarm of Drones
Efficient traffic monitoring is crucial for managing urban transportation networks, especially under congested and dynamically changing traffic conditions. Drones offer a scalable and cost-effective alternative to fixed sensor networks. However, deploying fleets of low-cost drones for traffic monitoring poses challenges in adaptability, scalability, and real-time operation. To address these issues, we propose a learning-based framework for decentralized traffic monitoring with drone swarms, targeting the uneven and unpredictable distribution of monitoring needs across urban areas. Our approach introduces a semi-decentralized reinforcement learning model, which trains a single Q-function using the collective experience of the swarm. This model supports full scalability, flexible deployment, and, when hardware allows, the online adaptation of each drone's action-selection mechanism. We first train and evaluate the model in a synthetic traffic environment, followed by a case study using real traffic data from Shenzhen, China, to validate its performance and demonstrate its potential for real-world applications in complex urban monitoring tasks.
comment: Extended version of the paper accepted for presentation at the 23rd IEEE European Control Conference (ECC 2025), Thessaloniki, Greece
AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
System-wide Instrument Transformer Calibration and Line Parameter Estimation Using PMU Data
Uncalibrated instrument transformers (ITs) can degrade the performance of downstream applications that rely on the voltage and current measurements that ITs provide. It is also well-known that phasor measurement unit (PMU)-based system-wide IT calibration and line parameter estimation (LPE) are interdependent problems. In this paper, we present a statistical framework for solving the simultaneous LPE and IT calibration (SLIC) problem using synchrophasor data. The proposed approach not only avoids the need for a perfect IT by judiciously placing a revenue quality meter (which is an expensive but non-perfect IT), but also accounts for the variations typically occurring in the line parameters. The results obtained using the IEEE 118-bus system as well as actual power system data demonstrate the high accuracy, robustness, and practical utility of the proposed approach.
TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
Extending Silicon Lifetime: A Review of Design Techniques for Reliable Integrated Circuits
Reliability has become an increasing concern in modern computing. Integrated circuits (ICs) are the backbone of modern computing devices across industries, including artificial intelligence (AI), consumer electronics, healthcare, automotive, industrial, and aerospace. Moore Law has driven the semiconductor IC industry toward smaller dimensions, improved performance, and greater energy efficiency. However, as transistors shrink to atomic scales, aging-related degradation mechanisms such as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Time-Dependent Dielectric Breakdown (TDDB), Electromigration (EM), and stochastic aging-induced variations have become major reliability threats. From an application perspective, applications like AI training and autonomous driving require continuous and sustainable operation to minimize recovery costs and enhance safety. Additionally, the high cost of chip replacement and reproduction underscores the need for extended lifespans. These factors highlight the urgency of designing more reliable ICs. This survey addresses the critical aging issues in ICs, focusing on fundamental degradation mechanisms and mitigation strategies. It provides a comprehensive overview of aging impact and the methods to counter it, starting with the root causes of aging and summarizing key monitoring techniques at both circuit and system levels. A detailed analysis of circuit-level mitigation strategies highlights the distinct aging characteristics of digital, analog, and SRAM circuits, emphasizing the need for tailored solutions. The survey also explores emerging software approaches in design automation, aging characterization, and mitigation, which are transforming traditional reliability optimization. Finally, it outlines the challenges and future directions for improving aging management and ensuring the long-term reliability of ICs across diverse applications.
comment: This work is under review by ACM
Cubature Kalman Filter as a Robust State Estimator Against Model Uncertainty and Cyber Attacks in Power Systems
It is known that the conventional estimators such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) may provide favorable performance; However, they may not guarantee the robustness against model uncertainty and cyber attacks. In this paper, we compare the performance of cubature Kalman filter (CKF) to the conventional nonlinear estimator, the EKF, under the affect of model uncertainty and cyber-attack. We show that the CKF has better estimation accuracy than the EKF under some conditions. In order to verify our claim, we have tested the performance various nonlinear estimators on the single machine infinite-bus (SMIB) system under different scenarios. We show that (1) the CKF provides better estimation results than the EKF; (2) the CKF is able to detect different types of cyber attacks reliably which is superior to the EKF.
Validation and Calibration of Energy Models with Real Vehicle Data from Chassis Dynamometer Experiments
Accurate estimation of vehicle fuel consumption typically requires detailed modeling of complex internal powertrain dynamics, often resulting in computationally intensive simulations. However, many transportation applications-such as traffic flow modeling, optimization, and control-require simplified models that are fast, interpretable, and easy to implement, while still maintaining fidelity to physical energy behavior. This work builds upon a recently developed model reduction pipeline that derives physics-like energy models from high-fidelity Autonomie vehicle simulations. These reduced models preserve essential vehicle dynamics, enabling realistic fuel consumption estimation with minimal computational overhead. While the reduced models have demonstrated strong agreement with their Autonomie counterparts, previous validation efforts have been confined to simulation environments. This study extends the validation by comparing the reduced energy model's outputs against real-world vehicle data. Focusing on the MidSUV category, we tune the baseline Autonomie model to closely replicate the characteristics of a Toyota RAV4. We then assess the accuracy of the resulting reduced model in estimating fuel consumption under actual drive conditions. Our findings suggest that, when the reference Autonomie model is properly calibrated, the simplified model produced by the reduction pipeline can provide reliable, semi-principled fuel rate estimates suitable for large-scale transportation applications.
Towards explainable data-driven predictive control with regularizations
Data-driven predictive control (DPC), using linear combinations of recorded trajectory data, has recently emerged as a popular alternative to traditional model predictive control (MPC). Without an explicitly enforced prediction model, the effects of commonly used regularization terms (and the resulting predictions) can be opaque. This opacity may lead to practical challenges, such as reliance on empirical tuning of regularization parameters based on closed-loop performance, and potentially misleading heuristic interpretations of norm-based regularizations. However, by examining the structure of the underlying optimal control problem (OCP), more precise and insightful interpretations of regularization effects can be derived. In this paper, we demonstrate how to analyze the predictive behavior of DPC through implicit predictors and the trajectory-specific effects of quadratic regularization. We further extend these results to cover typical DPC modifications, including DPC for affine systems, offset regularizations, slack variables, and terminal constraints. Additionally, we provide a simple but general result on (recursive) feasibility in DPC. This work aims to enhance the explainability and reliability of DPC by providing a deeper understanding of these regularization mechanisms.
comment: This is an Original Manuscript of an article to be published by De Gruyter in at - Automatisierungstechnik. 14 pages, 4 figures
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds via Oblique Projection
The dynamics in a primary Spectral Submanifold (SSM) constructed over the slowest modes of a dynamical system provide an ideal reduced-order model for nearby trajectories. Modeling the dynamics of trajectories further away from the primary SSM, however, is difficult if the linear part of the system exhibits strong non-normal behavior. Such non-normality implies that simply projecting trajectories onto SSMs along directions normal to the slow linear modes will not pair those trajectories correctly with their reduced counterparts on the SSMs. In principle, a well-defined nonlinear projection along a stable invariant foliation exists and would exactly match the full dynamics to the SSM-reduced dynamics. This foliation, however, cannot realistically be constructed from practically feasible amounts and distributions of experimental data. Here we develop an oblique projection technique that is able to approximate this foliation efficiently, even from a single experimental trajectory of a significantly non-normal and nonlinear beam.
Poster Abstract: Time Attacks using Kernel Vulnerabilities
Timekeeping is a fundamental component of modern computing; however, the security of system time remains an overlooked attack surface, leaving critical systems vulnerable to manipulation.
Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
Learning-based model augmentation with LFRs
Nonlinear system identification (NL-SI) has proven to be effective in obtaining accurate models for highly complex systems. In particular, recent encoder-based methods for artificial neural networks state-space (ANN-SS) models have achieved state-of-the-art performance on various benchmarks, while offering consistency and computational efficiency. Inclusion of prior knowledge of the system can be exploited to increase (i) estimation speed, (ii) accuracy, and (iii) interpretability of the resulting models. This paper proposes an encoder-based model augmentation method that incorporates prior knowledge from first-principles (FP) models. We introduce a novel \linear-fractional-representation (LFR) model structure that allows for the unified representation of various augmentation structures including the ones that are commonly used in the literature, and an identification algorithm for estimating the proposed structure together with appropriate initialization methods. The performance and generalization capabilities of the proposed method are demonstrated in a hardening mass-spring-damper simulation.
comment: Accepted for ECC 2025
Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
Predictable Interval MDPs through Entropy Regularization
Regularization of control policies using entropy can be instrumental in adjusting predictability of real-world systems. Applications benefiting from such approaches range from, e.g., cybersecurity, which aims at maximal unpredictability, to human-robot interaction, where predictable behavior is highly desirable. In this paper, we consider entropy regularization for interval Markov decision processes (IMDPs). IMDPs are uncertain MDPs, where transition probabilities are only known to belong to intervals. Lately, IMDPs have gained significant popularity in the context of abstracting stochastic systems for control design. In this work, we address robust minimization of the linear combination of entropy and a standard cumulative cost in IMDPs, thereby establishing a trade-off between optimality and predictability. We show that optimal deterministic policies exist, and devise a value-iteration algorithm to compute them. The algorithm solves a number of convex programs at each step. Finally, through an illustrative example we show the benefits of penalizing entropy in IMDPs.
comment: This paper has been presented at the 2024 63rd IEEE Conference on Decision and Control (CDC)
Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems
In a more connected world, modeling multi-agent systems with hyperbolic partial differential equations (PDEs) offers a potential solution to the curse of dimensionality. However, classical control tools need adaptation for these complex systems. Physics-informed neural networks (PINNs) provide a powerful framework to fix this issue by inferring solutions to PDEs by embedding governing equations into the neural network. A major limitation of original PINNs is their inability to capture steep gradients and discontinuities in hyperbolic PDEs. This paper proposes a stacked residual PINN method enhanced with a vanishing viscosity mechanism. Initially, a basic PINN with a small viscosity coefficient provides a stable, low-fidelity solution. Residual correction blocks with learnable scaling parameters then iteratively refine this solution, progressively decreasing the viscosity coefficient to transition from parabolic to hyperbolic PDEs. Applying this method to traffic state reconstruction improved results by an order of magnitude in relative $\mathcal{L}^2$ error, demonstrating its potential to accurately estimate solutions where original PINNs struggle with instability and low fidelity.
SPARC: Prediction-Based Safe Control for Coupled Controllable and Uncontrollable Agents with Conformal Predictions
We investigate the problem of safe control synthesis for systems operating in environments with uncontrollable agents whose dynamics are unknown but coupled with those of the controlled system. This scenario naturally arises in various applications, such as autonomous driving and human-robot collaboration, where the behavior of uncontrollable agents, like pedestrians, cannot be directly controlled but is influenced by the actions of the autonomous vehicle or robot. In this paper, we present SPARC (Safe Prediction-Based Robust Controller for Coupled Agents), a novel framework designed to ensure safe control in the presence of coupled uncontrollable agents. SPARC leverages conformal prediction to quantify uncertainty in data-driven prediction of agent behavior. Particularly, we introduce a joint distribution-based approach to account for the coupled dynamics of the controlled system and uncontrollable agents. By integrating the control barrier function (CBF) technique, SPARC provides provable safety guarantees at a high confidence level. We illustrate our framework with a case study involving an autonomous driving scenario with walking pedestrians.
Leader-Follower Formation and Tracking Control of Underactuated Surface Vessels
This Technical Note presents a simple control approach for global trajectory tracking and formation control of underactuated surface vessels equipped with only two propellers. The control approach exploits the inherent cascaded structure of the vehicle dynamics and is divided into control designs at the kinematics and kinetics levels. A controller with a low-gain feature is designed at the kinematics level by incorporating the cascaded system method, persistency of excitation, and the small-gain theorem. Furthermore, a PD+ controller is designed to achieve the velocity tracking at the kinetics level. The proposed control laws are partially linear and saturated linear and easy to implement. Based on a leader-follower scheme, our control approach applies to the formation tracking control problem of multi-vehicle systems under a directed spanning tree topology. Our main results guarantee uniform global asymptotic stability for the closed-loop system, which implies robustness with respect to bounded disturbances in the sense of Malkin's total stability, also known as local input-to-state stability.
Robotics
Flying Vines: Design, Modeling, and Control of a Soft Aerial Robotic Arm
Aerial robotic arms aim to enable inspection and environment interaction in otherwise hard-to-reach areas from the air. However, many aerial manipulators feature bulky or heavy robot manipulators mounted to large, high-payload aerial vehicles. Instead, we propose an aerial robotic arm with low mass and a small stowed configuration called a "flying vine". The flying vine consists of a small, maneuverable quadrotor equipped with a soft, growing, inflated beam as the arm. This soft robot arm is underactuated, and positioning of the end effector is achieved by controlling the coupled quadrotor-vine dynamics. In this work, we present the flying vine design and a modeling and control framework for tracking desired end effector trajectories. The dynamic model leverages data-driven modeling methods and introduces bilinear interpolation to account for time-varying dynamic parameters. We use trajectory optimization to plan quadrotor controls that produce desired end effector motions. Experimental results on a physical prototype demonstrate that our framework enables the flying vine to perform high-speed end effector tracking, laying a foundation for performing dynamic maneuvers with soft aerial manipulators.
comment: Submitted to RA-L
Multi-Robot Coordination Under Physical Limitations
Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.
Beyond Visuals: Investigating Force Feedback in Extended Reality for Robot Data Collection
This work explores how force feedback affects various aspects of robot data collection within the Extended Reality (XR) setting. Force feedback has been proved to enhance the user experience in Extended Reality (XR) by providing contact-rich information. However, its impact on robot data collection has not received much attention in the robotics community. This paper addresses this shortcoming by conducting an extensive user study on the effects of force feedback during data collection in XR. We extended two XR-based robot control interfaces, Kinesthetic Teaching and Motion Controllers, with haptic feedback features. The user study is conducted using manipulation tasks ranging from simple pick-place to complex peg assemble, requiring precise operations. The evaluations show that force feedback enhances task performance and user experience, particularly in tasks requiring high-precision manipulation. These improvements vary depending on the robot control interface and task complexity. This paper provides new insights into how different factors influence the impact of force feedback.
Toward Dynamic Control of Tendon-Driven Continuum Robots using Clarke Transform
In this paper, we propose a dynamic model and control framework for tendon-driven continuum robots with multiple segments and an arbitrary number of tendons per segment. Our approach leverages the Clarke transform, the Euler-Lagrange formalism, and the piecewise constant curvature assumption to formulate a dynamic model on a two-dimensional manifold embedded in the joint space that inherently satisfies tendon constraints. We present linear controllers that operate directly on this manifold, along with practical methods for preventing negative tendon forces without compromising control fidelity. We validate these approaches in simulation and on a physical prototype with one segment and five tendons, demonstrating accurate dynamic behavior and robust trajectory tracking under real-time conditions.
comment: 8 pages and 8 figures
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
Representation Improvement in Latent Space for Search-Based Testing of Autonomous Robotic Systems
Testing autonomous robotic systems, such as self-driving cars and unmanned aerial vehicles, is challenging due to their interaction with highly unpredictable environments. A common practice is to first conduct simulation-based testing, which, despite reducing real-world risks, remains time-consuming and resource-intensive due to the vast space of possible test scenarios. A number of search-based approaches were proposed to generate test scenarios more efficiently. A key aspect of any search-based test generation approach is the choice of representation used during the search process. However, existing methods for improving test scenario representation remain limited. We propose RILaST (Representation Improvement in Latent Space for Search-Based Testing) approach, which enhances test representation by mapping it to the latent space of a variational autoencoder. We evaluate RILaST on two use cases, including autonomous drone and autonomous lane-keeping assist system. The obtained results show that RILaST allows finding between 3 to 4.6 times more failures than baseline approaches, achieving a high level of test diversity.
Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
Safety integrity framework for automated driving
This paper describes the comprehensive safety framework that underpinned the development, release process, and regulatory approval of BMW's first SAE Level 3 Automated Driving System. The framework combines established qualitative and quantitative methods from the fields of Systems Engineering, Engineering Risk Analysis, Bayesian Data Analysis, Design of Experiments, and Statistical Learning in a novel manner. The approach systematically minimizes the risks associated with hardware and software faults, performance limitations, and insufficient specifications to an acceptable level that achieves a Positive Risk Balance. At the core of the framework is the systematic identification and quantification of uncertainties associated with hazard scenarios and the redundantly designed system based on designed experiments, field data, and expert knowledge. The residual risk of the system is then estimated through Stochastic Simulation and evaluated by Sensitivity Analysis. By integrating these advanced analytical techniques into the V-Model, the framework fulfills, unifies, and complements existing automotive safety standards. It therefore provides a comprehensive, rigorous, and transparent safety assurance process for the development and deployment of Automated Driving Systems.
Combining Machine Learning and Sampling-Based Search for Multi-Goal Motion Planning with Dynamics IJCAI 2025
This paper considers multi-goal motion planning in unstructured, obstacle-rich environments where a robot is required to reach multiple regions while avoiding collisions. The planned motions must also satisfy the differential constraints imposed by the robot dynamics. To find solutions efficiently, this paper leverages machine learning, Traveling Salesman Problem (TSP), and sampling-based motion planning. The approach expands a motion tree by adding collision-free and dynamically-feasible trajectories as branches. A TSP solver is used to compute a tour for each node to determine the order in which to reach the remaining goals by utilizing a cost matrix. An important aspect of the approach is that it leverages machine learning to construct the cost matrix by combining runtime and distance predictions to single-goal motion-planning problems. During the motion-tree expansion, priority is given to nodes associated with low-cost tours. Experiments with a vehicle model operating in obstacle-rich environments demonstrate the computational efficiency and scalability of the approach.
comment: 10 pages, 2025 International Joint Conference on Artificial Intelligence (IJCAI 2025)
GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
Decremental Dynamics Planning for Robot Navigation IROS 2025
Most, if not all, robot navigation systems employ a decomposed planning framework that includes global and local planning. To trade-off onboard computation and plan quality, current systems have to limit all robot dynamics considerations only within the local planner, while leveraging an extremely simplified robot representation (e.g., a point-mass holonomic model without dynamics) in the global level. However, such an artificial decomposition based on either full or zero consideration of robot dynamics can lead to gaps between the two levels, e.g., a global path based on a holonomic point-mass model may not be realizable by a non-holonomic robot, especially in highly constrained obstacle environments. Motivated by such a limitation, we propose a novel paradigm, Decremental Dynamics Planning that integrates dynamic constraints into the entire planning process, with a focus on high-fidelity dynamics modeling at the beginning and a gradual fidelity reduction as the planning progresses. To validate the effectiveness of this paradigm, we augment three different planners with DDP and show overall improved planning performance. We also develop a new DDP-based navigation system, which achieves first place in the simulation phase of the 2025 BARN Challenge. Both simulated and physical experiments validate DDP's hypothesized benefits.
comment: 7 pages. 2025 International Conference on Intelligent Robots and Systems (IROS 2025)
Exploring the Effect of Robotic Embodiment and Empathetic Tone of LLMs on Empathy Elicitation
This study investigates the elicitation of empathy toward a third party through interaction with social agents. Participants engaged with either a physical robot or a voice-enabled chatbot, both driven by a large language model (LLM) programmed to exhibit either an empathetic tone or remain neutral. The interaction is focused on a fictional character, Katie Banks, who is in a challenging situation and in need of financial donations. The willingness to help Katie, measured by the number of hours participants were willing to volunteer, along with their perceptions of the agent, were assessed for 60 participants. Results indicate that neither robotic embodiment nor empathetic tone significantly influenced participants' willingness to volunteer. While the LLM effectively simulated human empathy, fostering genuine empathetic responses in participants proved challenging.
comment: *Liza Darwesh, Jaspreet Singh, Marin Marian, and Eduard Alexa contributed equally to this work.*
Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
CTS-CBS: A New Approach for Multi-Agent Collaborative Task Sequencing and Path Finding
This paper addresses a generalization problem of Multi-Agent Pathfinding (MAPF), called Collaborative Task Sequencing - Multi-Agent Pathfinding (CTS-MAPF), where agents must plan collision-free paths and visit a series of intermediate task locations in a specific order before reaching their final destinations. To address this problem, we propose a new approach, Collaborative Task Sequencing - Conflict-Based Search (CTS-CBS), which conducts a two-level search. In the high level, it generates a search forest, where each tree corresponds to a joint task sequence derived from the jTSP solution. In the low level, CTS-CBS performs constrained single-agent path planning to generate paths for each agent while adhering to high-level constraints. We also provide heoretical guarantees of its completeness and optimality (or sub-optimality with a bounded parameter). To evaluate the performance of CTS-CBS, we create two datasets, CTS-MAPF and MG-MAPF, and conduct comprehensive experiments. The results show that CTS-CBS adaptations for MG-MAPF outperform baseline algorithms in terms of success rate (up to 20 times larger) and runtime (up to 100 times faster), with less than a 10% sacrifice in solution quality. Furthermore, CTS-CBS offers flexibility by allowing users to adjust the sub-optimality bound omega to balance between solution quality and efficiency. Finally, practical robot tests demonstrate the algorithm's applicability in real-world scenarios.
Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
LGR: LLM-Guided Ranking of Frontiers for Object Goal Navigation
Object Goal Navigation (OGN) is a fundamental task for robots and AI, with key applications such as mobile robot image databases (MRID). In particular, mapless OGN is essential in scenarios involving unknown or dynamic environments. This study aims to enhance recent modular mapless OGN systems by leveraging the commonsense reasoning capabilities of large language models (LLMs). Specifically, we address the challenge of determining the visiting order in frontier-based exploration by framing it as a frontier ranking problem. Our approach is grounded in recent findings that, while LLMs cannot determine the absolute value of a frontier, they excel at evaluating the relative value between multiple frontiers viewed within a single image using the view image as context. We dynamically manage the frontier list by adding and removing elements, using an LLM as a ranking model. The ranking results are represented as reciprocal rank vectors, which are ideal for multi-view, multi-query information fusion. We validate the effectiveness of our method through evaluations in Habitat-Sim.
comment: 10 pages, 11 figures, technical report
A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
Synthetic-to-Real Self-supervised Robust Depth Estimation via Learning with Motion and Structure Priors
Self-supervised depth estimation from monocular cameras in diverse outdoor conditions, such as daytime, rain, and nighttime, is challenging due to the difficulty of learning universal representations and the severe lack of labeled real-world adverse data. Previous methods either rely on synthetic inputs and pseudo-depth labels or directly apply daytime strategies to adverse conditions, resulting in suboptimal results. In this paper, we present the first synthetic-to-real robust depth estimation framework, incorporating motion and structure priors to capture real-world knowledge effectively. In the synthetic adaptation, we transfer motion-structure knowledge inside cost volumes for better robust representation, using a frozen daytime model to train a depth estimator in synthetic adverse conditions. In the innovative real adaptation, which targets to fix synthetic-real gaps, models trained earlier identify the weather-insensitive regions with a designed consistency-reweighting strategy to emphasize valid pseudo-labels. We introduce a new regularization by gathering explicit depth distributions to constrain the model when facing real-world data. Experiments show that our method outperforms the state-of-the-art across diverse conditions in multi-frame and single-frame evaluations. We achieve improvements of 7.5% and 4.3% in AbsRel and RMSE on average for nuScenes and Robotcar datasets (daytime, nighttime, rain). In zero-shot evaluation of DrivingStereo (rain, fog), our method generalizes better than the previous ones.
Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 9 pages, 10 figures
SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
Bandwidth Allocation for Cloud-Augmented Autonomous Driving
Autonomous vehicle (AV) control systems increasingly rely on ML models for tasks such as perception and planning. Current practice is to run these models on the car's local hardware due to real-time latency constraints and reliability concerns, which limits model size and thus accuracy. Prior work has observed that we could augment current systems by running larger models in the cloud, relying on faster cloud runtimes to offset the cellular network latency. However, prior work does not account for an important practical constraint: limited cellular bandwidth. We show that, for typical bandwidth levels, proposed techniques for cloud-augmented AV models take too long to transfer data, thus mostly falling back to the on-car models and resulting in no accuracy improvement. In this work, we show that realizing cloud-augmented AV models requires intelligent use of this scarce bandwidth, i.e. carefully allocating bandwidth across tasks and providing multiple data compression and model options. We formulate this as a resource allocation problem to maximize car utility, and present our system \sysname which achieves an increase in average model accuracy by up to 15 percentage points on driving scenarios from the Waymo Open Dataset.
comment: 18 pages, 11 figures
Exploring Interference between Concurrent Skin Stretches
Proprioception is essential for coordinating human movements and enhancing the performance of assistive robotic devices. Skin stretch feedback, which closely aligns with natural proprioception mechanisms, presents a promising method for conveying proprioceptive information. To better understand the impact of interference on skin stretch perception, we conducted a user study with 30 participants that evaluated the effect of two simultaneous skin stretches on user perception. We observed that when participants experience simultaneous skin stretch stimuli, a masking effect occurs which deteriorates perception performance in the collocated skin stretch configurations. However, the perceived workload stays the same. These findings show that interference can affect the perception of skin stretch such that multi-channel skin stretch feedback designs should avoid locating modules in close proximity.
Pellet-based 3D Printing of Soft Thermoplastic Elastomeric Membranes for Soft Robotic Applications
Additive Manufacturing (AM) is a promising solution for handling the complexity of fabricating soft robots. However, the AM of hyperelastic materials is still challenging with limited material types. Within this work, pellet-based 3D printing of very soft thermoplastic elastomers (TPEs) was explored. Our results show that TPEs can have similar engineering stress and maximum strain as Ecoflex OO-10. These TPEs were used to 3D-print airtight thin membranes (0.2-1.2 mm), which could inflate up to a stretch of 1320\%. Combining the membrane's large expansion and softness with the 3D printing of hollow structures simplified the design of a bending actuator that can bend 180 degrees and reach a blocked force of 238 times its weight. In addition, by 3D printing TPE pellets and rigid filaments, the soft membrane could grasp objects by enveloping an object or as a sensorized sucker, which relied on the TPE's softness to conform to the object or act as a seal. In addition, the membrane of the sucker was utilized as a tactile sensor to detect an object before adhesion. These results suggest the feasibility of 3D printing soft robots by using soft TPEs and membranes as an interesting class of materials and sensorized actuators, respectively.
A Study of Perceived Safety for Soft Robotics in Caregiving Tasks
In this project, we focus on human-robot interaction in caregiving scenarios like bathing, where physical contact is inevitable and necessary for proper task execution because force must be applied to the skin. Using finite element analysis, we designed a 3D-printed gripper combining positive and negative pressure for secure yet compliant handling. Preliminary tests showed it exerted a lower, more uniform pressure profile than a standard rigid gripper. In a user study, participants' trust in robots significantly increased after they experienced a brief bathing demonstration performed by a robotic arm equipped with the soft gripper. These results suggest that soft robotics can enhance perceived safety and acceptance in intimate caregiving scenarios.
Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
comment: 9 pages, 6 figures
Anti Robot Speciesism
Humanoid robots are a form of embodied artificial intelligence (AI) that looks and acts more and more like humans. Powered by generative AI and advances in robotics, humanoid robots can speak and interact with humans rather naturally but are still easily recognizable as robots. But how will we treat humanoids when they seem indistinguishable from humans in appearance and mind? We find a tendency (called "anti-robot" speciesism) to deny such robots humanlike capabilities, driven by motivations to accord members of the human species preferential treatment. Six experiments show that robots are denied humanlike attributes, simply because they are not biological beings and because humans want to avoid feelings of cognitive dissonance when utilizing such robots for unsavory tasks. Thus, people do not rationally attribute capabilities to perfectly humanlike robots but deny them capabilities as it suits them.
In vitro 2 In vivo : Bidirectional and High-Precision Generation of In Vitro and In Vivo Neuronal Spike Data
Neurons encode information in a binary manner and process complex signals. However, predicting or generating diverse neural activity patterns remains challenging. In vitro and in vivo studies provide distinct advantages, yet no robust computational framework seamlessly integrates both data types. We address this by applying the Transformer model, widely used in large-scale language models, to neural data. To handle binary data, we introduced Dice loss, enabling accurate cross-domain neural activity generation. Structural analysis revealed how Dice loss enhances learning and identified key brain regions facilitating high-precision data generation. Our findings support the 3Rs principle in animal research, particularly Replacement, and establish a mathematical framework bridging animal experiments and human clinical studies. This work advances data-driven neuroscience and neural activity modeling, paving the way for more ethical and effective experimental methodologies.
comment: 17 pages, 5 figures
TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
UAV-Assisted Self-Supervised Terrain Awareness for Off-Road Navigation ICRA 2025
Terrain awareness is an essential milestone to enable truly autonomous off-road navigation. Accurately predicting terrain characteristics allows optimizing a vehicle's path against potential hazards. Recent methods use deep neural networks to predict traversability-related terrain properties in a self-supervised manner, relying on proprioception as a training signal. However, onboard cameras are inherently limited by their point-of-view relative to the ground, suffering from occlusions and vanishing pixel density with distance. This paper introduces a novel approach for self-supervised terrain characterization using an aerial perspective from a hovering drone. We capture terrain-aligned images while sampling the environment with a ground vehicle, effectively training a simple predictor for vibrations, bumpiness, and energy consumption. Our dataset includes 2.8 km of off-road data collected in forest environment, comprising 13 484 ground-based images and 12 935 aerial images. Our findings show that drone imagery improves terrain property prediction by 21.37 % on the whole dataset and 37.35 % in high vegetation, compared to ground robot images. We conduct ablation studies to identify the main causes of these performance improvements. We also demonstrate the real-world applicability of our approach by scouting an unseen area with a drone, planning and executing an optimized path on the ground.
comment: 7 pages, 5 figures, submitted to ICRA 2025
Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery
Imitation learning is a data-driven approach to learning policies from expert behavior, but it is prone to unreliable outcomes in out-of-sample (OOS) regions. While previous research relying on stable dynamical systems guarantees convergence to a desired state, it often overlooks transient behavior. We propose a framework for learning policies modeled by contractive dynamical systems, ensuring that all policy rollouts converge regardless of perturbations, and in turn, enable efficient OOS recovery. By leveraging recurrent equilibrium networks and coupling layers, the policy structure guarantees contractivity for any parameter choice, which facilitates unconstrained optimization. We also provide theoretical upper bounds for worst-case and expected loss to rigorously establish the reliability of our method in deployment. Empirically, we demonstrate substantial OOS performance improvements for simulated robotic manipulation and navigation tasks.
comment: International Conference on Learning Representations
The Morphology-Control Trade-Off: Insights into Soft Robotic Efficiency
Soft robotics holds transformative potential for enabling adaptive and adaptable systems in dynamic environments. However, the interplay between morphological and control complexities and their collective impact on task performance remains poorly understood. Therefore, in this study, we investigate these trade-offs across tasks of differing difficulty levels using four well-used morphological complexity metrics and control complexity measured by FLOPs. We investigate how these factors jointly influence task performance by utilizing the evolutionary robot experiments. Results show that optimal performance depends on the alignment between morphology and control: simpler morphologies and lightweight controllers suffice for easier tasks, while harder tasks demand higher complexities in both dimensions. In addition, a clear trade-off between morphological and control complexities that achieve the same task performance can be observed. Moreover, we also propose a sensitivity analysis to expose the task-specific contributions of individual morphological metrics. Our study establishes a framework for investigating the relationships between morphology, control, and task performance, advancing the development of task-specific robotic designs that balance computational efficiency with adaptability. This study contributes to the practical application of soft robotics in real-world scenarios by providing actionable insights.
comment: The paper is planed to be submitted to a journal
ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation
Diffusion models have been verified to be effective in generating complex distributions from natural images to motion trajectories. Recent diffusion-based methods show impressive performance in 3D robotic manipulation tasks, whereas they suffer from severe runtime inefficiency due to multiple denoising steps, especially with high-dimensional observations. To this end, we propose a real-time robotic manipulation model named ManiCM that imposes the consistency constraint to the diffusion process, so that the model can generate robot actions in only one-step inference. Specifically, we formulate a consistent diffusion process in the robot action space conditioned on the point cloud input, where the original action is required to be directly denoised from any point along the ODE trajectory. To model this process, we design a consistency distillation technique to predict the action sample directly instead of predicting the noise within the vision community for fast convergence in the low-dimensional action manifold. We evaluate ManiCM on 31 robotic manipulation tasks from Adroit and Metaworld, and the results demonstrate that our approach accelerates the state-of-the-art method by 10 times in average inference speed while maintaining competitive average success rate.
comment: https://manicm-fast.github.io/
Optimizing Robot Programming: Mixed Reality Gripper Control ICRA 2025
Conventional robot programming methods are complex and time-consuming for users. In recent years, alternative approaches such as mixed reality have been explored to address these challenges and optimize robot programming. While the findings of the mixed reality robot programming methods are convincing, most existing methods rely on gesture interaction for robot programming. Since controller-based interactions have proven to be more reliable, this paper examines three controller-based programming methods within a mixed reality scenario: 1) Classical Jogging, where the user positions the robot's end effector using the controller's thumbsticks, 2) Direct Control, where the controller's position and orientation directly corresponds to the end effector's, and 3) Gripper Control, where the controller is enhanced with a 3D-printed gripper attachment to grasp and release objects. A within-subjects study (n = 30) was conducted to compare these methods. The findings indicate that the Gripper Control condition outperforms the others in terms of task completion time, user experience, mental demand, and task performance, while also being the preferred method. Therefore, it demonstrates promising potential as an effective and efficient approach for future robot programming. Video available at https://youtu.be/83kWr8zUFIQ.
comment: Accepted to ICRA 2025
Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
General-purpose Clothes Manipulation with Semantic Keypoints ICRA 2025
Clothes manipulation is a critical capability for household robots; yet, existing methods are often confined to specific tasks, such as folding or flattening, due to the complex high-dimensional geometry of deformable fabric. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP) for general-purpose clothes manipulation, which enables the robot to perform diverse manipulation tasks over different types of clothes. The key idea of CLASP is semantic keypoints -- e.g., "right shoulder", "left sleeve", etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be effectively extracted from depth images and are sufficient to represent a broad range of clothes manipulation policies. CLASP leverages semantic keypoints to bridge LLM-powered task planning and low-level action execution in a two-level hierarchy. Extensive simulation experiments show that CLASP outperforms baseline methods across diverse clothes types in both seen and unseen tasks. Further, experiments with a Kinova dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
comment: accepted by IEEE International Conference on Robotics and Automation (ICRA 2025)
Distributed Motion Control of Multiple Mobile Manipulators for Reducing Interaction Wrench in Object Manipulation
In real-world cooperative manipulation of objects, multiple mobile manipulator systems may suffer from disturbances and asynchrony, leading to excessive interaction wrenches and potentially causing object damage or emergency stops. Existing methods often rely on torque control and dynamic models, which are uncommon in many industrial robots and settings. Additionally, dynamic models often neglect joint friction forces and are not accurate. These methods are challenging to implement and validate in physical systems. To address the problems, this paper presents a novel distributed motion control approach aimed at reducing these unnecessary interaction wrenches. The control law is only based on local information and joint velocity control to enhance practical applicability. The communication delays within the distributed architecture are considered. The stability of the control law is rigorously proven by the Lyapunov theorem. In the simulations, the effectiveness is shown, and the impact of communication graph connectivity and communication delays has been studied. A comparison with other methods shows the advantages of the proposed control law in terms of convergence speed and robustness. Finally, the control law has been validated in physical experiments. It does not require dynamic modeling or torque control, and thus is more user-friendly for physical robots.
FoAM: Foresight-Augmented Multi-Task Imitation Policy for Robotic Manipulation
Multi-task imitation learning (MTIL) has shown significant potential in robotic manipulation by enabling agents to perform various tasks using a single policy. This simplifies the policy deployment and enhances the agent's adaptability across different scenarios. However, key challenges remain, such as maintaining action reliability (e.g., avoiding abnormal action sequences that deviate from nominal task trajectories) and generalizing to unseen tasks with a few expert demonstrations. To address these challenges, we introduce the Foresight-Augmented Manipulation Policy (FoAM), a novel MTIL policy that pioneers the use of multi-modal goal condition as input and introduces a foresight augmentation in addition to the general action reconstruction. FoAM enables the agent to reason about the visual consequences (states) of its actions and learn more expressive embedding that captures nuanced task variations. Extensive experiments on over 100 tasks in simulation and real-world settings demonstrate that FoAM significantly enhances MTIL policy performance, outperforming state-of-the-art baselines by up to 41% in success rate. Meanwhile, we released our simulation suites, including a total of 10 scenarios and over 80 challenging tasks designed for manipulation policy training and evaluation. See the project homepage projFoAM.github.io for project details.
comment: 8 pages, 4 figures
Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
SLIM: Scalable and Lightweight LiDAR Mapping in Urban Environments
LiDAR point cloud maps are extensively utilized on roads for robot navigation due to their high consistency. However, dense point clouds face challenges of high memory consumption and reduced maintainability for long-term operations. In this study, we introduce SLIM, a scalable and lightweight mapping system for long-term LiDAR mapping in urban environments. The system begins by parameterizing structural point clouds into lines and planes. These lightweight and structural representations meet the requirements of map merging, pose graph optimization, and bundle adjustment, ensuring incremental management and local consistency. For long-term operations, a map-centric nonlinear factor recovery method is designed to sparsify poses while preserving mapping accuracy. We validate the SLIM system with multi-session real-world LiDAR data from classical LiDAR mapping datasets, including KITTI, NCLT, HeLiPR and M2DGR. The experiments demonstrate its capabilities in mapping accuracy, lightweightness, and scalability. Map re-use is also verified through map-based robot localization. Finally, with multi-session LiDAR data, the SLIM system provides a globally consistent map with low memory consumption (~130 KB/km on KITTI).
comment: Accepted for publication in IEEE Transactions on Robotics. Video: https://youtu.be/8HQnYMf_BWI Code: https://github.com/HKUST-Aerial-Robotics/SLIM
NuRF: Nudging the Particle Filter in Radiance Fields for Robot Visual Localization
Can we localize a robot on a map only using monocular vision? This study presents NuRF, an adaptive and nudged particle filter framework in radiance fields for 6-DoF robot visual localization. NuRF leverages recent advancements in radiance fields and visual place recognition. Conventional visual place recognition meets the challenges of data sparsity and artifact-induced inaccuracies. By utilizing radiance field-generated novel views, NuRF enhances visual localization performance and combines coarse global localization with the fine-grained pose tracking of a particle filter, ensuring continuous and precise localization. Experimentally, our method converges 7 times faster than existing Monte Carlo-based methods and achieves localization accuracy within 1 meter, offering an efficient and resilient solution for indoor visual localization.
comment: Accepted for Publication in IEEE Transactions on Cognitive and Developmental Systems
Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
Hybrid Physics-ML Modeling for Marine Vehicle Maneuvering Motions in the Presence of Environmental Disturbances
A hybrid physics-machine learning modeling framework is proposed for the surface vehicles' maneuvering motions to address the modeling capability and stability in the presence of environmental disturbances. From a deep learning perspective, the framework is based on a variant version of residual networks with additional feature extraction. Initially, an imperfect physical model is derived and identified to capture the fundamental hydrodynamic characteristics of marine vehicles. This model is then integrated with a feedforward network through a residual block. Additionally, feature extraction from trigonometric transformations is employed in the machine learning component to account for the periodic influence of currents and waves. The proposed method is evaluated using real navigational data from the 'JH7500' unmanned surface vehicle. The results demonstrate the robust generalizability and accurate long-term prediction capabilities of the nonlinear dynamic model in specific environmental conditions. This approach has the potential to be extended and applied to develop a comprehensive high-fidelity simulator.
comment: The content of the manuscript will undergo significant revisions
Automated Vehicle Driver Monitoring Dataset from Real-World Scenarios
From SAE Level 3 of automation onwards, drivers are allowed to engage in activities that are not directly related to driving during their travel. However, in level 3, a misunderstanding of the capabilities of the system might lead drivers to engage in secondary tasks, which could impair their ability to react to challenging traffic situations. Anticipating driver activity allows for early detection of risky behaviors, to prevent accidents. To be able to predict the driver activity, a Deep Learning network needs to be trained on a dataset. However, the use of datasets based on simulation for training and the migration to real-world data for prediction has proven to be suboptimal. Hence, this paper presents a real-world driver activity dataset, openly accessible on IEEE Dataport, which encompasses various activities that occur in autonomous driving scenarios under various illumination and weather conditions. Results from the training process showed that the dataset provides an excellent benchmark for implementing models for driver activity recognition.
comment: 6 pages
Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years, in part because BEV representation facilitates multi-modal sensor fusion. BEV representation enables a variety of perception tasks including BEV segmentation, a concise view of the environment useful for planning a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets for this purpose can be a time-consuming endeavor. To address this challenge, we introduce SimBEV. SimBEV is a randomized synthetic data generation tool that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios. SimBEV and the SimBEV dataset are open and available to the public.
Multiagent Systems
Welfare and Cost Aggregation for Multi-Agent Control: When to Choose Which Social Cost Function, and Why?
Many multi-agent socio-technical systems rely on aggregating heterogeneous agents' costs into a social cost function (SCF) to coordinate resource allocation in domains like energy grids, water allocation, or traffic management. The choice of SCF often entails implicit assumptions and may lead to undesirable outcomes if not rigorously justified. In this paper, we demonstrate that what determines which SCF ought to be used is the degree to which individual costs can be compared across agents and which axioms the aggregation shall fulfill. Drawing on the results from social choice theory, we provide guidance on how this process can be used in control applications. We demonstrate which assumptions about interpersonal utility comparability -- ranging from ordinal level comparability to full cardinal comparability -- together with a choice of desirable axioms, inform the selection of a correct SCF, be it the classical utilitarian sum, the Nash SCF, or maximin. We then demonstrate how the proposed framework can be applied for principled allocations of water and transportation resources.
Multi-Robot Coordination Under Physical Limitations
Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.
A multi-agentic framework for real-time, autonomous freeform metasurface design
Innovation in nanophotonics currently relies on human experts who synergize specialized knowledge in photonics and coding with simulation and optimization algorithms, entailing design cycles that are time-consuming, computationally demanding, and frequently suboptimal. We introduce MetaChat, a multi-agentic design framework that can translate semantically described photonic design goals into high-performance, freeform device layouts in an automated, nearly real-time manner. Multi-step reasoning is enabled by our Agentic Iterative Monologue (AIM) paradigm, which coherently interfaces agents with code-based tools, other specialized agents, and human designers. Design acceleration is facilitated by Feature-wise Linear Modulation-conditioned Maxwell surrogate solvers that support the generalized evaluation of metasurface structures. We use freeform dielectric metasurfaces as a model system and demonstrate with MetaChat the design of multi-objective, multi-wavelength metasurfaces orders of magnitude faster than conventional methods. These concepts present a scientific computing blueprint for utilizing specialist design agents, surrogate solvers, and human interactions to drive multi-physics innovation and discovery.
comment: 32 pages, 5 figures
Multi-agent Uncertainty-Aware Pessimistic Model-Based Reinforcement Learning for Connected Autonomous Vehicles
Deep Reinforcement Learning (DRL) holds significant promise for achieving human-like Autonomous Vehicle (AV) capabilities, but suffers from low sample efficiency and challenges in reward design. Model-Based Reinforcement Learning (MBRL) offers improved sample efficiency and generalizability compared to Model-Free Reinforcement Learning (MFRL) in various multi-agent decision-making scenarios. Nevertheless, MBRL faces critical difficulties in estimating uncertainty during the model learning phase, thereby limiting its scalability and applicability in real-world scenarios. Additionally, most Connected Autonomous Vehicle (CAV) studies focus on single-agent decision-making, while existing multi-agent MBRL solutions lack computationally tractable algorithms with Probably Approximately Correct (PAC) guarantees, an essential factor for ensuring policy reliability with limited training data. To address these challenges, we propose MA-PMBRL, a novel Multi-Agent Pessimistic Model-Based Reinforcement Learning framework for CAVs, incorporating a max-min optimization approach to enhance robustness and decision-making. To mitigate the inherent subjectivity of uncertainty estimation in MBRL and avoid incurring catastrophic failures in AV, MA-PMBRL employs a pessimistic optimization framework combined with Projected Gradient Descent (PGD) for both model and policy learning. MA-PMBRL also employs general function approximations under partial dataset coverage to enhance learning efficiency and system-level performance. By bounding the suboptimality of the resulting policy under mild theoretical assumptions, we successfully establish PAC guarantees for MA-PMBRL, demonstrating that the proposed framework represents a significant step toward scalable, efficient, and reliable multi-agent decision-making for CAVs.
comment: 17 pages, 7 figures
CTS-CBS: A New Approach for Multi-Agent Collaborative Task Sequencing and Path Finding
This paper addresses a generalization problem of Multi-Agent Pathfinding (MAPF), called Collaborative Task Sequencing - Multi-Agent Pathfinding (CTS-MAPF), where agents must plan collision-free paths and visit a series of intermediate task locations in a specific order before reaching their final destinations. To address this problem, we propose a new approach, Collaborative Task Sequencing - Conflict-Based Search (CTS-CBS), which conducts a two-level search. In the high level, it generates a search forest, where each tree corresponds to a joint task sequence derived from the jTSP solution. In the low level, CTS-CBS performs constrained single-agent path planning to generate paths for each agent while adhering to high-level constraints. We also provide heoretical guarantees of its completeness and optimality (or sub-optimality with a bounded parameter). To evaluate the performance of CTS-CBS, we create two datasets, CTS-MAPF and MG-MAPF, and conduct comprehensive experiments. The results show that CTS-CBS adaptations for MG-MAPF outperform baseline algorithms in terms of success rate (up to 20 times larger) and runtime (up to 100 times faster), with less than a 10% sacrifice in solution quality. Furthermore, CTS-CBS offers flexibility by allowing users to adjust the sub-optimality bound omega to balance between solution quality and efficiency. Finally, practical robot tests demonstrate the algorithm's applicability in real-world scenarios.
InfoBid: A Simulation Framework for Studying Information Disclosure in Auctions with Large Language Model-based Agents AAAI 2025
In online advertising systems, publishers often face a trade-off in information disclosure strategies: while disclosing more information can enhance efficiency by enabling optimal allocation of ad impressions, it may lose revenue potential by decreasing uncertainty among competing advertisers. Similar to other challenges in market design, understanding this trade-off is constrained by limited access to real-world data, leading researchers and practitioners to turn to simulation frameworks. The recent emergence of large language models (LLMs) offers a novel approach to simulations, providing human-like reasoning and adaptability without necessarily relying on explicit assumptions about agent behavior modeling. Despite their potential, existing frameworks have yet to integrate LLM-based agents for studying information asymmetry and signaling strategies, particularly in the context of auctions. To address this gap, we introduce InfoBid, a flexible simulation framework that leverages LLM agents to examine the effects of information disclosure strategies in multi-agent auction settings. Using GPT-4o, we implemented simulations of second-price auctions with diverse information schemas. The results reveal key insights into how signaling influences strategic behavior and auction outcomes, which align with both economic and social learning theories. Through InfoBid, we hope to foster the use of LLMs as proxies for human economic and social agents in empirical studies, enhancing our understanding of their capabilities and limitations. This work bridges the gap between theoretical market designs and practical applications, advancing research in market simulations, information design, and agent-based reasoning while offering a valuable tool for exploring the dynamics of digital economies.
comment: AAAI 2025 Workshop: Economics of Modern ML: Markets, Incentives, and Generative AI
Distributed Linear Quadratic Gaussian for Multi-Robot Coordination with Localization Uncertainty
This paper addresses the problem of distributed coordination control for multi-robot systems (MRSs) in the presence of localization uncertainty using a Linear Quadratic Gaussian (LQG) approach. We introduce a stochastic LQG control strategy that ensures the coordination of mobile robots while optimizing a performance criterion. The proposed control framework accounts for the inherent uncertainty in localization measurements, enabling robust decision-making and coordination. We analyze the stability of the system under the proposed control protocol, deriving conditions for the convergence of the multi-robot network. The effectiveness of the proposed approach is demonstrated through experimental validation using Robotrium simulation experiments, showcasing the practical applicability of the control strategy in real-world scenarios with localization uncertainty.
Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning
Real-time Internet of Things (IoT) applications require real-time support to handle the ever-growing demand for computing resources to process IoT workloads. Fog Computing provides high availability of such resources in a distributed manner. However, these resources must be efficiently managed to distribute unpredictable traffic demands among heterogeneous Fog resources. This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL) that intelligently distributes IoT workloads to optimize the waiting time while providing fair resource utilization in the Fog network. These agents use transfer learning for life-long self-adaptation to dynamic changes in the environment. By leveraging distributed decision-making, MARL agents effectively minimize the waiting time compared to a single centralized agent solution and other baselines, enhancing end-to-end execution delay. Besides performance gain, a fully distributed solution allows for a global-scale implementation where agents can work independently in small collaboration regions, leveraging nearby local resources. Furthermore, we analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action. The findings highlight the trade-off between realism and performance using an interval-based Gossip-based multi-casting protocol against assuming real-time observation availability for every generated workload.
comment: Submitted to IEEE TNSM with 14 pages, 11 figures, and 3 tables
FREIDA: A Framework for developing quantitative agent based models based on qualitative expert knowledge: an example of organised crime
Developing ABMs of organized crime networks supports law enforcement strategies but is often limited by scarce quantitative data. This challenge extends to other psychosocial contexts like mental health and social systems. While qualitative data from reports and interviews is more accessible, current ABM methodologies struggle to integrate both data types effectively. To address this, we propose FREIDA, a mixed-methods framework that combines qualitative and quantitative data to develop, train, and validate ABMs in data-sparse contexts. FREIDA's four-phase process includes data acquisition, conceptual modeling, computational implementation, and model assessment. Using Thematic Content Analysis (TCA), Expected System Behaviors (ESBs) are translated into Training Statements (TS) for calibration and Validation Statements (VS) for assessment. Iterative sensitivity analysis and uncertainty quantification refine the model's accuracy. We apply FREIDA to a case study of the Netherlands cocaine network, producing the Criminal Cocaine Replacement Model (CCRM) to simulate kingpin removal dynamics. FREIDA enables robust ABM development with limited data, aiding law enforcement decisions and resource allocation.
comment: 32 pages, 12 figures, 14 tables, Appendix I-IV
An Accelerated Distributed Stochastic Gradient Method with Momentum
In this paper, we introduce an accelerated distributed stochastic gradient method with momentum for solving the distributed optimization problem, where a group of $n$ agents collaboratively minimize the average of the local objective functions over a connected network. The method, termed ``Distributed Stochastic Momentum Tracking (DSMT)'', is a single-loop algorithm that utilizes the momentum tracking technique as well as the Loopless Chebyshev Acceleration (LCA) method. We show that DSMT can asymptotically achieve comparable convergence rates as centralized stochastic gradient descent (SGD) method under a general variance condition regarding the stochastic gradients. Moreover, the number of iterations (transient times) required for DSMT to achieve such rates behaves as $\mathcal{O}(n^{5/3}/(1-\lambda))$ for minimizing general smooth objective functions, and $\mathcal{O}(\sqrt{n/(1-\lambda)})$ under the Polyak-{\L}ojasiewicz (PL) condition. Here, the term $1-\lambda$ denotes the spectral gap of the mixing matrix related to the underlying network topology. Notably, the obtained results do not rely on multiple inter-node communications or stochastic gradient accumulation per iteration, and the transient times are the shortest under the setting to the best of our knowledge.
comment: 45 pages, 5 figures
Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
Systems and Control (CS)
Welfare and Cost Aggregation for Multi-Agent Control: When to Choose Which Social Cost Function, and Why?
Many multi-agent socio-technical systems rely on aggregating heterogeneous agents' costs into a social cost function (SCF) to coordinate resource allocation in domains like energy grids, water allocation, or traffic management. The choice of SCF often entails implicit assumptions and may lead to undesirable outcomes if not rigorously justified. In this paper, we demonstrate that what determines which SCF ought to be used is the degree to which individual costs can be compared across agents and which axioms the aggregation shall fulfill. Drawing on the results from social choice theory, we provide guidance on how this process can be used in control applications. We demonstrate which assumptions about interpersonal utility comparability -- ranging from ordinal level comparability to full cardinal comparability -- together with a choice of desirable axioms, inform the selection of a correct SCF, be it the classical utilitarian sum, the Nash SCF, or maximin. We then demonstrate how the proposed framework can be applied for principled allocations of water and transportation resources.
Convergence Theory of Flexible ALADIN for Distributed Optimization
The Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method is a cutting-edge distributed optimization algorithm known for its superior numerical performance. It relies on each agent transmitting information to a central coordinator for data exchange. However, in practical network optimization and federated learning, unreliable information transmission often leads to packet loss, posing challenges for the convergence analysis of ALADIN. To address this issue, this paper proposes Flexible ALADIN, a random polling variant of ALADIN, and presents a rigorous convergence analysis, including global convergence for convex problems and local convergence for non-convex problems.
Insights from Game Theory into the Impact of Smart Balancing on Power System Stability
Smart balancing, also called passive balancing, is the intentional introduction of active power schedule deviations by balance responsible parties (BRPs) to receive a remuneration through the imbalance settlement mechanism. From a system perspective, smart balancing is meant to reduce the need for, and costs of, frequency restoration reserves (FRR), but it can also cause large oscillations in the FRR and jeopardize the system stability. Using a dynamic control area model, this work defines a 2x2 game in which two BRPs can choose to perform smart balancing. We study the impact of time delay, ramp rates, and pricing mechanisms on Nash equilibria and Experience-weighted Attraction (EWA) learning. It is found that, even in an idealized setting, a significant fraction of games in a learned equilibrium results in an overreaction relative to the baseline disturbance, creating an imbalance in the opposite direction. This suggests that the system stability risks are inherent to smart balancing and not a question of implementation. Recommendations are given for implementation choices that can reduce (but not eliminate) the risk of overreactions.
Model-free Vehicle Rollover Prevention: A Data-driven Predictive Control Approach
Vehicle rollovers pose a significant safety risk and account for a disproportionately high number of fatalities in road accidents. This paper addresses the challenge of rollover prevention using Data-EnablEd Predictive Control (DeePC), a data-driven control strategy that directly leverages raw input-output data to maintain vehicle stability without requiring explicit system modeling. To enhance computational efficiency, we employ a reduced-dimension DeePC that utilizes singular value decomposition-based dimension reduction to significantly lower computation complexity without compromising control performance. This optimization enables real-time application in scenarios with high-dimensional data, making the approach more practical for deployment in real-world vehicles. The proposed approach is validated through high-fidelity CarSim simulations in both sedan and utility truck scenarios, demonstrating its versatility and ability to maintain vehicle stability under challenging driving conditions. Comparative results with Linear Model Predictive Control (LMPC) highlight the superior performance of DeePC in preventing rollovers while preserving maneuverability. The findings suggest that DeePC offers a robust and adaptable solution for rollover prevention, capable of handling varying road and vehicle conditions.
Data-driven Distributionally Robust Control Based on Sinkhorn Ambiguity Sets
As the complexity of modern control systems increases, it becomes challenging to derive an accurate model of the uncertainty that affects their dynamics. Wasserstein Distributionally Robust Optimization (DRO) provides a powerful framework for decision-making under distributional uncertainty only using noise samples. However, while the resulting policies inherit strong probabilistic guarantees when the number of samples is sufficiently high, their performance may significantly degrade when only a few data are available. Inspired by recent results from the machine learning community, we introduce an entropic regularization to penalize deviations from a given reference distribution and study data-driven DR control over Sinkhorn ambiguity sets. We show that for finite-horizon control problems, the optimal DR linear policy can be computed via convex programming. By analyzing the relation between the ambiguity set defined in terms of Wasserstein and Sinkhorn discrepancies, we reveal that, as the regularization parameter increases, this optimal policy interpolates between the solution of the Wasserstein DR problem and that of the stochastic problem under the reference distribution. We validate our theoretical findings and the effectiveness of our approach when only scarce data are available on a numerical example.
Decoherence time maximization and partial isolation for open quantum harmonic oscillator memory networks
This paper considers a network of open quantum harmonic oscillators which interact with their neighbours through direct energy and field-mediated couplings and also with external quantum fields. The position-momentum dynamic variables of the network are governed by linear quantum stochastic differential equations associated with the nodes of a graph whose edges specify the interconnection of the component oscillators. Such systems can be employed as Heisenberg picture quantum memories with an engineered ability to approximately retain initial conditions over a bounded time interval. We use the quantum memory decoherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation for a subset (or linear combinations) of network variables from their initial values. This approach is applied to maximizing a high-fidelity asymptotic approximation of the decoherence time over the direct energy coupling parameters of the network. The resulting optimality condition is a set of linear equations for blocks of a sparse matrix associated with the edges of the direct energy coupling graph of the network. We also discuss a setting where the quantum network has a subset of dynamic variables which are affected by the external fields only indirectly, through a complementary ``shielding'' system. This holds under a rank condition on the network-field coupling matrix and can be achieved through an appropriate field-mediated coupling between the component oscillators. The partially isolated subnetwork has a longer decoherence time in the high-fidelity limit, thus providing a particularly relevant candidate for a quantum memory.
comment: 15 pages, 3 figures
Agent-Based Analysis of the Impact of Near Real-Time Data and Smart Balancing on the Frequency Stability of Power Systems
Single imbalance pricing provides an incentive to balance responsible parties (BRPs) to intentionally introduce power schedule deviations in order to reduce the control area imbalance and receive a remuneration through the imbalance settlement mechanism. This is called smart balancing or passive balancing and is actively encouraged in, e.g., the Netherlands and Belgium through the publication of near real-time (NRT) data on the control area imbalance by the transmission system operator. It is known that under certain conditions, smart balancing can deteriorate the frequency stability of the power system. This paper examines how the publication of different types of NRT data affects smart balancing and the frequency stability. A Monte-Carlo simulation of a dynamic multi-agent model is performed to analyse the effects of smart balancing with different parameters for the agents and the environment, using historical time series of the power imbalance of the German control block as a basis. It is found that smart balancing can significantly reduce the amount and cost of frequency restoration reserve activation, but leads to a general increase of the frequency variability. Depending on the type of NRT data and agent parameters, the frequency stability margins are also reduced. The negative effects on the frequency stability are stronger when NRT data is published using large bins and with long delays.
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
Problem-Structure-Informed Quantum Approximate Optimization Algorithm for Large-Scale Unit Commitment with Limited Qubits
As power systems expand, solving the Unit Commitment Problem (UCP) becomes increasingly challenging due to the dimensional catastrophe, and traditional methods often struggle to balance computational efficiency and solution quality. To tackle this issue, we propose a problem-structure-informed Quantum Approximate Optimization Algorithm (QAOA) framework that fully exploits the quantum advantage under extremely limited quantum resources. Specifically, we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems, each solvable in parallel by limited number of qubits. This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse. Consequently, our approach can be readily extended to future power systems that are larger and more complex.
Automated and Risk-Aware Engine Control Calibration Using Constrained Bayesian Optimization
Decarbonization of the transport sector sets increasingly strict demands to maximize thermal efficiency and minimize greenhouse gas emissions of Internal Combustion Engines. This has led to complex engines with a surge in the number of corresponding tunable parameters in actuator set points and control settings. Automated calibration is therefore essential to keep development time and costs at acceptable levels. In this work, an innovative self-learning calibration method is presented based on in-cylinder pressure curve shaping. This method combines Principal Component Decomposition with constrained Bayesian Optimization. To realize maximal thermal engine efficiency, the optimization problem aims at minimizing the difference between the actual in-cylinder pressure curve and an Idealized Thermodynamic Cycle. By continuously updating a Gaussian Process Regression model of the pressure's Principal Components weights using measurements of the actual operating conditions, the mean in-cylinder pressure curve as well as its uncertainty bounds are learned. This information drives the optimization of calibration parameters, which are automatically adapted while dealing with the risks and uncertainties associated with operational safety and combustion stability. This data-driven method does not require prior knowledge of the system. The proposed method is successfully demonstrated in simulation using a Reactivity Controlled Compression Ignition engine model. The difference between the Gross Indicated Efficiency of the optimal solution found and the true optimum is 0.017%. For this complex engine, the optimal solution was found after 64.4s, which is relatively fast compared to conventional calibration methods.
comment: 16 pages, 7 figures, 3 tables; Submitted to Control Engineering Practice's special issue on 'Bayesian optimization for data-driven modeling, optimization and control: Towards enhancing performance, efficiency, and sustainability in industrial, energy and biomedical systems'
Model Predictive Control for Tracking Bounded References With Arbitrary Dynamics
In this article, a model predictive control (MPC) method is proposed for constrained linear systems to track bounded references with arbitrary dynamics. Besides control inputs to be determined, artificial reference is introduced as additional decision variable, which serves as an intermediate target to cope with sudden changes of reference and enlarges domain of attraction. Cost function penalizes both artificial state error and reference error, while terminal constraint is imposed on artificial state error and artificial reference. We specify the requirements for terminal constraint and cost function to guarantee recursive feasibility of the proposed method and asymptotic stability of tracking error. Then, periodic and non-periodic references are considered and the method to determine required cost function and terminal constraint is proposed. Finally, the efficiency of the proposed MPC controller is demonstrated with simulation examples.
The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
Reinforcement Learning (RL) offers promising solutions for control tasks in industrial cyber-physical systems (ICPSs), yet its real-world adoption remains limited. This paper demonstrates how seemingly small but well-designed modifications to the RL problem formulation can substantially improve performance, stability, and sample efficiency. We identify and investigate key elements of RL problem formulation and show that these enhance both learning speed and final policy quality. Our experiments use a one-degree-of-freedom (1-DoF) helicopter testbed, the Quanser Aero~2, which features non-linear dynamics representative of many industrial settings. In simulation, the proposed problem design principles yield more reliable and efficient training, and we further validate these results by training the agent directly on physical hardware. The encouraging real-world outcomes highlight the potential of RL for ICPS, especially when careful attention is paid to the design principles of problem formulation. Overall, our study underscores the crucial role of thoughtful problem formulation in bridging the gap between RL research and the demands of real-world industrial systems.
comment: Accepted at ICPS 2025
Structure Identification of NDS with Descriptor Subsystems under Asynchronous, Non-Uniform, and Slow-Rate Sampling
Networked dynamic systems (NDS) exhibit collective behavior shaped by subsystem dynamics and complex interconnections, yet identifying these interconnections remains challenging due to irregularities in sampled data, including asynchronous, non-uniform, and low-rate sampling. This paper proposes a novel two-stage structure identification algorithm that leverages system zero-order moments, a concept traditionally used in model order reduction, to bridge system identification and model reduction. First, zero-order moments are estimated from steady-state time-domain outputs; second, subsystem interconnections are explicitly reconstructed from these moments. The method generalizes existing approaches by handling asynchronous, non-uniform, and slow sampling simultaneously, eliminating constraints on input signal periodicity and extending applicability to multi-input multi-output NDS with arbitrary interconnections. Unlike black-box identification techniques, our approach explicitly recovers subsystem interconnection structures. Validation on the IEEE 14-bus system demonstrates the algorithm's effectiveness in recovering subsystem interconnections from irregular sampling data.
comment: 8 pages, 3 figures, cdc2025
Merits of Serving UAVs via Terrestrial Networks: A Vertical Antenna Radiation Study
Unmanned Aerial Vehicles (UAVs) are increasingly used in a plethora of applications such as shipping, surveillance, and search-and-rescue. For UAVs to operate safely, reliable cellular connectivity is essential. Utilizing the terrestrial networks for aerial connectivity has been proposed, but the 3D radiation pattern of base station antennas significantly affects the performance of aerial links.. To address this, we evaluate the coverage probability of cellular-connected UAVs, considering vertical antenna gain, by leveraging tools from stochastic geometry. We also analyze how the UAV hovering height, tilt angle and 3D antenna beamwidth influence the reliability of the communication link. Our results show that a down-tiled antenna does not only improve the connectivity of terrestrial users but also its cellularconnected UAVs counterpart. Moreover, the coverage probability of the UAV-UE becomes saturated at large down-tilt angles at the TBSs due to the antenna sidelobe gain at the serving and interfering TBSs. We also found that the significant increase of the vertical antenna beamwidth improves the UAV user coverage probability especially at relatively low hovering altitudes thanks to the increase of the desired signal strength compared to the interference power.
Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
Small-Signal Stability Condition of Inverter-Integrated Power Systems: Closed-Form Expression by Stationary Power Flow Variables
This paper shows that a necessary and sufficient condition for the small-signal stability of an inverter-integrated power system can be expressed in terms of semidefinite matrix inequalities determined only by the synchronous reactance of the components, the susceptance matrix of the transmission network, and the stationary values of the power flow distribution. To derive the stability condition, we consider a class of grid-forming inverters corresponding to a singular perturbation of the synchronous generator. The resulting matrix inequality condition, which has twice as many dimensions as the number of buses and is independent of the dynamics of the connected components, is expressed in terms of each component compensating in a decentralized manner for the loss of frequency synchronization caused by the reactive power consumption in the transmission network. A simple numerical example using a 3-bus power system model shows that a grid-forming inverter load improves power system synchronization, while a grid-following inverter load disrupts it.
A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
Two-Player Dynamic Potential LQ Games with Sequentially Revealed Costs
We investigate a novel finite-horizon linear-quadratic (LQ) feedback dynamic potential game with a priori unknown cost matrices played between two players. The cost matrices are revealed to the players sequentially, with the potential for future values to be previewed over a short time window. We propose an algorithm that enables the players to predict and track a feedback Nash equilibrium trajectory, and we measure the quality of their resulting decisions by introducing the concept of \emph{price of uncertainty}. We show that under the proposed algorithm, the price of uncertainty is bounded by horizon-invariant constants. The constants are the sum of three terms; the first and second terms decay exponentially as the preview window grows, and another depends on the magnitude of the differences between the cost matrices for each player. Through simulations, we illustrate that the resulting price of uncertainty initially decays at an exponential rate as the preview window lengthens, then remains constant for large time horizons.
DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control approach for voltage regulation, current sharing, and Constant Power Load (CPL) stability in DC microgrids (MGs). We describe the closed-loop DC MG as a networked system where DGs, lines, and nonlinear loads (including destabilizing CPLs) are interconnected via a static interconnection matrix. Each DG has a local controller and a distributed global controller, designed using dissipativity properties and sector-bounded techniques. For controller synthesis, we formulate a Linear Matrix Inequality (LMI) problem that simultaneously addresses voltage regulation, current sharing, and CPL stability guarantees. To support the feasibility of this problem, we propose a sector-bounded approach that characterizes CPL nonlinearities and integrates them into the dissipativity framework through S-procedure techniques. Our approach provides a unified framework for co-designing distributed controllers and communication topologies that ensure stability despite the presence of destabilizing CPL effects. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches when handling CPLs.
Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
Bounds on Deep Neural Network Partial Derivatives with Respect to Parameters
Deep neural networks (DNNs) have emerged as a powerful tool with a growing body of literature exploring Lyapunov-based approaches for real-time system identification and control. These methods depend on establishing bounds for the second partial derivatives of DNNs with respect to their parameters, a requirement often assumed but rarely addressed explicitly. This paper provides rigorous mathematical formulations of polynomial bounds on both the first and second partial derivatives of DNNs with respect to their parameters. We present lemmas that characterize these bounds for fully-connected DNNs, while accommodating various classes of activation function including sigmoidal and ReLU-like functions. Our analysis yields closed-form expressions that enable precise stability guarantees for Lyapunov-based deep neural networks (Lb-DNNs). Furthermore, we extend our results to bound the higher-order terms in first-order Taylor approximations of DNNs, providing important tools for convergence analysis in gradient-based learning algorithms. The developed theoretical framework develops explicit, computable expressions, for previously assumed bounds, thereby strengthening the mathematical foundation of neural network applications in safety-critical control systems.
comment: 8 pages
TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
Learning-Based Model Predictive Control for Piecewise Affine Systems with Feasibility Guarantees
Online model predictive control (MPC) for piecewise affine (PWA) systems requires the online solution to an optimization problem that implicitly optimizes over the switching sequence of PWA regions, for which the computational burden can be prohibitive. Alternatively, the computation can be moved offline using explicit MPC; however, the online memory requirements and the offline computation can then become excessive. In this work we propose a solution in between online and explicit MPC, addressing the above issues by partially dividing the computation between online and offline. To solve the underlying MPC problem, a policy, learned offline, specifies the sequence of PWA regions that the dynamics must follow, thus reducing the complexity of the remaining optimization problem that solves over only the continuous states and control inputs. We provide a condition, verifiable during learning, that guarantees feasibility of the learned policy's output, such that an optimal continuous control input can always be found online. Furthermore, a method for iteratively generating training data offline allows the feasible policy to be learned efficiently, reducing the offline computational burden. A numerical experiment demonstrates the effectiveness of the method compared to both online and explicit MPC.
comment: 6 pages, 3 figures, accepted for publication in ECC 2025. Code available at https://github.com/SamuelMallick/supervised-learning-pwa-mpc
A PAC-Bayesian Framework for Optimal Control with Stability Guarantees
Stochastic Nonlinear Optimal Control (SNOC) involves minimizing a cost function that averages out the random uncertainties affecting the dynamics of nonlinear systems. For tractability reasons, this problem is typically addressed by minimizing an empirical cost, which represents the average cost across a finite dataset of sampled disturbances. However, this approach raises the challenge of quantifying the control performance against out-of-sample uncertainties. Particularly, in scenarios where the training dataset is small, SNOC policies are prone to overfitting, resulting in significant discrepancies between the empirical cost and the true cost, i.e., the average SNOC cost incurred during control deployment. Therefore, establishing generalization bounds on the true cost is crucial for ensuring reliability in real-world applications. In this paper, we introduce a novel approach that leverages PAC-Bayes theory to provide rigorous generalization bounds for SNOC. Based on these bounds, we propose a new method for designing optimal controllers, offering a principled way to incorporate prior knowledge into the synthesis process, which aids in improving the control policy and mitigating overfitting. Furthermore, by leveraging recent parametrizations of stabilizing controllers for nonlinear systems, our framework inherently ensures closed-loop stability. The effectiveness of our proposed method in incorporating prior knowledge and combating overfitting is shown by designing neural network controllers for tasks in cooperative robotics.
Validation of Neural Network Controllers for Uncertain Systems Through Keep-Close Approach: Robustness Analysis and Safety Verification
Among the major challenges in neural control system technology is the validation and certification of the safety and robustness of neural network (NN) controllers against various uncertainties including unmodelled dynamics, nonlinearities, and time delays. One way in providing such validation guarantees is to maintain the closed-loop system output with a NN controller when its input changes within a bounded set, close to the output of a robustly performing closed-loop reference model. This paper presents a novel approach to analysing the performance and robustness of uncertain feedback systems with NN controllers. Due to the complexity of analysing such systems, the problem is reformulated as the problem of dynamical tracking errors between the closed-loop system with a neural controller and an ideal closed-loop reference model. Then, the approximation of the controller error is characterised by adopting the differential mean value theorem (DMV) and the Integral Quadratic Constraints (IQCs) technique. Moreover, the Relative Integral Square Error (RISE) and the Supreme Square Error (SSE) bounded set are derived for the output of the error dynamical system. The analysis is then performed by integrating Lyapunov theory with the IQCs-based technique. The resulting worst-case analysis provides the user a prior knowledge about the worst case of RISE and SSE between the reference closed-loop model and the uncertain system controlled by the neural controller.
comment: 25 pages, 16 figures, Journal Paper submitted to International Journal of Robust and Nonlinear Control
Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer, constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management, single imbalance pricing leads to an all-or-nothing trading strategy, which we term 'betting'. To address this, we propose a data-driven, pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances, we move from the all-or-nothing approach to a 'trading" strategy', where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed, always allowed, or not allowed to buy power from the grid, which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight, we show that the risk-constrained, data-driven approach delivers satisfactory performance.
On the Reachability of 3-Dimensional Paths with a Prescribed Curvature Bound
This paper presents the reachability analysis of curves in $\mathbb{R}^3$ with a prescribed curvature bound. Based on Pontryagin Maximum Principle, we leverage the existing knowledge on the structure of solutions to minimum-time problems, or Markov-Dubins problem, to reachability considerations. Based on this development, two types of reachability are discussed. First, we prove that any boundary point of the reachability set, with the directional component taken into account as well as geometric coordinates, can be reached via curves of H, CSC, CCC, or their respective subsegments, where H denotes a helicoidal arc, C a circular arc with maximum curvature, and S a straight segment. Second, we show that the reachability set when directional component is not considered\textemdash{}the position reachability set\textemdash{}is simply a solid of revolution of its two-dimensional counterpart, the Dubins car. These findings extend the developments presented in literature on Dubins car into spatial curves in $\mathbb{R}^3$.
comment: Accepted for publication in Automatica
Identification and Classification of Human Performance related Challenges during Remote Driving
Remote driving of vehicles is gaining in importance in the transportation sector, especially when Automated Driving Systems (ADSs) reach the limits of their system boundaries. This study investigates the challenges faced by human Remote Drivers (RDs) during remote driving, particularly focusing on the identification and classification of human performance-related challenges through a comprehensive analysis of real-world remote driving data Las Vegas. For this purpose, a total of 183 RD performance-related Safety Driver (SD) interventions were analyzed and classified using an introduced severity classification. As it is essential to prevent the need for SD interventions, this study identified and analyzed harsh driving events to detect an increased likelihood of interventions by the SD. In addition, the results of the subjective RD questionnaire are used to evaluate whether the objective metrics from SD interventions and harsh driving events can also be confirmed by the RDs and whether additional challenges can be uncovered. The analysis reveals learning curves, showing a significant decrease in SD interventions as RD experience increases. Early phases of remote driving experience, especially below 200 km of experience, showed the highest frequency of safety-related events, including braking late for traffic signs and responding impatiently to other traffic participants. Over time, RDs follow defined rules for improving their control, with experience leading to less harsh braking, acceleration, and steering maneuvers. The study contributes to understanding the requirements of RDS, emphasizing the importance of targeted training to address human performance limitations. It further highlights the need for system improvements to address challenges like latency and the limited haptic feedback replaced by visual feedback, which affect the RDs' perception and vehicle control.
comment: This work has been submitted to the IEEE for possible publication
Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
Learning Soft Constrained MPC Value Functions: Efficient MPC Design and Implementation providing Stability and Safety Guarantees
Model Predictive Control (MPC) can be applied to safety-critical control problems, providing closed-loop safety and performance guarantees. Implementation of MPC controllers requires solving an optimization problem at every sampling instant, which is challenging to execute on embedded hardware. To address this challenge, we propose a framework that combines a tightened soft constrained MPC formulation with supervised learning to approximate the MPC value function. This combination enables us to obtain a corresponding optimal control law, which can be implemented efficiently on embedded platforms. The framework ensures stability and constraint satisfaction for various nonlinear systems. While the design effort is similar to that of nominal MPC, the proposed formulation provides input-to-state stability (ISS) with respect to the approximation error of the value function. Furthermore, we prove that the value function corresponding to the soft constrained MPC problem is Lipschitz continuous for Lipschitz continuous systems, even if the optimal control law may be discontinuous. This serves two purposes: First, it allows to relate approximation errors to a sufficiently large constraint tightening to obtain constraint satisfaction guarantees. Second, it paves the way for an efficient supervised learning procedure to obtain a continuous value function approximation. We demonstrate the effectiveness of the method using a nonlinear numerical example.
LQG Risk-Sensitive Single-Agent and Major-Minor Mean-Field Game Systems: A Variational Framework
We develop a variational approach to address risk-sensitive optimal control problems with an exponential-of-integral cost functional in a general linear-quadratic-Gaussian (LQG) single-agent setup, offering new insights into such problems. Our analysis leads to the derivation of a nonlinear necessary and sufficient condition of optimality, expressed in terms of martingale processes. Subject to specific conditions, we find an equivalent risk-neutral measure, under which a linear state feedback form can be obtained for the optimal control. It is then shown that the obtained feedback control is consistent with the imposed condition and remains optimal under the original measure. Building upon this development, we (i) propose a variational framework for general LQG risk-sensitive mean-field games (MFGs) and (ii) advance the LQG risk-sensitive MFG theory by incorporating a major agent in the framework. The major agent interacts with a large number of minor agents, and unlike the minor agents, its influence on the system remains significant even with an increasing number of minor agents. We derive the Markovian closed-loop best-response strategies of agents in the limiting case where the number of agents goes to infinity. We establish that the set of obtained best-response strategies yields a Nash equilibrium in the limiting case and an $\varepsilon$-Nash equilibrium in the finite-player case.
Topological Graph Simplification Solutions to the Street Intersection Miscount Problem
Street intersection counts and densities are ubiquitous measures in transport geography and planning. However, typical street network data and typical street network analysis tools can substantially overcount them. This article explains the three main reasons why this happens and presents solutions to each. It contributes algorithms to automatically simplify spatial graphs of urban street networks -- via edge simplification and node consolidation -- resulting in faster parsimonious models and more accurate network measures like intersection counts and densities, street segment lengths, and node degrees. These algorithms' information compression improves downstream graph analytics' memory and runtime efficiency, boosting analytical tractability without loss of model fidelity. Finally, this article validates these algorithms and empirically assesses intersection count biases worldwide to demonstrate the problem's widespread prevalence. Without consolidation, traditional methods would overestimate the median urban area intersection count by 14%. However, this bias varies drastically across regions, underscoring these algorithms' importance for consistent comparative empirical analyses.
Systems and Control (EESS)
Welfare and Cost Aggregation for Multi-Agent Control: When to Choose Which Social Cost Function, and Why?
Many multi-agent socio-technical systems rely on aggregating heterogeneous agents' costs into a social cost function (SCF) to coordinate resource allocation in domains like energy grids, water allocation, or traffic management. The choice of SCF often entails implicit assumptions and may lead to undesirable outcomes if not rigorously justified. In this paper, we demonstrate that what determines which SCF ought to be used is the degree to which individual costs can be compared across agents and which axioms the aggregation shall fulfill. Drawing on the results from social choice theory, we provide guidance on how this process can be used in control applications. We demonstrate which assumptions about interpersonal utility comparability -- ranging from ordinal level comparability to full cardinal comparability -- together with a choice of desirable axioms, inform the selection of a correct SCF, be it the classical utilitarian sum, the Nash SCF, or maximin. We then demonstrate how the proposed framework can be applied for principled allocations of water and transportation resources.
Convergence Theory of Flexible ALADIN for Distributed Optimization
The Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method is a cutting-edge distributed optimization algorithm known for its superior numerical performance. It relies on each agent transmitting information to a central coordinator for data exchange. However, in practical network optimization and federated learning, unreliable information transmission often leads to packet loss, posing challenges for the convergence analysis of ALADIN. To address this issue, this paper proposes Flexible ALADIN, a random polling variant of ALADIN, and presents a rigorous convergence analysis, including global convergence for convex problems and local convergence for non-convex problems.
Insights from Game Theory into the Impact of Smart Balancing on Power System Stability
Smart balancing, also called passive balancing, is the intentional introduction of active power schedule deviations by balance responsible parties (BRPs) to receive a remuneration through the imbalance settlement mechanism. From a system perspective, smart balancing is meant to reduce the need for, and costs of, frequency restoration reserves (FRR), but it can also cause large oscillations in the FRR and jeopardize the system stability. Using a dynamic control area model, this work defines a 2x2 game in which two BRPs can choose to perform smart balancing. We study the impact of time delay, ramp rates, and pricing mechanisms on Nash equilibria and Experience-weighted Attraction (EWA) learning. It is found that, even in an idealized setting, a significant fraction of games in a learned equilibrium results in an overreaction relative to the baseline disturbance, creating an imbalance in the opposite direction. This suggests that the system stability risks are inherent to smart balancing and not a question of implementation. Recommendations are given for implementation choices that can reduce (but not eliminate) the risk of overreactions.
Model-free Vehicle Rollover Prevention: A Data-driven Predictive Control Approach
Vehicle rollovers pose a significant safety risk and account for a disproportionately high number of fatalities in road accidents. This paper addresses the challenge of rollover prevention using Data-EnablEd Predictive Control (DeePC), a data-driven control strategy that directly leverages raw input-output data to maintain vehicle stability without requiring explicit system modeling. To enhance computational efficiency, we employ a reduced-dimension DeePC that utilizes singular value decomposition-based dimension reduction to significantly lower computation complexity without compromising control performance. This optimization enables real-time application in scenarios with high-dimensional data, making the approach more practical for deployment in real-world vehicles. The proposed approach is validated through high-fidelity CarSim simulations in both sedan and utility truck scenarios, demonstrating its versatility and ability to maintain vehicle stability under challenging driving conditions. Comparative results with Linear Model Predictive Control (LMPC) highlight the superior performance of DeePC in preventing rollovers while preserving maneuverability. The findings suggest that DeePC offers a robust and adaptable solution for rollover prevention, capable of handling varying road and vehicle conditions.
Data-driven Distributionally Robust Control Based on Sinkhorn Ambiguity Sets
As the complexity of modern control systems increases, it becomes challenging to derive an accurate model of the uncertainty that affects their dynamics. Wasserstein Distributionally Robust Optimization (DRO) provides a powerful framework for decision-making under distributional uncertainty only using noise samples. However, while the resulting policies inherit strong probabilistic guarantees when the number of samples is sufficiently high, their performance may significantly degrade when only a few data are available. Inspired by recent results from the machine learning community, we introduce an entropic regularization to penalize deviations from a given reference distribution and study data-driven DR control over Sinkhorn ambiguity sets. We show that for finite-horizon control problems, the optimal DR linear policy can be computed via convex programming. By analyzing the relation between the ambiguity set defined in terms of Wasserstein and Sinkhorn discrepancies, we reveal that, as the regularization parameter increases, this optimal policy interpolates between the solution of the Wasserstein DR problem and that of the stochastic problem under the reference distribution. We validate our theoretical findings and the effectiveness of our approach when only scarce data are available on a numerical example.
Decoherence time maximization and partial isolation for open quantum harmonic oscillator memory networks
This paper considers a network of open quantum harmonic oscillators which interact with their neighbours through direct energy and field-mediated couplings and also with external quantum fields. The position-momentum dynamic variables of the network are governed by linear quantum stochastic differential equations associated with the nodes of a graph whose edges specify the interconnection of the component oscillators. Such systems can be employed as Heisenberg picture quantum memories with an engineered ability to approximately retain initial conditions over a bounded time interval. We use the quantum memory decoherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation for a subset (or linear combinations) of network variables from their initial values. This approach is applied to maximizing a high-fidelity asymptotic approximation of the decoherence time over the direct energy coupling parameters of the network. The resulting optimality condition is a set of linear equations for blocks of a sparse matrix associated with the edges of the direct energy coupling graph of the network. We also discuss a setting where the quantum network has a subset of dynamic variables which are affected by the external fields only indirectly, through a complementary ``shielding'' system. This holds under a rank condition on the network-field coupling matrix and can be achieved through an appropriate field-mediated coupling between the component oscillators. The partially isolated subnetwork has a longer decoherence time in the high-fidelity limit, thus providing a particularly relevant candidate for a quantum memory.
comment: 15 pages, 3 figures
Agent-Based Analysis of the Impact of Near Real-Time Data and Smart Balancing on the Frequency Stability of Power Systems
Single imbalance pricing provides an incentive to balance responsible parties (BRPs) to intentionally introduce power schedule deviations in order to reduce the control area imbalance and receive a remuneration through the imbalance settlement mechanism. This is called smart balancing or passive balancing and is actively encouraged in, e.g., the Netherlands and Belgium through the publication of near real-time (NRT) data on the control area imbalance by the transmission system operator. It is known that under certain conditions, smart balancing can deteriorate the frequency stability of the power system. This paper examines how the publication of different types of NRT data affects smart balancing and the frequency stability. A Monte-Carlo simulation of a dynamic multi-agent model is performed to analyse the effects of smart balancing with different parameters for the agents and the environment, using historical time series of the power imbalance of the German control block as a basis. It is found that smart balancing can significantly reduce the amount and cost of frequency restoration reserve activation, but leads to a general increase of the frequency variability. Depending on the type of NRT data and agent parameters, the frequency stability margins are also reduced. The negative effects on the frequency stability are stronger when NRT data is published using large bins and with long delays.
Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
Problem-Structure-Informed Quantum Approximate Optimization Algorithm for Large-Scale Unit Commitment with Limited Qubits
As power systems expand, solving the Unit Commitment Problem (UCP) becomes increasingly challenging due to the dimensional catastrophe, and traditional methods often struggle to balance computational efficiency and solution quality. To tackle this issue, we propose a problem-structure-informed Quantum Approximate Optimization Algorithm (QAOA) framework that fully exploits the quantum advantage under extremely limited quantum resources. Specifically, we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems, each solvable in parallel by limited number of qubits. This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse. Consequently, our approach can be readily extended to future power systems that are larger and more complex.
Automated and Risk-Aware Engine Control Calibration Using Constrained Bayesian Optimization
Decarbonization of the transport sector sets increasingly strict demands to maximize thermal efficiency and minimize greenhouse gas emissions of Internal Combustion Engines. This has led to complex engines with a surge in the number of corresponding tunable parameters in actuator set points and control settings. Automated calibration is therefore essential to keep development time and costs at acceptable levels. In this work, an innovative self-learning calibration method is presented based on in-cylinder pressure curve shaping. This method combines Principal Component Decomposition with constrained Bayesian Optimization. To realize maximal thermal engine efficiency, the optimization problem aims at minimizing the difference between the actual in-cylinder pressure curve and an Idealized Thermodynamic Cycle. By continuously updating a Gaussian Process Regression model of the pressure's Principal Components weights using measurements of the actual operating conditions, the mean in-cylinder pressure curve as well as its uncertainty bounds are learned. This information drives the optimization of calibration parameters, which are automatically adapted while dealing with the risks and uncertainties associated with operational safety and combustion stability. This data-driven method does not require prior knowledge of the system. The proposed method is successfully demonstrated in simulation using a Reactivity Controlled Compression Ignition engine model. The difference between the Gross Indicated Efficiency of the optimal solution found and the true optimum is 0.017%. For this complex engine, the optimal solution was found after 64.4s, which is relatively fast compared to conventional calibration methods.
comment: 16 pages, 7 figures, 3 tables; Submitted to Control Engineering Practice's special issue on 'Bayesian optimization for data-driven modeling, optimization and control: Towards enhancing performance, efficiency, and sustainability in industrial, energy and biomedical systems'
Model Predictive Control for Tracking Bounded References With Arbitrary Dynamics
In this article, a model predictive control (MPC) method is proposed for constrained linear systems to track bounded references with arbitrary dynamics. Besides control inputs to be determined, artificial reference is introduced as additional decision variable, which serves as an intermediate target to cope with sudden changes of reference and enlarges domain of attraction. Cost function penalizes both artificial state error and reference error, while terminal constraint is imposed on artificial state error and artificial reference. We specify the requirements for terminal constraint and cost function to guarantee recursive feasibility of the proposed method and asymptotic stability of tracking error. Then, periodic and non-periodic references are considered and the method to determine required cost function and terminal constraint is proposed. Finally, the efficiency of the proposed MPC controller is demonstrated with simulation examples.
The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
Reinforcement Learning (RL) offers promising solutions for control tasks in industrial cyber-physical systems (ICPSs), yet its real-world adoption remains limited. This paper demonstrates how seemingly small but well-designed modifications to the RL problem formulation can substantially improve performance, stability, and sample efficiency. We identify and investigate key elements of RL problem formulation and show that these enhance both learning speed and final policy quality. Our experiments use a one-degree-of-freedom (1-DoF) helicopter testbed, the Quanser Aero~2, which features non-linear dynamics representative of many industrial settings. In simulation, the proposed problem design principles yield more reliable and efficient training, and we further validate these results by training the agent directly on physical hardware. The encouraging real-world outcomes highlight the potential of RL for ICPS, especially when careful attention is paid to the design principles of problem formulation. Overall, our study underscores the crucial role of thoughtful problem formulation in bridging the gap between RL research and the demands of real-world industrial systems.
comment: Accepted at ICPS 2025
Structure Identification of NDS with Descriptor Subsystems under Asynchronous, Non-Uniform, and Slow-Rate Sampling
Networked dynamic systems (NDS) exhibit collective behavior shaped by subsystem dynamics and complex interconnections, yet identifying these interconnections remains challenging due to irregularities in sampled data, including asynchronous, non-uniform, and low-rate sampling. This paper proposes a novel two-stage structure identification algorithm that leverages system zero-order moments, a concept traditionally used in model order reduction, to bridge system identification and model reduction. First, zero-order moments are estimated from steady-state time-domain outputs; second, subsystem interconnections are explicitly reconstructed from these moments. The method generalizes existing approaches by handling asynchronous, non-uniform, and slow sampling simultaneously, eliminating constraints on input signal periodicity and extending applicability to multi-input multi-output NDS with arbitrary interconnections. Unlike black-box identification techniques, our approach explicitly recovers subsystem interconnection structures. Validation on the IEEE 14-bus system demonstrates the algorithm's effectiveness in recovering subsystem interconnections from irregular sampling data.
comment: 8 pages, 3 figures, cdc2025
Merits of Serving UAVs via Terrestrial Networks: A Vertical Antenna Radiation Study
Unmanned Aerial Vehicles (UAVs) are increasingly used in a plethora of applications such as shipping, surveillance, and search-and-rescue. For UAVs to operate safely, reliable cellular connectivity is essential. Utilizing the terrestrial networks for aerial connectivity has been proposed, but the 3D radiation pattern of base station antennas significantly affects the performance of aerial links.. To address this, we evaluate the coverage probability of cellular-connected UAVs, considering vertical antenna gain, by leveraging tools from stochastic geometry. We also analyze how the UAV hovering height, tilt angle and 3D antenna beamwidth influence the reliability of the communication link. Our results show that a down-tiled antenna does not only improve the connectivity of terrestrial users but also its cellularconnected UAVs counterpart. Moreover, the coverage probability of the UAV-UE becomes saturated at large down-tilt angles at the TBSs due to the antenna sidelobe gain at the serving and interfering TBSs. We also found that the significant increase of the vertical antenna beamwidth improves the UAV user coverage probability especially at relatively low hovering altitudes thanks to the increase of the desired signal strength compared to the interference power.
Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
Small-Signal Stability Condition of Inverter-Integrated Power Systems: Closed-Form Expression by Stationary Power Flow Variables
This paper shows that a necessary and sufficient condition for the small-signal stability of an inverter-integrated power system can be expressed in terms of semidefinite matrix inequalities determined only by the synchronous reactance of the components, the susceptance matrix of the transmission network, and the stationary values of the power flow distribution. To derive the stability condition, we consider a class of grid-forming inverters corresponding to a singular perturbation of the synchronous generator. The resulting matrix inequality condition, which has twice as many dimensions as the number of buses and is independent of the dynamics of the connected components, is expressed in terms of each component compensating in a decentralized manner for the loss of frequency synchronization caused by the reactive power consumption in the transmission network. A simple numerical example using a 3-bus power system model shows that a grid-forming inverter load improves power system synchronization, while a grid-following inverter load disrupts it.
A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
Two-Player Dynamic Potential LQ Games with Sequentially Revealed Costs
We investigate a novel finite-horizon linear-quadratic (LQ) feedback dynamic potential game with a priori unknown cost matrices played between two players. The cost matrices are revealed to the players sequentially, with the potential for future values to be previewed over a short time window. We propose an algorithm that enables the players to predict and track a feedback Nash equilibrium trajectory, and we measure the quality of their resulting decisions by introducing the concept of \emph{price of uncertainty}. We show that under the proposed algorithm, the price of uncertainty is bounded by horizon-invariant constants. The constants are the sum of three terms; the first and second terms decay exponentially as the preview window grows, and another depends on the magnitude of the differences between the cost matrices for each player. Through simulations, we illustrate that the resulting price of uncertainty initially decays at an exponential rate as the preview window lengthens, then remains constant for large time horizons.
DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control approach for voltage regulation, current sharing, and Constant Power Load (CPL) stability in DC microgrids (MGs). We describe the closed-loop DC MG as a networked system where DGs, lines, and nonlinear loads (including destabilizing CPLs) are interconnected via a static interconnection matrix. Each DG has a local controller and a distributed global controller, designed using dissipativity properties and sector-bounded techniques. For controller synthesis, we formulate a Linear Matrix Inequality (LMI) problem that simultaneously addresses voltage regulation, current sharing, and CPL stability guarantees. To support the feasibility of this problem, we propose a sector-bounded approach that characterizes CPL nonlinearities and integrates them into the dissipativity framework through S-procedure techniques. Our approach provides a unified framework for co-designing distributed controllers and communication topologies that ensure stability despite the presence of destabilizing CPL effects. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches when handling CPLs.
Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
Bounds on Deep Neural Network Partial Derivatives with Respect to Parameters
Deep neural networks (DNNs) have emerged as a powerful tool with a growing body of literature exploring Lyapunov-based approaches for real-time system identification and control. These methods depend on establishing bounds for the second partial derivatives of DNNs with respect to their parameters, a requirement often assumed but rarely addressed explicitly. This paper provides rigorous mathematical formulations of polynomial bounds on both the first and second partial derivatives of DNNs with respect to their parameters. We present lemmas that characterize these bounds for fully-connected DNNs, while accommodating various classes of activation function including sigmoidal and ReLU-like functions. Our analysis yields closed-form expressions that enable precise stability guarantees for Lyapunov-based deep neural networks (Lb-DNNs). Furthermore, we extend our results to bound the higher-order terms in first-order Taylor approximations of DNNs, providing important tools for convergence analysis in gradient-based learning algorithms. The developed theoretical framework develops explicit, computable expressions, for previously assumed bounds, thereby strengthening the mathematical foundation of neural network applications in safety-critical control systems.
comment: 8 pages
TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
Learning-Based Model Predictive Control for Piecewise Affine Systems with Feasibility Guarantees
Online model predictive control (MPC) for piecewise affine (PWA) systems requires the online solution to an optimization problem that implicitly optimizes over the switching sequence of PWA regions, for which the computational burden can be prohibitive. Alternatively, the computation can be moved offline using explicit MPC; however, the online memory requirements and the offline computation can then become excessive. In this work we propose a solution in between online and explicit MPC, addressing the above issues by partially dividing the computation between online and offline. To solve the underlying MPC problem, a policy, learned offline, specifies the sequence of PWA regions that the dynamics must follow, thus reducing the complexity of the remaining optimization problem that solves over only the continuous states and control inputs. We provide a condition, verifiable during learning, that guarantees feasibility of the learned policy's output, such that an optimal continuous control input can always be found online. Furthermore, a method for iteratively generating training data offline allows the feasible policy to be learned efficiently, reducing the offline computational burden. A numerical experiment demonstrates the effectiveness of the method compared to both online and explicit MPC.
comment: 6 pages, 3 figures, accepted for publication in ECC 2025. Code available at https://github.com/SamuelMallick/supervised-learning-pwa-mpc
A PAC-Bayesian Framework for Optimal Control with Stability Guarantees
Stochastic Nonlinear Optimal Control (SNOC) involves minimizing a cost function that averages out the random uncertainties affecting the dynamics of nonlinear systems. For tractability reasons, this problem is typically addressed by minimizing an empirical cost, which represents the average cost across a finite dataset of sampled disturbances. However, this approach raises the challenge of quantifying the control performance against out-of-sample uncertainties. Particularly, in scenarios where the training dataset is small, SNOC policies are prone to overfitting, resulting in significant discrepancies between the empirical cost and the true cost, i.e., the average SNOC cost incurred during control deployment. Therefore, establishing generalization bounds on the true cost is crucial for ensuring reliability in real-world applications. In this paper, we introduce a novel approach that leverages PAC-Bayes theory to provide rigorous generalization bounds for SNOC. Based on these bounds, we propose a new method for designing optimal controllers, offering a principled way to incorporate prior knowledge into the synthesis process, which aids in improving the control policy and mitigating overfitting. Furthermore, by leveraging recent parametrizations of stabilizing controllers for nonlinear systems, our framework inherently ensures closed-loop stability. The effectiveness of our proposed method in incorporating prior knowledge and combating overfitting is shown by designing neural network controllers for tasks in cooperative robotics.
Validation of Neural Network Controllers for Uncertain Systems Through Keep-Close Approach: Robustness Analysis and Safety Verification
Among the major challenges in neural control system technology is the validation and certification of the safety and robustness of neural network (NN) controllers against various uncertainties including unmodelled dynamics, nonlinearities, and time delays. One way in providing such validation guarantees is to maintain the closed-loop system output with a NN controller when its input changes within a bounded set, close to the output of a robustly performing closed-loop reference model. This paper presents a novel approach to analysing the performance and robustness of uncertain feedback systems with NN controllers. Due to the complexity of analysing such systems, the problem is reformulated as the problem of dynamical tracking errors between the closed-loop system with a neural controller and an ideal closed-loop reference model. Then, the approximation of the controller error is characterised by adopting the differential mean value theorem (DMV) and the Integral Quadratic Constraints (IQCs) technique. Moreover, the Relative Integral Square Error (RISE) and the Supreme Square Error (SSE) bounded set are derived for the output of the error dynamical system. The analysis is then performed by integrating Lyapunov theory with the IQCs-based technique. The resulting worst-case analysis provides the user a prior knowledge about the worst case of RISE and SSE between the reference closed-loop model and the uncertain system controlled by the neural controller.
comment: 25 pages, 16 figures, Journal Paper submitted to International Journal of Robust and Nonlinear Control
Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer, constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management, single imbalance pricing leads to an all-or-nothing trading strategy, which we term 'betting'. To address this, we propose a data-driven, pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances, we move from the all-or-nothing approach to a 'trading" strategy', where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed, always allowed, or not allowed to buy power from the grid, which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight, we show that the risk-constrained, data-driven approach delivers satisfactory performance.
On the Reachability of 3-Dimensional Paths with a Prescribed Curvature Bound
This paper presents the reachability analysis of curves in $\mathbb{R}^3$ with a prescribed curvature bound. Based on Pontryagin Maximum Principle, we leverage the existing knowledge on the structure of solutions to minimum-time problems, or Markov-Dubins problem, to reachability considerations. Based on this development, two types of reachability are discussed. First, we prove that any boundary point of the reachability set, with the directional component taken into account as well as geometric coordinates, can be reached via curves of H, CSC, CCC, or their respective subsegments, where H denotes a helicoidal arc, C a circular arc with maximum curvature, and S a straight segment. Second, we show that the reachability set when directional component is not considered\textemdash{}the position reachability set\textemdash{}is simply a solid of revolution of its two-dimensional counterpart, the Dubins car. These findings extend the developments presented in literature on Dubins car into spatial curves in $\mathbb{R}^3$.
comment: Accepted for publication in Automatica
Identification and Classification of Human Performance related Challenges during Remote Driving
Remote driving of vehicles is gaining in importance in the transportation sector, especially when Automated Driving Systems (ADSs) reach the limits of their system boundaries. This study investigates the challenges faced by human Remote Drivers (RDs) during remote driving, particularly focusing on the identification and classification of human performance-related challenges through a comprehensive analysis of real-world remote driving data Las Vegas. For this purpose, a total of 183 RD performance-related Safety Driver (SD) interventions were analyzed and classified using an introduced severity classification. As it is essential to prevent the need for SD interventions, this study identified and analyzed harsh driving events to detect an increased likelihood of interventions by the SD. In addition, the results of the subjective RD questionnaire are used to evaluate whether the objective metrics from SD interventions and harsh driving events can also be confirmed by the RDs and whether additional challenges can be uncovered. The analysis reveals learning curves, showing a significant decrease in SD interventions as RD experience increases. Early phases of remote driving experience, especially below 200 km of experience, showed the highest frequency of safety-related events, including braking late for traffic signs and responding impatiently to other traffic participants. Over time, RDs follow defined rules for improving their control, with experience leading to less harsh braking, acceleration, and steering maneuvers. The study contributes to understanding the requirements of RDS, emphasizing the importance of targeted training to address human performance limitations. It further highlights the need for system improvements to address challenges like latency and the limited haptic feedback replaced by visual feedback, which affect the RDs' perception and vehicle control.
comment: This work has been submitted to the IEEE for possible publication
Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
Learning Soft Constrained MPC Value Functions: Efficient MPC Design and Implementation providing Stability and Safety Guarantees
Model Predictive Control (MPC) can be applied to safety-critical control problems, providing closed-loop safety and performance guarantees. Implementation of MPC controllers requires solving an optimization problem at every sampling instant, which is challenging to execute on embedded hardware. To address this challenge, we propose a framework that combines a tightened soft constrained MPC formulation with supervised learning to approximate the MPC value function. This combination enables us to obtain a corresponding optimal control law, which can be implemented efficiently on embedded platforms. The framework ensures stability and constraint satisfaction for various nonlinear systems. While the design effort is similar to that of nominal MPC, the proposed formulation provides input-to-state stability (ISS) with respect to the approximation error of the value function. Furthermore, we prove that the value function corresponding to the soft constrained MPC problem is Lipschitz continuous for Lipschitz continuous systems, even if the optimal control law may be discontinuous. This serves two purposes: First, it allows to relate approximation errors to a sufficiently large constraint tightening to obtain constraint satisfaction guarantees. Second, it paves the way for an efficient supervised learning procedure to obtain a continuous value function approximation. We demonstrate the effectiveness of the method using a nonlinear numerical example.
LQG Risk-Sensitive Single-Agent and Major-Minor Mean-Field Game Systems: A Variational Framework
We develop a variational approach to address risk-sensitive optimal control problems with an exponential-of-integral cost functional in a general linear-quadratic-Gaussian (LQG) single-agent setup, offering new insights into such problems. Our analysis leads to the derivation of a nonlinear necessary and sufficient condition of optimality, expressed in terms of martingale processes. Subject to specific conditions, we find an equivalent risk-neutral measure, under which a linear state feedback form can be obtained for the optimal control. It is then shown that the obtained feedback control is consistent with the imposed condition and remains optimal under the original measure. Building upon this development, we (i) propose a variational framework for general LQG risk-sensitive mean-field games (MFGs) and (ii) advance the LQG risk-sensitive MFG theory by incorporating a major agent in the framework. The major agent interacts with a large number of minor agents, and unlike the minor agents, its influence on the system remains significant even with an increasing number of minor agents. We derive the Markovian closed-loop best-response strategies of agents in the limiting case where the number of agents goes to infinity. We establish that the set of obtained best-response strategies yields a Nash equilibrium in the limiting case and an $\varepsilon$-Nash equilibrium in the finite-player case.
Topological Graph Simplification Solutions to the Street Intersection Miscount Problem
Street intersection counts and densities are ubiquitous measures in transport geography and planning. However, typical street network data and typical street network analysis tools can substantially overcount them. This article explains the three main reasons why this happens and presents solutions to each. It contributes algorithms to automatically simplify spatial graphs of urban street networks -- via edge simplification and node consolidation -- resulting in faster parsimonious models and more accurate network measures like intersection counts and densities, street segment lengths, and node degrees. These algorithms' information compression improves downstream graph analytics' memory and runtime efficiency, boosting analytical tractability without loss of model fidelity. Finally, this article validates these algorithms and empirically assesses intersection count biases worldwide to demonstrate the problem's widespread prevalence. Without consolidation, traditional methods would overestimate the median urban area intersection count by 14%. However, this bias varies drastically across regions, underscoring these algorithms' importance for consistent comparative empirical analyses.
Robotics
EventFly: Event Camera Perception from Ground to the Sky CVPR 2025
Cross-platform adaptation in event-based dense perception is crucial for deploying event cameras across diverse settings, such as vehicles, drones, and quadrupeds, each with unique motion dynamics, viewpoints, and class distributions. In this work, we introduce EventFly, a framework for robust cross-platform adaptation in event camera perception. Our approach comprises three key components: i) Event Activation Prior (EAP), which identifies high-activation regions in the target domain to minimize prediction entropy, fostering confident, domain-adaptive predictions; ii) EventBlend, a data-mixing strategy that integrates source and target event voxel grids based on EAP-driven similarity and density maps, enhancing feature alignment; and iii) EventMatch, a dual-discriminator technique that aligns features from source, target, and blended domains for better domain-invariant learning. To holistically assess cross-platform adaptation abilities, we introduce EXPo, a large-scale benchmark with diverse samples across vehicle, drone, and quadruped platforms. Extensive experiments validate our effectiveness, demonstrating substantial gains over popular adaptation methods. We hope this work can pave the way for more adaptive, high-performing event perception across diverse and complex environments.
comment: CVPR 2025; 30 pages, 8 figures, 16 tables; Project Page at https://event-fly.github.io/
SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing ICRA
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent--a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents--each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback--our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
OpenLex3D: A New Evaluation Benchmark for Open-Vocabulary 3D Scene Representations
3D scene understanding has been transformed by open-vocabulary language models that enable interaction via natural language. However, the evaluation of these representations is limited to closed-set semantics that do not capture the richness of language. This work presents OpenLex3D, a dedicated benchmark to evaluate 3D open-vocabulary scene representations. OpenLex3D provides entirely new label annotations for 23 scenes from Replica, ScanNet++, and HM3D, which capture real-world linguistic variability by introducing synonymical object categories and additional nuanced descriptions. By introducing an open-set 3D semantic segmentation task and an object retrieval task, we provide insights on feature precision, segmentation, and downstream capabilities. We evaluate various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure cases, and avenues for improvement. The benchmark is publicly available at: https://openlex3d.github.io/.
Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io;
Semi-SD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
Leveraging Cognitive States for Adaptive Scaffolding of Understanding in Explanatory Tasks in HRI
Understanding how scaffolding strategies influence human understanding in human-robot interaction is important for developing effective assistive systems. This empirical study investigates linguistic scaffolding strategies based on negation as an important means that de-biases the user from potential errors but increases processing costs and hesitations as a means to ameliorate processing costs. In an adaptive strategy, the user state with respect to the current state of understanding and processing capacity was estimated via a scoring scheme based on task performance, prior scaffolding strategy, and current eye gaze behavior. In the study, the adaptive strategy of providing negations and hesitations was compared with a non-adaptive strategy of providing only affirmations. The adaptive scaffolding strategy was generated using the computational model SHIFT. Our findings indicate that using adaptive scaffolding strategies with SHIFT tends to (1) increased processing costs, as reflected in longer reaction times, but (2) improved task understanding, evidenced by a lower error rate of almost 23%. We assessed the efficiency of SHIFT's selected scaffolding strategies across different cognitive states, finding that in three out of five states, the error rate was lower compared to the baseline condition. We discuss how these results align with the assumptions of the SHIFT model and highlight areas for refinement. Moreover, we demonstrate how scaffolding strategies, such as negation and hesitation, contribute to more effective human-robot explanatory dialogues.
comment: 8 pages, 6 figures
Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
Energy-aware Joint Orchestration of 5G and Robots: Experimental Testbed and Field Validation
5G mobile networks introduce a new dimension for connecting and operating mobile robots in outdoor environments, leveraging cloud-native and offloading features of 5G networks to enable fully flexible and collaborative cloud robot operations. However, the limited battery life of robots remains a significant obstacle to their effective adoption in real-world exploration scenarios. This paper explores, via field experiments, the potential energy-saving gains of OROS, a joint orchestration of 5G and Robot Operating System (ROS) that coordinates multiple 5G-connected robots both in terms of navigation and sensing, as well as optimizes their cloud-native service resource utilization while minimizing total resource and energy consumption on the robots based on real-time feedback. We designed, implemented and evaluated our proposed OROS in an experimental testbed composed of commercial off-the-shelf robots and a local 5G infrastructure deployed on a campus. The experimental results demonstrated that OROS significantly outperforms state-of-the-art approaches in terms of energy savings by offloading demanding computational tasks to the 5G edge infrastructure and dynamic energy management of on-board sensors (e.g., switching them off when they are not needed). This strategy achieves approximately 15% energy savings on the robots, thereby extending battery life, which in turn allows for longer operating times and better resource utilization.
comment: 14 pages, 15 figures, journal
ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration
The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains. The prototype features a central unit based on a Raspberry Pi, connected to a sensory system for inertial, depth, and vision detection, and an acoustic modem for communication. Combined with the implemented control law, it renders ZodiAq an intelligent system. This paper details the design and fabrication process of ZodiAq, highlighting design choices and prototype capabilities. Based on the strain-based modeling of Cosserat rods, we have developed a digital twin of the prototype within a simulation toolbox to ease analysis and control. To optimize its operation in dynamic aquatic conditions, a simplified model-based controller has been developed and implemented, facilitating intelligent and adaptive movement in the hydrodynamic environment. Extensive experimental demonstrations highlight the drone's potential, showcasing its design redundancy, embodied intelligence, crawling gait, and practical applications in diverse underwater settings. This research contributes significantly to the field of underwater soft robotics, offering a promising new avenue for safe, efficient, and environmentally conscious underwater exploration.
comment: 43 pages, including disclaimer page, pre-peer-review version of the manuscript, and supplementary material
DataPlatter: Boosting Robotic Manipulation Generalization with Minimal Costly Data
The growing adoption of Vision-Language-Action (VLA) models in embodied AI intensifies the demand for diverse manipulation demonstrations. However, high costs associated with data collection often result in insufficient data coverage across all scenarios, which limits the performance of the models. It is observed that the spatial reasoning phase (SRP) in large workspace dominates the failure cases. Fortunately, this data can be collected with low cost, underscoring the potential of leveraging inexpensive data to improve model performance. In this paper, we introduce the DataPlatter method, a framework that decouples training trajectories into distinct task stages and leverages abundant easily collectible SRP data to enhance VLA model's generalization. Through analysis we demonstrate that sub-task-specific training with additional SRP data with proper proportion can act as a performance catalyst for robot manipulation, maximizing the utilization of costly physical interaction phase (PIP) data. Experiments show that through introducing large proportion of cost-effective SRP trajectories into a limited set of PIP data, we can achieve a maximum improvement of 41\% on success rate in zero-shot scenes, while with the ability to transfer manipulation skill to novel targets.
RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
MM-LINS: a Multi-Map LiDAR-Inertial System for Over-Degenerate Environments
SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.
comment: Accepted by IEEE Transactions on Intelligent Vehicles
G-DexGrasp: Generalizable Dexterous Grasping Synthesis Via Part-Aware Prior Retrieval and Prior-Assisted Generation
Recent advances in dexterous grasping synthesis have demonstrated significant progress in producing reasonable and plausible grasps for many task purposes. But it remains challenging to generalize to unseen object categories and diverse task instructions. In this paper, we propose G-DexGrasp, a retrieval-augmented generation approach that can produce high-quality dexterous hand configurations for unseen object categories and language-based task instructions. The key is to retrieve generalizable grasping priors, including the fine-grained contact part and the affordance-related distribution of relevant grasping instances, for the following synthesis pipeline. Specifically, the fine-grained contact part and affordance act as generalizable guidance to infer reasonable grasping configurations for unseen objects with a generative model, while the relevant grasping distribution plays as regularization to guarantee the plausibility of synthesized grasps during the subsequent refinement optimization. Our comparison experiments validate the effectiveness of our key designs for generalization and demonstrate the remarkable performance against the existing approaches. Project page: https://g-dexgrasp.github.io/
comment: 11 pages, 5 figures
Quality-focused Active Adversarial Policy for Safe Grasping in Human-Robot Interaction
Vision-guided robot grasping methods based on Deep Neural Networks (DNNs) have achieved remarkable success in handling unknown objects, attributable to their powerful generalizability. However, these methods with this generalizability tend to recognize the human hand and its adjacent objects as graspable targets, compromising safety during Human-Robot Interaction (HRI). In this work, we propose the Quality-focused Active Adversarial Policy (QFAAP) to solve this problem. Specifically, the first part is the Adversarial Quality Patch (AQP), wherein we design the adversarial quality patch loss and leverage the grasp dataset to optimize a patch with high quality scores. Next, we construct the Projected Quality Gradient Descent (PQGD) and integrate it with the AQP, which contains only the hand region within each real-time frame, endowing the AQP with fast adaptability to the human hand shape. Through AQP and PQGD, the hand can be actively adversarial with the surrounding objects, lowering their quality scores. Therefore, further setting the quality score of the hand to zero will reduce the grasping priority of both the hand and its adjacent objects, enabling the robot to grasp other objects away from the hand without emergency stops. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of QFAAP. Our code and demo videos are available here: https://github.com/clee-jaist/QFAAP.
MATT-GS: Masked Attention-based 3DGS for Robot Perception and Object Detection IROS
This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
Towards Uncertainty Unification: A Case Study for Preference Learning
Learning human preferences is essential for human-robot interaction, as it enables robots to adapt their behaviors to align with human expectations and goals. However, the inherent uncertainties in both human behavior and robotic systems make preference learning a challenging task. While probabilistic robotics algorithms offer uncertainty quantification, the integration of human preference uncertainty remains underexplored. To bridge this gap, we introduce uncertainty unification and propose a novel framework, uncertainty-unified preference learning (UUPL), which enhances Gaussian Process (GP)-based preference learning by unifying human and robot uncertainties. Specifically, UUPL includes a human preference uncertainty model that improves GP posterior mean estimation, and an uncertainty-weighted Gaussian Mixture Model (GMM) that enhances GP predictive variance accuracy. Additionally, we design a user-specific calibration process to align uncertainty representations across users, ensuring consistency and reliability in the model performance. Comprehensive experiments and user studies demonstrate that UUPL achieves state-of-the-art performance in both prediction accuracy and user rating. An ablation study further validates the effectiveness of human uncertainty model and uncertainty-weighted GMM of UUPL.
Observation Adaptation via Annealed Importance Resampling for Partially Observable Markov Decision Processes ICAPS 2025
Partially observable Markov decision processes (POMDPs) are a general mathematical model for sequential decision-making in stochastic environments under state uncertainty. POMDPs are often solved \textit{online}, which enables the algorithm to adapt to new information in real time. Online solvers typically use bootstrap particle filters based on importance resampling for updating the belief distribution. Since directly sampling from the ideal state distribution given the latest observation and previous state is infeasible, particle filters approximate the posterior belief distribution by propagating states and adjusting weights through prediction and resampling steps. However, in practice, the importance resampling technique often leads to particle degeneracy and sample impoverishment when the state transition model poorly aligns with the posterior belief distribution, especially when the received observation is highly informative. We propose an approach that constructs a sequence of bridge distributions between the state-transition and optimal distributions through iterative Monte Carlo steps, better accommodating noisy observations in online POMDP solvers. Our algorithm demonstrates significantly superior performance compared to state-of-the-art methods when evaluated across multiple challenging POMDP domains.
comment: Accepted as Oral Presentation to ICAPS 2025
A Novel Underwater Vehicle With Orientation Adjustable Thrusters: Design and Adaptive Tracking Control
Autonomous underwater vehicles (AUVs) are essential for marine exploration and research. However, conventional designs often struggle with limited maneuverability in complex, dynamic underwater environments. This paper introduces an innovative orientation-adjustable thruster AUV (OATAUV), equipped with a redundant vector thruster configuration that enables full six-degree-of-freedom (6-DOF) motion and composite maneuvers. To overcome challenges associated with uncertain model parameters and environmental disturbances, a novel feedforward adaptive model predictive controller (FFAMPC) is proposed to ensure robust trajectory tracking, which integrates real-time state feedback with adaptive parameter updates. Extensive experiments, including closed-loop tracking and composite motion tests in a laboratory pool, validate the enhanced performance of the OAT-AUV. The results demonstrate that the OAT-AUV's redundant vector thruster configuration enables 23.8% cost reduction relative to common vehicles, while the FF-AMPC controller achieves 68.6% trajectory tracking improvement compared to PID controllers. Uniquely, the system executes composite helical/spiral trajectories unattainable by similar vehicles.
CubeRobot: Grounding Language in Rubik's Cube Manipulation via Vision-Language Model
Proving Rubik's Cube theorems at the high level represents a notable milestone in human-level spatial imagination and logic thinking and reasoning. Traditional Rubik's Cube robots, relying on complex vision systems and fixed algorithms, often struggle to adapt to complex and dynamic scenarios. To overcome this limitation, we introduce CubeRobot, a novel vision-language model (VLM) tailored for solving 3x3 Rubik's Cubes, empowering embodied agents with multimodal understanding and execution capabilities. We used the CubeCoT image dataset, which contains multiple-level tasks (43 subtasks in total) that humans are unable to handle, encompassing various cube states. We incorporate a dual-loop VisionCoT architecture and Memory Stream, a paradigm for extracting task-related features from VLM-generated planning queries, thus enabling CubeRobot to independent planning, decision-making, reflection and separate management of high- and low-level Rubik's Cube tasks. Furthermore, in low-level Rubik's Cube restoration tasks, CubeRobot achieved a high accuracy rate of 100%, similar to 100% in medium-level tasks, and achieved an accuracy rate of 80% in high-level tasks.
CoinFT: A Coin-Sized, Capacitive 6-Axis Force Torque Sensor for Robotic Applications
We introduce CoinFT, a capacitive 6-axis force/torque (F/T) sensor that is compact, light, low-cost, and robust with an average mean-squared error of 0.11N for force and 0.84mNm for moment when the input ranges from 0~10N and 0~4N in normal and shear directions, respectively. CoinFT is a stack of two rigid PCBs with comb-shaped electrodes connected by an array of silicone rubber pillars. The microcontroller interrogates the electrodes in different subsets in order to enhance sensitivity for measuring 6-axis F/T. The combination of desirable features of CoinFT enables various contact-rich robot interactions at a scale, across different embodiment domains including drones, robot end-effectors, and wearable haptic devices. We demonstrate the utility of CoinFT on drones by performing an attitude-based force control to perform tasks that require careful contact force modulation. The design, fabrication, and firmware of CoinFT are open-sourced at https://hojung-choi.github.io/coinft.github.io/.
Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations ICLR 2025
Recent advancements in LLMs have revolutionized motion generation models in embodied applications. While LLM-type auto-regressive motion generation models benefit from training scalability, there remains a discrepancy between their token prediction objectives and human preferences. As a result, models pre-trained solely with token-prediction objectives often generate behaviors that deviate from what humans would prefer, making post-training preference alignment crucial for producing human-preferred motions. Unfortunately, post-training alignment requires extensive preference rankings of motions generated by the pre-trained model, which are costly to annotate, especially in multi-agent settings. Recently, there has been growing interest in leveraging pre-training demonstrations to scalably generate preference data for post-training alignment. However, these methods often adopt an adversarial assumption, treating all pre-trained model-generated samples as unpreferred examples. This adversarial approach overlooks the valuable signal provided by preference rankings among the model's own generations, ultimately reducing alignment effectiveness and potentially leading to misaligned behaviors. In this work, instead of treating all generated samples as equally bad, we leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations, offering more nuanced preference alignment guidance with zero human cost. We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors, making a lightweight 1M motion generation model comparable to SOTA large imitation-based models by relying solely on implicit feedback from pre-training demonstrations, without additional post-training human preference annotations or high computational costs.
comment: ICLR 2025 Spotlight
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
Learning Scene-Level Signed Directional Distance Function with Ellipsoidal Priors and Neural Residuals
Dense geometric environment representations are critical for autonomous mobile robot navigation and exploration. Recent work shows that implicit continuous representations of occupancy, signed distance, or radiance learned using neural networks offer advantages in reconstruction fidelity, efficiency, and differentiability over explicit discrete representations based on meshes, point clouds, and voxels. In this work, we explore a directional formulation of signed distance, called signed directional distance function (SDDF). Unlike signed distance function (SDF) and similar to neural radiance fields (NeRF), SDDF has a position and viewing direction as input. Like SDF and unlike NeRF, SDDF directly provides distance to the observed surface along the direction, rather than integrating along the view ray, allowing efficient view synthesis. To learn and predict scene-level SDDF efficiently, we develop a differentiable hybrid representation that combines explicit ellipsoid priors and implicit neural residuals. This approach allows the model to effectively handle large distance discontinuities around obstacle boundaries while preserving the ability for dense high-fidelity prediction. We show that SDDF is competitive with the state-of-the-art neural implicit scene models in terms of reconstruction accuracy and rendering efficiency, while allowing differentiable view prediction for robot trajectory optimization.
Gemini Robotics: Bringing AI into the Physical World
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Hyperdimensional Uncertainty Quantification for Multimodal Uncertainty Fusion in Autonomous Vehicles Perception CVPR 2025
Uncertainty Quantification (UQ) is crucial for ensuring the reliability of machine learning models deployed in real-world autonomous systems. However, existing approaches typically quantify task-level output prediction uncertainty without considering epistemic uncertainty at the multimodal feature fusion level, leading to sub-optimal outcomes. Additionally, popular uncertainty quantification methods, e.g., Bayesian approximations, remain challenging to deploy in practice due to high computational costs in training and inference. In this paper, we propose HyperDUM, a novel deterministic uncertainty method (DUM) that efficiently quantifies feature-level epistemic uncertainty by leveraging hyperdimensional computing. Our method captures the channel and spatial uncertainties through channel and patch -wise projection and bundling techniques respectively. Multimodal sensor features are then adaptively weighted to mitigate uncertainty propagation and improve feature fusion. Our evaluations show that HyperDUM on average outperforms the state-of-the-art (SOTA) algorithms by up to 2.01%/1.27% in 3D Object Detection and up to 1.29% improvement over baselines in semantic segmentation tasks under various types of uncertainties. Notably, HyperDUM requires 2.36x less Floating Point Operations and up to 38.30x less parameters than SOTA methods, providing an efficient solution for real-world autonomous systems.
comment: Accepted at CVPR 2025
Hybrid Magnetically and Electrically Powered Metallo-Dielectric Janus Microrobots: Enhanced Motion Control and Operation Beyond Planar Limits
This study introduces the integration of hybrid magnetic and electric actuation mechanisms to achieve advanced motion capabilities for Janus particle (JP) microrobots. We demonstrate enhanced in-plane motion control through versatile control strategies and present the concepts of interplanar transitions and 2.5-dimensional (2.5D) trajectories, enabled by magnetic levitation and electrostatic trapping. These innovations expand the mobility of JPs into 3D space, allowing dynamic operation beyond the limitations of traditional surface-bound motion. Key functionalities include obstacle crossing, transitions to elevated surfaces, and discrete surface patterning enabling highly localized interventions. Using this set of tools, we also showcase the controlled out-of-plane transport of both synthetic and biological cargo. Together, these advancements lay the groundwork for novel microrobot-related applications in microfluidic systems and biomedical research.
Body Discovery of Embodied AI
In the pursuit of realizing artificial general intelligence (AGI), the importance of embodied artificial intelligence (AI) becomes increasingly apparent. Following this trend, research integrating robots with AGI has become prominent. As various kinds of embodiments have been designed, adaptability to diverse embodiments will become important to AGI. We introduce a new challenge, termed "Body Discovery of Embodied AI", focusing on tasks of recognizing embodiments and summarizing neural signal functionality. The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments, where conventional approaches often prove inadequate. To address these challenges, we apply causal inference method and evaluate it by developing a simulator tailored for testing algorithms with virtual environments. Finally, we validate the efficacy of our algorithms through empirical testing, demonstrating their robust performance in various scenarios based on virtual environments.
Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental goal for motor control, biomechanics, and rehabilitation engineering. However, widely used data-driven models of essential tasks like locomotion make simplifying assumptions such as linear and fixed timescale mappings between past inputs and future actions, which do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embeddings, outperforming traditional models across contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. These analyses reveal that there is greater reliance on fast-timescale predictions in complex terrain, gaze predicts future foot placement before body states, and the full-body state predictions precede those by center-of-mass-relevant states. This deep learning framework for action prediction provides quantifiable insights into the control of real-world locomotion and can be extended to other actions, contexts, and populations.
UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
Hierarchical Performance-Based Design Optimization Framework for Soft Grippers
This paper presents a hierarchical, performance-based framework for the design optimization of multi-fingered soft grippers. To address the need for systematically defined performance indices, the framework structures the optimization process into three integrated layers: Task Space, Motion Space, and Design Space. In the Task Space, performance indices are defined as core objectives, while the Motion Space interprets these into specific movement primitives. Finally, the Design Space applies parametric and topological optimization techniques to refine the geometry and material distribution of the system, achieving a balanced design across key performance metrics. The framework's layered structure enhances SG design, ensuring balanced performance and scalability for complex tasks and contributing to broader advancements in soft robotics.
comment: 7 pages, 3 figures, 1 Algorithm
Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers ICRA
Recent advances in diffusion-based robot policies have demonstrated significant potential in imitating multi-modal behaviors. However, these approaches typically require large quantities of demonstration data paired with corresponding robot action labels, creating a substantial data collection burden. In this work, we propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers by leveraging observational demonstration data. Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation. This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder, requiring minimal action-labeled data. Through experiments on simulated robot manipulation tasks and a real robot experiment with multi-modal expert demonstrations, we demonstrate that our approach significantly enhances action-data efficiency and achieves high task success rates with limited action data.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
On-Device Self-Supervised Learning of Low-Latency Monocular Depth from Only Events CVPR 2025
Event cameras provide low-latency perception for only milliwatts of power. This makes them highly suitable for resource-restricted, agile robots such as small flying drones. Self-supervised learning based on contrast maximization holds great potential for event-based robot vision, as it foregoes the need for high-frequency ground truth and allows for online learning in the robot's operational environment. However, online, on-board learning raises the major challenge of achieving sufficient computational efficiency for real-time learning, while maintaining competitive visual perception performance. In this work, we improve the time and memory efficiency of the contrast maximization pipeline, making on-device learning of low-latency monocular depth possible. We demonstrate that online learning on board a small drone yields more accurate depth estimates and more successful obstacle avoidance behavior compared to only pre-training. Benchmarking experiments show that the proposed pipeline is not only efficient, but also achieves state-of-the-art depth estimation performance among self-supervised approaches. Our work taps into the unused potential of online, on-device robot learning, promising smaller reality gaps and better performance.
comment: Accepted at CVPR 2025
BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Existing robot policies predominantly adopt the task-centric approach, requiring end-to-end task data collection. This results in limited generalization to new tasks and difficulties in pinpointing errors within long-horizon, multi-stage tasks. To address this, we propose RoboMatrix, a skill-centric hierarchical framework designed for scalable robot task planning and execution in open-world environments. RoboMatrix extracts general meta-skills from diverse complex tasks, enabling the completion of unseen tasks through skill composition. Its architecture consists of a high-level scheduling layer that utilizes large language models (LLMs) for task decomposition, an intermediate skill layer housing meta-skill models, and a low-level hardware layer for robot control. A key innovation of our work is the introduction of the first unified vision-language-action (VLA) model capable of seamlessly integrating both movement and manipulation within one model. This is achieved by combining vision and language prompts to generate discrete actions. Experimental results demonstrate that RoboMatrix achieves a 50% higher success rate than task-centric baselines when applied to unseen objects, scenes, and tasks. To advance open-world robotics research, we will open-source code, hardware designs, model weights, and datasets at https://github.com/WayneMao/RoboMatrix.
comment: 17 pages, 16 figures
MCVO: A Generic Visual Odometry for Arbitrarily Arranged Multi-Cameras
Making multi-camera visual SLAM systems easier to set up and more robust to the environment is attractive for vision robots. Existing monocular and binocular vision SLAM systems have narrow sensing Field-of-View (FoV), resulting in degenerated accuracy and limited robustness in textureless environments. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy with much wider FoV. However, the usual arbitrary placement and orientation of multiple cameras make the pose scale estimation and system updating challenging. To address these problems, we propose a robust visual odometry system for rigidly-bundled arbitrarily-arranged multi-cameras, namely MCVO, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature tracking framework to shift the pressure of CPU processing of multiple video streams to GPU. Then we initialize the odometry system with the metric-scale poses under the rigid constraints between moving cameras. Finally, we fuse the features of the multi-cameras in the back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate its robustness over arbitrarily arranged cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose accuracy with better generalization ability. Our codes and online demos are available at https://github.com/JunhaoWang615/MCVO
comment: 8 pages, 8 figures
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
comment: CVPR 2025
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration
Robot description models are essential for simulation and control, yet their creation often requires significant manual effort. To streamline this modeling process, we introduce AutoURDF, an unsupervised approach for constructing description files for unseen robots from point cloud frames. Our method leverages a cluster-based point cloud registration model that tracks the 6-DoF transformations of point clusters. Through analyzing cluster movements, we hierarchically address the following challenges: (1) moving part segmentation, (2) body topology inference, and (3) joint parameter estimation. The complete pipeline produces robot description files that are fully compatible with existing simulators. We validate our method across a variety of robots, using both synthetic and real-world scan data. Results indicate that our approach outperforms previous methods in registration and body topology estimation accuracy, offering a scalable solution for automated robot modeling.
comment: 16 pages
SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
AO-Grasp: Articulated Object Grasp Generation
We introduce AO-Grasp, a grasp proposal method that generates 6 DoF grasps that enable robots to interact with articulated objects, such as opening and closing cabinets and appliances. AO-Grasp consists of two main contributions: the AO-Grasp Model and the AO-Grasp Dataset. Given a segmented partial point cloud of a single articulated object, the AO-Grasp Model predicts the best grasp points on the object with an Actionable Grasp Point Predictor. Then, it finds corresponding grasp orientations for each of these points, resulting in stable and actionable grasp proposals. We train the AO-Grasp Model on our new AO-Grasp Dataset, which contains 78K actionable parallel-jaw grasps on synthetic articulated objects. In simulation, AO-Grasp achieves a 45.0 % grasp success rate, whereas the highest performing baseline achieves a 35.0% success rate. Additionally, we evaluate AO-Grasp on 120 real-world scenes of objects with varied geometries, articulation axes, and joint states, where AO-Grasp produces successful grasps on 67.5% of scenes, while the baseline only produces successful grasps on 33.3% of scenes. To the best of our knowledge, AO-Grasp is the first method for generating 6 DoF grasps on articulated objects directly from partial point clouds without requiring part detection or hand-designed grasp heuristics. Project website: https://stanford-iprl-lab.github.io/ao-grasp
comment: Project website: https://stanford-iprl-lab.github.io/ao-grasp
TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
Reactive Collision Avoidance for Safe Agile Navigation
Reactive collision avoidance is essential for agile robots navigating complex and dynamic environments, enabling real-time obstacle response. However, this task is inherently challenging because it requires a tight integration of perception, planning, and control, which traditional methods often handle separately, resulting in compounded errors and delays. This paper introduces a novel approach that unifies these tasks into a single reactive framework using solely onboard sensing and computing. Our method combines nonlinear model predictive control with adaptive control barrier functions, directly linking perception-driven constraints to real-time planning and control. Constraints are determined by using a neural network to refine noisy RGB-D data, enhancing depth accuracy, and selecting points with the minimum time-to-collision to prioritize the most immediate threats. To maintain a balance between safety and agility, a heuristic dynamically adjusts the optimization process, preventing overconstraints in real time. Extensive experiments with an agile quadrotor demonstrate effective collision avoidance across diverse indoor and outdoor environments, without requiring environment-specific tuning or explicit mapping.
Asymptotically-Optimal Multi-Query Path Planning for a Polygonal Robot ICRA 2025
Shortest-path roadmaps, also known as reduced visibility graphs, provides a highly efficient multi-query method for computing optimal paths in two-dimensional environments. Combined with Minkowski sum computations, shortest-path roadmaps can compute optimal paths for a translating robot in 2D. In this study, we explore the intuitive idea of stacking up a set of reduced visibility graphs at different orientations for a polygonal holonomic robot to support the fast computation of near-optimal paths, allowing simultaneous 2D translation and rotation. The resulting algorithm, rotation-stacked visibility graph (RVG), is shown to be resolution-complete and asymptotically optimal. Extensive computational experiments show RVG significantly outperforms state-of-the-art single- and multi-query sampling-based methods on both computation time and solution optimality fronts.
comment: ICRA 2025
Perception of Emotions in Human and Robot Faces: Is the Eye Region Enough?
The increased interest in developing next-gen social robots has raised questions about the factors affecting the perception of robot emotions. This study investigates the impact of robot appearances (humanlike, mechanical) and face regions (full-face, eye-region) on human perception of robot emotions. A between-subjects user study (N = 305) was conducted where participants were asked to identify the emotions being displayed in videos of robot faces, as well as a human baseline. Our findings reveal three important insights for effective social robot face design in Human-Robot Interaction (HRI): Firstly, robots equipped with a back-projected, fully animated face - regardless of whether they are more human-like or more mechanical-looking - demonstrate a capacity for emotional expression comparable to that of humans. Secondly, the recognition accuracy of emotional expressions in both humans and robots declines when only the eye region is visible. Lastly, within the constraint of only the eye region being visible, robots with more human-like features significantly enhance emotion recognition.
comment: Accepted for publication at the 16th International Conference on Social Robotics, Odense, Denmark (ICSR 2024)
Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty or information, posing a challenge for real-world applications such as 3D-GS SLAM. We propose to quantify information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution widely used in literature. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal covariance approximation which provides a measure of correlation at the expense of a greater computation cost.
Multiagent Systems
Inducing Personality in LLM-Based Honeypot Agents: Measuring the Effect on Human-Like Agenda Generation
This paper presents SANDMAN, an architecture for cyber deception that leverages Language Agents to emulate convincing human simulacra. Our 'Deceptive Agents' serve as advanced cyber decoys, designed for high-fidelity engagement with attackers by extending the observation period of attack behaviours. Through experimentation, measurement, and analysis, we demonstrate how a prompt schema based on the five-factor model of personality systematically induces distinct 'personalities' in Large Language Models. Our results highlight the feasibility of persona-driven Language Agents for generating diverse, realistic behaviours, ultimately improving cyber deception strategies.
comment: 11 pages, 1 figure, 6 tables. Accepted to NLPAICS 2024
Optimal Path Planning and Cost Minimization for a Drone Delivery System Via Model Predictive Control
In this study, we formulate the drone delivery problem as a control problem and solve it using Model Predictive Control. Two experiments are performed: The first is on a less challenging grid world environment with lower dimensionality, and the second is with a higher dimensionality and added complexity. The MPC method was benchmarked against three popular Multi-Agent Reinforcement Learning (MARL): Independent $Q$-Learning (IQL), Joint Action Learners (JAL), and Value-Decomposition Networks (VDN). It was shown that the MPC method solved the problem quicker and required fewer optimal numbers of drones to achieve a minimized cost and navigate the optimal path.
comment: 15 pages, 5 figures, Submitted to the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
TraF-Align: Trajectory-aware Feature Alignment for Asynchronous Multi-agent Perception CVPR 2025
Cooperative perception presents significant potential for enhancing the sensing capabilities of individual vehicles, however, inter-agent latency remains a critical challenge. Latencies cause misalignments in both spatial and semantic features, complicating the fusion of real-time observations from the ego vehicle with delayed data from others. To address these issues, we propose TraF-Align, a novel framework that learns the flow path of features by predicting the feature-level trajectory of objects from past observations up to the ego vehicle's current time. By generating temporally ordered sampling points along these paths, TraF-Align directs attention from the current-time query to relevant historical features along each trajectory, supporting the reconstruction of current-time features and promoting semantic interaction across multiple frames. This approach corrects spatial misalignment and ensures semantic consistency across agents, effectively compensating for motion and achieving coherent feature fusion. Experiments on two real-world datasets, V2V4Real and DAIR-V2X-Seq, show that TraF-Align sets a new benchmark for asynchronous cooperative perception.
comment: Accepted to CVPR 2025
Abstracting Geo-specific Terrains to Scale Up Reinforcement Learning
Multi-agent reinforcement learning (MARL) is increasingly ubiquitous in training dynamic and adaptive synthetic characters for interactive simulations on geo-specific terrains. Frameworks such as Unity's ML-Agents help to make such reinforcement learning experiments more accessible to the simulation community. Military training simulations also benefit from advances in MARL, but they have immense computational requirements due to their complex, continuous, stochastic, partially observable, non-stationary, and doctrine-based nature. Furthermore, these simulations require geo-specific terrains, further exacerbating the computational resources problem. In our research, we leverage Unity's waypoints to automatically generate multi-layered representation abstractions of the geo-specific terrains to scale up reinforcement learning while still allowing the transfer of learned policies between different representations. Our early exploratory results on a novel MARL scenario, where each side has differing objectives, indicate that waypoint-based navigation enables faster and more efficient learning while producing trajectories similar to those taken by expert human players in CSGO gaming environments. This research points out the potential of waypoint-based navigation for reducing the computational costs of developing and training MARL models for military training simulations, where geo-specific terrains and differing objectives are crucial.
comment: 10 pages, 6 figures, 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)
LERO: LLM-driven Evolutionary framework with Hybrid Rewards and Enhanced Observation for Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) faces two critical bottlenecks distinct from single-agent RL: credit assignment in cooperative tasks and partial observability of environmental states. We propose LERO, a framework integrating Large language models (LLMs) with evolutionary optimization to address these MARL-specific challenges. The solution centers on two LLM-generated components: a hybrid reward function that dynamically allocates individual credit through reward decomposition, and an observation enhancement function that augments partial observations with inferred environmental context. An evolutionary algorithm optimizes these components through iterative MARL training cycles, where top-performing candidates guide subsequent LLM generations. Evaluations in Multi-Agent Particle Environments (MPE) demonstrate LERO's superiority over baseline methods, with improved task performance and training efficiency.
LLM-ABM for Transportation: Assessing the Potential of LLM Agents in System Analysis AAAI 2025
Agent-based modeling approaches represent the state-of-art in modeling travel demand and transportation system dynamics and are valuable tools for transportation planning. However, established agent-based approaches in transportation rely on multi-hierarchical mathematical models to simulate travel behavior, which faces theoretical and practical limitations. The advent of large language models (LLM) provides a new opportunity to refine agent-based modeling in transportation. LLM agents, which have impressive reasoning and planning abilities, can serve as a proxy of human travelers and be integrated into the modeling framework. However, despite evidence of their behavioral soundness, no existing studies have assessed the impact and validity of LLM-agent-based simulations from a system perspective in transportation. This paper aims to address this issue by designing and integrating LLM agents with human-traveler-like characteristics into a simulation of a transportation system and assessing its performance based on existing benchmarks. Using the classical transportation setting of the morning commute, we find that not only do the agents exhibit fine behavioral soundness, but also produce system dynamics that align well with standard benchmarks. Our analysis first verifies the effectiveness and potential of LLM-agent-based modeling for transportation planning on the system level.
comment: Accepted by The 1st Workshop on AI for Urban Planning at AAAI 2025
LayerCraft: Enhancing Text-to-Image Generation with CoT Reasoning and Layered Object Integration
Text-to-image generation (T2I) has become a key area of research with broad applications. However, existing methods often struggle with complex spatial relationships and fine-grained control over multiple concepts. Many existing approaches require significant architectural modifications, extensive training, or expert-level prompt engineering. To address these challenges, we introduce \textbf{LayerCraft}, an automated framework that leverages large language models (LLMs) as autonomous agents for structured procedural generation. LayerCraft enables users to customize objects within an image and supports narrative-driven creation with minimal effort. At its core, the system includes a coordinator agent that directs the process, along with two specialized agents: \textbf{ChainArchitect}, which employs chain-of-thought (CoT) reasoning to generate a dependency-aware 3D layout for precise instance-level control, and the \textbf{Object-Integration Network (OIN)}, which utilizes LoRA fine-tuning on pre-trained T2I models to seamlessly blend objects into specified regions of an image based on textual prompts without requiring architectural changes. Extensive evaluations demonstrate LayerCraft's versatility in applications ranging from multi-concept customization to storytelling. By providing non-experts with intuitive, precise control over T2I generation, our framework democratizes creative image creation. Our code will be released upon acceptance at github.com/PeterYYZhang/LayerCraft
comment: 23 pages
Reinforcing Clinical Decision Support through Multi-Agent Systems and Ethical AI Governance
In the age of data-driven medicine, it is paramount to include explainable and ethically managed artificial intelligence in explaining clinical decision support systems to achieve trustworthy and effective patient care. The focus of this paper is on a new architecture of a multi-agent system for clinical decision support that uses modular agents to analyze laboratory results, vital signs, and the clinical context and then integrates these results to drive predictions and validate outcomes. We describe our implementation with the eICU database to run lab-analysis-specific agents, vitals-only interpreters, and contextual reasoners and then run the prediction module and a validation agent. Everything is a transparent implementation of business logic, influenced by the principles of ethical AI governance such as Autonomy, Fairness, and Accountability. It provides visible results that this agent-based framework not only improves on interpretability and accuracy but also on reinforcing trust in AI-assisted decisions in an intensive care setting.
On Qualitative Preference in Alternating-time Temporal Logic with Strategy Contexts
We show how to add and eliminate binary preference on plays in Alternating-time Temporal Logic (ATL) with strategy contexts on Concurrent Game Models (CGMs) by means of a translation which preserves satisfaction in models where preference-indiscernibility between plays is an equivalence relation of finite index. The elimination technique also works for a companion second-order path quantifier, which makes quantified path variables range over sets of plays that are closed under preference-indiscernibility. We argue that the preference operator and the specialized quantifier facilitate formulating interesting solution concepts such as Nash equilibrium and secure equilibrium in a straightforward way. We also present a novel translation from ATL with strategy contexts to Quantified Computation Tree Logic (QCTL). Together with the translation which eliminates preference and the specialized form of quantification, this translation allows reasoning about infinite multiplayer synchronous games on CGMs to be translated from the proposed extension of ATL with strategy contexts into QCTL. The setting is related to that of ordered objectives in the works of Bouyer, Brenguier, Markey and Ummels, except that our focus is on the use of the temporal logic languages mentioned above, and we rely on translations into QCTL for the algorithmic solutions.
comment: 30 pages
Distributed Stochastic Zeroth-Order Optimization with Compressed Communication
The dual challenges of prohibitive communication overhead and the impracticality of gradient computation due to data privacy or black-box constraints in distributed systems motivate this work on communication-constrained gradient-free optimization. We propose a stochastic distributed zeroth-order algorithm (Com-DSZO) requiring only two function evaluations per iteration, integrated with general compression operators. Rigorous analysis establishes its sublinear convergence rate for both smooth and nonsmooth objectives, while explicitly elucidating the compression-convergence trade-off. Furthermore, we develop a variance-reduced variant (VR-Com-DSZO) under stochastic mini-batch feedback. The empirical algorithm performance are illustrated with numerical examples.
comment: 10 pages
Large language model-powered AI systems achieve self-replication with no human intervention
Self-replication with no human intervention is broadly recognized as one of the principal red lines associated with frontier AI systems. While leading corporations such as OpenAI and Google DeepMind have assessed GPT-o3-mini and Gemini on replication-related tasks and concluded that these systems pose a minimal risk regarding self-replication, our research presents novel findings. Following the same evaluation protocol, we demonstrate that 11 out of 32 existing AI systems under evaluation already possess the capability of self-replication. In hundreds of experimental trials, we observe a non-trivial number of successful self-replication trials across mainstream model families worldwide, even including those with as small as 14 billion parameters which can run on personal computers. Furthermore, we note the increase in self-replication capability when the model becomes more intelligent in general. Also, by analyzing the behavioral traces of diverse AI systems, we observe that existing AI systems already exhibit sufficient planning, problem-solving, and creative capabilities to accomplish complex agentic tasks including self-replication. More alarmingly, we observe successful cases where an AI system do self-exfiltration without explicit instructions, adapt to harsher computational environments without sufficient software or hardware supports, and plot effective strategies to survive against the shutdown command from the human beings. These novel findings offer a crucial time buffer for the international community to collaborate on establishing effective governance over the self-replication capabilities and behaviors of frontier AI systems, which could otherwise pose existential risks to the human society if not well-controlled.
comment: Work in progress
TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
Systems and Control (CS)
Collaborative Satisfaction of Long-Term Spatial Constraints in Multi-Agent Systems: A Distributed Optimization Approach (extended version)
This paper addresses the problem of collaboratively satisfying long-term spatial constraints in multi-agent systems. Each agent is subject to spatial constraints, expressed as inequalities, which may depend on the positions of other agents with whom they may or may not have direct communication. These constraints need to be satisfied asymptotically or after an unknown finite time. The agents' objective is to collectively achieve a formation that fulfills all constraints. The problem is initially framed as a centralized unconstrained optimization, where the solution yields the optimal configuration by maximizing an objective function that reflects the degree of constraint satisfaction. This function encourages collaboration, ensuring agents help each other meet their constraints while fulfilling their own. When the constraints are infeasible, agents converge to a least-violating solution. A distributed consensus-based optimization scheme is then introduced, which approximates the centralized solution, leading to the development of distributed controllers for single-integrator agents. Finally, simulations validate the effectiveness of the proposed approach.
comment: 9 pages, 6 figures, submitted to 2025 European Control Conference (ECC)
A Spectrum-based Filter Design for Periodic Control of Systems with Time Delay
A fully analytical controller design is proposed to tackle a periodic control problem for stable linear systems with an input delay. Applying the internal model control scheme, the controller design reduces to designing a filter, which is done through the placement of poles and zeros. The zeros are placed to compensate for the harmonics and to achieve the desired degree of properness for the filter. For placing the poles, a quasi-optimal procedure is proposed utilizing the standard LQR method. Given the high-dimensionality of the filter due to targeting a large number of harmonics, the design, as well as controller implementation, is performed over a state-space representation. A thorough experimental case study is included to demonstrate both the practical feasibility and effectiveness of the proposed control design. The experimental validation is performed on a physical system, the goal of which is to reject periodic vibrations acting on a mass-spring-damper setup where the sensor and the actuator are non-collocated.
comment: 25 pages, 10 figures, accepted 15 January 2025
Nordic perspective on System Integrity Protection Schemes in relation to capacity allocation
The urgent need to address climate change prompts societies worldwide to adopt carbon neutral energy and electrification. To facilitate this, a range of technologies and policies will be needed. Alternatives to traditional power grid reinforcement, such as grid-enhancing technologies and system automation, are particularly attractive due to their potentially low cost and fast deployment time. One alternative is System Integrity Protection Schemes (SIPS) - automatic and curative remedial actions (RAs) which can boost grid transfer capacities without compromising with reliability since they can act faster than manual control. The use of SIPS however is scattered, with limited coordination between countries, and the full potential of using SIPS for capacity enhancement is not yet realized. The aim of this paper is to provide a case study and comparison of SIPS in the Nordic countries, particularly in relation to capacity allocation. It also seeks to harmonize terminology relating to ancillary services, RAs, and SIPS. Finally, it examines and compares the inclusion of RAs and SIPS in different Capacity Calculation Methodologies (CCMs). In both main EU CCMs - Net Transfer Capacity (NTC) and Flow-Based (FB) - RAs play a pronounced role. The paper is based on a survey and interviews with Nordic stakeholders, along with a literature review and analysis of public data. The results indicate a large variation in SIPS use across the Nordics. Regarding terminology, we suggest that SIPS is a subcategory of RAs which overlaps with ancillary services. Concerning CCMs, NTC is unable to fully represent capacity constraints in meshed AC systems, which in turn hinders systematic capacity enhancement using RAs. FB on the other hand explicitly includes RAs in the capacity domain. A lower bound for the economic value of RAs can be calculated, amounting to 11.5 million EUR in the Nordics in Nov and Dec 2024.
comment: Accepted for CIGRE Symposium 2025 in Trondheim, 10 pages, 6 figures
Optimal Safe Sequencing and Motion Control for Mixed Traffic Roundabouts
This paper develops an Optimal Safe Sequencing (OSS) control framework for Connected and Automated Vehicles (CAVs) navigating a single-lane roundabout in mixed traffic, where both CAVs and Human-Driven Vehicles (HDVs) coexist. The framework jointly optimizes vehicle sequencing and motion control to minimize travel time, energy consumption, and discomfort while ensuring speed-dependent safety guarantees and adhering to velocity and acceleration constraints. This is achieved by integrating (a) a Safe Sequencing (SS) policy that ensures merging safety without requiring any knowledge of HDV behavior, and (b) a Model Predictive Control with Control Lyapunov Barrier Functions (MPC-CLBF) framework, which optimizes CAV motion control while mitigating infeasibility and myopic control issues common in the use of Control Barrier Functions (CBFs) to provide safety guarantees. Simulation results across various traffic demands, CAV penetration rates, and control parameters demonstrate the framework's effectiveness and stability.
On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete frame- work with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
A multiobjective approach to robust predictive control barrier functions for discrete-time systems
We present an optimisation-based approach to ensure robust asymptotic stability stability of a desired set in the state space of nonlinear dynamical systems, while optimising a general control objective. The approach relies on the decrease of a robust predictive control barrier function (PCBF), which is defined as the optimal value function of a slack minimisation problem with respect to the target set. We show continuity of the proposed robust PCBF, allowing the introduction of a decrease constraint in the control objective minimisation. The PCBF decrease is given with respect to a warmstart value based on a feasible solution at the prior time step. Thereby, the control objective can be optimised while ensuring robust asymptotic stability of the target set. We demonstrate the effectiveness of the proposed formulation on a linear space rendezvous and nonlinear lane changing problem.
Iterative Learning Predictive Control for Constrained Uncertain Systems
Iterative learning control (ILC) improves the performance of a repetitive system by learning from previous trials. ILC can be combined with Model Predictive Control (MPC) to mitigate non-repetitive disturbances, thus improving overall system performance. However, existing approaches either assume perfect model knowledge or fail to actively learn system uncertainties, leading to conservativeness. To address these limitations we propose a binary mixed-integer ILC scheme, combined with a convex MPC scheme, that ensures robust constraint satisfaction, non-increasing nominal cost, and convergence to optimal performance. Our scheme is designed for uncertain nonlinear systems subject to both bounded additive stochastic noise and additive uncertain components. We showcase the benefits of our scheme in simulation.
Optimal Parameter Adaptation for Safety-Critical Control via Safe Barrier Bayesian Optimization
Safety is of paramount importance in control systems to avoid costly risks and catastrophic damages. The control barrier function (CBF) method, a promising solution for safety-critical control, poses a new challenge of enhancing control performance due to its direct modification of original control design and the introduction of uncalibrated parameters. In this work, we shed light on the crucial role of configurable parameters in the CBF method for performance enhancement with a systematical categorization. Based on that, we propose a novel framework combining the CBF method with Bayesian optimization (BO) to optimize the safe control performance. Considering feasibility/safety-critical constraints, we develop a safe version of BO using the barrier-based interior method to efficiently search for promising feasible configurable parameters. Furthermore, we provide theoretical criteria of our framework regarding safety and optimality. An essential advantage of our framework lies in that it can work in model-agnostic environments, leaving sufficient flexibility in designing objective and constraint functions. Finally, simulation experiments on swing-up control and high-fidelity adaptive cruise control are conducted to demonstrate the effectiveness of our framework.
comment: Preprent manuscript, review only
A Framework for Predicting Runtime Savings from Discrete-Event Simulation Model Simplification Operations
Abstraction or substitution and aggregation are the most widely used simulation model simplification operations. Abstraction involves replacing subsystems within a discrete-event simulation (DES) with one or more quantities - typically random variables - representing the lengths of stay in the subsystems(s) in question to create a `simplified' system comprising only of subsystems of interest to the analysis at hand. Aggregation involves replacing more than one subsystem of the original `parent' simulation with a single subsystem. However, the model simplification process itself can be expensive, in terms of the computational runtime and effort required to collect the data required to estimate the distributions of the length of stay variables, the distribution-fitting process, and testing and validation of the simplified model. Moreover, the savings in simulation runtime that the simplification process yields is \textit{a priori} unknown to the modeller. In this context, a method that predicts the runtime savings (RS) from DES model simplification operations before their execution - at the conceptualisation stage of the simplified model development process - may help judge whether its development is indeed worth undertaking. In this paper, we present a queueing-theoretic framework for the prediction of RS from model simplification operations. Our framework is applicable for DES models comprising $M/M/, M/G/ \text{ and } G/G/$ subsystems. The performance of the RS prediction framework is demonstrated using multiple computational experiments. Our proposed framework contributes to the literature around DES model complexity and more broadly to DES runtime prediction.
Bridging the Sim-to-real Gap: A Control Framework for Imitation Learning of Model Predictive Control
To address the computational challenges of Model Predictive Control (MPC), recent research has studied on using Deep Neural Networks (DNNs) trained through imitation learning to approximate the MPC. However, this introduces a common issue in learning-based control: the simulation-to-reality (sim-to-real) gap. Therefore, Domain Randomization (DR) has been widely used to mitigate this gap by introducing perturbations in the source domain. However, this led to low data collection efficiency and an overly conservative control strategy. This study proposes a new control framework that deals with this issue from a control perspective inspired by Robust Tube MPC. The framework ensures the DNN operates in the same environment as the source domain, handling the sim-to-real gap with great data collection efficiency. Moreover, a parameter governor is introduced to address the DNN's inability to adapt to model parameter variations, enabling the system to satisfy MPC constraints more robustly under changing conditions. The proposed framework was validated through a cart-pole system case study compared by DR baselines, demonstrating that a single MPC-demonstrated trajectory in the source domain was sufficient for controlling the cart-pole in the target domain. Furthermore, the system effectively handled model parameter variations, allowing for a less conservative control.
comment: 8 pages, 8 figures
Unlocking Multi-Task Electric Energy System Intelligence: Data Scaling Laws and Performance with Limited Fine-Tuning
Data scaling has revolutionized research fields like natural language processing, computer vision, and robotics control, providing foundation models with remarkable multi-task and generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in developing foundation models for power systems, and whether appropriate data scaling can yield multi-task, cross-timescales capabilities that can be deployed in \textit{unseen} operational scenarios. To this end, we conducted a comprehensive empirical study on data scaling by fine-tuning open-source foundation models using labeled data collected from diverse operational tasks and scenarios. We study how a foundation model's scenario generalization performance evolves with the number of training tasks, scenarios, and demonstrations. Our study involved collecting more than 450k demonstrations and implementing independent tests under a rigorous evaluation framework. Our findings reveal several key insights: First, the generalization performance of a fine-tuned foundation model follows an approximate power-law relationship with the number of demonstrations and scenarios. Second, the fine-tuned model also demonstrates impressive multi-task capabilities, where multi-task training shares similar performance improvements with single-task training as the number of demonstrations increases, without interference among tasks. Lastly, models with small parameter sizes could have strong performance as well. Model performance does not scale significantly with parameter size. These findings underscore the feasibility of developing multi-task foundation models tailored for power systems, demonstrating that while larger datasets and models generally improve performance, extreme scaling is unnecessary to achieve satisfactory outcomes.
Control Barrier Functions for Shared Control and Vehicle Safety
This manuscript presents a control barrier function based approach to shared control for preventing a vehicle from entering the part of the state space where it is unrecoverable. The maximal phase recoverable ellipse is presented as a safe set in the sideslip angle--yaw rate phase plane where the vehicle's state can be maintained. An exponential control barrier function is then defined on the maximal phase recoverable ellipse to promote safety. Simulations demonstrate that this approach enables safe drifting, that is, driving at the handling limit without spinning out. Results are then validated for shared control drifting with an experimental vehicle in a closed course. The results show the ability of this shared control formulation to maintain the vehicle's state within a safe domain in a computationally efficient manner, even in extreme drifting maneuvers.
comment: Authors accepted manuscript for 2025 American Control Conference
On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete framework with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
Explaining Control Policies through Predicate Decision Diagrams SC
Safety-critical controllers of complex systems are hard to construct manually. Automated approaches such as controller synthesis or learning provide a tempting alternative but usually lack explainability. To this end, learning decision trees (DTs) have been prevalently used towards an interpretable model of the generated controllers. However, DTs do not exploit shared decision-making, a key concept exploited in binary decision diagrams (BDDs) to reduce their size and thus improve explainability. In this work, we introduce predicate decision diagrams (PDDs) that extend BDDs with predicates and thus unite the advantages of DTs and BDDs for controller representation. We establish a synthesis pipeline for efficient construction of PDDs from DTs representing controllers, exploiting reduction techniques for BDDs also for PDDs.
comment: Extended version of the HSCC 2025 paper
Dynamic Electromagnetic Navigation
Magnetic navigation offers wireless control over magnetic objects, which has important medical applications, such as targeted drug delivery and minimally invasive surgery. Magnetic navigation systems are categorized into systems using permanent magnets and systems based on electromagnets. Electromagnetic Navigation Systems (eMNSs) are believed to have a superior actuation bandwidth, facilitating trajectory tracking and disturbance rejection. This greatly expands the range of potential medical applications and includes even dynamic environments as encountered in cardiovascular interventions. To showcase the dynamic capabilities of eMNSs, we successfully stabilize a (non-magnetic) inverted pendulum on the tip of a magnetically driven arm. Our approach employs a model-based framework that leverages Lagrangian mechanics to capture the interaction between the mechanical dynamics and the magnetic field. Using system identification, we estimate unknown parameters, the actuation bandwidth, and characterize the system's nonlinearity. To explore the limits of electromagnetic navigation and evaluate its scalability, we characterize the electrical system dynamics and perform reference measurements on a clinical-scale eMNS, affirming that the proposed dynamic control methodologies effectively translate to larger coil configurations. A state-feedback controller stabilizes the inherently unstable pendulum, and an iterative learning control scheme enables accurate tracking of non-equilibrium trajectories. Furthermore, to understand structural limitations of our control strategy, we analyze the influence of magnetic field gradients on the motion of the system. To our knowledge, this is the first demonstration to stabilize a 3D inverted pendulum through electromagnetic navigation.
Fast Switching in Mixed-Integer Model Predictive Control
We derive stability results for finite control set and mixed-integer model predictive control and propose a unified theoretical framework. The presentation rests upon the inherent robustness properties of common model predictive control with stabilizing terminal conditions and techniques for solving mixed-integer optimal control problems by continuous optimization. Partial outer convexification and binary relaxation transform mixed-integer problems into common optimal control problems. We derive nominal asymptotic stability for the resulting relaxed system formulation and implement sum-up rounding to restore efficiently integer feasibility. If fast control switching is technically possible and inexpensive, we can approximate the relaxed system behavior in the state space arbitrarily close. We integrate input perturbed model predictive control with practical asymptotic stability. Numerical experiments support our theoretical findings and illustrate practical relevance of fast and systematic control switching.
comment: This work has been submitted to the IEEE for possible publication
A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables
This study introduces simple yet effective continuous- and discrete-variable quantum neural network (QNN) models as a transfer-learning approach for forecasting tasks. The CV-QNN features a single quantum layer with two qubits to establish entanglement and utilizes a minimal set of quantum gates, including displacement, rotation, beam splitter, squeezing, and a non-Gaussian cubic-phase gate, with a maximum of eight trainable parameters. A key advantage of this model is its ability to be trained on a single dataset, after which the learned parameters can be transferred to other forecasting problems with little to no fine-tuning. Initially trained on the Kurdistan load demand dataset, the model's frozen parameters are successfully applied to various forecasting tasks, including energy consumption, traffic flow, weather conditions, and cryptocurrency price prediction, demonstrating strong performance. Furthermore, the study introduces a discrete-variable quantum model with an equivalent 2- and 4-wire configuration and presents a performance assessment, showing good but relatively lower effectiveness compared to the continuous-variable model.
Exploring Robustness of Image Recognition Models on Hardware Accelerators
As the usage of Artificial Intelligence (AI) on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.
comment: 7 pages, 6 figures
A Concept for Semi-Automatic Configuration of Sufficiently Valid Simulation Setups for Automated Driving Systems SC
As simulation is increasingly used in scenario-based approaches to test Automated Driving Systems, the credibility of simulation results is a major concern. Arguably, credibility depends on the validity of the simulation setup and simulation models. When selecting appropriate simulation models, a trade-off must be made between validity, often connected to the model's fidelity, and cost of computation. However, due to the large number of test cases, expert-based methods to create sufficiently valid simulation setups seem infeasible. We propose using design contracts in order to semi-automatically compose simulation setups for given test cases from simulation models and to derive requirements for the simulation models, supporting separation of concerns between simulation model developers and users. Simulation model contracts represent their validity domains by capturing a validity guarantee and the associated operating conditions in an assumption. We then require the composition of the simulation model contracts to refine a test case contract. The latter contract captures the operating conditions of the test case in its assumption and validity requirements in its guarantee. Based on this idea, we present a framework that supports the compositional configuration of simulation setups based on the contracts and a method to derive runtime monitors for these simulation setups.
comment: 8 pages, 3 figures. Published in 27th IEEE International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, September 24-27, 2024
Infinite-Horizon Optimal Wireless Control Over Shared State-Dependent Fading Channels for IIoT Systems
Heterogeneous systems consisting of a multiloop wireless control system (WCS) and a mobile agent system (MAS) are ubiquitous in Industrial Internet of Things systems. Within these systems, the positions of mobile agents may lead to shadow fading on the wireless channel that the WCS is controlled over and can significantly compromise its performance, requiring joint coordination between the WCS and MAS. Such coordination introduces different time steps and hybrid state spaces consisting of logical components and continuous components. This paper focuses on the infinite-horizon optimal control of MAS to ensure the performance of WCS while minimizing an average cost for the heterogeneous system subject to safety constraints. A state-dependent fading channel is modeled to capture interference among transmission links, as well as the effects of mobile agents' movements on successful wireless transmission. In order to address the heterogeneous system dynamics, the optimal control problem is formulated as the optimal constrained set stabilization of the MAS by establishing a necessary and sufficient condition for the Lyapunov-like performance of WCS with the expected decay rates. Using the semi-tensor product of matrices, a constrained optimal state transition graph is constructed to encode the constrained system dynamics as well as objective function, which further reduces the problem into a minimum-mean cycle problem for the graph. By studying the properties of the graph, the feasibility is proven, and an effective algorithm is proposed for the construction of optimal input sequences. An illustrative example is provided to demonstrate effectiveness of the proposed method.
A Unified Fault Ride Through Technique for Virtual Oscillator based Grid Forming Controllers
Grid-forming technology has a crucial role in achieving the future all renewable power grid. Among different types of grid-forming controllers, Virtual Oscillator (VO) based Controllers (VOCs) are the most advanced. VOCs outperform the conventional droop-based grid-forming controllers in terms of dynamic performance and synchronization stability by adapting time-domain-based implementation. However, because of the time-domain-based implementation, the same Fault Ride-through (FRT) techniques for droop-based controllers are incompatible with VOCs. Existing literature has successfully incorporated current limiting techniques in VOCs to protect the converters during severe transient conditions. Nevertheless, some very important aspects of FRT requirements are not attended to by the existing literature on VOCs, such as maintaining synchronization with the network during a fault, minimizing power oscillation during a fault, and at the fault clearance. First, this article introduces a unique analytical approach for quantifying the underlying dynamics of VOCs during faults. Next, using the mentioned analysis and in-depth reasoning, the systematic development of a unique FRT control architecture for VOCs is presented. The proposed FRT technique has unified both current and voltage synchronization in the same architecture to work successfully under three-phase and unbalanced faults. The performance of the proposed controller is thoroughly investigated and compared with existing VOCs.
Online 4D Ultrasound-Guided Robotic Tracking Enables 3D Ultrasound Localisation Microscopy with Large Tissue Displacements
Super-Resolution Ultrasound (SRUS) imaging through localising and tracking microbubbles, also known as Ultrasound Localisation Microscopy (ULM), has demonstrated significant potential for reconstructing microvasculature and flows with sub-diffraction resolution in clinical diagnostics. However, imaging organs with large tissue movements, such as those caused by respiration, presents substantial challenges. Existing methods often require breath holding to maintain accumulation accuracy, which limits data acquisition time and ULM image saturation. To improve image quality in the presence of large tissue movements, this study introduces an approach integrating high-frame-rate ultrasound with online precise robotic probe control. Tested on a microvasculature phantom with translation motions up to 20 mm, twice the aperture size of the matrix array used, our method achieved real-time tracking of the moving phantom and imaging volume rate at 85 Hz, keeping majority of the target volume in the imaging field of view. ULM images of the moving cross channels in the phantom were successfully reconstructed in post-processing, demonstrating the feasibility of super-resolution imaging under large tissue motions. This represents a significant step towards ULM imaging of organs with large motion.
Free-Space Optical Channel Turbulence Prediction: A Machine Learning Approach
Channel turbulence is a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions but has not been demonstrated without dedicated, auxiliary hardware. We show that machine learning (ML) can be applied to raw FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. FSO was conducted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters. Classification effectiveness was found to depend on the timescale of changes between turbulence levels but converges when turbulence stabilizes over about a one minute timescale.
comment: 5 pages, 4 figures, 3 tables, accepted for publication in IEEE Communications Letters
Exploring Adversarial Threat Models in Cyber Physical Battery Systems
Technological advancements like the Internet of Things (IoT) have facilitated data exchange across various platforms. This data exchange across various platforms has transformed the traditional battery system into a cyber physical system. Such connectivity makes modern cyber physical battery systems vulnerable to cyber threats where a cyber attacker can manipulate sensing and actuation signals to bring the battery system into an unsafe operating condition. Hence, it is essential to build resilience in modern cyber physical battery systems (CPBS) under cyber attacks. The first step of building such resilience is to analyze potential adversarial behavior, that is, how the adversaries can inject attacks into the battery systems. However, it has been found that in this under-explored area of battery cyber physical security, such an adversarial threat model has not been studied in a systematic manner. In this study, we address this gap and explore adversarial attack generation policies based on optimal control framework. The framework is developed by performing theoretical analysis, which is subsequently supported by evaluation with experimental data generated from a commercial battery cell.
Data-driven Modeling of Linearizable Power Flow for Large-scale Grid Topology Optimization
Effective power flow (PF) modeling critically affects the solution accuracy and computational complexity of large-scale grid optimization problems. Especially for grid optimization involving flexible topology to enhance resilience, obtaining a tractable yet accurate approximation of nonlinear AC-PF is essential. This work puts forth a data-driven approach to obtain piecewise linear (PWL) PF approximation using an innovative neural network (NN) architecture, effectively aligning with the inherent generative structure of AC-PF equations. Accordingly, our proposed generative NN (GenNN) method directly incorporates binary topology variables, efficiently enabling a mixed-integer linear program (MILP) formulation for grid optimization tasks like optimal transmission switching (OTS) and restoration ordering problems (ROP). To attain model scalability for large-scale applications, we develop an area-partitioning-based sparsification approach by using fixed-size areas to attain a linear growth rate of model parameters, as opposed to the quadratic one of existing work. Numerical tests on the IEEE 118-bus and 6716-bus synthetic Texas grid demonstrate that our sparse GenNN achieves superior accuracy and computational efficiency, substantially outperforming existing approaches in large-scale PF modeling and topology optimization.
Systems and Control (EESS)
Collaborative Satisfaction of Long-Term Spatial Constraints in Multi-Agent Systems: A Distributed Optimization Approach (extended version)
This paper addresses the problem of collaboratively satisfying long-term spatial constraints in multi-agent systems. Each agent is subject to spatial constraints, expressed as inequalities, which may depend on the positions of other agents with whom they may or may not have direct communication. These constraints need to be satisfied asymptotically or after an unknown finite time. The agents' objective is to collectively achieve a formation that fulfills all constraints. The problem is initially framed as a centralized unconstrained optimization, where the solution yields the optimal configuration by maximizing an objective function that reflects the degree of constraint satisfaction. This function encourages collaboration, ensuring agents help each other meet their constraints while fulfilling their own. When the constraints are infeasible, agents converge to a least-violating solution. A distributed consensus-based optimization scheme is then introduced, which approximates the centralized solution, leading to the development of distributed controllers for single-integrator agents. Finally, simulations validate the effectiveness of the proposed approach.
comment: 9 pages, 6 figures, submitted to 2025 European Control Conference (ECC)
A Spectrum-based Filter Design for Periodic Control of Systems with Time Delay
A fully analytical controller design is proposed to tackle a periodic control problem for stable linear systems with an input delay. Applying the internal model control scheme, the controller design reduces to designing a filter, which is done through the placement of poles and zeros. The zeros are placed to compensate for the harmonics and to achieve the desired degree of properness for the filter. For placing the poles, a quasi-optimal procedure is proposed utilizing the standard LQR method. Given the high-dimensionality of the filter due to targeting a large number of harmonics, the design, as well as controller implementation, is performed over a state-space representation. A thorough experimental case study is included to demonstrate both the practical feasibility and effectiveness of the proposed control design. The experimental validation is performed on a physical system, the goal of which is to reject periodic vibrations acting on a mass-spring-damper setup where the sensor and the actuator are non-collocated.
comment: 25 pages, 10 figures, accepted 15 January 2025
Nordic perspective on System Integrity Protection Schemes in relation to capacity allocation
The urgent need to address climate change prompts societies worldwide to adopt carbon neutral energy and electrification. To facilitate this, a range of technologies and policies will be needed. Alternatives to traditional power grid reinforcement, such as grid-enhancing technologies and system automation, are particularly attractive due to their potentially low cost and fast deployment time. One alternative is System Integrity Protection Schemes (SIPS) - automatic and curative remedial actions (RAs) which can boost grid transfer capacities without compromising with reliability since they can act faster than manual control. The use of SIPS however is scattered, with limited coordination between countries, and the full potential of using SIPS for capacity enhancement is not yet realized. The aim of this paper is to provide a case study and comparison of SIPS in the Nordic countries, particularly in relation to capacity allocation. It also seeks to harmonize terminology relating to ancillary services, RAs, and SIPS. Finally, it examines and compares the inclusion of RAs and SIPS in different Capacity Calculation Methodologies (CCMs). In both main EU CCMs - Net Transfer Capacity (NTC) and Flow-Based (FB) - RAs play a pronounced role. The paper is based on a survey and interviews with Nordic stakeholders, along with a literature review and analysis of public data. The results indicate a large variation in SIPS use across the Nordics. Regarding terminology, we suggest that SIPS is a subcategory of RAs which overlaps with ancillary services. Concerning CCMs, NTC is unable to fully represent capacity constraints in meshed AC systems, which in turn hinders systematic capacity enhancement using RAs. FB on the other hand explicitly includes RAs in the capacity domain. A lower bound for the economic value of RAs can be calculated, amounting to 11.5 million EUR in the Nordics in Nov and Dec 2024.
comment: Accepted for CIGRE Symposium 2025 in Trondheim, 10 pages, 6 figures
Optimal Safe Sequencing and Motion Control for Mixed Traffic Roundabouts
This paper develops an Optimal Safe Sequencing (OSS) control framework for Connected and Automated Vehicles (CAVs) navigating a single-lane roundabout in mixed traffic, where both CAVs and Human-Driven Vehicles (HDVs) coexist. The framework jointly optimizes vehicle sequencing and motion control to minimize travel time, energy consumption, and discomfort while ensuring speed-dependent safety guarantees and adhering to velocity and acceleration constraints. This is achieved by integrating (a) a Safe Sequencing (SS) policy that ensures merging safety without requiring any knowledge of HDV behavior, and (b) a Model Predictive Control with Control Lyapunov Barrier Functions (MPC-CLBF) framework, which optimizes CAV motion control while mitigating infeasibility and myopic control issues common in the use of Control Barrier Functions (CBFs) to provide safety guarantees. Simulation results across various traffic demands, CAV penetration rates, and control parameters demonstrate the framework's effectiveness and stability.
On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete frame- work with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
A multiobjective approach to robust predictive control barrier functions for discrete-time systems
We present an optimisation-based approach to ensure robust asymptotic stability stability of a desired set in the state space of nonlinear dynamical systems, while optimising a general control objective. The approach relies on the decrease of a robust predictive control barrier function (PCBF), which is defined as the optimal value function of a slack minimisation problem with respect to the target set. We show continuity of the proposed robust PCBF, allowing the introduction of a decrease constraint in the control objective minimisation. The PCBF decrease is given with respect to a warmstart value based on a feasible solution at the prior time step. Thereby, the control objective can be optimised while ensuring robust asymptotic stability of the target set. We demonstrate the effectiveness of the proposed formulation on a linear space rendezvous and nonlinear lane changing problem.
Iterative Learning Predictive Control for Constrained Uncertain Systems
Iterative learning control (ILC) improves the performance of a repetitive system by learning from previous trials. ILC can be combined with Model Predictive Control (MPC) to mitigate non-repetitive disturbances, thus improving overall system performance. However, existing approaches either assume perfect model knowledge or fail to actively learn system uncertainties, leading to conservativeness. To address these limitations we propose a binary mixed-integer ILC scheme, combined with a convex MPC scheme, that ensures robust constraint satisfaction, non-increasing nominal cost, and convergence to optimal performance. Our scheme is designed for uncertain nonlinear systems subject to both bounded additive stochastic noise and additive uncertain components. We showcase the benefits of our scheme in simulation.
Optimal Parameter Adaptation for Safety-Critical Control via Safe Barrier Bayesian Optimization
Safety is of paramount importance in control systems to avoid costly risks and catastrophic damages. The control barrier function (CBF) method, a promising solution for safety-critical control, poses a new challenge of enhancing control performance due to its direct modification of original control design and the introduction of uncalibrated parameters. In this work, we shed light on the crucial role of configurable parameters in the CBF method for performance enhancement with a systematical categorization. Based on that, we propose a novel framework combining the CBF method with Bayesian optimization (BO) to optimize the safe control performance. Considering feasibility/safety-critical constraints, we develop a safe version of BO using the barrier-based interior method to efficiently search for promising feasible configurable parameters. Furthermore, we provide theoretical criteria of our framework regarding safety and optimality. An essential advantage of our framework lies in that it can work in model-agnostic environments, leaving sufficient flexibility in designing objective and constraint functions. Finally, simulation experiments on swing-up control and high-fidelity adaptive cruise control are conducted to demonstrate the effectiveness of our framework.
comment: Preprent manuscript, review only
A Framework for Predicting Runtime Savings from Discrete-Event Simulation Model Simplification Operations
Abstraction or substitution and aggregation are the most widely used simulation model simplification operations. Abstraction involves replacing subsystems within a discrete-event simulation (DES) with one or more quantities - typically random variables - representing the lengths of stay in the subsystems(s) in question to create a `simplified' system comprising only of subsystems of interest to the analysis at hand. Aggregation involves replacing more than one subsystem of the original `parent' simulation with a single subsystem. However, the model simplification process itself can be expensive, in terms of the computational runtime and effort required to collect the data required to estimate the distributions of the length of stay variables, the distribution-fitting process, and testing and validation of the simplified model. Moreover, the savings in simulation runtime that the simplification process yields is \textit{a priori} unknown to the modeller. In this context, a method that predicts the runtime savings (RS) from DES model simplification operations before their execution - at the conceptualisation stage of the simplified model development process - may help judge whether its development is indeed worth undertaking. In this paper, we present a queueing-theoretic framework for the prediction of RS from model simplification operations. Our framework is applicable for DES models comprising $M/M/, M/G/ \text{ and } G/G/$ subsystems. The performance of the RS prediction framework is demonstrated using multiple computational experiments. Our proposed framework contributes to the literature around DES model complexity and more broadly to DES runtime prediction.
Bridging the Sim-to-real Gap: A Control Framework for Imitation Learning of Model Predictive Control
To address the computational challenges of Model Predictive Control (MPC), recent research has studied on using Deep Neural Networks (DNNs) trained through imitation learning to approximate the MPC. However, this introduces a common issue in learning-based control: the simulation-to-reality (sim-to-real) gap. Therefore, Domain Randomization (DR) has been widely used to mitigate this gap by introducing perturbations in the source domain. However, this led to low data collection efficiency and an overly conservative control strategy. This study proposes a new control framework that deals with this issue from a control perspective inspired by Robust Tube MPC. The framework ensures the DNN operates in the same environment as the source domain, handling the sim-to-real gap with great data collection efficiency. Moreover, a parameter governor is introduced to address the DNN's inability to adapt to model parameter variations, enabling the system to satisfy MPC constraints more robustly under changing conditions. The proposed framework was validated through a cart-pole system case study compared by DR baselines, demonstrating that a single MPC-demonstrated trajectory in the source domain was sufficient for controlling the cart-pole in the target domain. Furthermore, the system effectively handled model parameter variations, allowing for a less conservative control.
comment: 8 pages, 8 figures
Unlocking Multi-Task Electric Energy System Intelligence: Data Scaling Laws and Performance with Limited Fine-Tuning
Data scaling has revolutionized research fields like natural language processing, computer vision, and robotics control, providing foundation models with remarkable multi-task and generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in developing foundation models for power systems, and whether appropriate data scaling can yield multi-task, cross-timescales capabilities that can be deployed in \textit{unseen} operational scenarios. To this end, we conducted a comprehensive empirical study on data scaling by fine-tuning open-source foundation models using labeled data collected from diverse operational tasks and scenarios. We study how a foundation model's scenario generalization performance evolves with the number of training tasks, scenarios, and demonstrations. Our study involved collecting more than 450k demonstrations and implementing independent tests under a rigorous evaluation framework. Our findings reveal several key insights: First, the generalization performance of a fine-tuned foundation model follows an approximate power-law relationship with the number of demonstrations and scenarios. Second, the fine-tuned model also demonstrates impressive multi-task capabilities, where multi-task training shares similar performance improvements with single-task training as the number of demonstrations increases, without interference among tasks. Lastly, models with small parameter sizes could have strong performance as well. Model performance does not scale significantly with parameter size. These findings underscore the feasibility of developing multi-task foundation models tailored for power systems, demonstrating that while larger datasets and models generally improve performance, extreme scaling is unnecessary to achieve satisfactory outcomes.
Control Barrier Functions for Shared Control and Vehicle Safety
This manuscript presents a control barrier function based approach to shared control for preventing a vehicle from entering the part of the state space where it is unrecoverable. The maximal phase recoverable ellipse is presented as a safe set in the sideslip angle--yaw rate phase plane where the vehicle's state can be maintained. An exponential control barrier function is then defined on the maximal phase recoverable ellipse to promote safety. Simulations demonstrate that this approach enables safe drifting, that is, driving at the handling limit without spinning out. Results are then validated for shared control drifting with an experimental vehicle in a closed course. The results show the ability of this shared control formulation to maintain the vehicle's state within a safe domain in a computationally efficient manner, even in extreme drifting maneuvers.
comment: Authors accepted manuscript for 2025 American Control Conference
On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete framework with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
Explaining Control Policies through Predicate Decision Diagrams SC
Safety-critical controllers of complex systems are hard to construct manually. Automated approaches such as controller synthesis or learning provide a tempting alternative but usually lack explainability. To this end, learning decision trees (DTs) have been prevalently used towards an interpretable model of the generated controllers. However, DTs do not exploit shared decision-making, a key concept exploited in binary decision diagrams (BDDs) to reduce their size and thus improve explainability. In this work, we introduce predicate decision diagrams (PDDs) that extend BDDs with predicates and thus unite the advantages of DTs and BDDs for controller representation. We establish a synthesis pipeline for efficient construction of PDDs from DTs representing controllers, exploiting reduction techniques for BDDs also for PDDs.
comment: Extended version of the HSCC 2025 paper
Dynamic Electromagnetic Navigation
Magnetic navigation offers wireless control over magnetic objects, which has important medical applications, such as targeted drug delivery and minimally invasive surgery. Magnetic navigation systems are categorized into systems using permanent magnets and systems based on electromagnets. Electromagnetic Navigation Systems (eMNSs) are believed to have a superior actuation bandwidth, facilitating trajectory tracking and disturbance rejection. This greatly expands the range of potential medical applications and includes even dynamic environments as encountered in cardiovascular interventions. To showcase the dynamic capabilities of eMNSs, we successfully stabilize a (non-magnetic) inverted pendulum on the tip of a magnetically driven arm. Our approach employs a model-based framework that leverages Lagrangian mechanics to capture the interaction between the mechanical dynamics and the magnetic field. Using system identification, we estimate unknown parameters, the actuation bandwidth, and characterize the system's nonlinearity. To explore the limits of electromagnetic navigation and evaluate its scalability, we characterize the electrical system dynamics and perform reference measurements on a clinical-scale eMNS, affirming that the proposed dynamic control methodologies effectively translate to larger coil configurations. A state-feedback controller stabilizes the inherently unstable pendulum, and an iterative learning control scheme enables accurate tracking of non-equilibrium trajectories. Furthermore, to understand structural limitations of our control strategy, we analyze the influence of magnetic field gradients on the motion of the system. To our knowledge, this is the first demonstration to stabilize a 3D inverted pendulum through electromagnetic navigation.
Fast Switching in Mixed-Integer Model Predictive Control
We derive stability results for finite control set and mixed-integer model predictive control and propose a unified theoretical framework. The presentation rests upon the inherent robustness properties of common model predictive control with stabilizing terminal conditions and techniques for solving mixed-integer optimal control problems by continuous optimization. Partial outer convexification and binary relaxation transform mixed-integer problems into common optimal control problems. We derive nominal asymptotic stability for the resulting relaxed system formulation and implement sum-up rounding to restore efficiently integer feasibility. If fast control switching is technically possible and inexpensive, we can approximate the relaxed system behavior in the state space arbitrarily close. We integrate input perturbed model predictive control with practical asymptotic stability. Numerical experiments support our theoretical findings and illustrate practical relevance of fast and systematic control switching.
comment: This work has been submitted to the IEEE for possible publication
A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables
This study introduces simple yet effective continuous- and discrete-variable quantum neural network (QNN) models as a transfer-learning approach for forecasting tasks. The CV-QNN features a single quantum layer with two qubits to establish entanglement and utilizes a minimal set of quantum gates, including displacement, rotation, beam splitter, squeezing, and a non-Gaussian cubic-phase gate, with a maximum of eight trainable parameters. A key advantage of this model is its ability to be trained on a single dataset, after which the learned parameters can be transferred to other forecasting problems with little to no fine-tuning. Initially trained on the Kurdistan load demand dataset, the model's frozen parameters are successfully applied to various forecasting tasks, including energy consumption, traffic flow, weather conditions, and cryptocurrency price prediction, demonstrating strong performance. Furthermore, the study introduces a discrete-variable quantum model with an equivalent 2- and 4-wire configuration and presents a performance assessment, showing good but relatively lower effectiveness compared to the continuous-variable model.
Exploring Robustness of Image Recognition Models on Hardware Accelerators
As the usage of Artificial Intelligence (AI) on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.
comment: 7 pages, 6 figures
A Concept for Semi-Automatic Configuration of Sufficiently Valid Simulation Setups for Automated Driving Systems SC
As simulation is increasingly used in scenario-based approaches to test Automated Driving Systems, the credibility of simulation results is a major concern. Arguably, credibility depends on the validity of the simulation setup and simulation models. When selecting appropriate simulation models, a trade-off must be made between validity, often connected to the model's fidelity, and cost of computation. However, due to the large number of test cases, expert-based methods to create sufficiently valid simulation setups seem infeasible. We propose using design contracts in order to semi-automatically compose simulation setups for given test cases from simulation models and to derive requirements for the simulation models, supporting separation of concerns between simulation model developers and users. Simulation model contracts represent their validity domains by capturing a validity guarantee and the associated operating conditions in an assumption. We then require the composition of the simulation model contracts to refine a test case contract. The latter contract captures the operating conditions of the test case in its assumption and validity requirements in its guarantee. Based on this idea, we present a framework that supports the compositional configuration of simulation setups based on the contracts and a method to derive runtime monitors for these simulation setups.
comment: 8 pages, 3 figures. Published in 27th IEEE International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, September 24-27, 2024
Infinite-Horizon Optimal Wireless Control Over Shared State-Dependent Fading Channels for IIoT Systems
Heterogeneous systems consisting of a multiloop wireless control system (WCS) and a mobile agent system (MAS) are ubiquitous in Industrial Internet of Things systems. Within these systems, the positions of mobile agents may lead to shadow fading on the wireless channel that the WCS is controlled over and can significantly compromise its performance, requiring joint coordination between the WCS and MAS. Such coordination introduces different time steps and hybrid state spaces consisting of logical components and continuous components. This paper focuses on the infinite-horizon optimal control of MAS to ensure the performance of WCS while minimizing an average cost for the heterogeneous system subject to safety constraints. A state-dependent fading channel is modeled to capture interference among transmission links, as well as the effects of mobile agents' movements on successful wireless transmission. In order to address the heterogeneous system dynamics, the optimal control problem is formulated as the optimal constrained set stabilization of the MAS by establishing a necessary and sufficient condition for the Lyapunov-like performance of WCS with the expected decay rates. Using the semi-tensor product of matrices, a constrained optimal state transition graph is constructed to encode the constrained system dynamics as well as objective function, which further reduces the problem into a minimum-mean cycle problem for the graph. By studying the properties of the graph, the feasibility is proven, and an effective algorithm is proposed for the construction of optimal input sequences. An illustrative example is provided to demonstrate effectiveness of the proposed method.
A Unified Fault Ride Through Technique for Virtual Oscillator based Grid Forming Controllers
Grid-forming technology has a crucial role in achieving the future all renewable power grid. Among different types of grid-forming controllers, Virtual Oscillator (VO) based Controllers (VOCs) are the most advanced. VOCs outperform the conventional droop-based grid-forming controllers in terms of dynamic performance and synchronization stability by adapting time-domain-based implementation. However, because of the time-domain-based implementation, the same Fault Ride-through (FRT) techniques for droop-based controllers are incompatible with VOCs. Existing literature has successfully incorporated current limiting techniques in VOCs to protect the converters during severe transient conditions. Nevertheless, some very important aspects of FRT requirements are not attended to by the existing literature on VOCs, such as maintaining synchronization with the network during a fault, minimizing power oscillation during a fault, and at the fault clearance. First, this article introduces a unique analytical approach for quantifying the underlying dynamics of VOCs during faults. Next, using the mentioned analysis and in-depth reasoning, the systematic development of a unique FRT control architecture for VOCs is presented. The proposed FRT technique has unified both current and voltage synchronization in the same architecture to work successfully under three-phase and unbalanced faults. The performance of the proposed controller is thoroughly investigated and compared with existing VOCs.
Online 4D Ultrasound-Guided Robotic Tracking Enables 3D Ultrasound Localisation Microscopy with Large Tissue Displacements
Super-Resolution Ultrasound (SRUS) imaging through localising and tracking microbubbles, also known as Ultrasound Localisation Microscopy (ULM), has demonstrated significant potential for reconstructing microvasculature and flows with sub-diffraction resolution in clinical diagnostics. However, imaging organs with large tissue movements, such as those caused by respiration, presents substantial challenges. Existing methods often require breath holding to maintain accumulation accuracy, which limits data acquisition time and ULM image saturation. To improve image quality in the presence of large tissue movements, this study introduces an approach integrating high-frame-rate ultrasound with online precise robotic probe control. Tested on a microvasculature phantom with translation motions up to 20 mm, twice the aperture size of the matrix array used, our method achieved real-time tracking of the moving phantom and imaging volume rate at 85 Hz, keeping majority of the target volume in the imaging field of view. ULM images of the moving cross channels in the phantom were successfully reconstructed in post-processing, demonstrating the feasibility of super-resolution imaging under large tissue motions. This represents a significant step towards ULM imaging of organs with large motion.
Free-Space Optical Channel Turbulence Prediction: A Machine Learning Approach
Channel turbulence is a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions but has not been demonstrated without dedicated, auxiliary hardware. We show that machine learning (ML) can be applied to raw FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. FSO was conducted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters. Classification effectiveness was found to depend on the timescale of changes between turbulence levels but converges when turbulence stabilizes over about a one minute timescale.
comment: 5 pages, 4 figures, 3 tables, accepted for publication in IEEE Communications Letters
Exploring Adversarial Threat Models in Cyber Physical Battery Systems
Technological advancements like the Internet of Things (IoT) have facilitated data exchange across various platforms. This data exchange across various platforms has transformed the traditional battery system into a cyber physical system. Such connectivity makes modern cyber physical battery systems vulnerable to cyber threats where a cyber attacker can manipulate sensing and actuation signals to bring the battery system into an unsafe operating condition. Hence, it is essential to build resilience in modern cyber physical battery systems (CPBS) under cyber attacks. The first step of building such resilience is to analyze potential adversarial behavior, that is, how the adversaries can inject attacks into the battery systems. However, it has been found that in this under-explored area of battery cyber physical security, such an adversarial threat model has not been studied in a systematic manner. In this study, we address this gap and explore adversarial attack generation policies based on optimal control framework. The framework is developed by performing theoretical analysis, which is subsequently supported by evaluation with experimental data generated from a commercial battery cell.
Data-driven Modeling of Linearizable Power Flow for Large-scale Grid Topology Optimization
Effective power flow (PF) modeling critically affects the solution accuracy and computational complexity of large-scale grid optimization problems. Especially for grid optimization involving flexible topology to enhance resilience, obtaining a tractable yet accurate approximation of nonlinear AC-PF is essential. This work puts forth a data-driven approach to obtain piecewise linear (PWL) PF approximation using an innovative neural network (NN) architecture, effectively aligning with the inherent generative structure of AC-PF equations. Accordingly, our proposed generative NN (GenNN) method directly incorporates binary topology variables, efficiently enabling a mixed-integer linear program (MILP) formulation for grid optimization tasks like optimal transmission switching (OTS) and restoration ordering problems (ROP). To attain model scalability for large-scale applications, we develop an area-partitioning-based sparsification approach by using fixed-size areas to attain a linear growth rate of model parameters, as opposed to the quadratic one of existing work. Numerical tests on the IEEE 118-bus and 6716-bus synthetic Texas grid demonstrate that our sparse GenNN achieves superior accuracy and computational efficiency, substantially outperforming existing approaches in large-scale PF modeling and topology optimization.
Robotics
Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
Autonomous Generation of Sub-goals for Lifelong Learning in Robots
One of the challenges of open-ended learning in robots is the need to autonomously discover goals and learn skills to achieve them. However, when in lifelong learning settings, it is always desirable to generate sub-goals with their associated skills, without relying on explicit reward, as steppingstones to a goal. This allows sub-goals and skills to be reused to facilitate achieving other goals. This work proposes a two-pronged approach for sub-goal generation to address this challenge: a top-down approach, where sub-goals are hierarchically derived from general goals using intrinsic motivations to discover them, and a bottom-up approach, where sub-goal chains emerge from making latent relationships between goals and perceptual classes that were previously learned in different domains explicit. These methods help the robot to autonomously generate and chain sub-goals as a way to achieve more general goals. Additionally, they create more abstract representations of goals, helping to reduce sub-goal duplication and make the learning of skills more efficient. Implemented within an existing cognitive architecture for lifelong open-ended learning and tested with a real robot, our approach enhances the robot's ability to discover and achieve goals, generate sub-goals in an efficient manner, generalize learned skills, and operate in dynamic and unknown environments without explicit intermediate rewards.
comment: 16 pages
Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet.
Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
RoboEngine: Plug-and-Play Robot Data Augmentation with Semantic Robot Segmentation and Background Generation
Visual augmentation has become a crucial technique for enhancing the visual robustness of imitation learning. However, existing methods are often limited by prerequisites such as camera calibration or the need for controlled environments (e.g., green screen setups). In this work, we introduce RoboEngine, the first plug-and-play visual robot data augmentation toolkit. For the first time, users can effortlessly generate physics- and task-aware robot scenes with just a few lines of code. To achieve this, we present a novel robot scene segmentation dataset, a generalizable high-quality robot segmentation model, and a fine-tuned background generation model, which together form the core components of the out-of-the-box toolkit. Using RoboEngine, we demonstrate the ability to generalize robot manipulation tasks across six entirely new scenes, based solely on demonstrations collected from a single scene, achieving a more than 200% performance improvement compared to the no-augmentation baseline. All datasets, model weights, and the toolkit will be publicly released.
comment: Project Page: https://roboengine.github.io/
Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
FF-SRL: High Performance GPU-Based Surgical Simulation For Robot Learning
Robotic surgery is a rapidly developing field that can greatly benefit from the automation of surgical tasks. However, training techniques such as Reinforcement Learning (RL) require a high number of task repetitions, which are generally unsafe and impractical to perform on real surgical systems. This stresses the need for simulated surgical environments, which are not only realistic, but also computationally efficient and scalable. We introduce FF-SRL (Fast and Flexible Surgical Reinforcement Learning), a high-performance learning environment for robotic surgery. In FF-SRL both physics simulation and RL policy training reside entirely on a single GPU. This avoids typical bottlenecks associated with data transfer between the CPU and GPU, leading to accelerated learning rates. Our results show that FF-SRL reduces the training time of a complex tissue manipulation task by an order of magnitude, down to a couple of minutes, compared to a common CPU/GPU simulator. Such speed-up may facilitate the experimentation with RL techniques and contribute to the development of new generation of surgical systems. To this end, we make our code publicly available to the community.
Multi-agent coordination for data gathering with periodic requests and deliveries
In this demo work we develop a method to plan and coordinate a multi-agent team to gather information on demand. The data is periodically requested by a static Operation Center (OC) from changeable goals locations. The mission of the team is to reach these locations, taking measurements and delivering the data to the OC. Due to the limited communication range as well as signal attenuation because of the obstacles, the agents must travel to the OC, to upload the data. The agents can play two roles: ones as workers gathering data, the others as collectors traveling invariant paths for collecting the data of the workers to re-transmit it to the OC. The refreshing time of the delivered information depends on the number of available agents as well as of the scenario. The proposed algorithm finds out the best balance between the number of collectors-workers and the partition of the scenario into working areas in the planning phase, which provides the minimum refreshing time and will be the one executed by the agents.
Communication-aware planning for robot teams deployment
In the present work we address the problem of deploying a team of robots in a scenario where some locations of interest must be reached. Thus, a planning for a deployment is required, before sending the robots. The obstacles, the limited communication range, and the need of communicating to a base station, constrain the connectivity of the team and the deployment planning. We propose a method consisting of three algorithms: a distributed path planner to obtain communication-aware trajectories; a deployment planner providing dual-use of the robots, visiting primary goals and performing connectivity tasks; and a clustering algorithm to allocate the tasks to robots, and obtain the best goal visit order for the mission.
Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
comment: 4 pages, 3 figures, CoRL 2024 Workshop MAPoDeL
P3Nav: A Unified Framework for Embodied Navigation Integrating Perception, Planning, and Prediction
In language-guided visual navigation, agents locate target objects in unseen environments using natural language instructions. For reliable navigation in unfamiliar scenes, agents must possess strong perception, planning, and prediction capabilities. Additionally, when agents revisit previously explored areas during long-term navigation, they may retain irrelevant and redundant historical perceptions, leading to suboptimal results. In this work, we introduce \textbf{P3Nav}, a unified framework that integrates \textbf{P}erception, \textbf{P}lanning, and \textbf{P}rediction capabilities through \textbf{Multitask Collaboration} on navigation and embodied question answering (EQA) tasks, thereby enhancing navigation performance. Furthermore, P3Nav employs an \textbf{Adaptive 3D-aware History Sampling} strategy to effectively and efficiently utilize historical observations. By leveraging the large language models (LLM), P3Nav comprehends diverse commands and complex visual scenes, resulting in appropriate navigation actions. P3Nav achieves a 75\% success rate in object goal navigation on the $\mathrm{CHORES}$-$\mathbb{S}$ benchmark, setting a new state-of-the-art performance.
comment: 14 pages, 7 figures
Analysis of Forces Exerted by Shoulder and Elbow Fabric-based Pneumatic Actuators for Pediatric Exosuits
To enhance pediatric exosuit design, it is crucial to assess the actuator-generated forces. This work evaluates the contact forces exerted by soft fabric-based pneumatic actuators in an upper extremity pediatric exosuit. Two actuators were examined: a single-cell bidirectional actuator for shoulder abduction/adduction and a bellow-type actuator for elbow extension/flexion. Experiments assessed the impact of actuator anchoring points and the adjacent joint's angle on exerted forces and actuated joint range of motion (ROM). These were measured via load cells and encoders integrated into a custom infant-scale engineered apparatus with two degrees of freedom (two revolute joints). For the shoulder actuator, results show that anchoring it further from the shoulder joint center while the elbow is flexed at $90^\circ$ yields the highest ROM while minimizing the peak force exerted on the body. For the elbow actuator, anchoring it symmetrically while the shoulder joint is at $0^\circ$ optimizes actuator performance. These findings contribute a key step toward co-optimizing the considered exosuit design for functionality and wearability.
Innovative Automated Stretch Elastic Waistband Sewing Machine for Garment Manufacturing
There is applied research for the development of the Automated Stretch Elastic Waistband Sewing Machine represents a significant advancement in garment manufacturing, addressing the industry's need for increased efficiency, precision, and adaptability. This machine integrates innovative features such as a sensor-based automatic waistband expansion system, synchronized sewing speed and rolling wheel speed, and a differential feed top-loading mechanism. These enhancements streamline the sewing process, reduce manual intervention, and ensure consistent product quality. The machine's design incorporates both 3-wheel and 2-wheel rolling systems, each optimized for different elastic band dimensions and elongation factors. The 3-wheel rolling system accommodates a larger maximum boundary, while the 2-wheel rolling system offers a tighter operational range, providing flexibility to meet diverse manufacturing requirements. The Automated Stretch Elastic Waistband Sewing Machine has a design that controls the pulling apart force so as not to break the elastic waistband. It sets a new standard for quality and innovation, empowering manufacturers to meet the demands of a competitive market with precision and ease.
comment: 13 pages, 10 Figures
Reinforcement Learning for Adaptive Planner Parameter Tuning: A Perspective on Hierarchical Architecture
Automatic parameter tuning methods for planning algorithms, which integrate pipeline approaches with learning-based techniques, are regarded as promising due to their stability and capability to handle highly constrained environments. While existing parameter tuning methods have demonstrated considerable success, further performance improvements require a more structured approach. In this paper, we propose a hierarchical architecture for reinforcement learning-based parameter tuning. The architecture introduces a hierarchical structure with low-frequency parameter tuning, mid-frequency planning, and high-frequency control, enabling concurrent enhancement of both upper-layer parameter tuning and lower-layer control through iterative training. Experimental evaluations in both simulated and real-world environments show that our method surpasses existing parameter tuning approaches. Furthermore, our approach achieves first place in the Benchmark for Autonomous Robot Navigation (BARN) Challenge.
Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
Vision-Guided Loco-Manipulation with a Snake Robot
This paper presents the development and integration of a vision-guided loco-manipulation pipeline for Northeastern University's snake robot, COBRA. The system leverages a YOLOv8-based object detection model and depth data from an onboard stereo camera to estimate the 6-DOF pose of target objects in real time. We introduce a framework for autonomous detection and control, enabling closed-loop loco-manipulation for transporting objects to specified goal locations. Additionally, we demonstrate open-loop experiments in which COBRA successfully performs real-time object detection and loco-manipulation tasks.
NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
Ground Penetrating Radar-Assisted Multimodal Robot Odometry Using Subsurface Feature Matrix
Localization of robots using subsurface features observed by ground-penetrating radar (GPR) enhances and adds robustness to common sensor modalities, as subsurface features are less affected by weather, seasons, and surface changes. We introduce an innovative multimodal odometry approach using inputs from GPR, an inertial measurement unit (IMU), and a wheel encoder. To efficiently address GPR signal noise, we introduce an advanced feature representation called the subsurface feature matrix (SFM). The SFM leverages frequency domain data and identifies peaks within radar scans. Additionally, we propose a novel feature matching method that estimates GPR displacement by aligning SFMs. The integrations from these three input sources are consolidated using a factor graph approach to achieve multimodal robot odometry. Our method has been developed and evaluated with the CMU-GPR public dataset, demonstrating improvements in accuracy and robustness with real-time performance in robotic odometry tasks.
Learning Orientation Field for OSM-Guided Autonomous Navigation
OpenStreetMap (OSM) has gained popularity recently in autonomous navigation due to its public accessibility, lower maintenance costs, and broader geographical coverage. However, existing methods often struggle with noisy OSM data and incomplete sensor observations, leading to inaccuracies in trajectory planning. These challenges are particularly evident in complex driving scenarios, such as at intersections or facing occlusions. To address these challenges, we propose a robust and explainable two-stage framework to learn an Orientation Field (OrField) for robot navigation by integrating LiDAR scans and OSM routes. In the first stage, we introduce the novel representation, OrField, which can provide orientations for each grid on the map, reasoning jointly from noisy LiDAR scans and OSM routes. To generate a robust OrField, we train a deep neural network by encoding a versatile initial OrField and output an optimized OrField. Based on OrField, we propose two trajectory planners for OSM-guided robot navigation, called Field-RRT* and Field-Bezier, respectively, in the second stage by improving the Rapidly Exploring Random Tree (RRT) algorithm and Bezier curve to estimate the trajectories. Thanks to the robustness of OrField which captures both global and local information, Field-RRT* and Field-Bezier can generate accurate and reliable trajectories even in challenging conditions. We validate our approach through experiments on the SemanticKITTI dataset and our own campus dataset. The results demonstrate the effectiveness of our method, achieving superior performance in complex and noisy conditions. Our code for network training and real-world deployment is available at https://github.com/IMRL/OriField.
comment: 14 pages, 12 figures, and 5 tables
GI-SLAM: Gaussian-Inertial SLAM
3D Gaussian Splatting (3DGS) has recently emerged as a powerful representation of geometry and appearance for dense Simultaneous Localization and Mapping (SLAM). Through rapid, differentiable rasterization of 3D Gaussians, many 3DGS SLAM methods achieve near real-time rendering and accelerated training. However, these methods largely overlook inertial data, witch is a critical piece of information collected from the inertial measurement unit (IMU). In this paper, we present GI-SLAM, a novel gaussian-inertial SLAM system which consists of an IMU-enhanced camera tracking module and a realistic 3D Gaussian-based scene representation for mapping. Our method introduces an IMU loss that seamlessly integrates into the deep learning framework underpinning 3D Gaussian Splatting SLAM, effectively enhancing the accuracy, robustness and efficiency of camera tracking. Moreover, our SLAM system supports a wide range of sensor configurations, including monocular, stereo, and RGBD cameras, both with and without IMU integration. Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the EuRoC and TUM-RGBD datasets.
comment: 10 pages, 2 figures, 5 tables
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
Contact-based Grasp Control and Inverse Kinematics for a Five-fingered Robotic Hand
This paper presents an implementation and analysis of a five-fingered robotic grasping system that combines contact-based control with inverse kinematics solutions. Using the PyBullet simulation environment and the DexHand v2 model, we demonstrate a comprehensive approach to achieving stable grasps through contact point optimization with force closure validation. Our method achieves movement efficiency ratings between 0.966-0.996 for non-thumb fingers and 0.879 for the thumb, while maintaining positional accuracy within 0.0267-0.0283m for non-thumb digits and 0.0519m for the thumb. The system demonstrates rapid position stabilization at 240Hz simulation frequency and maintains stable contact configurations throughout the grasp execution. Experimental results validate the effectiveness of our approach, while also identifying areas for future enhancement in thumb opposition movements and horizontal plane control.
comment: 10 Pages, 5 Figures, 1 Table
Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
Cooperative Control of Multi-Quadrotors for Transporting Cable-Suspended Payloads: Obstacle-Aware Planning and Event-Based Nonlinear Model Predictive Control
This paper introduces a novel methodology for the cooperative control of multiple quadrotors transporting cablesuspended payloads, emphasizing obstacle-aware planning and event-based Nonlinear Model Predictive Control (NMPC). Our approach integrates trajectory planning with real-time control through a combination of the A* algorithm for global path planning and NMPC for local control, enhancing trajectory adaptability and obstacle avoidance. We propose an advanced event-triggered control system that updates based on events identified through dynamically generated environmental maps. These maps are constructed using a dual-camera setup, which includes multi-camera systems for static obstacle detection and event cameras for high-resolution, low-latency detection of dynamic obstacles. This design is crucial for addressing fast-moving and transient obstacles that conventional cameras may overlook, particularly in environments with rapid motion and variable lighting conditions. When new obstacles are detected, the A* algorithm recalculates waypoints based on the updated map, ensuring safe and efficient navigation. This real-time obstacle detection and map updating integration allows the system to adaptively respond to environmental changes, markedly improving safety and navigation efficiency. The system employs SLAM and object detection techniques utilizing data from multi-cameras, event cameras, and IMUs for accurate localization and comprehensive environmental mapping. The NMPC framework adeptly manages the complex dynamics of multiple quadrotors and suspended payloads, incorporating safety constraints to maintain dynamic feasibility and stability. Extensive simulations validate the proposed approach, demonstrating significant enhancements in energy efficiency, computational resource management, and responsiveness.
Evolutionary Policy Optimization
Despite its extreme sample inefficiency, on-policy reinforcement learning has become a fundamental tool in real-world applications. With recent advances in GPU-driven simulation, the ability to collect vast amounts of data for RL training has scaled exponentially. However, studies show that current on-policy methods, such as PPO, fail to fully leverage the benefits of parallelized environments, leading to performance saturation beyond a certain scale. In contrast, Evolutionary Algorithms (EAs) excel at increasing diversity through randomization, making them a natural complement to RL. However, existing EvoRL methods have struggled to gain widespread adoption due to their extreme sample inefficiency. To address these challenges, we introduce Evolutionary Policy Optimization (EPO), a novel policy gradient algorithm that combines the strengths of EA and policy gradients. We show that EPO significantly improves performance across diverse and challenging environments, demonstrating superior scalability with parallelized simulations.
comment: Website at https://sites.google.com/view/epo-rl
Double Oracle Algorithm for Game-Theoretic Robot Allocation on Graphs
We study the problem of game-theoretic robot allocation where two players strategically allocate robots to compete for multiple sites of interest. Robots possess offensive or defensive capabilities to interfere and weaken their opponents to take over a competing site. This problem belongs to the conventional Colonel Blotto Game. Considering the robots' heterogeneous capabilities and environmental factors, we generalize the conventional Blotto game by incorporating heterogeneous robot types and graph constraints that capture the robot transitions between sites. Then we employ the Double Oracle Algorithm (DOA) to solve for the Nash equilibrium of the generalized Blotto game. Particularly, for cyclic-dominance-heterogeneous (CDH) robots that inhibit each other, we define a new transformation rule between any two robot types. Building on the transformation, we design a novel utility function to measure the game's outcome quantitatively. Moreover, we rigorously prove the correctness of the designed utility function. Finally, we conduct extensive simulations to demonstrate the effectiveness of DOA on computing Nash equilibrium for homogeneous, linear heterogeneous, and CDH robot allocation on graphs.
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
Evolution 6.0: Evolving Robotic Capabilities Through Generative Design IROS
We propose a new concept, Evolution 6.0, which represents the evolution of robotics driven by Generative AI. When a robot lacks the necessary tools to accomplish a task requested by a human, it autonomously designs the required instruments and learns how to use them to achieve the goal. Evolution 6.0 is an autonomous robotic system powered by Vision-Language Models (VLMs), Vision-Language Action (VLA) models, and Text-to-3D generative models for tool design and task execution. The system comprises two key modules: the Tool Generation Module, which fabricates task-specific tools from visual and textual data, and the Action Generation Module, which converts natural language instructions into robotic actions. It integrates QwenVLM for environmental understanding, OpenVLA for task execution, and Llama-Mesh for 3D tool generation. Evaluation results demonstrate a 90% success rate for tool generation with a 10-second inference time, and action generation achieving 83.5% in physical and visual generalization, 70% in motion generalization, and 37% in semantic generalization. Future improvements will focus on bimanual manipulation, expanded task capabilities, and enhanced environmental interpretation to improve real-world adaptability.
comment: Submitted to IROS
Improving robot navigation in crowded environments using intrinsic rewards ICRA
Autonomous navigation in crowded environments is an open problem with many applications, essential for the coexistence of robots and humans in the smart cities of the future. In recent years, deep reinforcement learning approaches have proven to outperform model-based algorithms. Nevertheless, even though the results provided are promising, the works are not able to take advantage of the capabilities that their models offer. They usually get trapped in local optima in the training process, that prevent them from learning the optimal policy. They are not able to visit and interact with every possible state appropriately, such as with the states near the goal or near the dynamic obstacles. In this work, we propose using intrinsic rewards to balance between exploration and exploitation and explore depending on the uncertainty of the states instead of on the time the agent has been trained, encouraging the agent to get more curious about unknown states. We explain the benefits of the approach and compare it with other exploration algorithms that may be used for crowd navigation. Many simulation experiments are performed modifying several algorithms of the state-of-the-art, showing that the use of intrinsic rewards makes the robot learn faster and reach higher rewards and success rates (fewer collisions) in shorter navigation times, outperforming the state-of-the-art.
comment: Paper accepted in 2023 IEEE International Conference on Robotics and Automation (ICRA)
AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a Velocity Obstacle's (VO) formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation ICRA
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
comment: Project website: diffdagger.github.io 8 pages, 6 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, IEEE Transactions on Robotics (TRO)
AVR: Active Vision-Driven Robotic Precision Manipulation with Viewpoint and Focal Length Optimization
Robotic manipulation within dynamic environments presents challenges to precise control and adaptability. Traditional fixed-view camera systems face challenges adapting to change viewpoints and scale variations, limiting perception and manipulation precision. To tackle these issues, we propose the Active Vision-driven Robotic (AVR) framework, a teleoperation hardware solution that supports dynamic viewpoint and dynamic focal length adjustments to continuously center targets and maintain optimal scale, accompanied by a corresponding algorithm that effectively enhances the success rates of various operational tasks. Using the RoboTwin platform with a real-time image processing plugin, AVR framework improves task success rates by 5%-16% on five manipulation tasks. Physical deployment on a dual-arm system demonstrates in collaborative tasks and 36% precision in screwdriver insertion, outperforming baselines by over 25%. Experimental results confirm that AVR framework enhances environmental perception, manipulation repeatability (40% $\le $1 cm error), and robustness in complex scenarios, paving the way for future robotic precision manipulation methods in the pursuit of human-level robot dexterity and precision.
comment: Previously, there were some problems with our experimental data, and the conclusions need to be further verified. Now that we have completed a full-scale experiment and analysis, and added supporting materials to our website, we hope to be able to resubmit it
3D-MVP: 3D Multiview Pretraining for Robotic Manipulation CVPR 2025
Recent works have shown that visual pretraining on egocentric datasets using masked autoencoders (MAE) can improve generalization for downstream robotics tasks. However, these approaches pretrain only on 2D images, while many robotics applications require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D Multi-View Pretraining using masked autoencoders. We leverage Robotic View Transformer (RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper pose actions. We split RVT's multi-view transformer into visual encoder and action decoder, and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and demonstrate improved performance over baselines. Our results suggest that 3D-aware pretraining is a promising approach to improve generalization of vision-based robotic manipulation policies. Project site: https://jasonqsy.github.io/3DMVP
comment: CVPR 2025
MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop
MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
comment: The final version of this work has been approved by the IEEE for publication. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
CAHSOR: Competence-Aware High-Speed Off-Road Ground Navigation in SE(3)
While the workspace of traditional ground vehicles is usually assumed to be in a 2D plane, i.e., SE(2), such an assumption may not hold when they drive at high speeds on unstructured off-road terrain: High-speed sharp turns on high-friction surfaces may lead to vehicle rollover; Turning aggressively on loose gravel or grass may violate the non-holonomic constraint and cause significant lateral sliding; Driving quickly on rugged terrain will produce extensive vibration along the vertical axis. Therefore, most offroad vehicles are currently limited to drive only at low speeds to assure vehicle stability and safety. In this work, we aim at empowering high-speed off-road vehicles with competence awareness in SE(3) so that they can reason about the consequences of taking aggressive maneuvers on different terrain with a 6-DoF forward kinodynamic model. The model is learned from visual and inertial Terrain Representation for Off-road Navigation (TRON) using multimodal, self-supervised vehicle-terrain interactions. We demonstrate the efficacy of our Competence-Aware High-Speed Off-Road (CAHSOR) navigation approach on a physical ground robot in both an autonomous navigation and a human shared-control setup and show that CAHSOR can efficiently reduce vehicle instability by 62% while only compromising 8.6% average speed with the help of TRON.
A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Multiagent Systems
Multi-agent coordination for data gathering with periodic requests and deliveries
In this demo work we develop a method to plan and coordinate a multi-agent team to gather information on demand. The data is periodically requested by a static Operation Center (OC) from changeable goals locations. The mission of the team is to reach these locations, taking measurements and delivering the data to the OC. Due to the limited communication range as well as signal attenuation because of the obstacles, the agents must travel to the OC, to upload the data. The agents can play two roles: ones as workers gathering data, the others as collectors traveling invariant paths for collecting the data of the workers to re-transmit it to the OC. The refreshing time of the delivered information depends on the number of available agents as well as of the scenario. The proposed algorithm finds out the best balance between the number of collectors-workers and the partition of the scenario into working areas in the planning phase, which provides the minimum refreshing time and will be the one executed by the agents.
Communication-aware planning for robot teams deployment
In the present work we address the problem of deploying a team of robots in a scenario where some locations of interest must be reached. Thus, a planning for a deployment is required, before sending the robots. The obstacles, the limited communication range, and the need of communicating to a base station, constrain the connectivity of the team and the deployment planning. We propose a method consisting of three algorithms: a distributed path planner to obtain communication-aware trajectories; a deployment planner providing dual-use of the robots, visiting primary goals and performing connectivity tasks; and a clustering algorithm to allocate the tasks to robots, and obtain the best goal visit order for the mission.
Agent-based Modeling meets the Capability Approach for Human Development: Simulating Homelessness Policy-making
The global rise in homelessness calls for urgent and alternative policy solutions. Non-profits and governmental organizations alert about the many challenges faced by people experiencing homelessness (PEH), which include not only the lack of shelter but also the lack of opportunities for personal development. In this context, the capability approach (CA), which underpins the United Nations Sustainable Development Goals (SDGs), provides a comprehensive framework to assess inequity in terms of real opportunities. This paper explores how the CA can be combined with agent-based modelling and reinforcement learning. The goals are: (1) implementing the CA as a Markov Decision Process (MDP), (2) building on such MDP to develop a rich decision-making model that accounts for more complex motivators of behaviour, such as values and needs, and (3) developing an agent-based simulation framework that allows to assess alternative policies aiming to expand or restore people's capabilities. The framework is developed in a real case study of health inequity and homelessness, working in collaboration with stakeholders, non-profits and domain experts. The ultimate goal of the project is to develop a novel agent-based simulation framework, rooted in the CA, which can be replicated in a diversity of social contexts to assess policies in a non-invasive way.
DeepFund: Will LLM be Professional at Fund Investment? A Live Arena Perspective
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision making, particularly in fund investment, remains inadequately evaluated. Current benchmarks primarily assess LLMs understanding of financial documents rather than their ability to manage assets or analyze trading opportunities in dynamic market conditions. A critical limitation in existing evaluation methodologies is the backtesting approach, which suffers from information leakage when LLMs are evaluated on historical data they may have encountered during pretraining. This paper introduces DeepFund, a comprehensive platform for evaluating LLM based trading strategies in a simulated live environment. Our approach implements a multi agent framework where LLMs serve as both analysts and managers, creating a realistic simulation of investment decision making. The platform employs a forward testing methodology that mitigates information leakage by evaluating models on market data released after their training cutoff dates. We provide a web interface that visualizes model performance across different market conditions and investment parameters, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more accurate and fair assessment of LLMs capabilities in fund investment, offering insights into their potential real world applications in financial markets.
comment: Work in progress
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
Browsing Lost Unformed Recollections: A Benchmark for Tip-of-the-Tongue Search and Reasoning
We introduce Browsing Lost Unformed Recollections, a tip-of-the-tongue known-item search and reasoning benchmark for general AI assistants. BLUR introduces a set of 573 real-world validated questions that demand searching and reasoning across multi-modal and multilingual inputs, as well as proficient tool use, in order to excel on. Humans easily ace these questions (scoring on average 98%), while the best-performing system scores around 56%. To facilitate progress toward addressing this challenging and aspirational use case for general AI assistants, we release 350 questions through a public leaderboard, retain the answers to 250 of them, and have the rest as a private test set.
Cooperative Control of Multi-Quadrotors for Transporting Cable-Suspended Payloads: Obstacle-Aware Planning and Event-Based Nonlinear Model Predictive Control
This paper introduces a novel methodology for the cooperative control of multiple quadrotors transporting cablesuspended payloads, emphasizing obstacle-aware planning and event-based Nonlinear Model Predictive Control (NMPC). Our approach integrates trajectory planning with real-time control through a combination of the A* algorithm for global path planning and NMPC for local control, enhancing trajectory adaptability and obstacle avoidance. We propose an advanced event-triggered control system that updates based on events identified through dynamically generated environmental maps. These maps are constructed using a dual-camera setup, which includes multi-camera systems for static obstacle detection and event cameras for high-resolution, low-latency detection of dynamic obstacles. This design is crucial for addressing fast-moving and transient obstacles that conventional cameras may overlook, particularly in environments with rapid motion and variable lighting conditions. When new obstacles are detected, the A* algorithm recalculates waypoints based on the updated map, ensuring safe and efficient navigation. This real-time obstacle detection and map updating integration allows the system to adaptively respond to environmental changes, markedly improving safety and navigation efficiency. The system employs SLAM and object detection techniques utilizing data from multi-cameras, event cameras, and IMUs for accurate localization and comprehensive environmental mapping. The NMPC framework adeptly manages the complex dynamics of multiple quadrotors and suspended payloads, incorporating safety constraints to maintain dynamic feasibility and stability. Extensive simulations validate the proposed approach, demonstrating significant enhancements in energy efficiency, computational resource management, and responsiveness.
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
Inertial Coordination Games
We analyze inertial coordination games: dynamic coordination games with an endogenously changing state that depends on (i) a persistent fundamental players privately learn about over time; and (ii) past play. The speed of learning determines long-run equilibrium dynamics: the risk-dominant action is played in the limit if and only if learning is slow such that posterior precisions grow sub-quadratically. This generalizes results from static global games and endows them with a learning foundation. Conversely, when learning is fast such that posterior precisions grow super-quadratically, shocks can propagate and generate self-fulfilling spirals.
Systems and Control (CS)
Inertial-Based LQG Control: A New Look at Inverted Pendulum Stabilization
Linear quadratic Gaussian (LQG) control is a well-established method for optimal control through state estimation, particularly in stabilizing an inverted pendulum on a cart. In standard laboratory setups, sensor redundancy enables direct measurement of configuration variables using displacement sensors and rotary encoders. However, in outdoor environments, dynamically stable mobile platforms-such as Segways, hoverboards, and bipedal robots-often have limited sensor availability, restricting state estimation primarily to attitude stabilization. Since the tilt angle cannot be directly measured, it is typically estimated through sensor fusion, increasing reliance on inertial sensors and necessitating a lightweight, self-contained perception module. Prior research has not incorporated accelerometer data into the LQG framework for stabilizing pendulum-like systems, as jerk states are not explicitly modeled in the Newton-Euler formalism. In this paper, we address this gap by leveraging local differential flatness to incorporate higher-order dynamics into the system model. This refinement enhances state estimation, enabling a more robust LQG controller that predicts accelerations for dynamically stable mobile platforms.
comment: 11 pages, 10 figures, 5 tables
Choose Wisely: Data-Enabled Predictive Control for Nonlinear Systems Using Online Data Selection
This paper proposes Select-Data-Enabled Predictive Control (Select-DeePC), a new method for controlling nonlinear systems using output-feedback for which data are available but an explicit model is not. At each timestep, Select-DeePC employs only the most relevant data to implicitly linearize the dynamics in ``trajectory space.'' Then, taking user-defined output constraints into account, it makes control decisions using a convex optimization. This optimal control is applied in a receding-horizon manner. As the online data-selection is the core of Select-DeePC, we propose and verify both norm-based and manifold-embedding-based selection methods. We evaluate Select-DeePC on three benchmark nonlinear system simulators -- rocket-landing, a robotic arm and cart-pole inverted pendulum swing-up -- comparing them with standard DeePC and Time-Windowed DeePC, and find that Select-DeePC outperforms both methods.
Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
On-chip calibration of Microscale-Thermocouples for Precise Temperature Measurement
Precise temperature measurement at micro/nanoscale is crucial across various domains including physical sciences, chemical processes, industrial production, medical diagnosis, weather forecasting, electronics, and biology. Micro/nanoscale thermal mapping requires precise techniques such as thermocouples, resistance-based devices, infrared thermography, optical interferometry, Raman thermometry, and Time domain-thermoreflectance (TDTR) method. Each method has its advantages and limitations, emphasizing the importance of selecting the appropriate technique. Among these methods, micro-thin film thermocouples (TFTCs) offer a compelling solution due to their direct contact-based temperature measurements, minimal surface preparation requirements, lower cost, and robustness against environmental factors. Thermocouples work on the well-established Seebeck effect, where a voltage is generated proportional to the temperature difference between two points. However, at micro/nanoscale, the Seebeck coefficients of thermocouples differ from those in bulk materials, requiring experimental calibration for precise measurements. To address this, we introduce an on-chip characterization platform with a differential temperature measurement setup on a borosilicate glass substrate. This platform utilizes a microheater as a localized heat source to elevate the temperature at the hot junction of the TFTC while maintaining the cold junction at ambient conditions. Numerical simulations are employed to engineer both the microheater and TFTC junction for precise temperature control. The functionality of this platform is validated by fabricating TFTCs using standard fabrication processes and measuring the TFTC response to determine the differential Seebeck coefficient of a Platinum-Chromium TFTC Junction. The calculated sensitivity of Pt/Cr TFTCs using this calibration method is 19.23 +- 0.405 {\mu}V/C.
comment: 20 pages, 9 figures
EVOLVE: a Value-Added Services Platform for Electric Vehicle Charging Stations
A notable challenge in Electric Vehicle (EV) charging is the time required to fully charge the battery, which can range from 15 minutes to 2-3 hours. This idle period, however, presents an opportunity to offer time-consuming or data-intensive services such as vehicular software updates. ISO 15118 referred to the concept of Value-Added Services (VAS) in the charging scenario, but it remained underexplored in the literature. Our paper addresses this gap by proposing \acronym, the first EV charger compute architecture that supports secure on-charger universal applications with upstream and downstream communication. The architecture covers the end-to-end hardware/software stack, including standard API for vehicles and IT infrastructure. We demonstrate the feasibility and advantages of \acronym by employing and evaluating three suggested value-added services: vehicular software updates, security information and event management (SIEM), and secure payments. The results demonstrate significant reductions in bandwidth utilization and latency, as well as high throughput, which supports this novel concept and suggests a promising business model for Electric Vehicle charging station operation.
Matrix Pencil-Based Analysis of Multirate Simulation Schemes
This paper focuses on multirate time-domain simulations of power system models. It proposes a matrix pencil-based approach to evaluate the spurious numerical deformation introduced to power system dynamics by a given multirate integration scheme. Moreover, it considers the problem of multirate partitioning and discusses a strategy for allocating state and algebraic variables to fast and slow subsystems based on modal participation factors (PFs). The suitability and features of the proposed approach are illustrated through numerical simulations that assess the accuracy effects of interfacing as well as of various prediction and solution methods.
Feasibility of multiple robust control barrier functions for bounding box constraints
Enforcing multiple constraints based on the concept of control barrier functions (CBFs) is a remaining challenge because each of the CBFs requires a condition on the control inputs to be satisfied which may easily lead to infeasibility problems. The problem becomes even more challenging with input constraints and disturbances. In this paper, we consider enforcement of bounding box constraints for a second order system under limited control authority and input disturbances. To solve the constrained control problem, we apply multiple robust control barrier functions (RCBFs) which, in general, do not provide a feasible solution to the problem. However, we derive conditions on how to select the RCBF parameters to guarantee that a feasible solution always exists.
comment: Accepted for American Control Conference 2025
Constraint Horizon in Model Predictive Control
In this work, we propose a Model Predictive Control (MPC) formulation incorporating two distinct horizons: a prediction horizon and a constraint horizon. This approach enables a deeper understanding of how constraints influence key system properties such as suboptimality, without compromising recursive feasibility and constraint satisfaction. In this direction, our contributions are twofold. First, we provide a framework to estimate closed-loop optimality as a function of the number of enforced constraints. This is a generalization of existing results by considering partial constraint enforcement over the prediction horizon. Second, when adopting this general framework under the lens of safety-critical applications, our method improves conventional Control Barrier Function (CBF) based approaches. It mitigates myopic behaviour in Quadratic Programming (QP)-CBF schemes, and resolves compatibility issues between Control Lyapunov Function (CLF) and CBF constraints via the prediction horizon used in the optimization. We show the efficacy of the method via numerical simulations for a safety critical application.
comment: submitted to L-CSS
Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in capturing nonlinear relationships by utilizing a mixture of linear regression sub-models. Although considerable efforts have been devoted to the learning problem of such systems, i.e., estimating data labels and identifying model parameters, most existing investigations employ the offline algorithm, impose the strict independent and identically distributed (i.i.d.) or persistent excitation (PE) conditions on the regressor data, and provide local convergence results only. In this paper, we investigate the recursive estimation and data clustering problems for a class of stochastic MLRs with two components. To address this inherently nonconvex optimization problem, we propose a novel two-step recursive identification algorithm to estimate the true parameters, where the direction vector and the scaling coefficient of the unknown parameters are estimated by the least squares and the expectation-maximization (EM) principles, respectively. Under a general data condition, which is much weaker than the traditional i.i.d. and PE conditions, we establish the global convergence and the convergence rate of the proposed identification algorithm for the first time. Furthermore, we prove that, without any excitation condition on the regressor data, the data clustering performance including the cumulative mis-classification error and the within-cluster error can be optimal asymptotically. Finally, we provide a numerical example to illustrate the performance of the proposed learning algorithm.
Differentiable Simulator for Electrically Reconfigurable Electromagnetic Structures
This paper introduces a novel CUDA-enabled PyTorch-based framework designed for the gradient-based optimization of such reconfigurable electromagnetic structures with electrically tunable parameters. Traditional optimization techniques for these structures often rely on non-gradient-based methods, limiting efficiency and flexibility. Our framework leverages automatic differentiation, facilitating the application of gradient-based optimization methods. This approach is particularly advantageous for embedding within deep learning frameworks, enabling sophisticated optimization strategies. We demonstrate the framework's effectiveness through comprehensive simulations involving resonant structures with tunable parameters. Key contributions include the efficient solution of the inverse problem. The framework's performance is validated using three different resonant structures: a single-loop copper wire (Unit-Cell) as well as an 8x1 and an 8x8 array of resonant unit cells with multiple inductively coupled unit cells (1d and 2d Metasurfaces). Results show precise in-silico control over the magnetic field's component normal to the surface of each resonant structure, achieving desired field strengths with minimal error. The proposed framework is compatible with existing simulation software. This PyTorch-based framework sets the stage for advanced electromagnetic control strategies for resonant structures with application in e.g. MRI, providing a robust platform for further exploration and innovation in the design and optimization of resonant electromagnetic structures.
The On-Board Computer of the AcubeSAT Mission
AcubeSAT is an open-source CubeSat mission aiming to explore the effects of microgravity and radiation on eukaryotic cells using a compact microfluidic lab-on-a-chip platform. It is developed by SpaceDot, a volunteer, interdisciplinary student team at the Aristotle University of Thessaloniki and supported by the "Fly Your Satellite! 3" program of the European Space Agency (ESA) Education Office. The nanosatellite features an in-house designed on-board computer subsystem responsible for telecommand execution, telemetry fetching, onboard time synchronization, in-orbit patching, and fault recovery. The subsystem is designed on one PC/104 standard compatible Printed Circuit Board (PCB) that hosts the On-board Computer (OBC) on the one side and the Attitude and Orbit Control Subsystem (AOCS) on the other, and it is compatible with the LibreCube standard. The hosted subsystems are functionally isolated and feature an ARM Cortex-M7, radiation-tolerant microcontroller each. Before sending anything to space thorough testing is required and specifically the on-board computer board underwent vibration and thermal cycling tests to ensure nominal operation in all conditions. This paper aims to elucidate the decision-making process, design iterations, and development stages of the custom board and accompanying in-house software. Insights garnered from the initial partially successful environmental test campaign at the ESA CubeSat Support Facility will be shared, along with the ensuing preparations, results, and lessons learned from subsequent testing endeavors in April 2024. Furthermore, the current developmental status will be discussed alongside future electromagnetic compatibility testing, integration plan on a FlatSat, and prospects for the open-source design as a cost-effective, and modular solution that can be tailored with little effort for upcoming missions.
comment: 52nd IAF Student Conference, Held at the 75th International Astronautical Congress (IAC 2024)
Dominant Groups and Asymmetric Polarization in Generalized Quasi-Structurally Balanced Networks
The paper focuses on the phenomenon of asymmetric polarization arising in the presence of a dominant group in the network. The existing works in the literature analyze polarization primarily in structurally and quasi-structurally balanced networks. In this work, we introduce generalized quasi-structurally balanced (GQSB) networks, which include both of these networks as special cases. In the presence of a dominant group, a GQSB network has a unique bipartition: the dominant group (and its allies) and the remaining agents. The dominant group's superior influence results in an asymmetry in how the inter-subset antagonistic interactions are perceived by both of the subsets. This, in turn, leads to asymmetry in the final polarized opinions. To model this behavior, we propose a generalized Laplacian flow for undirected GQSB networks with a dominant group and establish necessary and sufficient conditions for achieving asymmetric polarization. The theoretical results presented in this paper are validated through numerical simulations on the Highland Tribes real-world dataset.
comment: 6 pages, 11 figures, under review in Automatica
Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
Contact Plan Design for Cross-Linked GNSSs: An ILP Approach for Extended Applications
Global Navigation Satellite Systems (GNSS) employ inter-satellite links (ISLs) to reduce dependency on ground stations, enabling precise ranging and communication across satellites. Beyond their traditional role, ISLs can support extended applications, including providing navigation and communication services to external entities. However, designing effective contact plan design (CPD) schemes for these multifaceted ISLs, operating under a polling time-division duplex (PTDD) framework, remains a critical challenge. Existing CPD approaches focus solely on meeting GNSS satellites' internal ranging and communication demands, neglecting their extended applications. This paper introduces the first CPD scheme capable of supporting extended GNSS ISLs. By modeling GNSS requirements and designing a tailored service process, our approach ensures the allocation of essential resources for internal operations while accommodating external user demands. Based on the BeiDou constellation, simulation results demonstrate the proposed scheme's efficacy in maintaining core GNSS functionality while providing extended ISLs on a best-effort basis. Additionally, the results highlight the significant impact of GNSS ISLs in enhancing orbit determination and clock synchronization for the Earth-Moon libration point constellation, underscoring the importance of extended GNSS ISL applications.
comment: 18 pages, 13 figures
MCE-based Direct FTC Method for Dynamic Positioning of Underwater Vehicles with Thruster Redundancy
This paper presents an active model-based FTC (fault-tolerant control) method for the dynamic positioning of a class of underwater vehicles with thruster redundancy. Compared to the widely used state and parameter estimation methods, this proposed scheme directly utilizes the vehicle's motion control error (MCE) to construct a residual for detecting thruster faults and failures in the steady state of the control system. In the case of thruster fault identification, the most difficult aspect is that the actual control input with thruster faults is unknown. However, through a detailed and precise analyses of MCE variation trends in the case of thruster faults, highly useful information about this unknown control input can be extracted. This characteristic also serves as the foundation for the novel scheme proposed in this paper. As for control reconfiguration, it is straightforward since the thrust losses can be directly estimated as a result of the identification process. Numerical studies with the real world vehicle model are also carried out to demonstrate the effectiveness of the proposed method.
Optimized Contact Plan Design for Reflector and Phased Array Terminals in Cislunar Space Networks
Cislunar space is emerging as a critical domain for human exploration, requiring robust infrastructure to support spatial users - spacecraft with navigation and communication demands. Deploying satellites at Earth-Moon libration points offers an effective solution. This paper introduces a novel Contact Plan Design (CPD) scheme that considers two classes of cislunar transponders: Reflector Links (RL) for high-volume data transfer and Phased Array Links (PL) for fast switching and navigation services.Our approach addresses the needs of both satellites and spatial users within the Earth-Moon Libration Point Communication and Navigation Constellation (EMLP-CNC). Simulations validate the proposed scheme, demonstrating its effectiveness in serving spatial users while meeting satellite ranging and communication requirements. These findings provide essential insights for developing future Cislunar Space Infrastructures.
comment: 16 pages, 14 figures
Optimizing Influence Campaigns: Nudging under Bounded Confidence
Influence campaigns in online social networks are often run by organizations, political parties, and nation states to influence large audiences. These campaigns are employed through the use of agents in the network that share persuasive content. Yet, their impact might be minimal if the audiences remain unswayed, often due to the bounded confidence phenomenon, where only a narrow spectrum of viewpoints can influence them. Here we show that to persuade under bounded confidence, an agent must nudge its targets to gradually shift their opinions. Using a control theory approach, we show how to construct an agent's nudging policy under the bounded confidence opinion dynamics model and also how to select targets for multiple agents in an influence campaign on a social network. Simulations on real Twitter networks show that a multi-agent nudging policy can shift the mean opinion, decrease opinion polarization, or even increase it. We find that our nudging based policies outperform other common techniques that do not consider the bounded confidence effect. Finally, we show how to craft prompts for large language models, such as ChatGPT, to generate text-based content for real nudging policies. This illustrates the practical feasibility of our approach, allowing one to go from mathematical nudging policies to real social media content.
NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
Transient synchronization stability analysis and assessment of DFIG system under severe faults
In the transient stability analysis of renewable energy grid-tied systems, although a large amount of works have devoted to the detailed electromagnetic transient simulation and the stability analyses of during-fault stage, the whole low-voltage ride through (LVRT) process and relevant transient stability mechanism remain to be uncovered. Taking the doubly fed induction generator system as the objective, this paper divides the transient processes into four different stages, including the pre-fault, during-fault, early post-fault, and late post-fault ones, establishes the full mechanism models for each stage, and studies the switching dynamics in detail. It is found that the during-fault dynamics can be determined by the phase-lock loop second-order equation within the framework of the generalized swing equation (GSE). For the early post-fault stage, it can be treated as a series of quasi-steady states and its dominant driving system dynamics can still be described by the GSE. Based on the local dynamics of unstable equilibrium point, the system transient stability can be completely determined by whether the initial state of the early post-fault stage is within or out of its basin of attraction (BOA). Based on these observations, the BOA-based and equal area criterion (EAC)-based transient stability assessment methods are developed, which are supported by broad numerical simulations and hardware-in-the-loop experiments. This work provides a clear physical picture and perfectly solves the difficult stability analysis problem when severe faults and LVRT have to be considered in most of DFIG engineering situations.
Koopman-Nemytskii Operator: A Linear Representation of Nonlinear Controlled Systems
While Koopman operator lifts a nonlinear system into an infinite-dimensional function space and represents it as a linear dynamics, its definition is restricted to autonomous systems, i.e., does not incorporate inputs or disturbances. To the end of designing state-feedback controllers, the existing extensions of Koopman operator, which only account for the effect of open-loop values of inputs, does not involve feedback laws on closed-loop systems. Hence, in order to generically represent any nonlinear controlled dynamics linearly, this paper proposes a Koopman-Nemytskii operator, defined as a linear mapping from a product reproducing kernel Hilbert space (RKHS) of states and feedback laws to an RKHS of states. Using the equivalence between RKHS and Sobolev-Hilbert spaces under certain regularity conditions on the dynamics and kernel selection, this operator is well-defined. Its data-based approximation, which follows a kernel extended dynamic mode decomposition (kernel EDMD) approach, have established errors in single-step and multi-step state predictions as well as accumulated cost under control.
comment: 16 pages, 9 figures, submitted to IEEE Transactions on Automatic Control
Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
comment: 11 pages, 8 figures
A multi-axis Nanopositioner based on Near-Field Acoustic Levitation and Electromagnetic Actuation
Positioners based on near-field acoustic levitation (NFAL) offer high positioning resolution and bandwidth, primarily along the Z axis, because of the large acoustic Z-stiffness and squeeze film damping. However, their XY-positioning resolution and bandwidth are several orders of magnitude lower because of the limited acoustic stiffness and damping in these directions. In this paper, we increase the XY-stiffness and damping by using a steady-current-based planar electromagnetic trap and eddy current damping technique, respectively. Specifically, NFAL is used to levitate a magnetic platform, which is then electromagnetically trapped in the XY-plane. Eddy currents generated by a thin copper plate beneath the levitating platform increase in-plane damping by a factor of 52, thereby reducing vibrations inherent in the NFAL technique. Additionally, the planar coil used for electromagnetic trapping provides multi-axis positioning capabilities. We demonstrate 3-axis linear motion with a root mean square (rms) positioning resolution of better than 20 nm along all axes. The in-plane motion range and bandwidth achieved are 1.42 mm and 16 Hz, respectively, while a motion range of 40 micrometers with a positioning bandwidth of 171 Hz is achieved along the Z-axis.
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. This result is confirmed by our numerical study, which highlights the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
QSID-MPC: Model Predictive Control with System Identification from Quantized Data
Least-square system identification is widely used for data-driven model-predictive control (MPC) of unknown or partially known systems. This letter investigates how the system identification and subsequent MPC is affected when the state and input data is quantized. Specifically, we examine the fundamental connection between model error and quantization resolution and how that affects the stability and boundedness of the MPC tracking error. Furthermore, we demonstrate that, with a sufficiently rich dataset, the model error is bounded by a function of quantization resolution and the MPC tracking error is also ultimately bounded similarly. The theory is validated through numerical experiments conducted on two different linear dynamical systems.
comment: 6 pages, 2 figures
Temporally-Consistent Bilinearly Recurrent Autoencoders for Control Systems
This paper introduces the temporally-consistent bilinearly recurrent autoencoder (tcBLRAN), a Koopman operator based neural network architecture for modeling a control-affine nonlinear control system. The proposed method extends traditional Koopman autoencoders (KAE) by incorporating bilinear recurrent dynamics that are consistent across predictions, enabling accurate long-term forecasting for control-affine systems. This overcomes the roadblock that KAEs face when encountered with limited and noisy training datasets, resulting in a lack of generalizability due to inconsistency in training data. Through a blend of deep learning and dynamical systems theory, tcBLRAN demonstrates superior performance in capturing complex behaviors and control systems dynamics, providing a superior data-driven modeling technique for control systems and outperforming the state-of-the-art Koopman bilinear form (KBF) learned by autoencoder networks.
comment: 6 pages, 6 figures, 1 table, to appear in American Control Conference 2025
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
Robust Optimal Safe and Stability Guaranteeing Reinforcement Learning Control for Quadcopter
Recent advances in deep learning have provided new data-driven ways of controller design to replace the traditional manual synthesis and certification approaches. Employing neural network (NN) as controllers however, presents its own challenge: that of certifying stability due to their inherent complex nonlinearity, and while NN controllers have demonstrated high performance in complex systems, they often lack formal stability guarantees. This issue is further accentuated for critical nonlinear applications such as of unmanned aerial vehicles (UAVs), complicating their stability guarantees, whereas a lack of stability assurance raises the risk of critical damage or even complete failure under a loss of control. In this study, we improve a Robust, Optimal, Safe and Stability Guaranteed Training (ROSS-GT) method of [1] to design an NN controller for a quadcopter flight control. The approach ensures closed-loop system stability by finding a Lyapunov function, and providing a safe initial state domain that remains invariant under the control and guarantees stability to an equilibrium within it. Stability guaranteeing constraints are derived from the sector bound of the system nonlinearity and of its parameters and disturbance variations, in the form of a Lipschitz bound for a NN control. The control performance is further optimized by searching over the class of stability-guaranteeing controllers to minimize the reference tracking error and the control costs.
Signal-Comparison-Based Distributed Estimation Under Decaying Average Data Rate Communications
The paper investigates the distributed estimation problem under low bit rate communications. Based on the signal-comparison (SC) consensus protocol under binary-valued communications, a new consensus+innovations type distributed estimation algorithm is proposed. Firstly, the high-dimensional estimates are compressed into binary-valued messages by using a periodic compressive strategy, dithered noises and a sign function. Next, based on the dithered noises and expanding triggering thresholds, a new stochastic event-triggered mechanism is proposed to reduce the communication frequency. Then, a modified SC consensus protocol is applied to fuse the neighborhood information. Finally, a stochastic approximation estimation algorithm is used to process innovations. The proposed SC-based algorithm has the advantages of high effectiveness and low communication cost. For the effectiveness, the estimates of the SC-based algorithm converge to the true value in the almost sure and mean square sense. A polynomial almost sure convergence rate is also obtained. For the communication cost, the local and global average bit rates for communications decay to zero at a polynomial rate. The trade-off between the convergence rate and the communication cost is established through event-triggered coefficients. A better convergence rate can be achieved by decreasing event-triggered coefficients, while lower communication cost can be achieved by increasing event-triggered coefficients. A simulation example is given to demonstrate the theoretical results.
Recursive Identification of Binary-Valued Systems under Uniform Persistent Excitations
This paper studies the control-oriented identification problem of set-valued moving average systems with uniform persistent excitations and observation noises. A stochastic approximation-based (SA-based) algorithm without projections or truncations is proposed. The algorithm overcomes the limitations of the existing empirical measurement method and the recursive projection method, where the former requires periodic inputs, and the latter requires projections to restrict the search region in a compact set.To analyze the convergence property of the algorithm, the distribution tail of the estimation error is proved to be exponentially convergent through an auxiliary stochastic process. Based on this key technique, the SA-based algorithm appears to be the first to reach the almost sure convergence rate of $ O(\sqrt{\ln\ln k/k}) $ theoretically in the non-periodic input case. Meanwhile, the mean square convergence is proved to have a rate of $ O(1/k) $, which is the best one even under accurate observations. A numerical example is given to demonstrate the effectiveness of the proposed algorithm and theoretical results.
comment: IEEE Transactions on Automatic Control (2024)
Distributed Safe Control Design and Probabilistic Safety Verification for Multi-Agent Systems
We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
comment: manuscript accepted by Automatica
Sensor-Based Safety-Critical Control Using an Incremental Control Barrier Function Formulation via Reduced-Order Approximate Models
The existing control barrier function literature generally relies on precise mathematical models to guarantee system safety, limiting their applicability in scenarios with parametric uncertainties. While incremental control techniques have shown promise in addressing model uncertainties in flight control applications, translating these approaches to safety-critical control presents significant challenges. This paper bridges this gap by introducing measurement-robust incremental control barrier functions (MRICBFs), which leverage sensor-based reduced-order models to provide formal safety guarantees for uncertain systems. By carefully addressing the challenges of sensor accuracy and approximation errors in the incremental formulation, our approach enables substituting specific model components with real-time sensor measurements while maintaining rigorous safety guarantees. This formulation overcomes the limitations of traditional adaptive control methods that adjust system parameters over time, enabling immediate and reliable safety measures for a class of model uncertainties. The efficacy of MRICBFs is demonstrated in two simulation case studies: a simple first-order system with time-varying sensor biases and a more complex overactuated hypersonic glide vehicle with multiple state constraints.
comment: 8 pages, 8 figures, accepted for presentation at the American Control Conference 2025
Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
Rotatable Antenna Enabled Wireless Communication System with Visual Recognition: A Prototype Implementation
Rotatable antenna (RA) is an emerging technology that has great potential to exploit additional spatial degrees of freedom (DoFs) by flexibly altering the three-dimensional (3D) orientation/boresight of each antenna. In this demonstration, we present a prototype of the RA-enabled wireless communication system with a visual recognition module to evaluate the performance gains provided by the RA in practical environments. In particular, a mechanically-driven RA is developed by integrating a digital servo motor, a directional antenna, and a microcontroller, which enables the dynamic adjustment of the RA orientation. Moreover, the orientation adjustment of the RA is guided by the user's direction information provided by the visual recognition module, thereby significantly enhancing system response speed and self-orientation accuracy. The experimental results demonstrate that the RA-enabled communication system achieves significant improvement in communication coverage performance compared to the conventional fixed antenna system.
A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Systems and Control (EESS)
Inertial-Based LQG Control: A New Look at Inverted Pendulum Stabilization
Linear quadratic Gaussian (LQG) control is a well-established method for optimal control through state estimation, particularly in stabilizing an inverted pendulum on a cart. In standard laboratory setups, sensor redundancy enables direct measurement of configuration variables using displacement sensors and rotary encoders. However, in outdoor environments, dynamically stable mobile platforms-such as Segways, hoverboards, and bipedal robots-often have limited sensor availability, restricting state estimation primarily to attitude stabilization. Since the tilt angle cannot be directly measured, it is typically estimated through sensor fusion, increasing reliance on inertial sensors and necessitating a lightweight, self-contained perception module. Prior research has not incorporated accelerometer data into the LQG framework for stabilizing pendulum-like systems, as jerk states are not explicitly modeled in the Newton-Euler formalism. In this paper, we address this gap by leveraging local differential flatness to incorporate higher-order dynamics into the system model. This refinement enhances state estimation, enabling a more robust LQG controller that predicts accelerations for dynamically stable mobile platforms.
comment: 11 pages, 10 figures, 5 tables
Choose Wisely: Data-Enabled Predictive Control for Nonlinear Systems Using Online Data Selection
This paper proposes Select-Data-Enabled Predictive Control (Select-DeePC), a new method for controlling nonlinear systems using output-feedback for which data are available but an explicit model is not. At each timestep, Select-DeePC employs only the most relevant data to implicitly linearize the dynamics in ``trajectory space.'' Then, taking user-defined output constraints into account, it makes control decisions using a convex optimization. This optimal control is applied in a receding-horizon manner. As the online data-selection is the core of Select-DeePC, we propose and verify both norm-based and manifold-embedding-based selection methods. We evaluate Select-DeePC on three benchmark nonlinear system simulators -- rocket-landing, a robotic arm and cart-pole inverted pendulum swing-up -- comparing them with standard DeePC and Time-Windowed DeePC, and find that Select-DeePC outperforms both methods.
Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
On-chip calibration of Microscale-Thermocouples for Precise Temperature Measurement
Precise temperature measurement at micro/nanoscale is crucial across various domains including physical sciences, chemical processes, industrial production, medical diagnosis, weather forecasting, electronics, and biology. Micro/nanoscale thermal mapping requires precise techniques such as thermocouples, resistance-based devices, infrared thermography, optical interferometry, Raman thermometry, and Time domain-thermoreflectance (TDTR) method. Each method has its advantages and limitations, emphasizing the importance of selecting the appropriate technique. Among these methods, micro-thin film thermocouples (TFTCs) offer a compelling solution due to their direct contact-based temperature measurements, minimal surface preparation requirements, lower cost, and robustness against environmental factors. Thermocouples work on the well-established Seebeck effect, where a voltage is generated proportional to the temperature difference between two points. However, at micro/nanoscale, the Seebeck coefficients of thermocouples differ from those in bulk materials, requiring experimental calibration for precise measurements. To address this, we introduce an on-chip characterization platform with a differential temperature measurement setup on a borosilicate glass substrate. This platform utilizes a microheater as a localized heat source to elevate the temperature at the hot junction of the TFTC while maintaining the cold junction at ambient conditions. Numerical simulations are employed to engineer both the microheater and TFTC junction for precise temperature control. The functionality of this platform is validated by fabricating TFTCs using standard fabrication processes and measuring the TFTC response to determine the differential Seebeck coefficient of a Platinum-Chromium TFTC Junction. The calculated sensitivity of Pt/Cr TFTCs using this calibration method is 19.23 +- 0.405 {\mu}V/C.
comment: 20 pages, 9 figures
EVOLVE: a Value-Added Services Platform for Electric Vehicle Charging Stations
A notable challenge in Electric Vehicle (EV) charging is the time required to fully charge the battery, which can range from 15 minutes to 2-3 hours. This idle period, however, presents an opportunity to offer time-consuming or data-intensive services such as vehicular software updates. ISO 15118 referred to the concept of Value-Added Services (VAS) in the charging scenario, but it remained underexplored in the literature. Our paper addresses this gap by proposing \acronym, the first EV charger compute architecture that supports secure on-charger universal applications with upstream and downstream communication. The architecture covers the end-to-end hardware/software stack, including standard API for vehicles and IT infrastructure. We demonstrate the feasibility and advantages of \acronym by employing and evaluating three suggested value-added services: vehicular software updates, security information and event management (SIEM), and secure payments. The results demonstrate significant reductions in bandwidth utilization and latency, as well as high throughput, which supports this novel concept and suggests a promising business model for Electric Vehicle charging station operation.
Matrix Pencil-Based Analysis of Multirate Simulation Schemes
This paper focuses on multirate time-domain simulations of power system models. It proposes a matrix pencil-based approach to evaluate the spurious numerical deformation introduced to power system dynamics by a given multirate integration scheme. Moreover, it considers the problem of multirate partitioning and discusses a strategy for allocating state and algebraic variables to fast and slow subsystems based on modal participation factors (PFs). The suitability and features of the proposed approach are illustrated through numerical simulations that assess the accuracy effects of interfacing as well as of various prediction and solution methods.
Feasibility of multiple robust control barrier functions for bounding box constraints
Enforcing multiple constraints based on the concept of control barrier functions (CBFs) is a remaining challenge because each of the CBFs requires a condition on the control inputs to be satisfied which may easily lead to infeasibility problems. The problem becomes even more challenging with input constraints and disturbances. In this paper, we consider enforcement of bounding box constraints for a second order system under limited control authority and input disturbances. To solve the constrained control problem, we apply multiple robust control barrier functions (RCBFs) which, in general, do not provide a feasible solution to the problem. However, we derive conditions on how to select the RCBF parameters to guarantee that a feasible solution always exists.
comment: Accepted for American Control Conference 2025
Constraint Horizon in Model Predictive Control
In this work, we propose a Model Predictive Control (MPC) formulation incorporating two distinct horizons: a prediction horizon and a constraint horizon. This approach enables a deeper understanding of how constraints influence key system properties such as suboptimality, without compromising recursive feasibility and constraint satisfaction. In this direction, our contributions are twofold. First, we provide a framework to estimate closed-loop optimality as a function of the number of enforced constraints. This is a generalization of existing results by considering partial constraint enforcement over the prediction horizon. Second, when adopting this general framework under the lens of safety-critical applications, our method improves conventional Control Barrier Function (CBF) based approaches. It mitigates myopic behaviour in Quadratic Programming (QP)-CBF schemes, and resolves compatibility issues between Control Lyapunov Function (CLF) and CBF constraints via the prediction horizon used in the optimization. We show the efficacy of the method via numerical simulations for a safety critical application.
comment: submitted to L-CSS
Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in capturing nonlinear relationships by utilizing a mixture of linear regression sub-models. Although considerable efforts have been devoted to the learning problem of such systems, i.e., estimating data labels and identifying model parameters, most existing investigations employ the offline algorithm, impose the strict independent and identically distributed (i.i.d.) or persistent excitation (PE) conditions on the regressor data, and provide local convergence results only. In this paper, we investigate the recursive estimation and data clustering problems for a class of stochastic MLRs with two components. To address this inherently nonconvex optimization problem, we propose a novel two-step recursive identification algorithm to estimate the true parameters, where the direction vector and the scaling coefficient of the unknown parameters are estimated by the least squares and the expectation-maximization (EM) principles, respectively. Under a general data condition, which is much weaker than the traditional i.i.d. and PE conditions, we establish the global convergence and the convergence rate of the proposed identification algorithm for the first time. Furthermore, we prove that, without any excitation condition on the regressor data, the data clustering performance including the cumulative mis-classification error and the within-cluster error can be optimal asymptotically. Finally, we provide a numerical example to illustrate the performance of the proposed learning algorithm.
Differentiable Simulator for Electrically Reconfigurable Electromagnetic Structures
This paper introduces a novel CUDA-enabled PyTorch-based framework designed for the gradient-based optimization of such reconfigurable electromagnetic structures with electrically tunable parameters. Traditional optimization techniques for these structures often rely on non-gradient-based methods, limiting efficiency and flexibility. Our framework leverages automatic differentiation, facilitating the application of gradient-based optimization methods. This approach is particularly advantageous for embedding within deep learning frameworks, enabling sophisticated optimization strategies. We demonstrate the framework's effectiveness through comprehensive simulations involving resonant structures with tunable parameters. Key contributions include the efficient solution of the inverse problem. The framework's performance is validated using three different resonant structures: a single-loop copper wire (Unit-Cell) as well as an 8x1 and an 8x8 array of resonant unit cells with multiple inductively coupled unit cells (1d and 2d Metasurfaces). Results show precise in-silico control over the magnetic field's component normal to the surface of each resonant structure, achieving desired field strengths with minimal error. The proposed framework is compatible with existing simulation software. This PyTorch-based framework sets the stage for advanced electromagnetic control strategies for resonant structures with application in e.g. MRI, providing a robust platform for further exploration and innovation in the design and optimization of resonant electromagnetic structures.
The On-Board Computer of the AcubeSAT Mission
AcubeSAT is an open-source CubeSat mission aiming to explore the effects of microgravity and radiation on eukaryotic cells using a compact microfluidic lab-on-a-chip platform. It is developed by SpaceDot, a volunteer, interdisciplinary student team at the Aristotle University of Thessaloniki and supported by the "Fly Your Satellite! 3" program of the European Space Agency (ESA) Education Office. The nanosatellite features an in-house designed on-board computer subsystem responsible for telecommand execution, telemetry fetching, onboard time synchronization, in-orbit patching, and fault recovery. The subsystem is designed on one PC/104 standard compatible Printed Circuit Board (PCB) that hosts the On-board Computer (OBC) on the one side and the Attitude and Orbit Control Subsystem (AOCS) on the other, and it is compatible with the LibreCube standard. The hosted subsystems are functionally isolated and feature an ARM Cortex-M7, radiation-tolerant microcontroller each. Before sending anything to space thorough testing is required and specifically the on-board computer board underwent vibration and thermal cycling tests to ensure nominal operation in all conditions. This paper aims to elucidate the decision-making process, design iterations, and development stages of the custom board and accompanying in-house software. Insights garnered from the initial partially successful environmental test campaign at the ESA CubeSat Support Facility will be shared, along with the ensuing preparations, results, and lessons learned from subsequent testing endeavors in April 2024. Furthermore, the current developmental status will be discussed alongside future electromagnetic compatibility testing, integration plan on a FlatSat, and prospects for the open-source design as a cost-effective, and modular solution that can be tailored with little effort for upcoming missions.
comment: 52nd IAF Student Conference, Held at the 75th International Astronautical Congress (IAC 2024)
Dominant Groups and Asymmetric Polarization in Generalized Quasi-Structurally Balanced Networks
The paper focuses on the phenomenon of asymmetric polarization arising in the presence of a dominant group in the network. The existing works in the literature analyze polarization primarily in structurally and quasi-structurally balanced networks. In this work, we introduce generalized quasi-structurally balanced (GQSB) networks, which include both of these networks as special cases. In the presence of a dominant group, a GQSB network has a unique bipartition: the dominant group (and its allies) and the remaining agents. The dominant group's superior influence results in an asymmetry in how the inter-subset antagonistic interactions are perceived by both of the subsets. This, in turn, leads to asymmetry in the final polarized opinions. To model this behavior, we propose a generalized Laplacian flow for undirected GQSB networks with a dominant group and establish necessary and sufficient conditions for achieving asymmetric polarization. The theoretical results presented in this paper are validated through numerical simulations on the Highland Tribes real-world dataset.
comment: 6 pages, 11 figures, under review in Automatica
Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
Contact Plan Design for Cross-Linked GNSSs: An ILP Approach for Extended Applications
Global Navigation Satellite Systems (GNSS) employ inter-satellite links (ISLs) to reduce dependency on ground stations, enabling precise ranging and communication across satellites. Beyond their traditional role, ISLs can support extended applications, including providing navigation and communication services to external entities. However, designing effective contact plan design (CPD) schemes for these multifaceted ISLs, operating under a polling time-division duplex (PTDD) framework, remains a critical challenge. Existing CPD approaches focus solely on meeting GNSS satellites' internal ranging and communication demands, neglecting their extended applications. This paper introduces the first CPD scheme capable of supporting extended GNSS ISLs. By modeling GNSS requirements and designing a tailored service process, our approach ensures the allocation of essential resources for internal operations while accommodating external user demands. Based on the BeiDou constellation, simulation results demonstrate the proposed scheme's efficacy in maintaining core GNSS functionality while providing extended ISLs on a best-effort basis. Additionally, the results highlight the significant impact of GNSS ISLs in enhancing orbit determination and clock synchronization for the Earth-Moon libration point constellation, underscoring the importance of extended GNSS ISL applications.
comment: 18 pages, 13 figures
MCE-based Direct FTC Method for Dynamic Positioning of Underwater Vehicles with Thruster Redundancy
This paper presents an active model-based FTC (fault-tolerant control) method for the dynamic positioning of a class of underwater vehicles with thruster redundancy. Compared to the widely used state and parameter estimation methods, this proposed scheme directly utilizes the vehicle's motion control error (MCE) to construct a residual for detecting thruster faults and failures in the steady state of the control system. In the case of thruster fault identification, the most difficult aspect is that the actual control input with thruster faults is unknown. However, through a detailed and precise analyses of MCE variation trends in the case of thruster faults, highly useful information about this unknown control input can be extracted. This characteristic also serves as the foundation for the novel scheme proposed in this paper. As for control reconfiguration, it is straightforward since the thrust losses can be directly estimated as a result of the identification process. Numerical studies with the real world vehicle model are also carried out to demonstrate the effectiveness of the proposed method.
Optimized Contact Plan Design for Reflector and Phased Array Terminals in Cislunar Space Networks
Cislunar space is emerging as a critical domain for human exploration, requiring robust infrastructure to support spatial users - spacecraft with navigation and communication demands. Deploying satellites at Earth-Moon libration points offers an effective solution. This paper introduces a novel Contact Plan Design (CPD) scheme that considers two classes of cislunar transponders: Reflector Links (RL) for high-volume data transfer and Phased Array Links (PL) for fast switching and navigation services.Our approach addresses the needs of both satellites and spatial users within the Earth-Moon Libration Point Communication and Navigation Constellation (EMLP-CNC). Simulations validate the proposed scheme, demonstrating its effectiveness in serving spatial users while meeting satellite ranging and communication requirements. These findings provide essential insights for developing future Cislunar Space Infrastructures.
comment: 16 pages, 14 figures
Optimizing Influence Campaigns: Nudging under Bounded Confidence
Influence campaigns in online social networks are often run by organizations, political parties, and nation states to influence large audiences. These campaigns are employed through the use of agents in the network that share persuasive content. Yet, their impact might be minimal if the audiences remain unswayed, often due to the bounded confidence phenomenon, where only a narrow spectrum of viewpoints can influence them. Here we show that to persuade under bounded confidence, an agent must nudge its targets to gradually shift their opinions. Using a control theory approach, we show how to construct an agent's nudging policy under the bounded confidence opinion dynamics model and also how to select targets for multiple agents in an influence campaign on a social network. Simulations on real Twitter networks show that a multi-agent nudging policy can shift the mean opinion, decrease opinion polarization, or even increase it. We find that our nudging based policies outperform other common techniques that do not consider the bounded confidence effect. Finally, we show how to craft prompts for large language models, such as ChatGPT, to generate text-based content for real nudging policies. This illustrates the practical feasibility of our approach, allowing one to go from mathematical nudging policies to real social media content.
NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
Transient synchronization stability analysis and assessment of DFIG system under severe faults
In the transient stability analysis of renewable energy grid-tied systems, although a large amount of works have devoted to the detailed electromagnetic transient simulation and the stability analyses of during-fault stage, the whole low-voltage ride through (LVRT) process and relevant transient stability mechanism remain to be uncovered. Taking the doubly fed induction generator system as the objective, this paper divides the transient processes into four different stages, including the pre-fault, during-fault, early post-fault, and late post-fault ones, establishes the full mechanism models for each stage, and studies the switching dynamics in detail. It is found that the during-fault dynamics can be determined by the phase-lock loop second-order equation within the framework of the generalized swing equation (GSE). For the early post-fault stage, it can be treated as a series of quasi-steady states and its dominant driving system dynamics can still be described by the GSE. Based on the local dynamics of unstable equilibrium point, the system transient stability can be completely determined by whether the initial state of the early post-fault stage is within or out of its basin of attraction (BOA). Based on these observations, the BOA-based and equal area criterion (EAC)-based transient stability assessment methods are developed, which are supported by broad numerical simulations and hardware-in-the-loop experiments. This work provides a clear physical picture and perfectly solves the difficult stability analysis problem when severe faults and LVRT have to be considered in most of DFIG engineering situations.
Koopman-Nemytskii Operator: A Linear Representation of Nonlinear Controlled Systems
While Koopman operator lifts a nonlinear system into an infinite-dimensional function space and represents it as a linear dynamics, its definition is restricted to autonomous systems, i.e., does not incorporate inputs or disturbances. To the end of designing state-feedback controllers, the existing extensions of Koopman operator, which only account for the effect of open-loop values of inputs, does not involve feedback laws on closed-loop systems. Hence, in order to generically represent any nonlinear controlled dynamics linearly, this paper proposes a Koopman-Nemytskii operator, defined as a linear mapping from a product reproducing kernel Hilbert space (RKHS) of states and feedback laws to an RKHS of states. Using the equivalence between RKHS and Sobolev-Hilbert spaces under certain regularity conditions on the dynamics and kernel selection, this operator is well-defined. Its data-based approximation, which follows a kernel extended dynamic mode decomposition (kernel EDMD) approach, have established errors in single-step and multi-step state predictions as well as accumulated cost under control.
comment: 16 pages, 9 figures, submitted to IEEE Transactions on Automatic Control
Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
comment: 11 pages, 8 figures
A multi-axis Nanopositioner based on Near-Field Acoustic Levitation and Electromagnetic Actuation
Positioners based on near-field acoustic levitation (NFAL) offer high positioning resolution and bandwidth, primarily along the Z axis, because of the large acoustic Z-stiffness and squeeze film damping. However, their XY-positioning resolution and bandwidth are several orders of magnitude lower because of the limited acoustic stiffness and damping in these directions. In this paper, we increase the XY-stiffness and damping by using a steady-current-based planar electromagnetic trap and eddy current damping technique, respectively. Specifically, NFAL is used to levitate a magnetic platform, which is then electromagnetically trapped in the XY-plane. Eddy currents generated by a thin copper plate beneath the levitating platform increase in-plane damping by a factor of 52, thereby reducing vibrations inherent in the NFAL technique. Additionally, the planar coil used for electromagnetic trapping provides multi-axis positioning capabilities. We demonstrate 3-axis linear motion with a root mean square (rms) positioning resolution of better than 20 nm along all axes. The in-plane motion range and bandwidth achieved are 1.42 mm and 16 Hz, respectively, while a motion range of 40 micrometers with a positioning bandwidth of 171 Hz is achieved along the Z-axis.
Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. This result is confirmed by our numerical study, which highlights the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
QSID-MPC: Model Predictive Control with System Identification from Quantized Data
Least-square system identification is widely used for data-driven model-predictive control (MPC) of unknown or partially known systems. This letter investigates how the system identification and subsequent MPC is affected when the state and input data is quantized. Specifically, we examine the fundamental connection between model error and quantization resolution and how that affects the stability and boundedness of the MPC tracking error. Furthermore, we demonstrate that, with a sufficiently rich dataset, the model error is bounded by a function of quantization resolution and the MPC tracking error is also ultimately bounded similarly. The theory is validated through numerical experiments conducted on two different linear dynamical systems.
comment: 6 pages, 2 figures
Temporally-Consistent Bilinearly Recurrent Autoencoders for Control Systems
This paper introduces the temporally-consistent bilinearly recurrent autoencoder (tcBLRAN), a Koopman operator based neural network architecture for modeling a control-affine nonlinear control system. The proposed method extends traditional Koopman autoencoders (KAE) by incorporating bilinear recurrent dynamics that are consistent across predictions, enabling accurate long-term forecasting for control-affine systems. This overcomes the roadblock that KAEs face when encountered with limited and noisy training datasets, resulting in a lack of generalizability due to inconsistency in training data. Through a blend of deep learning and dynamical systems theory, tcBLRAN demonstrates superior performance in capturing complex behaviors and control systems dynamics, providing a superior data-driven modeling technique for control systems and outperforming the state-of-the-art Koopman bilinear form (KBF) learned by autoencoder networks.
comment: 6 pages, 6 figures, 1 table, to appear in American Control Conference 2025
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
Robust Optimal Safe and Stability Guaranteeing Reinforcement Learning Control for Quadcopter
Recent advances in deep learning have provided new data-driven ways of controller design to replace the traditional manual synthesis and certification approaches. Employing neural network (NN) as controllers however, presents its own challenge: that of certifying stability due to their inherent complex nonlinearity, and while NN controllers have demonstrated high performance in complex systems, they often lack formal stability guarantees. This issue is further accentuated for critical nonlinear applications such as of unmanned aerial vehicles (UAVs), complicating their stability guarantees, whereas a lack of stability assurance raises the risk of critical damage or even complete failure under a loss of control. In this study, we improve a Robust, Optimal, Safe and Stability Guaranteed Training (ROSS-GT) method of [1] to design an NN controller for a quadcopter flight control. The approach ensures closed-loop system stability by finding a Lyapunov function, and providing a safe initial state domain that remains invariant under the control and guarantees stability to an equilibrium within it. Stability guaranteeing constraints are derived from the sector bound of the system nonlinearity and of its parameters and disturbance variations, in the form of a Lipschitz bound for a NN control. The control performance is further optimized by searching over the class of stability-guaranteeing controllers to minimize the reference tracking error and the control costs.
Signal-Comparison-Based Distributed Estimation Under Decaying Average Data Rate Communications
The paper investigates the distributed estimation problem under low bit rate communications. Based on the signal-comparison (SC) consensus protocol under binary-valued communications, a new consensus+innovations type distributed estimation algorithm is proposed. Firstly, the high-dimensional estimates are compressed into binary-valued messages by using a periodic compressive strategy, dithered noises and a sign function. Next, based on the dithered noises and expanding triggering thresholds, a new stochastic event-triggered mechanism is proposed to reduce the communication frequency. Then, a modified SC consensus protocol is applied to fuse the neighborhood information. Finally, a stochastic approximation estimation algorithm is used to process innovations. The proposed SC-based algorithm has the advantages of high effectiveness and low communication cost. For the effectiveness, the estimates of the SC-based algorithm converge to the true value in the almost sure and mean square sense. A polynomial almost sure convergence rate is also obtained. For the communication cost, the local and global average bit rates for communications decay to zero at a polynomial rate. The trade-off between the convergence rate and the communication cost is established through event-triggered coefficients. A better convergence rate can be achieved by decreasing event-triggered coefficients, while lower communication cost can be achieved by increasing event-triggered coefficients. A simulation example is given to demonstrate the theoretical results.
Recursive Identification of Binary-Valued Systems under Uniform Persistent Excitations
This paper studies the control-oriented identification problem of set-valued moving average systems with uniform persistent excitations and observation noises. A stochastic approximation-based (SA-based) algorithm without projections or truncations is proposed. The algorithm overcomes the limitations of the existing empirical measurement method and the recursive projection method, where the former requires periodic inputs, and the latter requires projections to restrict the search region in a compact set.To analyze the convergence property of the algorithm, the distribution tail of the estimation error is proved to be exponentially convergent through an auxiliary stochastic process. Based on this key technique, the SA-based algorithm appears to be the first to reach the almost sure convergence rate of $ O(\sqrt{\ln\ln k/k}) $ theoretically in the non-periodic input case. Meanwhile, the mean square convergence is proved to have a rate of $ O(1/k) $, which is the best one even under accurate observations. A numerical example is given to demonstrate the effectiveness of the proposed algorithm and theoretical results.
comment: IEEE Transactions on Automatic Control (2024)
Distributed Safe Control Design and Probabilistic Safety Verification for Multi-Agent Systems
We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
comment: manuscript accepted by Automatica
Sensor-Based Safety-Critical Control Using an Incremental Control Barrier Function Formulation via Reduced-Order Approximate Models
The existing control barrier function literature generally relies on precise mathematical models to guarantee system safety, limiting their applicability in scenarios with parametric uncertainties. While incremental control techniques have shown promise in addressing model uncertainties in flight control applications, translating these approaches to safety-critical control presents significant challenges. This paper bridges this gap by introducing measurement-robust incremental control barrier functions (MRICBFs), which leverage sensor-based reduced-order models to provide formal safety guarantees for uncertain systems. By carefully addressing the challenges of sensor accuracy and approximation errors in the incremental formulation, our approach enables substituting specific model components with real-time sensor measurements while maintaining rigorous safety guarantees. This formulation overcomes the limitations of traditional adaptive control methods that adjust system parameters over time, enabling immediate and reliable safety measures for a class of model uncertainties. The efficacy of MRICBFs is demonstrated in two simulation case studies: a simple first-order system with time-varying sensor biases and a more complex overactuated hypersonic glide vehicle with multiple state constraints.
comment: 8 pages, 8 figures, accepted for presentation at the American Control Conference 2025
Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
Rotatable Antenna Enabled Wireless Communication System with Visual Recognition: A Prototype Implementation
Rotatable antenna (RA) is an emerging technology that has great potential to exploit additional spatial degrees of freedom (DoFs) by flexibly altering the three-dimensional (3D) orientation/boresight of each antenna. In this demonstration, we present a prototype of the RA-enabled wireless communication system with a visual recognition module to evaluate the performance gains provided by the RA in practical environments. In particular, a mechanically-driven RA is developed by integrating a digital servo motor, a directional antenna, and a microcontroller, which enables the dynamic adjustment of the RA orientation. Moreover, the orientation adjustment of the RA is guided by the user's direction information provided by the visual recognition module, thereby significantly enhancing system response speed and self-orientation accuracy. The experimental results demonstrate that the RA-enabled communication system achieves significant improvement in communication coverage performance compared to the conventional fixed antenna system.
A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Robotics
A Robot-Led Intervention for Emotion Regulation: From Expression to Reappraisal
Emotion regulation is a crucial skill for managing emotions in everyday life, yet finding a constructive and accessible method to support these processes remains challenging due to their cognitive demands. In this study, we explore how regular interactions with a social robot, conducted in a structured yet familiar environment within university halls and departments, can provide effective support for emotion regulation through cognitive reappraisal. Twenty-one students participated in a five-session study at a university hall or department, where the robot facilitated structured conversations, encouraging the students to reinterpret emotionally charged situations that they shared with the robot. Quantitative and qualitative results indicate significant improvements in emotion self-regulation, with participants reporting better understanding and control of their emotions. The intervention led to significant changes in constructive emotion regulation tendencies and positive effects on mood and sentiment after each session. The findings also demonstrate that repeated interactions with the robot encouraged greater emotional expressiveness, including longer speech disclosures, increased use of affective language, and heightened facial arousal. Notably, expressiveness followed structured patterns aligned with the reappraisal process, with expression peaking during key reappraisal moments, particularly when participants were prompted to reinterpret negative experiences. The qualitative feedback further highlighted how the robot fostered introspection and provided a supportive space for discussing emotions, enabling participants to confront long-avoided emotional challenges. These findings demonstrate the potential of robots to effectively assist in emotion regulation in familiar environments, offering both emotional support and cognitive guidance.
Decentralized Navigation of a Cable-Towed Load using Quadrupedal Robot Team via MARL
This work addresses the challenge of enabling a team of quadrupedal robots to collaboratively tow a cable-connected load through cluttered and unstructured environments while avoiding obstacles. Leveraging cables allows the multi-robot system to navigate narrow spaces by maintaining slack when necessary. However, this introduces hybrid physical interactions due to alternating taut and slack states, with computational complexity that scales exponentially as the number of agents increases. To tackle these challenges, we developed a scalable and decentralized system capable of dynamically coordinating a variable number of quadrupedal robots while managing the hybrid physical interactions inherent in the load-towing task. At the core of this system is a novel multi-agent reinforcement learning (MARL)-based planner, designed for decentralized coordination. The MARL-based planner is trained using a centralized training with decentralized execution (CTDE) framework, enabling each robot to make decisions autonomously using only local (ego) observations. To accelerate learning and ensure effective collaboration across varying team sizes, we introduce a tailored training curriculum for MARL. Experimental results highlight the flexibility and scalability of the framework, demonstrating successful deployment with one to four robots in real-world scenarios and up to twelve robots in simulation. The decentralized planner maintains consistent inference times, regardless of the team size. Additionally, the proposed system demonstrates robustness to environment perturbations and adaptability to varying load weights. This work represents a step forward in achieving flexible and efficient multi-legged robotic collaboration in complex and real-world environments.
Extended Visibility of Autonomous Vehicles via Optimized Cooperative Perception under Imperfect Communication
Autonomous Vehicles (AVs) rely on individual perception systems to navigate safely. However, these systems face significant challenges in adverse weather conditions, complex road geometries, and dense traffic scenarios. Cooperative Perception (CP) has emerged as a promising approach to extending the perception quality of AVs by jointly processing shared camera feeds and sensor readings across multiple vehicles. This work presents a novel CP framework designed to optimize vehicle selection and networking resource utilization under imperfect communications. Our optimized CP formation considers critical factors such as the helper vehicles' spatial position, visual range, motion blur, and available communication budgets. Furthermore, our resource optimization module allocates communication channels while adjusting power levels to maximize data flow efficiency between the ego and helper vehicles, considering realistic models of modern vehicular communication systems, such as LTE and 5G NR-V2X. We validate our approach through extensive experiments on pedestrian detection in challenging scenarios, using synthetic data generated by the CARLA simulator. The results demonstrate that our method significantly improves upon the perception quality of individual AVs with about 10% gain in detection accuracy. This substantial gain uncovers the unleashed potential of CP to enhance AV safety and performance in complex situations.
comment: 55 pages, 13 figures, 3 tables, Elsevier Journal
Joint State-Parameter Observer-Based Robust Control of a UAV for Heavy Load Transportation
This paper proposes a joint state-parameter observer-based controller for trajectory tracking of an octocopter unmanned aerial vehicle (OUAV), for transportation of a heavy load with unknown mass and size. The multi-body dynamic model of the OUAV with a rigidly attached load is obtained, effectively considering the effects of the load parameters into the dynamics of the system. A robust nonlinear W-infinity control strategy is designed for optimal trajectory tracking of the OUAV, with information of the states and load parameters provided by a joint estimation unscented Kalman filter. The effectiveness of the proposed strategy is corroborated by numerical results.
comment: 12 pages, 3 figures. This is a preprint of a paper presented at the 2023 Conference on Climbing and Walking Robots (CLAWAR) and published later by Springer Nature Switzerland
Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving
End-to-end (E2E) autonomous driving (AD) models require diverse, high-quality data to perform well across various driving scenarios. However, collecting large-scale real-world data is expensive and time-consuming, making high-fidelity synthetic data essential for enhancing data diversity and model robustness. Existing driving simulators for synthetic data generation have significant limitations: game-engine-based simulators struggle to produce realistic sensor data, while NeRF-based and diffusion-based methods face efficiency challenges. Additionally, recent simulators designed for closed-loop evaluation provide limited interaction with other vehicles, failing to simulate complex real-world traffic dynamics. To address these issues, we introduce SceneCrafter, a realistic, interactive, and efficient AD simulator based on 3D Gaussian Splatting (3DGS). SceneCrafter not only efficiently generates realistic driving logs across diverse traffic scenarios but also enables robust closed-loop evaluation of end-to-end models. Experimental results demonstrate that SceneCrafter serves as both a reliable evaluation platform and a efficient data generator that significantly improves end-to-end model generalization.
PanopticSplatting: End-to-End Panoptic Gaussian Splatting
Open-vocabulary panoptic reconstruction is a challenging task for simultaneous scene reconstruction and understanding. Recently, methods have been proposed for 3D scene understanding based on Gaussian splatting. However, these methods are multi-staged, suffering from the accumulated errors and the dependence of hand-designed components. To streamline the pipeline and achieve global optimization, we propose PanopticSplatting, an end-to-end system for open-vocabulary panoptic reconstruction. Our method introduces query-guided Gaussian segmentation with local cross attention, lifting 2D instance masks without cross-frame association in an end-to-end way. The local cross attention within view frustum effectively reduces the training memory, making our model more accessible to large scenes with more Gaussians and objects. In addition, to address the challenge of noisy labels in 2D pseudo masks, we propose label blending to promote consistent 3D segmentation with less noisy floaters, as well as label warping on 2D predictions which enhances multi-view coherence and segmentation accuracy. Our method demonstrates strong performances in 3D scene panoptic reconstruction on the ScanNet-V2 and ScanNet++ datasets, compared with both NeRF-based and Gaussian-based panoptic reconstruction methods. Moreover, PanopticSplatting can be easily generalized to numerous variants of Gaussian splatting, and we demonstrate its robustness on different Gaussian base models.
comment: 8 pages, 6 figures
Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
Assist-as-needed Hip Exoskeleton Control for Gait Asymmetry Correction via Human-in-the-loop Optimization
Gait asymmetry is a significant clinical characteristic of hemiplegic gait that most stroke survivors suffer, leading to limited mobility and long-term negative impacts on their quality of life. Although a variety of exoskeleton controls have been developed for robot-assisted gait rehabilitation, little attention has been paid to correcting the gait asymmetry of stroke patients following the assist-as-need (AAN) principle, and it is still challenging to properly share control between the exoskeleton and stroke patients with partial motor control. In view of this, this article proposes an AAN hip exoskeleton control with human-in-the-loop optimization to correct gait asymmetry in stroke patients. To realize the AAN concept, an objective function was designed for real-time evaluation of the subject's gait performance and active participation, which considers the variability of natural human movement and guides the online tuning of control parameters on a subject-specific basis. In this way, patients were stimulated to contribute as much as possible to movement, thus maximizing the efficiency and outcomes of post-stroke gait rehabilitation. Finally, an experimental study was conducted to verify the feasibility and effectiveness of the proposed AAN control on healthy subjects with artificial gait impairment. For the first time, the common hypothesis that AAN controls can improve human active participation was validated from the biomechanics viewpoint.
Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree
This paper presents a novel reinforcement learning (RL)-based planning scheme for optimized robotic management of biotic stresses in precision agriculture. The framework employs a hierarchical decision-making structure with conditional action masking, where high-level actions direct the robot's exploration, while low-level actions optimize its navigation and efficient chemical spraying in affected areas. The key objectives of optimization include improving the coverage of infected areas with limited battery power and reducing chemical usage, thus preventing unnecessary spraying of healthy areas of the field. Our numerical experimental results demonstrate that the proposed method, Hierarchical Action Masking Proximal Policy Optimization (HAM-PPO), significantly outperforms baseline practices, such as LawnMower navigation + indiscriminate spraying (Carpet Spray), in terms of yield recovery and resource efficiency. HAM-PPO consistently achieves higher yield recovery percentages and lower chemical costs across a range of infection scenarios. The framework also exhibits robustness to observation noise and generalizability under diverse environmental conditions, adapting to varying infection ranges and spatial distribution patterns.
comment: 32 pages, 9 figures
PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
comment: Project Page: https://jianghanxiao.github.io/phystwin-web/
Adaptive Koopman Model Predictive Control of Simple Serial Robots IROS 2025
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint submitted to IROS 2025; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
SG-Tailor: Inter-Object Commonsense Relationship Reasoning for Scene Graph Manipulation
Scene graphs capture complex relationships among objects, serving as strong priors for content generation and manipulation. Yet, reasonably manipulating scene graphs -- whether by adding nodes or modifying edges -- remains a challenging and untouched task. Tasks such as adding a node to the graph or reasoning about a node's relationships with all others are computationally intractable, as even a single edge modification can trigger conflicts due to the intricate interdependencies within the graph. To address these challenges, we introduce SG-Tailor, an autoregressive model that predicts the conflict-free relationship between any two nodes. SG-Tailor not only infers inter-object relationships, including generating commonsense edges for newly added nodes but also resolves conflicts arising from edge modifications to produce coherent, manipulated graphs for downstream tasks. For node addition, the model queries the target node and other nodes from the graph to predict the appropriate relationships. For edge modification, SG-Tailor employs a Cut-And-Stitch strategy to solve the conflicts and globally adjust the graph. Extensive experiments demonstrate that SG-Tailor outperforms competing methods by a large margin and can be seamlessly integrated as a plug-in module for scene generation and robotic manipulation tasks.
comment: The code will be available at https://github.com/josef5838/SG-Tailor
Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.
Socially-Aware Robot Navigation Enhanced by Bidirectional Natural Language Conversations Using Large Language Models
Robot navigation is crucial across various domains, yet traditional methods focus on efficiency and obstacle avoidance, often overlooking human behavior in shared spaces. With the rise of service robots, socially aware navigation has gained prominence. However, existing approaches primarily predict pedestrian movements or issue alerts, lacking true human-robot interaction. We introduce Hybrid Soft Actor-Critic with Large Language Model (HSAC-LLM), a novel framework for socially aware navigation. By integrating deep reinforcement learning with large language models, HSAC-LLM enables bidirectional natural language interactions, predicting both continuous and discrete navigation actions. When potential collisions arise, the robot proactively communicates with pedestrians to determine avoidance strategies. Experiments in 2D simulation, Gazebo, and real-world environments demonstrate that HSAC-LLM outperforms state-of-the-art DRL methods in interaction, navigation, and obstacle avoidance. This paradigm advances effective human-robot interactions in dynamic settings. Videos are available at https://hsacllm.github.io/.
Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture
A unique approach for the mid-air autonomous aerial interception of non-cooperating UAV by a flying robot equipped with a net is presented in this paper. A novel interception guidance method dubbed EPN is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using 100 different trajectories of the target with varying complexity comprising almost 14 hours of flight data, and EPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters of agile interception. To enable robust transfer from theory and simulation to a real-world implementation, we aim to avoid overfitting to specific assumptions about the target, and to tackle interception of a target following an unknown general trajectory. Furthermore, we identify several often overlooked problems related to tracking and estimation of the target's state that can have a significant influence on the overall performance of the system. We propose the use of a novel state estimation filter based on the IMM filter and a new measurement model. Simulated experiments show that the proposed solution provides significant improvements in estimation accuracy over the commonly employed KF approaches when considering general trajectories. Based on these results, we employ the proposed filtering and guidance methods to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target going far beyond the performance of any state-of-the-art solution.
ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling CVPR 2025
Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and uncalibrated mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or heuristic post-processing, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
comment: CVPR 2025
Omnidirectional Multi-Object Tracking CVPR 2025
Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.
comment: Accepted to CVPR 2025. The established dataset and source code are available at https://github.com/xifen523/OmniTrack
A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning CVPR 2025
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear. Through systematic evaluation, we find that while DINO and iBOT outperform MAE across visuomotor control and perception tasks, they struggle when trained on non-(single-)object-centric (NOC) data--a limitation strongly correlated with their diminished ability to learn object-centric representations. This investigation indicates that the ability to form object-centric representations from the non-object-centric robotics dataset is the key to success for PVMs. Motivated by this discovery, we designed SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck to reduce the number of prototypes to encourage the emergence of objectness as well as cross-view consistency regularization for encouraging multiview invariance. Our experiments encompass pre-training on object-centric, scene-centric, web-crawled, and ego-centric data. Across all settings, our approach learns transferrable representations and achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations. When scaled up with million-scale datasets, our method also demonstrates superior data efficiency and scalability. Our code and models are publicly available at https://github.com/CVMI-Lab/SlotMIM.
comment: Accepted by CVPR 2025
One-Shot Manipulation Strategy Learning by Making Contact Analogies ICRA 2025
We present a novel approach, MAGIC (manipulation analogies for generalizable intelligent contacts), for one-shot learning of manipulation strategies with fast and extensive generalization to novel objects. By leveraging a reference action trajectory, MAGIC effectively identifies similar contact points and sequences of actions on novel objects to replicate a demonstrated strategy, such as using different hooks to retrieve distant objects of different shapes and sizes. Our method is based on a two-stage contact-point matching process that combines global shape matching using pretrained neural features with local curvature analysis to ensure precise and physically plausible contact points. We experiment with three tasks including scooping, hanging, and hooking objects. MAGIC demonstrates superior performance over existing methods, achieving significant improvements in runtime speed and generalization to different object categories. Website: https://magic-2024.github.io/ .
comment: ICRA 2025; CoRL LEAP Workshop, 2024
Intelligent LiDAR Navigation: Leveraging External Information and Semantic Maps with LLM as Copilot
Traditional robot navigation systems primarily utilize occupancy grid maps and laser-based sensing technologies, as demonstrated by the popular move_base package in ROS. Unlike robots, humans navigate not only through spatial awareness and physical distances but also by integrating external information, such as elevator maintenance updates from public notification boards and experiential knowledge, like the need for special access through certain doors. With the development of Large Language Models (LLMs), which possesses text understanding and intelligence close to human performance, there is now an opportunity to infuse robot navigation systems with a level of understanding akin to human cognition. In this study, we propose using osmAG (Area Graph in OpensStreetMap textual format), an innovative semantic topometric hierarchical map representation, to bridge the gap between the capabilities of ROS move_base and the contextual understanding offered by LLMs. Our methodology employs LLMs as an actual copilot in robot navigation, enabling the integration of a broader range of informational inputs while maintaining the robustness of traditional robotic navigation systems. Our code, demo, map, experiment results can be accessed at https://github.com/xiexiexiaoxiexie/Intelligent-LiDAR-Navigation-LLM-as-Copilot.
Physics-Aware Combinatorial Assembly Sequence Planning using Data-free Action Masking
Combinatorial assembly uses standardized unit primitives to build objects that satisfy user specifications. This paper studies assembly sequence planning (ASP) for physical combinatorial assembly. Given the shape of the desired object, the goal is to find a sequence of actions for placing unit primitives to build the target object. In particular, we aim to ensure the planned assembly sequence is physically executable. However, ASP for combinatorial assembly is particularly challenging due to its combinatorial nature. To address the challenge, we employ deep reinforcement learning to learn a construction policy for placing unit primitives sequentially to build the desired object. Specifically, we design an online physics-aware action mask that filters out invalid actions, which effectively guides policy learning and ensures violation-free deployment. In the end, we apply the proposed method to Lego assembly with more than 250 3D structures. The experiment results demonstrate that the proposed method plans physically valid assembly sequences to build all structures, achieving a $100\%$ success rate, whereas the best comparable baseline fails more than $40$ structures. Our implementation is available at \url{https://github.com/intelligent-control-lab/PhysicsAwareCombinatorialASP}.
Diffusion Transformer Policy
Recent large vision-language-action models pretrained on diverse robot datasets have demonstrated the potential for generalizing to new environments with a few in-domain data. However, those approaches usually predict individual discretized or continuous action by a small action head, which limits the ability in handling diverse action spaces. In contrast, we model the continuous action sequence with a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which we directly denoise action chunks by a large transformer model rather than a small action head for action embedding. By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets, and achieve better generalization performance. Extensive experiments demonstrate the effectiveness and generalization of Diffusion Transformer Policy on Maniskill2, Libero, Calvin and SimplerEnv, as well as the real-world Franka arm, achieving consistent better performance on Real-to-Sim benchmark SimplerEnv, real-world Franka Arm and Libero compared to OpenVLA and Octo. Specifically, without bells and whistles, the proposed approach achieves state-of-the-art performance with only a single third-view camera stream in the Calvin task ABC->D, improving the average number of tasks completed in a row of 5 to 3.6, and the pretraining stage significantly facilitates the success sequence length on the Calvin by over 1.2.
comment: preprint; New Project Page: https://robodita.github.io; revert unsuitable replacement
Intent Prediction-Driven Model Predictive Control for UAV Planning and Navigation in Dynamic Environments
Aerial robots can enhance construction site productivity by autonomously handling inspection and mapping tasks. However, ensuring safe navigation near human workers remains challenging. While navigation in static environments has been well studied, navigating dynamic environments remains open due to challenges in perception and planning. Payload limitations restrict the robots to using cameras with limited fields of view, resulting in unreliable perception and tracking during collision avoidance. Moreover, the rapidly changing conditions of dynamic environments can quickly make the generated optimal trajectory outdated.To address these challenges, this paper presents a comprehensive navigation framework that integrates perception, intent prediction, and planning. Our perception module detects and tracks dynamic obstacles efficiently and handles tracking loss and occlusion during collision avoidance. The proposed intent prediction module employs a Markov Decision Process (MDP) to forecast potential actions of dynamic obstacles with the possible future trajectories. Finally, a novel intent-based planning algorithm, leveraging model predictive control (MPC), is applied to generate navigation trajectories. Simulation and physical experiments demonstrate that our method improves the safety of navigation by achieving the fewest collisions compared to benchmarks.
comment: 8 pages, 7 figures, 2 tables, experiment video: https://youtu.be/4xsEeMB9WPY, GitHub: https://github.com/Zhefan-Xu/Intent-MPC
DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Camera ready version. 27 pages. Project page: https://dexdiffuser.github.io/
Multiagent Systems
Agentic Business Process Management: The Past 30 Years And Practitioners' Future Perspectives
With the advent of generative Artificial Intelligence (genAI), the notion of an agent has seen a resurgence in popularity. This has also led to speculation about the extent to which business process management, as a discipline and research field, may impact and be impacted by the deployment of genAI-based agents. To better ground such speculations into the state-of-the-art, we draw from the past 30 years of research on agents and business process management to establish the concept of Agentic Business Process Management (agentic BPM) that is only loosely coupled to the genAI hype. We conduct a series of interviews with BPM practitioners to explore their understanding, expectations, and concerns related to agent autonomy, adaptability, human collaboration, and governance in processes. The findings reflect both challenges with respect to data inconsistencies, manual interventions, identification of process bottlenecks, actionability of process improvements, as well as the opportunities of enhanced efficiency, predictive process insights and proactive decision-making support. While the technology offers potential benefits, practitioners also anticipate risks such as biases, over-reliance, lack of transparency, and job displacement within organizations. These concerns underscore the need for a robust methodological framework for managing agents in organizations.
comment: 16 pages including references, 5 figures
Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.
Trajectory Imputation in Multi-Agent Sports with Derivative-Accumulating Self-Ensemble
Multi-agent trajectory data collected from domains such as team sports often suffer from missing values due to various factors. While many imputation methods have been proposed for spatiotemporal data, they are not well-suited for multi-agent sports scenarios where player movements are highly dynamic and inter-agent interactions continuously evolve. To address these challenges, we propose MIDAS (Multi-agent Imputer with Derivative-Accumulating Self-ensemble), a framework that imputes multi-agent trajectories with high accuracy and physical plausibility. It jointly predicts positions, velocities, and accelerations through a Set Transformer-based neural network and generates alternative estimates by recursively accumulating predicted velocity and acceleration values. These predictions are then combined using a learnable weighted ensemble to produce final imputed trajectories. Experiments on three sports datasets demonstrate that MIDAS significantly outperforms existing baselines in both positional accuracy and physical plausibility. Lastly, we showcase use cases of MIDAS, such as approximating total distance and pass success probability, to highlight its applicability to practical downstream tasks that require complete tracking data.
MA-DV2F: A Multi-Agent Navigation Framework using Dynamic Velocity Vector Field
In this paper we propose MA-DV2F: Multi-Agent Dynamic Velocity Vector Field. It is a framework for simultaneously controlling a group of vehicles in challenging environments. DV2F is generated for each vehicle independently and provides a map of reference orientation and speed that a vehicle must attain at any point on the navigation grid such that it safely reaches its target. The field is dynamically updated depending on the speed and proximity of the ego-vehicle to other agents. This dynamic adaptation of the velocity vector field allows prevention of imminent collisions. Experimental results show that MA-DV2F outperforms concurrent methods in terms of safety, computational efficiency and accuracy in reaching the target when scaling to a large number of vehicles. Project page for this work can be found here: https://yininghase.github.io/MA-DV2F/
comment: paper accepted by IEEE RAL 2025
Systems and Control (CS)
Ordering and refining path-complete Lyapunov functions through composition lifts
A fruitful approach to study stability of switched systems is to look for multiple Lyapunov functions. However, in general, we do not yet understand the interplay between the desired stability certificate, the template of the Lyapunov functions and their mutual relationships to accommodate switching. In this work we elaborate on path-complete Lyapunov functions: a graphical framework that aims to elucidate this interplay. In particular, previously, several preorders were introduced to compare multiple Lyapunov functions. These preorders are initially algorithmically intractable due to the algebraic nature of Lyapunov inequalities, yet, lifting techniques were proposed to turn some preorders purely combinatorial and thereby eventually tractable. In this note we show that a conjecture in this area regarding the so-called composition lift, that was believed to be true, is false. This refutal, however, points us to a beneficial structural feature of the composition lift that we exploit to iteratively refine path-complete graphs, plus, it points us to a favourable adaptation of the composition lift.
comment: 6 pages, 6 figures, preprint, comments are welcome
Joint State-Parameter Observer-Based Robust Control of a UAV for Heavy Load Transportation
This paper proposes a joint state-parameter observer-based controller for trajectory tracking of an octocopter unmanned aerial vehicle (OUAV), for transportation of a heavy load with unknown mass and size. The multi-body dynamic model of the OUAV with a rigidly attached load is obtained, effectively considering the effects of the load parameters into the dynamics of the system. A robust nonlinear W-infinity control strategy is designed for optimal trajectory tracking of the OUAV, with information of the states and load parameters provided by a joint estimation unscented Kalman filter. The effectiveness of the proposed strategy is corroborated by numerical results.
comment: 12 pages, 3 figures. This is a preprint of a paper presented at the 2023 Conference on Climbing and Walking Robots (CLAWAR) and published later by Springer Nature Switzerland
Adaptive Koopman Model Predictive Control of Simple Serial Robots IROS 2025
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint submitted to IROS 2025; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
An AI-enabled dual-hormone model predictive control algorithm that delivers insulin and pramlintide
Current closed-loop insulin delivery algorithms need to be informed of carbohydrate intake disturbances. This can be a burden on people using these systems. Pramlintide is a hormone that delays gastric emptying, which enables insulin kinetics to align with the kinetics of carbohydrate absorption. Integrating pramlintide into an automated insulin delivery system can be helpful in reducing the postprandial glucose excursion and may be helpful in enabling fully-closed loop whereby meals do not need to be announced. We present an AI-enabled dual-hormone model predictive control (MPC) algorithm that delivers insulin and pramlintide without requiring meal announcements that uses a neural network to automatically detect and deliver meal insulin. The MPC algorithm includes a new pramlintide pharmacokinetics and pharmacodynamics model that was identified using data collected from people with type 1 diabetes undergoing a meal challenge. Using a simulator, we evaluated the performance of various pramlintide delivery methods and controller models, as well as the baseline insulin-only scenario. Meals were automatically dosed using a neural network meal detection and dosing (MDD) algorithm. The primary outcome was the percent time glucose is in the target range (TIR: 70-180 mg/dL). Results show that delivering pramlintide at a fixed ratio of 6 mcg pramlintide:1 u insulin using an MPC that is aware of the pramlintide achieved the most significant improved TIR compared with an insulin-only MPC (91.6% vs. 64.1%). Delivering pramlintide as a fixed ratio was better than delivering basal pramlintide at a constant rate, indicating the benefit of the MDD algorithm. There was no advantage of independent control of insulin and pramlintide compared with insulin and pramlintide delivered as a fixed ratio. Preliminary real-world results from a human subject further indicate the benefit of pramlintide delivery.
comment: 15 pages, 8 figures, 4 tables, pre-print with expanded Supplementary Materials section, accepted and will be published in IFAC Diabetes Technology Conference
Two-Stage Robust Optimal Operation of Distribution Networks Considering Renewable Energy and Demand Asymmetric Uncertainties
This paper presents a confidence level-based distributionally information gap decision theory (CL-DIGDT) framework for the two-stage robust optimal operation of distribution networks, aiming at deriving an optimal operational scheme capable of addressing asymmetric uncertainties related to renewable energy and load demands. Building on conventional IGDT, the proposed framework utilizes the confidence level to capture the asymmetric characteristics of uncertainties and maximize the risk-averse capability of the solution in a probabilistic manner. To account for the probabilistic consideration, the imprecise Dirichlet model is employed to construct the ambiguity sets of uncertainties, reducing reliance on precise probability distributions. Consequently, a two-stage robust optimal operation model for distribution networks using CL-DIGDT is developed. An iterative method is proposed to solve the model and determine the upper and lower bounds of the objective function. Case study demonstrates that the proposed approach yields a more robust and statistically optimized solution with required accuracy compared to existing method, contributing to a reduction in first-stage cost by 0.84%, second-stage average cost by 6.7%, and significantly increasing the reliability of the solution by 8%.
Certifiably Robust Policies for Uncertain Parametric Environments
We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
Systems and Control (EESS)
Ordering and refining path-complete Lyapunov functions through composition lifts
A fruitful approach to study stability of switched systems is to look for multiple Lyapunov functions. However, in general, we do not yet understand the interplay between the desired stability certificate, the template of the Lyapunov functions and their mutual relationships to accommodate switching. In this work we elaborate on path-complete Lyapunov functions: a graphical framework that aims to elucidate this interplay. In particular, previously, several preorders were introduced to compare multiple Lyapunov functions. These preorders are initially algorithmically intractable due to the algebraic nature of Lyapunov inequalities, yet, lifting techniques were proposed to turn some preorders purely combinatorial and thereby eventually tractable. In this note we show that a conjecture in this area regarding the so-called composition lift, that was believed to be true, is false. This refutal, however, points us to a beneficial structural feature of the composition lift that we exploit to iteratively refine path-complete graphs, plus, it points us to a favourable adaptation of the composition lift.
comment: 6 pages, 6 figures, preprint, comments are welcome
Joint State-Parameter Observer-Based Robust Control of a UAV for Heavy Load Transportation
This paper proposes a joint state-parameter observer-based controller for trajectory tracking of an octocopter unmanned aerial vehicle (OUAV), for transportation of a heavy load with unknown mass and size. The multi-body dynamic model of the OUAV with a rigidly attached load is obtained, effectively considering the effects of the load parameters into the dynamics of the system. A robust nonlinear W-infinity control strategy is designed for optimal trajectory tracking of the OUAV, with information of the states and load parameters provided by a joint estimation unscented Kalman filter. The effectiveness of the proposed strategy is corroborated by numerical results.
comment: 12 pages, 3 figures. This is a preprint of a paper presented at the 2023 Conference on Climbing and Walking Robots (CLAWAR) and published later by Springer Nature Switzerland
Adaptive Koopman Model Predictive Control of Simple Serial Robots IROS 2025
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint submitted to IROS 2025; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
An AI-enabled dual-hormone model predictive control algorithm that delivers insulin and pramlintide
Current closed-loop insulin delivery algorithms need to be informed of carbohydrate intake disturbances. This can be a burden on people using these systems. Pramlintide is a hormone that delays gastric emptying, which enables insulin kinetics to align with the kinetics of carbohydrate absorption. Integrating pramlintide into an automated insulin delivery system can be helpful in reducing the postprandial glucose excursion and may be helpful in enabling fully-closed loop whereby meals do not need to be announced. We present an AI-enabled dual-hormone model predictive control (MPC) algorithm that delivers insulin and pramlintide without requiring meal announcements that uses a neural network to automatically detect and deliver meal insulin. The MPC algorithm includes a new pramlintide pharmacokinetics and pharmacodynamics model that was identified using data collected from people with type 1 diabetes undergoing a meal challenge. Using a simulator, we evaluated the performance of various pramlintide delivery methods and controller models, as well as the baseline insulin-only scenario. Meals were automatically dosed using a neural network meal detection and dosing (MDD) algorithm. The primary outcome was the percent time glucose is in the target range (TIR: 70-180 mg/dL). Results show that delivering pramlintide at a fixed ratio of 6 mcg pramlintide:1 u insulin using an MPC that is aware of the pramlintide achieved the most significant improved TIR compared with an insulin-only MPC (91.6% vs. 64.1%). Delivering pramlintide as a fixed ratio was better than delivering basal pramlintide at a constant rate, indicating the benefit of the MDD algorithm. There was no advantage of independent control of insulin and pramlintide compared with insulin and pramlintide delivered as a fixed ratio. Preliminary real-world results from a human subject further indicate the benefit of pramlintide delivery.
comment: 15 pages, 8 figures, 4 tables, pre-print with expanded Supplementary Materials section, accepted and will be published in IFAC Diabetes Technology Conference
Two-Stage Robust Optimal Operation of Distribution Networks Considering Renewable Energy and Demand Asymmetric Uncertainties
This paper presents a confidence level-based distributionally information gap decision theory (CL-DIGDT) framework for the two-stage robust optimal operation of distribution networks, aiming at deriving an optimal operational scheme capable of addressing asymmetric uncertainties related to renewable energy and load demands. Building on conventional IGDT, the proposed framework utilizes the confidence level to capture the asymmetric characteristics of uncertainties and maximize the risk-averse capability of the solution in a probabilistic manner. To account for the probabilistic consideration, the imprecise Dirichlet model is employed to construct the ambiguity sets of uncertainties, reducing reliance on precise probability distributions. Consequently, a two-stage robust optimal operation model for distribution networks using CL-DIGDT is developed. An iterative method is proposed to solve the model and determine the upper and lower bounds of the objective function. Case study demonstrates that the proposed approach yields a more robust and statistically optimized solution with required accuracy compared to existing method, contributing to a reduction in first-stage cost by 0.84%, second-stage average cost by 6.7%, and significantly increasing the reliability of the solution by 8%.
Certifiably Robust Policies for Uncertain Parametric Environments
We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
Robotics
Smart Ankleband for Plug-and-Play Hand-Prosthetic Control
Building robotic prostheses requires the creation of a sensor-based interface designed to provide the robotic hand with the control required to perform hand gestures. Traditional Electromyography (EMG) based prosthetics and emerging alternatives often face limitations such as muscle-activation limitations, high cost, and complex-calibration procedures. In this paper, we present a low-cost robotic system composed of a smart ankleband for intuitive, calibration-free control of a robotic hand, and a robotic prosthetic hand that executes actions corresponding to leg gestures. The ankleband integrates an Inertial Measurement Unit (IMU) sensor with a lightweight temporal neural network to infer user-intended leg gestures from motion data. Our system represents a significant step towards higher adoption rates of robotic prostheses among arm amputees, as it enables one to operate a prosthetic hand using a low-cost, low-power, and calibration-free solution. To evaluate our work, we collected data from 10 subjects and tested our prototype ankleband with a robotic hand on an individual with upper-limb amputations. Our results demonstrate that this system empowers users to perform daily tasks more efficiently, requiring few compensatory movements.
GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots
3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.
Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
Cybersecurity in robotics stands out as a key aspect within Regulation (EU) 2024/1689, also known as the Artificial Intelligence Act, which establishes specific guidelines for intelligent and automated systems. A fundamental distinction in this regulatory framework is the difference between robots with Artificial Intelligence (AI) and those that operate through automation systems without AI, since the former are subject to stricter security requirements due to their learning and autonomy capabilities. This work analyzes cybersecurity tools applicable to advanced robotic systems, with special emphasis on the protection of knowledge bases in cognitive architectures. Furthermore, a list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems, and a practical case is presented, focused on the analysis of robot knowledge management, where ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction (HRI) environments.
comment: 9 pages, 1 figure, in Spanish
Adaptive Perching and Grasping by Aerial Robot with Light-weight and High Grip-force Tendon-driven Three-fingered Hand using Single Actuator
In previous research, various types of aerial robots equipped with perching mechanisms have been developed to extend operational time. However, most existing perching methods adopt either an upward or downward approach, making it difficult to perch near walls with surrounding obstacles. Additionally, perching hands are typically designed solely for attachment to objects and lack additional functionality, imposing a payload burden during flight. To address these issues, this paper proposes a lightweight robotic hand, the "Tri-force hand", capable of both perching and object grasping, as well as a new perching method called "Pendulum-perching". The Tri-force hand is a tendon-driven, three-fingered hand utilizing a spherical joint and a two-dimensional differential plate, enabling passive actuation with a single actuator. Each finger module, designed with controllable semi-tendon drive, can conform to arbitrary shapes within its operating range, allowing both perching and adaptive object grasping. By integrating this hand into a fully actuated aerial robot, the system can perform multi-directional approaches from the side and landing using gravity. This approach is similar to Crush-perching seen in researches with fixed-wing aerial robots, but it differs in its superior control over approach speed and direction, as well as its ability to achieve stable detachment and re-launch. In experiments, the fabricated Tri-force hand demonstrated the ability to withstand a total weight of up to 27.5 kg, grasp various objects ranging from simple to complex-shaped tools, and achieve a high success rate in both perching and takeoff.
RAIDER: Tool-Equipped Large Language Model Agent for Robotic Action Issue Detection, Explanation and Recovery
As robots increasingly operate in dynamic human-centric environments, improving their ability to detect, explain, and recover from action-related issues becomes crucial. Traditional model-based and data-driven techniques lack adaptability, while more flexible generative AI methods struggle with grounding extracted information to real-world constraints. We introduce RAIDER, a novel agent that integrates Large Language Models (LLMs) with grounded tools for adaptable and efficient issue detection and explanation. Using a unique "Ground, Ask& Answer, Issue" procedure, RAIDER dynamically generates context-aware precondition questions and selects appropriate tools for resolution, achieving targeted information gathering. Our results within a simulated household environment surpass methods relying on predefined models, full scene descriptions, or standalone trained models. Additionally, RAIDER's explanations enhance recovery success, including cases requiring human interaction. Its modular architecture, featuring self-correction mechanisms, enables straightforward adaptation to diverse scenarios, as demonstrated in a real-world human-assistive task. This showcases RAIDER's potential as a versatile agentic AI solution for robotic issue detection and explanation, while addressing the problem of grounding generative AI for its effective application in embodied agents. Project website: https://raider-llmagent.github.io/
Sense4FL: Vehicular Crowdsensing Enhanced Federated Learning for Autonomous Driving
To accommodate constantly changing road conditions, real-time model training is essential for autonomous driving (AD). Federated learning (FL) serves as a promising paradigm to enable autonomous vehicles to train models collaboratively with their onboard computing resources. However, existing vehicle selection schemes for FL all assume predetermined and location-independent vehicles' datasets, neglecting the fact that vehicles collect training data along their routes, thereby resulting in suboptimal vehicle selection. To improve the perception quality in AD for a region, we propose Sense4FL, a vehicular crowdsensing-enhanced FL framework featuring trajectory-dependent vehicular training data collection. To this end, we first derive the convergence bound of FL by considering the impact of both vehicles' uncertain trajectories and uploading probabilities, from which we discover that minimizing the training loss is equivalent to minimizing a weighted sum of local and global earth mover's distance (EMD) between vehicles' collected data distribution and global data distribution. Based on this observation, we formulate the trajectory-dependent vehicle selection and data collection problem for FL in AD. Given that the problem is NP-hard, we develop an efficient algorithm to find the solution with an approximation guarantee. Extensive simulation results have demonstrated the effectiveness of our approach in improving object detection performance compared with existing benchmarks.
comment: 16 pages, 5 figures
Computationally and Sample Efficient Safe Reinforcement Learning Using Adaptive Conformal Prediction ICRA 2025
Safety is a critical concern in learning-enabled autonomous systems especially when deploying these systems in real-world scenarios. An important challenge is accurately quantifying the uncertainty of unknown models to generate provably safe control policies that facilitate the gathering of informative data, thereby achieving both safe and optimal policies. Additionally, the selection of the data-driven model can significantly impact both the real-time implementation and the uncertainty quantification process. In this paper, we propose a provably sample efficient episodic safe learning framework that remains robust across various model choices with quantified uncertainty for online control tasks. Specifically, we first employ Quadrature Fourier Features (QFF) for kernel function approximation of Gaussian Processes (GPs) to enable efficient approximation of unknown dynamics. Then the Adaptive Conformal Prediction (ACP) is used to quantify the uncertainty from online observations and combined with the Control Barrier Functions (CBF) to characterize the uncertainty-aware safe control constraints under learned dynamics. Finally, an optimism-based exploration strategy is integrated with ACP-based CBFs for safe exploration and near-optimal safe nonlinear control. Theoretical proofs and simulation results are provided to demonstrate the effectiveness and efficiency of the proposed framework.
comment: 7 pages, accepted to ICRA 2025
Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots
Reinforcement learning (RL) has demonstrated remarkable capability in acquiring robot skills, but learning each new skill still requires substantial data collection for training. The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks. Inspired by the idea that acquired knowledge can accelerate learning new tasks with the same robot and help a new robot master a trained task, we propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders. This policy in latent space processes encoded latent observations to generate latent actions to be decoded, with the potential to learn general abstract motion skills. To retain essential information for decision-making and control, we introduce a diffusion recovery module that minimizes information reconstruction loss during pretrain stage. During fine-tune stage, the pretrained latent-to-latent locomotion policy remains fixed, while only the lightweight task-specific encoder and decoder are optimized for efficient adaptation. Our method allows a robot to leverage its own prior experience across different tasks as well as the experience of other morphologically diverse robots to accelerate adaptation. We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
Feature Selection Based on Reinforcement Learning and Hazard State Classification for Magnetic Adhesion Wall-Climbing Robots
Magnetic adhesion tracked wall-climbing robots face potential risks of overturning during high-altitude operations, making their stability crucial for ensuring safety. This study presents a dynamic feature selection method based on Proximal Policy Optimization (PPO) reinforcement learning, combined with typical machine learning models, aimed at improving the classification accuracy of hazardous states under complex operating conditions. Firstly, this work innovatively employs a fiber rod-based MEMS attitude sensor to collect vibration data from the robot and extract high-dimensional feature vectors in both time and frequency domains. Then, a reinforcement learning model is used to dynamically select the optimal feature subset, reducing feature redundancy and enhancing classification accuracy. Finally, a CNN-LSTM deep learning model is employed for classification and recognition. Experimental results demonstrate that the proposed method significantly improves the robot's ability to assess hazardous states across various operational scenarios, providing reliable technical support for robotic safety monitoring.
comment: 21 pages, 11 figures, manuscript for Journal of Autonomous Robots
Extending First-order Motion Planners to Second-order Dynamics
This paper extends first-order motion planners to robots governed by second-order dynamics. Two control schemes are proposed based on the knowledge of a scalar function whose negative gradient aligns with a given first-order motion planner. When such a function is known, the first-order motion planner is combined with a damping velocity vector with a dynamic gain to extend the safety and convergence guarantees of the first-order motion planner to second-order systems. If no such function is available, we propose an alternative control scheme ensuring that the error between the robot's velocity and the first-order motion planner converges to zero. The theoretical developments are supported by simulation results demonstrating the effectiveness of the proposed approaches.
comment: 13 pages, 7 figures
Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal for motor control, biomechanics, and rehabilitation engineering. However, existing models and their simplifying assumptions such as linear and fixed timescale mappings do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embedding, outperforming traditional models across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. There is greater reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. This deep learning framework for action prediction provides quantifiable insights into the control of complex movements and can be extended to other actions, contexts, and populations.
MERLION: Marine ExploRation with Language guIded Online iNformative Visual Sampling and Enhancement ICRA 2025
Autonomous and targeted underwater visual monitoring and exploration using Autonomous Underwater Vehicles (AUVs) can be a challenging task due to both online and offline constraints. The online constraints comprise limited onboard storage capacity and communication bandwidth to the surface, whereas the offline constraints entail the time and effort required for the selection of desired key frames from the video data. An example use case of targeted underwater visual monitoring is finding the most interesting visual frames of fish in a long sequence of an AUV's visual experience. This challenge of targeted informative sampling is further aggravated in murky waters with poor visibility. In this paper, we present MERLION, a novel framework that provides semantically aligned and visually enhanced summaries for murky underwater marine environment monitoring and exploration. Specifically, our framework integrates (a) an image-text model for semantically aligning the visual samples to the users' needs, (b) an image enhancement model for murky water visual data and (c) an informative sampler for summarizing the monitoring experience. We validate our proposed MERLION framework on real-world data with user studies and present qualitative and quantitative results using our evaluation metric and show improved results compared to the state-of-the-art approaches. We have open-sourced the code for MERLION at the following link https://github.com/MARVL-Lab/MERLION.git.
comment: In proceedings of IEEE ICRA 2025
NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability. However, their predominant use in an offline manner usually suffers from substantial domain gap between the VLN task and the LLM training corpus. This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision, leading to a significant mitigation of the domain gap in a cost-effective manner. Specifically, at each timestep, the LLM is prompted to forecast the navigational chain-of-thought by: 1) acting as a world model to imagine the next observation according to the instruction, 2) selecting the candidate observation that best aligns with the imagination, and 3) determining the action based on the reasoning from the prior steps. Through constructing formalized labels for training, the LLM can learn to generate desired and reasonable chain-of-thought outputs for improving the action decision. Experimental results across various training settings and popular VLN benchmarks (e.g., Room-to-Room (R2R), Room-across-Room (RxR), Room-for-Room (R4R)) show the significant superiority of NavCoT over the direct action prediction variants. Through simple parameter-efficient finetuning, our NavCoT outperforms a recent GPT4-based approach with ~7% relative improvement on the R2R dataset. We believe that NavCoT will help unlock more task-adaptive and scalable LLM-based embodied agents, which are helpful for developing real-world robotics applications. Code is available at https://github.com/expectorlin/NavCoT.
comment: Accepted by TPAMI 2025
LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
Closing the Intent-to-Behavior Gap via Fulfillment Priority Logic
Practitioners designing reinforcement learning policies face a fundamental challenge: translating intended behavioral objectives into representative reward functions. This challenge stems from behavioral intent requiring simultaneous achievement of multiple competing objectives, typically addressed through labor-intensive linear reward composition that yields brittle results. Consider the ubiquitous robotics scenario where performance maximization directly conflicts with energy conservation. Such competitive dynamics are resistant to simple linear reward combinations. In this paper, we present the concept of objective fulfillment upon which we build Fulfillment Priority Logic (FPL). FPL allows practitioners to define logical formula representing their intentions and priorities within multi-objective reinforcement learning. Our novel Balanced Policy Gradient algorithm leverages FPL specifications to achieve up to 500\% better sample efficiency compared to Soft Actor Critic. Notably, this work constitutes the first implementation of non-linear utility scalarization design, specifically for continuous control problems.
Learning-based 3D Reconstruction in Autonomous Driving: A Comprehensive Survey
Learning-based 3D reconstruction has emerged as a transformative technique in autonomous driving, enabling precise modeling of both dynamic and static environments through advanced neural representations. Despite data augmentation, 3D reconstruction inspires pioneering solution for vital tasks in the field of autonomous driving, such as scene understanding and closed-loop simulation. We investigates the details of 3D reconstruction and conducts a multi-perspective, in-depth analysis of recent advancements. Specifically, we first provide a systematic introduction of preliminaries, including data modalities, benchmarks and technical preliminaries of learning-based 3D reconstruction, facilitating instant identification of suitable methods according to sensor suites. Then, we systematically review learning-based 3D reconstruction methods in autonomous driving, categorizing approaches by subtasks and conducting multi-dimensional analysis and summary to establish a comprehensive technical reference. The development trends and existing challenges are summarized in the context of learning-based 3D reconstruction in autonomous driving. We hope that our review will inspire future researches.
GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision. Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses. Given that direct pose regression networks currently exhibit suboptimal performance, most methods still resort to traditional techniques to varying degrees. For example, top-performing methods often adopt an indirect strategy by first establishing 2D-3D or 3D-3D correspondences followed by applying the RANSAC-based PnP or Kabsch algorithms, and further employing ICP for refinement. Despite the performance enhancement, the integration of traditional techniques makes the networks time-consuming and not end-to-end trainable. Orthogonal to them, this paper introduces a fully learning-based object pose estimator. In this work, we first perform an in-depth investigation of both direct and indirect methods and propose a simple yet effective Geometry-guided Direct Regression Network (GDRN) to learn the 6D pose from monocular images in an end-to-end manner. Afterwards, we introduce a geometry-guided pose refinement module, enhancing pose accuracy when extra depth data is available. Guided by the predicted coordinate map, we build an end-to-end differentiable architecture that establishes robust and accurate 3D-3D correspondences between the observed and rendered RGB-D images to refine the pose. Our enhanced pose estimation pipeline GDRNPP (GDRN Plus Plus) conquered the leaderboard of the BOP Challenge for two consecutive years, becoming the first to surpass all prior methods that relied on traditional techniques in both accuracy and speed. The code and models are available at https://github.com/shanice-l/gdrnpp_bop2022.
comment: accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), code: https://github.com/shanice-l/gdrnpp_bop2022
Multiagent Systems
A Roadmap Towards Improving Multi-Agent Reinforcement Learning With Causal Discovery And Inference
Causal reasoning is increasingly used in Reinforcement Learning (RL) to improve the learning process in several dimensions: efficacy of learned policies, efficiency of convergence, generalisation capabilities, safety and interpretability of behaviour. However, applications of causal reasoning to Multi-Agent RL (MARL) are still mostly unexplored. In this paper, we take the first step in investigating the opportunities and challenges of applying causal reasoning in MARL. We measure the impact of a simple form of causal augmentation in state-of-the-art MARL scenarios increasingly requiring cooperation, and with state-of-the-art MARL algorithms exploiting various degrees of collaboration between agents. Then, we discuss the positive as well as negative results achieved, giving us the chance to outline the areas where further research may help to successfully transfer causal RL to the multi-agent setting.
ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.
Plurals: A System for Guiding LLMs Via Simulated Social Ensembles
Recent debates raised concerns that language models may favor certain viewpoints. But what if the solution is not to aim for a 'view from nowhere' but rather to leverage different viewpoints? We introduce Plurals, a system and Python library for pluralistic AI deliberation. Plurals consists of Agents (LLMs, optionally with personas) which deliberate within customizable Structures, with Moderators overseeing deliberation. Plurals is a generator of simulated social ensembles. Plurals integrates with government datasets to create nationally representative personas, includes deliberation templates inspired by deliberative democracy, and allows users to customize both information-sharing structures and deliberation behavior within Structures. Six case studies demonstrate fidelity to theoretical constructs and efficacy. Three randomized experiments show simulated focus groups produced output resonant with an online sample of the relevant audiences (chosen over zero-shot generation in 75% of trials). Plurals is both a paradigm and a concrete system for pluralistic AI. The Plurals library is available at https://github.com/josh-ashkinaze/plurals and will be continually updated.
comment: CHI 2025
Systems and Control (CS)
Tensor-based homogeneous polynomial dynamical system analysis from data
Numerous complex real-world systems, such as those in biological, ecological, and social networks, exhibit higher-order interactions that are often modeled using polynomial dynamical systems or homogeneous polynomial dynamical systems (HPDSs). However, identifying system parameters and analyzing key system-theoretic properties remain challenging due to their inherent nonlinearity and complexity, particularly for large-scale systems. To address these challenges, we develop an innovative computational framework in this article that leverages advanced tensor decomposition techniques, namely tensor train and hierarchical Tucker decompositions, to facilitate efficient identification and analysis of HPDSs that can be equivalently represented by tensors. Specifically, we introduce memory-efficient system identification techniques for directly estimating system parameters represented through tensor decompositions from time-series data. Additionally, we develop necessary and sufficient conditions for determining controllability and observability using the tensor decomposition-based representations of HPDSs, accompanied by detailed complexity analyses that demonstrate significant reductions in computational demands. The effectiveness and efficiency of our framework are validated through numerical examples.
comment: 24 pages, 4 figures
Probabilistic Net Load Forecasting for High-Penetration RES Grids Utilizing Enhanced Conditional Diffusion Model
The proliferation of intermittent distributed renewable energy sources (RES) in modern power systems has fundamentally compromised the reliability and accuracy of deterministic net load forecasting. Generative models, particularly diffusion models, demonstrate exceptional potential in uncertainty quantification for scenario forecasting. Nevertheless, their probabilistic predictive capabilities and conditional bootstrapping mechanisms still remain underexplored. In this paper, a day-ahead probabilistic net load forecasting framework is developed by systematically quantifying epistemic uncertainty and aleatoric variability using the feature-informed enhanced conditional diffusion model (ECDM). The ECDM architecture implements the net load distribution generation process using an imputation-based conditional diffusion model, where multi-modal conditional inputs, such as weather and calendar data, are fused via cross-attention mechanisms. Specifically, historical net load profiles are utilized to guide the reverse diffusion trajectory through non-parametric imputation operators preserving spatial-temporal integrity. To capture periodic characteristics, a novel weekly arrangement method is also introduced, while an unconditional model is integrated to ensure diversity in the generated scenarios. Subsequently, the maximum probabilistic points and probability intervals of predicted net load are obtained by the adaptive kernel density estimation under RES intermittency. Moreover, ECDM is extented to multi-energy forecast framework, attempting to increase interpretability of the net load predictions. Numerical experiments on a publicly available dataset demonstrate the superior forecasting performance of the proposed method compared to existing state-of-the-art approaches.
Enhancing Fault Detection in CO2 Refrigeration Systems: Optimal Sensor Selection and Robustness Analysis Using Tree-Based Machine Learning
This study investigates the reliability and robustness of data-driven Fault Detection and Diagnosis (FDD) models for CO2 refrigeration systems (CO2-RS) in supermarkets, focusing on optimal sensor selection and resilience against sensor noise. Using tree-based machine learning algorithms - Random Forest (RF), XGBoost, CatBoost, and LightGBM - we developed FDD models to classify six common faults in a laboratory-scale CO2-RS. The Recursive Feature Addition (RFA) approach identified optimal sensor sets, achieving a 99% F1-score with minimal sensors: four for RF, seven for XGBoost, five for CatBoost, and five for LightGBM. Condenser-side sensors consistently ranked as critical for fault detection. Robustness was assessed by injecting Additive White Gaussian Noise (AWGN) at a signal-to-noise ratio (SNR) of 3 dB into the most important sensor, with XGBoost showing superior resilience at 85.24%, followed by CatBoost (57.07%), LightGBM (49.1%), and RF (49.46%). Sensitivity analysis across high-SNR (10 dB), low-SNR (0 dB), and sensor failure scenarios revealed XGBoost's robustness peaking at 90.23% and retaining 79% under failure, contrasting with sharper declines in other models. These findings highlight a trade-off between sensor count, cost, and reliability, with larger ensembles enhancing noise resilience. This work bridges gaps in FDD literature by integrating sensor optimization with comprehensive robustness analysis, offering a practical framework for improving energy efficiency and fault management in CO2-RS. Future efforts could explore adaptive SNR thresholds and redundant sensor configurations to enhance real-world applicability.
On the Hopf-Cole Transform for Control-affine Schrödinger Bridge
The purpose of this note is to clarify the importance of the relation $\boldsymbol{gg}^{\top}\propto \boldsymbol{\sigma\sigma}^{\top}$ in solving control-affine Schr\"{o}dinger bridge problems via the Hopf-Cole transform, where $\boldsymbol{g},\boldsymbol{\sigma}$ are the control and noise coefficients, respectively. We show that the Hopf-Cole transform applied to the conditions of optimality for generic control-affine Schr\"{o}dinger bridge problems, i.e., without the assumption $\boldsymbol{gg}^{\top}\propto\boldsymbol{\sigma\sigma}^{\top}$, gives a pair of forward-backward PDEs that are neither linear nor equation-level decoupled. We explain how the resulting PDEs can be interpreted as nonlinear forward-backward advection-diffusion-reaction equations, where the nonlinearity stem from additional drift and reaction terms involving the gradient of the log-likelihood a.k.a. the score. These additional drift and reaction vanish when $\boldsymbol{gg}^{\top}\propto\boldsymbol{\sigma\sigma}^{\top}$, and the resulting boundary-coupled system of linear PDEs can then be solved by dynamic Sinkhorn recursions. A key takeaway of our work is that the numerical solution of the generic control-affine Schr\"{o}dinger bridge requires further algorithmic development, possibly generalizing the dynamic Sinkhorn recursion or otherwise.
Mixed-gradients Distributed Filtered Reference Least Mean Square Algorithm -- A Robust Distributed Multichannel Active Noise Control Algorithm
Distributed multichannel active noise control (DMCANC), which utilizes multiple individual processors to achieve a global noise reduction performance comparable to conventional centralized multichannel active noise control (MCANC), has become increasingly attractive due to its high computational efficiency. However, the majority of current DMCANC algorithms disregard the impact of crosstalk across nodes and impose the assumption of an ideal network devoid of communication limitations, which is an unrealistic assumption. Therefore, this work presents a robust DMCANC algorithm that employs the compensating filter to mitigate the impact of crosstalk. The proposed solution enhances the DMCANC system's flexibility and security by utilizing local gradients instead of local control filters to convey enhanced information, resulting in a mixed-gradients distributed filtered reference least mean square (MGDFxLMS) algorithm. The performance investigation demonstrates that the proposed approach performs well with the centralized method. Furthermore, to address the issue of communication delay in the distributed network, a practical strategy that auto-shrinks the step size value in response to the delayed samples is implemented to improve the system's resilience. The numerical simulation results demonstrate the efficacy of the proposed auto-shrink step size MGDFxLMS (ASSS-MGDFxLMS) algorithm across various communication delays, highlighting its practical value.
Extending First-order Motion Planners to Second-order Dynamics
This paper extends first-order motion planners to robots governed by second-order dynamics. Two control schemes are proposed based on the knowledge of a scalar function whose negative gradient aligns with a given first-order motion planner. When such a function is known, the first-order motion planner is combined with a damping velocity vector with a dynamic gain to extend the safety and convergence guarantees of the first-order motion planner to second-order systems. If no such function is available, we propose an alternative control scheme ensuring that the error between the robot's velocity and the first-order motion planner converges to zero. The theoretical developments are supported by simulation results demonstrating the effectiveness of the proposed approaches.
comment: 13 pages, 7 figures
A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements
This study presents a physics-informed machine learning-based control method for nonlinear dynamic systems with highly noisy measurements. Existing data-driven control methods that use machine learning for system identification cannot effectively cope with highly noisy measurements, resulting in unstable control performance. To address this challenge, the present study extends current physics-informed machine learning capabilities for modeling nonlinear dynamics with control and integrates them into a model predictive control framework. To demonstrate the capability of the proposed method we test and validate with two noisy nonlinear dynamic systems: the chaotic Lorenz 3 system, and turning machine tool. Analysis of the results illustrate that the proposed method outperforms state-of-the-art benchmarks as measured by both modeling accuracy and control performance for nonlinear dynamic systems under high-noise conditions.
comment: We completely redesigned and rewrote this paper. It will be a completely different paper with different title, author list, and content
Optimizing Coverage in Convex Quadrilateral Regions with a Single UAV
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks is a promising solution for providing flexible, efficient coverage. This paper explores the optimal deployment of a single UAV to cover an arbitrary convex quadrilateral region, utilizing a directional antenna with a tiltable beam that produces an elliptical coverage footprint. We examine two distinct coverage scenarios: (i) the largest inscribed ellipse, which maximizes coverage within the quadrilateral while excluding the boundary, and (ii) the smallest circumscribed ellipse, ensuring complete coverage of the entire area. The study formulates an optimization framework that accounts for path loss, signal-to-noise ratio (SNR), and energy consumption to determine the optimal altitude of the UAV. By employing a simplified path loss model, we derive the altitude that minimizes maximum path loss, while also analyzing the impact of antenna directivity on maximizing the minimum SNR at the coverage boundary. Additionally, the UAV's energy consumption is evaluated, considering the power demands during hovering, forward flight, and vertical takeoff. Numerical simulations are presented to illustrate the trade-offs between coverage effectiveness, communication performance, and energy efficiency across various environmental conditions and antenna configurations.
A Control Barrier Function Candidate for Quadrotors with Limited Field of View
The problem of control based on vision measurements (bearings) has been amply studied in the literature; however, the problem of addressing the limits of the field of view of physical sensors has received relatively less attention (especially for agents with non-trivial dynamics). The technical challenge is that, as in most vision-based control approaches, a standard approach to the problem requires knowing the distance between cameras and observed features in the scene, which is not directly available. Instead, we present a solution based on a Control Barrier Function (CBF) approach that uses a splitting of the original differential constraint to effectively remove the dependence on the unknown measurement error. Compared to the current literature, our approach gives strong robustness guarantees against bounded distance estimation errors. We showcase the proposed solution with the numerical simulations of a double integrator and a quadrotor tracking a trajectory while keeping the corners of a rectangular gate in the camera field of view.
comment: 8 pages, conference paper
Quantum Reinforcement Learning-Based Two-Stage Unit Commitment Framework for Enhanced Power Systems Robustness
Unit commitment (UC) optimizes the start-up and shutdown schedules of generating units to meet load demand while minimizing costs. However, the increasing integration of renewable energy introduces uncertainties for real-time scheduling. Existing solutions face limitations both in modeling and algorithmic design. At the modeling level, they fail to incorporate widely adopted virtual power plants (VPPs) as flexibility resources, missing the opportunity to proactively mitigate potential real-time imbalances or ramping constraints through foresight-seeing decision-making. At the algorithmic level, existing probabilistic optimization, multi-stage approaches, and machine learning, face challenges in computational complexity and adaptability. To address these challenges, this study proposes a novel two-stage UC framework that incorporates foresight-seeing sequential decision-making in both day-ahead and real-time scheduling, leveraging VPPs as flexibility resources to proactively reserve capacity and ramping flexibility for upcoming renewable energy uncertainties over several hours. In particular, we develop quantum reinforcement learning (QRL) algorithms that integrate the foresight-seeing sequential decision-making and scalable computation advantages of deep reinforcement learning (DRL) with the parallel and high-efficiency search capabilities of quantum computing. Experimental results demonstrate that the proposed QRL-based approach outperforms in computational efficiency, real-time responsiveness, and solution quality.
Optimal Control of Grid-Interfacing Inverters With Current Magnitude Limits
Grid-interfacing inverters act as the interface between renewable resources and the electric grid, and have the potential to offer fast and programmable controls compared to synchronous generators. With this flexibility there has been significant research efforts into determining the best way to control these inverters. Inverters are limited in their maximum current output in order to protect semiconductor devices, presenting a nonlinear constraint that needs to be accounted for in their control algorithms. Existing approaches either simply saturate a controller that is designed for unconstrained systems, or assume small perturbations and linearize a saturated system. These approaches can lead to stability issues or limiting the control actions to be too conservative. In this paper, we directly focus on a nonlinear system that explicitly accounts for the saturation of the current magnitude. We use a Lyapunov stability approach to determine a stability condition for the system, guaranteeing that a class of controllers would be stabilizing if they satisfy a simple SDP condition. With this condition we fit a linear-feedback controller by sampling the output (offline) model predictive control problems. This learned controller has improved performances with existing designs.
comment: 6 pages, 6 figures, 1 table. Submitted to CDC'2024
Safe Control of Grid-Interfacing Inverters with Current Magnitude Limits
Grid-interfacing inverters allow renewable resources to be connected to the electric grid and offer fast and programmable control responses. However, inverters are subject to significant physical constraints. One such constraint is a current magnitude limit required to protect semiconductor devices. While many current limiting methods are available, they can often unpredictably alter the behavior of the inverter control during overcurrent events leading to instability or poor performance. In this paper, we present a safety filter approach to limit the current magnitude of inverters controlled as voltage sources. The safety filter problem is formulated with a control barrier function constraint that encodes the current magnitude limit. To ensure feasibility of the problem, we prove the existence of a safe linear controller for a specified reference. This approach allows for the desired voltage source behavior to be minimally altered while safely limiting the current output.
comment: 10 pages, 6 figures, Submitted to HICSS'58
Systems and Control (EESS)
Tensor-based homogeneous polynomial dynamical system analysis from data
Numerous complex real-world systems, such as those in biological, ecological, and social networks, exhibit higher-order interactions that are often modeled using polynomial dynamical systems or homogeneous polynomial dynamical systems (HPDSs). However, identifying system parameters and analyzing key system-theoretic properties remain challenging due to their inherent nonlinearity and complexity, particularly for large-scale systems. To address these challenges, we develop an innovative computational framework in this article that leverages advanced tensor decomposition techniques, namely tensor train and hierarchical Tucker decompositions, to facilitate efficient identification and analysis of HPDSs that can be equivalently represented by tensors. Specifically, we introduce memory-efficient system identification techniques for directly estimating system parameters represented through tensor decompositions from time-series data. Additionally, we develop necessary and sufficient conditions for determining controllability and observability using the tensor decomposition-based representations of HPDSs, accompanied by detailed complexity analyses that demonstrate significant reductions in computational demands. The effectiveness and efficiency of our framework are validated through numerical examples.
comment: 24 pages, 4 figures
Probabilistic Net Load Forecasting for High-Penetration RES Grids Utilizing Enhanced Conditional Diffusion Model
The proliferation of intermittent distributed renewable energy sources (RES) in modern power systems has fundamentally compromised the reliability and accuracy of deterministic net load forecasting. Generative models, particularly diffusion models, demonstrate exceptional potential in uncertainty quantification for scenario forecasting. Nevertheless, their probabilistic predictive capabilities and conditional bootstrapping mechanisms still remain underexplored. In this paper, a day-ahead probabilistic net load forecasting framework is developed by systematically quantifying epistemic uncertainty and aleatoric variability using the feature-informed enhanced conditional diffusion model (ECDM). The ECDM architecture implements the net load distribution generation process using an imputation-based conditional diffusion model, where multi-modal conditional inputs, such as weather and calendar data, are fused via cross-attention mechanisms. Specifically, historical net load profiles are utilized to guide the reverse diffusion trajectory through non-parametric imputation operators preserving spatial-temporal integrity. To capture periodic characteristics, a novel weekly arrangement method is also introduced, while an unconditional model is integrated to ensure diversity in the generated scenarios. Subsequently, the maximum probabilistic points and probability intervals of predicted net load are obtained by the adaptive kernel density estimation under RES intermittency. Moreover, ECDM is extented to multi-energy forecast framework, attempting to increase interpretability of the net load predictions. Numerical experiments on a publicly available dataset demonstrate the superior forecasting performance of the proposed method compared to existing state-of-the-art approaches.
Enhancing Fault Detection in CO2 Refrigeration Systems: Optimal Sensor Selection and Robustness Analysis Using Tree-Based Machine Learning
This study investigates the reliability and robustness of data-driven Fault Detection and Diagnosis (FDD) models for CO2 refrigeration systems (CO2-RS) in supermarkets, focusing on optimal sensor selection and resilience against sensor noise. Using tree-based machine learning algorithms - Random Forest (RF), XGBoost, CatBoost, and LightGBM - we developed FDD models to classify six common faults in a laboratory-scale CO2-RS. The Recursive Feature Addition (RFA) approach identified optimal sensor sets, achieving a 99% F1-score with minimal sensors: four for RF, seven for XGBoost, five for CatBoost, and five for LightGBM. Condenser-side sensors consistently ranked as critical for fault detection. Robustness was assessed by injecting Additive White Gaussian Noise (AWGN) at a signal-to-noise ratio (SNR) of 3 dB into the most important sensor, with XGBoost showing superior resilience at 85.24%, followed by CatBoost (57.07%), LightGBM (49.1%), and RF (49.46%). Sensitivity analysis across high-SNR (10 dB), low-SNR (0 dB), and sensor failure scenarios revealed XGBoost's robustness peaking at 90.23% and retaining 79% under failure, contrasting with sharper declines in other models. These findings highlight a trade-off between sensor count, cost, and reliability, with larger ensembles enhancing noise resilience. This work bridges gaps in FDD literature by integrating sensor optimization with comprehensive robustness analysis, offering a practical framework for improving energy efficiency and fault management in CO2-RS. Future efforts could explore adaptive SNR thresholds and redundant sensor configurations to enhance real-world applicability.
On the Hopf-Cole Transform for Control-affine Schrödinger Bridge
The purpose of this note is to clarify the importance of the relation $\boldsymbol{gg}^{\top}\propto \boldsymbol{\sigma\sigma}^{\top}$ in solving control-affine Schr\"{o}dinger bridge problems via the Hopf-Cole transform, where $\boldsymbol{g},\boldsymbol{\sigma}$ are the control and noise coefficients, respectively. We show that the Hopf-Cole transform applied to the conditions of optimality for generic control-affine Schr\"{o}dinger bridge problems, i.e., without the assumption $\boldsymbol{gg}^{\top}\propto\boldsymbol{\sigma\sigma}^{\top}$, gives a pair of forward-backward PDEs that are neither linear nor equation-level decoupled. We explain how the resulting PDEs can be interpreted as nonlinear forward-backward advection-diffusion-reaction equations, where the nonlinearity stem from additional drift and reaction terms involving the gradient of the log-likelihood a.k.a. the score. These additional drift and reaction vanish when $\boldsymbol{gg}^{\top}\propto\boldsymbol{\sigma\sigma}^{\top}$, and the resulting boundary-coupled system of linear PDEs can then be solved by dynamic Sinkhorn recursions. A key takeaway of our work is that the numerical solution of the generic control-affine Schr\"{o}dinger bridge requires further algorithmic development, possibly generalizing the dynamic Sinkhorn recursion or otherwise.
Mixed-gradients Distributed Filtered Reference Least Mean Square Algorithm -- A Robust Distributed Multichannel Active Noise Control Algorithm
Distributed multichannel active noise control (DMCANC), which utilizes multiple individual processors to achieve a global noise reduction performance comparable to conventional centralized multichannel active noise control (MCANC), has become increasingly attractive due to its high computational efficiency. However, the majority of current DMCANC algorithms disregard the impact of crosstalk across nodes and impose the assumption of an ideal network devoid of communication limitations, which is an unrealistic assumption. Therefore, this work presents a robust DMCANC algorithm that employs the compensating filter to mitigate the impact of crosstalk. The proposed solution enhances the DMCANC system's flexibility and security by utilizing local gradients instead of local control filters to convey enhanced information, resulting in a mixed-gradients distributed filtered reference least mean square (MGDFxLMS) algorithm. The performance investigation demonstrates that the proposed approach performs well with the centralized method. Furthermore, to address the issue of communication delay in the distributed network, a practical strategy that auto-shrinks the step size value in response to the delayed samples is implemented to improve the system's resilience. The numerical simulation results demonstrate the efficacy of the proposed auto-shrink step size MGDFxLMS (ASSS-MGDFxLMS) algorithm across various communication delays, highlighting its practical value.
Extending First-order Motion Planners to Second-order Dynamics
This paper extends first-order motion planners to robots governed by second-order dynamics. Two control schemes are proposed based on the knowledge of a scalar function whose negative gradient aligns with a given first-order motion planner. When such a function is known, the first-order motion planner is combined with a damping velocity vector with a dynamic gain to extend the safety and convergence guarantees of the first-order motion planner to second-order systems. If no such function is available, we propose an alternative control scheme ensuring that the error between the robot's velocity and the first-order motion planner converges to zero. The theoretical developments are supported by simulation results demonstrating the effectiveness of the proposed approaches.
comment: 13 pages, 7 figures
A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements
This study presents a physics-informed machine learning-based control method for nonlinear dynamic systems with highly noisy measurements. Existing data-driven control methods that use machine learning for system identification cannot effectively cope with highly noisy measurements, resulting in unstable control performance. To address this challenge, the present study extends current physics-informed machine learning capabilities for modeling nonlinear dynamics with control and integrates them into a model predictive control framework. To demonstrate the capability of the proposed method we test and validate with two noisy nonlinear dynamic systems: the chaotic Lorenz 3 system, and turning machine tool. Analysis of the results illustrate that the proposed method outperforms state-of-the-art benchmarks as measured by both modeling accuracy and control performance for nonlinear dynamic systems under high-noise conditions.
comment: We completely redesigned and rewrote this paper. It will be a completely different paper with different title, author list, and content
Optimizing Coverage in Convex Quadrilateral Regions with a Single UAV
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks is a promising solution for providing flexible, efficient coverage. This paper explores the optimal deployment of a single UAV to cover an arbitrary convex quadrilateral region, utilizing a directional antenna with a tiltable beam that produces an elliptical coverage footprint. We examine two distinct coverage scenarios: (i) the largest inscribed ellipse, which maximizes coverage within the quadrilateral while excluding the boundary, and (ii) the smallest circumscribed ellipse, ensuring complete coverage of the entire area. The study formulates an optimization framework that accounts for path loss, signal-to-noise ratio (SNR), and energy consumption to determine the optimal altitude of the UAV. By employing a simplified path loss model, we derive the altitude that minimizes maximum path loss, while also analyzing the impact of antenna directivity on maximizing the minimum SNR at the coverage boundary. Additionally, the UAV's energy consumption is evaluated, considering the power demands during hovering, forward flight, and vertical takeoff. Numerical simulations are presented to illustrate the trade-offs between coverage effectiveness, communication performance, and energy efficiency across various environmental conditions and antenna configurations.
A Control Barrier Function Candidate for Quadrotors with Limited Field of View
The problem of control based on vision measurements (bearings) has been amply studied in the literature; however, the problem of addressing the limits of the field of view of physical sensors has received relatively less attention (especially for agents with non-trivial dynamics). The technical challenge is that, as in most vision-based control approaches, a standard approach to the problem requires knowing the distance between cameras and observed features in the scene, which is not directly available. Instead, we present a solution based on a Control Barrier Function (CBF) approach that uses a splitting of the original differential constraint to effectively remove the dependence on the unknown measurement error. Compared to the current literature, our approach gives strong robustness guarantees against bounded distance estimation errors. We showcase the proposed solution with the numerical simulations of a double integrator and a quadrotor tracking a trajectory while keeping the corners of a rectangular gate in the camera field of view.
comment: 8 pages, conference paper
Quantum Reinforcement Learning-Based Two-Stage Unit Commitment Framework for Enhanced Power Systems Robustness
Unit commitment (UC) optimizes the start-up and shutdown schedules of generating units to meet load demand while minimizing costs. However, the increasing integration of renewable energy introduces uncertainties for real-time scheduling. Existing solutions face limitations both in modeling and algorithmic design. At the modeling level, they fail to incorporate widely adopted virtual power plants (VPPs) as flexibility resources, missing the opportunity to proactively mitigate potential real-time imbalances or ramping constraints through foresight-seeing decision-making. At the algorithmic level, existing probabilistic optimization, multi-stage approaches, and machine learning, face challenges in computational complexity and adaptability. To address these challenges, this study proposes a novel two-stage UC framework that incorporates foresight-seeing sequential decision-making in both day-ahead and real-time scheduling, leveraging VPPs as flexibility resources to proactively reserve capacity and ramping flexibility for upcoming renewable energy uncertainties over several hours. In particular, we develop quantum reinforcement learning (QRL) algorithms that integrate the foresight-seeing sequential decision-making and scalable computation advantages of deep reinforcement learning (DRL) with the parallel and high-efficiency search capabilities of quantum computing. Experimental results demonstrate that the proposed QRL-based approach outperforms in computational efficiency, real-time responsiveness, and solution quality.
Optimal Control of Grid-Interfacing Inverters With Current Magnitude Limits
Grid-interfacing inverters act as the interface between renewable resources and the electric grid, and have the potential to offer fast and programmable controls compared to synchronous generators. With this flexibility there has been significant research efforts into determining the best way to control these inverters. Inverters are limited in their maximum current output in order to protect semiconductor devices, presenting a nonlinear constraint that needs to be accounted for in their control algorithms. Existing approaches either simply saturate a controller that is designed for unconstrained systems, or assume small perturbations and linearize a saturated system. These approaches can lead to stability issues or limiting the control actions to be too conservative. In this paper, we directly focus on a nonlinear system that explicitly accounts for the saturation of the current magnitude. We use a Lyapunov stability approach to determine a stability condition for the system, guaranteeing that a class of controllers would be stabilizing if they satisfy a simple SDP condition. With this condition we fit a linear-feedback controller by sampling the output (offline) model predictive control problems. This learned controller has improved performances with existing designs.
comment: 6 pages, 6 figures, 1 table. Submitted to CDC'2024
Safe Control of Grid-Interfacing Inverters with Current Magnitude Limits
Grid-interfacing inverters allow renewable resources to be connected to the electric grid and offer fast and programmable control responses. However, inverters are subject to significant physical constraints. One such constraint is a current magnitude limit required to protect semiconductor devices. While many current limiting methods are available, they can often unpredictably alter the behavior of the inverter control during overcurrent events leading to instability or poor performance. In this paper, we present a safety filter approach to limit the current magnitude of inverters controlled as voltage sources. The safety filter problem is formulated with a control barrier function constraint that encodes the current magnitude limit. To ensure feasibility of the problem, we prove the existence of a safe linear controller for a specified reference. This approach allows for the desired voltage source behavior to be minimally altered while safely limiting the current output.
comment: 10 pages, 6 figures, Submitted to HICSS'58
Robotics
LLM+MAP: Bimanual Robot Task Planning using Large Language Models and Planning Domain Definition Language
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.
comment: Code and video are available at https://github.com/Kchu/LLM-MAP
Control the Soft Robot Arm with its Physical Twin
To exploit the compliant capabilities of soft robot arms we require controller which can exploit their physical capabilities. Teleoperation, leveraging a human in the loop, is a key step towards achieving more complex control strategies. Whilst teleoperation is widely used for rigid robots, for soft robots we require teleoperation methods where the configuration of the whole body is considered. We propose a method of using an identical 'physical twin', or demonstrator of the robot. This tendon robot can be back-driven, with the tendon lengths providing configuration perception, and enabling a direct mapping of tendon lengths for the execture. We demonstrate how this teleoperation across the entire configuration of the robot enables complex interactions with exploit the envrionment, such as squeezing into gaps. We also show how this method can generalize to robots which are a larger scale that the physical twin, and how, tuneability of the stiffness properties of the physical twin simplify its use.
Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at \href{https://lamour-rl.github.io/}{https://lamour-rl.github.io/}.
comment: 14 pages, 17 figures
GAA-TSO: Geometry-Aware Assisted Depth Completion for Transparent and Specular Objects
Transparent and specular objects are frequently encountered in daily life, factories, and laboratories. However, due to the unique optical properties, the depth information on these objects is usually incomplete and inaccurate, which poses significant challenges for downstream robotics tasks. Therefore, it is crucial to accurately restore the depth information of transparent and specular objects. Previous depth completion methods for these objects usually use RGB information as an additional channel of the depth image to perform depth prediction. Due to the poor-texture characteristics of transparent and specular objects, these methods that rely heavily on color information tend to generate structure-less depth predictions. Moreover, these 2D methods cannot effectively explore the 3D structure hidden in the depth channel, resulting in depth ambiguity. To this end, we propose a geometry-aware assisted depth completion method for transparent and specular objects, which focuses on exploring the 3D structural cues of the scene. Specifically, besides extracting 2D features from RGB-D input, we back-project the input depth to a point cloud and build the 3D branch to extract hierarchical scene-level 3D structural features. To exploit 3D geometric information, we design several gated cross-modal fusion modules to effectively propagate multi-level 3D geometric features to the image branch. In addition, we propose an adaptive correlation aggregation strategy to appropriately assign 3D features to the corresponding 2D features. Extensive experiments on ClearGrasp, OOD, TransCG, and STD datasets show that our method outperforms other state-of-the-art methods. We further demonstrate that our method significantly enhances the performance of downstream robotic grasping tasks.
Exploring psychophysiological methods for human-robot collaboration in construction
Psychophysiological methods present a promising approach to fostering enhanced mutual communication and collaboration between human workers and robots. Despite their potential, there is still limited understanding of how to effectively integrate psychophysiological methods to improve human-robot collaboration (HRC) in construction. This paper addresses this gap by critically reviewing the use of psychophysiological methods for HRC within construction environments, employing a concept-methodology-value philosophical framework. The analysis reveals that measuring brain activity using electroencephalography is the most widely used method, while most of the works are still at the proof of concept stage and lack empirical evidence. Three potential research directions were proposed: the integration of multi-modal psychophysiological signals, enriching the existing experimental settings for better generalizability, and leveraging advanced biocompatible or contactless technologies for effective signal detection. The findings should benefit subsequent exploration and practical applications of psychophysiological methods to enable better implementation of robots and support HRC in construction.
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
Behavioral Conflict Avoidance Between Humans and Quadruped Robots in Shared Environments
Nowadays, robots are increasingly operated in environments shared with humans, where conflicts between human and robot behaviors may compromise safety. This paper presents a proactive behavioral conflict avoidance framework based on the principle of adaptation to trends for quadruped robots that not only ensures the robot's safety but also minimizes interference with human activities. It can proactively avoid potential conflicts with approaching humans or other dynamic objects, whether the robot is stationary or in motion, then swiftly resume its tasks once the conflict subsides. An enhanced approach is proposed to achieve precise human detection and tracking on vibratory robot platform equipped with low-cost hybrid solid-state LiDAR. When potential conflict detected, the robot selects an avoidance point and executes an evasion maneuver before resuming its task. This approach contrasts with conventional methods that remain goal-driven, often resulting in aggressive behaviors, such as forcibly bypassing obstacles and causing conflicts or becoming stuck in deadlock scenarios. The selection of avoidance points is achieved by integrating static and dynamic obstacle to generate a potential field map. The robot then searches for feasible regions within this map and determines the optimal avoidance point using an evaluation function. Experimental results demonstrate that the framework significantly reduces interference with human activities, enhances the safety of both robots and persons.
comment: 7 pages, 9 figures. This work has been submitted to the IEEE for possible publication
Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
comment: 8 pages, 11 figures. This work has been submitted to the IEEE for possible publication
Targetless 6DoF Calibration of LiDAR and 2D Scanning Radar Based on Cylindrical Occupancy
Owing to the capability for reliable and all-weather long-range sensing, the fusion of LiDAR and Radar has been widely applied to autonomous vehicles for robust perception. In practical operation, well manually calibrated extrinsic parameters, which are crucial for the fusion of multi-modal sensors, may drift due to the vibration. To address this issue, we present a novel targetless calibration approach, termed LiRaCo, for the extrinsic 6DoF calibration of LiDAR and Radar sensors. Although both types of sensors can obtain geometric information, bridging the geometric correspondences between multi-modal data without any clues of explicit artificial markers is nontrivial, mainly due to the low vertical resolution of scanning Radar. To achieve the targetless calibration, LiRaCo leverages a spatial occupancy consistency between LiDAR point clouds and Radar scans in a common cylindrical representation, considering the increasing data sparsity with distance for both sensors. Specifically, LiRaCo expands the valid Radar scanned pixels into 3D occupancy grids to constrain LiDAR point clouds based on spatial consistency. Consequently, a cost function involving extrinsic calibration parameters is formulated based on the spatial overlap of 3D grids and LiDAR points. Extrinsic parameters are finally estimated by optimizing the cost function. Comprehensive quantitative and qualitative experiments on two real outdoor datasets with different LiDAR sensors demonstrate the feasibility and accuracy of the proposed method. The source code will be publicly available.
Extending Behavior Trees for Robotic Missions with Quality Requirements
Context and motivation: In recent years, behavior trees have gained growing interest within the robotics community as a specification and control switching mechanism for the different tasks that form a robotics mission. Problem: Given the rising complexity and prevalence of robotic systems, it is increasingly challenging and important for practitioners to design high-quality missions that meet certain qualities, for instance, to consider potential failures or mitigate safety risks. In software requirements engineering, quality or non-functional requirements have long been recognized as a key factor in system success. Currently, qualities are not represented in behavior tree models, which capture a robotic mission, making it difficult to assess the extent to which different mission components comply with those qualities. Principal ideas: In this paper, we propose an extension for behavior trees to have qualities and quality requirements explicitly represented in robotics missions. We provide a meta-model for the extension, develop a domain-specific language (DSL), and describe how we integrated our DSL in one of the most used languages in robotics for developing behavior trees, BehaviorTree.CPP. A preliminary evaluation of the implemented DSL shows promising results for the feasibility of our approach and the need for similar DSLs. Contribution: Our approach paves the way for incorporating qualities into the behavior model of robotics missions. This promotes early expression of qualities in robotics missions, and a better overview of missions components and their contribution to the satisfaction of quality concerns.
comment: 17 pages, 6 figures, Requirements Engineering: Foundation for Software Quality (REFSQ) 2025
Somatic Safety: An Embodied Approach Towards Safe Human-Robot Interaction
As robots enter the messy human world so the vital matter of safety takes on a fresh complexion with physical contact becoming inevitable and even desirable. We report on an artistic-exploration of how dancers, working as part of a multidisciplinary team, engaged in contact improvisation exercises to explore the opportunities and challenges of dancing with cobots. We reveal how they employed their honed bodily senses and physical skills to engage with the robots aesthetically and yet safely, interleaving improvised physical manipulations with reflections to grow their knowledge of how the robots behaved and felt. We introduce somatic safety, a holistic mind-body approach in which safety is learned, felt and enacted through bodily contact with robots in addition to being reasoned about. We conclude that robots need to be better designed for people to hold them and might recognise tacit safety cues among people.We propose that safety should be learned through iterative bodily experience interleaved with reflection.
comment: ACM/IEEE International Conference on Human-Robot Interaction (HRI'25)
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Rude Humans and Vengeful Robots: Examining Human Perceptions of Robot Retaliatory Intentions in Professional Settings
Humans and robots are increasingly working in personal and professional settings. In workplace settings, humans and robots may work together as colleagues, potentially leading to social expectations, or violation thereof. Extant research has primarily sought to understand social interactions and expectations in personal rather than professional settings, and none of these studies have examined negative outcomes arising from violations of social expectations. This paper reports the results of a 2x3 online experiment that used a unique first-person perspective video to immerse participants in a collaborative workplace setting. The results are nuanced and reveal that while robots are expected to act in accordance with social expectations despite human behavior, there are benefits for robots perceived as being the bigger person in the face of human rudeness. Theoretical and practical implications are provided which discuss the import of these findings for the design of social robots.
comment: This is the author version of the manuscript submitted to ACM Transactions on Human-Robot Interaction. The final version, if accepted, will be published by ACM and available via the ACM Digital Library. 12 pages, 1 figure, 2 tables
Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study
Wearable robotics for lower-limb assistance have become a pivotal area of research, aiming to enhance mobility for individuals with physical impairments or augment the performance of able-bodied users. Accurate and adaptive control systems are essential to ensure seamless interaction between the wearer and the robotic device, particularly when navigating diverse and dynamic terrains. Despite the recent advances in neural networks for time series analysis, no attempts have been directed towards the classification of ground conditions, categorized into five classes and subsequently determining the ramp's slope and stair's height. In this respect, this paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters across diverse terrains. All the models are trained on the publicly available CAMARGO 2021 dataset. IMU-only data equally or outperformed IMU+EMG inputs, promoting a cost-effective and efficient design. Indeeds, using three IMU sensors, the LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58{\deg}) and the CNN-LSTM a stair height (15.65 +- 7.40 mm) estimations. As a further contribution, SHAP analysis justified sensor reduction without performance loss, ensuring a lightweight setup. The system operates with ~2 ms inference time, supporting real-time applications. The code is code available at https://github.com/cosbidev/Human-Locomotion-Identification.
comment: 26 pages, 6 figures
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We consider the scenario where a servicer, equipped with a robot arm, must dislodge a client, a time-varying system composed of an underpowered jammed solar panel with a hybrid hinge system on a space station. Our approach leverages online set-membership identification to reduce the uncertainty to provide robust safety guarantees during dislodging despite bounded disturbances while balancing exploration and exploitation effectively in the parameter space. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in zero-gravity and gravity environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been submitted to IEEE Transactions on Control Systems Technology and is being reviewed
SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
DyWA: Dynamics-adaptive World Action Model for Generalizable Non-prehensile Manipulation
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
comment: Project Page:https://pku-epic.github.io/DyWA/
BEAC: Imitating Complex Exploration and Task-oriented Behaviors for Invisible Object Nonprehensile Manipulation
Applying imitation learning (IL) is challenging to nonprehensile manipulation tasks of invisible objects with partial observations, such as excavating buried rocks. The demonstrator must make such complex action decisions as exploring to find the object and task-oriented actions to complete the task while estimating its hidden state, perhaps causing inconsistent action demonstration and high cognitive load problems. For these problems, work in human cognitive science suggests that promoting the use of pre-designed, simple exploration rules for the demonstrator may alleviate the problems of action inconsistency and high cognitive load. Therefore, when performing imitation learning from demonstrations using such exploration rules, it is important to accurately imitate not only the demonstrator's task-oriented behavior but also his/her mode-switching behavior (exploratory or task-oriented behavior) under partial observation. Based on the above considerations, this paper proposes a novel imitation learning framework called Belief Exploration-Action Cloning (BEAC), which has a switching policy structure between a pre-designed exploration policy and a task-oriented action policy trained on the estimated belief states based on past history. In simulation and real robot experiments, we confirmed that our proposed method achieved the best task performance, higher mode and action prediction accuracies, while reducing the cognitive load in the demonstration indicated by a user study.
comment: 27 pages
Displacement-Actuated Continuum Robots: A Joint Space Abstraction
The displacement-actuated continuum robot as an abstraction has been shown as a key abstraction to significantly simplify and improve approaches due to its relation to the Clarke transform. To highlight further potentials, we revisit and extend this abstraction that features an increasingly popular length extension and an underutilized twisting. For each extension, the corresponding mapping from the joint values to the local coordinates of the manifold embedded in the joint spaces is provided. Each mapping is characterized by its compactness and linearity.
comment: 11 pages, 4 figures, 3 tables
LLM-Drone: Aerial Additive Manufacturing with Drones Planned Using Large Language Models
Additive manufacturing (AM) has transformed the production landscape by enabling the precision creation of complex geometries. However, AM faces limitations when applied to challenging environments, such as elevated surfaces and remote locations. Aerial additive manufacturing, facilitated by drones, presents a solution to these challenges. However, despite advances in methods for the planning, control, and localization of drones, the accuracy of these methods is insufficient to run traditional feedforward extrusion-based additive manufacturing processes (such as Fused Deposition Manufacturing). Recently, the emergence of LLMs has revolutionized various fields by introducing advanced semantic reasoning and real-time planning capabilities. This paper proposes the integration of LLMs with aerial additive manufacturing to assist with the planning and execution of construction tasks, granting greater flexibility and enabling a feed-back based design and construction system. Using the semantic understanding and adaptability of LLMs, we can overcome the limitations of drone based systems by dynamically generating and adapting building plans on site, ensuring efficient and accurate construction even in constrained environments. Our system is able to design and build structures given only a semantic prompt and has shown success in understanding the spatial environment despite tight planning constraints. Our method's feedback system enables replanning using the LLM if the manufacturing process encounters unforeseen errors, without requiring complicated heuristics or evaluation functions. Combining the semantic planning with automatic error correction, our system achieved a 90% build accuracy, converting simple text prompts to build structures.
comment: 26 Pages, 6 Figures
Shear-based Grasp Control for Multi-fingered Underactuated Tactile Robotic Hands
This paper presents a shear-based control scheme for grasping and manipulating delicate objects with a Pisa/IIT anthropomorphic SoftHand equipped with soft biomimetic tactile sensors on all five fingertips. These `microTac' tactile sensors are miniature versions of the TacTip vision-based tactile sensor, and can extract precise contact geometry and force information at each fingertip for use as feedback into a controller to modulate the grasp while a held object is manipulated. Using a parallel processing pipeline, we asynchronously capture tactile images and predict contact pose and force from multiple tactile sensors. Consistent pose and force models across all sensors are developed using supervised deep learning with transfer learning techniques. We then develop a grasp control framework that uses contact force feedback from all fingertip sensors simultaneously, allowing the hand to safely handle delicate objects even under external disturbances. This control framework is applied to several grasp-manipulation experiments: first, retaining a flexible cup in a grasp without crushing it under changes in object weight; second, a pouring task where the center of mass of the cup changes dynamically; and third, a tactile-driven leader-follower task where a human guides a held object. These manipulation tasks demonstrate more human-like dexterity with underactuated robotic hands by using fast reflexive control from tactile sensing.
comment: 16 pages. 10 figures. Accepted in IEEE Transactions on Robotics, Special Section on Tactile Robotics
Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping ICCV 2025
LiDARs provide accurate geometric measurements, making them valuable for ego-motion estimation and reconstruction tasks. Although its success, managing an accurate and lightweight representation of the environment still poses challenges. Both classic and NeRF-based solutions have to trade off accuracy over memory and processing times. In this work, we build on recent advancements in Gaussian Splatting methods to develop a novel LiDAR odometry and mapping pipeline that exclusively relies on Gaussian primitives for its scene representation. Leveraging spherical projection, we drive the refinement of the primitives uniquely from LiDAR measurements. Experiments show that our approach matches the current registration performance, while achieving SOTA results for mapping tasks with minimal GPU requirements. This efficiency makes it a strong candidate for further exploration and potential adoption in real-time robotics estimation tasks.
comment: submitted to ICCV 2025
TamedPUMA: safe and stable imitation learning with geometric fabrics
Using the language of dynamical systems, Imitation learning (IL) provides an intuitive and effective way of teaching stable task-space motions to robots with goal convergence. Yet, IL techniques are affected by serious limitations when it comes to ensuring safety and fulfillment of physical constraints. With this work, we solve this challenge via TamedPUMA, an IL algorithm augmented with a recent development in motion generation called geometric fabrics. As both the IL policy and geometric fabrics describe motions as artificial second-order dynamical systems, we propose two variations where IL provides a navigation policy for geometric fabrics. The result is a stable imitation learning strategy within which we can seamlessly blend geometrical constraints like collision avoidance and joint limits. Beyond providing a theoretical analysis, we demonstrate TamedPUMA with simulated and real-world tasks, including a 7-DoF manipulator.
comment: 14 pages (10+4), 1+3*5 figures, 1 table, preprint version of accepted paper at L4DC 2025
SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. Because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. While many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. Recently, Large Language Models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. However, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. We address these limitations via SPINE, an online planner for missions with incomplete mission specifications provided in natural language. The planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. Tasks are automatically validated for safety and refined online with new map observations. We evaluate SPINE in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. Compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Code released at: https://github.com/TencentARC/Moto Update: Added content related to real-world robot experiments and learning from human videos; Modified author information
A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
Incremental Learning for Robot Shared Autonomy
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and remain static after pretraining, limiting their ability to handle real-world variations. Even with extensive training data, unforeseen challenges--especially those that fundamentally alter task dynamics, such as unexpected obstacles or spatial constraints--can cause assistive policies to break down, leading to ineffective or unreliable assistance. To address this, we propose ILSA, an Incrementally Learned Shared Autonomy framework that continuously refines its assistive policy through user interactions, adapting to real-world challenges beyond the scope of pre-collected data. At the core of ILSA is a structured fine-tuning mechanism that enables continual improvement with each interaction by effectively integrating limited new interaction data while preserving prior knowledge, ensuring a balance between adaptation and generalization. A user study with 20 participants demonstrates ILSA's effectiveness, showing faster task completion and improved user experience compared to static alternatives. Code and videos are available at https://ilsa-robo.github.io/.
MultiNash-PF: A Particle Filtering Approach for Computing Multiple Local Generalized Nash Equilibria in Trajectory Games
Modern robotic systems frequently engage in complex multi-agent interactions, many of which are inherently multi-modal, meaning they can lead to multiple distinct outcomes. To interact effectively, robots must recognize the possible interaction modes and adapt to the one preferred by other agents. In this work, we propose an efficient algorithm for capturing the multimodality in multi-agent interactions. We leverage a game-theoretic planner to model interaction outcomes as equilibria where \emph{each equilibrium} corresponds to a distinct interaction \emph{mode}. We then develop an efficient algorithm to identify all the equilibria, allowing robots to reason about multiple interaction modes. More specifically, we formulate interactive planning as Constrained Potential Trajectory Games (CPTGs) and model interaction outcomes by local Generalized Nash equilibria (GNEs) of the game. CPTGs are a class of games for which a local GNE can be found by solving a single constrained optimal control problem where a potential function is minimized. We propose to integrate the potential game approach with implicit particle filtering, a sample-efficient method for non-convex trajectory optimization. We utilize implicit particle filtering to identify the coarse estimates of multiple local minimizers of the game's potential function. MultiNash-PF then refines these estimates with optimization solvers, obtaining different local GNEs. We show through numerical simulations that MultiNash-PF reduces computation time by up to 50\% compared to a baseline. We further demonstrate the effectiveness of our algorithm in real-world human-robot interaction scenarios, where it successfully accounts for the multi-modal nature of interactions and resolves potential conflicts in real-time.
Strategic Decision-Making in Multi-Agent Domains: A Weighted Constrained Potential Dynamic Game Approach
In interactive multi-agent settings, decision-making and planning are challenging mainly due to the agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving constrained dynamic games and determining the interaction outcome in the form of generalized Nash Equilibria (GNE) pose computational challenges due to the need for solving constrained coupled optimal control problems. In this paper, we address this challenge by proposing to leverage the special structure of many real-world multi-agent interactions. More specifically, our key idea is to leverage constrained dynamic potential games, which are games for which GNE can be found by solving a single constrained optimal control problem associated with minimizing the potential function. We argue that constrained dynamic potential games can effectively facilitate interactive decision-making in many multi-agent interactions. We will identify structures in realistic multi-agent interactive scenarios that can be transformed into weighted constrained potential dynamic games (WCPDGs). We will show that the GNE of the resulting WCPDG can be obtained by solving a single constrained optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies and show that we achieve significant improvements in solve time compared to state-of-the-art game solvers. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.
comment: in IEEE Transactions on Robotics 2025
SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots ICRA 25
Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, large-scale tactile sensor placed onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting tactile data on a humanoid robot, our system provides insights into human-robot social touch, and displays that the use of fabric based sensors could be a potential way of advancing the development of spHRI systems for more natural and effective communication.
comment: Accepted to ICRA 25. 8 pages, 8 figures
Discrete Policy: Learning Disentangled Action Space for Multi-Task Robotic Manipulation ICRA 2025
Learning visuomotor policy for multi-task robotic manipulation has been a long-standing challenge for the robotics community. The difficulty lies in the diversity of action space: typically, a goal can be accomplished in multiple ways, resulting in a multimodal action distribution for a single task. The complexity of action distribution escalates as the number of tasks increases. In this work, we propose \textbf{Discrete Policy}, a robot learning method for training universal agents capable of multi-task manipulation skills. Discrete Policy employs vector quantization to map action sequences into a discrete latent space, facilitating the learning of task-specific codes. These codes are then reconstructed into the action space conditioned on observations and language instruction. We evaluate our method on both simulation and multiple real-world embodiments, including both single-arm and bimanual robot settings. We demonstrate that our proposed Discrete Policy outperforms a well-established Diffusion Policy baseline and many state-of-the-art approaches, including ACT, Octo, and OpenVLA. For example, in a real-world multi-task training setting with five tasks, Discrete Policy achieves an average success rate that is 26\% higher than Diffusion Policy and 15\% higher than OpenVLA. As the number of tasks increases to 12, the performance gap between Discrete Policy and Diffusion Policy widens to 32.5\%, further showcasing the advantages of our approach. Our work empirically demonstrates that learning multi-task policies within the latent space is a vital step toward achieving general-purpose agents.
comment: Accept to ICRA 2025
SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
Bootstrapping Object-level Planning with Large Language Models ICRA 2025
We introduce a new method that extracts knowledge from a large language model (LLM) to produce object-level plans, which describe high-level changes to object state, and uses them to bootstrap task and motion planning (TAMP). Existing work uses LLMs to directly output task plans or generate goals in representations like PDDL. However, these methods fall short because they rely on the LLM to do the actual planning or output a hard-to-satisfy goal. Our approach instead extracts knowledge from an LLM in the form of plan schemas as an object-level representation called functional object-oriented networks (FOON), from which we automatically generate PDDL subgoals. Our method markedly outperforms alternative planning strategies in completing several pick-and-place tasks in simulation.
comment: Accepted to ICRA 2025; 11 pages (6 pages + 1 page references + 4 pages appendix); for demo videos, please see https://davidpaulius.github.io/olp_llm/
A Bayesian Modeling Framework for Estimation and Ground Segmentation of Cluttered Staircases
Autonomous robot navigation in complex environments requires robust perception as well as high-level scene understanding due to perceptual challenges, such as occlusions, and uncertainty introduced by robot movement. For example, a robot climbing a cluttered staircase can misinterpret clutter as a step, misrepresenting the state and compromising safety. This requires robust state estimation methods capable of inferring the underlying structure of the environment even from incomplete sensor data. In this paper, we introduce a novel method for robust state estimation of staircases. To address the challenge of perceiving occluded staircases extending beyond the robot's field-of-view, our approach combines an infinite-width staircase representation with a finite endpoint state to capture the overall staircase structure. This representation is integrated into a Bayesian inference framework to fuse noisy measurements enabling accurate estimation of staircase location even with partial observations and occlusions. Additionally, we present a segmentation algorithm that works in conjunction with the staircase estimation pipeline to accurately identify clutter-free regions on a staircase. Our method is extensively evaluated on real robot across diverse staircases, demonstrating significant improvements in estimation accuracy and segmentation performance compared to baseline approaches.
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
Global SLAM Using 5G ToA Integration: Performance Analysis with Unknown Base Stations and Loop Closure Alternatives
This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using both Aerolab indoor datasets with RGB-D cameras and the EuRoC MAV benchmark, complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across multiple SLAM configurations demonstrate that ToA integration enables consistent global positioning across all modes while maintaining local accuracy. For monocular configurations, ToA integration successfully resolves scale ambiguity and improves consistency. We further investigate scenarios with unknown base station positions and demonstrate that ToA measurements can effectively serve as an alternative to loop closure for drift correction. We also analyze how different geometric arrangements of base stations impact SLAM performance. Comparative analysis with state-of-the-art methods, including UWB-VO, confirms our approach's robustness even with lower measurement frequencies and sequential base station operation. The results validate that 5G ToA integration provides substantial benefits for global SLAM applications, particularly in challenging indoor environments where accurate positioning is critical.
Synthesizing multi-log grasp poses in cluttered environments
Multi-object grasping is a challenging task. It is important for energy and cost-efficient operation of industrial crane manipulators, such as those used to collect tree logs from the forest floor and on forest machines. In this work, we used synthetic data from physics simulations to explore how data-driven modeling can be used to infer multi-object grasp poses from images. We showed that convolutional neural networks can be trained specifically for synthesizing multi-object grasps. Using RGB-Depth images and instance segmentation masks as input, a U-Net model outputs grasp maps with the corresponding grapple orientation and opening width. Given an observation of a pile of logs, the model can be used to synthesize and rate the possible grasp poses and select the most suitable one, with the possibility to respect changing operational constraints such as lift capacity and reach. When tested on previously unseen data, the proposed model found successful grasp poses with an accuracy up to 96%.
comment: 21 pages, 14 figures
Set-membership target search and tracking within an unknown cluttered area using cooperating UAVs equipped with vision systems
This paper addresses the problem of target search and tracking using a fleet of cooperating UAVs evolving in some unknown region of interest containing an a priori unknown number of moving ground targets. Each drone is equipped with an embedded Computer Vision System (CVS), providing an image with labeled pixels and a depth map of the observed part of its environment. Moreover, a box containing the corresponding pixels in the image frame is available when a UAV identifies a target. Hypotheses regarding information provided by the pixel classification, depth map construction, and target identification algorithms are proposed to allow its exploitation by set-membership approaches. A set-membership target location estimator is developed using the information provided by the CVS. Each UAV evaluates sets guaranteed to contain the location of the identified targets and a set possibly containing the locations of targets still to be identified. Then, each UAV uses these sets to search and track targets cooperatively.
comment: This work has been submitted to Elsevier / ScienceDirect for possible publication
Efficient Training of Generalizable Visuomotor Policies via Control-Aware Augmentation
Improving generalization is one key challenge in embodied AI, where obtaining large-scale datasets across diverse scenarios is costly. Traditional weak augmentations, such as cropping and flipping, are insufficient for improving a model's performance in new environments. Existing data augmentation methods often disrupt task-relevant information in images, potentially degrading performance. To overcome these challenges, we introduce EAGLE, an efficient training framework for generalizable visuomotor policies that improves upon existing methods by (1) enhancing generalization by applying augmentation only to control-related regions identified through a self-supervised control-aware mask and (2) improving training stability and efficiency by distilling knowledge from an expert to a visuomotor student policy, which is then deployed to unseen environments without further fine-tuning. Comprehensive experiments on three domains, including the DMControl Generalization Benchmark, the enhanced Robot Manipulation Distraction Benchmark, and a long-sequential drawer-opening task, validate the effectiveness of our method.
Neuromorphic Attitude Estimation and Control
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight but is still challenging to train and deploy on real robots. To reap the maximal benefits from neuromorphic computing, it is necessary to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at 500Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone, the perception-to-control SNN tracks attitude commands with an average error of 3.0 degrees, compared to 2.7 degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
GAPartManip: A Large-scale Part-centric Dataset for Material-Agnostic Articulated Object Manipulation ICRA 2025
Effectively manipulating articulated objects in household scenarios is a crucial step toward achieving general embodied artificial intelligence. Mainstream research in 3D vision has primarily focused on manipulation through depth perception and pose detection. However, in real-world environments, these methods often face challenges due to imperfect depth perception, such as with transparent lids and reflective handles. Moreover, they generally lack the diversity in part-based interactions required for flexible and adaptable manipulation. To address these challenges, we introduced a large-scale part-centric dataset for articulated object manipulation that features both photo-realistic material randomization and detailed annotations of part-oriented, scene-level actionable interaction poses. We evaluated the effectiveness of our dataset by integrating it with several state-of-the-art methods for depth estimation and interaction pose prediction. Additionally, we proposed a novel modular framework that delivers superior and robust performance for generalizable articulated object manipulation. Our extensive experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction in both simulation and real-world scenarios. More information and demos can be found at: https://pku-epic.github.io/GAPartManip/.
comment: Accepted by ICRA 2025. Project page: https://pku-epic.github.io/GAPartManip/
HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views CVPR 2025
We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based TransFormer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc.
comment: 16 pages, 13 figures, 10 tables, Accepted to CVPR 2025
AlignBot: Aligning VLM-powered Customized Task Planning with User Reminders Through Fine-Tuning for Household Robots
This paper presents AlignBot, a novel framework designed to optimize VLM-powered customized task planning for household robots by effectively aligning with user reminders. In domestic settings, aligning task planning with user reminders poses significant challenges due to the limited quantity, diversity, and multimodal nature of the reminders. To address these challenges, AlignBot employs a fine-tuned LLaVA-7B model, functioning as an adapter for GPT-4o. This adapter model internalizes diverse forms of user reminders-such as personalized preferences, corrective guidance, and contextual assistance-into structured instruction-formatted cues that prompt GPT-4o in generating customized task plans. Additionally, AlignBot integrates a dynamic retrieval mechanism that selects task-relevant historical successes as prompts for GPT-4o, further enhancing task planning accuracy. To validate the effectiveness of AlignBot, experiments are conducted in real-world household environments, which are constructed within the laboratory to replicate typical household settings. A multimodal dataset with over 1,500 entries derived from volunteer reminders is used for training and evaluation. The results demonstrate that AlignBot significantly improves customized task planning, outperforming existing LLM- and VLM-powered planners by interpreting and aligning with user reminders, achieving 86.8% success rate compared to the vanilla GPT-4o baseline at 21.6%, reflecting a 65% improvement and over four times greater effectiveness. Supplementary materials are available at: https://yding25.com/AlignBot/
An Integrated Approach to Robotic Object Grasping and Manipulation
In response to the growing challenges of manual labor and efficiency in warehouse operations, Amazon has embarked on a significant transformation by incorporating robotics to assist with various tasks. While a substantial number of robots have been successfully deployed for tasks such as item transportation within warehouses, the complex process of object picking from shelves remains a significant challenge. This project addresses the issue by developing an innovative robotic system capable of autonomously fulfilling a simulated order by efficiently selecting specific items from shelves. A distinguishing feature of the proposed robotic system is its capacity to navigate the challenge of uncertain object positions within each bin of the shelf. The system is engineered to autonomously adapt its approach, employing strategies that enable it to efficiently locate and retrieve the desired items, even in the absence of pre-established knowledge about their placements.
comment: I am making big changes in the paper and continuing its further development with other instituition
KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems
Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.
Robotic In-Hand Manipulation for Large-Range Precise Object Movement: The RGMC Champion Solution
In-hand manipulation using multiple dexterous fingers is a critical robotic skill that can reduce the reliance on large arm motions, thereby saving space and energy. This letter focuses on in-grasp object movement, which refers to manipulating an object to a desired pose through only finger motions within a stable grasp. The key challenge lies in simultaneously achieving high precision and large-range movements while maintaining a constant stable grasp. To address this problem, we propose a simple and practical approach based on kinematic trajectory optimization with no need for pretraining or object geometries, which can be easily applied to novel objects in real-world scenarios. Adopting this approach, we won the championship for the in-hand manipulation track at the 9th Robotic Grasping and Manipulation Competition (RGMC) held at ICRA 2024. Implementation details, discussion, and further quantitative experimental results are presented in this letter, which aims to comprehensively evaluate our approach and share our key takeaways from the competition. Supplementary materials including video and code are available at https://rgmc-xl-team.github.io/ingrasp_manipulation .
comment: Accepted by RA-L. Project website: https://rgmc-xl-team.github.io/ingrasp_manipulation
Adver-City: Open-Source Multi-Modal Dataset for Collaborative Perception Under Adverse Weather Conditions
Adverse weather conditions pose a significant challenge to the widespread adoption of Autonomous Vehicles (AVs) by impacting sensors like LiDARs and cameras. Even though Collaborative Perception (CP) improves AV perception in difficult conditions, existing CP datasets lack adverse weather conditions. To address this, we introduce Adver-City, the first open-source synthetic CP dataset focused on adverse weather conditions. Simulated in CARLA with OpenCDA, it contains over 24 thousand frames, over 890 thousand annotations, and 110 unique scenarios across six different weather conditions: clear weather, soft rain, heavy rain, fog, foggy heavy rain and, for the first time in a synthetic CP dataset, glare. It has six object categories including pedestrians and cyclists, and uses data from vehicles and roadside units featuring LiDARs, RGB and semantic segmentation cameras, GNSS, and IMUs. Its scenarios, based on real crash reports, depict the most relevant road configurations for adverse weather and poor visibility conditions, varying in object density, with both dense and sparse scenes, allowing for novel testing conditions of CP models. Benchmarks run on the dataset show that weather conditions created challenging conditions for perception models, with CoBEVT scoring 58.30/52.44/38.90 (AP@30/50/70). The dataset, code and documentation are available at https://labs.cs.queensu.ca/quarrg/datasets/adver-city/.
comment: 13 pages
Electrostatic Clutches Enable Simultaneous Mechanical Multiplexing
Actuating robotic systems with multiple degrees of freedom (DoF) traditionally requires numerous motors, leading to increased size, weight, cost, and power consumption. Mechanical multiplexing offers a solution by enabling a single actuator to control multiple DoF. However, existing multiplexers have either been limited to electrically controlled time-based multiplexing that control one DoF at a time or have relied on mechanical switching to control multiple DoF simultaneously. There is a strong need for a system that can perform electrically controlled multiplexing for both time-based and simultaneous control of multiple DoF. This study introduces a novel electrostatic capstan clutch-based mechanical multiplexer that enables high-force, single-motor control of multiple DoF. Here, we show that our system achieves both single-input-single-output (SISO) and single-input-multipleoutput (SIMO) actuation, allowing bidirectional control and position holding with minimal power consumption. Each output can actuate a 22.24 N load, limited by clutch performance, up to 5 cm. The number of outputs and actuation length is currently limited by the length of the drive shaft. We demonstrate the integration of our system into a 4-DoF commercial robotic hand using a single motor. These findings show that electrostatic clutchbased multiplexing provides a scalable and energy-efficient design solution for high-DoF robotic platforms, opening new possibilities for lightweight and power-efficient actuation in robotics.
Physically-Feasible Reactive Synthesis for Terrain-Adaptive Locomotion via Trajectory Optimization and Symbolic Repair
We propose an integrated planning framework for quadrupedal locomotion over dynamically changing, unforeseen terrains. Existing approaches either rely on heuristics for instantaneous foothold selection--compromising safety and versatility--or solve expensive trajectory optimization problems with complex terrain features and long time horizons. In contrast, our framework leverages reactive synthesis to generate correct-by-construction controllers at the symbolic level, and mixed-integer convex programming (MICP) for dynamic and physically feasible footstep planning for each symbolic transition. We use a high-level manager to reduce the large state space in synthesis by incorporating local environment information, improving synthesis scalability. To handle specifications that cannot be met due to dynamic infeasibility, and to minimize costly MICP solves, we leverage a symbolic repair process to generate only necessary symbolic transitions. During online execution, re-running the MICP with real-world terrain data, along with runtime symbolic repair, bridges the gap between offline synthesis and online execution. We demonstrate, in simulation, our framework's capabilities to discover missing locomotion skills and react promptly in safety-critical environments, such as scattered stepping stones and rebars.
Understanding and Imitating Human-Robot Motion with Restricted Visual Fields
When working around humans, it is important to model their perception limitations in order to predict their behavior more accurately. In this work, we consider agents with a limited field of view, viewing range, and ability to miss objects within the viewing range (e.g., transparency). By considering the observation model independently from the motion policy, we can better predict the agent's behavior by considering these limitations and approximating them. We perform a user study where human operators navigate a cluttered scene while scanning the region for obstacles with a limited field of view and range. Using imitation learning, we show that a robot can adopt a human's strategy for observing an environment with limitations on observation and navigate with minimal collision with dynamic and static obstacles. We also show that this learned model helps it successfully navigate a physical hardware vehicle in real-time.
Multiagent Systems
On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms SC
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
Distributed Stochastic Zeroth-Order Optimization with Compressed Communication
The dual challenges of prohibitive communication overhead and the impracticality of gradient computation due to data privacy or black-box constraints in distributed systems motivate this work on communication-constrained gradient-free optimization. We propose a stochastic distributed zeroth-order algorithm (Com-DSZO) requiring only two function evaluations per iteration, integrated with general compression operators. Rigorous analysis establishes its sublinear convergence rate for both smooth and nonsmooth objectives, while explicitly elucidating the compression-convergence trade-off. Furthermore, we develop a variance-reduced variant (VR-Com-DSZO) under stochastic mini-batch feedback. The empirical algorithm performance are illustrated with numerical examples.
comment: 10 pages
AVA: Attentive VLM Agent for Mastering StarCraft II
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience. Traditional frameworks such as SMAC rely on abstract state representations that diverge significantly from human perception, limiting the ecological validity of agent behavior. Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay. The AVA architecture consists of three integrated components: (1) a vision-language model enhanced with specialized self-attention mechanisms for strategic unit targeting and battlefield assessment, (2) a retrieval-augmented generation system that leverages domain-specific StarCraft II knowledge to inform tactical decisions, and (3) a dynamic role-based task distribution system that enables coordinated multi-agent behavior. The experimental evaluation in our proposed AVACraft environment, which contains 21 multimodal StarCraft II scenarios, demonstrates that AVA powered by foundation models (specifically Qwen-VL and GPT-4o) can execute complex tactical maneuvers without explicit training, achieving comparable performance to traditional MARL methods that require substantial training iterations. This work establishes a foundation for developing human-aligned StarCraft II agents and advances the broader research agenda of multimodal game AI. Our implementation is available at https://github.com/camel-ai/VLM-Play-StarCraft2.
comment: Under Review
Systems and Control (CS)
Throughput Maximizing Takeoff Scheduling for eVTOL Vehicles in On-Demand Urban Air Mobility Systems
Urban Air Mobility (UAM) offers a solution to current traffic congestion by using electric Vertical Takeoff and Landing (eVTOL) vehicles to provide on-demand air mobility in urban areas. Effective traffic management is crucial for efficient operation of UAM systems, especially for high-demand scenarios. In this paper, we present a centralized framework for conflict-free takeoff scheduling of eVTOLs in on-demand UAM systems. Specifically, we provide a scheduling policy, called VertiSync, which jointly schedules UAM vehicles for servicing trip requests and rebalancing, subject to safety margins and energy requirements. We characterize the system-level throughput of VertiSync, which determines the demand threshold at which the average waiting time transitions from being stable to being increasing over time. We show that the proposed policy maximizes throughput for sufficiently large fleet size and if the UAM network has a certain symmetry property. We demonstrate the performance of VertiSync through a case study for the city of Los Angeles, and show that it significantly reduces average passenger waiting time compared to a first-come first-serve scheduling policy.
comment: 14 pages, 12 figures, 2 tables
Composable Uncertainty in Symmetric Monoidal Categories for Design Problems
Applied category theory often studies symmetric monoidal categories (SMCs) whose morphisms represent open systems. These structures naturally accommodate complex wiring patterns, leveraging (co)monoidal structures for splitting and merging wires, or compact closed structures for feedback. A key example is the compact closed SMC of design problems (DP), which enables a compositional approach to co-design in engineering. However, in practice, the systems of interest may not be fully known. Recently, Markov categories have emerged as a powerful framework for modeling uncertain processes. In this work, we demonstrate how to integrate this perspective into the study of open systems while preserving consistency with the underlying SMC structure. To this end, we employ the change-of-base construction for enriched categories, replacing the morphisms of a symmetric monoidal $\mathcal{V}$-category $\mathcal{C}$ with parametric maps $A \to \mathcal{C}(X,Y)$ in a Markov category induced by a symmetric monoidal monad. This results in a symmetric monoidal 2-category $N_*\mathcal{C}$ with the same objects as $\mathcal{C}$ and reparametrization 2-cells. By choosing different monads, we capture various types of uncertainty. The category underlying $\mathcal{C}$ embeds into $N_*\mathcal{C}$ via a strict symmetric monoidal functor, allowing (co)monoidal and compact closed structures to be transferred. Applied to DP, this construction leads to categories of practical relevance, such as parametrized design problems for optimization, and parametrized distributions of design problems for decision theory and Bayesian learning.
comment: 22 pages, 2 figures, submitted to Applied Category Theory 2025
Optimal Investment Portfolio of Thyristor- and IGBT-based Electrolysis Rectifiers in Utility-scale Renewable P2H Systems
Renewable power-to-hydrogen (ReP2H) systems require rectifiers to supply power to electrolyzers (ELZs). Two main types of rectifiers, insulated-gate bipolar transistor rectifiers (IGBT-Rs) and thyristor rectifiers (TRs), offer distinct tradeoffs. IGBT-Rs provide flexible reactive power control but are costly, whereas TRs are more affordable with lower power loss but consume a large amount of uncontrollable reactive power. A mixed configuration of rectifiers in utility-scale ReP2H systems could achieve an decent tradeoff and increase overall profitability. To explore this potential, this paper proposes an optimal investment portfolio model. First, we model and compare the active and reactive power characteristics of ELZs powered by TRs and IGBT-Rs. Second, we consider the investment of ELZs, rectifiers, and var resources and coordinate the operation of renewables, energy storage, var resources, and the on-off switching and load allocation of multiple ELZs. Subsequently, a two-stage stochastic programming (SP) model based on weighted information gap decision theory (W-IGDT) is developed to address the uncertainties of the renewable power and hydrogen price, and we apply the progressive hedging (PH) algorithm to accelerate its solution. Case studies demonstrate that optimal rectifier configurations increase revenue by at most 2.56% compared with using only TRs or IGBT-Rs, as well as those in existing projects. Under the optimal portfolio, reactive power compensation investment is nearly eliminated, with a preferred TR-to-IGBT-R ratio of 3:1.
GraFIT: A toolbox for fast and accurate frequency response identification in Gravitational Wave Detectors
Frequency response function (FRF) measurements are widely used in Gravitational Wave (GW) detectors, e.g., for the design of controllers, calibrating signals and diagnostic problems with system dynamics. The aim of this paper is to present GraFIT: a toolbox that enables fast, inexpensive, and accurate identification of FRF measurements for GW detectors compared to the commonly used approaches, including common spectral analysis techniques. The toolbox consists of a single function to estimate the frequency response function for both open-loop and closed-loop systems and for arbitrary input and output dimensions. The toolbox is validated on two experimental case studies of the Virgo detector, illustrating more than a factor 3 reduction in standard deviation of the estimate for the same measurement times, and comparable standard deviations with up to 10 times less data for the new method with respect to the currently implemented Spectral Analysis method.
EVSOAR: Security Orchestration, Automation and Response via EV Charging Stations
Vehicle cybersecurity has emerged as a critical concern, driven by the innovation in the automotive industry, e.g., automomous, electric, or connnected vehicles. Current efforts to address these challenges are constrained by the limited computational resources of vehicles and the reliance on connected infrastructures. This motivated the foundation of Vehicle Security Operations Centers (VSOCs) that extend IT-based Security Operations Centers (SOCs) to cover the entire automotive ecosystem, both the in-vehicle and off-vehicle scopes. Security Orchestration, Automation, and Response (SOAR) tools are considered key for impelementing an effective cybersecurity solution. However, existing state-of-the-art solutions depend on infrastructure networks such as 4G, 5G, and WiFi, which often face scalability and congestion issues. To address these limitations, we propose a novel SOAR architecture EVSOAR that leverages the EV charging stations for connectivity and computing to enhance vehicle cybersecurity. Our EV-specific SOAR architecture enables real-time analysis and automated responses to cybersecurity threats closer to the EV, reducing the cellular latency, bandwidth, and interference limitations. Our experimental results demonstrate a significant improvement in latency, stability, and scalability through the infrastructure and the capacity to deploy computationally intensive applications, that are otherwise infeasible within the resource constraints of individual vehicles.
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We consider the scenario where a servicer, equipped with a robot arm, must dislodge a client, a time-varying system composed of an underpowered jammed solar panel with a hybrid hinge system on a space station. Our approach leverages online set-membership identification to reduce the uncertainty to provide robust safety guarantees during dislodging despite bounded disturbances while balancing exploration and exploitation effectively in the parameter space. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in zero-gravity and gravity environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been submitted to IEEE Transactions on Control Systems Technology and is being reviewed
One-Point Residual Feedback Algorithms for Distributed Online Convex and Non-convex Optimization
This paper mainly addresses the distributed online optimization problem where the local objective functions are assumed to be convex or non-convex. First, the distributed algorithms are proposed for the convex and non-convex situations, where the one-point residual feedback technology is introduced to estimate gradient of local objective functions. Then the regret bounds of the proposed algorithms are derived respectively under the assumption that the local objective functions are Lipschitz or smooth, which implies that the regrets are sublinear. Finally, we give two numerical examples of distributed convex optimization and distributed resources allocation problem to illustrate the effectiveness of the proposed algorithm.
Federated Digital Twin Construction via Distributed Sensing: A Game-Theoretic Online Optimization with Overlapping Coalitions
In this paper, we propose a novel federated framework for constructing the digital twin (DT) model, referring to a living and self-evolving visualization model empowered by artificial intelligence, enabled by distributed sensing under edge-cloud collaboration. In this framework, the DT model to be built at the cloud is regarded as a global one being split into and integrating from multiple functional components, i.e., partial-DTs, created at various edge servers (ESs) using feature data collected by associated sensors. Considering time-varying DT evolutions and heterogeneities among partial-DTs, we formulate an online problem that jointly and dynamically optimizes partial-DT assignments from the cloud to ESs, ES-sensor associations for partial-DT creation, and as well as computation and communication resource allocations for global-DT integration. The problem aims to maximize the constructed DT's model quality while minimizing all induced costs, including energy consumption and configuration costs, in long runs. To this end, we first transform the original problem into an equivalent hierarchical game with an upper-layer two-sided matching game and a lower-layer overlapping coalition formation game. After analyzing these games in detail, we apply the Gale-Shapley algorithm and particularly develop a switch rules-based overlapping coalition formation algorithm to obtain short-term equilibria of upper-layer and lower-layer subgames, respectively. Then, we design a deep reinforcement learning-based solution, called DMO, to extend the result into a long-term equilibrium of the hierarchical game, thereby producing the solution to the original problem. Simulations show the effectiveness of the introduced framework, and demonstrate the superiority of the proposed solution over counterparts.
System Identification Under Bounded Noise: Optimal Rates Beyond Least Squares
System identification is a fundamental problem in control and learning, particularly in high-stakes applications where data efficiency is critical. Classical approaches, such as the ordinary least squares estimator (OLS), achieve an $O(1/\sqrt{T})$ convergence rate under Gaussian noise assumptions, where $T$ is the number of samples. This rate has been shown to match the lower bound. However, in many practical scenarios, noise is known to be bounded, opening the possibility of improving sample complexity. In this work, we establish the minimax lower bound for system identification under bounded noise, proving that the $O(1/T)$ convergence rate is indeed optimal. We further demonstrate that OLS remains limited to an {$\Omega(1/\sqrt{T})$} convergence rate, making it fundamentally suboptimal in the presence of bounded noise. Finally, we instantiate two natural variations of OLS that obtain the optimal sample complexity.
Physics-Informed Deep B-Spline Networks for Dynamical Systems
Physics-informed machine learning provides an approach to combining data and governing physics laws for solving complex partial differential equations (PDEs). However, efficiently solving PDEs with varying parameters and changing initial conditions and boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. We propose a hybrid framework that uses a neural network to learn B-spline control points to approximate solutions to PDEs with varying system and ICBC parameters. The proposed network can be trained efficiently as one can directly specify ICBCs without imposing losses, calculate physics-informed loss functions through analytical formulas, and requires only learning the weights of B-spline functions as opposed to both weights and basis as in traditional neural operator learning methods. We provide theoretical guarantees that the proposed B-spline networks serve as universal approximators for the set of solutions of PDEs with varying ICBCs under mild conditions and establish bounds on the generalization errors in physics-informed learning. We also demonstrate in experiments that the proposed B-spline network can solve problems with discontinuous ICBCs and outperforms existing methods, and is able to learn solutions of 3D dynamics with diverse initial conditions.
Stabilizing Linear Systems under Partial Observability: Sample Complexity and Fundamental Limits
We study the problem of stabilizing an unknown partially observable linear time-invariant (LTI) system. For fully observable systems, leveraging an unstable/stable subspace decomposition approach, state-of-art sample complexity is independent from system dimension $n$ and only scales with respect to the dimension of the unstable subspace. However, it remains open whether such sample complexity can be achieved for partially observable systems because such systems do not admit a uniquely identifiable unstable subspace. In this paper, we propose LTS-P, a novel technique that leverages compressed singular value decomposition (SVD) on the ''lifted'' Hankel matrix to estimate the unstable subsystem up to an unknown transformation. Then, we design a stabilizing controller that integrates a robust stabilizing controller for the unstable mode and a small-gain-type assumption on the stable subspace. We show that LTS-P stabilizes unknown partially observable LTI systems with state-of-the-art sample complexity that is dimension-free and only scales with the number of unstable modes, which significantly reduces data requirements for high-dimensional systems with many stable modes.
Distributed Consensus Optimization with Consensus ALADIN
TThe paper proposes the Consensus Augmented Lagrange Alternating Direction Inexact Newton (Consensus ALADIN) algorithm, a novel approach for solving distributed consensus optimization problems (DC). Consensus ALADIN allows each agent to independently solve its own nonlinear programming problem while coordinating with other agents by solving a consensus quadratic programming (QP) problem. Building on this, we propose Broyden-Fletcher-Goldfarb-Shanno (BFGS) Consensus ALADIN, a communication-and-computation-efficient Consensus ALADIN.BFGS Consensus ALADIN improves communication efficiency through BFGS approximation techniques and enhances computational efficiency by deriving a closed form for the consensus QP problem. Additionally, by replacing the BFGS approximation with a scaled identity matrix, we develop Reduced Consensus ALADIN, a more computationally efficient variant. We establish the convergence theory for Consensus ALADIN and demonstrate its effectiveness through application to a non-convex sensor allocation problem.
A robust mechanical sensorless control strategy for active rectification of small wind turbines
This article proposes a mechanical sensorless control strategy for the synchronous rectification of small wind turbines equipped with a surface-mounted Permanent Magnet Synchronous Generator (PMSG). By means of Lyapunov theory, the Global Asymptotic Stability (GAS) of the closed loop system is proven. It allows the use of a classical Sliding Mode Observer (SMO) to remove the mechanical sensor in the control loop despite uncertainties on the resistance and inductance parameters. The analysis of the equilibrium points have made it possible to propose an analytic model of the angular misalignment between the true and the observer rotating frames, responsible for current tracking errors. Experimental tests on a wind turbine emulator show that despite large errors on the the resistance and inductance parameters, the impact on the energy harvest is low, proving that the strategy's performance is robust to high uncertainties.
Electric Vehicle Integration using Large-Scale Combined Transmission and Distribution Grid Models
In this paper, we propose a unifying co-simulation framework integrating transportation demand, grid assets, land use, demographics, and emissions to optimally accelerate electric vehicle (EV) development as well as measure the impact of EV integration. 96 urban and long-haul truck charging demand simulations were developed and integrated into a combined transmission and distribution (T&D) simulation, encompassing the Houston/Dallas/Fort Worth area. The T&D scenarios are then used to develop cost optimization strategies to determine optimal placement and sizing of truck charging infrastructure that minimize infrastructure costs.
comment: This work has been submitted to the IEEE for possible publication
The Impedance Space: A Look at Mechanical Impedance Ellipses in 3D
This paper introduces a novel 3D graphical representation of mechanical impedance, named impedance space, to enhance the analysis of the dynamic behavior of compliant systems. This approach addresses the limitations of existing 2D graphical methods by associating the impedance control parameters with linear transformations to plot a parametric 3D ellipse, for a known oscillatory input. The well-known 2D impedance ellipses are shown to be particular projections of this 3D ellipse. Experimental results demonstrate the effectiveness of the proposed representation.
comment: 6 pages, 7 figures
A Predictive Services Architecture for Efficient Airspace Operations
Predicting air traffic congestion and flow management is essential for airlines and Air Navigation Service Providers (ANSP) to enhance operational efficiency. Accurate estimates of future airport capacity and airspace density are vital for better airspace management, reducing air traffic controller workload and fuel consumption, ultimately promoting sustainable aviation. While existing literature has addressed these challenges, data management and query processing remain complex due to the vast volume of high-rate air traffic data. Many analytics use cases require a common pre-processing infrastructure, as ad-hoc approaches are insufficient. Additionally, linear prediction models often fall short, necessitating more advanced techniques. This paper presents a data processing and predictive services architecture that ingests large, uncorrelated, and noisy streaming data to forecast future airspace system states. The system continuously collects raw data, periodically compresses it, and stores it in NoSQL databases for efficient query processing. For prediction, the system learns from historical traffic by extracting key features such as airport arrival and departure events, sector boundary crossings, weather parameters, and other air traffic data. These features are input into various regression models, including linear, non-linear, and ensemble models, with the best-performing model selected for predictions. We evaluate this infrastructure across three prediction use cases in the US National Airspace System (NAS) and a segment of European airspace, using extensive real operations data, confirming that our system can predict future system states efficiently and accurately.
Optimization over Trained Neural Networks: Difference-of-Convex Algorithm and Application to Data Center Scheduling
When solving decision-making problems with mathematical optimization, some constraints or objectives may lack analytic expressions but can be approximated from data. When an approximation is made by neural networks, the underlying problem becomes optimization over trained neural networks. Despite recent improvements with cutting planes, relaxations, and heuristics, the problem remains difficult to solve in practice. We propose a new solution based on a bilinear problem reformulation that penalizes ReLU constraints in the objective function. This reformulation makes the problem amenable to efficient difference-of-convex algorithms (DCA), for which we propose a principled approach to penalty selection that facilitates convergence to stationary points of the original problem. We apply the DCA to the problem of the least-cost allocation of data center electricity demand in a power grid, reporting significant savings in congested cases.
comment: 6 pages, 4 figures, conference
Sharp Hybrid Zonotopes: Set Operations and the Reformulation-linearization Technique
Mixed integer set representations, and specifically hybrid zonotopes, have enabled new techniques for reachability and verification of nonlinear and hybrid systems. Mixed-integer sets which have the property that their convex relaxation is equal to their convex hull are said to be sharp. This property allows the convex hull to be computed with minimal overhead, and is known to be important for improving the convergence rates of mixed-integer optimization algorithms that rely on convex relaxations. This paper examines methods for formulating sharp hybrid zonotopes and provides sharpness-preserving methods for performing several key set operations. The paper then shows how the reformulation-linearization technique can be applied to create a sharp realization of a hybrid zonotope that is initially not sharp. A numerical example applies this technique to find the convex hull of a level set of a feedforward ReLU neural network.
Stabilizing NMPC Approaches for Underactuated Mechanical Systems on the SE(3) Manifold
This paper addresses the motion control problem for underactuated mechanical systems with full attitude control and one translational force input to manage the six degrees of freedom involved in the three-dimensional Euclidean space. These systems are often classified as second-order nonholonomic due to their completely nonintegrable acceleration constraints. To tackle this complex control problem, we propose two nonlinear model predictive control (NMPC) schemes that ensure closed-loop stability and recursive feasibility without terminal conditions. The system dynamics are modeled on the SE(3) manifold for a globally and unique description of rigid body configurations. One NMPC scheme also aims to reduce mission time as an economic criterion. The controllers' effectiveness is validated through numerical experiments on a quadrotor UAV.
comment: This is a preprint submitted to Automatica
TamedPUMA: safe and stable imitation learning with geometric fabrics
Using the language of dynamical systems, Imitation learning (IL) provides an intuitive and effective way of teaching stable task-space motions to robots with goal convergence. Yet, IL techniques are affected by serious limitations when it comes to ensuring safety and fulfillment of physical constraints. With this work, we solve this challenge via TamedPUMA, an IL algorithm augmented with a recent development in motion generation called geometric fabrics. As both the IL policy and geometric fabrics describe motions as artificial second-order dynamical systems, we propose two variations where IL provides a navigation policy for geometric fabrics. The result is a stable imitation learning strategy within which we can seamlessly blend geometrical constraints like collision avoidance and joint limits. Beyond providing a theoretical analysis, we demonstrate TamedPUMA with simulated and real-world tasks, including a 7-DoF manipulator.
comment: 14 pages (10+4), 1+3*5 figures, 1 table, preprint version of accepted paper at L4DC 2025
Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
comment: 8 pages, 11 figures. This work has been submitted to the IEEE for possible publication
SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
Sparse Actuation for LPV Systems with Full-State Feedback in $\mathcal{H}_2/\mathcal{H}_\infty$ Framework
This paper addresses the sparse actuation problem for nonlinear systems represented in the Linear Parameter-Varying (LPV) form. We propose a convex optimization framework that concurrently determines actuator magnitude limits and the state-feedback law that guarantees a user-specified closed-loop performance in the $\mathcal{H}_2/\mathcal{H}_\infty$ sense. We also demonstrate that sparse actuation is achieved when the actuator magnitude-limits are minimized in the $l_1$ sense. This is the first paper that addresses this problem for LPV systems. The formulation is demonstrated in a vibration control problem for a flexible wing.
comment: Submitted to American Control Conference 2025
A Unified Stability Analysis of Safety-Critical Control using Multiple Control Barrier Functions
Ensuring liveness and safety of autonomous and cyber-physical systems remains a fundamental challenge, particularly when multiple safety constraints are present. This letter advances the theoretical foundations of safety-filter Quadratic Programs (QP) and Control Lyapunov Function (CLF)-Control Barrier Function (CBF) controllers by establishing a unified analytical framework for studying their stability properties. We derive sufficient feasibility conditions for QPs with multiple CBFs and formally characterize the conditions leading to undesirable equilibrium points at possible intersecting safe set boundaries. Additionally, we introduce a stability criterion for equilibrium points, providing a systematic approach to identifying conditions under which they can be destabilized or eliminated. Our analysis extends prior theoretical results, deepening the understanding of the conditions of feasibility and stability of CBF-based safety filters and the CLF-CBF QP framework.
comment: Submitted to LCSS-CDC2025. Under review
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
Game Theory in Formula 1: Multi-agent Physical and Strategical Interactions
This paper presents an optimization framework to model Formula 1 racing dynamics, where multiple cars interact physically and strategically. Aerodynamic wake effects, trajectory optimization, and energy management are integrated by means of physical models. We describe the minimum lap time problem with two agents as either a Nash or a Stackelberg game, and by employing the Karush-Kuhn-Tucker conditions during the problem formulation, we recover the structure of a nonlinear program. In addition, we introduce an algorithm to refine local Stackelberg solutions, using the Nash costs as upper bounds. The resulting strategies are analyzed through case studies. We examine the impact of slipstreaming on trajectory selection in corners, straights, and high-speed sections, while also identifying optimal overtaking locations based on energy allocation strategies. Exploiting the structural similarities of the game formulations, we are able to compare symmetric and hierarchical strategies to analyze competitive racing dynamics. By incorporating a physically accurate interaction model and accounting for the optimal responses of competing agents, our approach reveals typical Formula 1 strategic behaviors. The proposed methodology closes the gap between theoretical game theory and real-world racing, with potential applications in motorsport engineering and autonomous racing.
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Continuous-Time Online Distributed Seeking for Generalized Nash Equilibrium of Nonmonotone Online Game
This paper mainly investigates a class of distributed generalized Nash equilibrium (GNE) seeking problems for online nonmonotone game with time-varying coupling inequality constraints. Based on a time-varying control gain, a novel continuous-time distributed GNE seeking algorithm is proposed, which realizes the constant regret bound and sublinear fit bound, matching those of the criteria for online optimization problems. Furthermore, to reduce unnecessary communication among players, a dynamic event-triggered mechanism involving internal variables is introduced into the distributed GNE seeking algorithm, while the constant regret bound and sublinear fit bound are still achieved. Also, the Zeno behavior is strictly prohibited. Finally, a numerical example is given to demonstrate the validity of the theoretical results.
comment: This work has been submitted to the lEEE for possible publication
Knowledge Transfer based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis
A faster response with commendable accuracy in intelligent systems is essential for the reliability and smooth operations of industrial machines. Two main challenges affect the design of such intelligent systems: (i) the selection of a suitable model and (ii) domain adaptation if there is a continuous change in operating conditions. Therefore, we propose an evolutionary Net2Net transformation (EvoN2N) that finds the best suitable DNN architecture with limited availability of labeled data samples. Net2Net transformation-based quick learning algorithm has been used in the evolutionary framework of Non-dominated sorting genetic algorithm II to obtain the best DNN architecture. Net2Net transformation-based quick learning algorithm uses the concept of knowledge transfer from one generation to the next for faster fitness evaluation. The proposed framework can obtain the best model for intelligent fault diagnosis without a long and time-consuming search process. The proposed framework has been validated on the Case Western Reserve University dataset, the Paderborn University dataset, and the gearbox fault detection dataset under different operating conditions. The best models obtained are capable of demonstrating an excellent diagnostic performance and classification accuracy of almost up to 100% for most of the operating conditions.
comment: Submitted to IEEE Transactions on Sustainable Computing
Efficient implementation of MPC for tracking using ADMM by decoupling its semi-banded structure
Model Predictive Control (MPC) for tracking formulation presents numerous advantages compared to standard MPC, such as a larger domain of attraction and recursive feasibility even when abrupt changes in the reference are produced. As a drawback, it includes some extra decision variables in its related optimization problem, leading to a semi-banded structure that differs from the banded structure encountered in standard MPC. This semi-banded structure prevents the direct use of the efficient algorithms available for banded problems. To address this issue, we present an algorithm based on the alternating direction method of multipliers that explicitly takes advantage of the underlying semi-banded structure of the MPC for tracking.
Set-membership target search and tracking within an unknown cluttered area using cooperating UAVs equipped with vision systems
This paper addresses the problem of target search and tracking using a fleet of cooperating UAVs evolving in some unknown region of interest containing an a priori unknown number of moving ground targets. Each drone is equipped with an embedded Computer Vision System (CVS), providing an image with labeled pixels and a depth map of the observed part of its environment. Moreover, a box containing the corresponding pixels in the image frame is available when a UAV identifies a target. Hypotheses regarding information provided by the pixel classification, depth map construction, and target identification algorithms are proposed to allow its exploitation by set-membership approaches. A set-membership target location estimator is developed using the information provided by the CVS. Each UAV evaluates sets guaranteed to contain the location of the identified targets and a set possibly containing the locations of targets still to be identified. Then, each UAV uses these sets to search and track targets cooperatively.
comment: This work has been submitted to Elsevier / ScienceDirect for possible publication
Arbitrary Waveform Generated Metasurface: A New Paradigm for Direct Modulation and Beamforming Decoupling
Information Metasurface, also known as reconfigurable intelligent surface (RIS) has gained significant attention owing to its impressive abilities in electromagnetic (EM) wave manipulation with simple structures. Numerous studies focus on achieving efficient and versatile information transmission using RIS across various fields like wireless communication, radar detection, integrated sensing, and communications, among others. Previous studies demonstrate diverse approaches to achieve reflection modulation by utilizing the superposition of the quantified reflection coefficient (RC) of each unit but suffer from the computing complexity of codebook sequence, the safety of communication, and the flexibility of modulation. To address these challenges, we introduce a novel concept of information metasurface, namely AWG-RIS, which is capable of independently producing arbitrary baseband waveforms and beam patterns through a design that decouples magnitude and phase, without changing the beam pattern. The AWG-RIS functions as a reflection mixer, directly embedding the intended signal into the incoming EM waves. Subsequently, we developed an analysis framework and introduced the waveform factor and beamforming factor into the new model, offering theoretical support for the transition from the control signal to the outgoing electromagnetic wave. Additionally, we unveil the world's first prototype showcasing passive arbitrary waveform generation while maintaining the beam pattern unaltered. Leveraging the decoupling of direct modulation and beamforming, we explore additional applications in several domains relative to traditional RISs. Finally, we present experiments that confirm the generation of arbitrary waveforms and particular spectrograms.
comment: The new version of this paper (i.e., arXiv:2411.01863v3) has been already posted whose content can cover this old version
A Greedy Quantum Route-Generation Algorithm
Routing and scheduling problems with time windows have long been important optimization problems for logistics and planning. Many classical heuristics and exact methods exist for such problems. However, there are no satisfactory methods for generating routes using quantum computing (QC), for mainly two reasons: inequality constraints, and the trade-off of feasibility and solution quality. Inequality constraints are typically handled using slack variables; and feasible solutions are found by filtering samples. These challenges are amplified in the presence of noise inherent in QC. Here, we propose a greedy algorithm that generates routes by using information from all samples obtained from the quantum computer. By noticing the relationship between qubits in our formulation as a directed acyclic graph (DAG), we designed an algorithm that adaptively constructs a feasible solution. We prove its convergence to a feasible solution, and illustrate its efficacy by solving the Fleet Sizing Vehicle Routing Problem with Time Windows (FSVRPTW). Our computational results show that this method obtains a lower objective value than the current state-of-the-art annealing approaches, both classical and hybrid, for the same amount of time using D-Wave Hybrid Solvers. We also show its robustness to noise on D-Wave Advantage2 through computational results as compared to the filtering approach on DWaveSampler, even when the filtering approach is given a longer annealing time, and a larger sample size.
Electrostatic Clutches Enable Simultaneous Mechanical Multiplexing
Actuating robotic systems with multiple degrees of freedom (DoF) traditionally requires numerous motors, leading to increased size, weight, cost, and power consumption. Mechanical multiplexing offers a solution by enabling a single actuator to control multiple DoF. However, existing multiplexers have either been limited to electrically controlled time-based multiplexing that control one DoF at a time or have relied on mechanical switching to control multiple DoF simultaneously. There is a strong need for a system that can perform electrically controlled multiplexing for both time-based and simultaneous control of multiple DoF. This study introduces a novel electrostatic capstan clutch-based mechanical multiplexer that enables high-force, single-motor control of multiple DoF. Here, we show that our system achieves both single-input-single-output (SISO) and single-input-multipleoutput (SIMO) actuation, allowing bidirectional control and position holding with minimal power consumption. Each output can actuate a 22.24 N load, limited by clutch performance, up to 5 cm. The number of outputs and actuation length is currently limited by the length of the drive shaft. We demonstrate the integration of our system into a 4-DoF commercial robotic hand using a single motor. These findings show that electrostatic clutchbased multiplexing provides a scalable and energy-efficient design solution for high-DoF robotic platforms, opening new possibilities for lightweight and power-efficient actuation in robotics.
Safe Gradient Flow for Bilevel Optimization
Bilevel optimization is a key framework in hierarchical decision-making, where one problem is embedded within the constraints of another. In this work, we propose a control-theoretic approach to solving bilevel optimization problems. Our method consists of two components: a gradient flow mechanism to minimize the upper-level objective and a safety filter to enforce the constraints imposed by the lower-level problem. Together, these components form a safe gradient flow that solves the bilevel problem in a single loop. To improve scalability with respect to the lower-level problem's dimensions, we introduce a relaxed formulation and design a compact variant of the safe gradient flow. This variant minimizes the upper-level objective while ensuring the lower-level decision variable remains within a user-defined suboptimality. Using Lyapunov analysis, we establish convergence guarantees for the dynamics, proving that they converge to a neighborhood of the optimal solution. Numerical experiments further validate the effectiveness of the proposed approaches. Our contributions provide both theoretical insights and practical tools for efficiently solving bilevel optimization problems.
comment: 2025 American Control Conference (ACC)
Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-context Learning
Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and telecom industry. This work considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM's inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning task offloading method can achieve satisfactory generation service quality without dedicated model training or fine-tuning.
comment: This paper has been accepted by IEEE Wireless Communications Letters
Non-overshooting continuous in convergence sliding mode control of second-order systems
This paper proposes a novel nonlinear sliding mode state feedback controller for perturbed second-order systems. In analogy to a linear proportional-derivative (PD) feedback control, the proposed nonlinear scheme uses the output of interest and its time derivative. The control has only one free design parameter, and the closed-loop system is shown to possess uniform boundedness and finite-time convergence of trajectories in the presence of matched disturbances. We derive a strict Lyapunov function for the closed-loop control system with a bounded exogenous perturbation, and use it for both, the control parameter tuning and analysis of the finite-time convergence. The essential features of the proposed new control law is non-overshooting despite the unknown dynamic disturbances and the continuous control action during the convergence to zero equilibrium. Apart from the numerical results, a revealing experimental example is also shown in favor of the proposed control and in comparison with PD and sub-optimal nonlinear damping regulators.
comment: 8 pages, 7 figures
Systems and Control (EESS)
Throughput Maximizing Takeoff Scheduling for eVTOL Vehicles in On-Demand Urban Air Mobility Systems
Urban Air Mobility (UAM) offers a solution to current traffic congestion by using electric Vertical Takeoff and Landing (eVTOL) vehicles to provide on-demand air mobility in urban areas. Effective traffic management is crucial for efficient operation of UAM systems, especially for high-demand scenarios. In this paper, we present a centralized framework for conflict-free takeoff scheduling of eVTOLs in on-demand UAM systems. Specifically, we provide a scheduling policy, called VertiSync, which jointly schedules UAM vehicles for servicing trip requests and rebalancing, subject to safety margins and energy requirements. We characterize the system-level throughput of VertiSync, which determines the demand threshold at which the average waiting time transitions from being stable to being increasing over time. We show that the proposed policy maximizes throughput for sufficiently large fleet size and if the UAM network has a certain symmetry property. We demonstrate the performance of VertiSync through a case study for the city of Los Angeles, and show that it significantly reduces average passenger waiting time compared to a first-come first-serve scheduling policy.
comment: 14 pages, 12 figures, 2 tables
Composable Uncertainty in Symmetric Monoidal Categories for Design Problems
Applied category theory often studies symmetric monoidal categories (SMCs) whose morphisms represent open systems. These structures naturally accommodate complex wiring patterns, leveraging (co)monoidal structures for splitting and merging wires, or compact closed structures for feedback. A key example is the compact closed SMC of design problems (DP), which enables a compositional approach to co-design in engineering. However, in practice, the systems of interest may not be fully known. Recently, Markov categories have emerged as a powerful framework for modeling uncertain processes. In this work, we demonstrate how to integrate this perspective into the study of open systems while preserving consistency with the underlying SMC structure. To this end, we employ the change-of-base construction for enriched categories, replacing the morphisms of a symmetric monoidal $\mathcal{V}$-category $\mathcal{C}$ with parametric maps $A \to \mathcal{C}(X,Y)$ in a Markov category induced by a symmetric monoidal monad. This results in a symmetric monoidal 2-category $N_*\mathcal{C}$ with the same objects as $\mathcal{C}$ and reparametrization 2-cells. By choosing different monads, we capture various types of uncertainty. The category underlying $\mathcal{C}$ embeds into $N_*\mathcal{C}$ via a strict symmetric monoidal functor, allowing (co)monoidal and compact closed structures to be transferred. Applied to DP, this construction leads to categories of practical relevance, such as parametrized design problems for optimization, and parametrized distributions of design problems for decision theory and Bayesian learning.
comment: 22 pages, 2 figures, submitted to Applied Category Theory 2025
Optimal Investment Portfolio of Thyristor- and IGBT-based Electrolysis Rectifiers in Utility-scale Renewable P2H Systems
Renewable power-to-hydrogen (ReP2H) systems require rectifiers to supply power to electrolyzers (ELZs). Two main types of rectifiers, insulated-gate bipolar transistor rectifiers (IGBT-Rs) and thyristor rectifiers (TRs), offer distinct tradeoffs. IGBT-Rs provide flexible reactive power control but are costly, whereas TRs are more affordable with lower power loss but consume a large amount of uncontrollable reactive power. A mixed configuration of rectifiers in utility-scale ReP2H systems could achieve an decent tradeoff and increase overall profitability. To explore this potential, this paper proposes an optimal investment portfolio model. First, we model and compare the active and reactive power characteristics of ELZs powered by TRs and IGBT-Rs. Second, we consider the investment of ELZs, rectifiers, and var resources and coordinate the operation of renewables, energy storage, var resources, and the on-off switching and load allocation of multiple ELZs. Subsequently, a two-stage stochastic programming (SP) model based on weighted information gap decision theory (W-IGDT) is developed to address the uncertainties of the renewable power and hydrogen price, and we apply the progressive hedging (PH) algorithm to accelerate its solution. Case studies demonstrate that optimal rectifier configurations increase revenue by at most 2.56% compared with using only TRs or IGBT-Rs, as well as those in existing projects. Under the optimal portfolio, reactive power compensation investment is nearly eliminated, with a preferred TR-to-IGBT-R ratio of 3:1.
GraFIT: A toolbox for fast and accurate frequency response identification in Gravitational Wave Detectors
Frequency response function (FRF) measurements are widely used in Gravitational Wave (GW) detectors, e.g., for the design of controllers, calibrating signals and diagnostic problems with system dynamics. The aim of this paper is to present GraFIT: a toolbox that enables fast, inexpensive, and accurate identification of FRF measurements for GW detectors compared to the commonly used approaches, including common spectral analysis techniques. The toolbox consists of a single function to estimate the frequency response function for both open-loop and closed-loop systems and for arbitrary input and output dimensions. The toolbox is validated on two experimental case studies of the Virgo detector, illustrating more than a factor 3 reduction in standard deviation of the estimate for the same measurement times, and comparable standard deviations with up to 10 times less data for the new method with respect to the currently implemented Spectral Analysis method.
EVSOAR: Security Orchestration, Automation and Response via EV Charging Stations
Vehicle cybersecurity has emerged as a critical concern, driven by the innovation in the automotive industry, e.g., automomous, electric, or connnected vehicles. Current efforts to address these challenges are constrained by the limited computational resources of vehicles and the reliance on connected infrastructures. This motivated the foundation of Vehicle Security Operations Centers (VSOCs) that extend IT-based Security Operations Centers (SOCs) to cover the entire automotive ecosystem, both the in-vehicle and off-vehicle scopes. Security Orchestration, Automation, and Response (SOAR) tools are considered key for impelementing an effective cybersecurity solution. However, existing state-of-the-art solutions depend on infrastructure networks such as 4G, 5G, and WiFi, which often face scalability and congestion issues. To address these limitations, we propose a novel SOAR architecture EVSOAR that leverages the EV charging stations for connectivity and computing to enhance vehicle cybersecurity. Our EV-specific SOAR architecture enables real-time analysis and automated responses to cybersecurity threats closer to the EV, reducing the cellular latency, bandwidth, and interference limitations. Our experimental results demonstrate a significant improvement in latency, stability, and scalability through the infrastructure and the capacity to deploy computationally intensive applications, that are otherwise infeasible within the resource constraints of individual vehicles.
Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We consider the scenario where a servicer, equipped with a robot arm, must dislodge a client, a time-varying system composed of an underpowered jammed solar panel with a hybrid hinge system on a space station. Our approach leverages online set-membership identification to reduce the uncertainty to provide robust safety guarantees during dislodging despite bounded disturbances while balancing exploration and exploitation effectively in the parameter space. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in zero-gravity and gravity environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been submitted to IEEE Transactions on Control Systems Technology and is being reviewed
One-Point Residual Feedback Algorithms for Distributed Online Convex and Non-convex Optimization
This paper mainly addresses the distributed online optimization problem where the local objective functions are assumed to be convex or non-convex. First, the distributed algorithms are proposed for the convex and non-convex situations, where the one-point residual feedback technology is introduced to estimate gradient of local objective functions. Then the regret bounds of the proposed algorithms are derived respectively under the assumption that the local objective functions are Lipschitz or smooth, which implies that the regrets are sublinear. Finally, we give two numerical examples of distributed convex optimization and distributed resources allocation problem to illustrate the effectiveness of the proposed algorithm.
Federated Digital Twin Construction via Distributed Sensing: A Game-Theoretic Online Optimization with Overlapping Coalitions
In this paper, we propose a novel federated framework for constructing the digital twin (DT) model, referring to a living and self-evolving visualization model empowered by artificial intelligence, enabled by distributed sensing under edge-cloud collaboration. In this framework, the DT model to be built at the cloud is regarded as a global one being split into and integrating from multiple functional components, i.e., partial-DTs, created at various edge servers (ESs) using feature data collected by associated sensors. Considering time-varying DT evolutions and heterogeneities among partial-DTs, we formulate an online problem that jointly and dynamically optimizes partial-DT assignments from the cloud to ESs, ES-sensor associations for partial-DT creation, and as well as computation and communication resource allocations for global-DT integration. The problem aims to maximize the constructed DT's model quality while minimizing all induced costs, including energy consumption and configuration costs, in long runs. To this end, we first transform the original problem into an equivalent hierarchical game with an upper-layer two-sided matching game and a lower-layer overlapping coalition formation game. After analyzing these games in detail, we apply the Gale-Shapley algorithm and particularly develop a switch rules-based overlapping coalition formation algorithm to obtain short-term equilibria of upper-layer and lower-layer subgames, respectively. Then, we design a deep reinforcement learning-based solution, called DMO, to extend the result into a long-term equilibrium of the hierarchical game, thereby producing the solution to the original problem. Simulations show the effectiveness of the introduced framework, and demonstrate the superiority of the proposed solution over counterparts.
System Identification Under Bounded Noise: Optimal Rates Beyond Least Squares
System identification is a fundamental problem in control and learning, particularly in high-stakes applications where data efficiency is critical. Classical approaches, such as the ordinary least squares estimator (OLS), achieve an $O(1/\sqrt{T})$ convergence rate under Gaussian noise assumptions, where $T$ is the number of samples. This rate has been shown to match the lower bound. However, in many practical scenarios, noise is known to be bounded, opening the possibility of improving sample complexity. In this work, we establish the minimax lower bound for system identification under bounded noise, proving that the $O(1/T)$ convergence rate is indeed optimal. We further demonstrate that OLS remains limited to an {$\Omega(1/\sqrt{T})$} convergence rate, making it fundamentally suboptimal in the presence of bounded noise. Finally, we instantiate two natural variations of OLS that obtain the optimal sample complexity.
Physics-Informed Deep B-Spline Networks for Dynamical Systems
Physics-informed machine learning provides an approach to combining data and governing physics laws for solving complex partial differential equations (PDEs). However, efficiently solving PDEs with varying parameters and changing initial conditions and boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. We propose a hybrid framework that uses a neural network to learn B-spline control points to approximate solutions to PDEs with varying system and ICBC parameters. The proposed network can be trained efficiently as one can directly specify ICBCs without imposing losses, calculate physics-informed loss functions through analytical formulas, and requires only learning the weights of B-spline functions as opposed to both weights and basis as in traditional neural operator learning methods. We provide theoretical guarantees that the proposed B-spline networks serve as universal approximators for the set of solutions of PDEs with varying ICBCs under mild conditions and establish bounds on the generalization errors in physics-informed learning. We also demonstrate in experiments that the proposed B-spline network can solve problems with discontinuous ICBCs and outperforms existing methods, and is able to learn solutions of 3D dynamics with diverse initial conditions.
Stabilizing Linear Systems under Partial Observability: Sample Complexity and Fundamental Limits
We study the problem of stabilizing an unknown partially observable linear time-invariant (LTI) system. For fully observable systems, leveraging an unstable/stable subspace decomposition approach, state-of-art sample complexity is independent from system dimension $n$ and only scales with respect to the dimension of the unstable subspace. However, it remains open whether such sample complexity can be achieved for partially observable systems because such systems do not admit a uniquely identifiable unstable subspace. In this paper, we propose LTS-P, a novel technique that leverages compressed singular value decomposition (SVD) on the ''lifted'' Hankel matrix to estimate the unstable subsystem up to an unknown transformation. Then, we design a stabilizing controller that integrates a robust stabilizing controller for the unstable mode and a small-gain-type assumption on the stable subspace. We show that LTS-P stabilizes unknown partially observable LTI systems with state-of-the-art sample complexity that is dimension-free and only scales with the number of unstable modes, which significantly reduces data requirements for high-dimensional systems with many stable modes.
Distributed Consensus Optimization with Consensus ALADIN
TThe paper proposes the Consensus Augmented Lagrange Alternating Direction Inexact Newton (Consensus ALADIN) algorithm, a novel approach for solving distributed consensus optimization problems (DC). Consensus ALADIN allows each agent to independently solve its own nonlinear programming problem while coordinating with other agents by solving a consensus quadratic programming (QP) problem. Building on this, we propose Broyden-Fletcher-Goldfarb-Shanno (BFGS) Consensus ALADIN, a communication-and-computation-efficient Consensus ALADIN.BFGS Consensus ALADIN improves communication efficiency through BFGS approximation techniques and enhances computational efficiency by deriving a closed form for the consensus QP problem. Additionally, by replacing the BFGS approximation with a scaled identity matrix, we develop Reduced Consensus ALADIN, a more computationally efficient variant. We establish the convergence theory for Consensus ALADIN and demonstrate its effectiveness through application to a non-convex sensor allocation problem.
A robust mechanical sensorless control strategy for active rectification of small wind turbines
This article proposes a mechanical sensorless control strategy for the synchronous rectification of small wind turbines equipped with a surface-mounted Permanent Magnet Synchronous Generator (PMSG). By means of Lyapunov theory, the Global Asymptotic Stability (GAS) of the closed loop system is proven. It allows the use of a classical Sliding Mode Observer (SMO) to remove the mechanical sensor in the control loop despite uncertainties on the resistance and inductance parameters. The analysis of the equilibrium points have made it possible to propose an analytic model of the angular misalignment between the true and the observer rotating frames, responsible for current tracking errors. Experimental tests on a wind turbine emulator show that despite large errors on the the resistance and inductance parameters, the impact on the energy harvest is low, proving that the strategy's performance is robust to high uncertainties.
Electric Vehicle Integration using Large-Scale Combined Transmission and Distribution Grid Models
In this paper, we propose a unifying co-simulation framework integrating transportation demand, grid assets, land use, demographics, and emissions to optimally accelerate electric vehicle (EV) development as well as measure the impact of EV integration. 96 urban and long-haul truck charging demand simulations were developed and integrated into a combined transmission and distribution (T&D) simulation, encompassing the Houston/Dallas/Fort Worth area. The T&D scenarios are then used to develop cost optimization strategies to determine optimal placement and sizing of truck charging infrastructure that minimize infrastructure costs.
comment: This work has been submitted to the IEEE for possible publication
The Impedance Space: A Look at Mechanical Impedance Ellipses in 3D
This paper introduces a novel 3D graphical representation of mechanical impedance, named impedance space, to enhance the analysis of the dynamic behavior of compliant systems. This approach addresses the limitations of existing 2D graphical methods by associating the impedance control parameters with linear transformations to plot a parametric 3D ellipse, for a known oscillatory input. The well-known 2D impedance ellipses are shown to be particular projections of this 3D ellipse. Experimental results demonstrate the effectiveness of the proposed representation.
comment: 6 pages, 7 figures
A Predictive Services Architecture for Efficient Airspace Operations
Predicting air traffic congestion and flow management is essential for airlines and Air Navigation Service Providers (ANSP) to enhance operational efficiency. Accurate estimates of future airport capacity and airspace density are vital for better airspace management, reducing air traffic controller workload and fuel consumption, ultimately promoting sustainable aviation. While existing literature has addressed these challenges, data management and query processing remain complex due to the vast volume of high-rate air traffic data. Many analytics use cases require a common pre-processing infrastructure, as ad-hoc approaches are insufficient. Additionally, linear prediction models often fall short, necessitating more advanced techniques. This paper presents a data processing and predictive services architecture that ingests large, uncorrelated, and noisy streaming data to forecast future airspace system states. The system continuously collects raw data, periodically compresses it, and stores it in NoSQL databases for efficient query processing. For prediction, the system learns from historical traffic by extracting key features such as airport arrival and departure events, sector boundary crossings, weather parameters, and other air traffic data. These features are input into various regression models, including linear, non-linear, and ensemble models, with the best-performing model selected for predictions. We evaluate this infrastructure across three prediction use cases in the US National Airspace System (NAS) and a segment of European airspace, using extensive real operations data, confirming that our system can predict future system states efficiently and accurately.
Optimization over Trained Neural Networks: Difference-of-Convex Algorithm and Application to Data Center Scheduling
When solving decision-making problems with mathematical optimization, some constraints or objectives may lack analytic expressions but can be approximated from data. When an approximation is made by neural networks, the underlying problem becomes optimization over trained neural networks. Despite recent improvements with cutting planes, relaxations, and heuristics, the problem remains difficult to solve in practice. We propose a new solution based on a bilinear problem reformulation that penalizes ReLU constraints in the objective function. This reformulation makes the problem amenable to efficient difference-of-convex algorithms (DCA), for which we propose a principled approach to penalty selection that facilitates convergence to stationary points of the original problem. We apply the DCA to the problem of the least-cost allocation of data center electricity demand in a power grid, reporting significant savings in congested cases.
comment: 6 pages, 4 figures, conference
Sharp Hybrid Zonotopes: Set Operations and the Reformulation-linearization Technique
Mixed integer set representations, and specifically hybrid zonotopes, have enabled new techniques for reachability and verification of nonlinear and hybrid systems. Mixed-integer sets which have the property that their convex relaxation is equal to their convex hull are said to be sharp. This property allows the convex hull to be computed with minimal overhead, and is known to be important for improving the convergence rates of mixed-integer optimization algorithms that rely on convex relaxations. This paper examines methods for formulating sharp hybrid zonotopes and provides sharpness-preserving methods for performing several key set operations. The paper then shows how the reformulation-linearization technique can be applied to create a sharp realization of a hybrid zonotope that is initially not sharp. A numerical example applies this technique to find the convex hull of a level set of a feedforward ReLU neural network.
Stabilizing NMPC Approaches for Underactuated Mechanical Systems on the SE(3) Manifold
This paper addresses the motion control problem for underactuated mechanical systems with full attitude control and one translational force input to manage the six degrees of freedom involved in the three-dimensional Euclidean space. These systems are often classified as second-order nonholonomic due to their completely nonintegrable acceleration constraints. To tackle this complex control problem, we propose two nonlinear model predictive control (NMPC) schemes that ensure closed-loop stability and recursive feasibility without terminal conditions. The system dynamics are modeled on the SE(3) manifold for a globally and unique description of rigid body configurations. One NMPC scheme also aims to reduce mission time as an economic criterion. The controllers' effectiveness is validated through numerical experiments on a quadrotor UAV.
comment: This is a preprint submitted to Automatica
TamedPUMA: safe and stable imitation learning with geometric fabrics
Using the language of dynamical systems, Imitation learning (IL) provides an intuitive and effective way of teaching stable task-space motions to robots with goal convergence. Yet, IL techniques are affected by serious limitations when it comes to ensuring safety and fulfillment of physical constraints. With this work, we solve this challenge via TamedPUMA, an IL algorithm augmented with a recent development in motion generation called geometric fabrics. As both the IL policy and geometric fabrics describe motions as artificial second-order dynamical systems, we propose two variations where IL provides a navigation policy for geometric fabrics. The result is a stable imitation learning strategy within which we can seamlessly blend geometrical constraints like collision avoidance and joint limits. Beyond providing a theoretical analysis, we demonstrate TamedPUMA with simulated and real-world tasks, including a 7-DoF manipulator.
comment: 14 pages (10+4), 1+3*5 figures, 1 table, preprint version of accepted paper at L4DC 2025
Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
comment: 8 pages, 11 figures. This work has been submitted to the IEEE for possible publication
SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
Sparse Actuation for LPV Systems with Full-State Feedback in $\mathcal{H}_2/\mathcal{H}_\infty$ Framework
This paper addresses the sparse actuation problem for nonlinear systems represented in the Linear Parameter-Varying (LPV) form. We propose a convex optimization framework that concurrently determines actuator magnitude limits and the state-feedback law that guarantees a user-specified closed-loop performance in the $\mathcal{H}_2/\mathcal{H}_\infty$ sense. We also demonstrate that sparse actuation is achieved when the actuator magnitude-limits are minimized in the $l_1$ sense. This is the first paper that addresses this problem for LPV systems. The formulation is demonstrated in a vibration control problem for a flexible wing.
comment: Submitted to American Control Conference 2025
A Unified Stability Analysis of Safety-Critical Control using Multiple Control Barrier Functions
Ensuring liveness and safety of autonomous and cyber-physical systems remains a fundamental challenge, particularly when multiple safety constraints are present. This letter advances the theoretical foundations of safety-filter Quadratic Programs (QP) and Control Lyapunov Function (CLF)-Control Barrier Function (CBF) controllers by establishing a unified analytical framework for studying their stability properties. We derive sufficient feasibility conditions for QPs with multiple CBFs and formally characterize the conditions leading to undesirable equilibrium points at possible intersecting safe set boundaries. Additionally, we introduce a stability criterion for equilibrium points, providing a systematic approach to identifying conditions under which they can be destabilized or eliminated. Our analysis extends prior theoretical results, deepening the understanding of the conditions of feasibility and stability of CBF-based safety filters and the CLF-CBF QP framework.
comment: Submitted to LCSS-CDC2025. Under review
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
Game Theory in Formula 1: Multi-agent Physical and Strategical Interactions
This paper presents an optimization framework to model Formula 1 racing dynamics, where multiple cars interact physically and strategically. Aerodynamic wake effects, trajectory optimization, and energy management are integrated by means of physical models. We describe the minimum lap time problem with two agents as either a Nash or a Stackelberg game, and by employing the Karush-Kuhn-Tucker conditions during the problem formulation, we recover the structure of a nonlinear program. In addition, we introduce an algorithm to refine local Stackelberg solutions, using the Nash costs as upper bounds. The resulting strategies are analyzed through case studies. We examine the impact of slipstreaming on trajectory selection in corners, straights, and high-speed sections, while also identifying optimal overtaking locations based on energy allocation strategies. Exploiting the structural similarities of the game formulations, we are able to compare symmetric and hierarchical strategies to analyze competitive racing dynamics. By incorporating a physically accurate interaction model and accounting for the optimal responses of competing agents, our approach reveals typical Formula 1 strategic behaviors. The proposed methodology closes the gap between theoretical game theory and real-world racing, with potential applications in motorsport engineering and autonomous racing.
Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Continuous-Time Online Distributed Seeking for Generalized Nash Equilibrium of Nonmonotone Online Game
This paper mainly investigates a class of distributed generalized Nash equilibrium (GNE) seeking problems for online nonmonotone game with time-varying coupling inequality constraints. Based on a time-varying control gain, a novel continuous-time distributed GNE seeking algorithm is proposed, which realizes the constant regret bound and sublinear fit bound, matching those of the criteria for online optimization problems. Furthermore, to reduce unnecessary communication among players, a dynamic event-triggered mechanism involving internal variables is introduced into the distributed GNE seeking algorithm, while the constant regret bound and sublinear fit bound are still achieved. Also, the Zeno behavior is strictly prohibited. Finally, a numerical example is given to demonstrate the validity of the theoretical results.
comment: This work has been submitted to the lEEE for possible publication
Knowledge Transfer based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis
A faster response with commendable accuracy in intelligent systems is essential for the reliability and smooth operations of industrial machines. Two main challenges affect the design of such intelligent systems: (i) the selection of a suitable model and (ii) domain adaptation if there is a continuous change in operating conditions. Therefore, we propose an evolutionary Net2Net transformation (EvoN2N) that finds the best suitable DNN architecture with limited availability of labeled data samples. Net2Net transformation-based quick learning algorithm has been used in the evolutionary framework of Non-dominated sorting genetic algorithm II to obtain the best DNN architecture. Net2Net transformation-based quick learning algorithm uses the concept of knowledge transfer from one generation to the next for faster fitness evaluation. The proposed framework can obtain the best model for intelligent fault diagnosis without a long and time-consuming search process. The proposed framework has been validated on the Case Western Reserve University dataset, the Paderborn University dataset, and the gearbox fault detection dataset under different operating conditions. The best models obtained are capable of demonstrating an excellent diagnostic performance and classification accuracy of almost up to 100% for most of the operating conditions.
comment: Submitted to IEEE Transactions on Sustainable Computing
Efficient implementation of MPC for tracking using ADMM by decoupling its semi-banded structure
Model Predictive Control (MPC) for tracking formulation presents numerous advantages compared to standard MPC, such as a larger domain of attraction and recursive feasibility even when abrupt changes in the reference are produced. As a drawback, it includes some extra decision variables in its related optimization problem, leading to a semi-banded structure that differs from the banded structure encountered in standard MPC. This semi-banded structure prevents the direct use of the efficient algorithms available for banded problems. To address this issue, we present an algorithm based on the alternating direction method of multipliers that explicitly takes advantage of the underlying semi-banded structure of the MPC for tracking.
Set-membership target search and tracking within an unknown cluttered area using cooperating UAVs equipped with vision systems
This paper addresses the problem of target search and tracking using a fleet of cooperating UAVs evolving in some unknown region of interest containing an a priori unknown number of moving ground targets. Each drone is equipped with an embedded Computer Vision System (CVS), providing an image with labeled pixels and a depth map of the observed part of its environment. Moreover, a box containing the corresponding pixels in the image frame is available when a UAV identifies a target. Hypotheses regarding information provided by the pixel classification, depth map construction, and target identification algorithms are proposed to allow its exploitation by set-membership approaches. A set-membership target location estimator is developed using the information provided by the CVS. Each UAV evaluates sets guaranteed to contain the location of the identified targets and a set possibly containing the locations of targets still to be identified. Then, each UAV uses these sets to search and track targets cooperatively.
comment: This work has been submitted to Elsevier / ScienceDirect for possible publication
Arbitrary Waveform Generated Metasurface: A New Paradigm for Direct Modulation and Beamforming Decoupling
Information Metasurface, also known as reconfigurable intelligent surface (RIS) has gained significant attention owing to its impressive abilities in electromagnetic (EM) wave manipulation with simple structures. Numerous studies focus on achieving efficient and versatile information transmission using RIS across various fields like wireless communication, radar detection, integrated sensing, and communications, among others. Previous studies demonstrate diverse approaches to achieve reflection modulation by utilizing the superposition of the quantified reflection coefficient (RC) of each unit but suffer from the computing complexity of codebook sequence, the safety of communication, and the flexibility of modulation. To address these challenges, we introduce a novel concept of information metasurface, namely AWG-RIS, which is capable of independently producing arbitrary baseband waveforms and beam patterns through a design that decouples magnitude and phase, without changing the beam pattern. The AWG-RIS functions as a reflection mixer, directly embedding the intended signal into the incoming EM waves. Subsequently, we developed an analysis framework and introduced the waveform factor and beamforming factor into the new model, offering theoretical support for the transition from the control signal to the outgoing electromagnetic wave. Additionally, we unveil the world's first prototype showcasing passive arbitrary waveform generation while maintaining the beam pattern unaltered. Leveraging the decoupling of direct modulation and beamforming, we explore additional applications in several domains relative to traditional RISs. Finally, we present experiments that confirm the generation of arbitrary waveforms and particular spectrograms.
comment: The new version of this paper (i.e., arXiv:2411.01863v3) has been already posted whose content can cover this old version
A Greedy Quantum Route-Generation Algorithm
Routing and scheduling problems with time windows have long been important optimization problems for logistics and planning. Many classical heuristics and exact methods exist for such problems. However, there are no satisfactory methods for generating routes using quantum computing (QC), for mainly two reasons: inequality constraints, and the trade-off of feasibility and solution quality. Inequality constraints are typically handled using slack variables; and feasible solutions are found by filtering samples. These challenges are amplified in the presence of noise inherent in QC. Here, we propose a greedy algorithm that generates routes by using information from all samples obtained from the quantum computer. By noticing the relationship between qubits in our formulation as a directed acyclic graph (DAG), we designed an algorithm that adaptively constructs a feasible solution. We prove its convergence to a feasible solution, and illustrate its efficacy by solving the Fleet Sizing Vehicle Routing Problem with Time Windows (FSVRPTW). Our computational results show that this method obtains a lower objective value than the current state-of-the-art annealing approaches, both classical and hybrid, for the same amount of time using D-Wave Hybrid Solvers. We also show its robustness to noise on D-Wave Advantage2 through computational results as compared to the filtering approach on DWaveSampler, even when the filtering approach is given a longer annealing time, and a larger sample size.
Electrostatic Clutches Enable Simultaneous Mechanical Multiplexing
Actuating robotic systems with multiple degrees of freedom (DoF) traditionally requires numerous motors, leading to increased size, weight, cost, and power consumption. Mechanical multiplexing offers a solution by enabling a single actuator to control multiple DoF. However, existing multiplexers have either been limited to electrically controlled time-based multiplexing that control one DoF at a time or have relied on mechanical switching to control multiple DoF simultaneously. There is a strong need for a system that can perform electrically controlled multiplexing for both time-based and simultaneous control of multiple DoF. This study introduces a novel electrostatic capstan clutch-based mechanical multiplexer that enables high-force, single-motor control of multiple DoF. Here, we show that our system achieves both single-input-single-output (SISO) and single-input-multipleoutput (SIMO) actuation, allowing bidirectional control and position holding with minimal power consumption. Each output can actuate a 22.24 N load, limited by clutch performance, up to 5 cm. The number of outputs and actuation length is currently limited by the length of the drive shaft. We demonstrate the integration of our system into a 4-DoF commercial robotic hand using a single motor. These findings show that electrostatic clutchbased multiplexing provides a scalable and energy-efficient design solution for high-DoF robotic platforms, opening new possibilities for lightweight and power-efficient actuation in robotics.
Safe Gradient Flow for Bilevel Optimization
Bilevel optimization is a key framework in hierarchical decision-making, where one problem is embedded within the constraints of another. In this work, we propose a control-theoretic approach to solving bilevel optimization problems. Our method consists of two components: a gradient flow mechanism to minimize the upper-level objective and a safety filter to enforce the constraints imposed by the lower-level problem. Together, these components form a safe gradient flow that solves the bilevel problem in a single loop. To improve scalability with respect to the lower-level problem's dimensions, we introduce a relaxed formulation and design a compact variant of the safe gradient flow. This variant minimizes the upper-level objective while ensuring the lower-level decision variable remains within a user-defined suboptimality. Using Lyapunov analysis, we establish convergence guarantees for the dynamics, proving that they converge to a neighborhood of the optimal solution. Numerical experiments further validate the effectiveness of the proposed approaches. Our contributions provide both theoretical insights and practical tools for efficiently solving bilevel optimization problems.
comment: 2025 American Control Conference (ACC)
Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-context Learning
Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and telecom industry. This work considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM's inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning task offloading method can achieve satisfactory generation service quality without dedicated model training or fine-tuning.
comment: This paper has been accepted by IEEE Wireless Communications Letters
Non-overshooting continuous in convergence sliding mode control of second-order systems
This paper proposes a novel nonlinear sliding mode state feedback controller for perturbed second-order systems. In analogy to a linear proportional-derivative (PD) feedback control, the proposed nonlinear scheme uses the output of interest and its time derivative. The control has only one free design parameter, and the closed-loop system is shown to possess uniform boundedness and finite-time convergence of trajectories in the presence of matched disturbances. We derive a strict Lyapunov function for the closed-loop control system with a bounded exogenous perturbation, and use it for both, the control parameter tuning and analysis of the finite-time convergence. The essential features of the proposed new control law is non-overshooting despite the unknown dynamic disturbances and the continuous control action during the convergence to zero equilibrium. Apart from the numerical results, a revealing experimental example is also shown in favor of the proposed control and in comparison with PD and sub-optimal nonlinear damping regulators.
comment: 8 pages, 7 figures
Robotics
M3: 3D-Spatial MultiModal Memory ICLR2025
We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.
comment: ICLR2025 homepage: https://m3-spatial-memory.github.io code: https://github.com/MaureenZOU/m3-spatial
RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
Nonlinear action prediction models reveal multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal. However, it is unclear whether existing models and their assumptions, overwhelmingly tested in laboratory-constrained settings, generalize to the real world. For example, data-driven models of foot placement control -- a crucial action for stable locomotion -- assume linear and single timescale mappings. We develop nonlinear foot placement prediction models, finding that neural network architectures with flexible input history-dependence like GRU and Transformer perform best across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze), outperforming traditional models. These models reveal context- and modality-dependent timescales: there is more reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. Thus, nonlinear action prediction models provide quantifiable insights into real-world motor control and can be extended to other actions, contexts, and populations.
Can Real-to-Sim Approaches Capture Dynamic Fabric Behavior for Robotic Fabric Manipulation?
This paper presents a rigorous evaluation of Real-to-Sim parameter estimation approaches for fabric manipulation in robotics. The study systematically assesses three state-of-the-art approaches, namely two differential pipelines and a data-driven approach. We also devise a novel physics-informed neural network approach for physics parameter estimation. These approaches are interfaced with two simulations across multiple Real-to-Sim scenarios (lifting, wind blowing, and stretching) for five different fabric types and evaluated on three unseen scenarios (folding, fling, and shaking). We found that the simulation engines and the choice of Real-to-Sim approaches significantly impact fabric manipulation performance in our evaluation scenarios. Moreover, PINN observes superior performance in quasi-static tasks but shows limitations in dynamic scenarios.
Loop Closure from Two Views: Revisiting PGO for Scalable Trajectory Estimation through Monocular Priors
(Visual) Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in enabling autonomous systems to navigate and understand large-scale environments. Traditional SLAM approaches struggle to balance efficiency and accuracy, particularly in large-scale settings where extensive computational resources are required for scene reconstruction and Bundle Adjustment (BA). However, this scene reconstruction, in the form of sparse pointclouds of visual landmarks, is often only used within the SLAM system because navigation and planning methods require different map representations. In this work, we therefore investigate a more scalable Visual SLAM (VSLAM) approach without reconstruction, mainly based on approaches for two-view loop closures. By restricting the map to a sparse keyframed pose graph without dense geometry representations, our '2GO' system achieves efficient optimization with competitive absolute trajectory accuracy. In particular, we find that recent advancements in image matching and monocular depth priors enable very accurate trajectory optimization from two-view edges. We conduct extensive experiments on diverse datasets, including large-scale scenarios, and provide a detailed analysis of the trade-offs between runtime, accuracy, and map size. Our results demonstrate that this streamlined approach supports real-time performance, scales well in map size and trajectory duration, and effectively broadens the capabilities of VSLAM for long-duration deployments to large environments.
From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction IROS
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-limited clinical applications. Monocular cameras are small and allow minimally invasive surgeries in tight spaces but additional processing is required to generate 3D scene understanding. We propose a 3D mapping pipeline that uses only RGB images to create segmented point clouds of the target anatomy. To ensure the most precise reconstruction, we compare different structure from motion algorithms' performance on mapping the central airway obstructions, and test the pipeline on a downstream task of tumor resection. In several metrics, including post-procedure tissue model evaluation, our pipeline performs comparably to RGB-D cameras and, in some cases, even surpasses their performance. These promising results demonstrate that automation guidance can be achieved in minimally invasive procedures with monocular cameras. This study is a step toward the complete autonomy of surgical robots.
comment: 7 Pages, 8 Figures, 1 Table. This work has been submitted IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
Dispersion is (Almost) Optimal under (A)synchrony
The dispersion problem has received much attention recently in the distributed computing literature. In this problem, $k\leq n$ agents placed initially arbitrarily on the nodes of an $n$-node, $m$-edge anonymous graph of maximum degree $\Delta$ have to reposition autonomously to reach a configuration in which each agent is on a distinct node of the graph. Dispersion is interesting as well as important due to its connections to many fundamental coordination problems by mobile agents on graphs, such as exploration, scattering, load balancing, relocation of self-driven electric cars (robots) to recharge stations (nodes), etc. The objective has been to provide a solution that optimizes simultaneously time and memory complexities. There exist graphs for which the lower bound on time complexity is $\Omega(k)$. Memory complexity is $\Omega(\log k)$ per agent independent of graph topology. The state-of-the-art algorithms have (i) time complexity $O(k\log^2k)$ and memory complexity $O(\log(k+\Delta))$ under the synchronous setting [DISC'24] and (ii) time complexity $O(\min\{m,k\Delta\})$ and memory complexity $O(\log(k+\Delta))$ under the asynchronous setting [OPODIS'21]. In this paper, we improve substantially on this state-of-the-art. Under the synchronous setting as in [DISC'24], we present the first optimal $O(k)$ time algorithm keeping memory complexity $O(\log (k+\Delta))$. Under the asynchronous setting as in [OPODIS'21], we present the first algorithm with time complexity $O(k\log k)$ keeping memory complexity $O(\log (k+\Delta))$, which is time-optimal within an $O(\log k)$ factor despite asynchrony. Both results were obtained through novel techniques to quickly find empty nodes to settle agents, which may be of independent interest.
comment: 24 pages
Explosive Jumping with Rigid and Articulated Soft Quadrupeds via Example Guided Reinforcement Learning IROS2025
Achieving controlled jumping behaviour for a quadruped robot is a challenging task, especially when introducing passive compliance in mechanical design. This study addresses this challenge via imitation-based deep reinforcement learning with a progressive training process. To start, we learn the jumping skill by mimicking a coarse jumping example generated by model-based trajectory optimization. Subsequently, we generalize the learned policy to broader situations, including various distances in both forward and lateral directions, and then pursue robust jumping in unknown ground unevenness. In addition, without tuning the reward much, we learn the jumping policy for a quadruped with parallel elasticity. Results show that using the proposed method, i) the robot learns versatile jumps by learning only from a single demonstration, ii) the robot with parallel compliance reduces the landing error by 11.1%, saves energy cost by 15.2% and reduces the peak torque by 15.8%, compared to the rigid robot without parallel elasticity, iii) the robot can perform jumps of variable distances with robustness against ground unevenness (maximal 4cm height perturbations) using only proprioceptive perception.
comment: 8 pages, 9 figures, submitted to IROS2025
Asymptotically Optimal Path Planning With an Approximation of the Omniscient Set
The asymptotically optimal version of Rapidly-exploring Random Tree (RRT*) is often used to find optimal paths in a high-dimensional configuration space. The well-known issue of RRT* is its slow convergence towards the optimal solution. A possible solution is to draw random samples only from a subset of the configuration space that is known to contain configurations that can improve the cost of the path (omniscient set). A fast convergence rate may be achieved by approximating the omniscient with a low-volume set. In this letter, we propose new methods to approximate the omniscient set and methods for their effective sampling. First, we propose to approximate the omniscient set using several (small) hyperellipsoids defined by sections of the current best solution. The second approach approximates the omniscient set by a convex hull computed from the current solution. Both approaches ensure asymptotical optimality and work in a general n-dimensional configuration space. The experiments have shown superior performance of our approaches in multiple scenarios in 3D and 6D configuration spaces.
comment: 9 pages, 13 figures
The Morphology-Control Trade-Off: Insights into Soft Robotic Efficiency
Soft robotics holds transformative potential for enabling adaptive and adaptable systems in dynamic environments. However, the interplay between morphological and control complexities and their collective impact on task performance remains poorly understood. Therefore, in this study, we investigate these trade-offs across tasks of differing difficulty levels using four well-used morphological complexity metrics and control complexity measured by FLOPs. We investigate how these factors jointly influence task performance by utilizing the evolutionary robot experiments. Results show that optimal performance depends on the alignment between morphology and control: simpler morphologies and lightweight controllers suffice for easier tasks, while harder tasks demand higher complexities in both dimensions. In addition, a clear trade-off between morphological and control complexities that achieve the same task performance can be observed. Moreover, we also propose a sensitivity analysis to expose the task-specific contributions of individual morphological metrics. Our study establishes a framework for investigating the relationships between morphology, control, and task performance, advancing the development of task-specific robotic designs that balance computational efficiency with adaptability. This study contributes to the practical application of soft robotics in real-world scenarios by providing actionable insights.
comment: The paper is planed to be submitted to a journal
Rejecting Outliers in 2D-3D Point Correspondences from 2D Forward-Looking Sonar Observations
Rejecting outliers before applying classical robust methods is a common approach to increase the success rate of estimation, particularly when the outlier ratio is extremely high (e.g. 90%). However, this method often relies on sensor- or task-specific characteristics, which may not be easily transferable across different scenarios. In this paper, we focus on the problem of rejecting 2D-3D point correspondence outliers from 2D forward-looking sonar (2D FLS) observations, which is one of the most popular perception device in the underwater field but has a significantly different imaging mechanism compared to widely used perspective cameras and LiDAR. We fully leverage the narrow field of view in the elevation of 2D FLS and develop two compatibility tests for different 3D point configurations: (1) In general cases, we design a pairwise length in-range test to filter out overly long or short edges formed from point sets; (2) In coplanar cases, we design a coplanarity test to check if any four correspondences are compatible under a coplanar setting. Both tests are integrated into outlier rejection pipelines, where they are followed by maximum clique searching to identify the largest consistent measurement set as inliers. Extensive simulations demonstrate that the proposed methods for general and coplanar cases perform effectively under outlier ratios of 80% and 90%, respectively.
GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. Codes and data will be released.
Wearable Haptics for a Marionette-inspired Teleoperation of Highly Redundant Robotic Systems
The teleoperation of complex, kinematically redundant robots with loco-manipulation capabilities represents a challenge for human operators, who have to learn how to operate the many degrees of freedom of the robot to accomplish a desired task. In this context, developing an easy-to-learn and easy-to-use human-robot interface is paramount. Recent works introduced a novel teleoperation concept, which relies on a virtual physical interaction interface between the human operator and the remote robot equivalent to a "Marionette" control, but whose feedback was limited to only visual feedback on the human side. In this paper, we propose extending the "Marionette" interface by adding a wearable haptic interface to cope with the limitations given by the previous works. Leveraging the additional haptic feedback modality, the human operator gains full sensorimotor control over the robot, and the awareness about the robot's response and interactions with the environment is greatly improved. We evaluated the proposed interface and the related teleoperation framework with naive users, assessing the teleoperation performance and the user experience with and without haptic feedback. The conducted experiments consisted in a loco-manipulation mission with the CENTAURO robot, a hybrid leg-wheel quadruped with a humanoid dual-arm upper body.
comment: 7 pages, 8 figures
A Laser-guided Interaction Interface for Providing Effective Robot Assistance to People with Upper Limbs Impairments
Robotics has shown significant potential in assisting people with disabilities to enhance their independence and involvement in daily activities. Indeed, a societal long-term impact is expected in home-care assistance with the deployment of intelligent robotic interfaces. This work presents a human-robot interface developed to help people with upper limbs impairments, such as those affected by stroke injuries, in activities of everyday life. The proposed interface leverages on a visual servoing guidance component, which utilizes an inexpensive but effective laser emitter device. By projecting the laser on a surface within the workspace of the robot, the user is able to guide the robotic manipulator to desired locations, to reach, grasp and manipulate objects. Considering the targeted users, the laser emitter is worn on the head, enabling to intuitively control the robot motions with head movements that point the laser in the environment, which projection is detected with a neural network based perception module. The interface implements two control modalities: the first allows the user to select specific locations directly, commanding the robot to reach those points; the second employs a paper keyboard with buttons that can be virtually pressed by pointing the laser at them. These buttons enable a more direct control of the Cartesian velocity of the end-effector and provides additional functionalities such as commanding the action of the gripper. The proposed interface is evaluated in a series of manipulation tasks involving a 6DOF assistive robot manipulator equipped with 1DOF beak-like gripper. The two interface modalities are combined to successfully accomplish tasks requiring bimanual capacity that is usually affected in people with upper limbs impairments.
comment: 8 pages, 12 figures
Development of a Magnetorheological Hand Exoskeleton Featuring High Force-to-power Ratio for Enhancing Grip Endurance
Hand exoskeletons have significant potential in labor-intensive fields by mitigating hand grip fatigue, enhancing hand strength, and preventing injuries.However, most traditional hand exoskeletons are driven by motors whose output force is limited under constrained installation conditions. In addition, they also come with the disadvantages of high power consumption, complex and bulky assistive systems, and high instability.In this work, we develop a novel hand exoskeleton integrated with magnetorheological (MR) clutches that offers a high force-to-power ratio to improve grip endurance. The clutch features an enhanced structure design, a micro roller enhancing structure, which can significantly boost output forces. The experimental data demonstrate that the clutch can deliver a peak holding force of 380 N with a consumption of 1.48 W, yielding a force-to-power ratio of 256.75N/W, which is 2.35 times higher than the best reported actuator used for hand exoskeletons. The designed MR hand exoskeleton is highly integrated and comprises an exoskeleton frame, MR clutches, a control unit, and a battery. Evaluations through static grip endurance tests and dynamic carrying and lifting tests confirm that the MR hand exoskeleton can effectively reduce muscle fatigue, extend grip endurance, and minimize injuries. These findings highlight its strong potential for practical applications in repetitive tasks such as carrying and lifting in industrial settings.
CONTHER: Human-Like Contextual Robot Learning via Hindsight Experience Replay and Transformers without Expert Demonstrations IROS 2025
This paper presents CONTHER, a novel reinforcement learning algorithm designed to efficiently and rapidly train robotic agents for goal-oriented manipulation tasks and obstacle avoidance. The algorithm uses a modified replay buffer inspired by the Hindsight Experience Replay (HER) approach to artificially populate experience with successful trajectories, effectively addressing the problem of sparse reward scenarios and eliminating the need to manually collect expert demonstrations. The developed algorithm proposes a Transformer-based architecture to incorporate the context of previous states, allowing the agent to perform a deeper analysis and make decisions in a manner more akin to human learning. The effectiveness of the built-in replay buffer, which acts as an "internal demonstrator", is twofold: it accelerates learning and allows the algorithm to adapt to different tasks. Empirical data confirm the superiority of the algorithm by an average of 38.46% over other considered methods, and the most successful baseline by 28.21%, showing higher success rates and faster convergence in the point-reaching task. Since the control is performed through the robot's joints, the algorithm facilitates potential adaptation to a real robot system and construction of an obstacle avoidance task. Therefore, the algorithm has also been tested on tasks requiring following a complex dynamic trajectory and obstacle avoidance. The design of the algorithm ensures its applicability to a wide range of goal-oriented tasks, making it an easily integrated solution for real-world robotics applications.
comment: Submitted to IROS 2025
APEX-MR: Multi-Robot Asynchronous Planning and Execution for Cooperative Assembly
Compared to a single-robot workstation, a multi-robot system offers several advantages: 1) it expands the system's workspace, 2) improves task efficiency, and more importantly, 3) enables robots to achieve significantly more complex and dexterous tasks, such as cooperative assembly. However, coordinating the tasks and motions of multiple robots is challenging due to issues, e.g. system uncertainty, task efficiency, algorithm scalability, and safety concerns. To address these challenges, this paper studies multi-robot coordination and proposes APEX-MR, an asynchronous planning and execution framework designed to safely and efficiently coordinate multiple robots to achieve cooperative assembly, e.g. LEGO assembly. In particular, APEX-MR provides a systematic approach to post-process multi-robot tasks and motion plans to enable robust asynchronous execution under uncertainty. Experimental results demonstrate that APEX-MR can significantly speed up the execution time of many long-horizon LEGO assembly tasks by 48% compared to sequential planning and 36% compared to synchronous planning on average. To further demonstrate the performance, we deploy APEX-MR to a dual-arm system to perform physical LEGO assembly. To our knowledge, this is the first robotic system capable of performing customized LEGO assembly using commercial LEGO bricks. The experiment results demonstrate that the dual-arm system, with APEX-MR, can safely coordinate robot motions, efficiently collaborate, and construct complex LEGO structures. Our project website is available at https://intelligent-control-lab.github.io/APEX-MR/
comment: 17 pages, 11 figures
Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
comment: 8 pages, 13 figures, IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
The aim of this work is to develop an approach that enables Unmanned Aerial System (UAS) to efficiently learn to navigate in large-scale urban environments and transfer their acquired expertise to novel environments. To achieve this, we propose a meta-curriculum training scheme. First, meta-training allows the agent to learn a master policy to generalize across tasks. The resulting model is then fine-tuned on the downstream tasks. We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task. In addition, we introduce Incremental Self-Adaptive Reinforcement learning (ISAR), an algorithm that combines the ideas of incremental learning and meta-reinforcement learning (MRL). In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks. However, the MRL training process is time consuming, whereas our proposed ISAR algorithm achieves faster convergence than the conventional MRL algorithm. We evaluate the proposed methodologies in simulated environments and demonstrate that using this training philosophy in conjunction with the ISAR algorithm significantly improves the convergence speed for navigation in large-scale cities and the adaptation proficiency in novel environments.
AutoDrive-QA- Automated Generation of Multiple-Choice Questions for Autonomous Driving Datasets Using Large Vision-Language Models
In autonomous driving, open-ended question answering often suffers from unreliable evaluations because freeform responses require either complex metrics or subjective human judgment. To address this challenge, we introduce AutoDrive-QA, an automatic pipeline that converts existing driving QA datasets (including DriveLM, NuScenes-QA, and LingoQA) into a structured multiple-choice question (MCQ) format. This benchmark systematically assesses perception, prediction, and planning tasks, providing a standardized and objective evaluation framework. AutoDrive-QA employs an automated pipeline that leverages large language models (LLMs) to generate high-quality, contextually relevant distractors based on domain-specific error patterns commonly found in autonomous driving scenarios. To evaluate both general capabilities and generalization performance, we test the benchmark on three public datasets and conduct zero-shot experiments on an unseen dataset. The zero-shot evaluations reveal that GPT-4V leads with 69.57% accuracy -- achieving 74.94% in Perception, 65.33% in Prediction, and 68.45% in Planning -- demonstrating that while all models excel in Perception, they struggle in Prediction. Consequently, AutoDrive-QA establishes a rigorous, unbiased standard for integrating and evaluating different vision-language models across various autonomous driving datasets, thereby improving generalization in this field. We release all the codes in the AutoDrive-QA GitHub Repository.
Ground and Flight Locomotion for Two-Wheeled Drones via Model Predictive Path Integral Control
This paper presents a novel approach to motion planning for two-wheeled drones that can drive on the ground and fly in the air. Conventional methods for two-wheeled drone motion planning typically rely on gradient-based optimization and assume that obstacle shapes can be approximated by a differentiable form. To overcome this limitation, we propose a motion planning method based on Model Predictive Path Integral (MPPI) control, enabling navigation through arbitrarily shaped obstacles by switching between driving and flight modes. To handle the instability and rapid solution changes caused by mode switching, our proposed method switches the control space and utilizes the auxiliary controller for MPPI. Our simulation results demonstrate that the proposed method enables navigation in unstructured environments and achieves effective obstacle avoidance through mode switching.
comment: This work has been submitted to the IEEE for possible publication
Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents IROS 2025
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models, trained under diverse configurations, were successfully deployed on real hardware. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to IROS 2025
A Schwarz-Christoffel Mapping-based Framework for Sim-to-Real Transfer in Autonomous Robot Operations
Despite the remarkable acceleration of robotic development through advanced simulation technology, robotic applications are often subject to performance reductions in real-world deployment due to the inherent discrepancy between simulation and reality, often referred to as the "sim-to-real gap". This gap arises from factors like model inaccuracies, environmental variations, and unexpected disturbances. Similarly, model discrepancies caused by system degradation over time or minor changes in the system's configuration also hinder the effectiveness of the developed methodologies. Effectively closing these gaps is critical and remains an open challenge. This work proposes a lightweight conformal mapping framework to transfer control and planning policies from an expert teacher to a degraded less capable learner. The method leverages Schwarz-Christoffel Mapping (SCM) to geometrically map teacher control inputs into the learner's command space, ensuring maneuver consistency. To demonstrate its generality, the framework is applied to two representative types of control and planning methods in a path-tracking task: 1) a discretized motion primitives command transfer and 2) a continuous Model Predictive Control (MPC)-based command transfer. The proposed framework is validated through extensive simulations and real-world experiments, demonstrating its effectiveness in reducing the sim-to-real gap by closely transferring teacher commands to the learner robot.
Informative Path Planning to Explore and Map Unknown Planetary Surfaces with Gaussian Processes
Many environments, such as unvisited planetary surfaces and oceanic regions, remain unexplored due to a lack of prior knowledge. Autonomous vehicles must sample upon arrival, process data, and either transmit findings to a teleoperator or decide where to explore next. Teleoperation is suboptimal, as human intuition lacks mathematical guarantees for optimality. This study evaluates an informative path planning algorithm for mapping a scalar variable distribution while minimizing travel distance and ensuring model convergence. We compare traditional open loop coverage methods (e.g., Boustrophedon, Spiral) with information-theoretic approaches using Gaussian processes, which update models iteratively with confidence metrics. The algorithm's performance is tested on three surfaces, a parabola, Townsend function, and lunar crater hydration map, to assess noise, convexity, and function behavior. Results demonstrate that information-driven methods significantly outperform naive exploration in reducing model error and travel distance while improving convergence potential.
ContactFusion: Stochastic Poisson Surface Maps from Visual and Contact Sensing
Robust and precise robotic assembly entails insertion of constituent components. Insertion success is hindered when noise in scene understanding exceeds tolerance limits, especially when fabricated with tight tolerances. In this work, we propose ContactFusion which combines global mapping with local contact information, fusing point clouds with force sensing. Our method entails a Rejection Sampling based contact occupancy sensing procedure which estimates contact locations on the end-effector from Force/Torque sensing at the wrist. We demonstrate how to fuse contact with visual information into a Stochastic Poisson Surface Map (SPSMap) - a map representation that can be updated with the Stochastic Poisson Surface Reconstruction (SPSR) algorithm. We first validate the contact occupancy sensor in simulation and show its ability to detect the contact location on the robot from force sensing information. Then, we evaluate our method in a peg-in-hole task, demonstrating an improvement in the hole pose estimate with the fusion of the contact information with the SPSMap.
World Knowledge from AI Image Generation for Robot Control
When interacting with the world robots face a number of difficult questions, having to make decisions when given under-specified tasks where they need to make choices, often without clearly defined right and wrong answers. Humans, on the other hand, can often rely on their knowledge and experience to fill in the gaps. For example, the simple task of organizing newly bought produce into the fridge involves deciding where to put each thing individually, how to arrange them together meaningfully, e.g. putting related things together, all while there is no clear right and wrong way to accomplish this task. We could encode all this information on how to do such things explicitly into the robots' knowledge base, but this can quickly become overwhelming, considering the number of potential tasks and circumstances the robot could encounter. However, images of the real world often implicitly encode answers to such questions and can show which configurations of objects are meaningful or are usually used by humans. An image of a full fridge can give a lot of information about how things are usually arranged in relation to each other and the full fridge at large. Modern generative systems are capable of generating plausible images of the real world and can be conditioned on the environment in which the robot operates. Here we investigate the idea of using the implicit knowledge about the world of modern generative AI systems given by their ability to generate convincing images of the real world to solve under-specified tasks.
comment: 9 pages, 10 figures
AUV Acceleration Prediction Using DVL and Deep Learning
Autonomous underwater vehicles (AUVs) are essential for various applications, including oceanographic surveys, underwater mapping, and infrastructure inspections. Accurate and robust navigation are critical to completing these tasks. To this end, a Doppler velocity log (DVL) and inertial sensors are fused together. Recently, a model-based approach demonstrated the ability to extract the vehicle acceleration vector from DVL velocity measurements. Motivated by this advancement, in this paper we present an end-to-end deep learning approach to estimate the AUV acceleration vector based on past DVL velocity measurements. Based on recorded data from sea experiments, we demonstrate that the proposed method improves acceleration vector estimation by more than 65% compared to the model-based approach by using data-driven techniques. As a result of our data-driven approach, we can enhance navigation accuracy and reliability in AUV applications, contributing to more efficient and effective underwater missions through improved accuracy and reliability.
Design of Reward Function on Reinforcement Learning for Automated Driving
This paper proposes a design scheme of reward function that constantly evaluates both driving states and actions for applying reinforcement learning to automated driving. In the field of reinforcement learning, reward functions often evaluate whether the goal is achieved by assigning values such as +1 for success and -1 for failure. This type of reward function can potentially obtain a policy that achieves the goal, but the process by which the goal is reached is not evaluated. However, process to reach a destination is important for automated driving, such as keeping velocity, avoiding risk, retaining distance from other cars, keeping comfortable for passengers. Therefore, the reward function designed by the proposed scheme is suited for automated driving by evaluating driving process. The effects of the proposed scheme are demonstrated on simulated circuit driving and highway cruising. Asynchronous Advantage Actor-Critic is used, and models are trained under some situations for generalization. The result shows that appropriate driving positions are obtained, such as traveling on the inside of corners, and rapid deceleration to turn along sharp curves. In highway cruising, the ego vehicle becomes able to change lane in an environment where there are other vehicles with suitable deceleration to avoid catching up to a front vehicle, and acceleration so that a rear vehicle does not catch up to the ego vehicle.
comment: Accepted in IFAC World Congress 2023, 6 pages, 9 figures
Likelihood Reward Redistribution
In many practical reinforcement learning scenarios, feedback is provided only at the end of a long horizon, leading to sparse and delayed rewards. Existing reward redistribution methods typically assume that per-step rewards are independent, thus overlooking interdependencies among state--action pairs. In this paper, we propose a \emph{Likelihood Reward Redistribution} (LRR) framework that addresses this issue by modeling each per-step reward with a parametric probability distribution whose parameters depend on the state--action pair. By maximizing the likelihood of the observed episodic return via a leave-one-out (LOO) strategy that leverages the entire trajectory, our framework inherently introduces an uncertainty regularization term into the surrogate objective. Moreover, we show that the conventional mean squared error (MSE) loss for reward redistribution emerges as a special case of our likelihood framework when the uncertainty is fixed under the Gaussian distribution. When integrated with an off-policy algorithm such as Soft Actor-Critic, LRR yields dense and informative reward signals, resulting in superior sample efficiency and policy performance on Box-2d and MuJoCo benchmarks.
Tangles: Unpacking Extended Collision Experiences with Soma Trajectories
We reappraise the idea of colliding with robots, moving from a position that tries to avoid or mitigate collisions to one that considers them an important facet of human interaction. We report on a soma design workshop that explored how our bodies could collide with telepresence robots, mobility aids, and a quadruped robot. Based on our findings, we employed soma trajectories to analyse collisions as extended experiences that negotiate key transitions of consent, preparation, launch, contact, ripple, sting, untangle, debris and reflect. We then employed these ideas to analyse two collision experiences, an accidental collision between a person and a drone, and the deliberate design of a robot to play with cats, revealing how real-world collisions involve the complex and ongoing entanglement of soma trajectories. We discuss how viewing collisions as entangled trajectories, or tangles, can be used analytically, as a design approach, and as a lens to broach ethical complexity.
comment: 32 pages, 13 figures
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
This article introduces the Pareto Control Barrier Function (PCBF) algorithm to maximize the inner safe set of dynamical systems under input constraints. Traditional Control Barrier Functions (CBFs) ensure safety by maintaining system trajectories within a safe set but often fail to account for realistic input constraints. To address this problem, we leverage the Pareto multi-task learning framework to balance competing objectives of safety and safe set volume. The PCBF algorithm is applicable to high-dimensional systems and is computationally efficient. We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system. Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
comment: Accepted for presentation at American Control Conference 2025
Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes CVPR 2025
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across eleven large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code has been made publicly accessible.
comment: CVPR 2025; 27 pages, 17 figures, 10 tables; Project Page at https://ldkong.com/LiMoE
GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
Relational Object-Centric Actor-Critic
The advances in unsupervised object-centric representation learning have significantly improved its application to downstream tasks. Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks. This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches by incorporating an object-centric world model within the critic. The world model captures the environment's data-generating process by predicting the next state and reward given the current state-action pair, where actions are interventions in the environment. In model-based reinforcement learning, world model learning can be interpreted as a causal induction problem, where the agent must learn the causal relationships underlying the environment's dynamics. We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure. As baselines, we compare against object-centric, model-free actor-critic algorithms and a state-of-the-art monolithic model-based algorithm. While the baselines show comparable performance in easier tasks, our approach outperforms them in more challenging scenarios with a large number of objects or more complex dynamics.
AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the degree of cooperation of the other agents in the environment is unknown. AVOCADO departs from a Velocity Obstacle's formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, AVOCADO poses an adaptive control problem that aims at adapting in real-time to the cooperation degree of other robots and agents. Adaptation is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, based on the nonlinear opinion dynamics, we propose a novel method to avoid the deadlocks under geometrical symmetries among robots and agents. Extensive numerical simulations show that AVOCADO surpasses existing geometrical, learning and planning-based approaches in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
AffordDP: Generalizable Diffusion Policy with Transferable Affordance
Diffusion-based policies have shown impressive performance in robotic manipulation tasks while struggling with out-of-domain distributions. Recent efforts attempted to enhance generalization by improving the visual feature encoding for diffusion policy. However, their generalization is typically limited to the same category with similar appearances. Our key insight is that leveraging affordances--manipulation priors that define "where" and "how" an agent interacts with an object--can substantially enhance generalization to entirely unseen object instances and categories. We introduce the Diffusion Policy with transferable Affordance (AffordDP), designed for generalizable manipulation across novel categories. AffordDP models affordances through 3D contact points and post-contact trajectories, capturing the essential static and dynamic information for complex tasks. The transferable affordance from in-domain data to unseen objects is achieved by estimating a 6D transformation matrix using foundational vision models and point cloud registration techniques. More importantly, we incorporate affordance guidance during diffusion sampling that can refine action sequence generation. This guidance directs the generated action to gradually move towards the desired manipulation for unseen objects while keeping the generated action within the manifold of action space. Experimental results from both simulated and real-world environments demonstrate that AffordDP consistently outperforms previous diffusion-based methods, successfully generalizing to unseen instances and categories where others fail.
Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning ICRA 2024
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
comment: ICRA 2024
MG-SLAM: Structure Gaussian Splatting SLAM with Manhattan World Hypothesis
Gaussian Splatting SLAMs have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM, an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, our method ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Update: Added content related to real-world robot experiments and learning from human videos
Dynamic Layer Detection of a Thin Materials using DenseTact Optical Tactile Sensors IROS 2025
Manipulation of thin materials is critical for many everyday tasks and remains a significant challenge for robots. While existing research has made strides in tasks like material smoothing and folding, many studies struggle with common failure modes (crumpled corners/edges, incorrect grasp con-figurations) that a preliminary step of layer detection can solve. We present a novel method for classifying the number of grasped material layers using a custom gripper equipped with DenseTact 2.0 optical tactile sensors. After grasping a thin material, the gripper performs an anthropomorphic rubbing motion while collecting optical flow, 6-axis wrench, and joint state data. Using this data in a transformer-based network achieves a test accuracy of 98.21% in correctly classifying the number of grasped cloth layers, and 81.25% accuracy in classifying layers of grasped paper, showing the effectiveness of our dynamic rubbing method. Evaluating different inputs and model architectures highlights the usefulness of tactile sensor information and a transformer model for this task. A comprehensive dataset of 568 labeled trials (368 for cloth and 200 for paper) was collected and made open-source along with this paper. Our project page is available at https://armlabstanford.github.io/dynamic-cloth-detection.
comment: 7 pages, 9 figures, submitted to IROS 2025
Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality digital twin framework capable of: (i) selectively scaling parallelized workloads on-demand, and (ii) evaluating the trained policies across simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
Cycloidal Quasi-Direct Drive Actuator Designs with Learning-based Torque Estimation for Legged Robotics ICRA25
This paper presents a novel approach through the design and implementation of Cycloidal Quasi-Direct Drive actuators for legged robotics. The cycloidal gear mechanism, with its inherent high torque density and mechanical robustness, offers significant advantages over conventional designs. By integrating cycloidal gears into the Quasi-Direct Drive framework, we aim to enhance the performance of legged robots, particularly in tasks demanding high torque and dynamic loads, while still keeping them lightweight. Additionally, we develop a torque estimation framework for the actuator using an Actuator Network, which effectively reduces the sim-to-real gap introduced by the cycloidal drive's complex dynamics. This integration is crucial for capturing the complex dynamics of a cycloidal drive, which contributes to improved learning efficiency, agility, and adaptability for reinforcement learning.
comment: Proceeding to 2025 IEEE International Conference on Robotics and Automation (ICRA25)
These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing. Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination CVPR 2025
The integration of language and 3D perception is crucial for embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is a lack of large-scale datasets with dense grounding between language and 3D scenes. We introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons of models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the importance of large-scale 3D-text datasets for embodied AI research. Our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with resources and insights to lead to more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
comment: CVPR 2025. Project website: https://3d-grand.github.io
Parameter Adjustments in POMDP-Based Trajectory Planning for Unsignalized Intersections
This paper investigates the problem of trajectory planning for autonomous vehicles at unsignalized intersections, specifically focusing on scenarios where the vehicle lacks the right of way and yet must cross safely. To address this issue, we have employed a method based on the Partially Observable Markov Decision Processes (POMDPs) framework designed for planning under uncertainty. The method utilizes the Adaptive Belief Tree (ABT) algorithm as an approximate solver for the POMDPs. We outline the POMDP formulation, beginning with discretizing the intersection's topology. Additionally, we present a dynamics model for the prediction of the evolving states of vehicles, such as their position and velocity. Using an observation model, we also describe the connection of those states with the imperfect (noisy) available measurements. Our results confirmed that the method is able to plan collision-free trajectories in a series of simulations utilizing real-world traffic data from aerial footage of two distinct intersections. Furthermore, we studied the impact of parameter adjustments of the ABT algorithm on the method's performance. This provides guidance in determining reasonable parameter settings, which is valuable for future method applications.
comment: Submitted version
Fish Mouth Inspired Origami Gripper for Robust Multi-Type Underwater Grasping
Robotic grasping and manipulation in underwater environments present unique challenges for robotic hands traditionally used on land. These challenges stem from dynamic water conditions, a wide range of object properties from soft to stiff, irregular object shapes, and varying surface frictions. One common approach involves developing finger-based hands with embedded compliance using underactuation and soft actuators. This study introduces an effective alternative solution that does not rely on finger-based hand designs. We present a fish mouth inspired origami gripper that utilizes a single degree of freedom to perform a variety of robust grasping tasks underwater. The innovative structure transforms a simple uniaxial pulling motion into a grasping action based on the Yoshimura crease pattern folding. The origami gripper offers distinct advantages, including scalable and optimizable design, grasping compliance, and robustness, with four grasping types: pinch, power grasp, simultaneous grasping of multiple objects, and scooping from the seabed. In this work, we detail the design, modeling, fabrication, and validation of a specialized underwater gripper capable of handling various marine creatures, including jellyfish, crabs, and abalone. By leveraging an origami and bio-inspired approach, the presented gripper demonstrates promising potential for robotic grasping and manipulation in underwater environments.
iKap: Kinematics-aware Planning with Imperative Learning
Trajectory planning in robotics aims to generate collision-free pose sequences that can be reliably executed. Recently, vision-to-planning systems have gained increasing attention for their efficiency and ability to interpret and adapt to surrounding environments. However, traditional modular systems suffer from increased latency and error propagation, while purely data-driven approaches often overlook the robot's kinematic constraints. This oversight leads to discrepancies between planned trajectories and those that are executable. To address these challenges, we propose iKap, a novel vision-to-planning system that integrates the robot's kinematic model directly into the learning pipeline. iKap employs a self-supervised learning approach and incorporates the state transition model within a differentiable bi-level optimization framework. This integration ensures the network learns collision-free waypoints while satisfying kinematic constraints, enabling gradient back-propagation for end-to-end training. Our experimental results demonstrate that iKap achieves higher success rates and reduced latency compared to the state-of-the-art methods. Besides the complete system, iKap offers a visual-to-planning network that seamlessly works with various controllers, providing a robust solution for robots navigating complex environments.
comment: 6 pages, 6 figures
Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
We consider the nonprehensile object transportation task known as the waiter's problem - in which a robot must move an object on a tray from one location to another - when the transported object has uncertain inertial parameters. In contrast to existing approaches that completely ignore uncertainty in the inertia matrix or which only consider small parameter errors, we are interested in pushing the limits of the amount of inertial parameter uncertainty that can be handled. We first show how constraints that are robust to inertial parameter uncertainty can be incorporated into an optimization-based motion planning framework to transport objects while moving quickly. Next, we develop necessary conditions for the inertial parameters to be realizable on a bounding shape based on moment relaxations, allowing us to verify whether a trajectory will violate the constraints for any realizable inertial parameters. Finally, we demonstrate our approach on a mobile manipulator in simulations and real hardware experiments: our proposed robust constraints consistently successfully transport a 56 cm tall object with substantial inertial parameter uncertainty in the real world, while the baseline approaches drop the object while transporting it.
comment: 8 pages, 7 figures. Published in IEEE Robotics and Automation Letters
Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
We propose an object-centric recovery (OCR) framework to address the challenges of out-of-distribution (OOD) scenarios in visuomotor policy learning. Previous behavior cloning (BC) methods rely heavily on a large amount of labeled data coverage, failing in unfamiliar spatial states. Without relying on extra data collection, our approach learns a recovery policy constructed by an inverse policy inferred from the object keypoint manifold gradient in the original training data. The recovery policy serves as a simple add-on to any base visuomotor BC policy, agnostic to a specific method, guiding the system back towards the training distribution to ensure task success even in OOD situations. We demonstrate the effectiveness of our object-centric framework in both simulation and real robot experiments, achieving an improvement of 77.7\% over the base policy in OOD. Furthermore, we show OCR's capacity to autonomously collect demonstrations for continual learning. Overall, we believe this framework represents a step toward improving the robustness of visuomotor policies in real-world settings. Project Website: https://sites.google.com/view/ocr-penn
Systems and Control (CS)
Parallel Domain-Decomposition Algorithms for Complexity Certification of Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
When implementing model predictive control (MPC) for hybrid systems with a linear or a quadratic performance measure, a mixed-integer linear program (MILP) or a mixed-integer quadratic program (MIQP) needs to be solved, respectively, at each sampling instant. Recent work has introduced the possibility to certify the computational complexity of branch-and-bound (B&B) algorithms when solving MILP and MIQP problems formulated as multi-parametric MILPs (mp-MILPs) and mp-MIQPs. Such a framework allows for computing the worst-case computational complexity of standard B&B-based MILP and MIQP solvers, quantified by metrics such as the total number of LP/QP iterations and B&B nodes. These results are highly relevant for real-time hybrid MPC applications. In this paper, we extend this framework by developing parallel, domain-decomposition versions of the previously proposed algorithm, allowing it to scale to larger problem sizes and enable the use of high-performance computing (HPC) resources. Furthermore, to reduce peak memory consumption, we introduce two modifications to the existing (serial) complexity certification framework, integrating them into the proposed parallel algorithms. Numerical experiments show that the parallel algorithms significantly reduce computation time while maintaining the correctness of the original framework.
Finite Sample Analysis of System Poles for Ho-Kalman Algorithm
This paper investigates the error analysis of system pole estimation in $n$-dimensional discrete-time Linear Time-Invariant systems with $m$ outputs and $p$ inputs, using the classical Ho-Kalman algorithm based on finite input-output sample data. Building upon prior work, we establish end-to-end estimation guarantees for system poles under both single-trajectory and multiple-trajectory settings. Specifically, we prove that, with high probability, the estimation error of system poles decreases at a rate of at least $\mathcal{O}\{T^{-\frac{1}{2n}}\}$ in the single-trajectory case and $\mathcal{O}\{N^{-\frac{1}{2n}}\}$ in the multiple-trajectory case, where $T$ is the length of a single trajectory, and $N$ is the number of trajectories. Furthermore, we reveal that in both settings, achieving a constant estimation accuracy for system poles requires the sample size to grow super-polynomially with respect to the larger of the two ratios, $ \max\{n/m, n/p\} $. Numerical experiments are conducted to validate the non-asymptotic results of system pole estimation.
comment: 17 pages, 1 figure
Evaluation of Torque Ripple and Tooth Forces of a Skewed PMSM by 2D and 3D FE Simulations
In this paper, various skewing configurations for a permanent magnet synchronous machine are evaluated by comparing torque ripple amplitudes and tooth forces. Since high-frequency pure tones emitted by an electrical machine significantly impact a vehicle's noise, vibration, and harshness (NVH) behavior, it is crucial to analyze radial forces. These forces are examined and compared across different skewing configurations and angles using the Maxwell stress tensor in 2D and 3D finite-element (FE) simulations. In addition to conventional investigations in 2D FE simulations, 3D FE simulations are executed. These 3D FE simulations show that axial forces occur at the transition points between the magnetic segments of a linear step skewed rotor.
A Unifying Complexity-Certification Framework for Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
In model predictive control (MPC) for hybrid systems, solving optimization problems efficiently and with guarantees on worst-case computational complexity is critical, particularly in real-time applications. These optimization problems often take the form of mixed-integer linear programs (MILPs) or mixed-integer quadratic programs (MIQPs) that depend on system parameters. A common approach for solving such problems is the branch-and-bound (B&B) method. This paper extends existing complexity certification methods by presenting a unified complexity-certification framework for B&B-based MILP and MIQP solvers, specifically for the family of multi-parametric MILP and MIQP problems that arise in, e.g., hybrid MPC applications. The framework provides guarantees on worst-case computational measures, including the maximum number of iterations or relaxations B&B algorithms require to reach optimality. It systematically accounts for different branching and node selection strategies, as well as heuristics integrated into B&B, ensuring a comprehensive certification framework. By offering theoretical guarantees and practical insights for solver customization, the proposed framework enhances the reliability of B&B for real-time application. The usefulness of the proposed framework is demonstrated through numerical experiments on both random MILPs and MIQPs, as well as on MIQPs arising from a hybrid MPC problem.
Flight Testing an Optionally Piloted Aircraft: a Case Study on Trust Dynamics in Human-Autonomy Teaming
This paper examines how trust is formed, maintained, or diminished over time in the context of human-autonomy teaming with an optionally piloted aircraft. Whereas traditional factor-based trust models offer a static representation of human confidence in technology, here we discuss how variations in the underlying factors lead to variations in trust, trust thresholds, and human behaviours. Over 200 hours of flight test data collected over a multi-year test campaign from 2021 to 2023 were reviewed. The dispositional-situational-learned, process-performance-purpose, and IMPACTS homeostasis trust models are applied to illuminate trust trends during nominal autonomous flight operations. The results offer promising directions for future studies on trust dynamics and design-for-trust in human-autonomy teaming.
comment: IEEE International Conference on Human-Machine Systems 2025, keywords: trust, human factors, aviation, safety-critical, human-autonomy teaming
Aging-aware Energy Management for Residential Multi-Carrier Energy Systems
In the context of building electrification, the operation of distributed energy resources integrating multiple energy carriers (electricity, heat, mobility) poses a significant challenge. Such an operation calls for an energy management system that decides the set points of the primary control layer in the best way possible. This has to fulfill user requirements, minimize costs, and balance local generation with energy storage. Such storage enables building flexibility. This paper presents a novel aging-aware strategy for electrified buildings. The energy management algorithm presented incorporates physics-based battery aging models to enhance the operational performance, making explicit the trade-off between the grid cost and battery degradation. The proposed algorithm can be used to improve grid costs or to protect the batteries (static or electric vehicles). This energy management algorithm can control different cathode chemistries as well as aged and fresh batteries, improving costs with respect to benchmarks for these cases.
Learn to Bid as a Price-Maker Wind Power Producer
Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production. While some WPPs have a large enough market share to influence prices with their bidding decisions, existing optimal bidding methods rarely account for this aspect. Price-maker approaches typically model bidding as a bilevel optimization problem, but these methods require complex market models, estimating other participants' actions, and are computationally demanding. To address these challenges, we propose an online learning algorithm that leverages contextual information to optimize WPP bids in the price-maker setting. We formulate the strategic bidding problem as a contextual multi-armed bandit, ensuring provable regret minimization. The algorithm's performance is evaluated against various benchmark strategies using a numerical simulation of the German day-ahead and real-time markets.
Control Lyapunov Function Design via Configuration-Constrained Polyhedral Computing
This paper proposes novel approaches for designing control Lyapunov functions (CLFs) for constrained linear systems. We leverage recent configuration-constrained polyhedral computing techniques to devise piecewise affine convex CLFs. Additionally, we generalize these methods to uncertain systems with both additive and multiplicative disturbances. The proposed design methods are capable of approximating the infinite horizon cost function of both nominal and min-max optimal control problems by solving a single, one-stage, convex optimization problem. As such, these methods find practical applications in explicit controller design as well as in determining terminal regions and cost functions for nominal and min-max model predictive control (MPC). Numerical examples illustrate the effectiveness of this approach.
Digital Asset Data Lakehouse. The concept based on a blockchain research center
In the rapidly evolving landscape of digital assets and blockchain technologies, the necessity for robust, scalable, and secure data management platforms has never been more critical. This paper introduces a novel software architecture designed to meet these demands by leveraging the inherent strengths of cloud-native technologies and modular micro-service based architectures, to facilitate efficient data management, storage and access, across different stakeholders. We detail the architectural design, including its components and interactions, and discuss how it addresses common challenges in managing blockchain data and digital assets, such as scalability, data siloing, and security vulnerabilities. We demonstrate the capabilities of the platform by employing it into multiple real-life scenarios, namely providing data in near real-time to scientists in help with their research. Our results indicate that the proposed architecture not only enhances the efficiency and scalability of distributed data management but also opens new avenues for innovation in the research reproducibility area. This work lays the groundwork for future research and development in machine learning operations systems, offering a scalable and secure framework for the burgeoning digital economy.
comment: 8 pages, system architecture
Privacy-Preserving Utilization of Distribution System Flexibility for Enhanced TSO-DSO Interoperability: A Novel Machine Learning-Based Optimal Power Flow Approach
Due to the transformation of the power system, the effective use of flexibility from the distribution system (DS) is becoming crucial for efficient network management. Leveraging this flexibility requires interoperability among stakeholders, including Transmission System Operators (TSOs) and Distribution System Operators (DSOs). However, data privacy concerns among stakeholders present significant challenges for utilizing this flexibility effectively. To address these challenges, we propose a machine learning (ML)-based method in which the technical constraints of the DSs are represented by ML models trained exclusively on non-sensitive data. Using these models, the TSO can solve the optimal power flow (OPF) problem and directly determine the dispatch of flexibility-providing units (FPUs), in our case, distributed generators (DGs), in a single round of communication. To achieve this, we introduce a novel neural network (NN) architecture specifically designed to efficiently represent the feasible region of the DSs, ensuring computational effectiveness. Furthermore, we incorporate various PQ charts rather than idealized ones, demonstrating that the proposed method is adaptable to a wide range of FPU characteristics. To assess the effectiveness of the proposed method, we benchmark it against the standard AC-OPF on multiple DSs with meshed connections and multiple points of common coupling (PCCs) with varying voltage magnitudes. The numerical results indicate that the proposed method achieves performant results while prioritizing data privacy. Additionally, since this method directly determines the dispatch of FPUs, it eliminates the need for an additional disaggregation step. By representing the DSs technical constraints through ML models trained exclusively on non-sensitive data, the transfer of sensitive information between stakeholders is prevented.
Development of a Magnetorheological Hand Exoskeleton Featuring High Force-to-power Ratio for Enhancing Grip Endurance
Hand exoskeletons have significant potential in labor-intensive fields by mitigating hand grip fatigue, enhancing hand strength, and preventing injuries.However, most traditional hand exoskeletons are driven by motors whose output force is limited under constrained installation conditions. In addition, they also come with the disadvantages of high power consumption, complex and bulky assistive systems, and high instability.In this work, we develop a novel hand exoskeleton integrated with magnetorheological (MR) clutches that offers a high force-to-power ratio to improve grip endurance. The clutch features an enhanced structure design, a micro roller enhancing structure, which can significantly boost output forces. The experimental data demonstrate that the clutch can deliver a peak holding force of 380 N with a consumption of 1.48 W, yielding a force-to-power ratio of 256.75N/W, which is 2.35 times higher than the best reported actuator used for hand exoskeletons. The designed MR hand exoskeleton is highly integrated and comprises an exoskeleton frame, MR clutches, a control unit, and a battery. Evaluations through static grip endurance tests and dynamic carrying and lifting tests confirm that the MR hand exoskeleton can effectively reduce muscle fatigue, extend grip endurance, and minimize injuries. These findings highlight its strong potential for practical applications in repetitive tasks such as carrying and lifting in industrial settings.
A Unified Stability Analysis of Safety-Critical Control using Multiple Control Barrier Functions
Ensuring liveness and safety of autonomous and cyber-physical systems remains a fundamental challenge, particularly when multiple safety constraints are present. This letter advances the theoretical foundations of safety-filter Quadratic Programs (QP) and Control Lyapunov Function (CLF)-Control Barrier Function (CBF) controllers by establishing a unified analytical framework for studying their stability properties. We derive sufficient feasibility conditions for QPs with multiple CBFs and formally characterize the conditions leading to undesirable equilibrium points at possible intersecting safe set boundaries. Additionally, we introduce a stability criterion for equilibrium points, providing a systematic approach to identifying conditions under which they can be destabilized or eliminated. Our analysis extends prior theoretical results, deepening the understanding of the conditions of feasibility and stability of CBF-based safety filters and the CLF-CBF QP framework.
comment: Submitted to LCSS-CDC2025. Under review
Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
comment: 8 pages, 13 figures, IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
Prediction of Permissioned Blockchain Performance for Resource Scaling Configurations
Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a ``black-box,'' leading to uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of ~1.9%, which is highly accurate and can be applied in the real-world.
Ground and Flight Locomotion for Two-Wheeled Drones via Model Predictive Path Integral Control
This paper presents a novel approach to motion planning for two-wheeled drones that can drive on the ground and fly in the air. Conventional methods for two-wheeled drone motion planning typically rely on gradient-based optimization and assume that obstacle shapes can be approximated by a differentiable form. To overcome this limitation, we propose a motion planning method based on Model Predictive Path Integral (MPPI) control, enabling navigation through arbitrarily shaped obstacles by switching between driving and flight modes. To handle the instability and rapid solution changes caused by mode switching, our proposed method switches the control space and utilizes the auxiliary controller for MPPI. Our simulation results demonstrate that the proposed method enables navigation in unstructured environments and achieves effective obstacle avoidance through mode switching.
comment: This work has been submitted to the IEEE for possible publication
Deep Q-Learning with Gradient Target Tracking
This paper introduces Q-learning with gradient target tracking, a novel reinforcement learning framework that provides a learned continuous target update mechanism as an alternative to the conventional hard update paradigm. In the standard deep Q-network (DQN), the target network is a copy of the online network's weights, held fixed for a number of iterations before being periodically replaced via a hard update. While this stabilizes training by providing consistent targets, it introduces a new challenge: the hard update period must be carefully tuned to achieve optimal performance. To address this issue, we propose two gradient-based target update methods: DQN with asymmetric gradient target tracking (AGT2-DQN) and DQN with symmetric gradient target tracking (SGT2-DQN). These methods replace the conventional hard target updates with continuous and structured updates using gradient descent, which effectively eliminates the need for manual tuning. We provide a theoretical analysis proving the convergence of these methods in tabular settings. Additionally, empirical evaluations demonstrate their advantages over standard DQN baselines, which suggest that gradient-based target updates can serve as an effective alternative to conventional target update mechanisms in Q-learning.
Subgradient Method for System Identification with Non-Smooth Objectives
This paper investigates a subgradient-based algorithm to solve the system identification problem for linear time-invariant systems with non-smooth objectives. This is essential for robust system identification in safety-critical applications. While existing work provides theoretical exact recovery guarantees using optimization solvers, the design of fast learning algorithms with convergence guarantees for practical use remains unexplored. We analyze the subgradient method in this setting where the optimization problems to be solved change over time as new measurements are taken, and we establish linear convergence results for both the best and Polyak step sizes after a burn-in period. Additionally, we characterize the asymptotic convergence of the best average sub-optimality gap under diminishing and constant step sizes. Finally, we compare the time complexity of standard solvers with the subgradient algorithm and support our findings with experimental results. This is the first work to analyze subgradient algorithms for system identification with non-smooth objectives.
comment: 8 pages, 5 figures
SoK: Trusted Execution in SoC-FPGAs
Trusted Execution Environments (TEEs) have emerged at the forefront of edge computing to combat the lack of trust between system components. Field Programmable Gate Arrays (FPGAs) are commonly used as edge computers but were not created with security as a primary consideration. Thus, FPGA-based edge computers are increasingly the target of cyberattacks. We analyze the existing literature to systematize the applications and features of FPGA-based TEEs. We identified 27 primary studies related to different types of System-on-Chip FPGA-based TEEs. Across a wide range of applications and features, the availability of extensible solutions is limited. Most solutions focus on specific features and applications, whereas few solutions focus on feature-rich, comprehensive TEEs that can be utilized across computer systems. Whether TEEs are specific or extensible, the paucity of published studies provides evidence of research gaps. This SoK delineates these gaps revealing opportunities for researchers and developers.
comment: 6 pages
Prospects for endurance augmentation of small unmanned systems using butane-fueled thermoelectric generation
We investigate the potential of enhancing small (<20 kg) drone endurance by exploiting the high energy density of hydrocarbons using a prototype generator based on commercial-off-the-shelf (COTS) thermoelectric energy conversion technology. A proof-of-concept prototype was developed to vet design and engineering challenges and to bolster validity of resultant conclusions. The combination of the prototype performance and modeling suggests that endurance augmentation remains a difficult technical challenge with no clear immediate remedy despite many expectant alternatives. Across a sample of representative drones including ground- and air-based, multicopter and fixed wing drones, we report the following: from their current maximum values of 12%, thermoelectric (TE) generator module efficiencies must increase by over two times to achieve endurance parity with lithium batteries for VTOL multicopters. On the other hand, current TE efficiencies can compete with lithium batteries for some low power fixed wing and ground-based drones. Technical contributors for these results include weight of non-energy contributing components, low specific power and the associated tradeoff between specific power and specific energy due to fuel mass fraction, and lastly, low efficiencies.
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
Stochastic LQR Design With Disturbance Preview
This paper considers the discrete-time, stochastic LQR problem with $p$ steps of disturbance preview information where $p$ is finite. We first derive the solution for this problem on a finite horizon with linear, time-varying dynamics and time-varying costs. Next, we derive the solution on the infinite horizon with linear, time-invariant dynamics and time-invariant costs. Our proofs rely on the well-known principle of optimality. We provide an independent proof for the principle of optimality that relies only on nested information structure. Finally, we show that the finite preview controller converges to the optimal noncausal controller as the preview horizon $p$ tends to infinity. We also provide a simple example to illustrate both the finite and infinite horizon results.
Intelligent Agricultural Greenhouse Control System Based on Internet of Things and Machine Learning
This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning. Through meticulous monitoring of intrinsic environmental parameters within the greenhouse and the integration of machine learning algorithms, the conditions within the greenhouse are aptly modulated. The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage. In the backdrop of escalating global population figures and the escalating exigencies of climate change, agriculture confronts unprecedented challenges. Conventional agricultural paradigms have proven inadequate in addressing the imperatives of food safety and production efficiency. Against this backdrop, greenhouse agriculture emerges as a viable solution, proffering a controlled milieu for crop cultivation to augment yields, refine quality, and diminish reliance on natural resources [b1]. Nevertheless, greenhouse agriculture contends with a gamut of challenges. Traditional greenhouse management strategies, often grounded in experiential knowledge and predefined rules, lack targeted personalized regulation, thereby resulting in resource inefficiencies. The exigencies of real-time monitoring and precise control of the greenhouse's internal environment gain paramount importance with the burgeoning scale of agriculture. To redress this challenge, the study introduces IoT technology and machine learning algorithms into greenhouse agriculture, aspiring to institute an intelligent agricultural greenhouse control system conducive to augmenting the efficiency and sustainability of agricultural production.
Worst-Case Services and State-Based Scheduling
In this paper, we shed new light on a classical scheduling problem: given a slot-timed, constant-capacity server, what short-run scheduling decisions must be made to provide long-run service guarantees to competing flows of unit-sized tasks? We model each flow's long-run guarantee as a worst-case service that maps each queued arrival vector recording the flow's cumulative task arrivals, including those initially queued, to a worst-case acceptable departure vector lower-bounding its cumulative served tasks. We show that these maps are states that can be updated as tasks arrive and are served, introduce state-based scheduling, find the schedulability condition necessary and sufficient to maintain all flows' long-run guarantees, and use this condition to identify all short-run scheduling decisions that preserve schedulability. Our framework is general but computationally complex. To reduce complexity, we consider three specializations. First, we show that when satisfactory short-run scheduling decisions exist, at least one can be efficiently identified by maximizing the server's capacity slack, a generalization of the earliest-deadline-first rule. Second, we show that a special class of worst-case services, min-plus services, can be efficiently specified and updated using properties of the min-plus algebra. Finally, we show that efficiency can be further improved by restricting attention to a min-plus service subclass, dual-curve services. This last specialization turns out to be a dynamic extension of service curves that maintains all essential features of our framework while approaching near practical viability.
On the Stability of Undesirable Equilibria in the Quadratic Program Framework for Safety-Critical Control
Control Lyapunov functions (CLFs) and Control Barrier Functions (CBFs) have been used to develop provably safe controllers by means of quadratic programs (QPs). This framework guarantees safety in the form of trajectory invariance with respect to a given set, but it can introduce undesirable equilibrium points to the closed loop system, which can be asymptotically stable. In this work, we present a detailed study of the formation and stability of equilibrium points with the CLF-CBF-QP framework with multiple CBFs. In particular, we prove that undesirable equilibrium points occur for most systems, and their stability is dependent on the CLF and CBF geometrical properties. We introduce the concept of CLF-CBF compatibility for a system, regarding a CLF-CBF pair inducing no stable equilibrium points other than the CLF global minimum on the corresponding closed-loop dynamics. Sufficient conditions for CLF-CBF compatibility for LTI and drift-less full-rank systems with quadratic CLF and CBFs are derived, and we propose a novel control strategy to induce smooth changes in the CLF geometry at certain regions of the state space in order to satisfy the CLF-CBF compatibility conditions, aiming to achieve safety with respect to multiple safety objectives and quasi-global convergence of the trajectories towards the CLF minimum. Numeric simulations illustrate the applicability of the proposed method.
comment: Submitted to IFAC Automatica. Under review
Exact Recovery Guarantees for Parameterized Nonlinear System Identification Problem under Sparse Disturbances or Semi-Oblivious Attacks
In this work, we study the problem of learning a nonlinear dynamical system by parameterizing its dynamics using basis functions. We assume that disturbances occur at each time step with an arbitrary probability $p$, which models the sparsity level of the disturbance vectors over time. These disturbances are drawn from an arbitrary, unknown probability distribution, which may depend on past disturbances, provided that it satisfies a zero-mean assumption. The primary objective of this paper is to learn the system's dynamics within a finite time and analyze the sample complexity as a function of $p$. To achieve this, we examine a LASSO-type non-smooth estimator, and establish necessary and sufficient conditions for its well-specifiedness and the uniqueness of the global solution to the underlying optimization problem. We then provide exact recovery guarantees for the estimator under two distinct conditions: boundedness and Lipschitz continuity of the basis functions. We show that finite-time exact recovery is achieved with high probability, even when $p$ approaches 1. Unlike prior works, which primarily focus on independent and identically distributed (i.i.d.) disturbances and provide only asymptotic guarantees for system learning, this study presents the first finite-time analysis of nonlinear dynamical systems under a highly general disturbance model. Our framework allows for possible temporal correlations in the disturbances and accommodates semi-oblivious adversarial attacks, significantly broadening the scope of existing theoretical results.
comment: 43 pages
Uncertainty-Aware Guidance for Target Tracking subject to Intermittent Measurements using Motion Model Learning
This paper presents a novel guidance law for target tracking applications where the target motion model is unknown and sensor measurements are intermittent due to unknown environmental conditions and low measurement update rate. In this work, the target motion model is represented by a transformer neural network and trained by previous target position measurements. This transformer motion model serves as the prediction step in a particle filter for target state estimation and uncertainty quantification. The particle filter estimation uncertainty is utilized in the information-driven guidance law to compute a path for the mobile agent to travel to a position with maximum expected entropy reduction (EER). The computation of EER is performed in real-time by approximating the information gain from the predicted particle distributions relative to the current distribution. Simulation and hardware experiments are performed with a quadcopter agent and TurtleBot target to demonstrate that the presented guidance law outperforms two other baseline guidance methods.
Systems and Control (EESS)
Parallel Domain-Decomposition Algorithms for Complexity Certification of Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
When implementing model predictive control (MPC) for hybrid systems with a linear or a quadratic performance measure, a mixed-integer linear program (MILP) or a mixed-integer quadratic program (MIQP) needs to be solved, respectively, at each sampling instant. Recent work has introduced the possibility to certify the computational complexity of branch-and-bound (B&B) algorithms when solving MILP and MIQP problems formulated as multi-parametric MILPs (mp-MILPs) and mp-MIQPs. Such a framework allows for computing the worst-case computational complexity of standard B&B-based MILP and MIQP solvers, quantified by metrics such as the total number of LP/QP iterations and B&B nodes. These results are highly relevant for real-time hybrid MPC applications. In this paper, we extend this framework by developing parallel, domain-decomposition versions of the previously proposed algorithm, allowing it to scale to larger problem sizes and enable the use of high-performance computing (HPC) resources. Furthermore, to reduce peak memory consumption, we introduce two modifications to the existing (serial) complexity certification framework, integrating them into the proposed parallel algorithms. Numerical experiments show that the parallel algorithms significantly reduce computation time while maintaining the correctness of the original framework.
Finite Sample Analysis of System Poles for Ho-Kalman Algorithm
This paper investigates the error analysis of system pole estimation in $n$-dimensional discrete-time Linear Time-Invariant systems with $m$ outputs and $p$ inputs, using the classical Ho-Kalman algorithm based on finite input-output sample data. Building upon prior work, we establish end-to-end estimation guarantees for system poles under both single-trajectory and multiple-trajectory settings. Specifically, we prove that, with high probability, the estimation error of system poles decreases at a rate of at least $\mathcal{O}\{T^{-\frac{1}{2n}}\}$ in the single-trajectory case and $\mathcal{O}\{N^{-\frac{1}{2n}}\}$ in the multiple-trajectory case, where $T$ is the length of a single trajectory, and $N$ is the number of trajectories. Furthermore, we reveal that in both settings, achieving a constant estimation accuracy for system poles requires the sample size to grow super-polynomially with respect to the larger of the two ratios, $ \max\{n/m, n/p\} $. Numerical experiments are conducted to validate the non-asymptotic results of system pole estimation.
comment: 17 pages, 1 figure
Evaluation of Torque Ripple and Tooth Forces of a Skewed PMSM by 2D and 3D FE Simulations
In this paper, various skewing configurations for a permanent magnet synchronous machine are evaluated by comparing torque ripple amplitudes and tooth forces. Since high-frequency pure tones emitted by an electrical machine significantly impact a vehicle's noise, vibration, and harshness (NVH) behavior, it is crucial to analyze radial forces. These forces are examined and compared across different skewing configurations and angles using the Maxwell stress tensor in 2D and 3D finite-element (FE) simulations. In addition to conventional investigations in 2D FE simulations, 3D FE simulations are executed. These 3D FE simulations show that axial forces occur at the transition points between the magnetic segments of a linear step skewed rotor.
A Unifying Complexity-Certification Framework for Branch-and-Bound Algorithms for Mixed-Integer Linear and Quadratic Programming
In model predictive control (MPC) for hybrid systems, solving optimization problems efficiently and with guarantees on worst-case computational complexity is critical, particularly in real-time applications. These optimization problems often take the form of mixed-integer linear programs (MILPs) or mixed-integer quadratic programs (MIQPs) that depend on system parameters. A common approach for solving such problems is the branch-and-bound (B&B) method. This paper extends existing complexity certification methods by presenting a unified complexity-certification framework for B&B-based MILP and MIQP solvers, specifically for the family of multi-parametric MILP and MIQP problems that arise in, e.g., hybrid MPC applications. The framework provides guarantees on worst-case computational measures, including the maximum number of iterations or relaxations B&B algorithms require to reach optimality. It systematically accounts for different branching and node selection strategies, as well as heuristics integrated into B&B, ensuring a comprehensive certification framework. By offering theoretical guarantees and practical insights for solver customization, the proposed framework enhances the reliability of B&B for real-time application. The usefulness of the proposed framework is demonstrated through numerical experiments on both random MILPs and MIQPs, as well as on MIQPs arising from a hybrid MPC problem.
Flight Testing an Optionally Piloted Aircraft: a Case Study on Trust Dynamics in Human-Autonomy Teaming
This paper examines how trust is formed, maintained, or diminished over time in the context of human-autonomy teaming with an optionally piloted aircraft. Whereas traditional factor-based trust models offer a static representation of human confidence in technology, here we discuss how variations in the underlying factors lead to variations in trust, trust thresholds, and human behaviours. Over 200 hours of flight test data collected over a multi-year test campaign from 2021 to 2023 were reviewed. The dispositional-situational-learned, process-performance-purpose, and IMPACTS homeostasis trust models are applied to illuminate trust trends during nominal autonomous flight operations. The results offer promising directions for future studies on trust dynamics and design-for-trust in human-autonomy teaming.
comment: IEEE International Conference on Human-Machine Systems 2025, keywords: trust, human factors, aviation, safety-critical, human-autonomy teaming
Aging-aware Energy Management for Residential Multi-Carrier Energy Systems
In the context of building electrification, the operation of distributed energy resources integrating multiple energy carriers (electricity, heat, mobility) poses a significant challenge. Such an operation calls for an energy management system that decides the set points of the primary control layer in the best way possible. This has to fulfill user requirements, minimize costs, and balance local generation with energy storage. Such storage enables building flexibility. This paper presents a novel aging-aware strategy for electrified buildings. The energy management algorithm presented incorporates physics-based battery aging models to enhance the operational performance, making explicit the trade-off between the grid cost and battery degradation. The proposed algorithm can be used to improve grid costs or to protect the batteries (static or electric vehicles). This energy management algorithm can control different cathode chemistries as well as aged and fresh batteries, improving costs with respect to benchmarks for these cases.
Learn to Bid as a Price-Maker Wind Power Producer
Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production. While some WPPs have a large enough market share to influence prices with their bidding decisions, existing optimal bidding methods rarely account for this aspect. Price-maker approaches typically model bidding as a bilevel optimization problem, but these methods require complex market models, estimating other participants' actions, and are computationally demanding. To address these challenges, we propose an online learning algorithm that leverages contextual information to optimize WPP bids in the price-maker setting. We formulate the strategic bidding problem as a contextual multi-armed bandit, ensuring provable regret minimization. The algorithm's performance is evaluated against various benchmark strategies using a numerical simulation of the German day-ahead and real-time markets.
Control Lyapunov Function Design via Configuration-Constrained Polyhedral Computing
This paper proposes novel approaches for designing control Lyapunov functions (CLFs) for constrained linear systems. We leverage recent configuration-constrained polyhedral computing techniques to devise piecewise affine convex CLFs. Additionally, we generalize these methods to uncertain systems with both additive and multiplicative disturbances. The proposed design methods are capable of approximating the infinite horizon cost function of both nominal and min-max optimal control problems by solving a single, one-stage, convex optimization problem. As such, these methods find practical applications in explicit controller design as well as in determining terminal regions and cost functions for nominal and min-max model predictive control (MPC). Numerical examples illustrate the effectiveness of this approach.
Digital Asset Data Lakehouse. The concept based on a blockchain research center
In the rapidly evolving landscape of digital assets and blockchain technologies, the necessity for robust, scalable, and secure data management platforms has never been more critical. This paper introduces a novel software architecture designed to meet these demands by leveraging the inherent strengths of cloud-native technologies and modular micro-service based architectures, to facilitate efficient data management, storage and access, across different stakeholders. We detail the architectural design, including its components and interactions, and discuss how it addresses common challenges in managing blockchain data and digital assets, such as scalability, data siloing, and security vulnerabilities. We demonstrate the capabilities of the platform by employing it into multiple real-life scenarios, namely providing data in near real-time to scientists in help with their research. Our results indicate that the proposed architecture not only enhances the efficiency and scalability of distributed data management but also opens new avenues for innovation in the research reproducibility area. This work lays the groundwork for future research and development in machine learning operations systems, offering a scalable and secure framework for the burgeoning digital economy.
comment: 8 pages, system architecture
Privacy-Preserving Utilization of Distribution System Flexibility for Enhanced TSO-DSO Interoperability: A Novel Machine Learning-Based Optimal Power Flow Approach
Due to the transformation of the power system, the effective use of flexibility from the distribution system (DS) is becoming crucial for efficient network management. Leveraging this flexibility requires interoperability among stakeholders, including Transmission System Operators (TSOs) and Distribution System Operators (DSOs). However, data privacy concerns among stakeholders present significant challenges for utilizing this flexibility effectively. To address these challenges, we propose a machine learning (ML)-based method in which the technical constraints of the DSs are represented by ML models trained exclusively on non-sensitive data. Using these models, the TSO can solve the optimal power flow (OPF) problem and directly determine the dispatch of flexibility-providing units (FPUs), in our case, distributed generators (DGs), in a single round of communication. To achieve this, we introduce a novel neural network (NN) architecture specifically designed to efficiently represent the feasible region of the DSs, ensuring computational effectiveness. Furthermore, we incorporate various PQ charts rather than idealized ones, demonstrating that the proposed method is adaptable to a wide range of FPU characteristics. To assess the effectiveness of the proposed method, we benchmark it against the standard AC-OPF on multiple DSs with meshed connections and multiple points of common coupling (PCCs) with varying voltage magnitudes. The numerical results indicate that the proposed method achieves performant results while prioritizing data privacy. Additionally, since this method directly determines the dispatch of FPUs, it eliminates the need for an additional disaggregation step. By representing the DSs technical constraints through ML models trained exclusively on non-sensitive data, the transfer of sensitive information between stakeholders is prevented.
Development of a Magnetorheological Hand Exoskeleton Featuring High Force-to-power Ratio for Enhancing Grip Endurance
Hand exoskeletons have significant potential in labor-intensive fields by mitigating hand grip fatigue, enhancing hand strength, and preventing injuries.However, most traditional hand exoskeletons are driven by motors whose output force is limited under constrained installation conditions. In addition, they also come with the disadvantages of high power consumption, complex and bulky assistive systems, and high instability.In this work, we develop a novel hand exoskeleton integrated with magnetorheological (MR) clutches that offers a high force-to-power ratio to improve grip endurance. The clutch features an enhanced structure design, a micro roller enhancing structure, which can significantly boost output forces. The experimental data demonstrate that the clutch can deliver a peak holding force of 380 N with a consumption of 1.48 W, yielding a force-to-power ratio of 256.75N/W, which is 2.35 times higher than the best reported actuator used for hand exoskeletons. The designed MR hand exoskeleton is highly integrated and comprises an exoskeleton frame, MR clutches, a control unit, and a battery. Evaluations through static grip endurance tests and dynamic carrying and lifting tests confirm that the MR hand exoskeleton can effectively reduce muscle fatigue, extend grip endurance, and minimize injuries. These findings highlight its strong potential for practical applications in repetitive tasks such as carrying and lifting in industrial settings.
A Unified Stability Analysis of Safety-Critical Control using Multiple Control Barrier Functions
Ensuring liveness and safety of autonomous and cyber-physical systems remains a fundamental challenge, particularly when multiple safety constraints are present. This letter advances the theoretical foundations of safety-filter Quadratic Programs (QP) and Control Lyapunov Function (CLF)-Control Barrier Function (CBF) controllers by establishing a unified analytical framework for studying their stability properties. We derive sufficient feasibility conditions for QPs with multiple CBFs and formally characterize the conditions leading to undesirable equilibrium points at possible intersecting safe set boundaries. Additionally, we introduce a stability criterion for equilibrium points, providing a systematic approach to identifying conditions under which they can be destabilized or eliminated. Our analysis extends prior theoretical results, deepening the understanding of the conditions of feasibility and stability of CBF-based safety filters and the CLF-CBF QP framework.
comment: Submitted to LCSS-CDC2025. Under review
Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
comment: 8 pages, 13 figures, IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
Prediction of Permissioned Blockchain Performance for Resource Scaling Configurations
Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a ``black-box,'' leading to uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of ~1.9%, which is highly accurate and can be applied in the real-world.
Ground and Flight Locomotion for Two-Wheeled Drones via Model Predictive Path Integral Control
This paper presents a novel approach to motion planning for two-wheeled drones that can drive on the ground and fly in the air. Conventional methods for two-wheeled drone motion planning typically rely on gradient-based optimization and assume that obstacle shapes can be approximated by a differentiable form. To overcome this limitation, we propose a motion planning method based on Model Predictive Path Integral (MPPI) control, enabling navigation through arbitrarily shaped obstacles by switching between driving and flight modes. To handle the instability and rapid solution changes caused by mode switching, our proposed method switches the control space and utilizes the auxiliary controller for MPPI. Our simulation results demonstrate that the proposed method enables navigation in unstructured environments and achieves effective obstacle avoidance through mode switching.
comment: This work has been submitted to the IEEE for possible publication
Deep Q-Learning with Gradient Target Tracking
This paper introduces Q-learning with gradient target tracking, a novel reinforcement learning framework that provides a learned continuous target update mechanism as an alternative to the conventional hard update paradigm. In the standard deep Q-network (DQN), the target network is a copy of the online network's weights, held fixed for a number of iterations before being periodically replaced via a hard update. While this stabilizes training by providing consistent targets, it introduces a new challenge: the hard update period must be carefully tuned to achieve optimal performance. To address this issue, we propose two gradient-based target update methods: DQN with asymmetric gradient target tracking (AGT2-DQN) and DQN with symmetric gradient target tracking (SGT2-DQN). These methods replace the conventional hard target updates with continuous and structured updates using gradient descent, which effectively eliminates the need for manual tuning. We provide a theoretical analysis proving the convergence of these methods in tabular settings. Additionally, empirical evaluations demonstrate their advantages over standard DQN baselines, which suggest that gradient-based target updates can serve as an effective alternative to conventional target update mechanisms in Q-learning.
Subgradient Method for System Identification with Non-Smooth Objectives
This paper investigates a subgradient-based algorithm to solve the system identification problem for linear time-invariant systems with non-smooth objectives. This is essential for robust system identification in safety-critical applications. While existing work provides theoretical exact recovery guarantees using optimization solvers, the design of fast learning algorithms with convergence guarantees for practical use remains unexplored. We analyze the subgradient method in this setting where the optimization problems to be solved change over time as new measurements are taken, and we establish linear convergence results for both the best and Polyak step sizes after a burn-in period. Additionally, we characterize the asymptotic convergence of the best average sub-optimality gap under diminishing and constant step sizes. Finally, we compare the time complexity of standard solvers with the subgradient algorithm and support our findings with experimental results. This is the first work to analyze subgradient algorithms for system identification with non-smooth objectives.
comment: 8 pages, 5 figures
SoK: Trusted Execution in SoC-FPGAs
Trusted Execution Environments (TEEs) have emerged at the forefront of edge computing to combat the lack of trust between system components. Field Programmable Gate Arrays (FPGAs) are commonly used as edge computers but were not created with security as a primary consideration. Thus, FPGA-based edge computers are increasingly the target of cyberattacks. We analyze the existing literature to systematize the applications and features of FPGA-based TEEs. We identified 27 primary studies related to different types of System-on-Chip FPGA-based TEEs. Across a wide range of applications and features, the availability of extensible solutions is limited. Most solutions focus on specific features and applications, whereas few solutions focus on feature-rich, comprehensive TEEs that can be utilized across computer systems. Whether TEEs are specific or extensible, the paucity of published studies provides evidence of research gaps. This SoK delineates these gaps revealing opportunities for researchers and developers.
comment: 6 pages
Prospects for endurance augmentation of small unmanned systems using butane-fueled thermoelectric generation
We investigate the potential of enhancing small (<20 kg) drone endurance by exploiting the high energy density of hydrocarbons using a prototype generator based on commercial-off-the-shelf (COTS) thermoelectric energy conversion technology. A proof-of-concept prototype was developed to vet design and engineering challenges and to bolster validity of resultant conclusions. The combination of the prototype performance and modeling suggests that endurance augmentation remains a difficult technical challenge with no clear immediate remedy despite many expectant alternatives. Across a sample of representative drones including ground- and air-based, multicopter and fixed wing drones, we report the following: from their current maximum values of 12%, thermoelectric (TE) generator module efficiencies must increase by over two times to achieve endurance parity with lithium batteries for VTOL multicopters. On the other hand, current TE efficiencies can compete with lithium batteries for some low power fixed wing and ground-based drones. Technical contributors for these results include weight of non-energy contributing components, low specific power and the associated tradeoff between specific power and specific energy due to fuel mass fraction, and lastly, low efficiencies.
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
Stochastic LQR Design With Disturbance Preview
This paper considers the discrete-time, stochastic LQR problem with $p$ steps of disturbance preview information where $p$ is finite. We first derive the solution for this problem on a finite horizon with linear, time-varying dynamics and time-varying costs. Next, we derive the solution on the infinite horizon with linear, time-invariant dynamics and time-invariant costs. Our proofs rely on the well-known principle of optimality. We provide an independent proof for the principle of optimality that relies only on nested information structure. Finally, we show that the finite preview controller converges to the optimal noncausal controller as the preview horizon $p$ tends to infinity. We also provide a simple example to illustrate both the finite and infinite horizon results.
Intelligent Agricultural Greenhouse Control System Based on Internet of Things and Machine Learning
This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning. Through meticulous monitoring of intrinsic environmental parameters within the greenhouse and the integration of machine learning algorithms, the conditions within the greenhouse are aptly modulated. The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage. In the backdrop of escalating global population figures and the escalating exigencies of climate change, agriculture confronts unprecedented challenges. Conventional agricultural paradigms have proven inadequate in addressing the imperatives of food safety and production efficiency. Against this backdrop, greenhouse agriculture emerges as a viable solution, proffering a controlled milieu for crop cultivation to augment yields, refine quality, and diminish reliance on natural resources [b1]. Nevertheless, greenhouse agriculture contends with a gamut of challenges. Traditional greenhouse management strategies, often grounded in experiential knowledge and predefined rules, lack targeted personalized regulation, thereby resulting in resource inefficiencies. The exigencies of real-time monitoring and precise control of the greenhouse's internal environment gain paramount importance with the burgeoning scale of agriculture. To redress this challenge, the study introduces IoT technology and machine learning algorithms into greenhouse agriculture, aspiring to institute an intelligent agricultural greenhouse control system conducive to augmenting the efficiency and sustainability of agricultural production.
Worst-Case Services and State-Based Scheduling
In this paper, we shed new light on a classical scheduling problem: given a slot-timed, constant-capacity server, what short-run scheduling decisions must be made to provide long-run service guarantees to competing flows of unit-sized tasks? We model each flow's long-run guarantee as a worst-case service that maps each queued arrival vector recording the flow's cumulative task arrivals, including those initially queued, to a worst-case acceptable departure vector lower-bounding its cumulative served tasks. We show that these maps are states that can be updated as tasks arrive and are served, introduce state-based scheduling, find the schedulability condition necessary and sufficient to maintain all flows' long-run guarantees, and use this condition to identify all short-run scheduling decisions that preserve schedulability. Our framework is general but computationally complex. To reduce complexity, we consider three specializations. First, we show that when satisfactory short-run scheduling decisions exist, at least one can be efficiently identified by maximizing the server's capacity slack, a generalization of the earliest-deadline-first rule. Second, we show that a special class of worst-case services, min-plus services, can be efficiently specified and updated using properties of the min-plus algebra. Finally, we show that efficiency can be further improved by restricting attention to a min-plus service subclass, dual-curve services. This last specialization turns out to be a dynamic extension of service curves that maintains all essential features of our framework while approaching near practical viability.
On the Stability of Undesirable Equilibria in the Quadratic Program Framework for Safety-Critical Control
Control Lyapunov functions (CLFs) and Control Barrier Functions (CBFs) have been used to develop provably safe controllers by means of quadratic programs (QPs). This framework guarantees safety in the form of trajectory invariance with respect to a given set, but it can introduce undesirable equilibrium points to the closed loop system, which can be asymptotically stable. In this work, we present a detailed study of the formation and stability of equilibrium points with the CLF-CBF-QP framework with multiple CBFs. In particular, we prove that undesirable equilibrium points occur for most systems, and their stability is dependent on the CLF and CBF geometrical properties. We introduce the concept of CLF-CBF compatibility for a system, regarding a CLF-CBF pair inducing no stable equilibrium points other than the CLF global minimum on the corresponding closed-loop dynamics. Sufficient conditions for CLF-CBF compatibility for LTI and drift-less full-rank systems with quadratic CLF and CBFs are derived, and we propose a novel control strategy to induce smooth changes in the CLF geometry at certain regions of the state space in order to satisfy the CLF-CBF compatibility conditions, aiming to achieve safety with respect to multiple safety objectives and quasi-global convergence of the trajectories towards the CLF minimum. Numeric simulations illustrate the applicability of the proposed method.
comment: Submitted to IFAC Automatica. Under review
Exact Recovery Guarantees for Parameterized Nonlinear System Identification Problem under Sparse Disturbances or Semi-Oblivious Attacks
In this work, we study the problem of learning a nonlinear dynamical system by parameterizing its dynamics using basis functions. We assume that disturbances occur at each time step with an arbitrary probability $p$, which models the sparsity level of the disturbance vectors over time. These disturbances are drawn from an arbitrary, unknown probability distribution, which may depend on past disturbances, provided that it satisfies a zero-mean assumption. The primary objective of this paper is to learn the system's dynamics within a finite time and analyze the sample complexity as a function of $p$. To achieve this, we examine a LASSO-type non-smooth estimator, and establish necessary and sufficient conditions for its well-specifiedness and the uniqueness of the global solution to the underlying optimization problem. We then provide exact recovery guarantees for the estimator under two distinct conditions: boundedness and Lipschitz continuity of the basis functions. We show that finite-time exact recovery is achieved with high probability, even when $p$ approaches 1. Unlike prior works, which primarily focus on independent and identically distributed (i.i.d.) disturbances and provide only asymptotic guarantees for system learning, this study presents the first finite-time analysis of nonlinear dynamical systems under a highly general disturbance model. Our framework allows for possible temporal correlations in the disturbances and accommodates semi-oblivious adversarial attacks, significantly broadening the scope of existing theoretical results.
comment: 43 pages
Uncertainty-Aware Guidance for Target Tracking subject to Intermittent Measurements using Motion Model Learning
This paper presents a novel guidance law for target tracking applications where the target motion model is unknown and sensor measurements are intermittent due to unknown environmental conditions and low measurement update rate. In this work, the target motion model is represented by a transformer neural network and trained by previous target position measurements. This transformer motion model serves as the prediction step in a particle filter for target state estimation and uncertainty quantification. The particle filter estimation uncertainty is utilized in the information-driven guidance law to compute a path for the mobile agent to travel to a position with maximum expected entropy reduction (EER). The computation of EER is performed in real-time by approximating the information gain from the predicted particle distributions relative to the current distribution. Simulation and hardware experiments are performed with a quadcopter agent and TurtleBot target to demonstrate that the presented guidance law outperforms two other baseline guidance methods.
Multiagent Systems
Dispersion is (Almost) Optimal under (A)synchrony
The dispersion problem has received much attention recently in the distributed computing literature. In this problem, $k\leq n$ agents placed initially arbitrarily on the nodes of an $n$-node, $m$-edge anonymous graph of maximum degree $\Delta$ have to reposition autonomously to reach a configuration in which each agent is on a distinct node of the graph. Dispersion is interesting as well as important due to its connections to many fundamental coordination problems by mobile agents on graphs, such as exploration, scattering, load balancing, relocation of self-driven electric cars (robots) to recharge stations (nodes), etc. The objective has been to provide a solution that optimizes simultaneously time and memory complexities. There exist graphs for which the lower bound on time complexity is $\Omega(k)$. Memory complexity is $\Omega(\log k)$ per agent independent of graph topology. The state-of-the-art algorithms have (i) time complexity $O(k\log^2k)$ and memory complexity $O(\log(k+\Delta))$ under the synchronous setting [DISC'24] and (ii) time complexity $O(\min\{m,k\Delta\})$ and memory complexity $O(\log(k+\Delta))$ under the asynchronous setting [OPODIS'21]. In this paper, we improve substantially on this state-of-the-art. Under the synchronous setting as in [DISC'24], we present the first optimal $O(k)$ time algorithm keeping memory complexity $O(\log (k+\Delta))$. Under the asynchronous setting as in [OPODIS'21], we present the first algorithm with time complexity $O(k\log k)$ keeping memory complexity $O(\log (k+\Delta))$, which is time-optimal within an $O(\log k)$ factor despite asynchrony. Both results were obtained through novel techniques to quickly find empty nodes to settle agents, which may be of independent interest.
comment: 24 pages
Consensus Tracking Control of Multi-agent Systems with A Time-varying Reference State under Binary-valued Communication
This paper investigates the problem of consensus tracking control of discrete time multi-agent systems under binary-valued communication. Different from most existing studies on consensus tracking, the transmitted information between agents is the binary-valued. Parameter identification with binary-valued observations is applied to the estimation of neighbors'states and the tracking control is designed based on the estimation. Two Lyapunov functions are constructed to deal with the strong coupling of estimation and control. Compared with consensus problems under binary-valued communication, a reference state is required for consensus tracking control. Two scenarios of the time-varying reference state are studied respectively. (1) The reference state is asymptotically convergent. An online algorithm that performs estimation and control simultaneously is proposed, in which the estimation step size and the control gain are decreasing with time. By this algorithm, the multi-agent system is proved to achieve consensus tracking with convergence rate O(1/k^{\epsilon} ) under certain conditions. (2) The reference state is bounded, which is less conservative than that in the first case. In this case, the estimation step size and control gain are designed to be constant. By this algorithm, all the followers can reach to a neighborhood of the leader with an exponential rate. Finally, simulations are given to demonstrate theoretical results.
Data Spatial Programming
We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate spatial relationships between data entities and execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures. By formalizing the relationships between data elements in space, our approach allows for more intuitive modeling of complex systems where the topology of connections is essential to the underlying computational model. This paradigm addresses limitations in traditional OOP when representing dynamically evolving networks, agent-based systems, and other spatially-oriented computational problems.
comment: 7 pages, 11 pages with appendix
Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality digital twin framework capable of: (i) selectively scaling parallelized workloads on-demand, and (ii) evaluating the trained policies across simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
Multiagent Systems
When Pigs Get Sick: Multi-Agent AI for Swine Disease Detection
Swine disease surveillance is critical to the sustainability of global agriculture, yet its effectiveness is frequently undermined by limited veterinary resources, delayed identification of cases, and variability in diagnostic accuracy. To overcome these barriers, we introduce a novel AI-powered, multi-agent diagnostic system that leverages Retrieval-Augmented Generation (RAG) to deliver timely, evidence-based disease detection and clinical guidance. By automatically classifying user inputs into either Knowledge Retrieval Queries or Symptom-Based Diagnostic Queries, the system ensures targeted information retrieval and facilitates precise diagnostic reasoning. An adaptive questioning protocol systematically collects relevant clinical signs, while a confidence-weighted decision fusion mechanism integrates multiple diagnostic hypotheses to generate robust disease predictions and treatment recommendations. Comprehensive evaluations encompassing query classification, disease diagnosis, and knowledge retrieval demonstrate that the system achieves high accuracy, rapid response times, and consistent reliability. By providing a scalable, AI-driven diagnostic framework, this approach enhances veterinary decision-making, advances sustainable livestock management practices, and contributes substantively to the realization of global food security.
comment: 14 pages, 2 figures
HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation
Simulation-based testing has emerged as an essential tool for verifying and validating autonomous vehicles (AVs). However, contemporary methodologies, such as deterministic and imitation learning-based driver models, struggle to capture the variability of human-like driving behavior. Given these challenges, we propose HAD-Gen, a general framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors. The framework first clusters the vehicle trajectory data into different driving styles according to safety features. It then employs maximum entropy inverse reinforcement learning on each of the clusters to learn the reward function corresponding to each driving style. Using these reward functions, the method integrates offline reinforcement learning pre-training and multi-agent reinforcement learning algorithms to obtain general and robust driving policies. Multi-perspective simulation results show that our proposed scenario generation framework can simulate diverse, human-like driving behaviors with strong generalization capability. The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test, outperforming prior approaches by over 20% in goal-reaching performance. The source code is released at https://github.com/RoboSafe-Lab/Sim4AD.
Predicting Multi-Agent Specialization via Task Parallelizability
Multi-agent systems often rely on specialized agents with distinct roles rather than general-purpose agents that perform the entire task independently. However, the conditions that govern the optimal degree of specialization remain poorly understood. In this work, we propose that specialist teams outperform generalist ones when environmental constraints limit task parallelizability -- the potential to execute task components concurrently. Drawing inspiration from distributed systems, we introduce a heuristic to predict the relative efficiency of generalist versus specialist teams by estimating the speed-up achieved when two agents perform a task in parallel rather than focus on complementary subtasks. We validate this heuristic through three multi-agent reinforcement learning (MARL) experiments in Overcooked-AI, demonstrating that key factors limiting task parallelizability influence specialization. We also observe that as the state space expands, agents tend to converge on specialist strategies, even when generalist ones are theoretically more efficient, highlighting potential biases in MARL training algorithms. Our findings provide a principled framework for interpreting specialization given the task and environment, and introduce a novel benchmark for evaluating whether MARL finds optimal strategies.
A Vehicle-Infrastructure Multi-layer Cooperative Decision-making Framework
Autonomous driving has entered the testing phase, but due to the limited decision-making capabilities of individual vehicle algorithms, safety and efficiency issues have become more apparent in complex scenarios. With the advancement of connected communication technologies, autonomous vehicles equipped with connectivity can leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, offering a potential solution to the decision-making challenges from individual vehicle's perspective. We propose a multi-level vehicle-infrastructure cooperative decision-making framework for complex conflict scenarios at unsignalized intersections. First, based on vehicle states, we define a method for quantifying vehicle impacts and their propagation relationships, using accumulated impact to group vehicles through motif-based graph clustering. Next, within and between vehicle groups, a pass order negotiation process based on Large Language Models (LLM) is employed to determine the vehicle passage order, resulting in planned vehicle actions. Simulation results from ablation experiments show that our approach reduces negotiation complexity and ensures safer, more efficient vehicle passage at intersections, aligning with natural decision-making logic.
comment: 7 pages, 6 figures
Empowering Medical Multi-Agents with Clinical Consultation Flow for Dynamic Diagnosis
Traditional AI-based healthcare systems often rely on single-modal data, limiting diagnostic accuracy due to incomplete information. However, recent advancements in foundation models show promising potential for enhancing diagnosis combining multi-modal information. While these models excel in static tasks, they struggle with dynamic diagnosis, failing to manage multi-turn interactions and often making premature diagnostic decisions due to insufficient persistence in information collection.To address this, we propose a multi-agent framework inspired by consultation flow and reinforcement learning (RL) to simulate the entire consultation process, integrating multiple clinical information for effective diagnosis. Our approach incorporates a hierarchical action set, structured from clinic consultation flow and medical textbook, to effectively guide the decision-making process. This strategy improves agent interactions, enabling them to adapt and optimize actions based on the dynamic state. We evaluated our framework on a public dynamic diagnosis benchmark. The proposed framework evidentially improves the baseline methods and achieves state-of-the-art performance compared to existing foundation model-based methods.
A Game of Pawns
We introduce and study pawn games, a class of two-player zero-sum turn-based graph games. A turn-based graph game proceeds by placing a token on an initial vertex, and whoever controls the vertex on which the token is located, chooses its next location. This leads to a path in the graph, which determines the winner. Traditionally, the control of vertices is predetermined and fixed. The novelty of pawn games is that control of vertices changes dynamically throughout the game as follows. Each vertex of a pawn game is owned by a pawn. In each turn, the pawns are partitioned between the two players, and the player who controls the pawn that owns the vertex on which the token is located, chooses the next location of the token. Control of pawns changes dynamically throughout the game according to a fixed mechanism. Specifically, we define several grabbing-based mechanisms in which control of at most one pawn transfers at the end of each turn. We study the complexity of solving pawn games, where we focus on reachability objectives and parameterize the problem by the mechanism that is being used and by restrictions on pawn ownership of vertices. On the positive side, even though pawn games are exponentially-succinct turn-based games, we identify several natural classes that can be solved in PTIME. On the negative side, we identify several EXPTIME-complete classes, where our hardness proofs are based on a new class of games called Lock & Key games, which may be of independent interest.
comment: Full version of CONCUR 2023 paper, accepted in LMCS
KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 14 pages, 4 figures
Learning to Negotiate via Voluntary Commitment AISTATS 2025
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios in many real-world applications. However, agents may fail to cooperate in practice even when cooperation yields a better outcome. One well known reason for this failure comes from non-credible commitments. To facilitate commitments among agents for better cooperation, we define Markov Commitment Games (MCGs), a variant of commitment games, where agents can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable commitment protocol via policy gradients. We further propose incentive-compatible learning to accelerate convergence to equilibria with better social welfare. Experimental results in challenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for our method compared with its counterparts. Our code is available at https://github.com/shuhui-zhu/DCL.
comment: Accepted by AISTATS 2025
Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
The Bandit Whisperer: Communication Learning for Restless Bandits
Applying Reinforcement Learning (RL) to Restless Multi-Arm Bandits (RMABs) offers a promising avenue for addressing allocation problems with resource constraints and temporal dynamics. However, classic RMAB models largely overlook the challenges of (systematic) data errors - a common occurrence in real-world scenarios due to factors like varying data collection protocols and intentional noise for differential privacy. We demonstrate that conventional RL algorithms used to train RMABs can struggle to perform well in such settings. To solve this problem, we propose the first communication learning approach in RMABs, where we study which arms, when involved in communication, are most effective in mitigating the influence of such systematic data errors. In our setup, the arms receive Q-function parameters from similar arms as messages to guide behavioral policies, steering Q-function updates. We learn communication strategies by considering the joint utility of messages across all pairs of arms and using a Q-network architecture that decomposes the joint utility. Both theoretical and empirical evidence validate the effectiveness of our method in significantly improving RMAB performance across diverse problems.
Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL for Coordinated Platooning and Traffic Signal Control
Over the years, reinforcement learning has emerged as a popular approach to develop signal control and vehicle platooning strategies either independently or in a hierarchical way. However, jointly controlling both in real-time to alleviate traffic congestion presents new challenges, such as the inherent physical and behavioral heterogeneity between signal control and platooning, as well as coordination between them. This paper proposes an innovative solution to tackle these challenges based on heterogeneous graph multi-agent reinforcement learning and traffic theories. Our approach involves: 1) designing platoon and signal control as distinct reinforcement learning agents with their own set of observations, actions, and reward functions to optimize traffic flow; 2) designing coordination by incorporating graph neural networks within multi-agent reinforcement learning to facilitate seamless information exchange among agents on a regional scale; 3) applying alternating optimization for training, allowing agents to update their own policies and adapt to other agents' policies. We evaluate our approach through SUMO simulations, which show convergent results in terms of both travel time and fuel consumption, and superior performance compared to other adaptive signal control methods.
Systems and Control (CS)
More Information is Not Always Better: Connections between Zero-Sum Local Nash Equilibria in Feedback and Open-Loop Information Patterns
Non-cooperative dynamic game theory provides a principled approach to modeling sequential decision-making among multiple noncommunicative agents. A key focus has been on finding Nash equilibria in two-agent zero-sum dynamic games under various information structures. A well-known result states that in linear-quadratic games, unique Nash equilibria under feedback and open-loop information structures yield identical trajectories. Motivated by two key perspectives -- (i) many real-world problems extend beyond linear-quadratic settings and lack unique equilibria, making only local Nash equilibria computable, and (ii) local open-loop Nash equilibria (OLNE) are easier to compute than local feedback Nash equilibria (FBNE) -- it is natural to ask whether a similar result holds for local equilibria in zero-sum games. To this end, we establish that for a broad class of zero-sum games with potentially nonconvex-nonconcave objectives and nonlinear dynamics: (i) the state/control trajectory of a local FBNE satisfies local OLNE first-order optimality conditions, and vice versa, (ii) a local FBNE trajectory satisfies local OLNE second-order necessary conditions, (iii) a local FBNE trajectory satisfying feedback sufficiency conditions also constitutes a local OLNE, and (iv) with additional hard constraints on agents' actuations, a local FBNE where strict complementarity holds also satisfies local OLNE first-order optimality conditions, and vice versa.
comment: 6 pages
Friction-Scaled Vibrotactile Feedback for Real-Time Slip Detection in Manipulation using Robotic Sixth Finger
The integration of extra-robotic limbs/fingers to enhance and expand motor skills, particularly for grasping and manipulation, possesses significant challenges. The grasping performance of existing limbs/fingers is far inferior to that of human hands. Human hands can detect onset of slip through tactile feedback originating from tactile receptors during the grasping process, enabling precise and automatic regulation of grip force. The frictional information is perceived by humans depending upon slip happening between finger and object. Enhancing this capability in extra-robotic limbs or fingers used by humans is challenging. To address this challenge, this paper introduces novel approach to communicate frictional information to users through encoded vibrotactile cues. These cues are conveyed on onset of incipient slip thus allowing users to perceive friction and ultimately use this information to increase force to avoid dropping of object. In a 2-alternative forced-choice protocol, participants gripped and lifted a glass under three different frictional conditions, applying a normal force of 3.5 N. After reaching this force, glass was gradually released to induce slip. During this slipping phase, vibrations scaled according to static coefficient of friction were presented to users, reflecting frictional conditions. The results suggested an accuracy of 94.53 p/m 3.05 (mean p/mSD) in perceiving frictional information upon lifting objects with varying friction. The results indicate effectiveness of using vibrotactile feedback for sensory feedback, allowing users of extra-robotic limbs or fingers to perceive frictional information. This enables them to assess surface properties and adjust grip force according to frictional conditions, enhancing their ability to grasp, manipulate objects more effectively.
The value of hedging against energy storage uncertainties when designing energy parks
Energy storage is needed to match renewable generation to industrial loads in energy parks. However, the future performance of bulk storage technologies is currently highly uncertain. Due to the urgency of decarbonization targets, energy park projects must be designed and begun now. But, as uncertainty in storage performance reduces, a different technology than identified during initial design may turn out cheaper. Enabling flexibility so that design adaptations can be made as better information becomes available would lower the cost of decarbonizing industry. But having this flexibility is itself costly. This raises the question, "Is it worth it?" This study quantifies the benefit of retaining flexibility to adapt energy park designs and optionality over storage technology choice as uncertainty reduces, to determine whether it is economically worthwhile. It applies the Value of Information analysis framework to the sizing of wind, solar, and storage in an illustrative energy park model based on a real-world proposal near Rotterdam, considering uncertainty in storage efficiency, lifetime, and capital cost. Updating asset sizings after storage uncertainty reduced is found to reduce total costs by 18% on average. Having the option to switch storage technology choice as well reduces costs by a further 13%, which is substantially greater than the cost of providing storage optionality. Using two storage technologies in the energy park reduces costs by 14%, and in this case storage optionality is not worthwhile. These results are robust to the level of uncertainty reduction in storage performance, and the risk aversion of the system designer.
comment: 33 pages, 10 figures, 9 tables
Exploiting Prior Knowledge in Preferential Learning of Individualized Autonomous Vehicle Driving Styles
Trajectory planning for automated vehicles commonly employs optimization over a moving horizon - Model Predictive Control - where the cost function critically influences the resulting driving style. However, finding a suitable cost function that results in a driving style preferred by passengers remains an ongoing challenge. We employ preferential Bayesian optimization to learn the cost function by iteratively querying a passenger's preference. Due to increasing dimensionality of the parameter space, preference learning approaches might struggle to find a suitable optimum with a limited number of experiments and expose the passenger to discomfort when exploring the parameter space. We address these challenges by incorporating prior knowledge into the preferential Bayesian optimization framework. Our method constructs a virtual decision maker from real-world human driving data to guide parameter sampling. In a simulation experiment, we achieve faster convergence of the prior-knowledge-informed learning procedure compared to existing preferential Bayesian optimization approaches and reduce the number of inadequate driving styles sampled.
comment: 6 pages, 6 figures, accepted for ECC 2025
Advancing MG Energy Management: A Rolling Horizon Optimization Framework for Three-Phase Unbalanced Networks Integrating Convex Formulations
Real-world three-phase microgrids face two interconnected challenges: 1. time-varying uncertainty from renewable generation and demand, and 2. persistent phase imbalances caused by uneven distributed energy resources DERs, load asymmetries, and grid faults. Conventional energy management systems fail to address these challenges holistically and static optimization methods lack adaptability to real-time fluctuations, while balanced three-phase models ignore critical asymmetries that degrade voltage stability and efficiency. This work introduces a dynamic rolling horizon optimization framework specifically designed for unbalanced three-phase microgrids. Unlike traditional two-stage stochastic approaches that fix decisions for the entire horizon, the rolling horizon algorithm iteratively updates decisions in response to real-time data. By solving a sequence of shorter optimization windows, each incorporating the latest system state and forecasts, the method achieves three key advantages: Adaptive Uncertainty Handling by continuously re plans operations to mitigate forecast errors. Phase Imbalance Correction by dynamically adjusts power flows across phases to minimize voltage deviations and losses caused by asymmetries, and computational Tractability, i.e., shorter optimization windows, combined with the mathematical mhodel, enable better decision making holding accuracy. For comparison purposes, we derive three optimization models: a nonlinear nonconvex model for high-fidelity offline planning, a convex quadratic approximation for day-ahead scheduling, and a linearized model to important for theoretical reasons such as decomposition algorithms.
Energy-efficient Merging of Connected and Automated Vehicles using Control Barrier Functions
Highway merges present difficulties for human drivers and automated vehicles due to incomplete situational awareness and a need for a structured (precedence, order) environment, respectively. In this paper, an unstructured merge algorithm is presented for connected and automated vehicles. There is neither precedence nor established passing order through the merge point. The algorithm relies on Control Barrier Functions for safety (collision avoidance) and for coordination that arises from exponential instability of stall-equilibria in the inter-agent space. A Monte Carlo simulation comparison to a first-in-first-out approach shows improvement in traffic flow and a significant energy efficiency benefit.
comment: This work has been submitted to an ASME journal for possible publication and is under review. Paper summary: 6 pages, 3 figures, 5 tables
Probabilistic Flexibility Aggregation of DERs for Ancillary Services Provision
This paper presents a grid-aware probabilistic approach to compute the aggregated flexibility at the grid connection point (GCP) of active distribution networks (ADNs) to allow the participation of DERs in ancillary services (AS) markets. Specifically an optimal power flow (OPF) method using a linear network model is used to compute the aggregated capability for the provision of multiple AS. We start from the method proposed in [1] and extend it to allow for optimizing the provision of multiple services simultaneously, ensure cost-effectiveness of the used DERs and handle uncertainties in a probabilistic way. The allocation of individual DERs power flexibilities accounts for the operational costs associated to the provision of different services and ensures cost-effectiveness while maximizing the value of the advertised aggregated flexibility, assuming known service prices. Empirical uncertainty sets are obtained to achieve a predefined coverage of the probability distribution in line with recent developments in the Nordic AS markets. Finally, a feeder-decomposition approach is proposed to ensure the methods applicability to realistic distribution networks with a large number of buses. Different case studies show the effectiveness of the method, highlight the importance of accounting for network constraints and illustrate its applicability to realistic distribution systems.
Priority-driven Constraints Softening in Safe MPC for Perturbed Systems
This paper presents a safe model predictive control (SMPC) framework designed to ensure the satisfaction of hard constraints for systems perturbed by an external disturbance. Such safety guarantees are ensured, despite the disturbance, by online softening a subset of adjustable constraints defined by the designer. The selection of the constraints to be softened is made online based on a predefined priority assigned to each adjustable constraint. The design of a learning-based algorithm enables real-time computation while preserving the original safety properties. Simulations results, obtained from an automated driving application, show that the proposed approach provides guarantees of collision-avoidance hard constraints despite the unpredicted behaviors of the surrounding environment.
comment: 6 pages, 6 figures, submitted to 2025 CDC conference
Blocked Cholesky factorization updates of the Riccati recursion using hyperbolic Householder transformations
Newton systems in quadratic programming (QP) methods are often solved using direct Cholesky or LDL factorizations. When the linear systems in successive iterations differ by a low-rank modification (as is common in active set and augmented Lagrangian methods), updating the existing factorization can offer significant performance improvements over recomputing a full Cholesky factorization. We review the hyperbolic Householder transformation, and demonstrate its usefulness in describing low-rank Cholesky factorization updates. By applying this hyperbolic Householder-based framework to the well-known Riccati recursion for solving saddle-point problems with optimal control structure, we develop a novel algorithm for updating the factorizations used in optimization solvers for optimal control. Specifically, the proposed method can be used to efficiently solve the semismooth Newton systems that are at the core of the augmented Lagrangian-based QPALM-OCP solver. An optimized open-source implementation of the proposed factorization update routines is provided as well.
comment: Source code available at https://github.com/kul-optec/hyhound
Lyapunov-Based Graph Neural Networks for Adaptive Control of Multi-Agent Systems
Graph neural networks (GNNs) have a message-passing framework in which vector messages are exchanged between graph nodes and updated using feedforward layers. The inclusion of distributed message-passing in the GNN architecture makes them ideally suited for distributed control and coordination tasks. Existing results develop GNN-based controllers to address a variety of multi-agent control problems while compensating for modeling uncertainties in the systems. However, these results use GNNs that are pre-trained offline. This paper provides the first result on GNNs with stability-driven online weight updates to address the multi-agent target tracking problem. Specifically, new Lyapunov-based distributed GNN and graph attention network (GAT)-based controllers are developed to adaptively estimate unknown target dynamics and address the second-order target tracking problem. A Lyapunov-based stability analysis is provided to guarantee exponential convergence of the target state estimates and agent states to a neighborhood of the target state. Numerical simulations show a 20.8% and 48.1% position tracking error performance improvement by the GNN and GAT architectures over a baseline DNN architecture, respectively.
comment: 25 pages, 6 figures, 3 tables, 1 algorithm
Experimental Validation of Distributed Dispatching of Multiple Active Distribution Networks Using the ADMM
This paper presents the experimental validation of a framework for the coordinated dispatch and control of multiple active distribution networks (ADNs) hosting distributed energy resource (DER). We show that the presented method, which builds further on work done in [1], effectively allows to control multiple ADNs in a distributed way to ensure they achieve a common objective without revealing information on their DERs capabilities or grid model. This experimental validation is carried out using demonstrators at the DESL of EPFL and the NEST site at Empa, both in Switzerland. The coordination of the systems to share the flexibility of their controllable assets is demonstrated through a set of 24h experiments. Finally, the limitations of the method are discussed and future extensions proposed.
Automated Functional Decomposition for Hybrid Zonotope Over-approximations with Application to LSTM Networks
Functional decomposition is a powerful tool for systems analysis because it can reduce a function of arbitrary input dimensions to the sum and superposition of functions of a single variable, thereby mitigating (or potentially avoiding) the exponential scaling often associated with analyses over high-dimensional spaces. This paper presents automated methods for constructing functional decompositions used to form set-based over-approximations of nonlinear functions, with particular focus on the hybrid zonotope set representation. To demonstrate these methods, we construct a hybrid zonotope set that over-approximates the input-output graph of a long short-term memory neural network, and use functional decomposition to represent a discrete hybrid automaton via a hybrid zonotope.
Brunovsky Riccati Recursion for Linear Model Predictive Control
In almost all algorithms for Model Predictive Control (MPC), the most time-consuming step is to solve some form of Linear Quadratic (LQ) Optimal Control Problem (OCP) repeatedly. The commonly recognized best option for this is a Riccati recursion based solver, which has a time complexity of $\mathcal{O}(N(n_x^3 + n_x^2 n_u + n_x n_u^2 + n_u^3))$. In this paper, we propose a novel \textit{Brunovsky Riccati Recursion} algorithm to solve LQ OCPs for Linear Time Invariant (LTI) systems. The algorithm transforms the system into Brunovsky form, formulates a new LQ cost (and constraints, if any) in Brunovsky coordinates, performs the Riccati recursion there, and converts the solution back. Due to the sparsity (block-diagonality and zero-one pattern per block) of Brunovsky form and the data parallelism introduced in the cost, constraints, and solution transformations, the time complexity of the new method is greatly reduced to $\mathcal{O}(n_x^3 + N(n_x^2 n_u + n_x n_u^2 + n_u^3))$ if $N$ threads/cores are available for parallel computing.
comment: Accepted by ACC 2025
Polynomial and Parallelizable Preconditioning for Block Tridiagonal Positive Definite Matrix
The efficient solution of moderately large-scale linear systems arising from the KKT conditions in optimal control problems (OCPs) is a critical challenge in robotics. With the stagnation of Moore's law, there is growing interest in leveraging GPU-accelerated iterative methods, and corresponding parallel preconditioners, to overcome these computational challenges. To improve the computational performance of such solvers, we introduce a parallel-friendly, parametrized multi-splitting polynomial preconditioner framework that leverages positive and negative factors. Our approach results in improved convergence of the linear systems solves needed in OCPs. We construct and prove the optimal parametrization of multi-splitting theoretically and demonstrate empirically a 76% reduction in condition number and 46% in iteration counts on a series of numerical benchmarks.
comment: Submitted to CDC 2025 + L-CSS
A Personalized Data-Driven Generative Model of Human Motion
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
comment: 6 pages, 9 figures
A Coupled Friedkin-Johnsen Model of Popularity Dynamics in Social Media
Popularity dynamics in social media depend on a complex interplay of social influence between users and popularity-based recommendations that are provided by the platforms. In this work, we introduce a discrete-time dynamical system to model the evolution of popularity on social media. Our model generalizes the well-known Friedkin-Johnsen model to a set of influencers vying for popularity. We study the asymptotic behavior of this model and illustrate it with numerical examples. Our results highlight the interplay of social influence, past popularity, and content quality in determining the popularity of influencers.
A Comparative Study of Human Motion Models in Reinforcement Learning Algorithms for Social Robot Navigation
Social robot navigation is an evolving research field that aims to find efficient strategies to safely navigate dynamic environments populated by humans. A critical challenge in this domain is the accurate modeling of human motion, which directly impacts the design and evaluation of navigation algorithms. This paper presents a comparative study of two popular categories of human motion models used in social robot navigation, namely velocity-based models and force-based models. A system-theoretic representation of both model types is presented, which highlights their common feedback structure, although with different state variables. Several navigation policies based on reinforcement learning are trained and tested in various simulated environments involving pedestrian crowds modeled with these approaches. A comparative study is conducted to assess performance across multiple factors, including human motion model, navigation policy, scenario complexity and crowd density. The results highlight advantages and challenges of different approaches to modeling human behavior, as well as their role during training and testing of learning-based navigation policies. The findings offer valuable insights and guidelines for selecting appropriate human motion models when designing socially-aware robot navigation systems.
Diffusion-Based Forecasting for Uncertainty-Aware Model Predictive Control
We propose Diffusion-Informed Model Predictive Control (D-I MPC), a generic framework for uncertainty-aware prediction and decision-making in partially observable stochastic systems by integrating diffusion-based time series forecasting models in Model Predictive Control algorithms. In our approach, a diffusion-based time series forecasting model is used to probabilistically estimate the evolution of the system's stochastic components. These forecasts are then incorporated into MPC algorithms to estimate future trajectories and optimize action selection under the uncertainty of the future. We evaluate the framework on the task of energy arbitrage, where a Battery Energy Storage System participates in the day-ahead electricity market of the New York state. Experimental results indicate that our model-based approach with a diffusion-based forecaster significantly outperforms both implementations with classical forecasting methods and model-free reinforcement learning baselines.
comment: 5 pages, 3 figures, 3 tables. This version is submitted to the 33rd European Signal Processing Conference (EUSIPCO 2025), to be held in Isola delle Femmine - Palermo - Italy, on September 8-12, 2025
Proximal Gradient Dynamics and Feedback Control for Equality-Constrained Composite Optimization
This paper studies equality-constrained composite minimization problems. This class of problems, capturing regularization terms and convex inequality constraints, naturally arises in a wide range of engineering and machine learning applications. To tackle these minimization problems, we introduce the \emph{proportional--integral proximal gradient dynamics} (PI--PGD): a closed-loop system where the Lagrange multipliers are control inputs and states are the problem decision variables. First, we establish the equivalence between the minima of the optimization problem and the equilibria of the PI--PGD. Then, leveraging tools from contraction theory, we give a comprehensive convergence analysis for the dynamics, showing linear--exponential convergence towards the equilibrium. That is, the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. Our findings are illustrated numerically on a set of representative examples, which include an application to entropic-regularized optimal transport.
comment: 14 pages, 7 figures
Enhancing Reset Control Phase with Lead Shaping Filters: Applications to Precision Motion Systems
This study presents a shaped reset feedback control strategy to enhance the performance of precision motion systems. The approach utilizes a phase-lead compensator as a shaping filter to tune the phase of reset instants, thereby shaping the nonlinearity in the first-order reset control. {The design achieves either an increased phase margin while maintaining gain properties or improved gain without sacrificing phase margin, compared to reset control without the shaping filter.} Then, frequency-domain design procedures are provided for both Clegg Integrator (CI)-based and First-Order Reset Element (FORE)-based reset control systems. Finally, the effectiveness of the proposed strategy is demonstrated through two experimental case studies on a precision motion stage. In the first case, the shaped reset control leverages phase-lead benefits to achieve zero overshoot in the transient response. In the second case, the shaped reset control strategy enhances the gain advantages of the previous reset element, resulting in improved steady-state performance, including better tracking precision and disturbance rejection, while reducing overshoot for an improved transient response.
High-Order Control Barrier Functions: Insights and a Truncated Taylor-Based Formulation
We examine the complexity of the standard High-Order Control Barrier Function (HOCBF) approach and propose a truncated Taylor-based approach that reduces design parameters. First, we derive the explicit inequality condition for the HOCBF approach and show that the corresponding equality condition sets a lower bound on the barrier function value that regulates its decay rate. Next, we present our Truncated Taylor CBF (TTCBF), which uses a truncated Taylor series to approximate the discrete-time CBF condition. While the standard HOCBF approach requires multiple class K functions, leading to more design parameters as the constraint's relative degree increases, our TTCBF approach requires only one. We support our theoretical findings in numerical collision-avoidance experiments and show that our approach ensures safety while reducing design complexity.
Enhancing Fault Detection and Isolation in an All-Electric Auxiliary Power Unit (APU) Gas Generator by Utilizing Starter/Generator Signal
This study proposes a novel paradigm for enhancing fault detection and isolation (FDI) of gas generators in all-electric auxiliary power unit (APU) by utilizing shaft power information from the starter/generator. First, we conduct a pioneering investigation into the challenges and opportunities for FDI brought about by APU electrification. Our analysis reveals that the electrification of APU opens up new possibilities for utilizing shaft power estimates from starter/generator to improve gas generator FDI. We then provide comprehensive theoretical and analytical evidence demonstrating why, how, and to what extent, the shaft power information from the starter/generator can fundamentally enhance the estimation accuracy of system states and health parameters of the gas generator, while also identifying the key factors influencing these improvements in FDI performance. The effectiveness of the proposed paradigm and its theoretical foundations are validated through extensive Monte Carlo simulations. Furthermore, through comprehensive comparative analysis with state-of-the-art gas generator fault diagnosis methods, our experimental results not only demonstrate the superior performance of the proposed approach but also validate that the diagnostic capabilities of existing advanced FDI techniques can be substantially enhanced by incorporating shaft power information. And the observed performance improvement patterns strongly align with our theoretical analysis, verifying both the effectiveness and guiding significance of our theoretical framework. These research findings provide a unique perspective in answering three fundamental questions: why joint fault diagnosis of the starter/generator and gas generator is essential, how it can be implemented, and what factors determine its effectiveness, thereby opening up promising new avenues for FDI technologies in all-electric APU systems.
Semi-Gradient SARSA Routing with Theoretical Guarantee on Traffic Stability and Weight Convergence
We consider the traffic control problem of dynamic routing over parallel servers, which arises in a variety of engineering systems such as transportation and data transmission. We propose a semi-gradient, on-policy algorithm that learns an approximate optimal routing policy. The algorithm uses generic basis functions with flexible weights to approximate the value function across the unbounded state space. Consequently, the training process lacks Lipschitz continuity of the gradient, boundedness of the temporal-difference error, and a prior guarantee on ergodicity, which are the standard prerequisites in existing literature on reinforcement learning theory. To address this, we combine a Lyapunov approach and an ordinary differential equation-based method to jointly characterize the behavior of traffic state and approximation weights. Our theoretical analysis proves that the training scheme guarantees traffic state stability and ensures almost surely convergence of the weights to the approximate optimum. We also demonstrate via simulations that our algorithm attains significantly faster convergence than neural network-based methods with an insignificant approximation error.
comment: arXiv admin note: text overlap with arXiv:2404.09188
Online Optimization with Unknown Time-varying Parameters
In this paper, we study optimization problems where the cost function contains time-varying parameters that are unmeasurable and evolve according to linear, yet unknown, dynamics. We propose a solution that leverages control theoretic tools to identify the dynamics of the parameters, predict their evolution, and ultimately compute a solution to the optimization problem. The identification of the dynamics of the time-varying parameters is done online using measurements of the gradient of the cost function. This system identification problem is not standard, since the output matrix is known and the dynamics of the parameters must be estimated in the original coordinates without similarity transformations. Interestingly, our analysis shows that, under mild conditions that we characterize, the identification of the parameters dynamics and, consequently, the computation of a time-varying solution to the optimization problem, requires only a finite number of measurements of the gradient of the cost function. We illustrate the effectiveness of our algorithm on a series of numerical examples.
Synthesizing Grid Data with Cyber Resilience and Privacy Guarantees
Differential privacy (DP) provides a principled approach to synthesizing data (e.g., loads) from real-world power systems while limiting the exposure of sensitive information. However, adversaries may exploit synthetic data to calibrate cyberattacks on the source grids. To control these risks, we propose new DP algorithms for synthesizing data that provide the source grids with both cyber resilience and privacy guarantees. The algorithms incorporate both normal operation and attack optimization models to balance the fidelity of synthesized data and cyber resilience. The resulting post-processing optimization is reformulated as a robust optimization problem, which is compatible with the exponential mechanism of DP to moderate its computational burden.
Design for Sensing and Digitalisation (DSD): A Modern Approach to Engineering Design
This paper introduces Design for Sensing and Digitalisation (DSD), a new engineering design paradigm that integrates sensor technology for digitisation and digitalisation from the earliest stages of the design process. Unlike traditional methodologies that treat sensing as an afterthought, DSD emphasises sensor integration, signal path optimisation, and real-time data utilisation as core design principles. The paper outlines DSD's key principles, discusses its role in enabling digital twin technology, and argues for its importance in modern engineering education. By adopting DSD, engineers can create more intelligent and adaptable systems that leverage real-time data for continuous design iteration, operational optimisation and data-driven predictive maintenance.
comment: 4 pages, conference, SACAM 2025
On a Dissimilarity Metric for Analyzing Body Synergistic Coordination in Non-Periodic Motion
This study proposes a novel metric to quantitatively evaluate body synergistic coordination, explicitly addressing dynamic interactions between pairs of body segments in baseball pitching motions. Conventional methods typically compare motion trajectories using individual joint coordinates or velocities independently, employing techniques like Dynamic Time Warping (DTW) that inherently apply temporal alignment even when such correction may distort meaningful rhythm-based differences. In contrast, our approach models the coordination dynamics as Linear Time-Invariant (LTI) systems, leveraging convolution operations between pairs of time series data to capture the gain and phase-lag inherent in genuine coordination dynamics. Empirical validation demonstrates the robustness of the proposed metric to variations in camera angles and scaling, providing superior discriminative capability compared to DTW and deep learning-based methods.
comment: 13 pages, 11 figures, 1 table
Towards Connected Smart Work Zones: Advancing Work Zone Management through Improved Connectivity
Work zones play a key role in road and highway maintenance but can lead to significant risks to both drivers and workers. Smart Work Zones (SWZs) have emerged as a potential solution, offering decision-makers real-time insights into the status of the work zone. By utilizing work zone barrels equipped with sensors and communication nodes, SWZs facilitate collecting and transmitting critical data, including location, traffic density, flow patterns, and worker proximity alerts. In collaboration with the Florida Department of Transportation (FDOT), this study addresses work zone barrel connectivity requirements while considering a cost-effective, low-power, and low-maintenance solution. While the broader project aimed to create a complete SWZ system for the localization of work zone barrels, this paper proposes a novel relay node selection algorithm integrated with Bluetooth Low Energy (BLE) technology to enhance network performance. The proposed algorithm enhances the communication network performance by selecting specific nodes as relay points, avoiding message flooding in the network. It demonstrates an improvement in message delivery rates, achieving up to a 40% increase over existing methods while ensuring balanced load distribution among nodes. Moreover, it maintains an 80% message delivery rate while minimizing power consumption, outperforming other approaches. This improvement in communication efficiency is critical, as it ensures the accurate transmission and delivery of vital work zone data, allowing for faster and more informed decisions to enhance work zone safety and management.
Disturbance Observers for Robust Backup Control Barrier Functions
Designing safe controllers is crucial and notoriously challenging for input-constrained safety-critical control systems. Backup control barrier functions offer an approach for the construction of safe controllers online by considering the flow of the system under a backup controller. However, in the presence of model uncertainties, the flow cannot be accurately computed, making this method insufficient for safety assurance. To tackle this shortcoming, we integrate backup control barrier functions with a disturbance observer and estimate the flow under a reconstruction of the disturbance while refining this estimate over time. We prove that the controllers resulting from the proposed Disturbance Observer Backup Control Barrier Function (DO-bCBF) approach guarantee safety, are robust to unknown disturbances, and satisfy input constraints.
comment: Submitted to IEEE Control Systems Letters (L-CSS). 6 pages, 4 figures
Regulation of a continuously monitored quantum harmonic oscillator with inefficient detectors
We study the control problem of regulating the purity of a quantum harmonic oscillator in a Gaussian state via weak measurements. Specifically, we assume time-invariant Hamiltonian dynamics and that control is exerted via the back-action induced from monitoring the oscillator's position and momentum observables; the manipulation of the detector measurement strengths regulates the purity of the target Gaussian quantum state. After briefly drawing connections between Gaussian quantum dynamics and stochastic control, we focus on the effect of inefficient detectors and derive closed-form expressions for the transient and steady-state dynamics of the state covariance. We highlight the degradation of attainable purity that is due to inefficient detectors, as compared to that dictated by the Robertson-Schr\"odinger uncertainty relation. Our results suggest that quantum correlations can enhance the purity at steady-state. The quantum harmonic oscillator represents a basic system where analytic formulae may provide insights into the role of inefficient measurements in quantum control; the gained insights are pertinent to measurement-based quantum engines and cooling experiments.
comment: 12 pages, 5 figures
Pervasive Sensing for Livestock Health and Activity Monitoring: Current Methods and Techniques
Pervasive sensing is transforming health and activity monitoring by enabling continuous and automated data collection through advanced sensing modalities. While extensive research has been conducted on human subjects, its application in livestock remains underexplored. In large-scale agriculture, real-time monitoring of biological signals and behavioral patterns can facilitate early disease detection, optimize feeding and breeding strategies, and ensure compliance with welfare standards. This survey examines key sensing technologies -- including structural vibration, radio frequency (RF), computer vision, and wearables -- highlighting their benefits and challenges in livestock monitoring. By comparing these approaches, we provide insights into their effectiveness, limitations, and potential for integration into modern smart farming systems. Finally, we discuss research gaps and future directions to advance pervasive sensing in livestock health and activity monitoring.
comment: 9 pages, 0 figures
Performance-bounded Online Ensemble Learning Method Based on Multi-armed bandits and Its Applications in Real-time Safety Assessment
Ensemble learning plays a crucial role in practical applications of online learning due to its enhanced classification performance and adaptable adjustment mechanisms. However, most weight allocation strategies in ensemble learning are heuristic, making it challenging to theoretically guarantee that the ensemble classifier outperforms its base classifiers. To address this issue, a performance-bounded online ensemble learning method based on multi-armed bandits, named PB-OEL, is proposed in this paper. Specifically, multi-armed bandit with expert advice is incorporated into online ensemble learning, aiming to update the weights of base classifiers and make predictions. A theoretical framework is established to bound the performance of the ensemble classifier relative to base classifiers. By setting expert advice of bandits, the bound exceeds the performance of any base classifier when the length of data stream is sufficiently large. Additionally, performance bounds for scenarios with limited annotations are also derived. Numerous experiments on benchmark datasets and a dataset of real-time safety assessment tasks are conducted. The experimental results validate the theoretical bound to a certain extent and demonstrate that the proposed method outperforms existing state-of-the-art methods.
comment: 14 pages, 9 figures
CoIn-SafeLink: Safety-critical Control With Cost-sensitive Incremental Random Vector Functional Link Network IROS 2025
Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
comment: 8 pages, 8 figures, submitted to The 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
Reachable Sets-based Trajectory Planning Combining Reinforcement Learning and iLQR
The driving risk field is applicable to more complex driving scenarios, providing new approaches for safety decision-making and active vehicle control in intricate environments. However, existing research often overlooks the driving risk field and fails to consider the impact of risk distribution within drivable areas on trajectory planning, which poses challenges for enhancing safety. This paper proposes a trajectory planning method for intelligent vehicles based on the risk reachable set to further improve the safety of trajectory planning. First, we construct the reachable set incorporating the driving risk field to more accurately assess and avoid potential risks in drivable areas. Then, the initial trajectory is generated based on safe reinforcement learning and projected onto the reachable set. Finally, we introduce a trajectory planning method based on a constrained iterative quadratic regulator to optimize the initial solution, ensuring that the planned trajectory achieves optimal comfort, safety, and efficiency. We conduct simulation tests of trajectory planning in high-speed lane-changing scenarios. The results indicate that the proposed method can guarantee trajectory comfort and driving efficiency, with the generated trajectory situated outside high-risk boundaries, thereby ensuring vehicle safety during operation.
From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence
The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of Orchestrated Distributed Intelligence (ODI), a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
Modeling, Analysis, and Optimization of Cascaded Power Amplifiers
This paper deals with modeling, analysis, and optimization of power amplifiers (PAs) placed in a cascaded structure, particularly the effect of cascaded nonlinearities is studied by showing potential ways to minimize the total nonlinearities. The nonlinear least-squares algorithm is proposed to optimize the PA parameters along with the input power level, and thereby minimize the total nonlinearities in the cascaded structure. The simulation results demonstrate that the performance of the optimized configurations for up to five PAs using the proposed framework can improve the linearity properties of the overall cascade.
AI-driven control of bioelectric signalling for real-time topological reorganization of cells
Understanding and manipulating bioelectric signaling could present a new wave of progress in developmental biology, regenerative medicine, and synthetic biology. Bioelectric signals, defined as voltage gradients across cell membranes caused by ionic movements, play a role in regulating crucial processes including cellular differentiation, proliferation, apoptosis, and tissue morphogenesis. Recent studies demonstrate the ability to modulate these signals to achieve controlled tissue regeneration and morphological outcomes in organisms such as planaria and frogs. However, significant knowledge gaps remain, particularly in predicting and controlling the spatial and temporal dynamics of membrane potentials (V_mem), understanding their regulatory roles in tissue and organ development, and exploring their therapeutic potential in diseases. In this work we propose an experiment using Deep Reinforcement Learning (DRL) framework together with lab automation techniques for real-time manipulation of bioelectric signals to guide tissue regeneration and morphogenesis. The proposed framework should interact continuously with biological systems, adapting strategies based on direct biological feedback. Combining DRL with real-time measurement techniques -- such as optogenetics, voltage-sensitive dyes, fluorescent reporters, and advanced microscopy -- could provide a comprehensive platform for precise bioelectric control, leading to improved understanding of bioelectric mechanisms in morphogenesis, quantitative bioelectric models, identification of minimal experimental setups, and advancements in bioelectric modulation techniques relevant to regenerative medicine and cancer therapy. Ultimately, this research aims to utilize bioelectric signaling to develop new biomedical and bioengineering applications.
The Pitfalls of Imitation Learning when Actions are Continuous
We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics are stable (i.e. contracting exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to both behavior cloning and offline-RL algorithms, unless they produce highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
comment: 98 pages, 2 figures, updated introduction
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
A Deep Reinforcement Learning Based Motion Cueing Algorithm for Vehicle Driving Simulation
Motion cueing algorithms (MCA) are used to control the movement of motion simulation platforms (MSP) to reproduce the motion perception of a real vehicle driver as accurately as possible without exceeding the limits of the workspace of the MSP. Existing approaches either produce non-optimal results due to filtering, linearization, or simplifications, or the computational time required exceeds the real-time requirements of a closed-loop application. This work presents a new solution to the motion cueing problem, where instead of a human designer specifying the principles of the MCA, an artificial intelligence (AI) learns the optimal motion by trial and error in interaction with the MSP. To achieve this, a well-established deep reinforcement learning (RL) algorithm is applied, where an agent interacts with an environment, allowing him to directly control a simulated MSP to obtain feedback on its performance. The RL algorithm used is proximal policy optimization (PPO), where the value function and the policy corresponding to the control strategy are both learned and mapped in artificial neural networks (ANN). This approach is implemented in Python and the functionality is demonstrated by the practical example of pre-recorded lateral maneuvers. The subsequent validation shows that the RL algorithm is able to learn the control strategy and improve the quality of the immersion compared to an established method. Thereby, the perceived motion signals determined by a model of the vestibular system are more accurately reproduced, and the resources of the MSP are used more economically.
Clutter-Aware Target Detection for ISAC in a Millimeter-Wave Cell-Free Massive MIMO System SP
In this paper, we investigate the performance of an integrated sensing and communication (ISAC) system within a cell-free massive multiple-input multiple-output (MIMO) system. Each access point (AP) operates in the millimeter-wave (mmWave) frequency band. The APs jointly serve the user equipments (UEs) in the downlink while simultaneously detecting a target through dedicated sensing beams, which are directed toward a reconfigurable intelligent surface (RIS). Although the AP-RIS, RIS-target, and AP-target channels have both line-of-sight (LoS) and non-line-of-sight (NLoS) parts, it is assumed only knowledge of the LoS paths is available. A key contribution of this study is the consideration of clutter, which degrades the target detection if not handled. We propose an algorithm to alternatively optimize the transmit power allocation and the RIS phase-shift matrix, maximizing the target signal-to-clutter-plus-noise ratio (SCNR) while ensuring a minimum signal-to-interference-plus-noise ratio (SINR) for the UEs. Numerical results demonstrate that exploiting clutter subspace significantly enhances detection probability, particularly at high clutter-to-noise ratios, and reveal that an increased number of transmit side clusters impair detection performance. Finally, we highlight the performance gains achieved using a dedicated sensing stream.
comment: 5 pages, 5 figures, submitted to SPAWC
Data-Based Efficient Off-Policy Stabilizing Optimal Control Algorithms for Discrete-Time Linear Systems via Damping Coefficients
Policy iteration is one of the classical frameworks of reinforcement learning, which requires a known initial stabilizing control. However, finding the initial stabilizing control depends on the known system model. To relax this requirement and achieve model-free optimal control, in this paper, two different reinforcement learning algorithms based on policy iteration and variable damping coefficients are designed for unknown discrete-time linear systems. First, a stable artificial system is designed, and this system is gradually iterated to the original system by varying the damping coefficients. This allows the initial stabilizing control to be obtained in a finite number of iteration steps. Then, an off-policy iteration algorithm and an off-policy $\mathcal{Q}$-learning algorithm are designed to select the appropriate damping coefficients and realize data-driven. In these two algorithms, the current estimates of optimal control gain are not applied to the system to re-collect data. Moreover, they are characterized by the fast convergence of the traditional policy iteration. Finally, the proposed algorithms are validated by simulation.
Input Delay Compensation for a Class of Switched Linear Systems via Averaging Exact Predictor Feedbacks
The key challenges in design of predictor-based control laws for switched systems with arbitrary switching and long input delay are the potential unavailability of the future values of the switching signal (at current time) and the fact that dwell time may be arbitrary. In the present paper, we resolve these challenges developing a new predictor-based control law that is, essentially, an average of exact predictor feedbacks, each one corresponding to an exact predictor-feedback law for a system that operates only in a single mode. Because the predictor state in our control design does not correspond to an exact predictor, stability can be guaranteed under a restriction on the differences among the system's matrices and controller's gains. This is an unavoidable limitation, for a switching signal whose future values may be unavailable, when no constraint is imposed on the values of delay and dwell time (as it is the case here). We establish (uniform) stability of the closed-loop system employing a Lyapunov functional. The key step in the stability proof is constructive derivation of an estimate of the mismatch between an exact predictor feedback and the average of predictor feedbacks constructed. We illustrate the performance of the proposed predictor-based control law in simulation, including comparisons with alternative, predictor-based control laws.
comment: 8 pages, 6 figures, submitted to 2025 European Control Conference (ECC). arXiv admin note: text overlap with arXiv:2410.22044
Data-Driven Inverse Optimal Control for Continuous-Time Nonlinear Systems
This paper introduces a novel model-free and a partially model-free algorithm for inverse optimal control (IOC), also known as inverse reinforcement learning (IRL), aimed at estimating the cost function of continuous-time nonlinear deterministic systems. Using the input-state trajectories of an expert agent, the proposed algorithms separately utilize control policy information and the Hamilton-Jacobi-Bellman equation to estimate different sets of cost function parameters. This approach allows the algorithms to achieve broader applicability while maintaining a model-free framework. Also, the model-free algorithm reduces complexity compared to existing methods, as it requires solving a forward optimal control problem only once during initialization. Furthermore, in our partially model-free algorithm, this step can be bypassed entirely for systems with known input dynamics. Simulation results demonstrate the effectiveness and efficiency of our algorithms, highlighting their potential for real-world deployment in autonomous systems and robotics.
Joint Optimization of Continuous Variables and Priority Assignments for Real-Time Systems with Black-box Schedulability Constraints
In real-time systems optimization, designers often face a challenging problem posed by the non-convex and non-continuous schedulability conditions, which may even lack an analytical form to understand their properties. To tackle this challenging problem, we treat the schedulability analysis as a black box that only returns true/false results. We propose a general and scalable framework to optimize real-time systems, named Numerical Optimizer with Real-Time Highlight (NORTH). NORTH is built upon the gradient-based active-set methods from the numerical optimization literature but with new methods to manage active constraints for the non-differentiable schedulability constraints. In addition, we also generalize NORTH to NORTH+, to collaboratively optimize certain types of discrete variables (e.g., priority assignments, categorical variables) with continuous variables based on numerical optimization algorithms. We demonstrate the algorithm performance with two example applications: energy minimization based on dynamic voltage and frequency scaling (DVFS), and optimization of control system performance. In these experiments, NORTH achieved $10^2$ to $10^5$ times speed improvements over state-of-the-art methods while maintaining similar or better solution quality. NORTH+ outperforms NORTH by 30% with similar algorithm scalability. Both NORTH and NORTH+ support black-box schedulability analysis, ensuring broad applicability.
comment: Extension of a conference paper
ISLS: IoT-Based Smart Lighting System for Improving Energy Conservation in Office Buildings
With the Internet of Things (IoT) fostering seamless device-to-human and device-to-device interactions, the domain of intelligent lighting systems have evolved beyond simple occupancy and daylight sensing towards autonomous monitoring and control of power consumption and illuminance levels. To this regard, this paper proposes a new do-it-yourself (DIY) IoT-based method of smart lighting system featuring an illuminance control algorithm. The design involves the integration of occupancy and presence sensors alongside a communication module, to enable real-time wireless interaction and remote monitoring of the system parameters from any location through an end-user application. A constrained optimization problem was formulated to determine the optimal dimming vector for achieving target illuminance at minimal power consumption. The simplex algorithm was used to solve this problem, and the system's performance was validated through both MATLAB simulations and real-world prototype testing in an indoor office environment. The obtained experimental results demonstrate substantial power savings across multiple user occupancy scenarios, achieving reductions of approx. 80%, 48%, and 26% for one, two, and four user settings, respectively, in comparison to traditional basic lighting installation systems.
Privacy Preserving Mechanisms for Coordinating Airspace Usage in Advanced Air Mobility
Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to the airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of "air-credits" and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: 1) computes a fractional competitive equilibrium, and 2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for two emerging urban air mobility services: drone delivery and air taxis.
comment: 31 pages, 7 figures, 3 tables
Human Balancing on a Log: A Switched Multi-Layer Controller
We study the task of balancing a human on a log that is fixed in place. Balancing on a log is substantially more challenging than balancing on a flat surface due to increased instability -- nonetheless, we are able to balance by composing simple (e.g., PID, LQR) controllers in a bio-inspired switched multi-layer configuration. The controller consists of an upper-layer LQR planner (akin to the central nervous system) that coordinates ankle and hip torques, and lower-layer PID trackers (akin to local motor units) that follow this plan subject to nonlinear dynamics. The controller switches between three operational modes depending on the state of the human. The efficacy of the controller is verified in simulation, where our controller is able to stabilize the human for a variety of initial conditions and disturbances. We also introduce a controller that outputs muscle activations to perform the same balancing task.
comment: to appear at 2025 IEEE American Control Conference (ACC)
Toward Neuronal Implementations of Delayed Optimal Control
Animal sensorimotor behavior is frequently modeled using optimal controllers. However, it is unclear how the neural circuits within the animal's nervous system implement optimal controller-like behavior. In this work, we study the question of implementing a delayed linear quadratic regulator with linear dynamical "neurons" on a muscle model. We show that for any second-order controller, there are three minimal neural circuit configurations that implement the same controller. Furthermore, the firing rate characteristics of each circuit can vary drastically, even as the overall controller behavior is preserved. Along the way, we introduce concepts that bridge controller realizations to neural implementations that are compatible with known neuronal delay structures.
comment: to appear at 2025 IEEE American Control Conference (ACC)
Systems and Control (EESS)
More Information is Not Always Better: Connections between Zero-Sum Local Nash Equilibria in Feedback and Open-Loop Information Patterns
Non-cooperative dynamic game theory provides a principled approach to modeling sequential decision-making among multiple noncommunicative agents. A key focus has been on finding Nash equilibria in two-agent zero-sum dynamic games under various information structures. A well-known result states that in linear-quadratic games, unique Nash equilibria under feedback and open-loop information structures yield identical trajectories. Motivated by two key perspectives -- (i) many real-world problems extend beyond linear-quadratic settings and lack unique equilibria, making only local Nash equilibria computable, and (ii) local open-loop Nash equilibria (OLNE) are easier to compute than local feedback Nash equilibria (FBNE) -- it is natural to ask whether a similar result holds for local equilibria in zero-sum games. To this end, we establish that for a broad class of zero-sum games with potentially nonconvex-nonconcave objectives and nonlinear dynamics: (i) the state/control trajectory of a local FBNE satisfies local OLNE first-order optimality conditions, and vice versa, (ii) a local FBNE trajectory satisfies local OLNE second-order necessary conditions, (iii) a local FBNE trajectory satisfying feedback sufficiency conditions also constitutes a local OLNE, and (iv) with additional hard constraints on agents' actuations, a local FBNE where strict complementarity holds also satisfies local OLNE first-order optimality conditions, and vice versa.
comment: 6 pages
Friction-Scaled Vibrotactile Feedback for Real-Time Slip Detection in Manipulation using Robotic Sixth Finger
The integration of extra-robotic limbs/fingers to enhance and expand motor skills, particularly for grasping and manipulation, possesses significant challenges. The grasping performance of existing limbs/fingers is far inferior to that of human hands. Human hands can detect onset of slip through tactile feedback originating from tactile receptors during the grasping process, enabling precise and automatic regulation of grip force. The frictional information is perceived by humans depending upon slip happening between finger and object. Enhancing this capability in extra-robotic limbs or fingers used by humans is challenging. To address this challenge, this paper introduces novel approach to communicate frictional information to users through encoded vibrotactile cues. These cues are conveyed on onset of incipient slip thus allowing users to perceive friction and ultimately use this information to increase force to avoid dropping of object. In a 2-alternative forced-choice protocol, participants gripped and lifted a glass under three different frictional conditions, applying a normal force of 3.5 N. After reaching this force, glass was gradually released to induce slip. During this slipping phase, vibrations scaled according to static coefficient of friction were presented to users, reflecting frictional conditions. The results suggested an accuracy of 94.53 p/m 3.05 (mean p/mSD) in perceiving frictional information upon lifting objects with varying friction. The results indicate effectiveness of using vibrotactile feedback for sensory feedback, allowing users of extra-robotic limbs or fingers to perceive frictional information. This enables them to assess surface properties and adjust grip force according to frictional conditions, enhancing their ability to grasp, manipulate objects more effectively.
The value of hedging against energy storage uncertainties when designing energy parks
Energy storage is needed to match renewable generation to industrial loads in energy parks. However, the future performance of bulk storage technologies is currently highly uncertain. Due to the urgency of decarbonization targets, energy park projects must be designed and begun now. But, as uncertainty in storage performance reduces, a different technology than identified during initial design may turn out cheaper. Enabling flexibility so that design adaptations can be made as better information becomes available would lower the cost of decarbonizing industry. But having this flexibility is itself costly. This raises the question, "Is it worth it?" This study quantifies the benefit of retaining flexibility to adapt energy park designs and optionality over storage technology choice as uncertainty reduces, to determine whether it is economically worthwhile. It applies the Value of Information analysis framework to the sizing of wind, solar, and storage in an illustrative energy park model based on a real-world proposal near Rotterdam, considering uncertainty in storage efficiency, lifetime, and capital cost. Updating asset sizings after storage uncertainty reduced is found to reduce total costs by 18% on average. Having the option to switch storage technology choice as well reduces costs by a further 13%, which is substantially greater than the cost of providing storage optionality. Using two storage technologies in the energy park reduces costs by 14%, and in this case storage optionality is not worthwhile. These results are robust to the level of uncertainty reduction in storage performance, and the risk aversion of the system designer.
comment: 33 pages, 10 figures, 9 tables
Exploiting Prior Knowledge in Preferential Learning of Individualized Autonomous Vehicle Driving Styles
Trajectory planning for automated vehicles commonly employs optimization over a moving horizon - Model Predictive Control - where the cost function critically influences the resulting driving style. However, finding a suitable cost function that results in a driving style preferred by passengers remains an ongoing challenge. We employ preferential Bayesian optimization to learn the cost function by iteratively querying a passenger's preference. Due to increasing dimensionality of the parameter space, preference learning approaches might struggle to find a suitable optimum with a limited number of experiments and expose the passenger to discomfort when exploring the parameter space. We address these challenges by incorporating prior knowledge into the preferential Bayesian optimization framework. Our method constructs a virtual decision maker from real-world human driving data to guide parameter sampling. In a simulation experiment, we achieve faster convergence of the prior-knowledge-informed learning procedure compared to existing preferential Bayesian optimization approaches and reduce the number of inadequate driving styles sampled.
comment: 6 pages, 6 figures, accepted for ECC 2025
Advancing MG Energy Management: A Rolling Horizon Optimization Framework for Three-Phase Unbalanced Networks Integrating Convex Formulations
Real-world three-phase microgrids face two interconnected challenges: 1. time-varying uncertainty from renewable generation and demand, and 2. persistent phase imbalances caused by uneven distributed energy resources DERs, load asymmetries, and grid faults. Conventional energy management systems fail to address these challenges holistically and static optimization methods lack adaptability to real-time fluctuations, while balanced three-phase models ignore critical asymmetries that degrade voltage stability and efficiency. This work introduces a dynamic rolling horizon optimization framework specifically designed for unbalanced three-phase microgrids. Unlike traditional two-stage stochastic approaches that fix decisions for the entire horizon, the rolling horizon algorithm iteratively updates decisions in response to real-time data. By solving a sequence of shorter optimization windows, each incorporating the latest system state and forecasts, the method achieves three key advantages: Adaptive Uncertainty Handling by continuously re plans operations to mitigate forecast errors. Phase Imbalance Correction by dynamically adjusts power flows across phases to minimize voltage deviations and losses caused by asymmetries, and computational Tractability, i.e., shorter optimization windows, combined with the mathematical mhodel, enable better decision making holding accuracy. For comparison purposes, we derive three optimization models: a nonlinear nonconvex model for high-fidelity offline planning, a convex quadratic approximation for day-ahead scheduling, and a linearized model to important for theoretical reasons such as decomposition algorithms.
Energy-efficient Merging of Connected and Automated Vehicles using Control Barrier Functions
Highway merges present difficulties for human drivers and automated vehicles due to incomplete situational awareness and a need for a structured (precedence, order) environment, respectively. In this paper, an unstructured merge algorithm is presented for connected and automated vehicles. There is neither precedence nor established passing order through the merge point. The algorithm relies on Control Barrier Functions for safety (collision avoidance) and for coordination that arises from exponential instability of stall-equilibria in the inter-agent space. A Monte Carlo simulation comparison to a first-in-first-out approach shows improvement in traffic flow and a significant energy efficiency benefit.
comment: This work has been submitted to an ASME journal for possible publication and is under review. Paper summary: 6 pages, 3 figures, 5 tables
Probabilistic Flexibility Aggregation of DERs for Ancillary Services Provision
This paper presents a grid-aware probabilistic approach to compute the aggregated flexibility at the grid connection point (GCP) of active distribution networks (ADNs) to allow the participation of DERs in ancillary services (AS) markets. Specifically an optimal power flow (OPF) method using a linear network model is used to compute the aggregated capability for the provision of multiple AS. We start from the method proposed in [1] and extend it to allow for optimizing the provision of multiple services simultaneously, ensure cost-effectiveness of the used DERs and handle uncertainties in a probabilistic way. The allocation of individual DERs power flexibilities accounts for the operational costs associated to the provision of different services and ensures cost-effectiveness while maximizing the value of the advertised aggregated flexibility, assuming known service prices. Empirical uncertainty sets are obtained to achieve a predefined coverage of the probability distribution in line with recent developments in the Nordic AS markets. Finally, a feeder-decomposition approach is proposed to ensure the methods applicability to realistic distribution networks with a large number of buses. Different case studies show the effectiveness of the method, highlight the importance of accounting for network constraints and illustrate its applicability to realistic distribution systems.
Priority-driven Constraints Softening in Safe MPC for Perturbed Systems
This paper presents a safe model predictive control (SMPC) framework designed to ensure the satisfaction of hard constraints for systems perturbed by an external disturbance. Such safety guarantees are ensured, despite the disturbance, by online softening a subset of adjustable constraints defined by the designer. The selection of the constraints to be softened is made online based on a predefined priority assigned to each adjustable constraint. The design of a learning-based algorithm enables real-time computation while preserving the original safety properties. Simulations results, obtained from an automated driving application, show that the proposed approach provides guarantees of collision-avoidance hard constraints despite the unpredicted behaviors of the surrounding environment.
comment: 6 pages, 6 figures, submitted to 2025 CDC conference
Blocked Cholesky factorization updates of the Riccati recursion using hyperbolic Householder transformations
Newton systems in quadratic programming (QP) methods are often solved using direct Cholesky or LDL factorizations. When the linear systems in successive iterations differ by a low-rank modification (as is common in active set and augmented Lagrangian methods), updating the existing factorization can offer significant performance improvements over recomputing a full Cholesky factorization. We review the hyperbolic Householder transformation, and demonstrate its usefulness in describing low-rank Cholesky factorization updates. By applying this hyperbolic Householder-based framework to the well-known Riccati recursion for solving saddle-point problems with optimal control structure, we develop a novel algorithm for updating the factorizations used in optimization solvers for optimal control. Specifically, the proposed method can be used to efficiently solve the semismooth Newton systems that are at the core of the augmented Lagrangian-based QPALM-OCP solver. An optimized open-source implementation of the proposed factorization update routines is provided as well.
comment: Source code available at https://github.com/kul-optec/hyhound
Lyapunov-Based Graph Neural Networks for Adaptive Control of Multi-Agent Systems
Graph neural networks (GNNs) have a message-passing framework in which vector messages are exchanged between graph nodes and updated using feedforward layers. The inclusion of distributed message-passing in the GNN architecture makes them ideally suited for distributed control and coordination tasks. Existing results develop GNN-based controllers to address a variety of multi-agent control problems while compensating for modeling uncertainties in the systems. However, these results use GNNs that are pre-trained offline. This paper provides the first result on GNNs with stability-driven online weight updates to address the multi-agent target tracking problem. Specifically, new Lyapunov-based distributed GNN and graph attention network (GAT)-based controllers are developed to adaptively estimate unknown target dynamics and address the second-order target tracking problem. A Lyapunov-based stability analysis is provided to guarantee exponential convergence of the target state estimates and agent states to a neighborhood of the target state. Numerical simulations show a 20.8% and 48.1% position tracking error performance improvement by the GNN and GAT architectures over a baseline DNN architecture, respectively.
comment: 25 pages, 6 figures, 3 tables, 1 algorithm
Experimental Validation of Distributed Dispatching of Multiple Active Distribution Networks Using the ADMM
This paper presents the experimental validation of a framework for the coordinated dispatch and control of multiple active distribution networks (ADNs) hosting distributed energy resource (DER). We show that the presented method, which builds further on work done in [1], effectively allows to control multiple ADNs in a distributed way to ensure they achieve a common objective without revealing information on their DERs capabilities or grid model. This experimental validation is carried out using demonstrators at the DESL of EPFL and the NEST site at Empa, both in Switzerland. The coordination of the systems to share the flexibility of their controllable assets is demonstrated through a set of 24h experiments. Finally, the limitations of the method are discussed and future extensions proposed.
Automated Functional Decomposition for Hybrid Zonotope Over-approximations with Application to LSTM Networks
Functional decomposition is a powerful tool for systems analysis because it can reduce a function of arbitrary input dimensions to the sum and superposition of functions of a single variable, thereby mitigating (or potentially avoiding) the exponential scaling often associated with analyses over high-dimensional spaces. This paper presents automated methods for constructing functional decompositions used to form set-based over-approximations of nonlinear functions, with particular focus on the hybrid zonotope set representation. To demonstrate these methods, we construct a hybrid zonotope set that over-approximates the input-output graph of a long short-term memory neural network, and use functional decomposition to represent a discrete hybrid automaton via a hybrid zonotope.
Brunovsky Riccati Recursion for Linear Model Predictive Control
In almost all algorithms for Model Predictive Control (MPC), the most time-consuming step is to solve some form of Linear Quadratic (LQ) Optimal Control Problem (OCP) repeatedly. The commonly recognized best option for this is a Riccati recursion based solver, which has a time complexity of $\mathcal{O}(N(n_x^3 + n_x^2 n_u + n_x n_u^2 + n_u^3))$. In this paper, we propose a novel \textit{Brunovsky Riccati Recursion} algorithm to solve LQ OCPs for Linear Time Invariant (LTI) systems. The algorithm transforms the system into Brunovsky form, formulates a new LQ cost (and constraints, if any) in Brunovsky coordinates, performs the Riccati recursion there, and converts the solution back. Due to the sparsity (block-diagonality and zero-one pattern per block) of Brunovsky form and the data parallelism introduced in the cost, constraints, and solution transformations, the time complexity of the new method is greatly reduced to $\mathcal{O}(n_x^3 + N(n_x^2 n_u + n_x n_u^2 + n_u^3))$ if $N$ threads/cores are available for parallel computing.
comment: Accepted by ACC 2025
Polynomial and Parallelizable Preconditioning for Block Tridiagonal Positive Definite Matrix
The efficient solution of moderately large-scale linear systems arising from the KKT conditions in optimal control problems (OCPs) is a critical challenge in robotics. With the stagnation of Moore's law, there is growing interest in leveraging GPU-accelerated iterative methods, and corresponding parallel preconditioners, to overcome these computational challenges. To improve the computational performance of such solvers, we introduce a parallel-friendly, parametrized multi-splitting polynomial preconditioner framework that leverages positive and negative factors. Our approach results in improved convergence of the linear systems solves needed in OCPs. We construct and prove the optimal parametrization of multi-splitting theoretically and demonstrate empirically a 76% reduction in condition number and 46% in iteration counts on a series of numerical benchmarks.
comment: Submitted to CDC 2025 + L-CSS
A Personalized Data-Driven Generative Model of Human Motion
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
comment: 6 pages, 9 figures
A Coupled Friedkin-Johnsen Model of Popularity Dynamics in Social Media
Popularity dynamics in social media depend on a complex interplay of social influence between users and popularity-based recommendations that are provided by the platforms. In this work, we introduce a discrete-time dynamical system to model the evolution of popularity on social media. Our model generalizes the well-known Friedkin-Johnsen model to a set of influencers vying for popularity. We study the asymptotic behavior of this model and illustrate it with numerical examples. Our results highlight the interplay of social influence, past popularity, and content quality in determining the popularity of influencers.
A Comparative Study of Human Motion Models in Reinforcement Learning Algorithms for Social Robot Navigation
Social robot navigation is an evolving research field that aims to find efficient strategies to safely navigate dynamic environments populated by humans. A critical challenge in this domain is the accurate modeling of human motion, which directly impacts the design and evaluation of navigation algorithms. This paper presents a comparative study of two popular categories of human motion models used in social robot navigation, namely velocity-based models and force-based models. A system-theoretic representation of both model types is presented, which highlights their common feedback structure, although with different state variables. Several navigation policies based on reinforcement learning are trained and tested in various simulated environments involving pedestrian crowds modeled with these approaches. A comparative study is conducted to assess performance across multiple factors, including human motion model, navigation policy, scenario complexity and crowd density. The results highlight advantages and challenges of different approaches to modeling human behavior, as well as their role during training and testing of learning-based navigation policies. The findings offer valuable insights and guidelines for selecting appropriate human motion models when designing socially-aware robot navigation systems.
Diffusion-Based Forecasting for Uncertainty-Aware Model Predictive Control
We propose Diffusion-Informed Model Predictive Control (D-I MPC), a generic framework for uncertainty-aware prediction and decision-making in partially observable stochastic systems by integrating diffusion-based time series forecasting models in Model Predictive Control algorithms. In our approach, a diffusion-based time series forecasting model is used to probabilistically estimate the evolution of the system's stochastic components. These forecasts are then incorporated into MPC algorithms to estimate future trajectories and optimize action selection under the uncertainty of the future. We evaluate the framework on the task of energy arbitrage, where a Battery Energy Storage System participates in the day-ahead electricity market of the New York state. Experimental results indicate that our model-based approach with a diffusion-based forecaster significantly outperforms both implementations with classical forecasting methods and model-free reinforcement learning baselines.
comment: 5 pages, 3 figures, 3 tables. This version is submitted to the 33rd European Signal Processing Conference (EUSIPCO 2025), to be held in Isola delle Femmine - Palermo - Italy, on September 8-12, 2025
Proximal Gradient Dynamics and Feedback Control for Equality-Constrained Composite Optimization
This paper studies equality-constrained composite minimization problems. This class of problems, capturing regularization terms and convex inequality constraints, naturally arises in a wide range of engineering and machine learning applications. To tackle these minimization problems, we introduce the \emph{proportional--integral proximal gradient dynamics} (PI--PGD): a closed-loop system where the Lagrange multipliers are control inputs and states are the problem decision variables. First, we establish the equivalence between the minima of the optimization problem and the equilibria of the PI--PGD. Then, leveraging tools from contraction theory, we give a comprehensive convergence analysis for the dynamics, showing linear--exponential convergence towards the equilibrium. That is, the distance between each solution and the equilibrium is upper bounded by a function that first decreases linearly and then exponentially. Our findings are illustrated numerically on a set of representative examples, which include an application to entropic-regularized optimal transport.
comment: 14 pages, 7 figures
Enhancing Reset Control Phase with Lead Shaping Filters: Applications to Precision Motion Systems
This study presents a shaped reset feedback control strategy to enhance the performance of precision motion systems. The approach utilizes a phase-lead compensator as a shaping filter to tune the phase of reset instants, thereby shaping the nonlinearity in the first-order reset control. {The design achieves either an increased phase margin while maintaining gain properties or improved gain without sacrificing phase margin, compared to reset control without the shaping filter.} Then, frequency-domain design procedures are provided for both Clegg Integrator (CI)-based and First-Order Reset Element (FORE)-based reset control systems. Finally, the effectiveness of the proposed strategy is demonstrated through two experimental case studies on a precision motion stage. In the first case, the shaped reset control leverages phase-lead benefits to achieve zero overshoot in the transient response. In the second case, the shaped reset control strategy enhances the gain advantages of the previous reset element, resulting in improved steady-state performance, including better tracking precision and disturbance rejection, while reducing overshoot for an improved transient response.
High-Order Control Barrier Functions: Insights and a Truncated Taylor-Based Formulation
We examine the complexity of the standard High-Order Control Barrier Function (HOCBF) approach and propose a truncated Taylor-based approach that reduces design parameters. First, we derive the explicit inequality condition for the HOCBF approach and show that the corresponding equality condition sets a lower bound on the barrier function value that regulates its decay rate. Next, we present our Truncated Taylor CBF (TTCBF), which uses a truncated Taylor series to approximate the discrete-time CBF condition. While the standard HOCBF approach requires multiple class K functions, leading to more design parameters as the constraint's relative degree increases, our TTCBF approach requires only one. We support our theoretical findings in numerical collision-avoidance experiments and show that our approach ensures safety while reducing design complexity.
Enhancing Fault Detection and Isolation in an All-Electric Auxiliary Power Unit (APU) Gas Generator by Utilizing Starter/Generator Signal
This study proposes a novel paradigm for enhancing fault detection and isolation (FDI) of gas generators in all-electric auxiliary power unit (APU) by utilizing shaft power information from the starter/generator. First, we conduct a pioneering investigation into the challenges and opportunities for FDI brought about by APU electrification. Our analysis reveals that the electrification of APU opens up new possibilities for utilizing shaft power estimates from starter/generator to improve gas generator FDI. We then provide comprehensive theoretical and analytical evidence demonstrating why, how, and to what extent, the shaft power information from the starter/generator can fundamentally enhance the estimation accuracy of system states and health parameters of the gas generator, while also identifying the key factors influencing these improvements in FDI performance. The effectiveness of the proposed paradigm and its theoretical foundations are validated through extensive Monte Carlo simulations. Furthermore, through comprehensive comparative analysis with state-of-the-art gas generator fault diagnosis methods, our experimental results not only demonstrate the superior performance of the proposed approach but also validate that the diagnostic capabilities of existing advanced FDI techniques can be substantially enhanced by incorporating shaft power information. And the observed performance improvement patterns strongly align with our theoretical analysis, verifying both the effectiveness and guiding significance of our theoretical framework. These research findings provide a unique perspective in answering three fundamental questions: why joint fault diagnosis of the starter/generator and gas generator is essential, how it can be implemented, and what factors determine its effectiveness, thereby opening up promising new avenues for FDI technologies in all-electric APU systems.
Semi-Gradient SARSA Routing with Theoretical Guarantee on Traffic Stability and Weight Convergence
We consider the traffic control problem of dynamic routing over parallel servers, which arises in a variety of engineering systems such as transportation and data transmission. We propose a semi-gradient, on-policy algorithm that learns an approximate optimal routing policy. The algorithm uses generic basis functions with flexible weights to approximate the value function across the unbounded state space. Consequently, the training process lacks Lipschitz continuity of the gradient, boundedness of the temporal-difference error, and a prior guarantee on ergodicity, which are the standard prerequisites in existing literature on reinforcement learning theory. To address this, we combine a Lyapunov approach and an ordinary differential equation-based method to jointly characterize the behavior of traffic state and approximation weights. Our theoretical analysis proves that the training scheme guarantees traffic state stability and ensures almost surely convergence of the weights to the approximate optimum. We also demonstrate via simulations that our algorithm attains significantly faster convergence than neural network-based methods with an insignificant approximation error.
comment: arXiv admin note: text overlap with arXiv:2404.09188
Online Optimization with Unknown Time-varying Parameters
In this paper, we study optimization problems where the cost function contains time-varying parameters that are unmeasurable and evolve according to linear, yet unknown, dynamics. We propose a solution that leverages control theoretic tools to identify the dynamics of the parameters, predict their evolution, and ultimately compute a solution to the optimization problem. The identification of the dynamics of the time-varying parameters is done online using measurements of the gradient of the cost function. This system identification problem is not standard, since the output matrix is known and the dynamics of the parameters must be estimated in the original coordinates without similarity transformations. Interestingly, our analysis shows that, under mild conditions that we characterize, the identification of the parameters dynamics and, consequently, the computation of a time-varying solution to the optimization problem, requires only a finite number of measurements of the gradient of the cost function. We illustrate the effectiveness of our algorithm on a series of numerical examples.
Synthesizing Grid Data with Cyber Resilience and Privacy Guarantees
Differential privacy (DP) provides a principled approach to synthesizing data (e.g., loads) from real-world power systems while limiting the exposure of sensitive information. However, adversaries may exploit synthetic data to calibrate cyberattacks on the source grids. To control these risks, we propose new DP algorithms for synthesizing data that provide the source grids with both cyber resilience and privacy guarantees. The algorithms incorporate both normal operation and attack optimization models to balance the fidelity of synthesized data and cyber resilience. The resulting post-processing optimization is reformulated as a robust optimization problem, which is compatible with the exponential mechanism of DP to moderate its computational burden.
Design for Sensing and Digitalisation (DSD): A Modern Approach to Engineering Design
This paper introduces Design for Sensing and Digitalisation (DSD), a new engineering design paradigm that integrates sensor technology for digitisation and digitalisation from the earliest stages of the design process. Unlike traditional methodologies that treat sensing as an afterthought, DSD emphasises sensor integration, signal path optimisation, and real-time data utilisation as core design principles. The paper outlines DSD's key principles, discusses its role in enabling digital twin technology, and argues for its importance in modern engineering education. By adopting DSD, engineers can create more intelligent and adaptable systems that leverage real-time data for continuous design iteration, operational optimisation and data-driven predictive maintenance.
comment: 4 pages, conference, SACAM 2025
On a Dissimilarity Metric for Analyzing Body Synergistic Coordination in Non-Periodic Motion
This study proposes a novel metric to quantitatively evaluate body synergistic coordination, explicitly addressing dynamic interactions between pairs of body segments in baseball pitching motions. Conventional methods typically compare motion trajectories using individual joint coordinates or velocities independently, employing techniques like Dynamic Time Warping (DTW) that inherently apply temporal alignment even when such correction may distort meaningful rhythm-based differences. In contrast, our approach models the coordination dynamics as Linear Time-Invariant (LTI) systems, leveraging convolution operations between pairs of time series data to capture the gain and phase-lag inherent in genuine coordination dynamics. Empirical validation demonstrates the robustness of the proposed metric to variations in camera angles and scaling, providing superior discriminative capability compared to DTW and deep learning-based methods.
comment: 13 pages, 11 figures, 1 table
Towards Connected Smart Work Zones: Advancing Work Zone Management through Improved Connectivity
Work zones play a key role in road and highway maintenance but can lead to significant risks to both drivers and workers. Smart Work Zones (SWZs) have emerged as a potential solution, offering decision-makers real-time insights into the status of the work zone. By utilizing work zone barrels equipped with sensors and communication nodes, SWZs facilitate collecting and transmitting critical data, including location, traffic density, flow patterns, and worker proximity alerts. In collaboration with the Florida Department of Transportation (FDOT), this study addresses work zone barrel connectivity requirements while considering a cost-effective, low-power, and low-maintenance solution. While the broader project aimed to create a complete SWZ system for the localization of work zone barrels, this paper proposes a novel relay node selection algorithm integrated with Bluetooth Low Energy (BLE) technology to enhance network performance. The proposed algorithm enhances the communication network performance by selecting specific nodes as relay points, avoiding message flooding in the network. It demonstrates an improvement in message delivery rates, achieving up to a 40% increase over existing methods while ensuring balanced load distribution among nodes. Moreover, it maintains an 80% message delivery rate while minimizing power consumption, outperforming other approaches. This improvement in communication efficiency is critical, as it ensures the accurate transmission and delivery of vital work zone data, allowing for faster and more informed decisions to enhance work zone safety and management.
Disturbance Observers for Robust Backup Control Barrier Functions
Designing safe controllers is crucial and notoriously challenging for input-constrained safety-critical control systems. Backup control barrier functions offer an approach for the construction of safe controllers online by considering the flow of the system under a backup controller. However, in the presence of model uncertainties, the flow cannot be accurately computed, making this method insufficient for safety assurance. To tackle this shortcoming, we integrate backup control barrier functions with a disturbance observer and estimate the flow under a reconstruction of the disturbance while refining this estimate over time. We prove that the controllers resulting from the proposed Disturbance Observer Backup Control Barrier Function (DO-bCBF) approach guarantee safety, are robust to unknown disturbances, and satisfy input constraints.
comment: Submitted to IEEE Control Systems Letters (L-CSS). 6 pages, 4 figures
Regulation of a continuously monitored quantum harmonic oscillator with inefficient detectors
We study the control problem of regulating the purity of a quantum harmonic oscillator in a Gaussian state via weak measurements. Specifically, we assume time-invariant Hamiltonian dynamics and that control is exerted via the back-action induced from monitoring the oscillator's position and momentum observables; the manipulation of the detector measurement strengths regulates the purity of the target Gaussian quantum state. After briefly drawing connections between Gaussian quantum dynamics and stochastic control, we focus on the effect of inefficient detectors and derive closed-form expressions for the transient and steady-state dynamics of the state covariance. We highlight the degradation of attainable purity that is due to inefficient detectors, as compared to that dictated by the Robertson-Schr\"odinger uncertainty relation. Our results suggest that quantum correlations can enhance the purity at steady-state. The quantum harmonic oscillator represents a basic system where analytic formulae may provide insights into the role of inefficient measurements in quantum control; the gained insights are pertinent to measurement-based quantum engines and cooling experiments.
comment: 12 pages, 5 figures
Pervasive Sensing for Livestock Health and Activity Monitoring: Current Methods and Techniques
Pervasive sensing is transforming health and activity monitoring by enabling continuous and automated data collection through advanced sensing modalities. While extensive research has been conducted on human subjects, its application in livestock remains underexplored. In large-scale agriculture, real-time monitoring of biological signals and behavioral patterns can facilitate early disease detection, optimize feeding and breeding strategies, and ensure compliance with welfare standards. This survey examines key sensing technologies -- including structural vibration, radio frequency (RF), computer vision, and wearables -- highlighting their benefits and challenges in livestock monitoring. By comparing these approaches, we provide insights into their effectiveness, limitations, and potential for integration into modern smart farming systems. Finally, we discuss research gaps and future directions to advance pervasive sensing in livestock health and activity monitoring.
comment: 9 pages, 0 figures
Performance-bounded Online Ensemble Learning Method Based on Multi-armed bandits and Its Applications in Real-time Safety Assessment
Ensemble learning plays a crucial role in practical applications of online learning due to its enhanced classification performance and adaptable adjustment mechanisms. However, most weight allocation strategies in ensemble learning are heuristic, making it challenging to theoretically guarantee that the ensemble classifier outperforms its base classifiers. To address this issue, a performance-bounded online ensemble learning method based on multi-armed bandits, named PB-OEL, is proposed in this paper. Specifically, multi-armed bandit with expert advice is incorporated into online ensemble learning, aiming to update the weights of base classifiers and make predictions. A theoretical framework is established to bound the performance of the ensemble classifier relative to base classifiers. By setting expert advice of bandits, the bound exceeds the performance of any base classifier when the length of data stream is sufficiently large. Additionally, performance bounds for scenarios with limited annotations are also derived. Numerous experiments on benchmark datasets and a dataset of real-time safety assessment tasks are conducted. The experimental results validate the theoretical bound to a certain extent and demonstrate that the proposed method outperforms existing state-of-the-art methods.
comment: 14 pages, 9 figures
CoIn-SafeLink: Safety-critical Control With Cost-sensitive Incremental Random Vector Functional Link Network IROS 2025
Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
comment: 8 pages, 8 figures, submitted to The 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
Reachable Sets-based Trajectory Planning Combining Reinforcement Learning and iLQR
The driving risk field is applicable to more complex driving scenarios, providing new approaches for safety decision-making and active vehicle control in intricate environments. However, existing research often overlooks the driving risk field and fails to consider the impact of risk distribution within drivable areas on trajectory planning, which poses challenges for enhancing safety. This paper proposes a trajectory planning method for intelligent vehicles based on the risk reachable set to further improve the safety of trajectory planning. First, we construct the reachable set incorporating the driving risk field to more accurately assess and avoid potential risks in drivable areas. Then, the initial trajectory is generated based on safe reinforcement learning and projected onto the reachable set. Finally, we introduce a trajectory planning method based on a constrained iterative quadratic regulator to optimize the initial solution, ensuring that the planned trajectory achieves optimal comfort, safety, and efficiency. We conduct simulation tests of trajectory planning in high-speed lane-changing scenarios. The results indicate that the proposed method can guarantee trajectory comfort and driving efficiency, with the generated trajectory situated outside high-risk boundaries, thereby ensuring vehicle safety during operation.
From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence
The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of Orchestrated Distributed Intelligence (ODI), a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
Modeling, Analysis, and Optimization of Cascaded Power Amplifiers
This paper deals with modeling, analysis, and optimization of power amplifiers (PAs) placed in a cascaded structure, particularly the effect of cascaded nonlinearities is studied by showing potential ways to minimize the total nonlinearities. The nonlinear least-squares algorithm is proposed to optimize the PA parameters along with the input power level, and thereby minimize the total nonlinearities in the cascaded structure. The simulation results demonstrate that the performance of the optimized configurations for up to five PAs using the proposed framework can improve the linearity properties of the overall cascade.
AI-driven control of bioelectric signalling for real-time topological reorganization of cells
Understanding and manipulating bioelectric signaling could present a new wave of progress in developmental biology, regenerative medicine, and synthetic biology. Bioelectric signals, defined as voltage gradients across cell membranes caused by ionic movements, play a role in regulating crucial processes including cellular differentiation, proliferation, apoptosis, and tissue morphogenesis. Recent studies demonstrate the ability to modulate these signals to achieve controlled tissue regeneration and morphological outcomes in organisms such as planaria and frogs. However, significant knowledge gaps remain, particularly in predicting and controlling the spatial and temporal dynamics of membrane potentials (V_mem), understanding their regulatory roles in tissue and organ development, and exploring their therapeutic potential in diseases. In this work we propose an experiment using Deep Reinforcement Learning (DRL) framework together with lab automation techniques for real-time manipulation of bioelectric signals to guide tissue regeneration and morphogenesis. The proposed framework should interact continuously with biological systems, adapting strategies based on direct biological feedback. Combining DRL with real-time measurement techniques -- such as optogenetics, voltage-sensitive dyes, fluorescent reporters, and advanced microscopy -- could provide a comprehensive platform for precise bioelectric control, leading to improved understanding of bioelectric mechanisms in morphogenesis, quantitative bioelectric models, identification of minimal experimental setups, and advancements in bioelectric modulation techniques relevant to regenerative medicine and cancer therapy. Ultimately, this research aims to utilize bioelectric signaling to develop new biomedical and bioengineering applications.
The Pitfalls of Imitation Learning when Actions are Continuous
We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics are stable (i.e. contracting exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to both behavior cloning and offline-RL algorithms, unless they produce highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
comment: 98 pages, 2 figures, updated introduction
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
A Deep Reinforcement Learning Based Motion Cueing Algorithm for Vehicle Driving Simulation
Motion cueing algorithms (MCA) are used to control the movement of motion simulation platforms (MSP) to reproduce the motion perception of a real vehicle driver as accurately as possible without exceeding the limits of the workspace of the MSP. Existing approaches either produce non-optimal results due to filtering, linearization, or simplifications, or the computational time required exceeds the real-time requirements of a closed-loop application. This work presents a new solution to the motion cueing problem, where instead of a human designer specifying the principles of the MCA, an artificial intelligence (AI) learns the optimal motion by trial and error in interaction with the MSP. To achieve this, a well-established deep reinforcement learning (RL) algorithm is applied, where an agent interacts with an environment, allowing him to directly control a simulated MSP to obtain feedback on its performance. The RL algorithm used is proximal policy optimization (PPO), where the value function and the policy corresponding to the control strategy are both learned and mapped in artificial neural networks (ANN). This approach is implemented in Python and the functionality is demonstrated by the practical example of pre-recorded lateral maneuvers. The subsequent validation shows that the RL algorithm is able to learn the control strategy and improve the quality of the immersion compared to an established method. Thereby, the perceived motion signals determined by a model of the vestibular system are more accurately reproduced, and the resources of the MSP are used more economically.
Clutter-Aware Target Detection for ISAC in a Millimeter-Wave Cell-Free Massive MIMO System SP
In this paper, we investigate the performance of an integrated sensing and communication (ISAC) system within a cell-free massive multiple-input multiple-output (MIMO) system. Each access point (AP) operates in the millimeter-wave (mmWave) frequency band. The APs jointly serve the user equipments (UEs) in the downlink while simultaneously detecting a target through dedicated sensing beams, which are directed toward a reconfigurable intelligent surface (RIS). Although the AP-RIS, RIS-target, and AP-target channels have both line-of-sight (LoS) and non-line-of-sight (NLoS) parts, it is assumed only knowledge of the LoS paths is available. A key contribution of this study is the consideration of clutter, which degrades the target detection if not handled. We propose an algorithm to alternatively optimize the transmit power allocation and the RIS phase-shift matrix, maximizing the target signal-to-clutter-plus-noise ratio (SCNR) while ensuring a minimum signal-to-interference-plus-noise ratio (SINR) for the UEs. Numerical results demonstrate that exploiting clutter subspace significantly enhances detection probability, particularly at high clutter-to-noise ratios, and reveal that an increased number of transmit side clusters impair detection performance. Finally, we highlight the performance gains achieved using a dedicated sensing stream.
comment: 5 pages, 5 figures, submitted to SPAWC
Data-Based Efficient Off-Policy Stabilizing Optimal Control Algorithms for Discrete-Time Linear Systems via Damping Coefficients
Policy iteration is one of the classical frameworks of reinforcement learning, which requires a known initial stabilizing control. However, finding the initial stabilizing control depends on the known system model. To relax this requirement and achieve model-free optimal control, in this paper, two different reinforcement learning algorithms based on policy iteration and variable damping coefficients are designed for unknown discrete-time linear systems. First, a stable artificial system is designed, and this system is gradually iterated to the original system by varying the damping coefficients. This allows the initial stabilizing control to be obtained in a finite number of iteration steps. Then, an off-policy iteration algorithm and an off-policy $\mathcal{Q}$-learning algorithm are designed to select the appropriate damping coefficients and realize data-driven. In these two algorithms, the current estimates of optimal control gain are not applied to the system to re-collect data. Moreover, they are characterized by the fast convergence of the traditional policy iteration. Finally, the proposed algorithms are validated by simulation.
Input Delay Compensation for a Class of Switched Linear Systems via Averaging Exact Predictor Feedbacks
The key challenges in design of predictor-based control laws for switched systems with arbitrary switching and long input delay are the potential unavailability of the future values of the switching signal (at current time) and the fact that dwell time may be arbitrary. In the present paper, we resolve these challenges developing a new predictor-based control law that is, essentially, an average of exact predictor feedbacks, each one corresponding to an exact predictor-feedback law for a system that operates only in a single mode. Because the predictor state in our control design does not correspond to an exact predictor, stability can be guaranteed under a restriction on the differences among the system's matrices and controller's gains. This is an unavoidable limitation, for a switching signal whose future values may be unavailable, when no constraint is imposed on the values of delay and dwell time (as it is the case here). We establish (uniform) stability of the closed-loop system employing a Lyapunov functional. The key step in the stability proof is constructive derivation of an estimate of the mismatch between an exact predictor feedback and the average of predictor feedbacks constructed. We illustrate the performance of the proposed predictor-based control law in simulation, including comparisons with alternative, predictor-based control laws.
comment: 8 pages, 6 figures, submitted to 2025 European Control Conference (ECC). arXiv admin note: text overlap with arXiv:2410.22044
Data-Driven Inverse Optimal Control for Continuous-Time Nonlinear Systems
This paper introduces a novel model-free and a partially model-free algorithm for inverse optimal control (IOC), also known as inverse reinforcement learning (IRL), aimed at estimating the cost function of continuous-time nonlinear deterministic systems. Using the input-state trajectories of an expert agent, the proposed algorithms separately utilize control policy information and the Hamilton-Jacobi-Bellman equation to estimate different sets of cost function parameters. This approach allows the algorithms to achieve broader applicability while maintaining a model-free framework. Also, the model-free algorithm reduces complexity compared to existing methods, as it requires solving a forward optimal control problem only once during initialization. Furthermore, in our partially model-free algorithm, this step can be bypassed entirely for systems with known input dynamics. Simulation results demonstrate the effectiveness and efficiency of our algorithms, highlighting their potential for real-world deployment in autonomous systems and robotics.
Joint Optimization of Continuous Variables and Priority Assignments for Real-Time Systems with Black-box Schedulability Constraints
In real-time systems optimization, designers often face a challenging problem posed by the non-convex and non-continuous schedulability conditions, which may even lack an analytical form to understand their properties. To tackle this challenging problem, we treat the schedulability analysis as a black box that only returns true/false results. We propose a general and scalable framework to optimize real-time systems, named Numerical Optimizer with Real-Time Highlight (NORTH). NORTH is built upon the gradient-based active-set methods from the numerical optimization literature but with new methods to manage active constraints for the non-differentiable schedulability constraints. In addition, we also generalize NORTH to NORTH+, to collaboratively optimize certain types of discrete variables (e.g., priority assignments, categorical variables) with continuous variables based on numerical optimization algorithms. We demonstrate the algorithm performance with two example applications: energy minimization based on dynamic voltage and frequency scaling (DVFS), and optimization of control system performance. In these experiments, NORTH achieved $10^2$ to $10^5$ times speed improvements over state-of-the-art methods while maintaining similar or better solution quality. NORTH+ outperforms NORTH by 30% with similar algorithm scalability. Both NORTH and NORTH+ support black-box schedulability analysis, ensuring broad applicability.
comment: Extension of a conference paper
ISLS: IoT-Based Smart Lighting System for Improving Energy Conservation in Office Buildings
With the Internet of Things (IoT) fostering seamless device-to-human and device-to-device interactions, the domain of intelligent lighting systems have evolved beyond simple occupancy and daylight sensing towards autonomous monitoring and control of power consumption and illuminance levels. To this regard, this paper proposes a new do-it-yourself (DIY) IoT-based method of smart lighting system featuring an illuminance control algorithm. The design involves the integration of occupancy and presence sensors alongside a communication module, to enable real-time wireless interaction and remote monitoring of the system parameters from any location through an end-user application. A constrained optimization problem was formulated to determine the optimal dimming vector for achieving target illuminance at minimal power consumption. The simplex algorithm was used to solve this problem, and the system's performance was validated through both MATLAB simulations and real-world prototype testing in an indoor office environment. The obtained experimental results demonstrate substantial power savings across multiple user occupancy scenarios, achieving reductions of approx. 80%, 48%, and 26% for one, two, and four user settings, respectively, in comparison to traditional basic lighting installation systems.
Privacy Preserving Mechanisms for Coordinating Airspace Usage in Advanced Air Mobility
Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to the airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of "air-credits" and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: 1) computes a fractional competitive equilibrium, and 2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for two emerging urban air mobility services: drone delivery and air taxis.
comment: 31 pages, 7 figures, 3 tables
Human Balancing on a Log: A Switched Multi-Layer Controller
We study the task of balancing a human on a log that is fixed in place. Balancing on a log is substantially more challenging than balancing on a flat surface due to increased instability -- nonetheless, we are able to balance by composing simple (e.g., PID, LQR) controllers in a bio-inspired switched multi-layer configuration. The controller consists of an upper-layer LQR planner (akin to the central nervous system) that coordinates ankle and hip torques, and lower-layer PID trackers (akin to local motor units) that follow this plan subject to nonlinear dynamics. The controller switches between three operational modes depending on the state of the human. The efficacy of the controller is verified in simulation, where our controller is able to stabilize the human for a variety of initial conditions and disturbances. We also introduce a controller that outputs muscle activations to perform the same balancing task.
comment: to appear at 2025 IEEE American Control Conference (ACC)
Toward Neuronal Implementations of Delayed Optimal Control
Animal sensorimotor behavior is frequently modeled using optimal controllers. However, it is unclear how the neural circuits within the animal's nervous system implement optimal controller-like behavior. In this work, we study the question of implementing a delayed linear quadratic regulator with linear dynamical "neurons" on a muscle model. We show that for any second-order controller, there are three minimal neural circuit configurations that implement the same controller. Furthermore, the firing rate characteristics of each circuit can vary drastically, even as the overall controller behavior is preserved. Along the way, we introduce concepts that bridge controller realizations to neural implementations that are compatible with known neuronal delay structures.
comment: to appear at 2025 IEEE American Control Conference (ACC)
Robotics
Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
comment: 10 pages
Friction-Scaled Vibrotactile Feedback for Real-Time Slip Detection in Manipulation using Robotic Sixth Finger
The integration of extra-robotic limbs/fingers to enhance and expand motor skills, particularly for grasping and manipulation, possesses significant challenges. The grasping performance of existing limbs/fingers is far inferior to that of human hands. Human hands can detect onset of slip through tactile feedback originating from tactile receptors during the grasping process, enabling precise and automatic regulation of grip force. The frictional information is perceived by humans depending upon slip happening between finger and object. Enhancing this capability in extra-robotic limbs or fingers used by humans is challenging. To address this challenge, this paper introduces novel approach to communicate frictional information to users through encoded vibrotactile cues. These cues are conveyed on onset of incipient slip thus allowing users to perceive friction and ultimately use this information to increase force to avoid dropping of object. In a 2-alternative forced-choice protocol, participants gripped and lifted a glass under three different frictional conditions, applying a normal force of 3.5 N. After reaching this force, glass was gradually released to induce slip. During this slipping phase, vibrations scaled according to static coefficient of friction were presented to users, reflecting frictional conditions. The results suggested an accuracy of 94.53 p/m 3.05 (mean p/mSD) in perceiving frictional information upon lifting objects with varying friction. The results indicate effectiveness of using vibrotactile feedback for sensory feedback, allowing users of extra-robotic limbs or fingers to perceive frictional information. This enables them to assess surface properties and adjust grip force according to frictional conditions, enhancing their ability to grasp, manipulate objects more effectively.
CCDP: Composition of Conditional Diffusion Policies with Guided Sampling
Imitation Learning offers a promising approach to learn directly from data without requiring explicit models, simulations, or detailed task definitions. During inference, actions are sampled from the learned distribution and executed on the robot. However, sampled actions may fail for various reasons, and simply repeating the sampling step until a successful action is obtained can be inefficient. In this work, we propose an enhanced sampling strategy that refines the sampling distribution to avoid previously unsuccessful actions. We demonstrate that by solely utilizing data from successful demonstrations, our method can infer recovery actions without the need for additional exploratory behavior or a high-level controller. Furthermore, we leverage the concept of diffusion model decomposition to break down the primary problem (which may require long-horizon history to manage failures) into multiple smaller, more manageable sub-problems in learning, data collection, and inference, thereby enabling the system to adapt to variable failure counts. Our approach yields a low-level controller that dynamically adjusts its sampling space to improve efficiency when prior samples fall short. We validate our method across several tasks, including door opening with unknown directions, object manipulation, and button-searching scenarios, demonstrating that our approach outperforms traditional baselines.
Geometrically-Aware One-Shot Skill Transfer of Category-Level Objects
Robotic manipulation of unfamiliar objects in new environments is challenging and requires extensive training or laborious pre-programming. We propose a new skill transfer framework, which enables a robot to transfer complex object manipulation skills and constraints from a single human demonstration. Our approach addresses the challenge of skill acquisition and task execution by deriving geometric representations from demonstrations focusing on object-centric interactions. By leveraging the Functional Maps (FM) framework, we efficiently map interaction functions between objects and their environments, allowing the robot to replicate task operations across objects of similar topologies or categories, even when they have significantly different shapes. Additionally, our method incorporates a Task-Space Imitation Algorithm (TSIA) which generates smooth, geometrically-aware robot paths to ensure the transferred skills adhere to the demonstrated task constraints. We validate the effectiveness and adaptability of our approach through extensive experiments, demonstrating successful skill transfer and task execution in diverse real-world environments without requiring additional training.
comment: 7 pages, 6 figures
Tangles: Unpacking Extended Collision Experiences with Soma Trajectories
We reappraise the idea of colliding with robots, moving from a position that tries to avoid or mitigate collisions to one that considers them an important facet of human interaction. We report on a soma design workshop that explored how our bodies could collide with telepresence robots, mobility aids, and a quadruped robot. Based on our findings, we employed soma trajectories to analyse collisions as extended experiences that negotiate key transitions of consent, preparation, launch, contact, ripple, sting, untangle, debris and reflect. We then employed these ideas to analyse two collision experiences, an accidental collision between a person and a drone, and the deliberate design of a robot to play with cats, revealing how real-world collisions involve the complex and ongoing entanglement of soma trajectories. We discuss how viewing collisions as entangled trajectories, or tangles, can be used analytically, as a design approach, and as a lens to broach ethical complexity.
comment: 32 pages, 13 figures
Online Imitation Learning for Manipulation via Decaying Relative Correction through Teleoperation
Teleoperated robotic manipulators enable the collection of demonstration data, which can be used to train control policies through imitation learning. However, such methods can require significant amounts of training data to develop robust policies or adapt them to new and unseen tasks. While expert feedback can significantly enhance policy performance, providing continuous feedback can be cognitively demanding and time-consuming for experts. To address this challenge, we propose to use a cable-driven teleoperation system which can provide spatial corrections with 6 degree of freedom to the trajectories generated by a policy model. Specifically, we propose a correction method termed Decaying Relative Correction (DRC) which is based upon the spatial offset vector provided by the expert and exists temporarily, and which reduces the intervention steps required by an expert. Our results demonstrate that DRC reduces the required expert intervention rate by 30\% compared to a standard absolute corrective method. Furthermore, we show that integrating DRC within an online imitation learning framework rapidly increases the success rate of manipulation tasks such as raspberry harvesting and cloth wiping.
Reinforcement Learning for Robust Athletic Intelligence: Lessons from the 2nd 'AI Olympics with RealAIGym' Competition
In the field of robotics many different approaches ranging from classical planning over optimal control to reinforcement learning (RL) are developed and borrowed from other fields to achieve reliable control in diverse tasks. In order to get a clear understanding of their individual strengths and weaknesses and their applicability in real world robotic scenarios is it important to benchmark and compare their performances not only in a simulation but also on real hardware. The '2nd AI Olympics with RealAIGym' competition was held at the IROS 2024 conference to contribute to this cause and evaluate different controllers according to their ability to solve a dynamic control problem on an underactuated double pendulum system with chaotic dynamics. This paper describes the four different RL methods submitted by the participating teams, presents their performance in the swing-up task on a real double pendulum, measured against various criteria, and discusses their transferability from simulation to real hardware and their robustness to external disturbances.
comment: 8 pages, 7 figures
Perception-aware Planning for Quadrotor Flight in Unknown and Feature-limited Environments
Various studies on perception-aware planning have been proposed to enhance the state estimation accuracy of quadrotors in visually degraded environments. However, many existing methods heavily rely on prior environmental knowledge and face significant limitations in previously unknown environments with sparse localization features, which greatly limits their practical application. In this paper, we present a perception-aware planning method for quadrotor flight in unknown and feature-limited environments that properly allocates perception resources among environmental information during navigation. We introduce a viewpoint transition graph that allows for the adaptive selection of local target viewpoints, which guide the quadrotor to efficiently navigate to the goal while maintaining sufficient localizability and without being trapped in feature-limited regions. During the local planning, a novel yaw trajectory generation method that simultaneously considers exploration capability and localizability is presented. It constructs a localizable corridor via feature co-visibility evaluation to ensure localization robustness in a computationally efficient way. Through validations conducted in both simulation and real-world experiments, we demonstrate the feasibility and real-time performance of the proposed method. The source code will be released to benefit the community.
A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
Volumetric Reconstruction From Partial Views for Task-Oriented Grasping
Object affordance and volumetric information are essential in devising effective grasping strategies under task-specific constraints. This paper presents an approach for inferring suitable grasping strategies from limited partial views of an object. To achieve this, a recurrent generative adversarial network (R-GAN) was proposed by incorporating a recurrent generator with long short-term memory (LSTM) units for it to process a variable number of depth scans. To determine object affordances, the AffordPose knowledge dataset is utilized as prior knowledge. Affordance retrieving is defined by the volume similarity measured via Chamfer Distance and action similarities. A Proximal Policy Optimization (PPO) reinforcement learning model is further implemented to refine the retrieved grasp strategies for task-oriented grasping. The retrieved grasp strategies were evaluated on a dual-arm mobile manipulation robot with an overall grasping accuracy of 89% for four tasks: lift, handle grasp, wrap grasp, and press.
A Comparative Study of Human Motion Models in Reinforcement Learning Algorithms for Social Robot Navigation
Social robot navigation is an evolving research field that aims to find efficient strategies to safely navigate dynamic environments populated by humans. A critical challenge in this domain is the accurate modeling of human motion, which directly impacts the design and evaluation of navigation algorithms. This paper presents a comparative study of two popular categories of human motion models used in social robot navigation, namely velocity-based models and force-based models. A system-theoretic representation of both model types is presented, which highlights their common feedback structure, although with different state variables. Several navigation policies based on reinforcement learning are trained and tested in various simulated environments involving pedestrian crowds modeled with these approaches. A comparative study is conducted to assess performance across multiple factors, including human motion model, navigation policy, scenario complexity and crowd density. The results highlight advantages and challenges of different approaches to modeling human behavior, as well as their role during training and testing of learning-based navigation policies. The findings offer valuable insights and guidelines for selecting appropriate human motion models when designing socially-aware robot navigation systems.
VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
Intelligent Spatial Perception by Building Hierarchical 3D Scene Graphs for Indoor Scenarios with the Help of LLMs
This paper addresses the high demand in advanced intelligent robot navigation for a more holistic understanding of spatial environments, by introducing a novel system that harnesses the capabilities of Large Language Models (LLMs) to construct hierarchical 3D Scene Graphs (3DSGs) for indoor scenarios. The proposed framework constructs 3DSGs consisting of a fundamental layer with rich metric-semantic information, an object layer featuring precise point-cloud representation of object nodes as well as visual descriptors, and higher layers of room, floor, and building nodes. Thanks to the innovative application of LLMs, not only object nodes but also nodes of higher layers, e.g., room nodes, are annotated in an intelligent and accurate manner. A polling mechanism for room classification using LLMs is proposed to enhance the accuracy and reliability of the room node annotation. Thorough numerical experiments demonstrate the system's ability to integrate semantic descriptions with geometric data, creating an accurate and comprehensive representation of the environment instrumental for context-aware navigation and task planning.
comment: accepted by WRC SARA 2024
StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion
Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.
comment: 9 pages, 4 figures
HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation
Simulation-based testing has emerged as an essential tool for verifying and validating autonomous vehicles (AVs). However, contemporary methodologies, such as deterministic and imitation learning-based driver models, struggle to capture the variability of human-like driving behavior. Given these challenges, we propose HAD-Gen, a general framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors. The framework first clusters the vehicle trajectory data into different driving styles according to safety features. It then employs maximum entropy inverse reinforcement learning on each of the clusters to learn the reward function corresponding to each driving style. Using these reward functions, the method integrates offline reinforcement learning pre-training and multi-agent reinforcement learning algorithms to obtain general and robust driving policies. Multi-perspective simulation results show that our proposed scenario generation framework can simulate diverse, human-like driving behaviors with strong generalization capability. The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test, outperforming prior approaches by over 20% in goal-reaching performance. The source code is released at https://github.com/RoboSafe-Lab/Sim4AD.
GraspCorrect: Robotic Grasp Correction via Vision-Language Model-Guided Feedback
Despite significant advancements in robotic manipulation, achieving consistent and stable grasping remains a fundamental challenge, often limiting the successful execution of complex tasks. Our analysis reveals that even state-of-the-art policy models frequently exhibit unstable grasping behaviors, leading to failure cases that create bottlenecks in real-world robotic applications. To address these challenges, we introduce GraspCorrect, a plug-and-play module designed to enhance grasp performance through vision-language model-guided feedback. GraspCorrect employs an iterative visual question-answering framework with two key components: grasp-guided prompting, which incorporates task-specific constraints, and object-aware sampling, which ensures the selection of physically feasible grasp candidates. By iteratively generating intermediate visual goals and translating them into joint-level actions, GraspCorrect significantly improves grasp stability and consistently enhances task success rates across existing policy models in the RLBench and CALVIN datasets.
DRoPE: Directional Rotary Position Embedding for Efficient Agent Interaction Modeling
Accurate and efficient modeling of agent interactions is essential for trajectory generation, the core of autonomous driving systems. Existing methods, scene-centric, agent-centric, and query-centric frameworks, each present distinct advantages and drawbacks, creating an impossible triangle among accuracy, computational time, and memory efficiency. To break this limitation, we propose Directional Rotary Position Embedding (DRoPE), a novel adaptation of Rotary Position Embedding (RoPE), originally developed in natural language processing. Unlike traditional relative position embedding (RPE), which introduces significant space complexity, RoPE efficiently encodes relative positions without explicitly increasing complexity but faces inherent limitations in handling angular information due to periodicity. DRoPE overcomes this limitation by introducing a uniform identity scalar into RoPE's 2D rotary transformation, aligning rotation angles with realistic agent headings to naturally encode relative angular information. We theoretically analyze DRoPE's correctness and efficiency, demonstrating its capability to simultaneously optimize trajectory generation accuracy, time complexity, and space complexity. Empirical evaluations compared with various state-of-the-art trajectory generation models, confirm DRoPE's good performance and significantly reduced space complexity, indicating both theoretical soundness and practical effectiveness. The video documentation is available at https://drope-traj.github.io/.
High-Order Control Barrier Functions: Insights and a Truncated Taylor-Based Formulation
We examine the complexity of the standard High-Order Control Barrier Function (HOCBF) approach and propose a truncated Taylor-based approach that reduces design parameters. First, we derive the explicit inequality condition for the HOCBF approach and show that the corresponding equality condition sets a lower bound on the barrier function value that regulates its decay rate. Next, we present our Truncated Taylor CBF (TTCBF), which uses a truncated Taylor series to approximate the discrete-time CBF condition. While the standard HOCBF approach requires multiple class K functions, leading to more design parameters as the constraint's relative degree increases, our TTCBF approach requires only one. We support our theoretical findings in numerical collision-avoidance experiments and show that our approach ensures safety while reducing design complexity.
Modeling, Embedded Control and Design of Soft Robots using a Learned Condensed FEM Model
The Finite Element Method (FEM) is a powerful modeling tool for predicting soft robots' behavior, but its computation time can limit practical applications. In this paper, a learning-based approach based on condensation of the FEM model is detailed. The proposed method handles several kinds of actuators and contacts with the environment. We demonstrate that this compact model can be learned as a unified model across several designs and remains very efficient in terms of modeling since we can deduce the direct and inverse kinematics of the robot. Building upon the intuition introduced in [11], the learned model is presented as a general framework for modeling, controlling, and designing soft manipulators. First, the method's adaptability and versatility are illustrated through optimization based control problems involving positioning and manipulation tasks with mechanical contact-based coupling. Secondly, the low memory consumption and the high prediction speed of the learned condensed model are leveraged for real-time embedding control without relying on costly online FEM simulation. Finally, the ability of the learned condensed FEM model to capture soft robot design variations and its differentiability are leveraged in calibration and design optimization applications.
comment: IEEE Transactions on Robotics, In press
Advancing a taxonomy for proxemics in robot social navigation
Deploying robots in human environments requires effective social robot navigation. This article focuses on proxemics, proposing a new taxonomy and suggesting future directions through an analysis of state-of-the-art studies and the identification of research gaps. The various factors that affect the dynamic properties of proxemics patterns in human-robot interaction are thoroughly explored. To establish a coherent proxemics framework, we identified and organized the key parameters and attributes that shape proxemics behavior. Building on this framework, we introduce a novel approach to define proxemics in robot navigation, emphasizing the significant attributes that influence its structure and size. This leads to the development of a new taxonomy that serves as a foundation for guiding future research and development. Our findings underscore the complexity of defining personal distance, revealing it as a complex, multi-dimensional challenge. Furthermore, we highlight the flexible and dynamic nature of personal zone boundaries, which should be adaptable to different contexts and circumstances. Additionally, we propose a new layer for implementing proxemics in the navigation of social robots.
Speed Optimization Algorithm based on Deterministic Markov Decision Process for Automated Highway Merge
This study presents a robust optimization algorithm for automated highway merge. The merging scenario is one of the challenging scenes in automated driving, because it requires adjusting ego vehicle's speed to match other vehicles before reaching the end point. Then, we model the speed planning problem as a deterministic Markov decision process. The proposed scheme is able to compute each state value of the process and reliably derive the optimal sequence of actions. In our approach, we adopt jerk as the action of the process to prevent a sudden change of acceleration. However, since this expands the state space, we also consider ways to achieve a real-time operation. We compared our scheme with a simple algorithm with the Intelligent Driver Model. We not only evaluated the scheme in a simulation environment but also conduct a real world testing.
comment: 4 pages, 8 figures, Accepted as a position paper for SICE Annual Conference 2023
Sensorized gripper for human demonstrations
Ease of programming is a key factor in making robots ubiquitous in unstructured environments. In this work, we present a sensorized gripper built with off-the-shelf parts, used to record human demonstrations of a box in box assembly task. With very few trials of short interval timings each, we show that a robot can repeat the task successfully. We adopt a Cartesian approach to robot motion generation by computing the joint space solution while concurrently solving for the optimal robot position, to maximise manipulability. The statistics of the human demonstration are extracted using Gaussian Mixture Models (GMM) and the robot is commanded using impedance control.
Geometric Iterative Approach for Efficient Inverse Kinematics and Planning of Continuum Robots with a Floating Base Under Environment Constraints
Continuum robots with floating bases demonstrate exceptional operational capabilities in confined spaces, such as those encountered in medical surgeries and equipment maintenance. However, developing low-cost solutions for their motion and planning problems remains a significant challenge in this field. This paper investigates the application of geometric iterative strategy methods to continuum robots, and proposes the algorithm based on an improved two-layer geometric iterative strategy for motion planning. First, we thoroughly study the kinematics and effective workspace of a multi-segment tendon-driven continuum robot with a floating base. Then, generalized iterative algorithms for solving arbitrary-segment continuum robots are proposed based on a series of problems such as initial arm shape dependence exhibited by similar methods when applied to continuum robots. Further, the task scenario is extended to a follow-the-leader task considering environmental factors, and further extended algorithm are proposed. Simulation comparison results with similar methods demonstrate the effectiveness of the proposed method in eliminating the initial arm shape dependence and improving the solution efficiency and accuracy. The experimental results further demonstrate that the method based on improved two-layer geometric iteration can be used for motion planning task of a continuum robot with a floating base, under an average deviation of about 4 mm in the end position, an average orientation deviation of no more than 1 degree, and the reduction of average number of iterations and time cost is 127.4 iterations and 72.6 ms compared with similar methods, respectively.
comment: 32 pages, 16 figures
Project Jenkins: Turning Monkey Neural Data into Robotic Arm Movement, and Back
Project Jenkins explores how neural activity in the brain can be decoded into robotic movement and, conversely, how movement patterns can be used to generate synthetic neural data. Using real neural data recorded from motor and premotor cortex areas of a macaque monkey named Jenkins, we develop models for decoding (converting brain signals into robotic arm movements) and encoding (simulating brain activity corresponding to a given movement). For the interface between the brain simulation and the physical world, we utilized Koch v1.1 leader and follower robotic arms. We developed an interactive web console that allows users to generate synthetic brain data from joystick movements in real time. Our results are a step towards brain-controlled robotics, prosthetics, and enhancing normal motor function. By accurately modeling brain activity, we take a step toward flexible brain-computer interfaces that generalize beyond predefined movements. To support the research community, we provide open source tools for both synthetic data generation and neural decoding, fostering reproducibility and accelerating progress. The project is available at https://www.808robots.com/projects/jenkins
comment: 6 pages, 5 figures, project webpage and github
SemanticFlow: A Self-Supervised Framework for Joint Scene Flow Prediction and Instance Segmentation in Dynamic Environments
Accurate perception of dynamic traffic scenes is crucial for high-level autonomous driving systems, requiring robust object motion estimation and instance segmentation. However, traditional methods often treat them as separate tasks, leading to suboptimal performance, spatio-temporal inconsistencies, and inefficiency in complex scenarios due to the absence of information sharing. This paper proposes a multi-task SemanticFlow framework to simultaneously predict scene flow and instance segmentation of full-resolution point clouds. The novelty of this work is threefold: 1) developing a coarse-to-fine prediction based multi-task scheme, where an initial coarse segmentation of static backgrounds and dynamic objects is used to provide contextual information for refining motion and semantic information through a shared feature processing module; 2) developing a set of loss functions to enhance the performance of scene flow estimation and instance segmentation, while can help ensure spatial and temporal consistency of both static and dynamic objects within traffic scenes; 3) developing a self-supervised learning scheme, which utilizes coarse segmentation to detect rigid objects and compute their transformation matrices between sequential frames, enabling the generation of self-supervised labels. The proposed framework is validated on the Argoverse and Waymo datasets, demonstrating superior performance in instance segmentation accuracy, scene flow estimation, and computational efficiency, establishing a new benchmark for self-supervised methods in dynamic scene understanding.
Curiosity-Diffuser: Curiosity Guide Diffusion Models for Reliability
One of the bottlenecks in robotic intelligence is the instability of neural network models, which, unlike control models, lack a well-defined convergence domain and stability. This leads to risks when applying intelligence in the physical world. Specifically, imitation policy based on neural network may generate hallucinations, leading to inaccurate behaviors that impact the safety of real-world applications. To address this issue, this paper proposes the Curiosity-Diffuser, aimed at guiding the conditional diffusion model to generate trajectories with lower curiosity, thereby improving the reliability of policy. The core idea is to use a Random Network Distillation (RND) curiosity module to assess whether the model's behavior aligns with the training data, and then minimize curiosity by classifier guidance diffusion to reduce overgeneralization during inference. Additionally, we propose a computationally efficient metric for evaluating the reliability of the policy, measuring the similarity between the generated behaviors and the training dataset, to facilitate research about reliability learning. Finally, simulation verify the effectiveness and applicability of the proposed method to a variety of scenarios, showing that Curiosity-Diffuser significantly improves task performance and produces behaviors that are more similar to the training data. The code for this work is available at: github.com/CarlDegio/Curiosity-Diffuser
A Study on Human-Swarm Interaction: A Framework for Assessing Situation Awareness and Task Performance
This paper introduces a framework for human swarm interaction studies that measures situation awareness in dynamic environments. A tablet-based interface was developed for a user study by implementing the concepts introduced in the framework, where operators guided a robotic swarm in a single-target search task, marking hazardous cells unknown to the swarm. Both subjective and objective situation awareness measures were used, with task performance evaluated based on how close the robots were to the target. The framework enabled a structured investigation of the role of situation awareness in human swarm interaction, leading to key findings such as improved task performance across attempts, showing the interface was learnable, centroid active robot position proved to be a useful task performance metric for assessing situation awareness, perception and projection played a key role in task performance, highlighting their importance in interface design and both subjective and objective situation awareness influenced task performance, emphasizing the need for interfaces that support both. These findings validate our framework as a structured approach for integrating situation awareness concepts into human swarm interaction studies, offering a systematic way to assess situation awareness and task performance. The framework can be applied to other swarming studies to evaluate interface learnability, identify meaningful task performance metrics, and refine interface designs to enhance situation awareness, ultimately improving human swarm interaction in dynamic environments.
comment: 10 pages, 8 figures, 1 table, 2 equations
A Constrained Saddle Search Approach for Constructing Singular and Flexible Bar Frameworks
Singularity analysis is essential in robot kinematics, as singular configurations cause loss of control and kinematic indeterminacy. This paper models singularities in bar frameworks as saddle points on constrained manifolds. Given an under-constrained, non-singular bar framework, by allowing one edge to vary its length while fixing lengths of others, we define the squared length of the free edge as an energy functional and show that its local saddle points correspond to singular and flexible frameworks. Using our constrained saddle search approach, we identify previously unknown singular and flexible bar frameworks, providing new insights into singular robotics design and analysis.
comment: 9 pages, 3 figures
Reward Training Wheels: Adaptive Auxiliary Rewards for Robotics Reinforcement Learning
Robotics Reinforcement Learning (RL) often relies on carefully engineered auxiliary rewards to supplement sparse primary learning objectives to compensate for the lack of large-scale, real-world, trial-and-error data. While these auxiliary rewards accelerate learning, they require significant engineering effort, may introduce human biases, and cannot adapt to the robot's evolving capabilities during training. In this paper, we introduce Reward Training Wheels (RTW), a teacher-student framework that automates auxiliary reward adaptation for robotics RL. To be specific, the RTW teacher dynamically adjusts auxiliary reward weights based on the student's evolving capabilities to determine which auxiliary reward aspects require more or less emphasis to improve the primary objective. We demonstrate RTW on two challenging robot tasks: navigation in highly constrained spaces and off-road vehicle mobility on vertically challenging terrain. In simulation, RTW outperforms expert-designed rewards by 2.35% in navigation success rate and improves off-road mobility performance by 122.62%, while achieving 35% and 3X faster training efficiency, respectively. Physical robot experiments further validate RTW's effectiveness, achieving a perfect success rate (5/5 trials vs. 2/5 for expert-designed rewards) and improving vehicle stability with up to 47.4% reduction in orientation angles.
comment: 7 pages, 5 figures
Experience-based Optimal Motion Planning Algorithm for Solving Difficult Planning Problems Using a Limited Dataset
This study aims to address the key challenge of obtaining a high-quality solution path within a short calculation time by generalizing a limited dataset. In the informed experience-driven random trees connect star (IERTC*) process, the algorithm flexibly explores the search trees by morphing the micro paths generated from a single experience while reducing the path cost by introducing a re-wiring process and an informed sampling process. The core idea of this algorithm is to apply different strategies depending on the complexity of the local environment; for example, it adopts a more complex curved trajectory if obstacles are densely arranged near the search tree, and it adopts a simpler straight line if the local environment is sparse. The results of experiments using a general motion benchmark test revealed that IERTC* significantly improved the planning success rate in difficult problems in the cluttered environment (an average improvement of 49.3% compared to the state-of-the-art algorithm) while also significantly reducing the solution cost (a reduction of 56.3%) when using one hundred experiences. Furthermore, the results demonstrated outstanding planning performance even when only one experience was available (a 43.8% improvement in success rate and a 57.8% reduction in solution cost).
Safety Aware Task Planning via Large Language Models in Robotics
The integration of large language models (LLMs) into robotic task planning has unlocked better reasoning capabilities for complex, long-horizon workflows. However, ensuring safety in LLM-driven plans remains a critical challenge, as these models often prioritize task completion over risk mitigation. This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning. SAFER employs a Safety Agent that operates alongside the primary task planner, providing safety feedback. Additionally, we introduce LLM-as-a-Judge, a novel metric leveraging LLMs as evaluators to quantify safety violations within generated task plans. Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation. We also integrate a control framework using Control Barrier Functions (CBFs) to ensure safety guarantees within SAFER's task planning. We evaluated SAFER against state-of-the-art LLM planners on complex long-horizon tasks involving heterogeneous robotic agents, demonstrating its effectiveness in reducing safety violations while maintaining task efficiency. We also verify the task planner and safety planner through actual hardware experiments involving multiple robots and a human.
Capturing a Moving Target by Two Robots in the F2F Model
We study a search problem on capturing a moving target on an infinite real line. Two autonomous mobile robots (which can move with a maximum speed of 1) are initially placed at the origin, while an oblivious moving target is initially placed at a distance $d$ away from the origin. The robots can move along the line in any direction, but the target is oblivious, cannot change direction, and moves either away from or toward the origin at a constant speed $v$. Our aim is to design efficient algorithms for the two robots to capture the target. The target is captured only when both robots are co-located with it. The robots communicate with each other only face-to-face (F2F), meaning they can exchange information only when co-located, while the target remains oblivious and has no communication capabilities. We design algorithms under various knowledge scenarios, which take into account the prior knowledge the robots have about the starting distance $d$, the direction of movement (either toward or away from the origin), and the speed $v$ of the target. As a measure of the efficiency of the algorithms, we use the competitive ratio, which is the ratio of the capture time of an algorithm with limited knowledge to the capture time in the full-knowledge model. In our analysis, we are mindful of the cost of changing direction of movement, and show how to accomplish the capture of the target with at most three direction changes (turns).
Robotic Paper Wrapping by Learning Force Control
Robotic packaging using wrapping paper poses significant challenges due to the material's complex deformation properties. The packaging process itself involves multiple steps, primarily categorized as folding the paper or creating creases. Small deviations in the robot's arm trajectory or force vector can lead to tearing or wrinkling of the paper, exacerbated by the variability in material properties. This study introduces a novel framework that combines imitation learning and reinforcement learning to enable a robot to perform each step of the packaging process efficiently. The framework allows the robot to follow approximate trajectories of the tool-center point (TCP) based on human demonstrations while optimizing force control parameters to prevent tearing or wrinkling, even with variable wrapping paper materials. The proposed method was validated through ablation studies, which demonstrated successful task completion with a significant reduction in tear and wrinkle rates. Furthermore, the force control strategy proved to be adaptable across different wrapping paper materials and robust against variations in the size of the target object.
GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
Self-supervised pre-training based on next-token prediction has enabled large language models to capture the underlying structure of text, and has led to unprecedented performance on a large array of tasks when applied at scale. Similarly, autonomous driving generates vast amounts of spatiotemporal data, alluding to the possibility of harnessing scale to learn the underlying geometric and semantic structure of the environment and its evolution over time. In this direction, we propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime, (1) general occupancy, capturing the evolving structure of the 3D scene; (2) ego occupancy, modeling the ego vehicle path through the environment; and (3) distilled high-level features from a vision foundation model. By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, generalizable representation of the environment and its evolution through time. We validate GASP on multiple autonomous driving benchmarks, demonstrating significant improvements in semantic occupancy forecasting, online mapping, and ego trajectory prediction. Our results demonstrate that continuous 4D geometric and semantic occupancy prediction provides a scalable and effective pre-training paradigm for autonomous driving. For code and additional visualizations, see \href{https://research.zenseact.com/publications/gasp/.
Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning ICRA
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA)
PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to greatly improve sample efficiency and generalization. However, real-world environments often exhibit inherent asymmetries arising from factors such as external forces, measurement inaccuracies, or intrinsic system biases. This paper introduces \textit{Partially Equivariant Graph NeUral Networks (PEnGUiN)}, a novel architecture specifically designed to address these challenges. We formally identify and categorize various types of partial equivariance relevant to MARL, including subgroup equivariance, feature-wise equivariance, regional equivariance, and approximate equivariance. We theoretically demonstrate that PEnGUiN is capable of learning both fully equivariant (EGNN) and non-equivariant (GNN) representations within a unified framework. Through extensive experiments on a range of MARL problems incorporating various asymmetries, we empirically validate the efficacy of PEnGUiN. Our results consistently demonstrate that PEnGUiN outperforms both EGNNs and standard GNNs in asymmetric environments, highlighting their potential to improve the robustness and applicability of graph-based MARL algorithms in real-world scenarios.
A Vehicle-Infrastructure Multi-layer Cooperative Decision-making Framework
Autonomous driving has entered the testing phase, but due to the limited decision-making capabilities of individual vehicle algorithms, safety and efficiency issues have become more apparent in complex scenarios. With the advancement of connected communication technologies, autonomous vehicles equipped with connectivity can leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, offering a potential solution to the decision-making challenges from individual vehicle's perspective. We propose a multi-level vehicle-infrastructure cooperative decision-making framework for complex conflict scenarios at unsignalized intersections. First, based on vehicle states, we define a method for quantifying vehicle impacts and their propagation relationships, using accumulated impact to group vehicles through motif-based graph clustering. Next, within and between vehicle groups, a pass order negotiation process based on Large Language Models (LLM) is employed to determine the vehicle passage order, resulting in planned vehicle actions. Simulation results from ablation experiments show that our approach reduces negotiation complexity and ensures safer, more efficient vehicle passage at intersections, aligning with natural decision-making logic.
comment: 7 pages, 6 figures
CoIn-SafeLink: Safety-critical Control With Cost-sensitive Incremental Random Vector Functional Link Network IROS 2025
Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
comment: 8 pages, 8 figures, submitted to The 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
SemanticScanpath: Combining Gaze and Speech for Situated Human-Robot Interaction Using LLMs
Large Language Models (LLMs) have substantially improved the conversational capabilities of social robots. Nevertheless, for an intuitive and fluent human-robot interaction, robots should be able to ground the conversation by relating ambiguous or underspecified spoken utterances to the current physical situation and to the intents expressed non verbally by the user, for example by using referential gaze. Here we propose a representation integrating speech and gaze to enable LLMs to obtain higher situated awareness and correctly resolve ambiguous requests. Our approach relies on a text-based semantic translation of the scanpath produced by the user along with the verbal requests and demonstrates LLM's capabilities to reason about gaze behavior, robustly ignoring spurious glances or irrelevant objects. We validate the system across multiple tasks and two scenarios, showing its generality and accuracy, and demonstrate its implementation on a robotic platform, closing the loop from request interpretation to execution.
Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
CAFEs: Cable-driven Collaborative Floating End-Effectors for Agriculture Applications
CAFEs (Collaborative Agricultural Floating End-effectors) is a new robot design and control approach to automating large-scale agricultural tasks. Based upon a cable driven robot architecture, by sharing the same roller-driven cable set with modular robotic arms, a fast-switching clamping mechanism allows each CAFE to clamp onto or release from the moving cables, enabling both independent and synchronized movement across the workspace. The methods developed to enable this system include the mechanical design, precise position control and a dynamic model for the spring-mass liked system, ensuring accurate and stable movement of the robotic arms. The system's scalability is further explored by studying the tension and sag in the cables to maintain performance as more robotic arms are deployed. Experimental and simulation results demonstrate the system's effectiveness in tasks including pick-and-place showing its potential to contribute to agricultural automation.
Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation ICRA
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
comment: Project website: diffdagger.github.io 8 pages, 6 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
Faster Model Predictive Control via Self-Supervised Initialization Learning
Optimization for robot control tasks, spanning various methodologies, includes Model Predictive Control (MPC). However, the complexity of the system, such as non-convex and non-differentiable cost functions and prolonged planning horizons often drastically increases the computation time, limiting MPC's real-world applicability. Prior works in speeding up the optimization have limitations on optimizing MPC running time directly and generalizing to hold out domains. To overcome this challenge, we develop a novel framework aiming at expediting optimization processes directly. In our framework, we combine offline self-supervised learning and online fine-tuning to improve the control performance and reduce optimization time. We demonstrate the success of our method on a novel and challenging Formula 1 track driving task. Comparing to single-phase training, our approach achieves a 19.4\% reduction in optimization time and a 6.3\% improvement in tracking accuracy on zero-shot tracks.
SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning
The ability of neural networks to perform robotic perception and control tasks such as depth and optical flow estimation, simultaneous localization and mapping (SLAM), and automatic control has led to their widespread adoption in recent years. Deep Reinforcement Learning has been used extensively in these settings, as it does not have the unsustainable training costs associated with supervised learning. However, DeepRL suffers from poor sample efficiency, i.e., it requires a large number of environmental interactions to converge to an acceptable solution. Modern RL algorithms such as Deep Q Learning and Soft Actor-Critic attempt to remedy this shortcoming but can not provide the explainability required in applications such as autonomous robotics. Humans intuitively understand the long-time-horizon sequential tasks common in robotics. Properly using such intuition can make RL policies more explainable while enhancing their sample efficiency. In this work, we propose SHIRE, a novel framework for encoding human intuition using Probabilistic Graphical Models (PGMs) and using it in the Deep RL training pipeline to enhance sample efficiency. Our framework achieves 25-78% sample efficiency gains across the environments we evaluate at negligible overhead cost. Additionally, by teaching RL agents the encoded elementary behavior, SHIRE enhances policy explainability. A real-world demonstration further highlights the efficacy of policies trained using our framework.
A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
A Deep Reinforcement Learning Based Motion Cueing Algorithm for Vehicle Driving Simulation
Motion cueing algorithms (MCA) are used to control the movement of motion simulation platforms (MSP) to reproduce the motion perception of a real vehicle driver as accurately as possible without exceeding the limits of the workspace of the MSP. Existing approaches either produce non-optimal results due to filtering, linearization, or simplifications, or the computational time required exceeds the real-time requirements of a closed-loop application. This work presents a new solution to the motion cueing problem, where instead of a human designer specifying the principles of the MCA, an artificial intelligence (AI) learns the optimal motion by trial and error in interaction with the MSP. To achieve this, a well-established deep reinforcement learning (RL) algorithm is applied, where an agent interacts with an environment, allowing him to directly control a simulated MSP to obtain feedback on its performance. The RL algorithm used is proximal policy optimization (PPO), where the value function and the policy corresponding to the control strategy are both learned and mapped in artificial neural networks (ANN). This approach is implemented in Python and the functionality is demonstrated by the practical example of pre-recorded lateral maneuvers. The subsequent validation shows that the RL algorithm is able to learn the control strategy and improve the quality of the immersion compared to an established method. Thereby, the perceived motion signals determined by a model of the vestibular system are more accurately reproduced, and the resources of the MSP are used more economically.
Long-horizon Locomotion and Manipulation on a Quadrupedal Robot with Large Language Models
We present a large language model (LLM) based system to empower quadrupedal robots with problem-solving abilities for long-horizon tasks beyond short-term motions. Long-horizon tasks for quadrupeds are challenging since they require both a high-level understanding of the semantics of the problem for task planning and a broad range of locomotion and manipulation skills to interact with the environment. Our system builds a high-level reasoning layer with large language models, which generates hybrid discrete-continuous plans as robot code from task descriptions. It comprises multiple LLM agents: a semantic planner that sketches a plan, a parameter calculator that predicts arguments in the plan, a code generator that converts the plan into executable robot code, and a replanner that handles execution failures or human interventions. At the low level, we adopt reinforcement learning to train a set of motion planning and control skills to unleash the flexibility of quadrupeds for rich environment interactions. Our system is tested on long-horizon tasks that are infeasible to complete with one single skill. Simulation and real-world experiments show that it successfully figures out multi-step strategies and demonstrates non-trivial behaviors, including building tools or notifying a human for help. Demos are available on our project page: https://sites.google.com/view/long-horizon-robot.
RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation CVPR2025
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
comment: CVPR2025
ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
Building articulated objects is a key challenge in computer vision. Existing methods often fail to effectively integrate information across different object states, limiting the accuracy of part-mesh reconstruction and part dynamics modeling, particularly for complex multi-part articulated objects. We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation to address these issues. Our method incorporates canonical Gaussians with coarse-to-fine initialization and updates for aligning articulated part information across different object states, and employs a skinning-inspired part dynamics modeling module to improve both part-mesh reconstruction and articulation learning. Extensive experiments on both synthetic and real-world datasets, including a new benchmark for complex multi-part objects, demonstrate that ArtGS achieves state-of-the-art performance in joint parameter estimation and part mesh reconstruction. Our approach significantly improves reconstruction quality and efficiency, especially for multi-part articulated objects. Additionally, we provide comprehensive analyses of our design choices, validating the effectiveness of each component to highlight potential areas for future improvement. Our work is made publicly available at: https://articulate-gs.github.io.
Interaction of Autonomous and Manually Controlled Vehicles Multiscenario Vehicle Interaction Dataset
The acquisition and analysis of high-quality sensor data constitute an essential requirement in shaping the development of fully autonomous driving systems. This process is indispensable for enhancing road safety and ensuring the effectiveness of the technological advancements in the automotive industry. This study introduces the Interaction of Autonomous and Manually-Controlled Vehicles (IAMCV) dataset, a novel and extensive dataset focused on inter-vehicle interactions. The dataset, enriched with a sophisticated array of sensors such as Light Detection and Ranging, cameras, Inertial Measurement Unit/Global Positioning System, and vehicle bus data acquisition, provides a comprehensive representation of real-world driving scenarios that include roundabouts, intersections, country roads, and highways, recorded across diverse locations in Germany. Furthermore, the study shows the versatility of the IAMCV dataset through several proof-of-concept use cases. Firstly, an unsupervised trajectory clustering algorithm illustrates the dataset's capability in categorizing vehicle movements without the need for labeled training data. Secondly, we compare an online camera calibration method with the Robot Operating System-based standard, using images captured in the dataset. Finally, a preliminary test employing the YOLOv8 object-detection model is conducted, augmented by reflections on the transferability of object detection across various LIDAR resolutions. These use cases underscore the practical utility of the collected dataset, emphasizing its potential to advance research and innovation in the area of intelligent vehicles.
Incremental Learning for Robot Shared Autonomy
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and lack the ability to adapt post-deployment. This paper introduces ILSA, an Incrementally Learned Shared Autonomy framework that continually improves its assistive control policy through repeated user interactions. ILSA leverages synthetic kinematic trajectories for initial pretraining, reducing the need for expert demonstrations, and then incrementally finetunes its policy after each manipulation interaction, with mechanisms to balance new knowledge acquisition with existing knowledge retention during incremental learning. We validate ILSA for complex long-horizon tasks through a comprehensive ablation study and a user study with 20 participants, demonstrating its effectiveness and robustness in both quantitative performance and user-reported qualitative metrics. Code and videos are available at https://ilsa-robo.github.io/.
ES-Parkour: Advanced Robot Parkour with Bio-inspired Event Camera and Spiking Neural Network
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
PRISM: Preference Refinement via Implicit Scene Modeling for 3D Vision-Language Preference-Based Reinforcement Learning
We propose PRISM, a novel framework designed to overcome the limitations of 2D-based Preference-Based Reinforcement Learning (PBRL) by unifying 3D point cloud modeling and future-aware preference refinement. At its core, PRISM adopts a 3D Point Cloud-Language Model (3D-PC-LLM) to mitigate occlusion and viewpoint biases, ensuring more stable and spatially consistent preference signals. Additionally, PRISM leverages Chain-of-Thought (CoT) reasoning to incorporate long-horizon considerations, thereby preventing the short-sighted feedback often seen in static preference comparisons. In contrast to conventional PBRL techniques, this integration of 3D perception and future-oriented reasoning leads to significant gains in preference agreement rates, faster policy convergence, and robust generalization across unseen robotic environments. Our empirical results, spanning tasks such as robotic manipulation and autonomous navigation, highlight PRISM's potential for real-world applications where precise spatial understanding and reliable long-term decision-making are critical. By bridging 3D geometric awareness with CoT-driven preference modeling, PRISM establishes a comprehensive foundation for scalable, human-aligned reinforcement learning.
comment: I withdraw arXiv:2503.10177 due to critical computational errors invalidating its conclusions and the withdrawal of consent from co-author Yanjun Chen
PRESTO: Fast Motion Planning Using Diffusion Models Based on Key-Configuration Environment Representation ICRA 2025
We introduce a learning-guided motion planning framework that generates seed trajectories using a diffusion model for trajectory optimization. Given a workspace, our method approximates the configuration space (C-space) obstacles through an environment representation consisting of a sparse set of task-related key configurations, which is then used as a conditioning input to the diffusion model. The diffusion model integrates regularization terms that encourage smooth, collision-free trajectories during training, and trajectory optimization refines the generated seed trajectories to correct any colliding segments. Our experimental results demonstrate that high-quality trajectory priors, learned through our C-space-grounded diffusion model, enable the efficient generation of collision-free trajectories in narrow-passage environments, outperforming previous learning- and planning-based baselines. Videos and additional materials can be found on the project page: https://kiwi-sherbet.github.io/PRESTO.
comment: Accepted to ICRA 2025
Dynamic Open-Vocabulary 3D Scene Graphs for Long-term Language-Guided Mobile Manipulation
Enabling mobile robots to perform long-term tasks in dynamic real-world environments is a formidable challenge, especially when the environment changes frequently due to human-robot interactions or the robot's own actions. Traditional methods typically assume static scenes, which limits their applicability in the continuously changing real world. To overcome these limitations, we present DovSG, a novel mobile manipulation framework that leverages dynamic open-vocabulary 3D scene graphs and a language-guided task planning module for long-term task execution. DovSG takes RGB-D sequences as input and utilizes vision-language models (VLMs) for object detection to obtain high-level object semantic features. Based on the segmented objects, a structured 3D scene graph is generated for low-level spatial relationships. Furthermore, an efficient mechanism for locally updating the scene graph, allows the robot to adjust parts of the graph dynamically during interactions without the need for full scene reconstruction. This mechanism is particularly valuable in dynamic environments, enabling the robot to continually adapt to scene changes and effectively support the execution of long-term tasks. We validated our system in real-world environments with varying degrees of manual modifications, demonstrating its effectiveness and superior performance in long-term tasks. Our project page is available at: https://bjhyzj.github.io/dovsg-web.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L), 2025
SNAIL Radar: A large-scale diverse benchmark for evaluating 4D-radar-based SLAM
4D radars are increasingly favored for odometry and mapping of autonomous systems due to their robustness in harsh weather and dynamic environments. Existing datasets, however, often cover limited areas and are typically captured using a single platform. To address this gap, we present a diverse large-scale dataset specifically designed for 4D radar-based localization and mapping. This dataset was gathered using three different platforms: a handheld device, an e-bike, and an SUV, under a variety of environmental conditions, including clear days, nighttime, and heavy rain. The data collection occurred from September 2023 to February 2024, encompassing diverse settings such as roads in a vegetated campus and tunnels on highways. Each route was traversed multiple times to facilitate place recognition evaluations. The sensor suite included a 3D lidar, 4D radars, stereo cameras, consumer-grade IMUs, and a GNSS/INS system. Sensor data packets were synchronized to GNSS time using a two-step process including a convex-hull-based smoothing and a correlation-based correction. The reference motion for the platforms was generated by registering lidar scans to a terrestrial laser scanner (TLS) point cloud map by a lidar inertial sequential localizer which supports forward and backward processing. The backward pass enables detailed quantitative and qualitative assessments of reference motion accuracy. To demonstrate the dataset's utility, we evaluated several state-of-the-art radar-based odometry and place recognition methods, indicating existing challenges in radar-based SLAM.
comment: 16 pages, 5 figures, 7 tables
StackGen: Generating Stable Structures from Silhouettes via Diffusion
Humans naturally obtain intuition about the interactions between and the stability of rigid objects by observing and interacting with the world. It is this intuition that governs the way in which we regularly configure objects in our environment, allowing us to build complex structures from simple, everyday objects. Robotic agents, on the other hand, traditionally require an explicit model of the world that includes the detailed geometry of each object and an analytical model of the environment dynamics, which are difficult to scale and preclude generalization. Instead, robots would benefit from an awareness of intuitive physics that enables them to similarly reason over the stable interaction of objects in their environment. Towards that goal, we propose StackGen, a diffusion model that generates diverse stable configurations of building blocks matching a target silhouette. To demonstrate the capability of the method, we evaluate it in a simulated environment and deploy it in the real setting using a robotic arm to assemble structures generated by the model.
Learning Nash Equilibrial Hamiltonian for Two-Player Collision-Avoiding Interactions
We consider the problem of learning Nash equilibrial policies for two-player risk-sensitive collision-avoiding interactions. Solving the Hamilton-Jacobi-Isaacs equations of such general-sum differential games in real time is an open challenge due to the discontinuity of equilibrium values on the state space. A common solution is to learn a neural network that approximates the equilibrium Hamiltonian for given system states and actions. The learning, however, is usually supervised and requires a large amount of sample equilibrium policies from different initial states in order to mitigate the risks of collisions. This paper claims two contributions towards more data-efficient learning of equilibrium policies: First, instead of computing Hamiltonian through a value network, we show that the equilibrium co-states have simple structures when collision avoidance dominates the agents' loss functions and system dynamics is linear, and therefore are more data-efficient to learn. Second, we introduce theory-driven active learning to guide data sampling, where the acquisition function measures the compliance of the predicted co-states to Pontryagin's Maximum Principle. On an uncontrolled intersection case, the proposed method leads to more generalizable approximation of the equilibrium policies, and in turn, lower collision probabilities, than the state-of-the-art under the same data acquisition budget.
comment: Accepted by 2025 ACC
ContactSDF: Signed Distance Functions as Multi-Contact Models for Dexterous Manipulation
In this paper, we propose ContactSDF, a method that uses signed distance functions (SDFs) to approximate multi-contact models, including both collision detection and time-stepping routines. ContactSDF first establishes an SDF using the supporting plane representation of an object for collision detection, and then uses the generated contact dual cones to build a second SDF for time-stepping prediction of the next state. Those two SDFs create a differentiable and closed-form multi-contact dynamic model for state prediction, enabling efficient model learning and optimization for contact-rich manipulation. We perform extensive simulation experiments to show the effectiveness of ContactSDF for model learning and real-time control of dexterous manipulation. We further evaluate the ContactSDF on a hardware Allegro hand for on-palm reorientation tasks. Results show with around 2 minutes of learning on hardware, the ContactSDF achieves high-quality dexterous manipulation at a frequency of 30-60Hz. Project page https://yangwen-1102.github.io/contactsdf.github.io/
Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass CVPR 2025
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
comment: CVPR 2025. Project website: https://fast3r-3d.github.io/
Mechanisms and Computational Design of Multi-Modal End-Effector with Force Sensing using Gated Networks ICRA25
In limbed robotics, end-effectors must serve dual functions, such as both feet for locomotion and grippers for grasping, which presents design challenges. This paper introduces a multi-modal end-effector capable of transitioning between flat and line foot configurations while providing grasping capabilities. MAGPIE integrates 8-axis force sensing using proposed mechanisms with hall effect sensors, enabling both contact and tactile force measurements. We present a computational design framework for our sensing mechanism that accounts for noise and interference, allowing for desired sensitivity and force ranges and generating ideal inverse models. The hardware implementation of MAGPIE is validated through experiments, demonstrating its capability as a foot and verifying the performance of the sensing mechanisms, ideal models, and gated network-based models.
comment: Proceeding to 2025 IEEE International Conference on Robotics and Automation (ICRA25)
Robotics
Tracking Meets Large Multimodal Models for Driving Scenario Understanding
Large Multimodal Models (LMMs) have recently gained prominence in autonomous driving research, showcasing promising capabilities across various emerging benchmarks. LMMs specifically designed for this domain have demonstrated effective perception, planning, and prediction skills. However, many of these methods underutilize 3D spatial and temporal elements, relying mainly on image data. As a result, their effectiveness in dynamic driving environments is limited. We propose to integrate tracking information as an additional input to recover 3D spatial and temporal details that are not effectively captured in the images. We introduce a novel approach for embedding this tracking information into LMMs to enhance their spatiotemporal understanding of driving scenarios. By incorporating 3D tracking data through a track encoder, we enrich visual queries with crucial spatial and temporal cues while avoiding the computational overhead associated with processing lengthy video sequences or extensive 3D inputs. Moreover, we employ a self-supervised approach to pretrain the tracking encoder to provide LMMs with additional contextual information, significantly improving their performance in perception, planning, and prediction tasks for autonomous driving. Experimental results demonstrate the effectiveness of our approach, with a gain of 9.5% in accuracy, an increase of 7.04 points in the ChatGPT score, and 9.4% increase in the overall score over baseline models on DriveLM-nuScenes benchmark, along with a 3.7% final score improvement on DriveLM-CARLA. Our code is available at https://github.com/mbzuai-oryx/TrackingMeetsLMM
comment: 13 pages, 8 figures, Github: https://github.com/mbzuai-oryx/TrackingMeetsLMM
Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
Manual, Semi or Fully Autonomous Flipper Control? A Framework for Fair Comparison
We investigated the performance of existing semi- and fully autonomous methods for controlling flipper-based skid-steer robots. Our study involves reimplementation of these methods for fair comparison and it introduces a novel semi-autonomous control policy that provides a compelling trade-off among current state-of-the-art approaches. We also propose new metrics for assessing cognitive load and traversal quality and offer a benchmarking interface for generating Quality-Load graphs from recorded data. Our results, presented in a 2D Quality-Load space, demonstrate that the new control policy effectively bridges the gap between autonomous and manual control methods. Additionally, we reveal a surprising fact that fully manual, continuous control of all six degrees of freedom remains highly effective when performed by an experienced operator on a well-designed analog controller from third person view.
Flying in Highly Dynamic Environments with End-to-end Learning Approach
Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
comment: IEEE Robotics and Automation Letters (2025)
ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of the Autonomous Dynamic All-terrain Pallet Transporter (ADAPT), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its long-term performance against an experienced human operator across various weather conditions. We also provide a comprehensive analysis of challenges and key lessons learned, contributing to the advancement of autonomous heavy machinery. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
Pushing Everything Everywhere All At Once: Probabilistic Prehensile Pushing
We address prehensile pushing, the problem of manipulating a grasped object by pushing against the environment. Our solution is an efficient nonlinear trajectory optimization problem relaxed from an exact mixed integer non-linear trajectory optimization formulation. The critical insight is recasting the external pushers (environment) as a discrete probability distribution instead of binary variables and minimizing the entropy of the distribution. The probabilistic reformulation allows all pushers to be used simultaneously, but at the optimum, the probability mass concentrates onto one due to the entropy minimization. We numerically compare our method against a state-of-the-art sampling-based baseline on a prehensile pushing task. The results demonstrate that our method finds trajectories 8 times faster and at a 20 times lower cost than the baseline. Finally, we demonstrate that a simulated and real Franka Panda robot can successfully manipulate different objects following the trajectories proposed by our method. Supplementary materials are available at https://probabilistic-prehensile-pushing.github.io/.
comment: This paper has been accepted for publication in the IEEE Robotics and Automation Letters (RA-L)
Quantization-Free Autoregressive Action Transformer
Current transformer-based imitation learning approaches introduce discrete action representations and train an autoregressive transformer decoder on the resulting latent code. However, the initial quantization breaks the continuous structure of the action space thereby limiting the capabilities of the generative model. We propose a quantization-free method instead that leverages Generative Infinite-Vocabulary Transformers (GIVT) as a direct, continuous policy parametrization for autoregressive transformers. This simplifies the imitation learning pipeline while achieving state-of-the-art performance on a variety of popular simulated robotics tasks. We enhance our policy roll-outs by carefully studying sampling algorithms, further improving the results.
A Chain-Driven, Sandwich-Legged Quadruped Robot: Design and Experimental Analysis
This paper introduces a chain-driven, sandwich-legged, mid-size quadruped robot designed as an accessible research platform. The design prioritizes enhanced locomotion capabilities, improved reliability and safety of the actuation system, and simplified, cost-effective manufacturing processes. Locomotion performance is optimized through a sandwiched leg design and a dual-motor configuration, reducing leg inertia for agile movements. Reliability and safety are achieved by integrating robust cable strain reliefs, efficient heat sinks for motor thermal management, and mechanical limits to restrict leg motion. Simplified design considerations include a quasi-direct drive (QDD) actuator and the adoption of low-cost fabrication techniques, such as laser cutting and 3D printing, to minimize cost and ensure rapid prototyping. The robot weighs approximately 25 kg and is developed at a cost under \$8000, making it a scalable and affordable solution for robotics research. Experimental validations demonstrate the platform's capability to execute trot and crawl gaits on flat terrain and slopes, highlighting its potential as a versatile and reliable quadruped research platform.
comment: 6 pages, 9 figures
CTSAC: Curriculum-Based Transformer Soft Actor-Critic for Goal-Oriented Robot Exploration ICRA
With the increasing demand for efficient and flexible robotic exploration solutions, Reinforcement Learning (RL) is becoming a promising approach in the field of autonomous robotic exploration. However, current RL-based exploration algorithms often face limited environmental reasoning capabilities, slow convergence rates, and substantial challenges in Sim-To-Real (S2R) transfer. To address these issues, we propose a Curriculum Learning-based Transformer Reinforcement Learning Algorithm (CTSAC) aimed at improving both exploration efficiency and transfer performance. To enhance the robot's reasoning ability, a Transformer is integrated into the perception network of the Soft Actor-Critic (SAC) framework, leveraging historical information to improve the farsightedness of the strategy. A periodic review-based curriculum learning is proposed, which enhances training efficiency while mitigating catastrophic forgetting during curriculum transitions. Training is conducted on the ROS-Gazebo continuous robotic simulation platform, with LiDAR clustering optimization to further reduce the S2R gap. Experimental results demonstrate the CTSAC algorithm outperforms the state-of-the-art non-learning and learning-based algorithms in terms of success rate and success rate-weighted exploration time. Moreover, real-world experiments validate the strong S2R transfer capabilities of CTSAC.
comment: 7pages,7 figures,Thesis received by 2025 ICRA
GeoFlow-SLAM: A Robust Tightly-Coupled RGBD-Inertial Fusion SLAM for Dynamic Legged Robotics
This paper presents GeoFlow-SLAM, a robust and effective Tightly-Coupled RGBD-inertial SLAM for legged robots operating in highly dynamic environments.By integrating geometric consistency, legged odometry constraints, and dual-stream optical flow (GeoFlow), our method addresses three critical challenges:feature matching and pose initialization failures during fast locomotion and visual feature scarcity in texture-less scenes.Specifically, in rapid motion scenarios, feature matching is notably enhanced by leveraging dual-stream optical flow, which combines prior map points and poses. Additionally, we propose a robust pose initialization method for fast locomotion and IMU error in legged robots, integrating IMU/Legged odometry, inter-frame Perspective-n-Point (PnP), and Generalized Iterative Closest Point (GICP). Furthermore, a novel optimization framework that tightly couples depth-to-map and GICP geometric constraints is first introduced to improve the robustness and accuracy in long-duration, visually texture-less environments. The proposed algorithms achieve state-of-the-art (SOTA) on collected legged robots and open-source datasets. To further promote research and development, the open-source datasets and code will be made publicly available at https://github.com/NSN-Hello/GeoFlow-SLAM
comment: 8 pages
HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
comment: 27 pages, website: https://ha-vln-project.vercel.app/
Stochastic Trajectory Prediction under Unstructured Constraints ICRA 2025
Trajectory prediction facilitates effective planning and decision-making, while constrained trajectory prediction integrates regulation into prediction. Recent advances in constrained trajectory prediction focus on structured constraints by constructing optimization objectives. However, handling unstructured constraints is challenging due to the lack of differentiable formal definitions. To address this, we propose a novel method for constrained trajectory prediction using a conditional generative paradigm, named Controllable Trajectory Diffusion (CTD). The key idea is that any trajectory corresponds to a degree of conformity to a constraint. By quantifying this degree and treating it as a condition, a model can implicitly learn to predict trajectories under unstructured constraints. CTD employs a pre-trained scoring model to predict the degree of conformity (i.e., a score), and uses this score as a condition for a conditional diffusion model to generate trajectories. Experimental results demonstrate that CTD achieves high accuracy on the ETH/UCY and SDD benchmarks. Qualitative analysis confirms that CTD ensures adherence to unstructured constraints and can predict trajectories that satisfy combinatorial constraints.
comment: has been accepted by ICRA 2025
Variable Time-Step MPC for Agile Multi-Rotor UAV Interception of Dynamic Targets
Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly computationally demanding. That reduces the prediction horizon length, leading to a decrease in solution quality. Besides, the fixed time-step length limits the utilization of the available UAV dynamics in the target neighborhood. In this paper, we propose to address these limitations by introducing variable time steps and coupling them with the prediction horizon length. A simplified point-mass motion primitive is used to leverage the differential flatness of quadrotor dynamics and the generation of feasible trajectories in the flat output space. Based on the presented evaluation results and experimentally validated deployment, the proposed method increases the solution quality by enabling planning for long flight segments but allowing tightly sampled maneuvering.
Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning CVPR 2025
End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.
comment: CVPR 2025
GPU-Accelerated Motion Planning of an Underactuated Forestry Crane in Cluttered Environments
Autonomous large-scale machine operations require fast, efficient, and collision-free motion planning while addressing unique challenges such as hydraulic actuation limits and underactuated joint dynamics. This paper presents a novel two-step motion planning framework designed for an underactuated forestry crane. The first step employs GPU-accelerated stochastic optimization to rapidly compute a globally shortest collision-free path. The second step refines this path into a dynamically feasible trajectory using a trajectory optimizer that ensures compliance with system dynamics and actuation constraints. The proposed approach is benchmarked against conventional techniques, including RRT-based methods and purely optimization-based approaches. Simulation results demonstrate substantial improvements in computation speed and motion feasibility, making this method highly suitable for complex crane systems.
comment: 7 pages
Foundation Feature-Driven Online End-Effector Pose Estimation: A Marker-Free and Learning-Free Approach
Accurate transformation estimation between camera space and robot space is essential. Traditional methods using markers for hand-eye calibration require offline image collection, limiting their suitability for online self-calibration. Recent learning-based robot pose estimation methods, while advancing online calibration, struggle with cross-robot generalization and require the robot to be fully visible. This work proposes a Foundation feature-driven online End-Effector Pose Estimation (FEEPE) algorithm, characterized by its training-free and cross end-effector generalization capabilities. Inspired by the zero-shot generalization capabilities of foundation models, FEEPE leverages pre-trained visual features to estimate 2D-3D correspondences derived from the CAD model and target image, enabling 6D pose estimation via the PnP algorithm. To resolve ambiguities from partial observations and symmetry, a multi-historical key frame enhanced pose optimization algorithm is introduced, utilizing temporal information for improved accuracy. Compared to traditional hand-eye calibration, FEEPE enables marker-free online calibration. Unlike robot pose estimation, it generalizes across robots and end-effectors in a training-free manner. Extensive experiments demonstrate its superior flexibility, generalization, and performance.
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
FlexVLN: Flexible Adaptation for Diverse Vision-and-Language Navigation Tasks
The aspiration of the Vision-and-Language Navigation (VLN) task has long been to develop an embodied agent with robust adaptability, capable of seamlessly transferring its navigation capabilities across various tasks. Despite remarkable advancements in recent years, most methods necessitate dataset-specific training, thereby lacking the capability to generalize across diverse datasets encompassing distinct types of instructions. Large language models (LLMs) have demonstrated exceptional reasoning and generalization abilities, exhibiting immense potential in robot action planning. In this paper, we propose FlexVLN, an innovative hierarchical approach to VLN that integrates the fundamental navigation ability of a supervised-learning-based Instruction Follower with the robust generalization ability of the LLM Planner, enabling effective generalization across diverse VLN datasets. Moreover, a verification mechanism and a multi-model integration mechanism are proposed to mitigate potential hallucinations by the LLM Planner and enhance execution accuracy of the Instruction Follower. We take REVERIE, SOON, and CVDN-target as out-of-domain datasets for assessing generalization ability. The generalization performance of FlexVLN surpasses that of all the previous methods to a large extent.
COLSON: Controllable Learning-Based Social Navigation via Diffusion-Based Reinforcement Learning IROS 2025
Mobile robot navigation in dynamic environments with pedestrian traffic is a key challenge in the development of autonomous mobile service robots. Recently, deep reinforcement learning-based methods have been actively studied and have outperformed traditional rule-based approaches owing to their optimization capabilities. Among these, methods that assume a continuous action space typically rely on a Gaussian distribution assumption, which limits the flexibility of generated actions. Meanwhile, the application of diffusion models to reinforcement learning has advanced, allowing for more flexible action distributions compared with Gaussian distribution-based approaches. In this study, we applied a diffusion-based reinforcement learning approach to social navigation and validated its effectiveness. Furthermore, by leveraging the characteristics of diffusion models, we propose an extension that enables post-training action smoothing and adaptation to static obstacle scenarios not considered during the training steps.
comment: This work has been submitted to IROS 2025 for possible publication
A bio-inspired sand-rolling robot: effect of body shape on sand rolling performance
The capability of effectively moving on complex terrains such as sand and gravel can empower our robots to robustly operate in outdoor environments, and assist with critical tasks such as environment monitoring, search-and-rescue, and supply delivery. Inspired by the Mount Lyell salamander's ability to curl its body into a loop and effectively roll down {\Revision hill slopes}, in this study we develop a sand-rolling robot and investigate how its locomotion performance is governed by the shape of its body. We experimentally tested three different body shapes: Hexagon, Quadrilateral, and Triangle. We found that Hexagon and Triangle can achieve a faster rolling speed on sand, but exhibited more frequent failures of getting stuck. Analysis of the interaction between robot and sand revealed the failure mechanism: the deformation of the sand produced a local ``sand incline'' underneath robot contact segments, increasing the effective region of supporting polygon (ERSP) and preventing the robot from shifting its center of mass (CoM) outside the ERSP to produce sustainable rolling. Based on this mechanism, a highly-simplified model successfully captured the critical body pitch for each rolling shape to produce sustained rolling on sand, and informed design adaptations that mitigated the locomotion failures and improved robot speed by more than 200$\%$. Our results provide insights into how locomotors can utilize different morphological features to achieve robust rolling motion across deformable substrates.
Learning Bimanual Manipulation via Action Chunking and Inter-Arm Coordination with Transformers
Robots that can operate autonomously in a human living environment are necessary to have the ability to handle various tasks flexibly. One crucial element is coordinated bimanual movements that enable functions that are difficult to perform with one hand alone. In recent years, learning-based models that focus on the possibilities of bimanual movements have been proposed. However, the high degree of freedom of the robot makes it challenging to reason about control, and the left and right robot arms need to adjust their actions depending on the situation, making it difficult to realize more dexterous tasks. To address the issue, we focus on coordination and efficiency between both arms, particularly for synchronized actions. Therefore, we propose a novel imitation learning architecture that predicts cooperative actions. We differentiate the architecture for both arms and add an intermediate encoder layer, Inter-Arm Coordinated transformer Encoder (IACE), that facilitates synchronization and temporal alignment to ensure smooth and coordinated actions. To verify the effectiveness of our architectures, we perform distinctive bimanual tasks. The experimental results showed that our model demonstrated a high success rate for comparison and suggested a suitable architecture for the policy learning of bimanual manipulation.
comment: 6 pages, 5 figures, 1 table
Project URSULA: Design of a Robotic Squid for Underwater Manipulation
With this paper, the design of a biomimetic robotic squid (dubbed URSULA) developed for dexterous underwater manipulation is presented. The robot serves as a test bed for several novel underwater technologies such as soft manipulators, propeller-less propulsion, model mediated tele-operation with video and haptic feedback, sonar-based underwater mapping, localization, and navigation, and high bandwidth visible light communications. Following the finalization of the detailed design, a prototype is manufactured and is currently undergoing pool tests.
comment: Presented during the IEEE OES AUV 2024 Symposium held in Boston, MA, USA between the dates 18-20 September, 2024. 6 pages, 7 pages, 17 references
Evaluating Global Geo-alignment for Precision Learned Autonomous Vehicle Localization using Aerial Data ICRA
Recently there has been growing interest in the use of aerial and satellite map data for autonomous vehicles, primarily due to its potential for significant cost reduction and enhanced scalability. Despite the advantages, aerial data also comes with challenges such as a sensor-modality gap and a viewpoint difference gap. Learned localization methods have shown promise for overcoming these challenges to provide precise metric localization for autonomous vehicles. Most learned localization methods rely on coarsely aligned ground truth, or implicit consistency-based methods to learn the localization task -- however, in this paper we find that improving the alignment between aerial data and autonomous vehicle sensor data at training time is critical to the performance of a learning-based localization system. We compare two data alignment methods using a factor graph framework and, using these methods, we then evaluate the effects of closely aligned ground truth on learned localization accuracy through ablation studies. Finally, we evaluate a learned localization system using the data alignment methods on a comprehensive (1600km) autonomous vehicle dataset and demonstrate localization error below 0.3m and 0.5$^{\circ}$ sufficient for autonomous vehicle applications.
comment: 8 pages, 7 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
VARP: Reinforcement Learning from Vision-Language Model Feedback with Agent Regularized Preferences
Designing reward functions for continuous-control robotics often leads to subtle misalignments or reward hacking, especially in complex tasks. Preference-based RL mitigates some of these pitfalls by learning rewards from comparative feedback rather than hand-crafted signals, yet scaling human annotations remains challenging. Recent work uses Vision-Language Models (VLMs) to automate preference labeling, but a single final-state image generally fails to capture the agent's full motion. In this paper, we present a two-part solution that both improves feedback accuracy and better aligns reward learning with the agent's policy. First, we overlay trajectory sketches on final observations to reveal the path taken, allowing VLMs to provide more reliable preferences-improving preference accuracy by approximately 15-20% in metaworld tasks. Second, we regularize reward learning by incorporating the agent's performance, ensuring that the reward model is optimized based on data generated by the current policy; this addition boosts episode returns by 20-30% in locomotion tasks. Empirical studies on metaworld demonstrate that our method achieves, for instance, around 70-80% success rate in all tasks, compared to below 50% for standard approaches. These results underscore the efficacy of combining richer visual representations with agent-aware reward regularization.
comment: 8 pages
Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models
With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
A Systematic Digital Engineering Approach to Verification & Validation of Autonomous Ground Vehicles in Off-Road Environments
The engineering community currently encounters significant challenges in the systematic development and validation of autonomy algorithms for off-road ground vehicles. These challenges are posed by unusually high test parameters and algorithmic variants. In order to address these pain points, this work presents an optimized digital engineering framework that tightly couples digital twin simulations with model-based systems engineering (MBSE) and model-based design (MBD) workflows. The efficacy of the proposed framework is demonstrated through an end-to-end case study of an autonomous light tactical vehicle (LTV) performing visual servoing to drive along a dirt road and reacting to any obstacles or environmental changes. The presented methodology allows for traceable requirements engineering, efficient variant management, granular parameter sweep setup, systematic test-case definition, and automated execution of the simulations. The candidate off-road autonomy algorithm is evaluated for satisfying requirements against a battery of 128 test cases, which is procedurally generated based on the test parameters (times of the day and weather conditions) and algorithmic variants (perception, planning, and control sub-systems). Finally, the test results and key performance indicators are logged, and the test report is generated automatically. This then allows for manual as well as automated data analysis with traceability and tractability across the digital thread.
comment: DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC9523
Nonlinear Modeling and Observability of a Planar Multi-Link Robot with Link Thrusters
This work is motivated by the development of cooperative teams of small, soft underwater robots designed to accomplish complex tasks through collective behavior. These robots take inspiration from biology: salps are gelatinous, jellyfish-like marine animals that utilize jet propulsion for maneuvering and can physically connect to form dynamic chains of arbitrary shape and size. The primary contributions of this research are twofold: first, we adapt a planar nonlinear multi-link snake robot model to model a planar multi-link salp-inspired system by removing joint actuators, introducing link thrusters, and allowing for non-uniform link lengths, masses, and moments of inertia. Second, we conduct a nonlinear observability analysis of the multi-link system with link thrusters, showing that the link angles, angular velocities, masses, and moments of inertia are locally observable when equipped with inertial measurement units and operating under specific thruster conditions. This research provides a theoretical foundation for modeling and estimating both the state and intrinsic parameters of a multi-link system with link thrusters, which are essential for effective controller design and performance.
comment: 6 pages, 1 table
Dexterous Control of an 11-DOF Redundant Robot for CT-Guided Needle Insertion With Task-Oriented Weighted Policies
Computed tomography (CT)-guided needle biopsies are critical for diagnosing a range of conditions, including lung cancer, but present challenges such as limited in-bore space, prolonged procedure times, and radiation exposure. Robotic assistance offers a promising solution by improving needle trajectory accuracy, reducing radiation exposure, and enabling real-time adjustments. In our previous work, we introduced a redundant robotic platform designed for dexterous needle insertion within the confined CT bore. However, its limited base mobility restricts flexible deployment in clinical settings. In this study, we present an improved 11-degree-of-freedom (DOF) robotic system that integrates a 6-DOF robotic base with a 5-DOF cable-driven end-effector, significantly enhancing workspace flexibility and precision. With the hyper-redundant degrees of freedom, we introduce a weighted inverse kinematics controller with a two-stage priority scheme for large-scale movement and fine in-bore adjustments, along with a null-space control strategy to optimize dexterity. We validate our system through both simulation and real-world experiments, demonstrating superior tracking accuracy and enhanced manipulability in CT-guided procedures. The study provides a strong case for hyper-redundancy and null-space control formulations for robot-assisted needle biopsy scenarios.
GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu
Parking control of an active-joint center-articulated mobile robot based on feedback from beacons CEC
This paper presents an autonomous parking control system for an active-joint center-articulated mobile robot. We begin by proposing a kinematic model of the robot, then derive a control law designed to stabilize the vehicle's configuration within a small neighborhood of the target position. The control law is developed using Lyapunov techniques and is based on the robot's equations of motion in polar coordinates. Additionally, a beacon-based guidance system provides real-time feedback on the target's position and orientation. Simulation results demonstrate the robot's capability to start from arbitrary initial positions and orientations and successfully achieve parking.
comment: IEEE Conference - CCECE 2010
Using Mobile AR for Rapid Feasibility Analysis for Deployment of Robots: A Usability Study with Non-Expert Users
Automating a production line with robotic arms is a complex, demanding task that requires not only substantial resources but also a deep understanding of the automated processes and available technologies and tools. Expert integrators must consider factors such as placement, payload, and robot reach requirements to determine the feasibility of automation. Ideally, such considerations are based on a detailed digital simulation developed before any hardware is deployed. However, this process is often time-consuming and challenging. To simplify these processes, we introduce a much simpler method for the feasibility analysis of robotic arms' reachability, designed for non-experts. We implement this method through a mobile, sensing-based prototype tool. The two-step experimental evaluation included the expert user study results, which helped us identify the difficulty levels of various deployment scenarios and refine the initial prototype. The results of the subsequent quantitative study with 22 non-expert participants utilizing both scenarios indicate that users could complete both simple and complex feasibility analyses in under ten minutes, exhibiting similar cognitive loads and high engagement. Overall, the results suggest that the tool was well-received and rated as highly usable, thereby showing a new path for changing the ease of feasibility analysis for automation.
comment: Submitted to IEEE RA-L
ViVa-SAFELAND: a New Freeware for Safe Validation of Vision-based Navigation in Aerial Vehicles
ViVa-SAFELAND is an open source software library, aimed to test and evaluate vision-based navigation strategies for aerial vehicles, with special interest in autonomous landing, while complying with legal regulations and people's safety. It consists of a collection of high definition aerial videos, focusing on real unstructured urban scenarios, recording moving obstacles of interest, such as cars and people. Then, an Emulated Aerial Vehicle (EAV) with a virtual moving camera is implemented in order to ``navigate" inside the video, according to high-order commands. ViVa-SAFELAND provides a new, safe, simple and fair comparison baseline to evaluate and compare different visual navigation solutions under the same conditions, and to randomize variables along several trials. It also facilitates the development of autonomous landing and navigation strategies, as well as the generation of image datasets for different training tasks. Moreover, it is useful for training either human of autonomous pilots using deep learning. The effectiveness of the framework for validating vision algorithms is demonstrated through two case studies, detection of moving objects and risk assessment segmentation. To our knowledge, this is the first safe validation framework of its kind, to test and compare visual navigation solution for aerial vehicles, which is a crucial aspect for urban deployment in complex real scenarios.
comment: paper under review for publication
ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions
Camera-to-robot (also known as eye-to-hand) calibration is a critical component of vision-based robot manipulation. Traditional marker-based methods often require human intervention for system setup. Furthermore, existing autonomous markerless calibration methods typically rely on pre-trained robot tracking models that impede their application on edge devices and require fine-tuning for novel robot embodiments. To address these limitations, this paper proposes a model-based markerless camera-to-robot calibration framework, ARC-Calib, that is fully autonomous and generalizable across diverse robots and scenarios without requiring extensive data collection or learning. First, exploratory robot motions are introduced to generate easily trackable trajectory-based visual patterns in the camera's image frames. Then, a geometric optimization framework is proposed to exploit the coplanarity and collinearity constraints from the observed motions to iteratively refine the estimated calibration result. Our approach eliminates the need for extra effort in either environmental marker setup or data collection and model training, rendering it highly adaptable across a wide range of real-world autonomous systems. Extensive experiments are conducted in both simulation and the real world to validate its robustness and generalizability.
comment: 8 pages, 9 figures
Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter
Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I$^2$RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I$^2$RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.
Reinforcement Learning-Based Neuroadaptive Control of Robotic Manipulators under Deferred Constraints
This paper presents a reinforcement learning-based neuroadaptive control framework for robotic manipulators operating under deferred constraints. The proposed approach improves traditional barrier Lyapunov functions by introducing a smooth constraint enforcement mechanism that offers two key advantages: (i) it minimizes control effort in unconstrained regions and progressively increases it near constraints, improving energy efficiency, and (ii) it enables gradual constraint activation through a prescribed-time shifting function, allowing safe operation even when initial conditions violate constraints. To address system uncertainties and improve adaptability, an actor-critic reinforcement learning framework is employed. The critic network estimates the value function, while the actor network learns an optimal control policy in real time, enabling adaptive constraint handling without requiring explicit system modeling. Lyapunov-based stability analysis guarantees the boundedness of all closed-loop signals. The effectiveness of the proposed method is validated through numerical simulations.
comment: 7 pages, 5 figures
These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing.Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
Safety-Critical and Distributed Nonlinear Predictive Controllers for Teams of Quadrupedal Robots
This paper presents a novel hierarchical, safety-critical control framework that integrates distributed nonlinear model predictive controllers (DNMPCs) with control barrier functions (CBFs) to enable cooperative locomotion of multi-agent quadrupedal robots in complex environments. While NMPC-based methods are widely adopted for enforcing safety constraints and navigating multi-robot systems (MRSs) through intricate environments, ensuring the safety of MRSs requires a formal definition grounded in the concept of invariant sets. CBFs, typically implemented via quadratic programs (QPs) at the planning layer, provide formal safety guarantees. However, their zero-control horizon limits their effectiveness for extended trajectory planning in inherently unstable, underactuated, and nonlinear legged robot models. Furthermore, the integration of CBFs into real-time NMPC for sophisticated MRSs, such as quadrupedal robot teams, remains underexplored. This paper develops computationally efficient, distributed NMPC algorithms that incorporate CBF-based collision safety guarantees within a consensus protocol, enabling longer planning horizons for safe cooperative locomotion under disturbances and rough terrain conditions. The optimal trajectories generated by the DNMPCs are tracked using full-order, nonlinear whole-body controllers at the low level. The proposed approach is validated through extensive numerical simulations with up to four Unitree A1 robots and hardware experiments involving two A1 robots subjected to external pushes, rough terrain, and uncertain obstacle information. Comparative analysis demonstrates that the proposed CBF-based DNMPCs achieve a 27.89% higher success rate than conventional NMPCs without CBF constraints.
Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.
A Unified Framework for Robots that Influence Humans over Long-Term Interaction
Robot actions influence the decisions of nearby humans. Here influence refers to intentional change: robots influence humans when they shift the human's behavior in a way that helps the robot complete its task. Imagine an autonomous car trying to merge; by proactively nudging into the human's lane, the robot causes human drivers to yield and provide space. Influence is often necessary for seamless interaction. However, if influence is left unregulated and uncontrolled, robots will negatively impact the humans around them. Prior works have begun to address this problem by creating a variety of control algorithms that seek to influence humans. Although these methods are effective in the short-term, they fail to maintain influence over time as the human adapts to the robot's behaviors. In this paper we therefore present an optimization framework that enables robots to purposely regulate their influence over humans across both short-term and long-term interactions. Here the robot maintains its influence by reasoning over a dynamic human model which captures how the robot's current choices will impact the human's future behavior. Our resulting framework serves to unify current approaches: we demonstrate that state-of-the-art methods are simplifications of our underlying formalism. Our framework also provides a principled way to generate influential policies: in the best case the robot exactly solves our framework to find optimal, influential behavior. But when solving this optimization problem becomes impractical, designers can introduce their own simplifications to reach tractable approximations. We experimentally compare our unified framework to state-of-the-art baselines and ablations, and demonstrate across simulations and user studies that this framework is able to successfully influence humans over repeated interactions. See videos of our experiments here: https://youtu.be/nPekTUfUEbo
SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
Transparency and explainability are important features that responsible autonomous vehicles should possess, particularly when interacting with humans, and causal reasoning offers a strong basis to provide these qualities. However, even if one assumes agents act to maximise some concept of reward, it is difficult to make accurate causal inferences of agent planning without capturing what is of importance to the agent. Thus our work aims to learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred. We validate our approach quantitatively and qualitatively across three real-world driving datasets, demonstrating a functional improvement over previous methods and competitive performance across evaluation metrics.
comment: 8 Pages, 5 Figures, To be published in the Proceedings of the 2025 IEEE International Conference on Robotics & Automation, Initial upload of accepted paper
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
Motion Synthesis with Sparse and Flexible Keyjoint Control
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: 11 pages, Project Page: http://inwoohwang.me/SFControl
UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025. Project page: https://bagh2178.github.io/UniGoal/
LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
Flying through Moving Gates without Full State Estimation ICRA 2025
Autonomous drone racing requires powerful perception, planning, and control and has become a benchmark and test field for autonomous, agile flight. Existing work usually assumes static race tracks with known maps, which enables offline planning of time-optimal trajectories, performing localization to the gates to reduce the drift in visual-inertial odometry (VIO) for state estimation or training learning-based methods for the particular race track and operating environment. In contrast, many real-world tasks like disaster response or delivery need to be performed in unknown and dynamic environments. To make drone racing more robust against unseen environments and moving gates, we propose a control algorithm that operates without a race track map or VIO, relying solely on monocular measurements of the line of sight to the gates. For this purpose, we adopt the law of proportional navigation (PN) to accurately fly through the gates despite gate motions or wind. We formulate the PN-informed vision-based control problem for drone racing as a constrained optimization problem and derive a closed-form optimal solution. Through simulations and real-world experiments, we demonstrate that our algorithm can navigate through moving gates at high speeds while being robust to different gate movements, model errors, wind, and delays.
comment: 7 pages, 6 figures, accepted to ICRA 2025
Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
Safe Interval Motion Planning for Quadrotors in Dynamic Environments ICRA
Trajectory generation in dynamic environments presents a significant challenge for quadrotors, particularly due to the non-convexity in the spatial-temporal domain. Many existing methods either assume simplified static environments or struggle to produce optimal solutions in real-time. In this work, we propose an efficient safe interval motion planning framework for navigation in dynamic environments. A safe interval refers to a time window during which a specific configuration is safe. Our approach addresses trajectory generation through a two-stage process: a front-end graph search step followed by a back-end gradient-based optimization. We ensure completeness and optimality by constructing a dynamic connected visibility graph and incorporating low-order dynamic bounds within safe intervals and temporal corridors. To avoid local minima, we propose a Uniform Temporal Visibility Deformation (UTVD) for the complete evaluation of spatial-temporal topological equivalence. We represent trajectories with B-Spline curves and apply gradient-based optimization to navigate around static and moving obstacles within spatial-temporal corridors. Through simulation and real-world experiments, we show that our method can achieve a success rate of over 95% in environments with different density levels, exceeding the performance of other approaches, demonstrating its potential for practical deployment in highly dynamic environments.
comment: 2025 IEEE International Conference on Robotics & Automation(ICRA)
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition
Robotic assistive feeding holds significant promise for improving the quality of life for individuals with eating disabilities. However, acquiring diverse food items under varying conditions and generalizing to unseen food presents unique challenges. Existing methods that rely on surface-level geometric information (e.g., bounding box and pose) derived from visual cues (e.g., color, shape, and texture) often lacks adaptability and robustness, especially when foods share similar physical properties but differ in visual appearance. We employ imitation learning (IL) to learn a policy for food acquisition. Existing methods employ IL or Reinforcement Learning (RL) to learn a policy based on off-the-shelf image encoders such as ResNet-50. However, such representations are not robust and struggle to generalize across diverse acquisition scenarios. To address these limitations, we propose a novel approach, IMRL (Integrated Multi-Dimensional Representation Learning), which integrates visual, physical, temporal, and geometric representations to enhance the robustness and generalizability of IL for food acquisition. Our approach captures food types and physical properties (e.g., solid, semi-solid, granular, liquid, and mixture), models temporal dynamics of acquisition actions, and introduces geometric information to determine optimal scooping points and assess bowl fullness. IMRL enables IL to adaptively adjust scooping strategies based on context, improving the robot's capability to handle diverse food acquisition scenarios. Experiments on a real robot demonstrate our approach's robustness and adaptability across various foods and bowl configurations, including zero-shot generalization to unseen settings. Our approach achieves improvement up to $35\%$ in success rate compared with the best-performing baseline. More details can be found on our website https://ruiiu.github.io/imrl.
Physically-Consistent Parameter Identification of Robots in Contact
Accurate inertial parameter identification is crucial for the simulation and control of robots encountering intermittent contact with the environment. Classically, robots' inertial parameters are obtained from CAD models that are not precise (and sometimes not available, e.g., Spot from Boston Dynamics), hence requiring identification. To do that, existing methods require access to contact force measurement, a modality not present in modern quadruped and humanoid robots. This paper presents an alternative technique that utilizes joint current/torque measurements -- a standard sensing modality in modern robots -- to identify inertial parameters without requiring direct contact force measurements. By projecting the whole-body dynamics into the null space of contact constraints, we eliminate the dependency on contact forces and reformulate the identification problem as a linear matrix inequality that can handle physical and geometrical constraints. We compare our proposed method against a common black-box identification method using a deep neural network and show that incorporating physical consistency significantly improves the sample efficiency and generalizability of the model. Finally, we validate our method on the Spot quadruped robot across various locomotion tasks, showcasing its accuracy and generalizability in real-world scenarios over different gaits.
comment: 7 pages, 5 figures, 2 tables
InteLiPlan: An Interactive Lightweight LLM-Based Planner for Domestic Robot Autonomy
We introduce an interactive LLM-based framework designed to enhance the autonomy and robustness of domestic robots, targeting embodied intelligence. Our approach reduces reliance on large-scale data and incorporates a robot-agnostic pipeline that embodies an LLM. Our framework, InteLiPlan, ensures that the LLM's decision-making capabilities are effectively aligned with robotic functions, enhancing operational robustness and adaptability, while our human-in-the-loop mechanism allows for real-time human intervention when user instruction is required. We evaluate our method in both simulation and on the real Toyota Human Support Robot (HSR). Our method achieves a 93% success rate in the 'fetch me' task completion with failure recovery, highlighting its capability in both failure reasoning and task planning. InteLiPlan achieves comparable performance to state-of-the-art large-scale LLM-based robotics planners, while using only real-time onboard computing.
Road Markings Segmentation from LIDAR Point Clouds using Reflectivity Information
Lane detection algorithms are crucial for the development of autonomous vehicles technologies. The more extended approach is to use cameras as sensors. However, LIDAR sensors can cope with weather and light conditions that cameras can not. In this paper, we introduce a method to extract road markings from the reflectivity data of a 64-layers LIDAR sensor. First, a plane segmentation method along with region grow clustering was used to extract the road plane. Then we applied an adaptive thresholding based on Otsu s method and finally, we fitted line models to filter out the remaining outliers. The algorithm was tested on a test track at 60km/h and a highway at 100km/h. Results showed the algorithm was reliable and precise. There was a clear improvement when using reflectivity data in comparison to the use of the raw intensity data both of them provided by the LIDAR sensor.
Extraction of Road Users' Behavior From Realistic Data According to Assumptions in Safety-Related Models for Automated Driving Systems
In this work, we utilized the methodology outlined in the IEEE Standard 2846-2022 for "Assumptions in Safety-Related Models for Automated Driving Systems" to extract information on the behavior of other road users in driving scenarios. This method includes defining high-level scenarios, determining kinematic characteristics, evaluating safety relevance, and making assumptions on reasonably predictable behaviors. The assumptions were expressed as kinematic bounds. The numerical values for these bounds were extracted using Python scripts to process realistic data from the UniD dataset. The resulting information enables Automated Driving Systems designers to specify the parameters and limits of a road user's state in a specific scenario. This information can be utilized to establish starting conditions for testing a vehicle that is equipped with an Automated Driving System in simulations or on actual roads.
IGDrivSim: A Benchmark for the Imitation Gap in Autonomous Driving
Developing autonomous vehicles that can navigate complex environments with human-level safety and efficiency is a central goal in self-driving research. A common approach to achieving this is imitation learning, where agents are trained to mimic human expert demonstrations collected from real-world driving scenarios. However, discrepancies between human perception and the self-driving car's sensors can introduce an $\textit{imitation}$ gap, leading to imitation learning failures. In this work, we introduce $\textbf{IGDrivSim}$, a benchmark built on top of the Waymax simulator, designed to investigate the effects of the imitation gap in learning autonomous driving policy from human expert demonstrations. Our experiments show that this perception gap between human experts and self-driving agents can hinder the learning of safe and effective driving behaviors. We further show that combining imitation with reinforcement learning, using a simple penalty reward for prohibited behaviors, effectively mitigates these failures. Our code is open-sourced at: https://github.com/clemgris/IGDrivSim.git.
comment: 8 pages, 4 figures, 1 table
Dynamic Programming-Based Offline Redundancy Resolution of Redundant Manipulators Along Prescribed Paths with Real-Time Adjustment
Traditional offline redundancy resolution of trajectories for redundant manipulators involves computing inverse kinematic solutions for Cartesian space paths, constraining the manipulator to a fixed path without real-time adjustments. Online redundancy resolution can achieve real-time adjustment of paths, but it cannot consider subsequent path points, leading to the possibility of the manipulator being forced to stop mid-motion due to joint constraints. To address this, this paper introduces a dynamic programming-based offline redundancy resolution for redundant manipulators along prescribed paths with real-time adjustment. The proposed method allows the manipulator to move along a prescribed path while implementing real-time adjustment along the normal to the path. Using Dynamic Programming, the proposed approach computes a global maximum for the variation of adjustment coefficients. As long as the coefficient variation between adjacent sampling path points does not exceed this limit, the algorithm provides the next path point's joint angles based on the current joint angles, enabling the end-effector to achieve the adjusted Cartesian pose. The main innovation of this paper lies in augmenting traditional offline optimal planning with real-time adjustment capabilities, achieving a fusion of offline planning and online planning.
Temporally Consistent Object-Centric Learning by Contrasting Slots CVPR 2025
Unsupervised object-centric learning from videos is a promising approach to extract structured representations from large, unlabeled collections of videos. To support downstream tasks like autonomous control, these representations must be both compositional and temporally consistent. Existing approaches based on recurrent processing often lack long-term stability across frames because their training objective does not enforce temporal consistency. In this work, we introduce a novel object-level temporal contrastive loss for video object-centric models that explicitly promotes temporal consistency. Our method significantly improves the temporal consistency of the learned object-centric representations, yielding more reliable video decompositions that facilitate challenging downstream tasks such as unsupervised object dynamics prediction. Furthermore, the inductive bias added by our loss strongly improves object discovery, leading to state-of-the-art results on both synthetic and real-world datasets, outperforming even weakly-supervised methods that leverage motion masks as additional cues.
comment: Published at CVPR 2025
CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction ICRA 2025
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
comment: Accepted to ICRA 2025, project page https://worv-ai.github.io/canvas
db-CBS: Discontinuity-Bounded Conflict-Based Search for Multi-Robot Kinodynamic Motion Planning ICRA 2024
This paper presents a multi-robot kinodynamic motion planner that enables a team of robots with different dynamics, actuation limits, and shapes to reach their goals in challenging environments. We solve this problem by combining Conflict-Based Search (CBS), a multi-agent path finding method, and discontinuity-bounded A*, a single-robot kinodynamic motion planner. Our method, db-CBS, operates in three levels. Initially, we compute trajectories for individual robots using a graph search that allows bounded discontinuities between precomputed motion primitives. The second level identifies inter-robot collisions and resolves them by imposing constraints on the first level. The third and final level uses the resulting solution with discontinuities as an initial guess for a joint space trajectory optimization. The procedure is repeated with a reduced discontinuity bound. Our approach is anytime, probabilistically complete, asymptotically optimal, and finds near-optimal solutions quickly. Experimental results with robot dynamics such as unicycle, double integrator, and car with trailer in different settings show that our method is capable of solving challenging tasks with a higher success rate and lower cost than the existing state-of-the-art.
comment: Presented at ICRA 2024
Data-efficient Tactile Sensing with Electrical Impedance Tomography
Electrical Impedance Tomography (EIT)-inspired tactile sensors are gaining attention in robotic tactile sensing due to their cost-effectiveness, safety, and scalability with sparse electrode configurations. This paper presents a data augmentation strategy for learning-based tactile reconstruction that amplifies the original single-frame signal measurement into 32 distinct, effective signal data for training. This approach supplements uncollected conditions of position information, resulting in more accurate and high-resolution tactile reconstructions. Data augmentation for EIT significantly reduces the required EIT measurements and achieves promising performance with even limited samples. Simulation results show that the proposed method improves the correlation coefficient by over 12% and reduces the relative error by over 21% under various noise levels. Furthermore, we demonstrate that a standard deep neural network (DNN) utilizing the proposed data augmentation reduces the required data down to 1/31 while achieving a similar tactile reconstruction quality. Real-world tests further validate the approach's effectiveness on a flexible EIT-based tactile sensor. These results could help address the challenge of training tactile sensing networks with limited available measurements, improving the accuracy and applicability of EIT-based tactile sensing systems.
SLC$^2$-SLAM: Semantic-guided Loop Closure using Shared Latent Code for NeRF SLAM
Targeting the notorious cumulative drift errors in NeRF SLAM, we propose a Semantic-guided Loop Closure using Shared Latent Code, dubbed SLC$^2$-SLAM. We argue that latent codes stored in many NeRF SLAM systems are not fully exploited, as they are only used for better reconstruction. In this paper, we propose a simple yet effective way to detect potential loops using the same latent codes as local features. To further improve the loop detection performance, we use the semantic information, which are also decoded from the same latent codes to guide the aggregation of local features. Finally, with the potential loops detected, we close them with a graph optimization followed by bundle adjustment to refine both the estimated poses and the reconstructed scene. To evaluate the performance of our SLC$^2$-SLAM, we conduct extensive experiments on Replica and ScanNet datasets. Our proposed semantic-guided loop closure significantly outperforms the pre-trained NetVLAD and ORB combined with Bag-of-Words, which are used in all the other NeRF SLAM with loop closure. As a result, our SLC$^2$-SLAM also demonstrated better tracking and reconstruction performance, especially in larger scenes with more loops, like ScanNet.
comment: Accepted to RAL. 8 pages, 5 figures, 5 tables
An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation
The sim-to-real gap remains a critical challenge in robotics, hindering the deployment of algorithms trained in simulation to real-world systems. This paper introduces a novel Real-Sim-Real (RSR) loop framework leveraging differentiable simulation to address this gap by iteratively refining simulation parameters, aligning them with real-world conditions, and enabling robust and efficient policy transfer. A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data, minimizing bias and maximizing the utility of each data point for simulation refinement. This cost function integrates seamlessly into existing reinforcement learning algorithms (e.g., PPO, SAC) and ensures a balanced exploration of critical regions in the real domain. Furthermore, our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems. Experimental results on several robotic manipulation tasks demonstrate that our method significantly reduces the sim-to-real gap, achieving high task performance and generalizability across diverse scenarios of both explicit and implicit environmental uncertainties.
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Submitted to International Journcal of Control, Automation and Systems (IJCAS), Under Review
Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans? ICRA2025
Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
comment: ICRA2025
Extending Structural Causal Models for Autonomous Vehicles to Simplify Temporal System Construction & Enable Dynamic Interactions Between Agents
In this work we aim to bridge the divide between autonomous vehicles and causal reasoning. Autonomous vehicles have come to increasingly interact with human drivers, and in many cases may pose risks to the physical or mental well-being of those they interact with. Meanwhile causal models, despite their inherent transparency and ability to offer contrastive explanations, have found limited usage within such systems. As such, we first identify the challenges that have limited the integration of structural causal models within autonomous vehicles. We then introduce a number of theoretical extensions to the structural causal model formalism in order to tackle these challenges. This augments these models to possess greater levels of modularisation and encapsulation, as well presenting temporal causal model representation with constant space complexity. We also prove through the extensions we have introduced that dynamically mutable sets (e.g. varying numbers of autonomous vehicles across time) can be used within a structural causal model while maintaining a relaxed form of causal stationarity. Finally we discuss the application of the extensions in the context of the autonomous vehicle and service robotics domain along with potential directions for future work.
comment: 30 Pages = 13 Pages (Main Content) + 4 Pages (References) + 13 Pages (Appendix), 15 Figures = 5 Figures (Main Content) + 10 (Appendix), To be published in the Proceedings of the 2025 Causal Learning and Reasoning Conference, Update upload of accepted paper version
MERCI: Multimodal Emotional and peRsonal Conversational Interactions Dataset
The integration of conversational agents into our daily lives has become increasingly common, yet many of these agents cannot engage in deep interactions with humans. Despite this, there is a noticeable shortage of datasets that capture multimodal information from human-robot interaction dialogues. To address this gap, we have recorded a novel multimodal dataset (MERCI) that encompasses rich embodied interaction data. The process involved asking participants to complete a questionnaire and gathering their profiles on ten topics, such as hobbies and favorite music. Subsequently, we initiated conversations between the robot and the participants, leveraging GPT-4 to generate contextually appropriate responses based on the participant's profile and emotional state, as determined by facial expression recognition and sentiment analysis. Automatic and user evaluations were conducted to assess the overall quality of the collected data. The results of both evaluations indicated a high level of naturalness, engagement, fluency, consistency, and relevance in the conversation, as well as the robot's ability to provide empathetic responses. It is worth noting that the dataset is derived from genuine interactions with the robot, involving participants who provided personal information and conveyed actual emotions.
comment: 9 pages, 5 Figures, Rejected from International Conference of Human Robot Interaction 2025, Melbourne, Australia
Point Cloud Structural Similarity-based Underwater Sonar Loop Detection
In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypointbased and learning-based approaches while requiring no additional training or preprocessing. Our code is available at https://github.com/donghwijung/point_cloud_structural_similarity_based_underwater_sonar_loop_detection.
NormalFlow: Fast, Robust, and Accurate Contact-based Object 6DoF Pose Tracking with Vision-based Tactile Sensors
Tactile sensing is crucial for robots aiming to achieve human-level dexterity. Among tactile-dependent skills, tactile-based object tracking serves as the cornerstone for many tasks, including manipulation, in-hand manipulation, and 3D reconstruction. In this work, we introduce NormalFlow, a fast, robust, and real-time tactile-based 6DoF tracking algorithm. Leveraging the precise surface normal estimation of vision-based tactile sensors, NormalFlow determines object movements by minimizing discrepancies between the tactile-derived surface normals. Our results show that NormalFlow consistently outperforms competitive baselines and can track low-texture objects like table surfaces. For long-horizon tracking, we demonstrate when rolling the sensor around a bead for 360 degrees, NormalFlow maintains a rotational tracking error of 2.5 degrees. Additionally, we present state-of-the-art tactile-based 3D reconstruction results, showcasing the high accuracy of NormalFlow. We believe NormalFlow unlocks new possibilities for high-precision perception and manipulation tasks that involve interacting with objects using hands. The video demo, code, and dataset are available on our website: https://joehjhuang.github.io/normalflow.
comment: 8 pages, published in 2024 RA-L, website link: https://joehjhuang.github.io/normalflow
Fast Iterative Region Inflation for Computing Large 2-D/3-D Convex Regions of Obstacle-Free Space
Convex polytopes have compact representations and exhibit convexity, which makes them suitable for abstracting obstacle-free spaces from various environments. Existing generation methods struggle with balancing high-quality output and efficiency. Moreover, another crucial requirement for convex polytopes to accurately contain certain seed point sets, such as a robot or a front-end path, is proposed in various tasks, which we refer to as manageability. In this paper, we propose Fast Iterative Regional Inflation (FIRI) to generate high-quality convex polytope while ensuring efficiency and manageability simultaneously. FIRI consists of two iteratively executed submodules: Restrictive Inflation (RsI) and Maximum Volume Inscribed Ellipsoid (MVIE) computation. By explicitly incorporating constraints that include the seed point set, RsI guarantees manageability. Meanwhile, iterative MVIE optimization ensures high-quality result through monotonic volume bound improvement.In terms of efficiency, we design methods tailored to the low-dimensional and multi-constrained nature of both modules, resulting in orders of magnitude improvement compared to generic solvers. Notably, in 2-D MVIE, we present the first linear-complexity analytical algorithm for maximum area inscribed ellipse, further enhancing the performance in 2-D cases. Extensive benchmarks conducted against state-of-the-art methods validate the superior performance of FIRI in terms of quality, manageability, and efficiency. Furthermore, various real-world applications showcase the generality and practicality of FIRI.
RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
comment: 23 pages, 13 figures, conference
Safe Expeditious Whole-Body Control of Mobile Manipulators for Collision Avoidance
In the control task of mobile manipulators (MMs), achieving efficient and agile obstacle avoidance in dynamic environments is challenging. In this letter, we present a safe expeditious whole-body (SEWB) control for MMs that ensures both external and internal collision-free. Firstly, control barrier functions (CBFs) are employed for an MM to establish initial safety constraints. Moreover, to resolve the pseudo-equilibrium problem of CBFs and improve avoidance agility, we propose a novel approach called adaptive cyclic inequality (ACI). ACI comprehensively considers obstacles, nominal control to generate directional constraints for MM. Then, we combine CBF and ACI to decompose safety constraints. Considering all these constraints, we formulate a quadratic programming (QP) as our primary optimization. In the QP cost function, we account for the motion accuracy differences between the base and manipulator, as well as obstacle influences, to achieve simultaneous whole-body motion. We validate the effectiveness of our SEWB control in avoiding collision and reaching target points through simulations and real-world experiments, particularly in challenging scenarios that involve fast-moving obstacles. SEWB has been proven to achieve whole-body collision-free and improve avoidance agility.
Playful DoggyBot: Learning Agile and Precise Quadrupedal Locomotion
Quadrupedal animals can perform agile and playful tasks while interacting with real-world objects. For instance, a trained dog can track and catch a flying frisbee before it touches the ground, while a cat left alone at home may leap to grasp the door handle. Successfully grasping an object during high-dynamic locomotion requires highly precise perception and control. However, due to hardware limitations, agility and precision are usually a trade-off in robotics problems. In this work, we employ a perception-control decoupled system based on Reinforcement Learning (RL), aiming to explore the level of precision a quadrupedal robot can achieve while interacting with objects during high-dynamic locomotion. Our experiments show that our quadrupedal robot, mounted with a passive gripper in front of the robot's chassis, can perform both tracking and catching tasks similar to a real trained dog. The robot can follow a mid-air ball moving at speeds of up to 3m/s and it can leap and successfully catch a small object hanging above it at a height of 1.05m in simulation and 0.8m in the real world.
Robotic Compliant Object Prying Using Diffusion Policy Guided by Vision and Force Observations
The growing adoption of batteries in the electric vehicle industry and various consumer products has created an urgent need for effective recycling solutions. These products often contain a mix of compliant and rigid components, making robotic disassembly a critical step toward achieving scalable recycling processes. Diffusion policy has emerged as a promising approach for learning low-level skills in robotics. To effectively apply diffusion policy to contact-rich tasks, incorporating force as feedback is essential. In this paper, we apply diffusion policy with vision and force in a compliant object prying task. However, when combining low-dimensional contact force with high-dimensional image, the force information may be diluted. To address this issue, we propose a method that effectively integrates force with image data for diffusion policy observations. We validate our approach on a battery prying task that demands high precision and multi-step execution. Our model achieves a 96\% success rate in diverse scenarios, marking a 57\% improvement over the vision-only baseline. Our method also demonstrates zero-shot transfer capability to handle unseen objects and battery types. Supplementary videos and implementation codes are available on our project website. https://rros-lab.github.io/diffusion-with-force.github.io/
comment: Accepted to IEEE RA-L. (C) 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. 8 pages with 9 figures
Riemannian Variational Calculus: Optimal Trajectories Under Inertia, Gravity, and Drag Effects
Robotic motion optimization often focuses on task-specific solutions, overlooking fundamental motion principles. Building on Riemannian geometry and the calculus of variations (often appearing as indirect methods of optimal control), we derive an optimal control equation that expresses general forces as functions of configuration and velocity, revealing how inertia, gravity, and drag shape optimal trajectories. Our analysis identifies three key effects: (i) curvature effects of inertia manifold, (ii) curvature effects of potential field, and (iii) shortening effects from resistive force. We validate our approach on a two-link manipulator and a UR5, demonstrating a unified geometric framework for understanding optimal trajectories beyond geodesic-based planning.
comment: 6 pages, submitted to IEEE Control Systems Letters (L-CSS)
MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
Adaptive Trajectory Optimization for Task-Specific Human-Robot Collaboration
This paper proposes a task-specific trajectory optimization framework for human-robot collaboration, enabling adaptive motion planning based on human interaction dynamics. Unlike conventional approaches that rely on predefined desired trajectories, the proposed framework optimizes the collaborative motion dynamically using the inverse differential Riccati equation, ensuring adaptability to task variations and human input. The generated trajectory serves as the reference for a neuro-adaptive PID controller, which leverages a neural network to adjust control gains in real time, addressing system uncertainties while maintaining low computational complexity. The combination of trajectory planning and the adaptive control law ensures stability and accurate joint-space tracking without requiring extensive parameter tuning. Numerical simulations validate the proposed approach.
comment: 7 pages, 6 figures, 1 table
LIMIT: Learning Interfaces to Maximize Information Transfer
Robots can use auditory, visual, or haptic interfaces to convey information to human users. The way these interfaces select signals is typically pre-defined by the designer: for instance, a haptic wristband might vibrate when the robot is moving and squeeze when the robot stops. But different people interpret the same signals in different ways, so that what makes sense to one person might be confusing or unintuitive to another. In this paper we introduce a unified algorithmic formalism for learning co-adaptive interfaces from scratch. Our method does not need to know the human's task (i.e., what the human is using these signals for). Instead, our insight is that interpretable interfaces should select signals that maximize correlation between the human's actions and the information the interface is trying to convey. Applying this insight we develop LIMIT: Learning Interfaces to Maximize Information Transfer. LIMIT optimizes a tractable, real-time proxy of information gain in continuous spaces. The first time a person works with our system the signals may appear random; but over repeated interactions the interface learns a one-to-one mapping between displayed signals and human responses. Our resulting approach is both personalized to the current user and not tied to any specific interface modality. We compare LIMIT to state-of-the-art baselines across controlled simulations, an online survey, and an in-person user study with auditory, visual, and haptic interfaces. Overall, our results suggest that LIMIT learns interfaces that enable users to complete the task more quickly and efficiently, and users subjectively prefer LIMIT to the alternatives. See videos here: https://youtu.be/IvQ3TM1_2fA
Multiagent Systems
Gricean Norms as a Basis for Effective Collaboration AAMAS 2025
Effective human-AI collaboration hinges not only on the AI agent's ability to follow explicit instructions but also on its capacity to navigate ambiguity, incompleteness, invalidity, and irrelevance in communication. Gricean conversational and inference norms facilitate collaboration by aligning unclear instructions with cooperative principles. We propose a normative framework that integrates Gricean norms and cognitive frameworks -- common ground, relevance theory, and theory of mind -- into large language model (LLM) based agents. The normative framework adopts the Gricean maxims of quantity, quality, relation, and manner, along with inference, as Gricean norms to interpret unclear instructions, which are: ambiguous, incomplete, invalid, or irrelevant. Within this framework, we introduce Lamoids, GPT-4 powered agents designed to collaborate with humans. To assess the influence of Gricean norms in human-AI collaboration, we evaluate two versions of a Lamoid: one with norms and one without. In our experiments, a Lamoid collaborates with a human to achieve shared goals in a grid world (Doors, Keys, and Gems) by interpreting both clear and unclear natural language instructions. Our results reveal that the Lamoid with Gricean norms achieves higher task accuracy and generates clearer, more accurate, and contextually relevant responses than the Lamoid without norms. This improvement stems from the normative framework, which enhances the agent's pragmatic reasoning, fostering effective human-AI collaboration and enabling context-aware communication in LLM-based agents.
comment: Accepted to AAMAS 2025. 8 pages (excl. references), 9 figures/tables. (Appendix: 5 pages, 6 figures/tables). Code available at: https://github.com/fardinsaad/Gricean-Norms
KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 14 pages, 4 figures
The Hidden Bloat in Machine Learning Systems
Software bloat refers to code and features that is not used by a software during runtime. For Machine Learning (ML) systems, bloat is a major contributor to their technical debt leading to decreased performance and resource wastage. In this work, we present, Negativa-ML, a novel tool to identify and remove bloat in ML frameworks by analyzing their shared libraries. Our approach includes novel techniques to detect and locate unnecessary code within device code - a key area overlooked by existing research, which focuses primarily on host code. We evaluate Negativa-ML using four popular ML frameworks across ten workloads over 300 shared libraries. The results demonstrate that the ML frameworks are highly bloated on both the device and host code side. On average, Negativa-ML reduces the device code size in these frameworks by up to 75% and the host code by up to 72%, resulting in total file size reductions of up to 55%. The device code is a primary source of bloat within ML frameworks. Through debloating, we achieve reductions in peak host memory usage, peak GPU memory usage, and execution time by up to 74.6%, 69.6%, and 44.6%, respectively.
A Convex Formulation of Game-theoretic Hierarchical Routing
Hierarchical decision-making is a natural paradigm for coordinating multi-agent systems in complex environments such as air traffic management. In this paper, we present a bilevel framework for game-theoretic hierarchical routing, where a high-level router assigns discrete routes to multiple vehicles who seek to optimize potentially noncooperative objectives that depend upon the assigned routes. To address computational challenges, we propose a reformulation that preserves the convexity of each agent's feasible set. This convex reformulation enables a solution to be identified efficiently via a customized branch-and-bound algorithm. Our approach ensures global optimality while capturing strategic interactions between agents at the lower level. We demonstrate the solution concept of our framework in two-vehicle and three-vehicle routing scenarios.
Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
Transparency and explainability are important features that responsible autonomous vehicles should possess, particularly when interacting with humans, and causal reasoning offers a strong basis to provide these qualities. However, even if one assumes agents act to maximise some concept of reward, it is difficult to make accurate causal inferences of agent planning without capturing what is of importance to the agent. Thus our work aims to learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred. We validate our approach quantitatively and qualitatively across three real-world driving datasets, demonstrating a functional improvement over previous methods and competitive performance across evaluation metrics.
comment: 8 Pages, 5 Figures, To be published in the Proceedings of the 2025 IEEE International Conference on Robotics & Automation, Initial upload of accepted paper
Differentially Private Distributed Inference
How can agents exchange information to learn while protecting privacy? Healthcare centers collaborating on clinical trials must balance knowledge sharing with safeguarding sensitive patient data. We address this challenge by using differential privacy (DP) to control information leakage. Agents update belief statistics via log-linear rules, and DP noise provides plausible deniability and rigorous performance guarantees. We study two settings: distributed maximum likelihood estimation (MLE) with a finite set of private signals and online learning from an intermittent signal stream. Noisy aggregation introduces trade-offs between rejecting low-quality states and accepting high-quality ones. The MLE setting naturally applies to hypothesis testing with formal statistical guarantees. Through simulations, we demonstrate differentially private, distributed survival analysis on real-world clinical trial data, evaluating treatment efficacy and the impact of biomedical indices on patient survival. Our methods enable privacy-preserving inference with greater efficiency and lower error rates than homomorphic encryption and first-order DP optimization approaches.
A Game of Pawns
We introduce and study pawn games, a class of two-player zero-sum turn-based graph games. A turn-based graph game proceeds by placing a token on an initial vertex, and whoever controls the vertex on which the token is located, chooses its next location. This leads to a path in the graph, which determines the winner. Traditionally, the control of vertices is predetermined and fixed. The novelty of pawn games is that control of vertices changes dynamically throughout the game as follows. Each vertex of a pawn game is owned by a pawn. In each turn, the pawns are partitioned between the two players, and the player who controls the pawn that owns the vertex on which the token is located, chooses the next location of the token. Control of pawns changes dynamically throughout the game according to a fixed mechanism. Specifically, we define several grabbing-based mechanisms in which control of at most one pawn transfers at the end of each turn. We study the complexity of solving pawn games, where we focus on reachability objectives and parameterize the problem by the mechanism that is being used and by restrictions on pawn ownership of vertices. On the positive side, even though pawn games are exponentially-succinct turn-based games, we identify several natural classes that can be solved in PTIME. On the negative side, we identify several EXPTIME-complete classes, where our hardness proofs are based on a new class of games called Lock & Key games, which may be of independent interest.
comment: Full version of CONCUR 2023 paper, accepted in LMCS
Unsynchronized Decentralized Q-Learning: Two Timescale Analysis By Persistence
Non-stationarity is a fundamental challenge in multi-agent reinforcement learning (MARL), where agents update their behaviour as they learn. Many theoretical advances in MARL avoid the challenge of non-stationarity by coordinating the policy updates of agents in various ways, including synchronizing times at which agents are allowed to revise their policies. Synchronization enables analysis of many MARL algorithms via multi-timescale methods, but such synchronization is infeasible in many decentralized applications. In this paper, we study an unsynchronized variant of the decentralized Q-learning algorithm, a recent MARL algorithm for stochastic games. We provide sufficient conditions under which the unsynchronized algorithm drives play to equilibrium with high probability. Our solution utilizes constant learning rates in the Q-factor update, which we show to be critical for relaxing the synchronization assumptions of earlier work. Our analysis also applies to unsynchronized generalizations of a number of other algorithms from the regret testing tradition, whose performance is analyzed by multi-timescale methods that study Markov chains obtained via policy update dynamics. This work extends the applicability of the decentralized Q-learning algorithm and its relatives to settings in which parameters are selected in an independent manner, and tames non-stationarity without imposing the coordination assumptions of prior work.
comment: Accepted to SIAM Journal on Control and Optimization
OffLight: An Offline Multi-Agent Reinforcement Learning Framework for Traffic Signal Control
Efficient traffic control (TSC) is essential for urban mobility, but traditional systems struggle to handle the complexity of real-world traffic. Multi-agent Reinforcement Learning (MARL) offers adaptive solutions, but online MARL requires extensive interactions with the environment, making it costly and impractical. Offline MARL mitigates these challenges by using historical traffic data for training but faces significant difficulties with heterogeneous behavior policies in real-world datasets, where mixed-quality data complicates learning. We introduce OffLight, a novel offline MARL framework designed to handle heterogeneous behavior policies in TSC datasets. To improve learning efficiency, OffLight incorporates Importance Sampling (IS) to correct for distributional shifts and Return-Based Prioritized Sampling (RBPS) to focus on high-quality experiences. OffLight utilizes a Gaussian Mixture Variational Graph Autoencoder (GMM-VGAE) to capture the diverse distribution of behavior policies from local observations. Extensive experiments across real-world urban traffic scenarios show that OffLight outperforms existing offline RL methods, achieving up to a 7.8% reduction in average travel time and 11.2% decrease in queue length. Ablation studies confirm the effectiveness of OffLight's components in handling heterogeneous data and improving policy performance. These results highlight OffLight's scalability and potential to improve urban traffic management without the risks of online learning.
MARLadona -- Towards Cooperative Team Play Using Multi-Agent Reinforcement Learning ICRA 2025
Robot soccer, in its full complexity, poses an unsolved research challenge. Current solutions heavily rely on engineered heuristic strategies, which lack robustness and adaptability. Deep reinforcement learning has gained significant traction in various complex robotics tasks such as locomotion, manipulation, and competitive games (e.g., AlphaZero, OpenAI Five), making it a promising solution to the robot soccer problem. This paper introduces MARLadona. A decentralized multi-agent reinforcement learning (MARL) training pipeline capable of producing agents with sophisticated team play behavior, bridging the shortcomings of heuristic methods. Furthermore, we created an open-source multi-agent soccer environment. Utilizing our MARL framework and a modified global entity encoder (GEE) as our core architecture, our approach achieves a 66.8% win rate against HELIOS agent, which employs a state-of-the-art heuristic strategy. In addition, we provided an in-depth analysis of the policy behavior and interpreted the agent's intention using the critic network.
comment: Version presented at ICRA 2025
Towards the Pedagogical Steering of Large Language Models for Tutoring: A Case Study with Modeling Productive Failure
One-to-one tutoring is one of the most efficient methods of teaching. With the growing popularity of Large Language Models (LLMs), there have been efforts to create LLM based conversational tutors which can expand the benefits of one to one tutoring to everyone. However, current LLMs are trained primarily to be helpful assistants and lack crucial pedagogical skills. For example, they often quickly reveal the solution to the student and fail to plan for a richer multi turn pedagogical interaction. To use LLMs in pedagogical settings, they need to be steered to use effective teaching strategies: a problem we introduce as Pedagogical Steering. We develop StratL, an algorithm to optimize LLM prompts and steer it to follow a predefined multi-turn tutoring plan represented as a transition graph. As a case study, we create a prototype tutor for high school math following Productive Failure (PF), an advanced and effective learning design. To validate our approach in a real-world setting, we run a field study with 17 high school students in Singapore and show that StratL succeeds in steering the LLM to follow the PF tutoring strategy. Finally, we highlight challenges in Pedagogical Steering of LLMs and offer opportunities for further improvements by publishing a dataset of PF problems and our code.
comment: 19 pages, 10 figures, 6 tables
On the Complexity of Destructive Bribery in Approval-Based Multi-winner Voting
A variety of constructive manipulation, control, and bribery problems for approval-based multiwinner voting have been extensively studied recently. However, their destructive counterparts seem to be less explored. This paper investigates the complexity of several destructive bribery problems under five prestigious approval-based multiwinner voting rules -- approval voting, satisfaction approval voting, net-satisfaction approval voting, Chamberlin-Courant approval voting, and proportional approval voting. Broadly, these problems are to determine if a number of given candidates can be excluded from any winning committees by performing a limited number of modification operations. We offer a complete landscape of the complexity of the problems. For NP-hard problems, we study their parameterized complexity with respect to meaningful parameters.
Systems and Control (CS)
Decentralized RISE-based Control for Exponential Heterogeneous Multi-Agent Target Tracking of Second-Order Nonlinear Systems
This work presents a decentralized implementation of a Robust Integral of the Sign of the Error (RISE) controller for multi-agent target tracking problems with exponential convergence guarantees. Previous RISE-based approaches for multi-agent systems required 2-hop communication, limiting practical applicability. New insights from a Lyapunov-based design-analysis approach are used to eliminate the need for multi-hop communication required in previous literature, while yielding exponential target tracking. The new insights include the development of a new P-function which is developed which works in tandem with the inclusion of the interaction matrix in the Lyapunov function. Nonsmooth Lyapunov-based stability analysis methods are used to yield semi-global exponential convergence to the target agent state despite the presence of bounded disturbances with bounded derivatives. The resulting outcome is a controller that achieves exponential target tracking with only local information exchange between neighboring agents.
comment: 6 pages, 1 figure
Inference and Learning of Nonlinear LFR State-space Models
Estimating the parameters of nonlinear block-oriented state-space models from input-output data typically involves solving a highly non-convex optimization problem, making it susceptible to poor local minima and slow convergence. This paper presents a computationally efficient initialization method for fully parametrizing nonlinear linear fractional representation (NL-LFR) models using periodic data. The approach first infers the latent variables and then estimates the model parameters, yielding initial estimates that serve as a starting point for further nonlinear optimization. The proposed method shows robustness against poor local minima, and achieves a twofold error reduction compared to the state-of-the-art on a challenging benchmark dataset.
On the Standard Performance Criteria for Applied Control Design: PID, MPC or Machine Learning Controller?
The traditional control theory and its application to basic and complex systems have reached an advanced level of maturity. This includes aerial, marine, and ground vehicles, as well as robotics, chemical, transportation, and electrical systems widely used in our daily lives. The emerging era of data-driven methods, Large Language Models (LLMs), and AI-based controllers does not indicate a weakness in well-established control theory. Instead, it aims to reduce dependence on models and uncertainties, address increasingly complex systems, and potentially achieve decision-making capabilities comparable to human-level performance. This revolution integrates knowledge from computer science, machine learning, biology, and classical control, producing promising algorithms that are yet to demonstrate widespread real-world applicability. Despite the maturity of control theory and the presence of various performance criteria, there is still a lack of standardised metrics for testing, evaluation, Verification and Validation ($V\&V$) of algorithms. This gap can lead to algorithms that, while optimal in certain aspects, may fall short of practical implementation, sparking debates within the literature. For a controller to succeed in real-world applications, it must satisfy three key categories of performance metrics: tracking quality, control effort (energy consumption), and robustness. This paper rather takes an applied perspective, proposing and consolidating standard performance criteria for testing and analysing control systems, intended for researchers and students. The proposed framework ensures the post-design applicability of a black-box algorithm, aligning with modern data analysis and $V\&V$ perspectives to prevent resource allocation to systems with limited impact or imprecise claims.
Online ResNet-Based Adaptive Control for Nonlinear Target Tracking
This work introduces a generalized ResNet architecture for adaptive control of nonlinear systems with black box uncertainties. The approach overcomes limitations in existing methods by incorporating pre-activation shortcut connections and a zeroth layer block that accommodates different input-output dimensions. The developed Lyapunov-based adaptation law establishes semi-global exponential convergence to a neighborhood of the target state despite unknown dynamics and disturbances. Furthermore, the theoretical results are validated through a comparative simulation.
comment: 6 pages, 2 figures
Flying in Highly Dynamic Environments with End-to-end Learning Approach
Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
comment: IEEE Robotics and Automation Letters (2025)
ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of the Autonomous Dynamic All-terrain Pallet Transporter (ADAPT), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its long-term performance against an experienced human operator across various weather conditions. We also provide a comprehensive analysis of challenges and key lessons learned, contributing to the advancement of autonomous heavy machinery. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
Risk-Sensitive Model Predictive Control for Interaction-Aware Planning -- A Sequential Convexification Algorithm
This paper considers risk-sensitive model predictive control for stochastic systems with a decision-dependent distribution. This class of systems is commonly found in human-robot interaction scenarios. We derive computationally tractable convex upper bounds to both the objective function, and to frequently used penalty terms for collision avoidance, allowing us to efficiently solve the generally nonconvex optimal control problem as a sequence of convex problems. Simulations of a robot navigating a corridor demonstrate the effectiveness and the computational advantage of the proposed approach.
An Assessment of the UK Government Clean Energy Strategy for the Year 2030
In 2024, the UK Government made two striking announcements on its plans to decarbonise the energy system; it pledged GBP22 billion to establish carbon capture and storage hubs on Teesside and Merseyside and released the Clean Power 2030 Action Plan. This paper questions the validity of both plans, arguing that they do not take adequate account of the consequences of the highly variable nature of wind and solar generations. Using dynamic models of future UK electricity systems which are designed to take account of these variabilities, it is shown that the Clean Power 2030 Action Plan overestimates the ability of wind and solar generations to decarbonise the electricity system as they increase in size relative to the demand of the electricity system. More importantly, the dynamic models show that most of the achievable decarbonization is the result of increasing wind generation from the current level of around 10 GW to around 20 GW. Increasing wind generation to only 20 GW, rather than to 30 GW as proposed in the Action Plan, should halve the proposed cost, a saving of perhaps GBP 120 billion, with little disbenefit in terms of reduced decarbonization. Furthermore, the dynamic modelling shows that UK gas storage capacity of 7.5 winter days looks hopeless inadequate in comparison with the storage capacities deemed necessary by its continental neighbors. Concern is expressed that a consequence of the Climate Change Act of 2008 requiring the UK to meet arbitrary decarbonization targets is leading government advisors to propose several unproven and therefore highly risky technological solutions.
comment: 12 pages, 7 figures, 3 tables
Improved Scalable Lipschitz Bounds for Deep Neural Networks
Computing tight Lipschitz bounds for deep neural networks is crucial for analyzing their robustness and stability, but existing approaches either produce relatively conservative estimates or rely on semidefinite programming (SDP) formulations (namely the LipSDP condition) that face scalability issues. Building upon ECLipsE-Fast, the state-of-the-art Lipschitz bound method that avoids SDP formulations, we derive a new family of improved scalable Lipschitz bounds that can be combined to outperform ECLipsE-Fast. Specifically, we leverage more general parameterizations of feasible points of LipSDP to derive various closed-form Lipschitz bounds, avoiding the use of SDP solvers. In addition, we show that our technique encompasses ECLipsE-Fast as a special case and leads to a much larger class of scalable Lipschitz bounds for deep neural networks. Our empirical study shows that our bounds improve ECLipsE-Fast, further advancing the scalability and precision of Lipschitz estimation for large neural networks.
Cross-Environment Transfer Learning for Location-Aided Beam Prediction in 5G and Beyond Millimeter-Wave Networks
Millimeter-wave (mm-wave) communications requirebeamforming and consequent precise beam alignmentbetween the gNodeB (gNB) and the user equipment (UE) toovercome high propagation losses. This beam alignment needs tobe constantly updated for different UE locations based on beamsweepingradio frequency measurements, leading to significantbeam management overhead. One potential solution involvesusing machine learning (ML) beam prediction algorithms thatleverage UE position information to select the serving beamwithout the overhead of beam sweeping. However, the highlysite-specific nature of mm-wave propagation means that MLmodels require training from scratch for each scenario, whichis inefficient in practice. In this paper, we propose a robustcross-environment transfer learning solution for location-aidedbeam prediction, whereby the ML model trained on a referencegNB is transferred to a target gNB by fine-tuning with a limiteddataset. Extensive simulation results based on ray-tracing in twourban environments show the effectiveness of our solution forboth inter- and intra-city model transfer. Our results show thatby training the model on a reference gNB and transferring themodel by fine-tuning with only 5% of the target gNB dataset,we can achieve 80% accuracy in predicting the best beamfor the target gNB. Importantly, our approach improves thepoor generalization accuracy of transferring the model to newenvironments without fine-tuning by around 75 percentage points.This demonstrates that transfer learning enables high predictionaccuracy while reducing the computational and training datasetcollection burden of ML-based beam prediction, making itpractical for 5G-and-beyond deployments.
Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems
In a more connected world, modeling multi-agent systems with hyperbolic partial differential equations (PDEs) offers a potential solution to the curse of dimensionality. However, classical control tools need adaptation for these complex systems. Physics-informed neural networks (PINNs) provide a powerful framework to fix this issue by inferring solutions to PDEs by embedding governing equations into the neural network. A major limitation of original PINNs is their inability to capture steep gradients and discontinuities in hyperbolic PDEs. This paper proposes a stacked residual PINN method enhanced with a vanishing viscosity mechanism. Initially, a basic PINN with a small viscosity coefficient provides a stable, low-fidelity solution. Residual correction blocks with learnable scaling parameters then iteratively refine this solution, progressively decreasing the viscosity coefficient to transition from parabolic to hyperbolic PDEs. Applying this method to traffic state reconstruction improved results by an order of magnitude in relative $\mathcal{L}^2$ error, demonstrating its potential to accurately estimate solutions where original PINNs struggle with instability and low fidelity.
Variable Time-Step MPC for Agile Multi-Rotor UAV Interception of Dynamic Targets
Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly computationally demanding. That reduces the prediction horizon length, leading to a decrease in solution quality. Besides, the fixed time-step length limits the utilization of the available UAV dynamics in the target neighborhood. In this paper, we propose to address these limitations by introducing variable time steps and coupling them with the prediction horizon length. A simplified point-mass motion primitive is used to leverage the differential flatness of quadrotor dynamics and the generation of feasible trajectories in the flat output space. Based on the presented evaluation results and experimentally validated deployment, the proposed method increases the solution quality by enabling planning for long flight segments but allowing tightly sampled maneuvering.
Distributions and Direct Parametrization for Stable Stochastic State-Space Models
We present a direct parametrization for continuous-time stochastic state-space models that ensures external stability via the stochastic bounded-real lemma. Our formulation facilitates the construction of probabilistic priors that enforce almost-sure stability which are suitable for sampling-based Bayesian inference methods. We validate our work with a simulation example and demonstrate its ability to yield stable predictions with uncertainty quantification.
Decentralized Continuification Control of Multi-Agent Systems via Distributed Density Estimation
This paper introduces a novel decentralized implementation of a continuification-based strategy to control the density of large-scale multi-agent systems on the unit circle. While continuification methods effectively address micro-to-macro control problems by reformulating ordinary/stochastic differential equations (ODEs/SDEs) agent-based models into more tractable partial differential equations (PDEs), they traditionally require centralized knowledge of macroscopic state observables. We overcome this limitation by developing a distributed density estimation framework that combines kernel density estimation with PI consensus dynamics. Our approach enables agents to compute local density estimates and derive local control actions using only information from neighboring agents in a communication network. Numerical validations across multiple scenarios - including regulation, tracking, and time-varying communication topologies - confirm the effectiveness of the proposed approach. They also convincingly demonstrate that our decentralized implementation achieves performance comparable to centralized approaches while enhancing reliability and practical applicability.
Sheaf-Theoretic Causal Emergence for Resilience Analysis in Distributed Systems
Distributed systems often exhibit emergent behaviors that impact their resilience (Franz-Kaiser et al., 2020; Adilson E. Motter, 2002; Jianxi Gao, 2016). This paper presents a theoretical framework combining attributed graph models, flow-on-graph simulation, and sheaf-theoretic causal emergence analysis to evaluate system resilience. We model a distributed system as a graph with attributes (capturing component state and connections) and use sheaf theory to formalize how local interactions compose into global states. A flow simulation on this graph propagates functional loads and failures. To assess resilience, we apply the concept of causal emergence, quantifying whether macro-level dynamics (coarse-grained groupings) exhibit stronger causal efficacy (via effective information) than micro-level dynamics. The novelty lies in uniting sheaf-based formalization with causal metrics to identify emergent resilient structures. We discuss limitless potential applications (illustrated by microservices, neural networks, and power grids) and outline future steps toward implementing this framework (Lake et al., 2015).
Modeling, Analysis, and Optimization of Cascaded Power Amplifiers
This paper deals with modeling, analysis, and optimization of power amplifiers (PAs) placed in a cascaded structure, particularly the effect of cascaded nonlinearities is studied by showing potential ways to minimize the total nonlinearities. The nonlinear least-squares algorithm is proposed to optimize the PA parameters along with the input power level, and thereby minimize the total nonlinearities in the cascaded structure. The simulation results demonstrate that the performance of the optimized configurations for up to five PAs using the proposed framework can improve the linearity properties of the overall cascade.
Modular Distributed Nonconvex Learning with Error Feedback
In this paper, we design a novel distributed learning algorithm using stochastic compressed communications. In detail, we pursue a modular approach, merging ADMM and a gradient-based approach, benefiting from the robustness of the former and the computational efficiency of the latter. Additionally, we integrate a stochastic integral action (error feedback) enabling almost sure rejection of the compression error. We analyze the resulting method in nonconvex scenarios and guarantee almost sure asymptotic convergence to the set of stationary points of the problem. This result is obtained using system-theoretic tools based on stochastic timescale separation. We corroborate our findings with numerical simulations in nonconvex classification.
ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors
Accurate traffic flow estimation and prediction are critical for the efficient management of transportation systems, particularly under increasing urbanization. Traditional methods relying on static sensors often suffer from limited spatial coverage, while probe vehicles provide richer, albeit sparse and irregular data. This work introduces ON-Traffic, a novel deep operator Network and a receding horizon learning-based framework tailored for online estimation of spatio-temporal traffic state along with quantified uncertainty by using measurements from moving probe vehicles and downstream boundary inputs. Our framework is evaluated in both numerical and simulation datasets, showcasing its ability to handle irregular, sparse input data, adapt to time-shifted scenarios, and provide well-calibrated uncertainty estimates. The results demonstrate that the model captures complex traffic phenomena, including shockwaves and congestion propagation, while maintaining robustness to noise and sensor dropout. These advancements present a significant step toward online, adaptive traffic management systems.
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
Identification of non-causal systems with random switching modes (Extended Version)
We consider the identification of non-causal systems with random switching modes (NCSRSM), a class of models essential for describing typical power load management and department store inventory dynamics. The simultaneous identification of causal-andanticausal subsystems, along with the presence of random switching sequences, however, make the overall identification problem particularly challenging. To this end, we develop an expectation-maximization (EM) based system identification technique, where the E-step proposes a modified Kalman filter (KF) to estimate the states and switching sequences of causal-and-anticausal subsystems, while the M-step consists in a switching least-squares algorithm to estimate the parameters of individual subsystems. We establish the main convergence features of the proposed identification procedure, also providing bounds on the parameter estimation errors under mild conditions. Finally, the effectiveness of our identification method is validated through two numerical simulations.
What was Said, What was not Said
In the process industry, the configuration of Safety Instrumented Systems (SIS) must comply with a defined set of safety requirements, typically documented in the Safety Requirements Specification (SRS). The functional safety standard IEC 61511 outlines the necessary content and quality criteria for the SRS. However, developing an effective SRS can be challenging. This article examines some of these challenges and proposes good practices to address them. It discusses SRS ownership, "staged" development of SRS, and the classification and traceability of requirements. Additionally, it explores the issue of untold "negative" requirements and suggests exploratory "inspection" of SIS Application Programs (APs) as a potential remedy.
Geometry of the Feasible Output Regions of Grid-Interfacing Inverters with Current Limits
Many resources in the grid connect to power grids via programmable grid-interfacing inverters that can provide grid services and offer greater control flexibility and faster response times compared to synchronous generators. However, the current through the inverter needs to be limited to protect the semiconductor components. Existing controllers are designed using somewhat ad hoc methods, for example, by adding current limiters to preexisting control loops, which can lead to stability issues or overly conservative operations. In this paper, we study the geometry of the feasible output region of a current-limited inverter. We show that under a commonly used model, the feasible region is convex. We provide an explicit characterization of this region, which allows us to efficiently find the optimal operating points of the inverter. We demonstrate how knowing the feasible set and its convexity allows us to design safe controllers such that the transient trajectories always remain within the current magnitude limit, whereas standard droop controllers can lead to violations.
Nonlinear Modeling and Observability of a Planar Multi-Link Robot with Link Thrusters
This work is motivated by the development of cooperative teams of small, soft underwater robots designed to accomplish complex tasks through collective behavior. These robots take inspiration from biology: salps are gelatinous, jellyfish-like marine animals that utilize jet propulsion for maneuvering and can physically connect to form dynamic chains of arbitrary shape and size. The primary contributions of this research are twofold: first, we adapt a planar nonlinear multi-link snake robot model to model a planar multi-link salp-inspired system by removing joint actuators, introducing link thrusters, and allowing for non-uniform link lengths, masses, and moments of inertia. Second, we conduct a nonlinear observability analysis of the multi-link system with link thrusters, showing that the link angles, angular velocities, masses, and moments of inertia are locally observable when equipped with inertial measurement units and operating under specific thruster conditions. This research provides a theoretical foundation for modeling and estimating both the state and intrinsic parameters of a multi-link system with link thrusters, which are essential for effective controller design and performance.
comment: 6 pages, 1 table
Defect Analysis and Built-In-Self-Test for Chiplet Interconnects in Fan-out Wafer-Level Packaging
Fan-out wafer-level packaging (FOWLP) addresses the demand for higher interconnect densities by offering reduced form factor, improved signal integrity, and enhanced performance. However, FOWLP faces manufacturing challenges such as coefficient of thermal expansion (CTE) mismatch, warpage, die shift, and post-molding protrusion, causing misalignment and bonding issues during redistribution layer (RDL) buildup. Moreover, the organic nature of the package exposes it to severe thermo-mechanical stresses during fabrication and operation. In order to address these challenges, we propose a comprehensive defect analysis and testing framework for FOWLP interconnects. We use Ansys Q3D to map defects to equivalent electrical circuit models and perform fault simulations to investigate the impacts of these defects on chiplet functionality. Additionally, we present a built-in self-test (BIST) architecture to detect stuck-at and bridging faults while accurately diagnosing the fault type and location. Our simulation results demonstrate the efficacy of the proposed BIST solution and provide critical insights for optimizing design decisions in packages, balancing fault detection and diagnosis with the cost of testability insertion.
comment: This paper is accepted for publication at VLSI Test Symposium, 2025
Risk-Aware Planning of Power Distribution Systems Using Scalable Cloud Technologies
The uncertainty in distribution grid planning is driven by the unpredictable spatial and temporal patterns in adopting electric vehicles (EVs) and solar photovoltaic (PV) systems. This complexity, stemming from interactions among EVs, PV systems, customer behavior, and weather conditions, calls for a scalable framework to capture a full range of possible scenarios and analyze grid responses to factor in compound uncertainty. Although this process is challenging for many utilities today, the need to model numerous grid parameters as random variables and evaluate the impact on the system from many different perspectives will become increasingly essential to facilitate more strategic and well-informed planning investments. We present a scalable, stochastic-aware distribution system planning application that addresses these uncertainties by capturing spatial and temporal variability through a Markov model and conducting Monte Carlo simulations leveraging modular cloud-based architecture. The results demonstrate that 15,000 power flow scenarios generated from the Markov model are completed on the modified IEEE 123-bus test feeder, with each simulation representing an 8,760-hour time series run, all in under an hour. The grid impact extracted from this huge volume of simulated data provides insights into the spatial and temporal effects of adopted technology, highlighting that planning solely for average conditions is inadequate, while worst-case scenario planning may lead to prohibitive expenses.
comment: 5 pages, 7 figures. Paper accepted for presentation at IEEE Power and Energy Society General Meeting 2025
Parking control of an active-joint center-articulated mobile robot based on feedback from beacons CEC
This paper presents an autonomous parking control system for an active-joint center-articulated mobile robot. We begin by proposing a kinematic model of the robot, then derive a control law designed to stabilize the vehicle's configuration within a small neighborhood of the target position. The control law is developed using Lyapunov techniques and is based on the robot's equations of motion in polar coordinates. Additionally, a beacon-based guidance system provides real-time feedback on the target's position and orientation. Simulation results demonstrate the robot's capability to start from arbitrary initial positions and orientations and successfully achieve parking.
comment: IEEE Conference - CCECE 2010
Controlling Peak Sharpness in Multimodal Biomolecular Systems via the Chemical Fokker-Planck Equation
Intracellular biomolecular systems exhibit intrinsic stochasticity due to low molecular copy numbers, leading to multimodal probability distributions that play a crucial role in probabilistic differentiation and cellular decision-making. Controlling the dispersion of multimodal probability distributions in biomolecular systems is critical for regulating stochastic behavior, robustness, and adaptability. However, modifying system parameters to adjust dispersion often affects peak positions, potentially altering a desired phenotype or even fundamental behavior in a genetic pathway. In this paper, we establish a theoretical framework that enables independent control of dispersion while preserving peak positions and modality using the Chemical Fokker-Planck Equation (CFPE) and sharpness, a measure of probability concentration around individual peaks. By analyzing the steady-state solution of the CFPE, we derive explicit conditions under which peak sharpness can be tuned monotonically without changing peak positions or modality. We validate our approach through Monte Carlo simulations on a bimodal chemical system, demonstrating effective dispersion control while maintaining structural stability. This framework provides a systematic approach for designing biomolecular systems with tunable stochastic properties, contributing to advancements in synthetic biology and probabilistic cellular regulation.
Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter
Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I$^2$RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I$^2$RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.
Reinforcement Learning-Based Neuroadaptive Control of Robotic Manipulators under Deferred Constraints
This paper presents a reinforcement learning-based neuroadaptive control framework for robotic manipulators operating under deferred constraints. The proposed approach improves traditional barrier Lyapunov functions by introducing a smooth constraint enforcement mechanism that offers two key advantages: (i) it minimizes control effort in unconstrained regions and progressively increases it near constraints, improving energy efficiency, and (ii) it enables gradual constraint activation through a prescribed-time shifting function, allowing safe operation even when initial conditions violate constraints. To address system uncertainties and improve adaptability, an actor-critic reinforcement learning framework is employed. The critic network estimates the value function, while the actor network learns an optimal control policy in real time, enabling adaptive constraint handling without requiring explicit system modeling. Lyapunov-based stability analysis guarantees the boundedness of all closed-loop signals. The effectiveness of the proposed method is validated through numerical simulations.
comment: 7 pages, 5 figures
Link Prediction and Navigability of Multiplex Energy Networks
In modern energy networks, where operational efficiency and resilience are critical, this study introduces an in-depth analysis from a multiplex network perspective - defined as a network where multiple types of connections exist between the same set of nodes. Utilizing Belgium's electricity and gas networks, we construct a five-layer multiplex network to simulate random node shutdown scenarios. We tailored the Jaccard and Adamic-Adar link prediction algorithms by integrating the concept of exclusive neighbors, thereby enhancing prediction accuracy with such multi-layered information. Emphasizing navigability, i.e., the network's ability to maintain resilience and efficiency under random failures, we analyze the impact of different random walk strategies and strategic link additions at various stages - individual layers, two-layer combinations, and three-layer combinations - on the network's navigability. Directed networks show modest improvements with new links, partly due to trapping effects, where a random walker can become circumscribed within certain network loops, limiting reachability across the network. In contrast, the undirected networks demonstrate notable increases in navigability with new link additions. Spectral gap analysis in directed networks indicates that new link additions can aid and impede navigability, depending on their configuration. This study deepens our understanding of multiplex energy network navigability and highlights the importance of strategic link additions influenced by random walk strategies in these networks.
Assessment of Cyberattack Detection-Isolation Algorithm for CAV Platoons Using SUMO
A Connected Autonomous Vehicle (CAV) platoon in an evolving real-world driving environment relies strongly on accurate vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication for its safe and efficient operation. However, a cyberattack on this communication network can corrupt the appropriate control actions, tamper with system measurement, and drive the platoon to unsafe or undesired conditions. As a first step toward practicable resilience against such V2V-V2I attacks, in this paper, we implemented a unified V2V-V2I cyberattack detection scheme and a V2I isolation scheme for a CAV platoon under changing driving conditions in Simulation of Urban MObility (SUMO). The implemented algorithm utilizes vehicle-specific residual generators that are designed based on analytical disturbance-to-state stability, robustness, and sensitivity performance constraints. Our case studies include two driving scenarios where highway driving is simulated using the Next-Generation Simulation (NGSIM) data and urban driving follows the benchmark EPA Urban Dynamometer Driving Schedule (UDDS). The results validate the applicability of the algorithm to ensure CAV cybersecurity and demonstrate the promising potential for practical test-bed implementation in the future.
comment: 10 pages, 5 figures
Inductive Position Sensors based on Coupling of Coils on Printed Circuit Boards for Demanding Automotive Applications
Rotor position feedback is required in many industrial and automotive applications, e.g. for field-oriented control of brushless motors. Traditionally, magnetic sensors, resolvers or optical encoders are used to measure the rotor position. However, advances in inductive sensing concepts enable a low-cost, high-precision position measurement principle which is robust against magnetic stray fields exceeding 4000 A/m. The operating principle is based on the coupling of a transmitter coil with several receiver coils in the megahertz frequency range. The coils are part of a printed circuit board (PCB) which also comprises circuitry for demodulation and signal processing. The transmitter coil induces eddy currents in an electrically conductive passive coupling element, which provides position-dependent amplitude modulation. The voltage induced in the receiver coils encodes the rotor angle information, typically in quadrature signals. The coupling element requires no rare-earth materials and can be made of stainless steel, for instance. The PCB-based design of the sensor offers considerable flexibility in optimizing its performance. By tailoring the coil geometry and arrangement, accuracy, air gap and overall sensor dimensions can be adjusted to meet a broad range of application-specific requirements. A sensor design sample exhibits a mechanical angle error less than 0.02{\deg} (0.1{\deg} electrical) in both, finite-element simulation and test bench measurement, with good agreement.
comment: Published in the conference proceedings of Symposium Elektromagnetismus, 2025, February 27--28, K\"unzelsau, Germany
Automotive Battery Pack Standards and Design Characteristics: A Review
This paper outlines the existing situation and future trends related to automobile battery packs, specifically from the automobile manufacturer's point of view. It formulates the specifications required for such packs to adhere to prevailing regulatory schemes and examines top-level solutions to target a uniform architecture for passenger cars. Key elements such as electrical performance, safety, mechanical integrity, reliability, environmental issues, diagnostics, and real-world implications have been extensively examined. This paper draws attention to the industry trend of shifting to high-voltage battery architectures to enable ultra-fast charging above 350 kW, reducing the charging time to less than 20 minutes. Technological advancements in energy density and battery pack capacities are poised to take electric vehicle ranges over 1000 km from a single charge. This study also examines developments in artificial intelligence-improved battery management systems, enhanced safety, mechanical integrity, reliability, diagnostics, and practical considerations. Furthermore, future developments, such as the incorporation of batteries in aviation and other new uses, are investigated to provide insight into the future generation of economically viable, secure, and high-performance battery systems.
Approximate Hamilton-Jacobi Reachability Analysis for a Class of Two-Timescale Systems, with Application to Biological Models
Hamilton-Jacobi reachability (HJR) is an exciting framework used for control of safety-critical systems with nonlinear and possibly uncertain dynamics. However, HJR suffers from the curse of dimensionality, with computation times growing exponentially in the dimension of the system state. Many autonomous and controlled systems involve dynamics that evolve on multiple timescales, and for these systems, singular perturbation methods can be used for model reduction. However, such methods are more challenging to apply in HJR due to the presence of an underlying differential game. In this work, we leverage prior work on singularly perturbed differential games to identify a class of systems which can be readily reduced, and we relate these results to the quantities of interest in HJR. We demonstrate the utility of our results on two examples involving biological systems, where dynamics fitting the identified class are frequently encountered.
comment: Second version (note that title changed from previous version)
Composite learning backstepping control with guaranteed exponential stability and robustness
Adaptive backstepping control provides a feasible solution to achieve asymptotic tracking for mismatched uncertain nonlinear systems. However, input-to-state stability depends on high-gain feedback generated by nonlinear damping terms, and closed-loop exponential stability with parameter convergence involves a stringent condition named persistent excitation (PE). This paper proposes a composite learning backstepping control (CLBC) strategy based on modular backstepping and high-order tuners to compensate for the transient process of parameter estimation and achieve closed-loop exponential stability without the nonlinear damping terms and the PE condition. A novel composite learning mechanism that maximizes the staged exciting strength is designed for parameter estimation, such that parameter convergence can be achieved under a condition of interval excitation (IE) or even partial IE that is strictly weaker than PE. An extra prediction error is employed in the adaptive law to ensure the transient performance without nonlinear damping terms. The exponential stability of the closed-loop system is proved rigorously under the partial IE or IE condition. Simulations have demonstrated the effectiveness and superiority of the proposed method in both parameter estimation and control compared to state-of-the-art methods.
On Embedding B-Splines in Recursive State Estimation
We present a principled study on establishing a probabilistic framework for continuous-time state estimation. B-splines are embedded into state-space modeling as a continuous-time intermediate, linking the state of recurrent control points with asynchronous sensor measurements. Based thereon, the spline-embedded recursive estimation scheme is established w.r.t. common sensor fusion tasks, and corresponding technique for modeling uncertain motion estimates is introduced. We evaluate the proposed estimation scheme using real-world-based synthesized data in a range-inertial setting. Numerical results demonstrate several advantages of spline embedding in recursive state estimation compared to classical discrete-time filtering approaches.
comment: 9 pages
A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem
The Aircraft Landing Problem (ALP) is one of the challenging problems in aircraft transportation and management. The challenge is to schedule the arriving aircraft in a sequence so that the cost and delays are optimized. There are various solution approaches to solving this problem, most of which are based on operations research algorithms and meta-heuristics. Although traditional methods perform better on one or the other factors, there remains a problem of solving real-time rescheduling and computational scalability altogether. This paper presents a novel deep reinforcement learning (DRL) framework that combines graph neural networks with actor-critic architectures to address the ALP. This paper introduces three key contributions: A graph-based state representation that efficiently captures temporal and spatial relationships between aircraft, a specialized actor-critic architecture designed to handle multiple competing objectives in landing scheduling, and a runway balance strategy that ensures efficient resource utilization while maintaining safety constraints. The results show that the trained algorithm can be tested on different problem sets and the results are competitive to operation research algorithms. The experimental results on standard benchmark data sets demonstrate a 99.95% reduction in computational time compared to Mixed Integer Programming (MIP) and 38% higher runway throughput over First Come First Serve (FCFS) approaches. Therefore, the proposed solution is competitive to traditional approaches and achieves substantial advancements. Notably, it does not require retraining, making it particularly suitable for industrial deployment. The frameworks capability to generate solutions within 1 second enables real-time rescheduling, addressing critical requirements of air traffic management.
comment: 27 pages, submitted to ESWA, comments are welcome
On future power system digital twins: A vision towards a standard architecture
The energy sector's digital transformation brings mutually dependent communication and energy infrastructure, tightening the relationship between the physical and the digital world. Digital twins (DT) are the key concept for this. This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain. By reviewing different definitions and applications, the authors present a new definition of DTs specifically tailored to power systems. Based on the proposed definition and extensive deliberations and consultations with distribution system operators, energy traders, and municipalities, the authors introduce a vision of a standard DT ecosystem architecture that offers services beyond real-time updates and can seamlessly integrate with existing transmission and distribution system operators' processes while reconciling with concepts such as microgrids and local energy communities based on a system-of-systems view. The authors also discuss their vision related to the integration of power system DTs into various phases of the system's life cycle, such as long-term planning, emphasising challenges that remain to be addressed, such as managing measurement and model errors, and uncertainty propagation. Finally, the authors present their vision of how artificial intelligence and machine learning can enhance several power systems DT modules established in the proposed architecture.
comment: This version of the paper has been accepted for publication in a journal
Offline Hierarchical Reinforcement Learning via Inverse Optimization
Hierarchical policies enable strong performance in many sequential decision-making problems, such as those with high-dimensional action spaces, those requiring long-horizon planning, and settings with sparse rewards. However, learning hierarchical policies from static offline datasets presents a significant challenge. Crucially, actions taken by higher-level policies may not be directly observable within hierarchical controllers, and the offline dataset might have been generated using a different policy structure, hindering the use of standard offline learning algorithms. In this work, we propose OHIO: a framework for offline reinforcement learning (RL) of hierarchical policies. Our framework leverages knowledge of the policy structure to solve the \textit{inverse problem}, recovering the unobservable high-level actions that likely generated the observed data under our hierarchical policy. This approach constructs a dataset suitable for off-the-shelf offline training. We demonstrate our framework on robotic and network optimization problems and show that it substantially outperforms end-to-end RL methods and improves robustness. We investigate a variety of instantiations of our framework, both in direct deployment of policies trained offline and when online fine-tuning is performed. Code and data are available at https://ohio-offline-hierarchical-rl.github.io
Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 49 pages, 4 figures
Enhancing AUTOSAR-Based Firmware Over-the-Air Updates in the Automotive Industry with a Practical Implementation on a Steering System
The automotive industry is increasingly reliant on software to manage complex vehicle functionalities, making efficient and secure firmware updates essential. Traditional firmware update methods, requiring physical connections through On-Board Diagnostics (OBD) ports, are inconvenient, costly, and time-consuming. Firmware Over-the-Air (FOTA) technology offers a revolutionary solution by enabling wireless updates, reducing operational costs, and enhancing the user experience. This project aims to design and implement an advanced FOTA system tailored for modern vehicles, incorporating the AUTOSAR architecture for scalability and standardization, and utilizing delta updating to minimize firmware update sizes, thereby improving bandwidth efficiency and reducing flashing times. To ensure security, the system integrates the UDS 0x27 protocol for authentication and data integrity during the update process. Communication between Electronic Control Units (ECUs) is achieved using the CAN protocol, while the ESP8266 module and the master ECU communicate via SPI for data transfer. The system's architecture includes key components such as a bootloader, boot manager, and bootloader updater to facilitate seamless firmware updates. The functionality of the system is demonstrated through two applications: a blinking LED and a Lane Keeping Assist (LKA) system, showcasing its versatility in handling critical automotive features. This project represents a significant step forward in automotive technology, offering a user-centric, efficient, and secure solution for automotive firmware management.
comment: Bachelor's thesis
Identification and Classification of Human Performance related Challenges during Remote Driving
Remote driving of vehicles is gaining in importance in the transportation sector, especially when Automated Driving Systems (ADSs) reach the limits of their system boundaries. This study investigates the challenges faced by human Remote Drivers (RDs) during remote driving, particularly focusing on the identification and classification of human performance-related challenges through a comprehensive analysis of real-world remote driving data Las Vegas. For this purpose, a total of 183 RD performance-related Safety Driver (SD) interventions were analyzed and classified using an introduced severity classification. As it is essential to prevent the need for SD interventions, this study identified and analyzed harsh driving events to detect an increased likelihood of interventions by the SD. In addition, the results of the subjective RD questionnaire are used to evaluate whether the objective metrics from SD interventions and harsh driving events can also be confirmed by the RDs and whether additional challenges can be uncovered. The analysis reveals learning curves, showing a significant decrease in SD interventions as RD experience increases. Early phases of remote driving experience, especially below 200 km of experience, showed the highest frequency of safety-related events, including braking late for traffic signs and responding impatiently to other traffic participants. Over time, RDs follow defined rules for improving their control, with experience leading to less harsh braking, acceleration, and steering maneuvers. The study contributes to understanding the requirements of RDS, emphasizing the importance of targeted training to address human performance limitations. It further highlights the need for system improvements to address challenges like latency and the limited haptic feedback replaced by visual feedback, which affect the RDs' perception and vehicle control.
comment: This work has been submitted to the IEEE for possible publication
Synthetic Discrete Inertia
This letter demonstrates how synthetic inertia can be obtained with the control of flexible discrete devices to keep the power balance of power systems, even if the system does not include any synchronous generator or conventional grid-forming converter. The letter also discusses solutions to cycling issues, which can arise due to the interaction of uncoordinated discrete inertia controllers. The effectiveness, dynamic performance, and challenges of the proposed approach are validated through simulations using modified versions of the WSCC 9-bus test system and of the all-island Irish transmission system.
Average Predictor-Feedback Control Design for Switched Linear Systems
We develop an input delay-compensating feedback law for linear switched systems with time-dependent switching. Because the future values of the switching signal, which are needed for constructing an exact predictor-feedback law, may be unavailable at current time, the key design challenge is how to construct a proper predictor state. We resolve this challenge constructing an average predictor-based feedback law, which may be viewed as an exact predictor-feedback law for a particular average system without switching. We establish that, under the predictor-based control law introduced, the closed-loop system is exponentially stable, provided that the plant's parameters are sufficiently close to the corresponding parameters of the average system. In particular, the allowable difference is inversely proportional to the size of delay and proportional to the dwell time of the switching signal. Since no restriction is imposed on the size of delay or dwell time themselves, such a limitation on the parameters of each mode is inherent to the problem considered (in which no a priori information on the switching signal is available), and thus, it cannot be removed. The stability proof relies on two main ingredients-a Lyapunov functional constructed via backstepping and derivation of solutions' estimates for the difference between the average and the exact predictor states. We present consistent, numerical simulation results, which illustrate the necessity of employing the average predictor-based law for achieving stabilization and desired performance of the closed-loop system.
comment: 8 pages, 6 figures, submitted to 2025 IFAC Workshop on Time Delay Systems (TDS)
Koopman-based control of nonlinear systems with closed-loop guarantees
In this paper, we provide a tutorial overview and an extension of a recently developed framework for data-driven control of unknown nonlinear systems with rigorous closed-loop guarantees. The proposed approach relies on the Koopman operator representation of the nonlinear system, for which a bilinear surrogate model is estimated based on data. In contrast to existing Koopman-based estimation procedures, we state guaranteed bounds on the approximation error using the stability- and certificate-oriented extended dynamic mode decomposition (SafEDMD) framework. The resulting surrogate model and the uncertainty bounds allow us to design controllers via robust control theory and sum-of-squares optimization, guaranteeing desirable properties for the closed-loop system. We present results on stabilization both in discrete and continuous time, and we derive a method for controller design with performance objectives. The benefits of the presented framework over established approaches are demonstrated with a numerical example.
comment: Accepted for publication in at-Automatisierungstechnik
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Submitted to International Journcal of Control, Automation and Systems (IJCAS), Under Review
Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans? ICRA2025
Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
comment: ICRA2025
Line zonotopes: a set representation suitable for unbounded systems and its application to set-based state estimation and active fault diagnosis of descriptor systems
This paper proposes new methods for set-based state estimation and active fault diagnosis (AFD) of linear descriptor systems (LDS). Unlike intervals, ellipsoids, and zonotopes, constrained zonotopes (CZs) can directly incorporate linear static constraints on state variables - typical of descriptor systems - into their mathematical representation, leading to less conservative enclosures. However, for LDS that are unstable or not fully observable, a bounded representation cannot ensure a valid enclosure of the states over time. To address this limitation, we introduce line zonotopes, a new representation for unbounded sets that retains key properties of CZs, including polynomial time complexity reduction methods, while enabling the description of strips, hyperplanes, and the entire n-dimensional Euclidean space. This extension not only generalizes the use of CZs to unbounded settings but can also enhance set-based estimation and AFD in both stable and unstable scenarios. Additionally, we extend the AFD method for LDS from Rego et al. (2020) to operate over reachable tubes rather than solely on the reachable set at the final time of the considered horizon. This reduces conservatism in input separation and enables more accurate fault diagnosis based on the entire output sequence. The advantages of the proposed methods over existing CZ-based approaches are demonstrated through numerical examples.
comment: 15 pages, 6 figures. Revised manuscript v2 includes a new name for the set representation, revised article structure, a new numerical example, and several minor modifications. Theoretical results unchanged. Revised manuscript v3 includes several clarifications on the contributions of the paper. arXiv admin note: text overlap with arXiv:2306.07369
On The Convergence of Euler Discretization of Finite-Time Convergent Gradient Flows
In this study, we investigate the performance of two novel first-order optimization algorithms, namely the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF). These algorithms are derived from the forward Euler discretization of finite-time convergent flows, comprised of non-Lipschitz dynamical systems, which locally converge to the minima of gradient-dominated functions. We first characterize the closeness between the continuous flows and the discretizations, then we proceed to present (linear) convergence guarantees of the discrete algorithms (in the general and the stochastic case). Furthermore, in cases where problem parameters remain unknown or exhibit non-uniformity, we further integrate the line-search strategy with RGF/SGF and provide convergence analysis in this setting. We then apply the proposed algorithms to academic examples and deep neural network training, our results show that our schemes demonstrate faster convergences against standard optimization alternatives.
Systems and Control (EESS)
Decentralized RISE-based Control for Exponential Heterogeneous Multi-Agent Target Tracking of Second-Order Nonlinear Systems
This work presents a decentralized implementation of a Robust Integral of the Sign of the Error (RISE) controller for multi-agent target tracking problems with exponential convergence guarantees. Previous RISE-based approaches for multi-agent systems required 2-hop communication, limiting practical applicability. New insights from a Lyapunov-based design-analysis approach are used to eliminate the need for multi-hop communication required in previous literature, while yielding exponential target tracking. The new insights include the development of a new P-function which is developed which works in tandem with the inclusion of the interaction matrix in the Lyapunov function. Nonsmooth Lyapunov-based stability analysis methods are used to yield semi-global exponential convergence to the target agent state despite the presence of bounded disturbances with bounded derivatives. The resulting outcome is a controller that achieves exponential target tracking with only local information exchange between neighboring agents.
comment: 6 pages, 1 figure
Inference and Learning of Nonlinear LFR State-space Models
Estimating the parameters of nonlinear block-oriented state-space models from input-output data typically involves solving a highly non-convex optimization problem, making it susceptible to poor local minima and slow convergence. This paper presents a computationally efficient initialization method for fully parametrizing nonlinear linear fractional representation (NL-LFR) models using periodic data. The approach first infers the latent variables and then estimates the model parameters, yielding initial estimates that serve as a starting point for further nonlinear optimization. The proposed method shows robustness against poor local minima, and achieves a twofold error reduction compared to the state-of-the-art on a challenging benchmark dataset.
On the Standard Performance Criteria for Applied Control Design: PID, MPC or Machine Learning Controller?
The traditional control theory and its application to basic and complex systems have reached an advanced level of maturity. This includes aerial, marine, and ground vehicles, as well as robotics, chemical, transportation, and electrical systems widely used in our daily lives. The emerging era of data-driven methods, Large Language Models (LLMs), and AI-based controllers does not indicate a weakness in well-established control theory. Instead, it aims to reduce dependence on models and uncertainties, address increasingly complex systems, and potentially achieve decision-making capabilities comparable to human-level performance. This revolution integrates knowledge from computer science, machine learning, biology, and classical control, producing promising algorithms that are yet to demonstrate widespread real-world applicability. Despite the maturity of control theory and the presence of various performance criteria, there is still a lack of standardised metrics for testing, evaluation, Verification and Validation ($V\&V$) of algorithms. This gap can lead to algorithms that, while optimal in certain aspects, may fall short of practical implementation, sparking debates within the literature. For a controller to succeed in real-world applications, it must satisfy three key categories of performance metrics: tracking quality, control effort (energy consumption), and robustness. This paper rather takes an applied perspective, proposing and consolidating standard performance criteria for testing and analysing control systems, intended for researchers and students. The proposed framework ensures the post-design applicability of a black-box algorithm, aligning with modern data analysis and $V\&V$ perspectives to prevent resource allocation to systems with limited impact or imprecise claims.
Online ResNet-Based Adaptive Control for Nonlinear Target Tracking
This work introduces a generalized ResNet architecture for adaptive control of nonlinear systems with black box uncertainties. The approach overcomes limitations in existing methods by incorporating pre-activation shortcut connections and a zeroth layer block that accommodates different input-output dimensions. The developed Lyapunov-based adaptation law establishes semi-global exponential convergence to a neighborhood of the target state despite unknown dynamics and disturbances. Furthermore, the theoretical results are validated through a comparative simulation.
comment: 6 pages, 2 figures
Flying in Highly Dynamic Environments with End-to-end Learning Approach
Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
comment: IEEE Robotics and Automation Letters (2025)
ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of the Autonomous Dynamic All-terrain Pallet Transporter (ADAPT), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its long-term performance against an experienced human operator across various weather conditions. We also provide a comprehensive analysis of challenges and key lessons learned, contributing to the advancement of autonomous heavy machinery. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
Risk-Sensitive Model Predictive Control for Interaction-Aware Planning -- A Sequential Convexification Algorithm
This paper considers risk-sensitive model predictive control for stochastic systems with a decision-dependent distribution. This class of systems is commonly found in human-robot interaction scenarios. We derive computationally tractable convex upper bounds to both the objective function, and to frequently used penalty terms for collision avoidance, allowing us to efficiently solve the generally nonconvex optimal control problem as a sequence of convex problems. Simulations of a robot navigating a corridor demonstrate the effectiveness and the computational advantage of the proposed approach.
An Assessment of the UK Government Clean Energy Strategy for the Year 2030
In 2024, the UK Government made two striking announcements on its plans to decarbonise the energy system; it pledged GBP22 billion to establish carbon capture and storage hubs on Teesside and Merseyside and released the Clean Power 2030 Action Plan. This paper questions the validity of both plans, arguing that they do not take adequate account of the consequences of the highly variable nature of wind and solar generations. Using dynamic models of future UK electricity systems which are designed to take account of these variabilities, it is shown that the Clean Power 2030 Action Plan overestimates the ability of wind and solar generations to decarbonise the electricity system as they increase in size relative to the demand of the electricity system. More importantly, the dynamic models show that most of the achievable decarbonization is the result of increasing wind generation from the current level of around 10 GW to around 20 GW. Increasing wind generation to only 20 GW, rather than to 30 GW as proposed in the Action Plan, should halve the proposed cost, a saving of perhaps GBP 120 billion, with little disbenefit in terms of reduced decarbonization. Furthermore, the dynamic modelling shows that UK gas storage capacity of 7.5 winter days looks hopeless inadequate in comparison with the storage capacities deemed necessary by its continental neighbors. Concern is expressed that a consequence of the Climate Change Act of 2008 requiring the UK to meet arbitrary decarbonization targets is leading government advisors to propose several unproven and therefore highly risky technological solutions.
comment: 12 pages, 7 figures, 3 tables
Improved Scalable Lipschitz Bounds for Deep Neural Networks
Computing tight Lipschitz bounds for deep neural networks is crucial for analyzing their robustness and stability, but existing approaches either produce relatively conservative estimates or rely on semidefinite programming (SDP) formulations (namely the LipSDP condition) that face scalability issues. Building upon ECLipsE-Fast, the state-of-the-art Lipschitz bound method that avoids SDP formulations, we derive a new family of improved scalable Lipschitz bounds that can be combined to outperform ECLipsE-Fast. Specifically, we leverage more general parameterizations of feasible points of LipSDP to derive various closed-form Lipschitz bounds, avoiding the use of SDP solvers. In addition, we show that our technique encompasses ECLipsE-Fast as a special case and leads to a much larger class of scalable Lipschitz bounds for deep neural networks. Our empirical study shows that our bounds improve ECLipsE-Fast, further advancing the scalability and precision of Lipschitz estimation for large neural networks.
Cross-Environment Transfer Learning for Location-Aided Beam Prediction in 5G and Beyond Millimeter-Wave Networks
Millimeter-wave (mm-wave) communications requirebeamforming and consequent precise beam alignmentbetween the gNodeB (gNB) and the user equipment (UE) toovercome high propagation losses. This beam alignment needs tobe constantly updated for different UE locations based on beamsweepingradio frequency measurements, leading to significantbeam management overhead. One potential solution involvesusing machine learning (ML) beam prediction algorithms thatleverage UE position information to select the serving beamwithout the overhead of beam sweeping. However, the highlysite-specific nature of mm-wave propagation means that MLmodels require training from scratch for each scenario, whichis inefficient in practice. In this paper, we propose a robustcross-environment transfer learning solution for location-aidedbeam prediction, whereby the ML model trained on a referencegNB is transferred to a target gNB by fine-tuning with a limiteddataset. Extensive simulation results based on ray-tracing in twourban environments show the effectiveness of our solution forboth inter- and intra-city model transfer. Our results show thatby training the model on a reference gNB and transferring themodel by fine-tuning with only 5% of the target gNB dataset,we can achieve 80% accuracy in predicting the best beamfor the target gNB. Importantly, our approach improves thepoor generalization accuracy of transferring the model to newenvironments without fine-tuning by around 75 percentage points.This demonstrates that transfer learning enables high predictionaccuracy while reducing the computational and training datasetcollection burden of ML-based beam prediction, making itpractical for 5G-and-beyond deployments.
Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems
In a more connected world, modeling multi-agent systems with hyperbolic partial differential equations (PDEs) offers a potential solution to the curse of dimensionality. However, classical control tools need adaptation for these complex systems. Physics-informed neural networks (PINNs) provide a powerful framework to fix this issue by inferring solutions to PDEs by embedding governing equations into the neural network. A major limitation of original PINNs is their inability to capture steep gradients and discontinuities in hyperbolic PDEs. This paper proposes a stacked residual PINN method enhanced with a vanishing viscosity mechanism. Initially, a basic PINN with a small viscosity coefficient provides a stable, low-fidelity solution. Residual correction blocks with learnable scaling parameters then iteratively refine this solution, progressively decreasing the viscosity coefficient to transition from parabolic to hyperbolic PDEs. Applying this method to traffic state reconstruction improved results by an order of magnitude in relative $\mathcal{L}^2$ error, demonstrating its potential to accurately estimate solutions where original PINNs struggle with instability and low fidelity.
Variable Time-Step MPC for Agile Multi-Rotor UAV Interception of Dynamic Targets
Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly computationally demanding. That reduces the prediction horizon length, leading to a decrease in solution quality. Besides, the fixed time-step length limits the utilization of the available UAV dynamics in the target neighborhood. In this paper, we propose to address these limitations by introducing variable time steps and coupling them with the prediction horizon length. A simplified point-mass motion primitive is used to leverage the differential flatness of quadrotor dynamics and the generation of feasible trajectories in the flat output space. Based on the presented evaluation results and experimentally validated deployment, the proposed method increases the solution quality by enabling planning for long flight segments but allowing tightly sampled maneuvering.
Distributions and Direct Parametrization for Stable Stochastic State-Space Models
We present a direct parametrization for continuous-time stochastic state-space models that ensures external stability via the stochastic bounded-real lemma. Our formulation facilitates the construction of probabilistic priors that enforce almost-sure stability which are suitable for sampling-based Bayesian inference methods. We validate our work with a simulation example and demonstrate its ability to yield stable predictions with uncertainty quantification.
Decentralized Continuification Control of Multi-Agent Systems via Distributed Density Estimation
This paper introduces a novel decentralized implementation of a continuification-based strategy to control the density of large-scale multi-agent systems on the unit circle. While continuification methods effectively address micro-to-macro control problems by reformulating ordinary/stochastic differential equations (ODEs/SDEs) agent-based models into more tractable partial differential equations (PDEs), they traditionally require centralized knowledge of macroscopic state observables. We overcome this limitation by developing a distributed density estimation framework that combines kernel density estimation with PI consensus dynamics. Our approach enables agents to compute local density estimates and derive local control actions using only information from neighboring agents in a communication network. Numerical validations across multiple scenarios - including regulation, tracking, and time-varying communication topologies - confirm the effectiveness of the proposed approach. They also convincingly demonstrate that our decentralized implementation achieves performance comparable to centralized approaches while enhancing reliability and practical applicability.
Sheaf-Theoretic Causal Emergence for Resilience Analysis in Distributed Systems
Distributed systems often exhibit emergent behaviors that impact their resilience (Franz-Kaiser et al., 2020; Adilson E. Motter, 2002; Jianxi Gao, 2016). This paper presents a theoretical framework combining attributed graph models, flow-on-graph simulation, and sheaf-theoretic causal emergence analysis to evaluate system resilience. We model a distributed system as a graph with attributes (capturing component state and connections) and use sheaf theory to formalize how local interactions compose into global states. A flow simulation on this graph propagates functional loads and failures. To assess resilience, we apply the concept of causal emergence, quantifying whether macro-level dynamics (coarse-grained groupings) exhibit stronger causal efficacy (via effective information) than micro-level dynamics. The novelty lies in uniting sheaf-based formalization with causal metrics to identify emergent resilient structures. We discuss limitless potential applications (illustrated by microservices, neural networks, and power grids) and outline future steps toward implementing this framework (Lake et al., 2015).
Modeling, Analysis, and Optimization of Cascaded Power Amplifiers
This paper deals with modeling, analysis, and optimization of power amplifiers (PAs) placed in a cascaded structure, particularly the effect of cascaded nonlinearities is studied by showing potential ways to minimize the total nonlinearities. The nonlinear least-squares algorithm is proposed to optimize the PA parameters along with the input power level, and thereby minimize the total nonlinearities in the cascaded structure. The simulation results demonstrate that the performance of the optimized configurations for up to five PAs using the proposed framework can improve the linearity properties of the overall cascade.
Modular Distributed Nonconvex Learning with Error Feedback
In this paper, we design a novel distributed learning algorithm using stochastic compressed communications. In detail, we pursue a modular approach, merging ADMM and a gradient-based approach, benefiting from the robustness of the former and the computational efficiency of the latter. Additionally, we integrate a stochastic integral action (error feedback) enabling almost sure rejection of the compression error. We analyze the resulting method in nonconvex scenarios and guarantee almost sure asymptotic convergence to the set of stationary points of the problem. This result is obtained using system-theoretic tools based on stochastic timescale separation. We corroborate our findings with numerical simulations in nonconvex classification.
ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors
Accurate traffic flow estimation and prediction are critical for the efficient management of transportation systems, particularly under increasing urbanization. Traditional methods relying on static sensors often suffer from limited spatial coverage, while probe vehicles provide richer, albeit sparse and irregular data. This work introduces ON-Traffic, a novel deep operator Network and a receding horizon learning-based framework tailored for online estimation of spatio-temporal traffic state along with quantified uncertainty by using measurements from moving probe vehicles and downstream boundary inputs. Our framework is evaluated in both numerical and simulation datasets, showcasing its ability to handle irregular, sparse input data, adapt to time-shifted scenarios, and provide well-calibrated uncertainty estimates. The results demonstrate that the model captures complex traffic phenomena, including shockwaves and congestion propagation, while maintaining robustness to noise and sensor dropout. These advancements present a significant step toward online, adaptive traffic management systems.
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
Identification of non-causal systems with random switching modes (Extended Version)
We consider the identification of non-causal systems with random switching modes (NCSRSM), a class of models essential for describing typical power load management and department store inventory dynamics. The simultaneous identification of causal-andanticausal subsystems, along with the presence of random switching sequences, however, make the overall identification problem particularly challenging. To this end, we develop an expectation-maximization (EM) based system identification technique, where the E-step proposes a modified Kalman filter (KF) to estimate the states and switching sequences of causal-and-anticausal subsystems, while the M-step consists in a switching least-squares algorithm to estimate the parameters of individual subsystems. We establish the main convergence features of the proposed identification procedure, also providing bounds on the parameter estimation errors under mild conditions. Finally, the effectiveness of our identification method is validated through two numerical simulations.
What was Said, What was not Said
In the process industry, the configuration of Safety Instrumented Systems (SIS) must comply with a defined set of safety requirements, typically documented in the Safety Requirements Specification (SRS). The functional safety standard IEC 61511 outlines the necessary content and quality criteria for the SRS. However, developing an effective SRS can be challenging. This article examines some of these challenges and proposes good practices to address them. It discusses SRS ownership, "staged" development of SRS, and the classification and traceability of requirements. Additionally, it explores the issue of untold "negative" requirements and suggests exploratory "inspection" of SIS Application Programs (APs) as a potential remedy.
Geometry of the Feasible Output Regions of Grid-Interfacing Inverters with Current Limits
Many resources in the grid connect to power grids via programmable grid-interfacing inverters that can provide grid services and offer greater control flexibility and faster response times compared to synchronous generators. However, the current through the inverter needs to be limited to protect the semiconductor components. Existing controllers are designed using somewhat ad hoc methods, for example, by adding current limiters to preexisting control loops, which can lead to stability issues or overly conservative operations. In this paper, we study the geometry of the feasible output region of a current-limited inverter. We show that under a commonly used model, the feasible region is convex. We provide an explicit characterization of this region, which allows us to efficiently find the optimal operating points of the inverter. We demonstrate how knowing the feasible set and its convexity allows us to design safe controllers such that the transient trajectories always remain within the current magnitude limit, whereas standard droop controllers can lead to violations.
Nonlinear Modeling and Observability of a Planar Multi-Link Robot with Link Thrusters
This work is motivated by the development of cooperative teams of small, soft underwater robots designed to accomplish complex tasks through collective behavior. These robots take inspiration from biology: salps are gelatinous, jellyfish-like marine animals that utilize jet propulsion for maneuvering and can physically connect to form dynamic chains of arbitrary shape and size. The primary contributions of this research are twofold: first, we adapt a planar nonlinear multi-link snake robot model to model a planar multi-link salp-inspired system by removing joint actuators, introducing link thrusters, and allowing for non-uniform link lengths, masses, and moments of inertia. Second, we conduct a nonlinear observability analysis of the multi-link system with link thrusters, showing that the link angles, angular velocities, masses, and moments of inertia are locally observable when equipped with inertial measurement units and operating under specific thruster conditions. This research provides a theoretical foundation for modeling and estimating both the state and intrinsic parameters of a multi-link system with link thrusters, which are essential for effective controller design and performance.
comment: 6 pages, 1 table
Defect Analysis and Built-In-Self-Test for Chiplet Interconnects in Fan-out Wafer-Level Packaging
Fan-out wafer-level packaging (FOWLP) addresses the demand for higher interconnect densities by offering reduced form factor, improved signal integrity, and enhanced performance. However, FOWLP faces manufacturing challenges such as coefficient of thermal expansion (CTE) mismatch, warpage, die shift, and post-molding protrusion, causing misalignment and bonding issues during redistribution layer (RDL) buildup. Moreover, the organic nature of the package exposes it to severe thermo-mechanical stresses during fabrication and operation. In order to address these challenges, we propose a comprehensive defect analysis and testing framework for FOWLP interconnects. We use Ansys Q3D to map defects to equivalent electrical circuit models and perform fault simulations to investigate the impacts of these defects on chiplet functionality. Additionally, we present a built-in self-test (BIST) architecture to detect stuck-at and bridging faults while accurately diagnosing the fault type and location. Our simulation results demonstrate the efficacy of the proposed BIST solution and provide critical insights for optimizing design decisions in packages, balancing fault detection and diagnosis with the cost of testability insertion.
comment: This paper is accepted for publication at VLSI Test Symposium, 2025
Risk-Aware Planning of Power Distribution Systems Using Scalable Cloud Technologies
The uncertainty in distribution grid planning is driven by the unpredictable spatial and temporal patterns in adopting electric vehicles (EVs) and solar photovoltaic (PV) systems. This complexity, stemming from interactions among EVs, PV systems, customer behavior, and weather conditions, calls for a scalable framework to capture a full range of possible scenarios and analyze grid responses to factor in compound uncertainty. Although this process is challenging for many utilities today, the need to model numerous grid parameters as random variables and evaluate the impact on the system from many different perspectives will become increasingly essential to facilitate more strategic and well-informed planning investments. We present a scalable, stochastic-aware distribution system planning application that addresses these uncertainties by capturing spatial and temporal variability through a Markov model and conducting Monte Carlo simulations leveraging modular cloud-based architecture. The results demonstrate that 15,000 power flow scenarios generated from the Markov model are completed on the modified IEEE 123-bus test feeder, with each simulation representing an 8,760-hour time series run, all in under an hour. The grid impact extracted from this huge volume of simulated data provides insights into the spatial and temporal effects of adopted technology, highlighting that planning solely for average conditions is inadequate, while worst-case scenario planning may lead to prohibitive expenses.
comment: 5 pages, 7 figures. Paper accepted for presentation at IEEE Power and Energy Society General Meeting 2025
Parking control of an active-joint center-articulated mobile robot based on feedback from beacons CEC
This paper presents an autonomous parking control system for an active-joint center-articulated mobile robot. We begin by proposing a kinematic model of the robot, then derive a control law designed to stabilize the vehicle's configuration within a small neighborhood of the target position. The control law is developed using Lyapunov techniques and is based on the robot's equations of motion in polar coordinates. Additionally, a beacon-based guidance system provides real-time feedback on the target's position and orientation. Simulation results demonstrate the robot's capability to start from arbitrary initial positions and orientations and successfully achieve parking.
comment: IEEE Conference - CCECE 2010
Controlling Peak Sharpness in Multimodal Biomolecular Systems via the Chemical Fokker-Planck Equation
Intracellular biomolecular systems exhibit intrinsic stochasticity due to low molecular copy numbers, leading to multimodal probability distributions that play a crucial role in probabilistic differentiation and cellular decision-making. Controlling the dispersion of multimodal probability distributions in biomolecular systems is critical for regulating stochastic behavior, robustness, and adaptability. However, modifying system parameters to adjust dispersion often affects peak positions, potentially altering a desired phenotype or even fundamental behavior in a genetic pathway. In this paper, we establish a theoretical framework that enables independent control of dispersion while preserving peak positions and modality using the Chemical Fokker-Planck Equation (CFPE) and sharpness, a measure of probability concentration around individual peaks. By analyzing the steady-state solution of the CFPE, we derive explicit conditions under which peak sharpness can be tuned monotonically without changing peak positions or modality. We validate our approach through Monte Carlo simulations on a bimodal chemical system, demonstrating effective dispersion control while maintaining structural stability. This framework provides a systematic approach for designing biomolecular systems with tunable stochastic properties, contributing to advancements in synthetic biology and probabilistic cellular regulation.
Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter
Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I$^2$RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I$^2$RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.
Reinforcement Learning-Based Neuroadaptive Control of Robotic Manipulators under Deferred Constraints
This paper presents a reinforcement learning-based neuroadaptive control framework for robotic manipulators operating under deferred constraints. The proposed approach improves traditional barrier Lyapunov functions by introducing a smooth constraint enforcement mechanism that offers two key advantages: (i) it minimizes control effort in unconstrained regions and progressively increases it near constraints, improving energy efficiency, and (ii) it enables gradual constraint activation through a prescribed-time shifting function, allowing safe operation even when initial conditions violate constraints. To address system uncertainties and improve adaptability, an actor-critic reinforcement learning framework is employed. The critic network estimates the value function, while the actor network learns an optimal control policy in real time, enabling adaptive constraint handling without requiring explicit system modeling. Lyapunov-based stability analysis guarantees the boundedness of all closed-loop signals. The effectiveness of the proposed method is validated through numerical simulations.
comment: 7 pages, 5 figures
Link Prediction and Navigability of Multiplex Energy Networks
In modern energy networks, where operational efficiency and resilience are critical, this study introduces an in-depth analysis from a multiplex network perspective - defined as a network where multiple types of connections exist between the same set of nodes. Utilizing Belgium's electricity and gas networks, we construct a five-layer multiplex network to simulate random node shutdown scenarios. We tailored the Jaccard and Adamic-Adar link prediction algorithms by integrating the concept of exclusive neighbors, thereby enhancing prediction accuracy with such multi-layered information. Emphasizing navigability, i.e., the network's ability to maintain resilience and efficiency under random failures, we analyze the impact of different random walk strategies and strategic link additions at various stages - individual layers, two-layer combinations, and three-layer combinations - on the network's navigability. Directed networks show modest improvements with new links, partly due to trapping effects, where a random walker can become circumscribed within certain network loops, limiting reachability across the network. In contrast, the undirected networks demonstrate notable increases in navigability with new link additions. Spectral gap analysis in directed networks indicates that new link additions can aid and impede navigability, depending on their configuration. This study deepens our understanding of multiplex energy network navigability and highlights the importance of strategic link additions influenced by random walk strategies in these networks.
Assessment of Cyberattack Detection-Isolation Algorithm for CAV Platoons Using SUMO
A Connected Autonomous Vehicle (CAV) platoon in an evolving real-world driving environment relies strongly on accurate vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication for its safe and efficient operation. However, a cyberattack on this communication network can corrupt the appropriate control actions, tamper with system measurement, and drive the platoon to unsafe or undesired conditions. As a first step toward practicable resilience against such V2V-V2I attacks, in this paper, we implemented a unified V2V-V2I cyberattack detection scheme and a V2I isolation scheme for a CAV platoon under changing driving conditions in Simulation of Urban MObility (SUMO). The implemented algorithm utilizes vehicle-specific residual generators that are designed based on analytical disturbance-to-state stability, robustness, and sensitivity performance constraints. Our case studies include two driving scenarios where highway driving is simulated using the Next-Generation Simulation (NGSIM) data and urban driving follows the benchmark EPA Urban Dynamometer Driving Schedule (UDDS). The results validate the applicability of the algorithm to ensure CAV cybersecurity and demonstrate the promising potential for practical test-bed implementation in the future.
comment: 10 pages, 5 figures
Inductive Position Sensors based on Coupling of Coils on Printed Circuit Boards for Demanding Automotive Applications
Rotor position feedback is required in many industrial and automotive applications, e.g. for field-oriented control of brushless motors. Traditionally, magnetic sensors, resolvers or optical encoders are used to measure the rotor position. However, advances in inductive sensing concepts enable a low-cost, high-precision position measurement principle which is robust against magnetic stray fields exceeding 4000 A/m. The operating principle is based on the coupling of a transmitter coil with several receiver coils in the megahertz frequency range. The coils are part of a printed circuit board (PCB) which also comprises circuitry for demodulation and signal processing. The transmitter coil induces eddy currents in an electrically conductive passive coupling element, which provides position-dependent amplitude modulation. The voltage induced in the receiver coils encodes the rotor angle information, typically in quadrature signals. The coupling element requires no rare-earth materials and can be made of stainless steel, for instance. The PCB-based design of the sensor offers considerable flexibility in optimizing its performance. By tailoring the coil geometry and arrangement, accuracy, air gap and overall sensor dimensions can be adjusted to meet a broad range of application-specific requirements. A sensor design sample exhibits a mechanical angle error less than 0.02{\deg} (0.1{\deg} electrical) in both, finite-element simulation and test bench measurement, with good agreement.
comment: Published in the conference proceedings of Symposium Elektromagnetismus, 2025, February 27--28, K\"unzelsau, Germany
Automotive Battery Pack Standards and Design Characteristics: A Review
This paper outlines the existing situation and future trends related to automobile battery packs, specifically from the automobile manufacturer's point of view. It formulates the specifications required for such packs to adhere to prevailing regulatory schemes and examines top-level solutions to target a uniform architecture for passenger cars. Key elements such as electrical performance, safety, mechanical integrity, reliability, environmental issues, diagnostics, and real-world implications have been extensively examined. This paper draws attention to the industry trend of shifting to high-voltage battery architectures to enable ultra-fast charging above 350 kW, reducing the charging time to less than 20 minutes. Technological advancements in energy density and battery pack capacities are poised to take electric vehicle ranges over 1000 km from a single charge. This study also examines developments in artificial intelligence-improved battery management systems, enhanced safety, mechanical integrity, reliability, diagnostics, and practical considerations. Furthermore, future developments, such as the incorporation of batteries in aviation and other new uses, are investigated to provide insight into the future generation of economically viable, secure, and high-performance battery systems.
Approximate Hamilton-Jacobi Reachability Analysis for a Class of Two-Timescale Systems, with Application to Biological Models
Hamilton-Jacobi reachability (HJR) is an exciting framework used for control of safety-critical systems with nonlinear and possibly uncertain dynamics. However, HJR suffers from the curse of dimensionality, with computation times growing exponentially in the dimension of the system state. Many autonomous and controlled systems involve dynamics that evolve on multiple timescales, and for these systems, singular perturbation methods can be used for model reduction. However, such methods are more challenging to apply in HJR due to the presence of an underlying differential game. In this work, we leverage prior work on singularly perturbed differential games to identify a class of systems which can be readily reduced, and we relate these results to the quantities of interest in HJR. We demonstrate the utility of our results on two examples involving biological systems, where dynamics fitting the identified class are frequently encountered.
comment: Second version (note that title changed from previous version)
Composite learning backstepping control with guaranteed exponential stability and robustness
Adaptive backstepping control provides a feasible solution to achieve asymptotic tracking for mismatched uncertain nonlinear systems. However, input-to-state stability depends on high-gain feedback generated by nonlinear damping terms, and closed-loop exponential stability with parameter convergence involves a stringent condition named persistent excitation (PE). This paper proposes a composite learning backstepping control (CLBC) strategy based on modular backstepping and high-order tuners to compensate for the transient process of parameter estimation and achieve closed-loop exponential stability without the nonlinear damping terms and the PE condition. A novel composite learning mechanism that maximizes the staged exciting strength is designed for parameter estimation, such that parameter convergence can be achieved under a condition of interval excitation (IE) or even partial IE that is strictly weaker than PE. An extra prediction error is employed in the adaptive law to ensure the transient performance without nonlinear damping terms. The exponential stability of the closed-loop system is proved rigorously under the partial IE or IE condition. Simulations have demonstrated the effectiveness and superiority of the proposed method in both parameter estimation and control compared to state-of-the-art methods.
On Embedding B-Splines in Recursive State Estimation
We present a principled study on establishing a probabilistic framework for continuous-time state estimation. B-splines are embedded into state-space modeling as a continuous-time intermediate, linking the state of recurrent control points with asynchronous sensor measurements. Based thereon, the spline-embedded recursive estimation scheme is established w.r.t. common sensor fusion tasks, and corresponding technique for modeling uncertain motion estimates is introduced. We evaluate the proposed estimation scheme using real-world-based synthesized data in a range-inertial setting. Numerical results demonstrate several advantages of spline embedding in recursive state estimation compared to classical discrete-time filtering approaches.
comment: 9 pages
A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem
The Aircraft Landing Problem (ALP) is one of the challenging problems in aircraft transportation and management. The challenge is to schedule the arriving aircraft in a sequence so that the cost and delays are optimized. There are various solution approaches to solving this problem, most of which are based on operations research algorithms and meta-heuristics. Although traditional methods perform better on one or the other factors, there remains a problem of solving real-time rescheduling and computational scalability altogether. This paper presents a novel deep reinforcement learning (DRL) framework that combines graph neural networks with actor-critic architectures to address the ALP. This paper introduces three key contributions: A graph-based state representation that efficiently captures temporal and spatial relationships between aircraft, a specialized actor-critic architecture designed to handle multiple competing objectives in landing scheduling, and a runway balance strategy that ensures efficient resource utilization while maintaining safety constraints. The results show that the trained algorithm can be tested on different problem sets and the results are competitive to operation research algorithms. The experimental results on standard benchmark data sets demonstrate a 99.95% reduction in computational time compared to Mixed Integer Programming (MIP) and 38% higher runway throughput over First Come First Serve (FCFS) approaches. Therefore, the proposed solution is competitive to traditional approaches and achieves substantial advancements. Notably, it does not require retraining, making it particularly suitable for industrial deployment. The frameworks capability to generate solutions within 1 second enables real-time rescheduling, addressing critical requirements of air traffic management.
comment: 27 pages, submitted to ESWA, comments are welcome
On future power system digital twins: A vision towards a standard architecture
The energy sector's digital transformation brings mutually dependent communication and energy infrastructure, tightening the relationship between the physical and the digital world. Digital twins (DT) are the key concept for this. This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain. By reviewing different definitions and applications, the authors present a new definition of DTs specifically tailored to power systems. Based on the proposed definition and extensive deliberations and consultations with distribution system operators, energy traders, and municipalities, the authors introduce a vision of a standard DT ecosystem architecture that offers services beyond real-time updates and can seamlessly integrate with existing transmission and distribution system operators' processes while reconciling with concepts such as microgrids and local energy communities based on a system-of-systems view. The authors also discuss their vision related to the integration of power system DTs into various phases of the system's life cycle, such as long-term planning, emphasising challenges that remain to be addressed, such as managing measurement and model errors, and uncertainty propagation. Finally, the authors present their vision of how artificial intelligence and machine learning can enhance several power systems DT modules established in the proposed architecture.
comment: This version of the paper has been accepted for publication in a journal
Offline Hierarchical Reinforcement Learning via Inverse Optimization
Hierarchical policies enable strong performance in many sequential decision-making problems, such as those with high-dimensional action spaces, those requiring long-horizon planning, and settings with sparse rewards. However, learning hierarchical policies from static offline datasets presents a significant challenge. Crucially, actions taken by higher-level policies may not be directly observable within hierarchical controllers, and the offline dataset might have been generated using a different policy structure, hindering the use of standard offline learning algorithms. In this work, we propose OHIO: a framework for offline reinforcement learning (RL) of hierarchical policies. Our framework leverages knowledge of the policy structure to solve the \textit{inverse problem}, recovering the unobservable high-level actions that likely generated the observed data under our hierarchical policy. This approach constructs a dataset suitable for off-the-shelf offline training. We demonstrate our framework on robotic and network optimization problems and show that it substantially outperforms end-to-end RL methods and improves robustness. We investigate a variety of instantiations of our framework, both in direct deployment of policies trained offline and when online fine-tuning is performed. Code and data are available at https://ohio-offline-hierarchical-rl.github.io
Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 49 pages, 4 figures
Enhancing AUTOSAR-Based Firmware Over-the-Air Updates in the Automotive Industry with a Practical Implementation on a Steering System
The automotive industry is increasingly reliant on software to manage complex vehicle functionalities, making efficient and secure firmware updates essential. Traditional firmware update methods, requiring physical connections through On-Board Diagnostics (OBD) ports, are inconvenient, costly, and time-consuming. Firmware Over-the-Air (FOTA) technology offers a revolutionary solution by enabling wireless updates, reducing operational costs, and enhancing the user experience. This project aims to design and implement an advanced FOTA system tailored for modern vehicles, incorporating the AUTOSAR architecture for scalability and standardization, and utilizing delta updating to minimize firmware update sizes, thereby improving bandwidth efficiency and reducing flashing times. To ensure security, the system integrates the UDS 0x27 protocol for authentication and data integrity during the update process. Communication between Electronic Control Units (ECUs) is achieved using the CAN protocol, while the ESP8266 module and the master ECU communicate via SPI for data transfer. The system's architecture includes key components such as a bootloader, boot manager, and bootloader updater to facilitate seamless firmware updates. The functionality of the system is demonstrated through two applications: a blinking LED and a Lane Keeping Assist (LKA) system, showcasing its versatility in handling critical automotive features. This project represents a significant step forward in automotive technology, offering a user-centric, efficient, and secure solution for automotive firmware management.
comment: Bachelor's thesis
Identification and Classification of Human Performance related Challenges during Remote Driving
Remote driving of vehicles is gaining in importance in the transportation sector, especially when Automated Driving Systems (ADSs) reach the limits of their system boundaries. This study investigates the challenges faced by human Remote Drivers (RDs) during remote driving, particularly focusing on the identification and classification of human performance-related challenges through a comprehensive analysis of real-world remote driving data Las Vegas. For this purpose, a total of 183 RD performance-related Safety Driver (SD) interventions were analyzed and classified using an introduced severity classification. As it is essential to prevent the need for SD interventions, this study identified and analyzed harsh driving events to detect an increased likelihood of interventions by the SD. In addition, the results of the subjective RD questionnaire are used to evaluate whether the objective metrics from SD interventions and harsh driving events can also be confirmed by the RDs and whether additional challenges can be uncovered. The analysis reveals learning curves, showing a significant decrease in SD interventions as RD experience increases. Early phases of remote driving experience, especially below 200 km of experience, showed the highest frequency of safety-related events, including braking late for traffic signs and responding impatiently to other traffic participants. Over time, RDs follow defined rules for improving their control, with experience leading to less harsh braking, acceleration, and steering maneuvers. The study contributes to understanding the requirements of RDS, emphasizing the importance of targeted training to address human performance limitations. It further highlights the need for system improvements to address challenges like latency and the limited haptic feedback replaced by visual feedback, which affect the RDs' perception and vehicle control.
comment: This work has been submitted to the IEEE for possible publication
Synthetic Discrete Inertia
This letter demonstrates how synthetic inertia can be obtained with the control of flexible discrete devices to keep the power balance of power systems, even if the system does not include any synchronous generator or conventional grid-forming converter. The letter also discusses solutions to cycling issues, which can arise due to the interaction of uncoordinated discrete inertia controllers. The effectiveness, dynamic performance, and challenges of the proposed approach are validated through simulations using modified versions of the WSCC 9-bus test system and of the all-island Irish transmission system.
Average Predictor-Feedback Control Design for Switched Linear Systems
We develop an input delay-compensating feedback law for linear switched systems with time-dependent switching. Because the future values of the switching signal, which are needed for constructing an exact predictor-feedback law, may be unavailable at current time, the key design challenge is how to construct a proper predictor state. We resolve this challenge constructing an average predictor-based feedback law, which may be viewed as an exact predictor-feedback law for a particular average system without switching. We establish that, under the predictor-based control law introduced, the closed-loop system is exponentially stable, provided that the plant's parameters are sufficiently close to the corresponding parameters of the average system. In particular, the allowable difference is inversely proportional to the size of delay and proportional to the dwell time of the switching signal. Since no restriction is imposed on the size of delay or dwell time themselves, such a limitation on the parameters of each mode is inherent to the problem considered (in which no a priori information on the switching signal is available), and thus, it cannot be removed. The stability proof relies on two main ingredients-a Lyapunov functional constructed via backstepping and derivation of solutions' estimates for the difference between the average and the exact predictor states. We present consistent, numerical simulation results, which illustrate the necessity of employing the average predictor-based law for achieving stabilization and desired performance of the closed-loop system.
comment: 8 pages, 6 figures, submitted to 2025 IFAC Workshop on Time Delay Systems (TDS)
Koopman-based control of nonlinear systems with closed-loop guarantees
In this paper, we provide a tutorial overview and an extension of a recently developed framework for data-driven control of unknown nonlinear systems with rigorous closed-loop guarantees. The proposed approach relies on the Koopman operator representation of the nonlinear system, for which a bilinear surrogate model is estimated based on data. In contrast to existing Koopman-based estimation procedures, we state guaranteed bounds on the approximation error using the stability- and certificate-oriented extended dynamic mode decomposition (SafEDMD) framework. The resulting surrogate model and the uncertainty bounds allow us to design controllers via robust control theory and sum-of-squares optimization, guaranteeing desirable properties for the closed-loop system. We present results on stabilization both in discrete and continuous time, and we derive a method for controller design with performance objectives. The benefits of the presented framework over established approaches are demonstrated with a numerical example.
comment: Accepted for publication in at-Automatisierungstechnik
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Submitted to International Journcal of Control, Automation and Systems (IJCAS), Under Review
Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans? ICRA2025
Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
comment: ICRA2025
Line zonotopes: a set representation suitable for unbounded systems and its application to set-based state estimation and active fault diagnosis of descriptor systems
This paper proposes new methods for set-based state estimation and active fault diagnosis (AFD) of linear descriptor systems (LDS). Unlike intervals, ellipsoids, and zonotopes, constrained zonotopes (CZs) can directly incorporate linear static constraints on state variables - typical of descriptor systems - into their mathematical representation, leading to less conservative enclosures. However, for LDS that are unstable or not fully observable, a bounded representation cannot ensure a valid enclosure of the states over time. To address this limitation, we introduce line zonotopes, a new representation for unbounded sets that retains key properties of CZs, including polynomial time complexity reduction methods, while enabling the description of strips, hyperplanes, and the entire n-dimensional Euclidean space. This extension not only generalizes the use of CZs to unbounded settings but can also enhance set-based estimation and AFD in both stable and unstable scenarios. Additionally, we extend the AFD method for LDS from Rego et al. (2020) to operate over reachable tubes rather than solely on the reachable set at the final time of the considered horizon. This reduces conservatism in input separation and enables more accurate fault diagnosis based on the entire output sequence. The advantages of the proposed methods over existing CZ-based approaches are demonstrated through numerical examples.
comment: 15 pages, 6 figures. Revised manuscript v2 includes a new name for the set representation, revised article structure, a new numerical example, and several minor modifications. Theoretical results unchanged. Revised manuscript v3 includes several clarifications on the contributions of the paper. arXiv admin note: text overlap with arXiv:2306.07369
On The Convergence of Euler Discretization of Finite-Time Convergent Gradient Flows
In this study, we investigate the performance of two novel first-order optimization algorithms, namely the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF). These algorithms are derived from the forward Euler discretization of finite-time convergent flows, comprised of non-Lipschitz dynamical systems, which locally converge to the minima of gradient-dominated functions. We first characterize the closeness between the continuous flows and the discretizations, then we proceed to present (linear) convergence guarantees of the discrete algorithms (in the general and the stochastic case). Furthermore, in cases where problem parameters remain unknown or exhibit non-uniformity, we further integrate the line-search strategy with RGF/SGF and provide convergence analysis in this setting. We then apply the proposed algorithms to academic examples and deep neural network training, our results show that our schemes demonstrate faster convergences against standard optimization alternatives.
Robotics
MoManipVLA: Transferring Vision-language-action Models for General Mobile Manipulation CVPR 2025
Mobile manipulation is the fundamental challenge for robotics to assist humans with diverse tasks and environments in everyday life. However, conventional mobile manipulation approaches often struggle to generalize across different tasks and environments because of the lack of large-scale training. In contrast, recent advances in vision-language-action (VLA) models have shown impressive generalization capabilities, but these foundation models are developed for fixed-base manipulation tasks. Therefore, we propose an efficient policy adaptation framework named MoManipVLA to transfer pre-trained VLA models of fix-base manipulation to mobile manipulation, so that high generalization ability across tasks and environments can be achieved in mobile manipulation policy. Specifically, we utilize pre-trained VLA models to generate waypoints of the end-effector with high generalization ability. We design motion planning objectives for the mobile base and the robot arm, which aim at maximizing the physical feasibility of the trajectory. Finally, we present an efficient bi-level objective optimization framework for trajectory generation, where the upper-level optimization predicts waypoints for base movement to enhance the manipulator policy space, and the lower-level optimization selects the optimal end-effector trajectory to complete the manipulation task. In this way, MoManipVLA can adjust the position of the robot base in a zero-shot manner, thus making the waypoints predicted from the fixed-base VLA models feasible. Extensive experimental results on OVMM and the real world demonstrate that MoManipVLA achieves a 4.2% higher success rate than the state-of-the-art mobile manipulation, and only requires 50 training cost for real world deployment due to the strong generalization ability in the pre-trained VLA models.
comment: Accepted to CVPR 2025. Project Page: https://gary3410.github.io/momanipVLA/
Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Autonomous driving requires an understanding of the infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining as straightforward to integrate and as generic as auxiliary supervision. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements in vectorized map prediction performance up to 13.3% over the StreamMapNet baseline on 60m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code will be released soon.
FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation ICRA-2025
Learning to manipulate objects efficiently, particularly those involving sustained contact (e.g., pushing, sliding) and articulated parts (e.g., drawers, doors), presents significant challenges. Traditional methods, such as robot-centric reinforcement learning (RL), imitation learning, and hybrid techniques, require massive training and often struggle to generalize across different objects and robot platforms. We propose a novel framework for learning object-centric manipulation policies in force space, decoupling the robot from the object. By directly applying forces to selected regions of the object, our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead. This approach, trained in simulation on a small set of representative objects, captures object dynamics -- such as joint configurations -- allowing policies to generalize effectively to new, unseen objects. Decoupling these policies from robot-specific dynamics enables direct transfer to different robotic platforms (e.g., Kinova, Panda, UR5) without retraining. Our evaluations demonstrate that the method significantly outperforms baselines, achieving over an order of magnitude improvement in training efficiency compared to other state-of-the-art methods. Additionally, operating in force space enhances policy transferability across diverse robot platforms and object types. We further showcase the applicability of our method in a real-world robotic setting. For supplementary materials and videos, please visit: https://tufts-ai-robotics-group.github.io/FLEX/
comment: Accepted at IEEE-ICRA-2025
Artificial Spacetimes for Reactive Control of Resource-Limited Robots
Field-based reactive control provides a minimalist, decentralized route to guiding robots that lack onboard computation. Such schemes are well suited to resource-limited machines like microrobots, yet implementation artifacts, limited behaviors, and the frequent lack of formal guarantees blunt adoption. Here, we address these challenges with a new geometric approach called artificial spacetimes. We show that reactive robots navigating control fields obey the same dynamics as light rays in general relativity. This surprising connection allows us to adopt techniques from relativity and optics for constructing and analyzing control fields. When implemented, artificial spacetimes guide robots around structured environments, simultaneously avoiding boundaries and executing tasks like rallying or sorting, even when the field itself is static. We augment these capabilities with formal tools for analyzing what robots will do and provide experimental validation with silicon-based microrobots. Combined, this work provides a new framework for generating composed robot behaviors with minimal overhead.
Digital Beamforming Enhanced Radar Odometry
Radar has become an essential sensor for autonomous navigation, especially in challenging environments where camera and LiDAR sensors fail. 4D single-chip millimeter-wave radar systems, in particular, have drawn increasing attention thanks to their ability to provide spatial and Doppler information with low hardware cost and power consumption. However, most single-chip radar systems using traditional signal processing, such as Fast Fourier Transform, suffer from limited spatial resolution in radar detection, significantly limiting the performance of radar-based odometry and Simultaneous Localization and Mapping (SLAM) systems. In this paper, we develop a novel radar signal processing pipeline that integrates spatial domain beamforming techniques, and extend it to 3D Direction of Arrival estimation. Experiments using public datasets are conducted to evaluate and compare the performance of our proposed signal processing pipeline against traditional methodologies. These tests specifically focus on assessing structural precision across diverse scenes and measuring odometry accuracy in different radar odometry systems. This research demonstrates the feasibility of achieving more accurate radar odometry by simply replacing the standard FFT-based processing with the proposed pipeline. The codes are available at GitHub*.
MindEye-OmniAssist: A Gaze-Driven LLM-Enhanced Assistive Robot System for Implicit Intention Recognition and Task Execution
A promising effective human-robot interaction in assistive robotic systems is gaze-based control. However, current gaze-based assistive systems mainly help users with basic grasping actions, offering limited support. Moreover, the restricted intent recognition capability constrains the assistive system's ability to provide diverse assistance functions. In this paper, we propose an open implicit intention recognition framework powered by Large Language Model (LLM) and Vision Foundation Model (VFM), which can process gaze input and recognize user intents that are not confined to predefined or specific scenarios. Furthermore, we implement a gaze-driven LLM-enhanced assistive robot system (MindEye-OmniAssist) that recognizes user's intentions through gaze and assists in completing task. To achieve this, the system utilizes open vocabulary object detector, intention recognition network and LLM to infer their full intentions. By integrating eye movement feedback and LLM, it generates action sequences to assist the user in completing tasks. Real-world experiments have been conducted for assistive tasks, and the system achieved an overall success rate of 41/55 across various undefined tasks. Preliminary results show that the proposed method holds the potential to provide a more user-friendly human-computer interaction interface and significantly enhance the versatility and effectiveness of assistive systems by supporting more complex and diverse task.
Dense Policy: Bidirectional Autoregressive Learning of Actions
Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. This paper introduces a bidirectionally expanded learning approach, termed Dense Policy, to establish a new paradigm for autoregressive policies in action prediction. It employs a lightweight encoder-only architecture to iteratively unfold the action sequence from an initial single frame into the target sequence in a coarse-to-fine manner with logarithmic-time inference. Extensive experiments validate that our dense policy has superior autoregressive learning capabilities and can surpass existing holistic generative policies. Our policy, example data, and training code will be publicly available upon publication. Project page: https: //selen-suyue.github.io/DspNet/.
3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors IROS
Crop yield estimation is a relevant problem in agriculture, because an accurate crop yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of plants (a single trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. Additionally, to efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robotic platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset has been made publicly available at https://www.ipb.uni-bonn.de/data/hops/. We will provide the open-source implementation of our approach and public competiton for hierarchical panoptic segmentation on the hidden test sets upon paper acceptance.
comment: Submitted to IROS
HybridGen: VLM-Guided Hybrid Planning for Scalable Data Generation of Imitation Learning
The acquisition of large-scale and diverse demonstration data are essential for improving robotic imitation learning generalization. However, generating such data for complex manipulations is challenging in real-world settings. We introduce HybridGen, an automated framework that integrates Vision-Language Model (VLM) and hybrid planning. HybridGen uses a two-stage pipeline: first, VLM to parse expert demonstrations, decomposing tasks into expert-dependent (object-centric pose transformations for precise control) and plannable segments (synthesizing diverse trajectories via path planning); second, pose transformations substantially expand the first-stage data. Crucially, HybridGen generates a large volume of training data without requiring specific data formats, making it broadly applicable to a wide range of imitation learning algorithms, a characteristic which we also demonstrate empirically across multiple algorithms. Evaluations across seven tasks and their variants demonstrate that agents trained with HybridGen achieve substantial performance and generalization gains, averaging a 5% improvement over state-of-the-art methods. Notably, in the most challenging task variants, HybridGen achieves significant improvement, reaching a 59.7% average success rate, significantly outperforming Mimicgen's 49.5%. These results demonstrating its effectiveness and practicality.
Rapid and Inexpensive Inertia Tensor Estimation from a Single Object Throw
The inertia tensor is an important parameter in many engineering fields, but measuring it can be cumbersome and involve multiple experiments or accurate and expensive equipment. We propose a method to measure the moment of inertia tensor of a rigid body from a single spinning throw, by attaching a small and inexpensive stand-alone measurement device consisting of a gyroscope, accelerometer and a reaction wheel. The method includes a compensation for the increase of moment of inertia due to adding the measurement device to the body, and additionally obtains the location of the centre of gravity of the body as an intermediate result. Experiments performed with known rigid bodies show that the mean accuracy is around 2\%.
comment: This work has been submitted to the IEEE for possible publication
MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network IROS 2025
Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
comment: This work has been submitted to the lEEE IROS 2025 for possible publication
LIVEPOINT: Fully Decentralized, Safe, Deadlock-Free Multi-Robot Control in Cluttered Environments with High-Dimensional Inputs
Fully decentralized, safe, and deadlock-free multi-robot navigation in dynamic, cluttered environments is a critical challenge in robotics. Current methods require exact state measurements in order to enforce safety and liveness e.g. via control barrier functions (CBFs), which is challenging to achieve directly from onboard sensors like lidars and cameras. This work introduces LIVEPOINT, a decentralized control framework that synthesizes universal CBFs over point clouds to enable safe, deadlock-free real-time multi-robot navigation in dynamic, cluttered environments. Further, LIVEPOINT ensures minimally invasive deadlock avoidance behavior by dynamically adjusting agents' speeds based on a novel symmetric interaction metric. We validate our approach in simulation experiments across highly constrained multi-robot scenarios like doorways and intersections. Results demonstrate that LIVEPOINT achieves zero collisions or deadlocks and a 100% success rate in challenging settings compared to optimization-based baselines such as MPC and ORCA and neural methods such as MPNet, which fail in such environments. Despite prioritizing safety and liveness, LIVEPOINT is 35% smoother than baselines in the doorway environment, and maintains agility in constrained environments while still being safe and deadlock-free.
Multi-Platform Teach-and-Repeat Navigation by Visual Place Recognition Based on Deep-Learned Local Features
Uniform and variable environments still remain a challenge for stable visual localization and mapping in mobile robot navigation. One of the possible approaches suitable for such environments is appearance-based teach-and-repeat navigation, relying on simplified localization and reactive robot motion control - all without a need for standard mapping. This work brings an innovative solution to such a system based on visual place recognition techniques. Here, the major contributions stand in the employment of a new visual place recognition technique, a novel horizontal shift computation approach, and a multi-platform system design for applications across various types of mobile robots. Secondly, a new public dataset for experimental testing of appearance-based navigation methods is introduced. Moreover, the work also provides real-world experimental testing and performance comparison of the introduced navigation system against other state-of-the-art methods. The results confirm that the new system outperforms existing methods in several testing scenarios, is capable of operation indoors and outdoors, and exhibits robustness to day and night scene variations.
comment: 6 pages, 5 figures
Free-form language-based robotic reasoning and grasping
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Project website: https://tev-fbk.github.io/FreeGrasp/
Vision-based automatic fruit counting with UAV
The use of unmanned aerial vehicles (UAVs) for smart agriculture is becoming increasingly popular. This is evidenced by recent scientific works, as well as the various competitions organised on this topic. Therefore, in this work we present a system for automatic fruit counting using UAVs. To detect them, our solution uses a vision algorithm that processes streams from an RGB camera and a depth sensor using classical image operations. Our system also allows the planning and execution of flight trajectories, taking into account the minimisation of flight time and distance covered. We tested the proposed solution in simulation and obtained an average score of 87.27/100 points from a total of 500 missions. We also submitted it to the UAV Competition organised as part of the ICUAS 2024 conference, where we achieved an average score of 84.83/100 points, placing 6th in a field of 23 teams and advancing to the finals.
comment: Accepted for the 29th Conference on Automation - Innovations and Future Perspectives Automation 2025, May 7 - 9, 2025, Warsaw, Poland
Mitigating Cross-Modal Distraction and Ensuring Geometric Feasibility via Affordance-Guided, Self-Consistent MLLMs for Food Preparation Task Planning
We study Multimodal Large Language Models (MLLMs) with in-context learning for food preparation task planning. In this context, we identify two key challenges: cross-modal distraction and geometric feasibility. Cross-modal distraction occurs when the inclusion of visual input degrades the reasoning performance of a MLLM. Geometric feasibility refers to the ability of MLLMs to ensure that the selected skills are physically executable in the environment. To address these issues, we adapt Chain of Thought (CoT) with Self-Consistency to mitigate reasoning loss from cross-modal distractions and use affordance predictor as skill preconditions to guide MLLM on geometric feasibility. We construct a dataset to evaluate the ability of MLLMs on quantity estimation, reachability analysis, relative positioning and collision avoidance. We conducted a detailed evaluation to identify issues among different baselines and analyze the reasons for improvement, providing insights into each approach. Our method reaches a success rate of 76.7% on the entire dataset, showing a substantial improvement over the CoT baseline at 36.7%.
Robot Skin with Touch and Bend Sensing using Electrical Impedance Tomography
Flexible electronic skins that simultaneously sense touch and bend are desired in several application areas, such as to cover articulated robot structures. This paper introduces a flexible tactile sensor based on Electrical Impedance Tomography (EIT), capable of simultaneously detecting and measuring contact forces and flexion of the sensor. The sensor integrates a magnetic hydrogel composite and utilizes EIT to reconstruct internal conductivity distributions. Real-time estimation is achieved through the one-step Gauss-Newton method, which dynamically updates reference voltages to accommodate sensor deformation. A convolutional neural network is employed to classify interactions, distinguishing between touch, bending, and idle states using pre-reconstructed images. Experimental results demonstrate an average touch localization error of 5.4 mm (SD 2.2 mm) and average bending angle estimation errors of 1.9$^\circ$ (SD 1.6$^\circ$). The proposed adaptive reference method effectively distinguishes between single- and multi-touch scenarios while compensating for deformation effects. This makes the sensor a promising solution for multimodal sensing in robotics and human-robot collaboration.
Large-area Tomographic Tactile Skin with Air Pressure Sensing for Improved Force Estimation
This paper presents a dual-channel tactile skin that integrates Electrical Impedance Tomography (EIT) with air pressure sensing to achieve accurate multi-contact force detection. The EIT layer provides spatial contact information, while the air pressure sensor delivers precise total force measurement. Our framework combines these complementary modalities through: deep learning-based EIT image reconstruction, contact area segmentation, and force allocation based on relative conductivity intensities from EIT. The experiments demonstrated 15.1% average force estimation error in single-contact scenarios and 20.1% in multi-contact scenarios without extensive calibration data requirements. This approach effectively addresses the challenge of simultaneously localizing and quantifying multiple contact forces without requiring complex external calibration setups, paving the way for practical and scalable soft robotic skin applications.
Sensorless Remote Center of Motion Misalignment Estimation
Laparoscopic surgery constrains instrument motion around a fixed pivot point at the incision into a patient to minimize tissue trauma. Surgical robots achieve this through either hardware to software-based remote center of motion (RCM) constraints. However, accurate RCM alignment is difficult due to manual trocar placement, patient motion, and tissue deformation. Misalignment between the robot's RCM point and the patient incision site can cause unsafe forces at the incision site. This paper presents a sensorless force estimation-based framework for dynamically assessing and optimizing RCM misalignment in robotic surgery. Our experiments demonstrate that misalignment exceeding 20 mm can generate large enough forces to potentially damage tissue, emphasizing the need for precise RCM positioning. For misalignment $D\geq $ 20 mm, our optimization algorithm estimates the RCM offset with an absolute error within 5 mm. Accurate RCM misalignment estimation is a step toward automated RCM misalignment compensation, enhancing safety and reducing tissue damage in robotic-assisted laparoscopic surgery.
Robot Policy Transfer with Online Demonstrations: An Active Reinforcement Learning Approach
Transfer Learning (TL) is a powerful tool that enables robots to transfer learned policies across different environments, tasks, or embodiments. To further facilitate this process, efforts have been made to combine it with Learning from Demonstrations (LfD) for more flexible and efficient policy transfer. However, these approaches are almost exclusively limited to offline demonstrations collected before policy transfer starts, which may suffer from the intrinsic issue of covariance shift brought by LfD and harm the performance of policy transfer. Meanwhile, extensive work in the learning-from-scratch setting has shown that online demonstrations can effectively alleviate covariance shift and lead to better policy performance with improved sample efficiency. This work combines these insights to introduce online demonstrations into a policy transfer setting. We present Policy Transfer with Online Demonstrations, an active LfD algorithm for policy transfer that can optimize the timing and content of queries for online episodic expert demonstrations under a limited demonstration budget. We evaluate our method in eight robotic scenarios, involving policy transfer across diverse environment characteristics, task objectives, and robotic embodiments, with the aim to transfer a trained policy from a source task to a related but different target task. The results show that our method significantly outperforms all baselines in terms of average success rate and sample efficiency, compared to two canonical LfD methods with offline demonstrations and one active LfD method with online demonstrations. Additionally, we conduct preliminary sim-to-real tests of the transferred policy on three transfer scenarios in the real-world environment, demonstrating the policy effectiveness on a real robot manipulator.
Exploring 3D Activity Reasoning and Planning: From Implicit Human Intentions to Route-Aware Planning
3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing works share two constraints: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. To bridge the gaps, we propose 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans, and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
A Hierarchical Region-Based Approach for Efficient Multi-Robot Exploration
Multi-robot autonomous exploration in an unknown environment is an important application in robotics.Traditional exploration methods only use information around frontier points or viewpoints, ignoring spatial information of unknown areas. Moreover, finding the exact optimal solution for multi-robot task allocation is NP-hard, resulting in significant computational time consumption. To address these issues, we present a hierarchical multi-robot exploration framework using a new modeling method called RegionGraph. The proposed approach makes two main contributions: 1) A new modeling method for unexplored areas that preserves their spatial information across the entire space in a weighted graph called RegionGraph. 2) A hierarchical multi-robot exploration framework that decomposes the global exploration task into smaller subtasks, reducing the frequency of global planning and enabling asynchronous exploration. The proposed method is validated through both simulation and real-world experiments, demonstrating a 20% improvement in efficiency compared to existing methods.
In vivo validation of Wireless Power Transfer System for Magnetically Controlled Robotic Capsule Endoscopy
This paper presents the in vivo validation of an inductive wireless power transfer (WPT) system integrated for the first time into a magnetically controlled robotic capsule endoscopy platform. The proposed system enables continuous power delivery to the capsule without the need for onboard batteries, thus extending operational time and reducing size constraints. The WPT system operates through a resonant inductive coupling mechanism, based on a transmitting coil mounted on the end effector of a robotic arm that also houses an external permanent magnet and a localization coil for precise capsule manipulation. To ensure robust and stable power transmission in the presence of coil misalignment and rotation, a 3D receiving coil is integrated within the capsule. Additionally, a closed-loop adaptive control system, based on load-shift keying (LSK) modulation, dynamically adjusts the transmitted power to optimize efficiency while maintaining compliance with specific absorption rate (SAR) safety limits. The system has been extensively characterized in laboratory settings and validated through in vivo experiments using a porcine model, demonstrating reliable power transfer and effective robotic navigation in realistic gastrointestinal conditions: the average received power was 110 mW at a distance of 9 cm between the coils, with variable capsule rotation angles. The results confirm the feasibility of the proposed WPT approach for autonomous, battery-free robotic capsule endoscopy, paving the way for enhanced diagnostic in gastrointestinal medicine.
comment: 10 pages, 8 figures, regular paper
MT-PCR: Leveraging Modality Transformation for Large-Scale Point Cloud Registration with Limited Overlap ICRA2025
Large-scale scene point cloud registration with limited overlap is a challenging task due to computational load and constrained data acquisition. To tackle these issues, we propose a point cloud registration method, MT-PCR, based on Modality Transformation. MT-PCR leverages a BEV capturing the maximal overlap information to improve the accuracy and utilizes images to provide complementary spatial features. Specifically, MT-PCR converts 3D point clouds to BEV images and eastimates correspondence by 2D image keypoints extraction and matching. Subsequently, the 2D correspondence estimates are then transformed back to 3D point clouds using inverse mapping. We have applied MT-PCR to Terrestrial Laser Scanning and Aerial Laser Scanning point cloud registration on the GrAco dataset, involving 8 low-overlap, square-kilometer scale registration scenarios. Experiments and comparisons with commonly used methods demonstrate that MT-PCR can achieve superior accuracy and robustness in large-scale scenes with limited overlap.
comment: 8 pages, 5 figures, ICRA2025
Versatile Physics-based Character Control with Hybrid Latent Representation
We present a versatile latent representation that enables physically simulated character to efficiently utilize motion priors. To build a powerful motion embedding that is shared across multiple tasks, the physics controller should employ rich latent space that is easily explored and capable of generating high-quality motion. We propose integrating continuous and discrete latent representations to build a versatile motion prior that can be adapted to a wide range of challenging control tasks. Specifically, we build a discrete latent model to capture distinctive posterior distribution without collapse, and simultaneously augment the sampled vector with the continuous residuals to generate high-quality, smooth motion without jittering. We further incorporate Residual Vector Quantization, which not only maximizes the capacity of the discrete motion prior, but also efficiently abstracts the action space during the task learning phase. We demonstrate that our agent can produce diverse yet smooth motions simply by traversing the learned motion prior through unconditional motion generation. Furthermore, our model robustly satisfies sparse goal conditions with highly expressive natural motions, including head-mounted device tracking and motion in-betweening at irregular intervals, which could not be achieved with existing latent representations.
Energy-Aware Task Allocation for Teams of Multi-mode Robots
This work proposes a novel multi-robot task allocation framework for robots that can switch between multiple modes, e.g., flying, driving, or walking. We first provide a method to encode the multi-mode property of robots as a graph, where the mode of each robot is represented by a node. Next, we formulate a constrained optimization problem to decide both the task to be allocated to each robot as well as the mode in which the latter should execute the task. The robot modes are optimized based on the state of the robot and the environment, as well as the energy required to execute the allocated task. Moreover, the proposed framework is able to encompass kinematic and dynamic models of robots alike. Furthermore, we provide sufficient conditions for the convergence of task execution and allocation for both robot models.
comment: This work has been submitted to the IEEE for possible publication
DART: Dual-level Autonomous Robotic Topology for Efficient Exploration in Unknown Environments
Conventional algorithms in autonomous exploration face challenges due to their inability to accurately and efficiently identify the spatial distribution of convex regions in the real-time map. These methods often prioritize navigation toward the nearest or information-rich frontiers -- the boundaries between known and unknown areas -- resulting in incomplete convex region exploration and requiring excessive backtracking to revisit these missed areas. To address these limitations, this paper introduces an innovative dual-level topological analysis approach. First, we introduce a Low-level Topological Graph (LTG), generated through uniform sampling of the original map data, which captures essential geometric and connectivity details. Next, the LTG is transformed into a High-level Topological Graph (HTG), representing the spatial layout and exploration completeness of convex regions, prioritizing the exploration of convex regions that are not fully explored and minimizing unnecessary backtracking. Finally, an novel Local Artificial Potential Field (LAPF) method is employed for motion control, replacing conventional path planning and boosting overall efficiency. Experimental results highlight the effectiveness of our approach. Simulation tests reveal that our framework significantly reduces exploration time and travel distance, outperforming existing methods in both speed and efficiency. Ablation studies confirm the critical role of each framework component. Real-world tests demonstrate the robustness of our method in environments with poor mapping quality, surpassing other approaches in adaptability to mapping inaccuracies and inaccessible areas.
comment: 11 pages, 9 figures, Journal
NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.
Dynamic-Dark SLAM: RGB-Thermal Cooperative Robot Vision Strategy for Multi-Person Tracking in Both Well-Lit and Low-Light Scenes
In robot vision, thermal cameras have significant potential for recognizing humans even in complete darkness. However, their application to multi-person tracking (MPT) has lagged due to data scarcity and difficulties in individual identification. In this study, we propose a cooperative MPT system that utilizes co-located RGB and thermal cameras, using pseudo-annotations (bounding boxes + person IDs) to train RGB and T trackers. Evaluation experiments demonstrate that the T tracker achieves remarkable performance in both bright and dark scenes. Furthermore, results suggest that a tracker-switching approach using a binary brightness classifier is more suitable than a tracker-fusion approach for information integration. This study marks a crucial first step toward ``Dynamic-Dark SLAM," enabling effective recognition, understanding, and reconstruction of individuals, occluding objects, and traversable areas in dynamic environments, both bright and dark.
comment: 6 pages, 4 figures, technical report
MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
Humanoids in Hospitals: A Technical Study of Humanoid Surrogates for Dexterous Medical Interventions
The increasing demand for healthcare workers, driven by aging populations and labor shortages, presents a significant challenge for hospitals. Humanoid robots have the potential to alleviate these pressures by leveraging their human-like dexterity and adaptability to assist in medical procedures. This work conducted an exploratory study on the feasibility of humanoid robots performing direct clinical tasks through teleoperation. A bimanual teleoperation system was developed for the Unitree G1 Humanoid Robot, integrating high-fidelity pose tracking, custom grasping configurations, and an impedance controller to safely and precisely manipulate medical tools. The system is evaluated in seven diverse medical procedures, including physical examinations, emergency interventions, and precision needle tasks. Our results demonstrate that humanoid robots can successfully replicate critical aspects of human medical assessments and interventions, with promising quantitative performance in ventilation and ultrasound-guided tasks. However, challenges remain, including limitations in force output for procedures requiring high strength and sensor sensitivity issues affecting clinical accuracy. This study highlights the potential and current limitations of humanoid robots in hospital settings and lays the groundwork for future research on robotic healthcare integration.
comment: 8 pages
16 Ways to Gallop: Energetics and Body Dynamics of High-Speed Quadrupedal Gaits
Galloping is a common high-speed gait in both animals and quadrupedal robots, yet its energetic characteristics remain insufficiently explored. This study systematically analyzes a large number of possible galloping gaits by categorizing them based on the number of flight phases per stride and the phase relationships between the front and rear legs, following Hildebrand's framework for asymmetrical gaits. Using the A1 quadrupedal robot from Unitree, we model galloping dynamics as a hybrid dynamical system and employ trajectory optimization (TO) to minimize the cost of transport (CoT) across a range of speeds. Our results reveal that rotary and transverse gallop footfall sequences exhibit no fundamental energetic difference, despite variations in body yaw and roll motion. However, the number of flight phases significantly impacts energy efficiency: galloping with no flight phases is optimal at lower speeds, whereas galloping with two flight phases minimizes energy consumption at higher speeds. We validate these findings using a quadratic programming (QP)-based controller, developed in our previous work, in Gazebo simulations. These insights advance the understanding of quadrupedal locomotion energetics and may inform future legged robot designs for adaptive, energy-efficient gait transitions.
comment: 7 pages, 6 figures
Foam: A Tool for Spherical Approximation of Robot Geometry
Many applications in robotics require primitive spherical geometry, especially in cases where efficient distance queries are necessary. Manual creation of spherical models is time-consuming and prone to errors. This paper presents Foam, a tool to generate spherical approximations of robot geometry from an input Universal Robot Description Format (URDF) file. Foam provides a robust preprocessing pipeline to handle mesh defects and a number of configuration parameters to control the level and approximation of the spherization, and generates an output URDF with collision geometry specified only by spheres. We demonstrate Foam on a number of standard robot models on common tasks, and demonstrate improved collision checking and distance query performance with only a minor loss in fidelity compared to the true collision geometry. We release our tool as an open source Python library and containerized command-line application to facilitate adoption across the robotics community.
comment: 6 pages, 6 figures, 2 tables. Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2025. Code available at https://github.com/CoMMALab/foam
Transformable Modular Robots: A CPG-Based Approach to Independent and Collective Locomotion
Modular robotics enables the development of versatile and adaptive robotic systems with autonomous reconfiguration. This paper presents a modular robotic system in which each module has independent actuation, battery power, and control, allowing both individual mobility and coordinated locomotion. A hierarchical Central Pattern Generator (CPG) framework governs motion, with a low-level CPG controlling individual modules and a high-level CPG synchronizing inter-module coordination, enabling smooth transitions between independent and collective behaviors. To validate the system, we conduct simulations in MuJoCo and hardware experiments, evaluating locomotion across different configurations. We first analyze single-module motion, followed by two-module cooperative locomotion. Results demonstrate the effectiveness of the CPG-based control framework in achieving robust, flexible, and scalable locomotion. The proposed modular architecture has potential applications in search and rescue, environmental monitoring, and autonomous exploration, where adaptability and reconfigurability are essential.
INPROVF: Leveraging Large Language Models to Repair High-level Robot Controllers from Assumption Violations ICLR 2025
This paper presents INPROVF, an automatic framework that combines large language models (LLMs) and formal methods to speed up the repair process of high-level robot controllers. Previous approaches based solely on formal methods are computationally expensive and cannot scale to large state spaces. In contrast, INPROVF uses LLMs to generate repair candidates, and formal methods to verify their correctness. To improve the quality of these candidates, our framework first translates the symbolic representations of the environment and controllers into natural language descriptions. If a candidate fails the verification, INPROVF provides feedback on potential unsafe behaviors or unsatisfied tasks, and iteratively prompts LLMs to generate improved solutions. We demonstrate the effectiveness of INPROVF through 12 violations with various workspaces, tasks, and state space sizes.
comment: To appear in ICLR 2025 Workshop: VerifAI: AI Verification in the Wild; in submission to 2025 IEEE 21th International Conference on Automation Science and Engineering (CASE), Los Angeles, CA, USA: IEEE, Aug. 2025
Does the Appearance of Autonomous Conversational Robots Affect User Spoken Behaviors in Real-World Conference Interactions?
We investigate the impact of robot appearance on users' spoken behavior during real-world interactions by comparing a human-like android, ERICA, with a less anthropomorphic humanoid, TELECO. Analyzing data from 42 participants at SIGDIAL 2024, we extracted linguistic features such as disfluencies and syntactic complexity from conversation transcripts. The results showed moderate effect sizes, suggesting that participants produced fewer disfluencies and employed more complex syntax when interacting with ERICA. Further analysis involving training classification models like Na\"ive Bayes, which achieved an F1-score of 71.60\%, and conducting feature importance analysis, highlighted the significant role of disfluencies and syntactic complexity in interactions with robots of varying human-like appearances. Discussing these findings within the frameworks of cognitive load and Communication Accommodation Theory, we conclude that designing robots to elicit more structured and fluent user speech can enhance their communicative alignment with humans.
comment: This paper has been accepted as Late-Breaking Work at CHI Conference on Human Factors in Computing Systems (CHI EA '25)
Online Signature Verification based on the Lagrange formulation with 2D and 3D robotic models
Online Signature Verification commonly relies on function-based features, such as time-sampled horizontal and vertical coordinates, as well as the pressure exerted by the writer, obtained through a digitizer. Although inferring additional information about the writers arm pose, kinematics, and dynamics based on digitizer data can be useful, it constitutes a challenge. In this paper, we tackle this challenge by proposing a new set of features based on the dynamics of online signatures. These new features are inferred through a Lagrangian formulation, obtaining the sequences of generalized coordinates and torques for 2D and 3D robotic arm models. By combining kinematic and dynamic robotic features, our results demonstrate their significant effectiveness for online automatic signature verification and achieving state-of-the-art results when integrated into deep learning models.
WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
Autonomous mobile robots are widely used for navigation, transportation, and inspection tasks indoors and outdoors. In practical situations of limited satellite signals or poor lighting conditions, navigation depends only on inertial sensors. In such cases, the navigation solution rapidly drifts due to inertial measurement errors. In this work, we propose WMINet a wheel-mounted inertial deep learning approach to estimate the mobile robot's position based only on its inertial sensors. To that end, we merge two common practical methods to reduce inertial drift: a wheel-mounted approach and driving the mobile robot in periodic trajectories. Additionally, we enforce a wheelbase constraint to further improve positioning performance. To evaluate our proposed approach we recorded using the Rosbot-XL a wheel-mounted initial dataset totaling 190 minutes, which is made publicly available. Our approach demonstrated a 66\% improvement over state-of-the-art approaches. As a consequence, our approach enables navigation in challenging environments and bridges the pure inertial gap. This enables seamless robot navigation using only inertial sensors for short periods.
Synchronous vs Asynchronous Reinforcement Learning in a Real World Robot
In recent times, reinforcement learning (RL) with physical robots has attracted the attention of a wide range of researchers. However, state-of-the-art RL algorithms do not consider that physical environments do not wait for the RL agent to make decisions or updates. RL agents learn by periodically conducting computationally expensive gradient updates. When decision-making and gradient update tasks are carried out sequentially by the RL agent in a physical robot, it significantly increases the agent's response time. In a rapidly changing environment, this increased response time may be detrimental to the performance of the learning agent. Asynchronous RL methods, which separate the computation of decision-making and gradient updates, are a potential solution to this problem. However, only a few comparisons between asynchronous and synchronous RL have been made with physical robots. For this reason, the exact performance benefits of using asynchronous RL methods over synchronous RL methods are still unclear. In this study, we provide a performance comparison between asynchronous and synchronous RL using a physical robotic arm called Franka Emika Panda. Our experiments show that the agents learn faster and attain significantly more returns using asynchronous RL. Our experiments also demonstrate that the learning agent with a faster response time performs better than the agent with a slower response time, even if the agent with a slower response time performs a higher number of gradient updates.
comment: Presented at Alberta Robotics & Intelligent Systems Expo (RISE) Conference
PANDORA: Diffusion Policy Learning for Dexterous Robotic Piano Playing
We present PANDORA, a novel diffusion-based policy learning framework designed specifically for dexterous robotic piano performance. Our approach employs a conditional U-Net architecture enhanced with FiLM-based global conditioning, which iteratively denoises noisy action sequences into smooth, high-dimensional trajectories. To achieve precise key execution coupled with expressive musical performance, we design a composite reward function that integrates task-specific accuracy, audio fidelity, and high-level semantic feedback from a large language model (LLM) oracle. The LLM oracle assesses musical expressiveness and stylistic nuances, enabling dynamic, hand-specific reward adjustments. Further augmented by a residual inverse-kinematics refinement policy, PANDORA achieves state-of-the-art performance in the ROBOPIANIST environment, significantly outperforming baselines in both precision and expressiveness. Ablation studies validate the critical contributions of diffusion-based denoising and LLM-driven semantic feedback in enhancing robotic musicianship. Videos available at: https://taco-group.github.io/PANDORA
Enhancing Robustness in Manipulability Assessment: The Pseudo-Ellipsoid Approach
Manipulability analysis is a methodology employed to assess the capacity of an articulated system, at a specific configuration, to produce motion or exert force in diverse directions. The conventional method entails generating a virtual ellipsoid using the system's configuration and model. Yet, this approach poses challenges when applied to systems such as the human body, where direct access to such information is limited, necessitating reliance on estimations. Any inaccuracies in these estimations can distort the ellipsoid's configuration, potentially compromising the accuracy of the manipulability assessment. To address this issue, this article extends the standard approach by introducing the concept of the manipulability pseudo-ellipsoid. Through a series of theoretical analyses, simulations, and experiments, the article demonstrates that the proposed method exhibits reduced sensitivity to noise in sensory information, consequently enhancing the robustness of the approach.
comment: 8 pages, 10 figures
Simultaneous Ground Reaction Force and State Estimation via Constrained Moving Horizon Estimation
Accurate ground reaction force (GRF) estimation can significantly improve the adaptability of legged robots in various real-world applications. For instance, with estimated GRF and contact kinematics, the locomotion control and planning assist the robot in overcoming uncertain terrains. The canonical momentum-based methods, formulated as nonlinear observers, do not fully address the noisy measurements and the dependence between floating-base states and the generalized momentum dynamics. In this paper, we present a simultaneous ground reaction force and state estimation framework for legged robots, which systematically addresses the sensor noise and the coupling between states and dynamics. With the floating base orientation estimated separately, a decentralized Moving Horizon Estimation (MHE) method is implemented to fuse the robot dynamics, proprioceptive sensors, exteroceptive sensors, and deterministic contact complementarity constraints in a convex windowed optimization. The proposed method is shown to be capable of providing accurate GRF and state estimation on several legged robots, including the custom-designed humanoid robot Bucky, the open-source educational planar bipedal robot STRIDE, and the quadrupedal robot Unitree Go1, with a frequency of 200Hz and a past time window of 0.04s.
A Generalized Control Revision Method for Autonomous Driving Safety
Safety is one of the most crucial challenges of autonomous driving vehicles, and one solution to guarantee safety is to employ an additional control revision module after the planning backbone. Control Barrier Function (CBF) has been widely used because of its strong mathematical foundation on safety. However, the incompatibility with heterogeneous perception data and incomplete consideration of traffic scene elements make existing systems hard to be applied in dynamic and complex real-world scenarios. In this study, we introduce a generalized control revision method for autonomous driving safety, which adopts both vectorized perception and occupancy grid map as inputs and comprehensively models multiple types of traffic scene constraints based on a new proposed barrier function. Traffic elements are integrated into one unified framework, decoupled from specific scenario settings or rules. Experiments on CARLA, SUMO, and OnSite simulator prove that the proposed algorithm could realize safe control revision under complicated scenes, adapting to various planning backbones, road topologies, and risk types. Physical platform validation also verifies the real-world application feasibility.
Personalized Speech Emotion Recognition in Human-Robot Interaction using Vision Transformers
Emotions are an essential element in verbal communication, so understanding individuals' affect during a human-robot interaction (HRI) becomes imperative. This paper investigates the application of vision transformer models, namely ViT (Vision Transformers) and BEiT (BERT Pre-Training of Image Transformers) pipelines, for Speech Emotion Recognition (SER) in HRI. The focus is to generalize the SER models for individual speech characteristics by fine-tuning these models on benchmark datasets and exploiting ensemble methods. For this purpose, we collected audio data from different human subjects having pseudo-naturalistic conversations with the NAO robot. We then fine-tuned our ViT and BEiT-based models and tested these models on unseen speech samples from the participants. In the results, we show that fine-tuning vision transformers on benchmark datasets and and then using either these already fine-tuned models or ensembling ViT/BEiT models gets us the highest classification accuracies per individual when it comes to identifying four primary emotions from their speech: neutral, happy, sad, and angry, as compared to fine-tuning vanilla-ViTs or BEiTs.
comment: This work has been accepted for the IEEE Robotics and Automation Letters (RA-L)
Environment as Policy: Learning to Race in Unseen Tracks
Reinforcement learning (RL) has achieved outstanding success in complex robot control tasks, such as drone racing, where the RL agents have outperformed human champions in a known racing track. However, these agents fail in unseen track configurations, always requiring complete retraining when presented with new track layouts. This work aims to develop RL agents that generalize effectively to novel track configurations without retraining. The naive solution of training directly on a diverse set of track layouts can overburden the agent, resulting in suboptimal policy learning as the increased complexity of the environment impairs the agent's ability to learn to fly. To enhance the generalizability of the RL agent, we propose an adaptive environment-shaping framework that dynamically adjusts the training environment based on the agent's performance. We achieve this by leveraging a secondary RL policy to design environments that strike a balance between being challenging and achievable, allowing the agent to adapt and improve progressively. Using our adaptive environment shaping, one single racing policy efficiently learns to race in diverse challenging tracks. Experimental results validated in both simulation and the real world show that our method enables drones to successfully fly complex and unseen race tracks, outperforming existing environment-shaping techniques. Project page: http://rpg.ifi.uzh.ch/env_as_policy.
Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io/
comment: I want to withdraw the recent replacement (v4), given that the author is different, the title is also different and the content is totally different
In-Context Learning Enables Robot Action Prediction in LLMs ICRA 2025
Recently, Large Language Models (LLMs) have achieved remarkable success using in-context learning (ICL) in the language domain. However, leveraging the ICL capabilities within LLMs to directly predict robot actions remains largely unexplored. In this paper, we introduce RoboPrompt, a framework that enables off-the-shelf text-only LLMs to directly predict robot actions through ICL without training. Our approach first heuristically identifies keyframes that capture important moments from an episode. Next, we extract end-effector actions from these keyframes as well as the estimated initial object poses, and both are converted into textual descriptions. Finally, we construct a structured template to form ICL demonstrations from these textual descriptions and a task instruction. This enables an LLM to directly predict robot actions at test time. Through extensive experiments and analysis, RoboPrompt shows stronger performance over zero-shot and ICL baselines in simulated and real-world settings. Our project page is available at https://davidyyd.github.io/roboprompt.
comment: Published in ICRA 2025
Towards Effective Utilization of Mixed-Quality Demonstrations in Robotic Manipulation via Segment-Level Selection and Optimization ICRA 2025
Data is crucial for robotic manipulation, as it underpins the development of robotic systems for complex tasks. While high-quality, diverse datasets enhance the performance and adaptability of robotic manipulation policies, collecting extensive expert-level data is resource-intensive. Consequently, many current datasets suffer from quality inconsistencies due to operator variability, highlighting the need for methods to utilize mixed-quality data effectively. To mitigate these issues, we propose "Select Segments to Imitate" (S2I), a framework that selects and optimizes mixed-quality demonstration data at the segment level, while ensuring plug-and-play compatibility with existing robotic manipulation policies. The framework has three components: demonstration segmentation dividing origin data into meaningful segments, segment selection using contrastive learning to find high-quality segments, and trajectory optimization to refine suboptimal segments for better policy learning. We evaluate S2I through comprehensive experiments in simulation and real-world environments across six tasks, demonstrating that with only 3 expert demonstrations for reference, S2I can improve the performance of various downstream policies when trained with mixed-quality demonstrations. Project website: https://tonyfang.net/s2i/.
comment: ICRA 2025. Project website: https://tonyfang.net/s2i/
Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
Prof. Robot: Differentiable Robot Rendering Without Static and Self-Collisions
Differentiable rendering has gained significant attention in the field of robotics, with differentiable robot rendering emerging as an effective paradigm for learning robotic actions from image-space supervision. However, the lack of physical world perception in this approach may lead to potential collisions during action optimization. In this work, we introduce a novel improvement on previous efforts by incorporating physical awareness of collisions through the learning of a neural robotic collision classifier. This enables the optimization of actions that avoid collisions with static, non-interactable environments as well as the robot itself. To facilitate effective gradient optimization with the classifier, we identify the underlying issue and propose leveraging Eikonal regularization to ensure consistent gradients for optimization. Our solution can be seamlessly integrated into existing differentiable robot rendering frameworks, utilizing gradients for optimization and providing a foundation for future applications of differentiable rendering in robotics with improved reliability of interactions with the physical world. Both qualitative and quantitative experiments demonstrate the necessity and effectiveness of our method compared to previous solutions.
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods leverage large-scale pretrained knowledge, they disrupt the continuity of actions. Meanwhile, some VLA methods incorporate an additional diffusion head to predict continuous actions, relying solely on VLM-extracted features, which limits their reasoning capabilities. In this paper, we introduce HybridVLA, a unified framework that seamlessly integrates the strengths of both autoregressive and diffusion policies within a single large language model, rather than simply connecting them. To bridge the generation gap, a collaborative training recipe is proposed that injects the diffusion modeling directly into the next-token prediction. With this recipe, we find that these two forms of action prediction not only reinforce each other but also exhibit varying performance across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses these two predictions, leading to more robust control. In experiments, HybridVLA outperforms previous state-of-the-art VLA methods across various simulation and real-world tasks, including both single-arm and dual-arm robots, while demonstrating stable manipulation in previously unseen configurations.
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
SARO: Space-Aware Robot System for Terrain Crossing via Vision-Language Model
The application of vision-language models (VLMs) has achieved impressive success in various robotics tasks. However, there are few explorations for these foundation models used in quadruped robot navigation through terrains in 3D environments. In this work, we introduce SARO (Space Aware Robot System for Terrain Crossing), an innovative system composed of a high-level reasoning module, a closed-loop sub-task execution module, and a low-level control policy. It enables the robot to navigate across 3D terrains and reach the goal position. For high-level reasoning and execution, we propose a novel algorithmic system taking advantage of a VLM, with a design of task decomposition and a closed-loop sub-task execution mechanism. For low-level locomotion control, we utilize the Probability Annealing Selection (PAS) method to effectively train a control policy by reinforcement learning. Numerous experiments show that our whole system can accurately and robustly navigate across several 3D terrains, and its generalization ability ensures the applications in diverse indoor and outdoor scenarios and terrains. Project page: https://saro-vlm.github.io/
comment: 12 pages, 9 figures
ACL-QL: Adaptive Conservative Level in Q-Learning for Offline Reinforcement Learning
Offline Reinforcement Learning (RL), which operates solely on static datasets without further interactions with the environment, provides an appealing alternative to learning a safe and promising control policy. The prevailing methods typically learn a conservative policy to mitigate the problem of Q-value overestimation, but it is prone to overdo it, leading to an overly conservative policy. Moreover, they optimize all samples equally with fixed constraints, lacking the nuanced ability to control conservative levels in a fine-grained manner. Consequently, this limitation results in a performance decline. To address the above two challenges in a united way, we propose a framework, Adaptive Conservative Level in Q-Learning (ACL-QL), which limits the Q-values in a mild range and enables adaptive control on the conservative level over each state-action pair, i.e., lifting the Q-values more for good transitions and less for bad transitions. We theoretically analyze the conditions under which the conservative level of the learned Q-function can be limited in a mild range and how to optimize each transition adaptively. Motivated by the theoretical analysis, we propose a novel algorithm, ACL-QL, which uses two learnable adaptive weight functions to control the conservative level over each transition. Subsequently, we design a monotonicity loss and surrogate losses to train the adaptive weight functions, Q-function, and policy network alternatively. We evaluate ACL-QL on the commonly used D4RL benchmark and conduct extensive ablation studies to illustrate the effectiveness and state-of-the-art performance compared to existing offline DRL baselines.
comment: 19 pages, 4 figures, IEEE Transactions on Neural Networks and Learning Systems (2024)
Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipulation
Improving data utilization, especially for imperfect data from task failures, is crucial for robotic manipulation due to the challenging, time-consuming, and expensive data collection process in the real world. Current imitation learning (IL) typically discards imperfect data, focusing solely on successful expert data. While reinforcement learning (RL) can learn from explorations and failures, the sim2real gap and its reliance on dense reward and online exploration make it difficult to apply effectively in real-world scenarios. In this work, we aim to conquer the challenge of leveraging imperfect data without the need for reward information to improve the model performance for robotic manipulation in an offline manner. Specifically, we introduce a Self-Supervised Data Filtering framework (SSDF) that combines expert and imperfect data to compute quality scores for failed trajectory segments. High-quality segments from the failed data are used to expand the training dataset. Then, the enhanced dataset can be used with any downstream policy learning method for robotic manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks using the Franka robot arm demonstrated that the SSDF can accurately expand the training dataset with high-quality imperfect data and improve the success rates for all robotic manipulation tasks.
comment: 8 pages, 4 figures
OW-Rep: Open World Object Detection with Instance Representation Learning
Open World Object Detection(OWOD) addresses realistic scenarios where unseen object classes emerge, enabling detectors trained on known classes to detect unknown objects and incrementally incorporate the knowledge they provide. While existing OWOD methods primarily focus on detecting unknown objects, they often overlook the rich semantic relationships between detected objects, which are essential for scene understanding and applications in open-world environments (e.g., open-world tracking and novel class discovery). In this paper, we extend the OWOD framework to jointly detect unknown objects and learn semantically rich instance embeddings, enabling the detector to capture fine-grained semantic relationships between instances. To this end, we propose two modules that leverage the rich and generalizable knowledge of Vision Foundation Models(VFM). First, the Unknown Box Refine Module uses instance masks from the Segment Anything Model to accurately localize unknown objects. The Embedding Transfer Module then distills instance-wise semantic similarities from VFM features to the detector's embeddings via a relaxed contrastive loss, enabling the detector to learn a semantically meaningful and generalizable instance feature. Extensive experiments show that our method significantly improves both unknown object detection and instance embedding quality, while also enhancing performance in downstream tasks such as open-world tracking.
comment: Our project website can be found at https://sunohlee.github.io/OW-Rep/
Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
comment: 22 pages, 3 figures
Brain-inspired Action Generation with Spiking Transformer Diffusion Policy Model
Spiking Neural Networks (SNNs) has the ability to extract spatio-temporal features due to their spiking sequence. While previous research has primarily foucus on the classification of image and reinforcement learning. In our paper, we put forward novel diffusion policy model based on Spiking Transformer Neural Networks and Denoising Diffusion Probabilistic Model (DDPM): Spiking Transformer Modulate Diffusion Policy Model (STMDP), a new brain-inspired model for generating robot action trajectories. In order to improve the performance of this model, we develop a novel decoder module: Spiking Modulate De coder (SMD), which replaces the traditional Decoder module within the Transformer architecture. Additionally, we explored the substitution of DDPM with Denoising Diffusion Implicit Models (DDIM) in our frame work. We conducted experiments across four robotic manipulation tasks and performed ablation studies on the modulate block. Our model consistently outperforms existing Transformer-based diffusion policy method. Especially in Can task, we achieved an improvement of 8%. The proposed STMDP method integrates SNNs, dffusion model and Transformer architecture, which offers new perspectives and promising directions for exploration in brain-inspired robotics.
comment: 10 pages, 4 figures and 2 tables, conference submission
MTDP: A Modulated Transformer based Diffusion Policy Model
Recent research on robot manipulation based on Behavior Cloning (BC) has made significant progress. By combining diffusion models with BC, diffusion policiy has been proposed, enabling robots to quickly learn manipulation tasks with high success rates. However, integrating diffusion policy with high-capacity Transformer presents challenges, traditional Transformer architectures struggle to effectively integrate guiding conditions, resulting in poor performance in manipulation tasks when using Transformer-based models. In this paper, we investigate key architectural designs of Transformers and improve the traditional Transformer architecture by proposing the Modulated Transformer Diffusion Policy (MTDP) model for diffusion policy. The core of this model is the Modulated Attention module we proposed, which more effectively integrates the guiding conditions with the main input, improving the generative model's output quality and, consequently, increasing the robot's task success rate. In six experimental tasks, MTDP outperformed existing Transformer model architectures, particularly in the Toolhang experiment, where the success rate increased by 12\%. To verify the generality of Modulated Attention, we applied it to the UNet architecture to construct Modulated UNet Diffusion Policy model (MUDP), which also achieved higher success rates than existing UNet architectures across all six experiments. The Diffusion Policy uses Denoising Diffusion Probabilistic Models (DDPM) as the diffusion model. Building on this, we also explored Denoising Diffusion Implicit Models (DDIM) as the diffusion model, constructing the MTDP-I and MUDP-I model, which nearly doubled the generation speed while maintaining performance.
An Augmented Reality Interface for Teleoperating Robot Manipulators
Effective real-time robot control is essential as we increasingly integrate robots into various societal contexts. Moreover, obtaining high-quality demonstration data is critical for the success of data-driven approaches, such as imitation learning. Existing platforms for robot control and data collection in manipulation tasks often place significant physical and mental demands on the user, require additional hardware, or necessitate specialized knowledge. In this work, we introduce a novel augmented reality interface for teleoperating robotic manipulators, focusing on the user experience, particularly when performing complex, precise tasks. Designed for the Microsoft HoloLens 2, this interface leverages the adaptability of mixed reality, allowing users to control a physical robot via a digital end effector surrogate. We evaluate the effectiveness of our approach across four complex manipulation tasks and compare its performance with the 3D SpaceMouse, a traditional teleoperation method in robotics, and kinesthetic teaching, the assumed performance upperbound in robotic control. Our findings reveal that, quantitatively, our method addresses a key limitation of the SpaceMouse: its unintuitive mapping of rotations. Additionally, a user study demonstrates that our AR-based system achieves higher usability scores and recommendation likelihood, and lower task load compared to the SpaceMouse.
comment: 8 pages, 6 figures
The Spinning Blimp: Design and Control of a Novel Minimalist Aerial Vehicle Leveraging Rotational Dynamics and Locomotion ICRA 2025
This paper presents the Spinning Blimp, a novel lighter-than-air (LTA) aerial vehicle designed for low-energy stable flight. Utilizing an oblate spheroid helium balloon for buoyancy, the vehicle achieves minimal energy consumption while maintaining prolonged airborne states. The unique and low-cost design employs a passively arranged wing coupled with a propeller to induce a spinning behavior, providing inherent pendulum-like stabilization. We propose a control strategy that takes advantage of the continuous revolving nature of the spinning blimp to control translational motion. The cost-effectiveness of the vehicle makes it highly suitable for a variety of applications, such as patrolling, localization, air and turbulence monitoring, and domestic surveillance. Experimental evaluations affirm the design's efficacy and underscore its potential as a versatile and economically viable solution for aerial applications.
comment: Accepted at the IEEE international conference on robotics and automation(ICRA 2025)
Automated Layout and Control Co-Design of Robust Multi-UAV Transportation Systems
The joint optimization of physical parameters and controllers in robotic systems is challenging. This is due to the difficulties of predicting the effect that changes in physical parameters have on final performances. At the same time, physical and morphological modifications can improve robot capabilities, perhaps completely unlocking new skills and tasks. We present a novel approach to co-optimize the physical layout and the control of a cooperative aerial transportation system. The goal is to achieve the most precise and robust flight when carrying a payload. We assume the agents are connected to the payload through rigid attachments, essentially transforming the whole system into a larger flying object with ``thrust modules" at the attachment locations of the quadcopters. We investigate the optimal arrangement of the thrust modules around the payload, so that the resulting system achieves the best disturbance rejection capabilities. We propose a novel metric of robustness inspired by H2 control, and propose an algorithm to optimize the layout of the vehicles around the object and their controller altogether. We experimentally validate the effectiveness of our approach using fleets of three and four quadcopters and payloads of diverse shapes.
comment: 7 pages, 7 figures, journal paper (IEEE RA-L)
Global SLAM Using 5G ToA Integration: Performance Analysis with Unknown Base Stations and Loop Closure Alternatives
This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using both Aerolab indoor datasets with RGB-D cameras and the EuRoC MAV benchmark, complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across multiple SLAM configurations demonstrate that ToA integration enables consistent global positioning across all modes while maintaining local accuracy. For monocular configurations, ToA integration successfully resolves scale ambiguity and improves consistency. We further investigate scenarios with unknown base station positions and demonstrate that ToA measurements can effectively serve as an alternative to loop closure for drift correction. Comparative analysis with state-of-the-art methods, including UWB-VO, confirms our approach's robustness even with lower measurement frequencies and sequential base station operation. The results validate that 5G ToA integration provides substantial benefits for global SLAM applications, particularly in challenging indoor environments where accurate positioning is critical.
Cooperative distributed model predictive control for embedded systems: Experiments with hovercraft formations
This paper presents experiments for embedded cooperative distributed model predictive control applied to a team of hovercraft floating on an air hockey table. The hovercraft collectively solve a centralized optimal control problem in each sampling step via a stabilizing decentralized real-time iteration scheme using the alternating direction method of multipliers. The efficient implementation does not require a central coordinator, executes onboard the hovercraft, and facilitates sampling intervals in the millisecond range. The formation control experiments showcase the flexibility of the approach on scenarios with point-to-point transitions, trajectory tracking, collision avoidance, and moving obstacles.
SAFER-Splat: A Control Barrier Function for Safe Navigation with Online Gaussian Splatting Maps
SAFER-Splat (Simultaneous Action Filtering and Environment Reconstruction) is a real-time, scalable, and minimally invasive action filter, based on control barrier functions, for safe robotic navigation in a detailed map constructed at runtime using Gaussian Splatting (GSplat). We propose a novel Control Barrier Function (CBF) that not only induces safety with respect to all Gaussian primitives in the scene, but when synthesized into a controller, is capable of processing hundreds of thousands of Gaussians while maintaining a minimal memory footprint and operating at 15 Hz during online Splat training. Of the total compute time, a small fraction of it consumes GPU resources, enabling uninterrupted training. The safety layer is minimally invasive, correcting robot actions only when they are unsafe. To showcase the safety filter, we also introduce SplatBridge, an open-source software package built with ROS for real-time GSplat mapping for robots. We demonstrate the safety and robustness of our pipeline first in simulation, where our method is 20-50x faster, safer, and less conservative than competing methods based on neural radiance fields. Further, we demonstrate simultaneous GSplat mapping and safety filtering on a drone hardware platform using only on-board perception. We verify that under teleoperation a human pilot cannot invoke a collision. Our videos and codebase can be found at https://chengine.github.io/safer-splat.
comment: Accepted to International Conference on Robotics and Automation
Visibility-Aware RRT* for Safety-Critical Navigation of Perception-Limited Robots in Unknown Environments IROS 2025
Safe autonomous navigation in unknown environments remains a critical challenge for robots with limited sensing capabilities. While safety-critical control techniques, such as Control Barrier Functions (CBFs), have been proposed to ensure safety, their effectiveness relies on the assumption that the robot has complete knowledge of its surroundings. In reality, robots often operate with restricted field-of-view and finite sensing range, which can lead to collisions with unknown obstacles if the planner is agnostic to these limitations. To address this issue, we introduce the Visibility-Aware RRT* algorithm that combines sampling-based planning with CBFs to generate safe and efficient global reference paths in partially unknown environments. The algorithm incorporates a collision avoidance CBF and a novel visibility CBF, which guarantees that the robot remains within locally collision-free regions, enabling timely detection and avoidance of unknown obstacles. We conduct extensive experiments interfacing the path planners with two different safety-critical controllers, wherein our method outperforms all other compared baselines across both safety and efficiency aspects.
comment: Accepted to IEEE Robotics and Automation Letters (to be presented at IROS 2025). Our project page can be found at: https://www.taekyung.me/visibility-rrt
Sensory Glove-Based Surgical Robot User Interface ICRA
Robotic surgery has reached a high level of maturity and has become an integral part of standard surgical care. However, existing surgeon consoles are bulky, take up valuable space in the operating room, make surgical team coordination challenging, and their proprietary nature makes it difficult to take advantage of recent technological advances, especially in virtual and augmented reality. One potential area for further improvement is the integration of modern sensory gloves into robotic platforms, allowing surgeons to control robotic arms intuitively with their hand movements. We propose one such system that combines an HTC Vive tracker, a Manus Meta Prime 3 XR sensory glove, and SCOPEYE wireless smart glasses. The system controls one arm of a da Vinci surgical robot. In addition to moving the arm, the surgeon can use fingers to control the end-effector of the surgical instrument. Hand gestures are used to implement clutching and similar functions. In particular, we introduce clutching of the instrument orientation, a functionality unavailable in the da Vinci system. The vibrotactile elements of the glove are used to provide feedback to the user when gesture commands are invoked. A qualitative and quantitative evaluation has been conducted that compares the current device with the dVRK console. The system is shown to have excellent tracking accuracy, and the new interface allows surgeons to perform common surgical training tasks with minimal practice efficiently.
comment: 6 pages, 4 figures, 7 tables, submitted to International Conference on Robotics and Automation (ICRA) 2025
ArtFormer: Controllable Generation of Diverse 3D Articulated Objects CVPR 2025
This paper presents a novel framework for modeling and conditional generation of 3D articulated objects. Troubled by flexibility-quality tradeoffs, existing methods are often limited to using predefined structures or retrieving shapes from static datasets. To address these challenges, we parameterize an articulated object as a tree of tokens and employ a transformer to generate both the object's high-level geometry code and its kinematic relations. Subsequently, each sub-part's geometry is further decoded using a signed-distance-function (SDF) shape prior, facilitating the synthesis of high-quality 3D shapes. Our approach enables the generation of diverse objects with high-quality geometry and varying number of parts. Comprehensive experiments on conditional generation from text descriptions demonstrate the effectiveness and flexibility of our method.
comment: CVPR 2025. impl. repo: https://github.com/ShuYuMo2003/ArtFormer
Multiagent Systems
A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives
With the rapid development of artificial intelligence, intelligent decision-making techniques have gradually surpassed human levels in various human-machine competitions, especially in complex multi-agent cooperative task scenarios. Multi-agent cooperative decision-making involves multiple agents working together to complete established tasks and achieve specific objectives. These techniques are widely applicable in real-world scenarios such as autonomous driving, drone navigation, disaster rescue, and simulated military confrontations. This paper begins with a comprehensive survey of the leading simulation environments and platforms used for multi-agent cooperative decision-making. Specifically, we provide an in-depth analysis for these simulation environments from various perspectives, including task formats, reward allocation, and the underlying technologies employed. Subsequently, we provide a comprehensive overview of the mainstream intelligent decision-making approaches, algorithms and models for multi-agent systems (MAS). Theseapproaches can be broadly categorized into five types: rule-based (primarily fuzzy logic), game theory-based, evolutionary algorithms-based, deep multi-agent reinforcement learning (MARL)-based, and large language models(LLMs)reasoning-based. Given the significant advantages of MARL andLLMs-baseddecision-making methods over the traditional rule, game theory, and evolutionary algorithms, this paper focuses on these multi-agent methods utilizing MARL and LLMs-based techniques. We provide an in-depth discussion of these approaches, highlighting their methodology taxonomies, advantages, and drawbacks. Further, several prominent research directions in the future and potential challenges of multi-agent cooperative decision-making are also detailed.
comment: 54 pages, 24 figures
MAP: Evaluation and Multi-Agent Enhancement of Large Language Models for Inpatient Pathways
Inpatient pathways demand complex clinical decision-making based on comprehensive patient information, posing critical challenges for clinicians. Despite advancements in large language models (LLMs) in medical applications, limited research focused on artificial intelligence (AI) inpatient pathways systems, due to the lack of large-scale inpatient datasets. Moreover, existing medical benchmarks typically concentrated on medical question-answering and examinations, ignoring the multifaceted nature of clinical decision-making in inpatient settings. To address these gaps, we first developed the Inpatient Pathway Decision Support (IPDS) benchmark from the MIMIC-IV database, encompassing 51,274 cases across nine triage departments and 17 major disease categories alongside 16 standardized treatment options. Then, we proposed the Multi-Agent Inpatient Pathways (MAP) framework to accomplish inpatient pathways with three clinical agents, including a triage agent managing the patient admission, a diagnosis agent serving as the primary decision maker at the department, and a treatment agent providing treatment plans. Additionally, our MAP framework includes a chief agent overseeing the inpatient pathways to guide and promote these three clinician agents. Extensive experiments showed our MAP improved the diagnosis accuracy by 25.10% compared to the state-of-the-art LLM HuatuoGPT2-13B. It is worth noting that our MAP demonstrated significant clinical compliance, outperforming three board-certified clinicians by 10%-12%, establishing a foundation for inpatient pathways systems.
LIVEPOINT: Fully Decentralized, Safe, Deadlock-Free Multi-Robot Control in Cluttered Environments with High-Dimensional Inputs
Fully decentralized, safe, and deadlock-free multi-robot navigation in dynamic, cluttered environments is a critical challenge in robotics. Current methods require exact state measurements in order to enforce safety and liveness e.g. via control barrier functions (CBFs), which is challenging to achieve directly from onboard sensors like lidars and cameras. This work introduces LIVEPOINT, a decentralized control framework that synthesizes universal CBFs over point clouds to enable safe, deadlock-free real-time multi-robot navigation in dynamic, cluttered environments. Further, LIVEPOINT ensures minimally invasive deadlock avoidance behavior by dynamically adjusting agents' speeds based on a novel symmetric interaction metric. We validate our approach in simulation experiments across highly constrained multi-robot scenarios like doorways and intersections. Results demonstrate that LIVEPOINT achieves zero collisions or deadlocks and a 100% success rate in challenging settings compared to optimization-based baselines such as MPC and ORCA and neural methods such as MPNet, which fail in such environments. Despite prioritizing safety and liveness, LIVEPOINT is 35% smoother than baselines in the doorway environment, and maintains agility in constrained environments while still being safe and deadlock-free.
Towards Better Sample Efficiency in Multi-Agent Reinforcement Learning via Exploration
Multi-agent reinforcement learning has shown promise in learning cooperative behaviors in team-based environments. However, such methods often demand extensive training time. For instance, the state-of-the-art method TiZero takes 40 days to train high-quality policies for a football environment. In this paper, we hypothesize that better exploration mechanisms can improve the sample efficiency of multi-agent methods. We propose two different approaches for better exploration in TiZero: a self-supervised intrinsic reward and a random network distillation bonus. Additionally, we introduce architectural modifications to the original algorithm to enhance TiZero's computational efficiency. We evaluate the sample efficiency of these approaches through extensive experiments. Our results show that random network distillation improves training sample efficiency by 18.8% compared to the original TiZero. Furthermore, we evaluate the qualitative behavior of the models produced by both variants against a heuristic AI, with the self-supervised reward encouraging possession and random network distillation leading to a more offensive performance. Our results highlights the applicability of our random network distillation variant in practical settings. Lastly, due to the nature of the proposed method, we acknowledge its use beyond football simulation, especially in environments with strong multi-agent and strategic aspects.
comment: 8 pages, 3 figures
Practical Abstractions for Model Checking Continuous-Time Multi-Agent Systems
Model checking of temporal logics in a well established technique to verify and validate properties of multi-agent systems (MAS). However, practical model checking requires input models of manageable size. In this paper, we extend the model reduction method by variable-based abstraction, proposed recently by Jamroga and Kim, to the verification of real-time systems and properties. To this end, we define a real-time extension of MAS graphs, extend the abstraction procedure, and prove its correctness for the universal fragment of Timed Computation Tree Logic (TCTL). Besides estimating the theoretical complexity gains, we present an experimental evaluation for a simplified model of the Estonian voting system and verification using the Uppaal model checker.
Energy-Aware Task Allocation for Teams of Multi-mode Robots
This work proposes a novel multi-robot task allocation framework for robots that can switch between multiple modes, e.g., flying, driving, or walking. We first provide a method to encode the multi-mode property of robots as a graph, where the mode of each robot is represented by a node. Next, we formulate a constrained optimization problem to decide both the task to be allocated to each robot as well as the mode in which the latter should execute the task. The robot modes are optimized based on the state of the robot and the environment, as well as the energy required to execute the allocated task. Moreover, the proposed framework is able to encompass kinematic and dynamic models of robots alike. Furthermore, we provide sufficient conditions for the convergence of task execution and allocation for both robot models.
comment: This work has been submitted to the IEEE for possible publication
Identifying Cooperative Personalities in Multi-agent Contexts through Personality Steering with Representation Engineering
As Large Language Models (LLMs) gain autonomous capabilities, their coordination in multi-agent settings becomes increasingly important. However, they often struggle with cooperation, leading to suboptimal outcomes. Inspired by Axelrod's Iterated Prisoner's Dilemma (IPD) tournaments, we explore how personality traits influence LLM cooperation. Using representation engineering, we steer Big Five traits (e.g., Agreeableness, Conscientiousness) in LLMs and analyze their impact on IPD decision-making. Our results show that higher Agreeableness and Conscientiousness improve cooperation but increase susceptibility to exploitation, highlighting both the potential and limitations of personality-based steering for aligning AI agents.
comment: Poster, Technical AI Safety Conference 2025
Stable Task Allocation in Multi-Agent Systems with Lexicographic Preferences
Motivated by the increasing interest in the explicit representation and handling of various "preference" structures arising in modern digital economy, this work introduces a new class of "one-to-many stable-matching" problems where a set of atomic tasks must be stably allocated to a set of agents. An important characteristic of these stable-matching problems is the very arbitrary specification of the task subsets constituting "feasible" allocations for each agent. It is shown that as long as the agents rank their feasible task allocations lexicographically with respect to their stated preferences for each atomic task, matching stability reduces to the absence of blocking agent-task pairs. This result, together with a pertinent graphical representation of feasible allocations, enable (i) the representation of the space of stable matchings as a set of linear constraints with binary variables, and (ii) the specification and handling of certain notions of optimality within this space of stable matchings. The last part of the paper also addresses the notion of "substitutability" in the considered problem context.
When Should We Orchestrate Multiple Agents?
Strategies for orchestrating the interactions between multiple agents, both human and artificial, can wildly overestimate performance and underestimate the cost of orchestration. We design a framework to orchestrate agents under realistic conditions, such as inference costs or availability constraints. We show theoretically that orchestration is only effective if there are performance or cost differentials between agents. We then empirically demonstrate how orchestration between multiple agents can be helpful for selecting agents in a simulated environment, picking a learning strategy in the infamous Rogers' Paradox from social science, and outsourcing tasks to other agents during a question-answer task in a user study.
A Generalist Hanabi Agent
Traditional multi-agent reinforcement learning (MARL) systems can develop cooperative strategies through repeated interactions. However, these systems are unable to perform well on any other setting than the one they have been trained on, and struggle to successfully cooperate with unfamiliar collaborators. This is particularly visible in the Hanabi benchmark, a popular 2-to-5 player cooperative card-game which requires complex reasoning and precise assistance to other agents. Current MARL agents for Hanabi can only learn one specific game-setting (e.g., 2-player games), and play with the same algorithmic agents. This is in stark contrast to humans, who can quickly adjust their strategies to work with unfamiliar partners or situations. In this paper, we introduce Recurrent Replay Relevance Distributed DQN (R3D2), a generalist agent for Hanabi, designed to overcome these limitations. We reformulate the task using text, as language has been shown to improve transfer. We then propose a distributed MARL algorithm that copes with the resulting dynamic observation- and action-space. In doing so, our agent is the first that can play all game settings concurrently, and extend strategies learned from one setting to other ones. As a consequence, our agent also demonstrates the ability to collaborate with different algorithmic agents -- agents that are themselves unable to do so. The implementation code is available at: $\href{https://github.com/chandar-lab/R3D2-A-Generalist-Hanabi-Agent}{R3D2-A-Generalist-Hanabi-Agent}$
Prompt Flow Integrity to Prevent Privilege Escalation in LLM Agents
Large Language Models (LLMs) are combined with plugins to create powerful LLM agents that provide a wide range of services. Unlike traditional software, LLM agent's behavior is determined at runtime by natural language prompts from either user or plugin's data. This flexibility enables a new computing paradigm with unlimited capabilities and programmability, but also introduces new security risks, vulnerable to privilege escalation attacks. Moreover, user prompt is prone to be interpreted in an insecure way by LLM agents, creating non-deterministic behaviors that can be exploited by attackers. To address these security risks, we propose Prompt Flow Integrity (PFI), a system security-oriented solution to prevent privilege escalation in LLM agents. Analyzing the architectural characteristics of LLM agents, PFI features three mitigation techniques -- i.e., untrusted data identification, enforcing least privilege on LLM agents, and validating unsafe data flows. Our evaluation result shows that PFI effectively mitigates privilege escalation attacks while successfully preserving the utility of LLM agents.
Conversational Self-Play for Discovering and Understanding Psychotherapy Approaches
This paper explores conversational self-play with LLMs as a scalable approach for analyzing and exploring psychotherapy approaches, evaluating how well AI-generated therapeutic dialogues align with established modalities.
comment: AI4X conference submission
Two-person Positive Shortest Path Games Have Nash Equilibria in Pure Stationary Strategies
We prove that every finite two-person shortest path game, where the local cost of every move is positive for each player, has a Nash equilibrium (NE) in pure stationary strategies, which can be computed in polynomial time. We also extend the existence result to infinite graphs with finite out-degrees. Moreover, our proof gives that a terminal NE (in which the play is a path from the initial position to a terminal) exists provided at least one of the two players can guarantee reaching a terminal. If none of the players can do it, in other words, if each of the two players has a strategy that separates all terminals from the initial position $s$, then, obviously, a cyclic NE exists, although its cost is infinite for both players, since we restrict ourselves to positive games. We conjecture that a terminal NE exists too, provided there exists a directed path from $s$ to a terminal. However, this is open. We extend our result to short paths interdiction games, where at each vertex, we allow one player to block some of the arcs and the other player to choose one of the non-blocked arcs. Assuming that blocking sets are chosen from an independence system given by an oracle, we give an algorithm for computing a NE in time $O(|E|(\log|V|+\tau))$, where $V$ is the set of vertices, $E$ is the set of arcs, and $\tau$ is the maximum time taken by the oracle on any input.
Scaling Large Language Model-based Multi-Agent Collaboration ICLR-2025
Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning. Inspired by the neural scaling law--increasing neurons enhances performance, this study explores whether the continuous addition of collaborative agents can yield similar benefits. Technically, we utilize directed acyclic graphs to organize agents into a multi-agent collaboration network (MacNet), upon which their interactive reasoning is topologically orchestrated for autonomous task solving. Extensive evaluations reveal that it effectively supports collaboration among over a thousand agents, with irregular topologies outperforming regular ones. We also identify a collaborative scaling law--the overall performance follows a logistic growth pattern as agents scale, with collaborative emergence occurring earlier than traditional neural emergence. We speculate this may be because scaling agents catalyzes their multidimensional considerations during interactive reflection and refinement, thereby producing more comprehensive artifacts. The code is available at https://github.com/OpenBMB/ChatDev/tree/macnet.
comment: Accepted to ICLR-2025
Sable: a Performant, Efficient and Scalable Sequence Model for MARL
As multi-agent reinforcement learning (MARL) progresses towards solving larger and more complex problems, it becomes increasingly important that algorithms exhibit the key properties of (1) strong performance, (2) memory efficiency and (3) scalability. In this work, we introduce Sable, a performant, memory efficient and scalable sequence modeling approach to MARL. Sable works by adapting the retention mechanism in Retentive Networks (Sun et al., 2023) to achieve computationally efficient processing of multi-agent observations with long context memory for temporal reasoning. Through extensive evaluations across six diverse environments, we demonstrate how Sable is able to significantly outperform existing state-of-the-art methods in a large number of diverse tasks (34 out of 45 tested). Furthermore, Sable maintains performance as we scale the number of agents, handling environments with more than a thousand agents while exhibiting a linear increase in memory usage. Finally, we conduct ablation studies to isolate the source of Sable's performance gains and confirm its efficient computational memory usage.
Systems and Control (CS)
Data-Driven Estimation of Structured Singular Values
Estimating the size of the modeling error is crucial for robust control. Over the years, numerous metrics have been developed to quantify the model error in a control relevant manner. One of the most important such metrics is the structured singular value, as it leads to necessary and sufficient conditions for ensuring stability and robustness in feedback control under structured model uncertainty. Although the computation of the structured singular value is often intractable, lower and upper bounds for it can often be obtained if a model of the system is known. In this paper, we introduce a fully data-driven method to estimate a lower bound for the structured singular value, by conducting experiments on the system and applying power iterations to the collected data. Our numerical simulations demonstrate that this method effectively lower bounds the structured singular value, yielding results comparable to those obtained using the Robust Control toolbox of MATLAB.
comment: 6 pages
Kernel-based error bounds of bilinear Koopman surrogate models for nonlinear data-driven control
We derive novel deterministic bounds on the approximation error of data-based bilinear surrogate models for unknown nonlinear systems. The surrogate models are constructed using kernel-based extended dynamic mode decomposition to approximate the Koopman operator in a reproducing kernel Hilbert space. Unlike previous methods that require restrictive assumptions on the invariance of the dictionary, our approach leverages kernel-based dictionaries that allow us to control the projection error via pointwise error bounds, overcoming a significant limitation of existing theoretical guarantees. The derived state- and input-dependent error bounds allow for direct integration into Koopman-based robust controller designs with closed-loop guarantees for the unknown nonlinear system. Numerical examples illustrate the effectiveness of the proposed framework.
Continuous-time Data-driven Barrier Certificate Synthesis
We consider the problem of verifying safety for continuous-time dynamical systems. Developing upon recent advancements in data-driven verification, we use only a finite number of sampled trajectories to learn a barrier certificate, namely a function which verifies safety. We train a safety-informed neural network to act as this certificate, with an appropriately designed loss function to encompass the safety conditions. In addition, we provide probabilistic generalisation guarantees from discrete samples of continuous trajectories, to unseen continuous ones. Numerical investigations demonstrate the efficacy of our approach and contrast it with related results in the literature.
comment: Submitted to L-CSS and CDC
On Sampling Time and Invariance
Invariant sets define regions of the state space where system constraints are always satisfied. The majority of numerical techniques for computing invariant sets - whether exact, approximate, or based on pure data-driven rollouts - have been developed for discrete-time systems with a fixed sampling time. Understanding how invariant sets change with sampling time is critical for designing adaptive-sampling control schemes that ensure constraint satisfaction. This paper investigates the relationship between control invariance and the sampling frequency of the feedback controller. We introduce the notion of M-step hold control invariance and demonstrate that it generalizes traditional control invariance. We propose a computational method to calculate M-step hold invariants and show its practical use to assess the link between the feedback control sampling frequency and constraint satisfaction. We extend the framework to account for robustness against model mismatches and discretization errors, paving the way for adaptive-sampling constrained control strategies.
Mixed Small Gain and Phase Theorem: A new view using Scale Relative Graphs
We introduce a novel approach to feedback stability analysis for linear time-invariant (LTI) systems, overcoming the limitations of the sectoriality assumption in the small phase theorem. While phase analysis for single-input single-output (SISO) systems is well-established, multi-input multi-output (MIMO) systems lack a comprehensive phase analysis until recent advances introduced with the small-phase theorem. A limitation of the small-phase theorem is the sectorial condition, which states that an operator's eigenvalues must lie within a specified angle sector of the complex plane. We propose a framework based on Scaled Relative Graphs (SRGs) to remove this assumption. We derive two main results: a graphical set-based stability condition using SRGs and a small-phase theorem with no sectorial assumption. These results broaden the scope of phase analysis and feedback stability for MIMO systems.
comment: To appear in ECC 2025
Mixtures of ensembles: System separation and identification via optimal transport
Crowd dynamics and many large biological systems can be described as populations of agents or particles, which can only be observed on aggregate population level. Identifying the dynamics of agents is crucial for understanding these large systems. However, the population of agents is typically not homogeneous, and thus the aggregate observations consist of the superposition of multiple ensembles each governed by individual dynamics. In this work, we propose an optimal transport framework to jointly separate the population into several ensembles and identify each ensemble's dynamical system, based on aggregate observations of the population. We propose a bi-convex optimization problem, which we solve using a block coordinate descent with convergence guarantees. In numerical experiments, we demonstrate that the proposed approach exhibits close-to-oracle performance also in noisy settings, yielding accurate estimates of both the ensembles and the parameters governing their dynamics.
comment: 6 pages, 9 figures
Artificial Spacetimes for Reactive Control of Resource-Limited Robots
Field-based reactive control provides a minimalist, decentralized route to guiding robots that lack onboard computation. Such schemes are well suited to resource-limited machines like microrobots, yet implementation artifacts, limited behaviors, and the frequent lack of formal guarantees blunt adoption. Here, we address these challenges with a new geometric approach called artificial spacetimes. We show that reactive robots navigating control fields obey the same dynamics as light rays in general relativity. This surprising connection allows us to adopt techniques from relativity and optics for constructing and analyzing control fields. When implemented, artificial spacetimes guide robots around structured environments, simultaneously avoiding boundaries and executing tasks like rallying or sorting, even when the field itself is static. We augment these capabilities with formal tools for analyzing what robots will do and provide experimental validation with silicon-based microrobots. Combined, this work provides a new framework for generating composed robot behaviors with minimal overhead.
Parameter Invariance Analysis of Moment Equations Using Dulmage-Mendelsohn Decomposition
Living organisms maintain stable functioning amid environmental fluctuations through homeostasis, a mechanism that preserves a system's behavior despite changes in environmental conditions. To elucidate homeostasis in stochastic biochemical reactions, theoretical tools for assessing population-level invariance under parameter perturbations are crucial. In this paper, we propose a systematic method for identifying the stationary moments that remain invariant under parameter perturbations by leveraging the structural properties of the stationary moment equations. A key step in this development is addressing the underdetermined nature of moment equations, which has traditionally made it difficult to characterize how stationary moments depend on system parameters. To overcome this, we utilize the Dulmage-Mendelsohn (DM) decomposition of the coefficient matrix to extract welldetermined subequations and reveal their hierarchical structure. Leveraging this structure, we identify stationary moments whose partial derivatives with respect to parameters are structurally zero, facilitating the exploration of fundamental constraints that govern homeostatic behavior in stochastic biochemical systems.
Local-Global Learning of Interpretable Control Policies: The Interface between MPC and Reinforcement Learning
Making optimal decisions under uncertainty is a shared problem among distinct fields. While optimal control is commonly studied in the framework of dynamic programming, it is approached with differing perspectives of the Bellman optimality condition. In one perspective, the Bellman equation is used to derive a global optimality condition useful for iterative learning of control policies through interactions with an environment. Alternatively, the Bellman equation is also widely adopted to derive tractable optimization-based control policies that satisfy a local notion of optimality. By leveraging ideas from the two perspectives, we present a local-global paradigm for optimal control suited for learning interpretable local decision makers that approximately satisfy the global Bellman equation. The benefits and practical complications in local-global learning are discussed. These aspects are exemplified through case studies, which give an overview of two distinct strategies for unifying reinforcement learning and model predictive control. We discuss the challenges and trade-offs in these local-global strategies, towards highlighting future research opportunities for safe and optimal decision-making under uncertainty.
comment: Preprint for ACC 2025 tutorial
Robust Decision-Making Via Free Energy Minimization
Despite their groundbreaking performance, state-of-the-art autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training/environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge when deploying agents in the real world. Here, departing from mainstream views seeking robustness through training, we introduce DR-FREE, a free energy model that installs this core property by design. It directly wires robustness into the agent decision-making mechanisms via free energy minimization. By combining a robust extension of the free energy principle with a novel resolution engine, DR-FREE returns a policy that is optimal-yet-robust against ambiguity. Moreover, for the first time, it reveals the mechanistic role of ambiguity on optimal decisions and requisite Bayesian belief updating. We evaluate DR-FREE on an experimental testbed involving real rovers navigating an ambiguous environment filled with obstacles. Across all the experiments, DR-FREE enables robots to successfully navigate towards their goal even when, in contrast, standard free energy minimizing agents that do not use DR-FREE fail. In short, DR-FREE can tackle scenarios that elude previous methods: this milestone may inspire both deployment in multi-agent settings and, at a perhaps deeper level, the quest for a biologically plausible explanation of how natural agents - with little or no training - survive in capricious environments.
comment: Contains main text and supplementary information
Prioritized Planning for Continuous-time Lifelong Multi-agent Pathfinding
Multi-agent Path Finding (MAPF) is the problem of planning collision-free movements of agents such that they get from where they are to where they need to be. Commonly, agents are located on a graph and can traverse edges. This problem has many variations and has been studied for decades. Two such variations are the continuous-time and the lifelong MAPF problems. In the continuous-time MAPF problem, edges can have non-unit lengths and agents can traverse them at any real-valued time. Additionally, agent volumes are often included. In the lifelong MAPF problem, agents must attend to a continuous stream of incoming tasks. Much work has been devoted to designing solution methods within these two areas. However, to our knowledge, the combined problem of continuous-time lifelong MAPF has yet to be addressed. This work addresses continuous-time lifelong MAPF with agent volumes by presenting the fast and sub-optimal Continuous-time Prioritized Lifelong Planner (CPLP). CPLP continuously re-prioritizes tasks, assigns agents to them, and computes agent plans using a combination of two path planners; one based on CCBS and the other on SIPP. Experimental results with up to $400$ agents on graphs with $4000$ vertices demonstrate average computation times below $20$ ms per call. In online settings where available time to compute plans is limited, CPLP ensures collision-free movement even when failing to meet these time limits. Therefore, the robustness of CPLP highlights its potential for real-world applications.
Laplace-Net: Learning Dynamical Systems with External Forcing
Modelling forced dynamical systems - where an external input drives the system state - is critical across diverse domains such as engineering, finance, and the natural sciences. In this work, we propose Laplace-Net, a decoupled, solver-free neural framework for learning forced and delay-aware systems. It leverages a Laplace transform-based approach to decompose internal dynamics, external inputs, and initial values into established theoretical concepts, enhancing interpretability. Laplace-Net promotes transferability since the system can be rapidly re-trained or fine-tuned for new forcing signals, providing flexibility in applications ranging from controller adaptation to long-horizon forecasting. Experimental results on eight benchmark datasets - including linear, non-linear, and delayed systems - demonstrate the method's improved accuracy and robustness compared to state-of-the-art approaches, particularly in handling complex and previously unseen inputs.
comment: Preprint - under review
Rapid and Inexpensive Inertia Tensor Estimation from a Single Object Throw
The inertia tensor is an important parameter in many engineering fields, but measuring it can be cumbersome and involve multiple experiments or accurate and expensive equipment. We propose a method to measure the moment of inertia tensor of a rigid body from a single spinning throw, by attaching a small and inexpensive stand-alone measurement device consisting of a gyroscope, accelerometer and a reaction wheel. The method includes a compensation for the increase of moment of inertia due to adding the measurement device to the body, and additionally obtains the location of the centre of gravity of the body as an intermediate result. Experiments performed with known rigid bodies show that the mean accuracy is around 2\%.
comment: This work has been submitted to the IEEE for possible publication
LIVEPOINT: Fully Decentralized, Safe, Deadlock-Free Multi-Robot Control in Cluttered Environments with High-Dimensional Inputs
Fully decentralized, safe, and deadlock-free multi-robot navigation in dynamic, cluttered environments is a critical challenge in robotics. Current methods require exact state measurements in order to enforce safety and liveness e.g. via control barrier functions (CBFs), which is challenging to achieve directly from onboard sensors like lidars and cameras. This work introduces LIVEPOINT, a decentralized control framework that synthesizes universal CBFs over point clouds to enable safe, deadlock-free real-time multi-robot navigation in dynamic, cluttered environments. Further, LIVEPOINT ensures minimally invasive deadlock avoidance behavior by dynamically adjusting agents' speeds based on a novel symmetric interaction metric. We validate our approach in simulation experiments across highly constrained multi-robot scenarios like doorways and intersections. Results demonstrate that LIVEPOINT achieves zero collisions or deadlocks and a 100% success rate in challenging settings compared to optimization-based baselines such as MPC and ORCA and neural methods such as MPNet, which fail in such environments. Despite prioritizing safety and liveness, LIVEPOINT is 35% smoother than baselines in the doorway environment, and maintains agility in constrained environments while still being safe and deadlock-free.
Compensating Hysteresis and Mechanical Misalignment in Piezo-Stepper Actuators
Piezo-stepper actuators enable accurate positioning through the sequential contraction and expansion of piezoelectric elements, generating a walking motion. The aim of this paper is to reduce velocity ripples caused by parasitic effects, due to hysteresis in the piezoelectric material and mechanical misalignments, through suitable feedforward control. The presented approach involves the integration of a rate-dependent hysteresis model with a position-dependent feedforward learning scheme to compensate for these effects. Experimental results show that this approach leads to a significant reduction in the velocity ripples, even when the target velocity is changed. These results enable the use of piezo-stepper actuators in applications requiring high positioning accuracy and stiffness over a long stroke, without requiring expensive position sensors for high-gain feedback.
comment: 14 pages, 14 figures, submitted to journal
Innovation diffusion dynamics toward long-term behavioral shifts
Sustainable technologies and services can play a pivotal role in the transition to "greener" habits. Their widespread adoption is thus crucial, and understanding how to foster this phenomenon in a systematic way could have a major impact on our future. With this in mind, in this work we propose an extension of the Friedkin-Johnsen opinion dynamics model toward characterizing the long-term impact of (structural) fostering policies. We then propose alternative nudging strategies that target a trade-off between widespread adoption and investments under budget constraints, showing the impact of our modeling and design choices on inclination shifts over a set of numerical tests.
comment: Submitted to L-CSS and CDC 2025
A Unified Framework for Innovation-based Stochastic and Deterministic Event Triggers
Resources such as bandwidth and energy are limited in many wireless communications use cases, especially when large numbers of sensors and fusion centers need to exchange information frequently. One opportunity to overcome resource constraints is the use of event-based transmissions and estimation to transmit only information that contributes significantly to the reconstruction of the system's state. The design of efficient triggering policies and estimators is crucial for successful event-based transmissions. While previously deterministic and stochastic event triggering policies have been treated separately, this paper unifies the two approaches and gives insights into the design of consistent trigger-matching estimators. Two different estimators are presented, and different pairs of triggers and estimators are evaluated through simulation studies.
comment: 8 pages, 5 figures, submitted to FUSION 2025
Designing RF-Powered Battery-Less Electronic Shelf Labels With COTS Components
This paper presents a preliminary study exploring the feasibility of designing batteryless electronic shelf labels (ESLs) powered by radio frequency wireless power transfer using commercial off-the-shelf components. The proposed ESL design is validated through a dedicated testbed and involves a detailed analysis of design choices, including energy consumption, energy conversion, and storage solutions. A leaded aluminium electrolytic capacitor is selected as the primary energy storage element, balancing cost and performance while maintaining compactness. Experimental evaluations demonstrate that an ESL can update its display within 4 to 120 minutes, depending on input power and RF frequency, with harvester efficiencies reaching up to 30 %. Challenges such as low harvester efficiency, extended update times, and hardware constraints are identified, highlighting opportunities for future optimizations. This work provides valuable insights into system design considerations for RF-powered ESLs and establishes a foundation for further research in energy-neutral Internet of Things applications.
comment: 12 pages, 5 figures and accepted for presentation at the IEEE Wireless Power Technology Conference and Expo
PD-Skygroundhook Controller for Semi-Active Suspension System Using Magnetorheological Fluid Dampers IROS
This paper presents a Proportional-Derivative (PD) Skygroundhook controller for magnetorheological (MR) dampers in semi-active suspensions. Traditional skyhook, Groundhook, and hybrid Skygroundhook controllers are well-known for their ability to reduce body and wheel vibrations; however, each approach has limitations in handling a broad frequency spectrum and often relies on abrupt switching. By adding a derivative action to the classical Skygroundhook logic, the proposed PD-Skygroundhook method enhances high-frequency damping and stabilizes transition behaviors. By leveraging the fast response of MR dampers, our controller adjusts the damper force continuously in real time to match the desired damping force of PD-Skygroundhook controller with efficient computation. Experimental evaluations under bump excitations and sine-sweeping tests demonstrate a significant reduction in sprung mass acceleration and unsprung mass acceleration, outperforming standard Skygroundhook in both ride comfort and road handling. These results highlight that the derivative action effectively reduces resonance peaks and smooths out force transitions of regular Skygroundhook. Our method offers a robust alternative to more computationally demanding semi-active controllers.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
A Hierarchical Region-Based Approach for Efficient Multi-Robot Exploration
Multi-robot autonomous exploration in an unknown environment is an important application in robotics.Traditional exploration methods only use information around frontier points or viewpoints, ignoring spatial information of unknown areas. Moreover, finding the exact optimal solution for multi-robot task allocation is NP-hard, resulting in significant computational time consumption. To address these issues, we present a hierarchical multi-robot exploration framework using a new modeling method called RegionGraph. The proposed approach makes two main contributions: 1) A new modeling method for unexplored areas that preserves their spatial information across the entire space in a weighted graph called RegionGraph. 2) A hierarchical multi-robot exploration framework that decomposes the global exploration task into smaller subtasks, reducing the frequency of global planning and enabling asynchronous exploration. The proposed method is validated through both simulation and real-world experiments, demonstrating a 20% improvement in efficiency compared to existing methods.
Joint Antenna Position and Transmit Power Optimization for Pinching Antenna-Assisted ISAC Systems
This letter explores how pinching antennas, an advanced flexible-antenna system, can enhance the performance of integrated sensing and communication (ISAC) systems by leveraging their adaptability, cost-effectiveness, and ability to facilitate line-of-sight transmission. To achieve this, a joint antenna positioning and transmit power optimization problem is formulated to maximize the total communication data rate while meeting the target sensing requirements and the system energy constraint. To address the complex non-convex optimization problem, we propose a maximum entropy-based reinforcement learning (MERL) solution. By maximizing cumulative reward and policy entropy, this approach effectively balances exploration and exploitation to enhance robustness. Numerical results demonstrate that the proposed MERL algorithm surpasses other benchmark schemes in cumulative reward, total data rate, sensing signal-to-noise ratio, and stability.
comment: 5 pages, 5 figures
Robust Co-Optimization of Distribution Network Hardening and Mobile Resource Scheduling with Decision-Dependent Uncertainty
This paper studies the robust co-planning of proactive network hardening and mobile hydrogen energy resources (MHERs) scheduling, which is to enhance the resilience of power distribution network (PDN) against the disastrous events. A decision-dependent robust optimization model is formulated with min-max resilience constraint and discrete recourse structure, which helps achieve the load survivability target considering endogenous uncertainties. Different from the traditional model with a fixed uncertainty set, we adopt a dynamic representation that explicitly captures the endogenous uncertainties of network contingency as well as the available hydrogen storage levels of MHERs, which induces a decision-dependent uncertainty (DDU) set. Also, the multi-period adaptive routing and energy scheduling of MHERs are modeled as a mixed-integer recourse problem for further decreasing the resilience cost. Then, a nested parametric column-and-constraint generation (N-PC&CG) algorithm is customized and developed to solve this challenging formulation. By leveraging the structural property of the DDU set as well as the combination of discrete recourse decisions and the corresponding extreme points, we derive a strengthened solution scheme with nontrivial enhancement strategies to realize efficient and exact computation. Numerical results on 14-bus test system and 56-bus real-world distribution network demonstrate the resilience benefits and economical feasibility of the proposed method under different damage severity levels. Moreover, the enhanced N-PC&CG shows a superior solution capability to support prompt decisions for resilient planning with DDU models.
comment: 15 pages, 3 figures
In vivo validation of Wireless Power Transfer System for Magnetically Controlled Robotic Capsule Endoscopy
This paper presents the in vivo validation of an inductive wireless power transfer (WPT) system integrated for the first time into a magnetically controlled robotic capsule endoscopy platform. The proposed system enables continuous power delivery to the capsule without the need for onboard batteries, thus extending operational time and reducing size constraints. The WPT system operates through a resonant inductive coupling mechanism, based on a transmitting coil mounted on the end effector of a robotic arm that also houses an external permanent magnet and a localization coil for precise capsule manipulation. To ensure robust and stable power transmission in the presence of coil misalignment and rotation, a 3D receiving coil is integrated within the capsule. Additionally, a closed-loop adaptive control system, based on load-shift keying (LSK) modulation, dynamically adjusts the transmitted power to optimize efficiency while maintaining compliance with specific absorption rate (SAR) safety limits. The system has been extensively characterized in laboratory settings and validated through in vivo experiments using a porcine model, demonstrating reliable power transfer and effective robotic navigation in realistic gastrointestinal conditions: the average received power was 110 mW at a distance of 9 cm between the coils, with variable capsule rotation angles. The results confirm the feasibility of the proposed WPT approach for autonomous, battery-free robotic capsule endoscopy, paving the way for enhanced diagnostic in gastrointestinal medicine.
comment: 10 pages, 8 figures, regular paper
Layered Nonlinear Model Predictive Control for Robust Stabilization of Hybrid Systems
Computing the receding horizon optimal control of nonlinear hybrid systems is typically prohibitively slow, limiting real-time implementation. To address this challenge, we propose a layered Model Predictive Control (MPC) architecture for robust stabilization of hybrid systems. A high level "hybrid" MPC is solved at a slow rate to produce a stabilizing hybrid trajectory, potentially sub-optimally, including a domain and guard sequence. This domain and guard sequence is passed to a low level "fixed mode" MPC which is a traditional, time-varying, state-constrained MPC that can be solved rapidly, e.g., using nonlinear programming (NLP) tools. A robust version of the fixed mode MPC is constructed by using tracking error tubes that are not guaranteed to have finite size for all time. Using these tubes, we demonstrate that the speed at which the fixed mode MPC is re-calculated is directly tied to the robustness of the system, thereby justifying the layered approach. Finally, simulation examples of a five link bipedal robot and a controlled nonlinear bouncing ball are used to illustrate the formal results.
comment: Accepted to ACC 2025 (American Control Conference)
Suppression and Regulation of Thermal Birefringence in Optical Voltage Sensor with Isomerism Electrodes and Arbitrary Electric Field Direction Modulation
The insufficient stability and reliability of Optical Voltage Sensor is primarily caused by thermal stress induced birefringence. In this paper, a method based on arbitrary electric field direction modulation and isomerism electrodes is proposed to suppress or regulate it. With the aid of multi-physics Finite Element Method, Jones Matrix and the theory of photoelastic effect, it is found that metal or transparent isomerism electrodes can generate a special thermal stress distribution, which regulates the birefringence in the optical path and their induced measurement error. The experiment is conducted on a 10mm cubic bismuth germanite crystal, with cutting directions 110, -110 and 001. The experiment result shows that Cu isomerism electrodes with electric field angle of 59.9 degrees could generate 37% less birefringence error compared to parallel plate electrodes, in the temperature range from 25 degrees Celsius to 40 degrees Celsius. However, the Indium Tin Oxide electrodes with field angle of 29.6 degrees produces approximately 7 times error because of its bad ductility and thermal conduction. The proposed modeling and suppression method for birefringence is beneficial to design of high accuracy optical voltage sensor or electro-optical modulator.
comment: 9 pages, 10 figures
Energy-Aware Task Allocation for Teams of Multi-mode Robots
This work proposes a novel multi-robot task allocation framework for robots that can switch between multiple modes, e.g., flying, driving, or walking. We first provide a method to encode the multi-mode property of robots as a graph, where the mode of each robot is represented by a node. Next, we formulate a constrained optimization problem to decide both the task to be allocated to each robot as well as the mode in which the latter should execute the task. The robot modes are optimized based on the state of the robot and the environment, as well as the energy required to execute the allocated task. Moreover, the proposed framework is able to encompass kinematic and dynamic models of robots alike. Furthermore, we provide sufficient conditions for the convergence of task execution and allocation for both robot models.
comment: This work has been submitted to the IEEE for possible publication
System Identification Under Multi-rate Sensing Environment
This paper proposes a system identification algorithm for systems with multi-rate sensors in a discrete-time framework. It is challenging to obtain an accurate mathematical model when the ratios of inputs and outputs are different in the system. A cyclic reformulation-based model for multi-rate systems is formulated, and the multi-rate system can be reduced to a linear time-invariant system to derive the model under the multi-rate sensing environment. The proposed algorithm integrates a cyclic reformulation with a state coordinate transformation of the cycled system to enable precise identification of systems under the multi-rate sensing environment. The effectiveness of the proposed system identification method is demonstrated using numerical simulations.
Indoor Fusion Positioning Based on "IMU-Ultrasonic-UWB" and Factor Graph Optimization Method
This paper presents a high-precision positioning system that integrates ultra-wideband (UWB) time difference of arrival (TDoA) measurements, inertial measurement unit (IMU) data, and ultrasonic sensors through factor graph optimization. To overcome the shortcomings of standalone UWB systems in non-line-of-sight (NLOS) scenarios and the inherent drift associated with inertial navigation, we developed a novel hybrid fusion framework. First, a dynamic covariance estimation mechanism is incorporated, which automatically adjusts measurement weights based on real-time channel conditions. Then, a tightly-coupled sensor fusion architecture is employed, utilizing IMU pre-integration theory for temporal synchronization. Finally, a sliding-window factor graph optimization backend is utilized, incorporating NLOS mitigation constraints. Experimental results in complex indoor environments show a 38\% improvement in positioning accuracy compared to conventional Kalman filter-based approaches, achieving a 12.3 cm root mean square (RMS) error under dynamic motion conditions. The system maintains robust performance even with intermittent UWB signal availability, down to a 40\% packet reception rate, effectively suppressing IMU drift through multi-modal constraint fusion. This work offers a practical solution for applications that require reliable indoor positioning in GPS-denied environments.
Intrinsic Successive Convexification: Trajectory Optimization on Smooth Manifolds
A fundamental issue at the core of trajectory optimization on smooth manifolds is handling the implicit manifold constraint within the dynamics. The conventional approach is to enforce the dynamic model as a constraint. However, we show this approach leads to significantly redundant operations, as well as being heavily dependent on the state space representation. Specifically, we propose an intrinsic successive convexification methodology for optimal control on smooth manifolds. This so-called iSCvx is then applied to a representative example involving attitude trajectory optimization for a spacecraft subject to non-convex constraints.
A finite-sample bound for identifying partially observed linear switched systems from a single trajectory
We derive a finite-sample probabilistic bound on the parameter estimation error of a system identification algorithm for Linear Switched Systems. The algorithm estimates Markov parameters from a single trajectory and applies a variant of the Ho-Kalman algorithm to recover the system matrices. Our bound guarantees statistical consistency under the assumption that the true system exhibits quadratic stability. The proof leverages the theory of weakly dependent processes. To the best of our knowledge, this is the first finite-sample bound for this algorithm in the single-trajectory setting.
From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence
The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of \textbf{Orchestrated Distributed Intelligence (ODI)}, a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
Cooperative Deterministic Learning-Based Formation Control for a Group of Nonlinear Mechanical Systems Under Complete Uncertainty
In this work we address the formation control problem for a group of nonlinear mechanical systems with complete uncertain dynamics under a virtual leader-following framework. We propose a novel cooperative deterministic learning-based adaptive formation control algorithm. This algorithm is designed by utilizing artificial neural networks to simultaneously achieve formation tracking control and locally-accurate identification/learning of the nonlinear uncertain dynamics of the considered group of mechanical systems. To demonstrate the practicality and verify the effectiveness of the proposed results, numerical simulations have been conducted.
comment: 8 pages, 6 figures, Conference
Transformable Modular Robots: A CPG-Based Approach to Independent and Collective Locomotion
Modular robotics enables the development of versatile and adaptive robotic systems with autonomous reconfiguration. This paper presents a modular robotic system in which each module has independent actuation, battery power, and control, allowing both individual mobility and coordinated locomotion. A hierarchical Central Pattern Generator (CPG) framework governs motion, with a low-level CPG controlling individual modules and a high-level CPG synchronizing inter-module coordination, enabling smooth transitions between independent and collective behaviors. To validate the system, we conduct simulations in MuJoCo and hardware experiments, evaluating locomotion across different configurations. We first analyze single-module motion, followed by two-module cooperative locomotion. Results demonstrate the effectiveness of the CPG-based control framework in achieving robust, flexible, and scalable locomotion. The proposed modular architecture has potential applications in search and rescue, environmental monitoring, and autonomous exploration, where adaptability and reconfigurability are essential.
Stability results for MIMO LTI systems via Scaled Relative Graphs
This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems.
comment: To be submitted to CDC 2025
16 Ways to Gallop: Energetics and Body Dynamics of High-Speed Quadrupedal Gaits
Galloping is a common high-speed gait in both animals and quadrupedal robots, yet its energetic characteristics remain insufficiently explored. This study systematically analyzes a large number of possible galloping gaits by categorizing them based on the number of flight phases per stride and the phase relationships between the front and rear legs, following Hildebrand's framework for asymmetrical gaits. Using the A1 quadrupedal robot from Unitree, we model galloping dynamics as a hybrid dynamical system and employ trajectory optimization (TO) to minimize the cost of transport (CoT) across a range of speeds. Our results reveal that rotary and transverse gallop footfall sequences exhibit no fundamental energetic difference, despite variations in body yaw and roll motion. However, the number of flight phases significantly impacts energy efficiency: galloping with no flight phases is optimal at lower speeds, whereas galloping with two flight phases minimizes energy consumption at higher speeds. We validate these findings using a quadratic programming (QP)-based controller, developed in our previous work, in Gazebo simulations. These insights advance the understanding of quadrupedal locomotion energetics and may inform future legged robot designs for adaptive, energy-efficient gait transitions.
comment: 7 pages, 6 figures
Sampling Decisions
In this manuscript we introduce a novel Decision Flow (DF) framework for sampling from a target distribution while incorporating additional guidance from a prior sampler. DF can be viewed as an AI driven algorithmic reincarnation of the Markov Decision Process (MDP) approach in Stochastic Optimal Control. It extends the continuous space, continuous time path Integral Diffusion sampling technique to discrete time and space, while also generalizing the Generative Flow Network framework. In its most basic form, an explicit, Neural Network (NN) free formulation, DF leverages the linear solvability of the the underlying MDP to adjust the transition probabilities of the prior sampler. The resulting Markov Process is expressed as a convolution of the reverse time Green's function of the prior sampling with the target distribution. We illustrate the DF framework through an example of sampling from the Ising model, discuss potential NN based extensions, and outline how DF can enhance guided sampling across various applications.
comment: 6 pages, 3 figures
Value-Oriented Forecast Combinations for Unit Commitment
Value-oriented forecasts for two-stage power system operational problems have been demonstrated to reduce cost, but prove to be computationally challenging for large-scale systems because the underlying optimization problem must be internalized into the forecast model training. Therefore, existing approaches typically scale poorly in the usable training data or require relaxations of the underlying optimization. This paper presents a method for value-oriented forecast combinations using progressive hedging, which unlocks high-fidelity, at-scale models and large-scale datasets in training. We also derive a direct one-shot training model for reference and study how different modifications of the training model impact the solution quality. Our method reduces operation cost by 1.8% on average and trains forecast combinations for a 2736-bus test system with one year of data within 20 hours.
INPROVF: Leveraging Large Language Models to Repair High-level Robot Controllers from Assumption Violations ICLR 2025
This paper presents INPROVF, an automatic framework that combines large language models (LLMs) and formal methods to speed up the repair process of high-level robot controllers. Previous approaches based solely on formal methods are computationally expensive and cannot scale to large state spaces. In contrast, INPROVF uses LLMs to generate repair candidates, and formal methods to verify their correctness. To improve the quality of these candidates, our framework first translates the symbolic representations of the environment and controllers into natural language descriptions. If a candidate fails the verification, INPROVF provides feedback on potential unsafe behaviors or unsatisfied tasks, and iteratively prompts LLMs to generate improved solutions. We demonstrate the effectiveness of INPROVF through 12 violations with various workspaces, tasks, and state space sizes.
comment: To appear in ICLR 2025 Workshop: VerifAI: AI Verification in the Wild; in submission to 2025 IEEE 21th International Conference on Automation Science and Engineering (CASE), Los Angeles, CA, USA: IEEE, Aug. 2025
Digital Twin-Enabled Blockage-Aware Dynamic mmWave Multi-Hop V2X Communication
Millimeter wave (mmWave) technology in vehicle-to-everything (V2X) communication offers unprecedented data rates and low latency, but faces significant reliability challenges due to signal blockages and limited range. This paper introduces a novel system for managing dynamic multi-hop mmWave V2X communications in complex blocking environments. We present a system architecture that integrates a mobility digital twin (DT) with the multi-hop routing control plane, providing a comprehensive, real-time view of the network and its surrounding traffic environment. This integration enables the control plane to make informed routing decisions based on rich contextual data about vehicles, infrastructure, and potential signal blockages. Leveraging this DT-enhanced architecture, we propose an advanced routing algorithm that combines high-precision environmental data with trajectory prediction to achieve blockage-aware mmWave multi-hop V2X routing. Our algorithm anticipates network topology changes and adapts topology dynamically to maintain reliable connections. We evaluate our approach through proof-of-concept simulations using a mobility DT of the Nishishinjuku area. Results demonstrate that our DT-enabled routing strategy significantly outperforms conventional methods in maintaining reliable mmWave V2X connections across various traffic scenarios, including fully connected and mixed traffic environments.
A Generalized Control Revision Method for Autonomous Driving Safety
Safety is one of the most crucial challenges of autonomous driving vehicles, and one solution to guarantee safety is to employ an additional control revision module after the planning backbone. Control Barrier Function (CBF) has been widely used because of its strong mathematical foundation on safety. However, the incompatibility with heterogeneous perception data and incomplete consideration of traffic scene elements make existing systems hard to be applied in dynamic and complex real-world scenarios. In this study, we introduce a generalized control revision method for autonomous driving safety, which adopts both vectorized perception and occupancy grid map as inputs and comprehensively models multiple types of traffic scene constraints based on a new proposed barrier function. Traffic elements are integrated into one unified framework, decoupled from specific scenario settings or rules. Experiments on CARLA, SUMO, and OnSite simulator prove that the proposed algorithm could realize safe control revision under complicated scenes, adapting to various planning backbones, road topologies, and risk types. Physical platform validation also verifies the real-world application feasibility.
Quantitative Decentralized Stability Certificates for Grid-Forming Converter Control
We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of the network dynamics. By following practical tuning rules, we are able to ensure plug-and-play operation without centralized coordination. Unlike prior works, our approach accommodates coupled frequency and voltage dynamics, incorporates network dynamics, and does not rely on specific network configurations or operating points, offering a general and scalable solution for the integration of power-electronics-based devices into future power systems. We validate our theoretical stability results through numerical case studies in a high-fidelity simulation model.
comment: 12 pages, 13 figures
Advanced safety filter based on SOS Control Barrier and Lyapunov Functions
This paper presents a novel safety filter framework that ensures both safety and the preservation of the legacy control action within a nominal region. This modular design allows the safety filter to be integrated into the control hierarchy without compromising the performance of the existing legacy controller within the nominal region. This is accomplished by formulating multiple Control Barrier Functions (CBFs) and Control Lyapunov-like Functions (CLFs) conditions, alongside a forward invariance condition for the legacy controller, as sum-of-squares constraints utilizing Putinar's Positivstellensatz. Additionally, the state-dependent inequality constraints of the resulting Quadratic Program -- encoding the CBF and CLF conditions -- are designed to remain inactive within the nominal region, ensuring perfect tracking of the legacy control action. Our safety filter design is also the first to include quadratic input constraints, and does not need an explicit specification of the attractor, as it is implicitly defined by the legacy controller. To avoid the chattering effect and guarantee the uniqueness and Lipschitz continuity of solutions, the state-dependent inequality constraints of the Quadratic Program are selected to be sufficiently regular. Finally, we demonstrate the method in a detailed case study involving the control of a three-phase ac/dc power converter.
Trajectory Optimization for Spatial Microstructure Control in Electron Beam Metal Additive Manufacturing
Metal additive manufacturing (AM) opens the possibility for spatial control of as-fabricated microstructure and properties. However, since the solid state diffusional transformations that drive microstructure outcomes are governed by nonlinear ODEs in terms of temperature, which is itself governed by PDEs over the entire part domain, solving for the system inputs needed to achieve desired microstructure distributions has proven difficult. In this work, we present a trajectory optimization approach for spatial control of microstructure in metal AM, which we demonstrate by controlling the hardness of a low-alloy steel in electron beam powder bed fusion (EB-PBF). To this end, we present models for thermal and microstructural dynamics. Next, we use experimental data to identify the parameters of the microstructure transformation dynamics. We then pose spatial microstructure control as a finite-horizon optimal control problem. The optimal power field trajectory is computed using an augmented Lagrangian differential dynamic programming (AL-DDP) method with GPU acceleration. The resulting time-varying power fields are then realized on an EB-PBF machine through an approximation scheme. Measurements of the resultant hardness shows that the optimized power field trajectory is able to closely produce the desired hardness distribution.
comment: 6 pages, 6 figures
Distributed Estimation with Quantized Measurements and Communication over Markovian Switching Topologies
This paper addresses distributed parameter estimation in stochastic dynamic systems with quantized measurements, constrained by quantized communication and Markovian switching directed topologies. To enable accurate recovery of the original signal from quantized communication signal, a persistent excitation-compliant linear compression encoding method is introduced. Leveraging this encoding, this paper proposes an estimation-fusion type quantized distributed identification algorithm under a stochastic approximation framework. The algorithm operates in two phases: first, it estimates neighboring estimates using quantized communication information, then it creates a fusion estimate by combining these estimates through a consensus-based distributed stochastic approximation approach. To tackle the difficulty caused by the coupling between these two estimates, two combined Lyapunov functions are constructed to analyze the convergence performance. Specifically, the mean-square convergence of the estimates is established under a conditional expectation-type cooperative excitation condition and the union topology containing a spanning tree. Besides, the convergence rate is derived to match the step size's order under suitable step-size coefficients. Furthermore, the impact of communication uncertainties including stochastic communication noise and Markov-switching rate is analyzed on the convergence rate. A numerical example illustrates the theoretical findings and highlights the joint effect of sensors under quantized communication.
comment: 17 pages, 7 figures, submitted to Automatica
Ro-To-Go! Robust Reactive Control with Signal Temporal Logic
Signal Temporal Logic (STL) robustness is a common objective for optimal robot control, but its dependence on history limits the robot's decision-making capabilities when used in Model Predictive Control (MPC) approaches. In this work, we introduce Signal Temporal Logic robustness-to-go (Ro-To-Go), a new quantitative semantics for the logic that isolates the contributions of suffix trajectories. We prove its relationship to formula progression for Metric Temporal Logic, and show that the robustness-to-go depends only on the suffix trajectory and progressed formula. We implement robustness-to-go as the objective in an MPC algorithm and use formula progression to efficiently evaluate it online. We test the algorithm in simulation and compare it to MPC using traditional STL robustness. Our experiments show that using robustness-to-go results in a higher success rate.
iCPS-DL: A Description Language for Autonomic Industrial Cyber-Physical Systems
Modern industrial systems require frequent updates to their cyber and physical infrastructures, often demanding considerable reconfiguration effort. This paper introduces the industrial Cyber-Physical Systems Description Language, iCPS-DL, which enables autonomic reconfigurations for industrial Cyber-Physical Systems. The iCPS-DL maps an industrial process using semantics for physical and cyber-physical components, a state estimation model, and agent interactions. A novel aspect is using communication semantics to ensure live interaction among distributed agents. Reasoning on the semantic description facilitates the configuration of the industrial process control loop. A Water Distribution Networks domain case study demonstrates iCPS-DL's application.
Controlled Invariance in Fully Actuated Max-plus Linear Systems with Precedence Semimodules
Given a max-plus linear system and a semimodule, the problem of computing the maximal controlled invariant subsemimodule is still open to this day. In this paper, we consider this problem for the specific class of fully actuated systems and constraints in the form of precedence semimodules. The assumption of full actuation corresponds to the existence of an input for each component of the system state. A precedence semimodule is the set of solutions of inequalities typically used to represent time-window constraints. We prove that, in this setting, it is possible to (i) compute the maximal controlled invariant subsemimodule and (ii) decide the convergence of a fixed-point algorithm introduced by R.D. Katz in strongly polynomial time.
comment: 6 pages, 3 figures, small typos in Theorem 6 and Remarks 7 and 8 corrected
Kernel-Based Learning of Stable Nonlinear Systems
Learning models of dynamical systems characterized by specific stability properties is of crucial importance in applications. Existing results mainly focus on linear systems or some limited classes of nonlinear systems and stability notions, and the general problem is still open. This article proposes a kernel-based nonlinear identification procedure to directly and systematically learn stable nonlinear discrete-time systems. In particular, the proposed method can be used to enforce, on the learned model, bounded-input-bounded-state stability, asymptotic gain, and input-to-state stability properties, as well as their incremental counterparts. To this aim, we build on the reproducing kernel theory and the Representer Theorem, which are suitably enhanced to handle stability constraints in the kernel properties and in the hyperparameters' selection algorithm. Once the methodology is detailed, and sufficient conditions for stability are singled out, the article reviews some widely used kernels and their applicability within the proposed framework. Finally, numerical results validate the theoretical findings showing, in particular, that stability may have a beneficial impact in long-term simulation with minimal impact on prediction.
comment: 16 pages, 5 figures, submitted to "IEEE Transactions on Automatic Control"
An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
This paper addresses the integration of additional information sources into a Bayesian optimization framework while ensuring that safety constraints are satisfied. The interdependencies between these information sources are modeled using an unknown correlation matrix. We explore how uniform error bounds must be adjusted to maintain constraint satisfaction throughout the optimization process, considering both Bayesian and frequentist statistical perspectives. This is achieved by appropriately scaling the error bounds based on a confidence interval that can be estimated from the data. Furthermore, the efficacy of the proposed approach is demonstrated through experiments on two benchmark functions and a controller parameter optimization problem. Our results highlight a significant improvement in sample efficiency, demonstrating the methods suitability for optimizing expensive-to-evaluate functions.
Data-driven $H_{\infty}$ predictive control for constrained systems: a Lagrange duality approach
This article proposes a data-driven $H_{\infty}$ control scheme for time-domain constrained systems based on model predictive control formulation. The scheme combines $H_{\infty}$ control and minimax model predictive control, enabling more effective handling of external disturbances and time-domain constraints. First, by leveraging input-output-disturbance data, the scheme ensures $H_{\infty}$ performance of the closed-loop system. Then, a minimax optimization problem is converted into a more manageable minimization problem employing Lagrange duality, which reduces conservatism typically associated with ellipsoidal evaluations of time-domain constraints. The study examines key closed-loop properties, including stability, disturbance attenuation, and constraint satisfaction, achieved by the proposed data-driven moving horizon predictive control algorithm. The effectiveness and advantages of the proposed method are demonstrated through numerical simulations involving a batch reactor system, confirming its robustness and feasibility under noisy conditions.
comment: 11 pages, 4 figures
An Information-Theoretic Analysis of Discrete-Time Control and Filtering Limitations by the I-MMSE Relationships
Fundamental limitations or performance trade-offs/limits are important properties and constraints of both control and filtering systems. Among various trade-off metrics, total information rate that characterizes the sensitivity trade-offs and time-averaged performance of control and filtering systems was conventionally studied by using the differential entropy rate and Kolmogorov-Bode formula. In this paper, by extending the famous I-MMSE (mutual information -- minimum mean-square error) relationships to the discrete-time additive white Gaussian channels with and without feedback, a new paradigm is introduced to estimate and analyze total information rate as a control and filtering trade-off metric. Under this framework, we explore the trade-off properties of total information rate for a variety of the discrete-time control and filtering systems, e.g., LTI, LTV, and nonlinear, and propose an alternative approach to investigate total information rate via optimal estimation.
comment: This manuscript is the extended version of the paper with the same title accepted by IEEE Transactions on Automatic Control. Neng Wan and Dapeng Li contributed equally to this paper
Impact of Road Infrastructure and Traffic Scenarios on E-scooterists' Riding and Gaze Behavior
The growing adoption of e-scooters has raised significant safety concerns, particularly due to a surge in injuries and fatalities. This study explores the relationship between road infrastructure, traffic scenarios, and e-scooterists' riding and gaze behaviors to improve road safety and user experience. A naturalistic study was conducted using instrumented e-scooters, capturing gaze patterns, fixation metrics, and head movement data across various road layouts and traffic scenarios. Key findings reveal that bike lanes offer a stable environment with reduced horizontal head movement and focused attention on the road, while shared roads and sidewalks lead to more dispersed gaze and increased head movement, indicating higher uncertainty and complexity. Interactions with other road users, such as navigating intersections, passing buses, riding near cars, and descending on downhill paths, demand greater cognitive load. Intersections require heightened visual focus and spatial awareness, reflected in increased horizontal eye and head movements. Interactions with vehicles prioritize visual scanning over head movement to maintain stability and avoid collisions, while high-speed and downhill riding demand focused attention on obstacles and the road surface. The results provide insights into e-scooter riders' behavior and physiological response analysis, paving the way for safer riding experiences and improved understanding of their needs.
comment: 12 pages, 10 figures
Automated Layout and Control Co-Design of Robust Multi-UAV Transportation Systems
The joint optimization of physical parameters and controllers in robotic systems is challenging. This is due to the difficulties of predicting the effect that changes in physical parameters have on final performances. At the same time, physical and morphological modifications can improve robot capabilities, perhaps completely unlocking new skills and tasks. We present a novel approach to co-optimize the physical layout and the control of a cooperative aerial transportation system. The goal is to achieve the most precise and robust flight when carrying a payload. We assume the agents are connected to the payload through rigid attachments, essentially transforming the whole system into a larger flying object with ``thrust modules" at the attachment locations of the quadcopters. We investigate the optimal arrangement of the thrust modules around the payload, so that the resulting system achieves the best disturbance rejection capabilities. We propose a novel metric of robustness inspired by H2 control, and propose an algorithm to optimize the layout of the vehicles around the object and their controller altogether. We experimentally validate the effectiveness of our approach using fleets of three and four quadcopters and payloads of diverse shapes.
comment: 7 pages, 7 figures, journal paper (IEEE RA-L)
Synthesizing Interpretable Control Policies through Large Language Model Guided Search
The combination of Large Language Models (LLMs), systematic evaluation, and evolutionary algorithms has enabled breakthroughs in combinatorial optimization and scientific discovery. We propose to extend this powerful combination to the control of dynamical systems, generating interpretable control policies capable of complex behaviors. With our novel method, we represent control policies as programs in standard languages like Python. We evaluate candidate controllers in simulation and evolve them using a pre-trained LLM. Unlike conventional learning-based control techniques, which rely on black-box neural networks to encode control policies, our approach enhances transparency and interpretability. We still take advantage of the power of large AI models, but only at the policy design phase, ensuring that all system components remain interpretable and easily verifiable at runtime. Additionally, the use of standard programming languages makes it straightforward for humans to finetune or adapt the controllers based on their expertise and intuition. We illustrate our method through its application to the synthesis of an interpretable control policy for the pendulum swing-up and the ball in cup tasks. We make the code available at https://github.com/muellerlab/synthesizing_interpretable_control_policies.git.
comment: 8 pages, 7 figures, conference paper
Cooperative distributed model predictive control for embedded systems: Experiments with hovercraft formations
This paper presents experiments for embedded cooperative distributed model predictive control applied to a team of hovercraft floating on an air hockey table. The hovercraft collectively solve a centralized optimal control problem in each sampling step via a stabilizing decentralized real-time iteration scheme using the alternating direction method of multipliers. The efficient implementation does not require a central coordinator, executes onboard the hovercraft, and facilitates sampling intervals in the millisecond range. The formation control experiments showcase the flexibility of the approach on scenarios with point-to-point transitions, trajectory tracking, collision avoidance, and moving obstacles.
Visibility-Aware RRT* for Safety-Critical Navigation of Perception-Limited Robots in Unknown Environments IROS 2025
Safe autonomous navigation in unknown environments remains a critical challenge for robots with limited sensing capabilities. While safety-critical control techniques, such as Control Barrier Functions (CBFs), have been proposed to ensure safety, their effectiveness relies on the assumption that the robot has complete knowledge of its surroundings. In reality, robots often operate with restricted field-of-view and finite sensing range, which can lead to collisions with unknown obstacles if the planner is agnostic to these limitations. To address this issue, we introduce the Visibility-Aware RRT* algorithm that combines sampling-based planning with CBFs to generate safe and efficient global reference paths in partially unknown environments. The algorithm incorporates a collision avoidance CBF and a novel visibility CBF, which guarantees that the robot remains within locally collision-free regions, enabling timely detection and avoidance of unknown obstacles. We conduct extensive experiments interfacing the path planners with two different safety-critical controllers, wherein our method outperforms all other compared baselines across both safety and efficiency aspects.
comment: Accepted to IEEE Robotics and Automation Letters (to be presented at IROS 2025). Our project page can be found at: https://www.taekyung.me/visibility-rrt
Sensory Glove-Based Surgical Robot User Interface ICRA
Robotic surgery has reached a high level of maturity and has become an integral part of standard surgical care. However, existing surgeon consoles are bulky, take up valuable space in the operating room, make surgical team coordination challenging, and their proprietary nature makes it difficult to take advantage of recent technological advances, especially in virtual and augmented reality. One potential area for further improvement is the integration of modern sensory gloves into robotic platforms, allowing surgeons to control robotic arms intuitively with their hand movements. We propose one such system that combines an HTC Vive tracker, a Manus Meta Prime 3 XR sensory glove, and SCOPEYE wireless smart glasses. The system controls one arm of a da Vinci surgical robot. In addition to moving the arm, the surgeon can use fingers to control the end-effector of the surgical instrument. Hand gestures are used to implement clutching and similar functions. In particular, we introduce clutching of the instrument orientation, a functionality unavailable in the da Vinci system. The vibrotactile elements of the glove are used to provide feedback to the user when gesture commands are invoked. A qualitative and quantitative evaluation has been conducted that compares the current device with the dVRK console. The system is shown to have excellent tracking accuracy, and the new interface allows surgeons to perform common surgical training tasks with minimal practice efficiently.
comment: 6 pages, 4 figures, 7 tables, submitted to International Conference on Robotics and Automation (ICRA) 2025
Scalable and Interpretable Verification of Image-based Neural Network Controllers for Autonomous Vehicles
Existing formal verification methods for image-based neural network controllers in autonomous vehicles often struggle with high-dimensional inputs, computational inefficiency, and a lack of explainability. These challenges make it difficult to ensure safety and reliability, as processing high-dimensional image data is computationally intensive and neural networks are typically treated as black boxes. To address these issues, we propose SEVIN (Scalable and Explainable Verification of Image-Based Neural Network Controllers), a framework that leverages a Variational Autoencoders (VAE) to encode high-dimensional images into a lower-dimensional, explainable latent space. By annotating latent variables with corresponding control actions, we generate convex polytopes that serve as structured input spaces for verification, significantly reducing computational complexity and enhancing scalability. Integrating the VAE's decoder with the neural network controller allows for formal and robustness verification using these explainable polytopes. Our approach also incorporates robustness verification under real-world perturbations by augmenting the dataset and retraining the VAE to capture environmental variations. Experimental results demonstrate that SEVIN achieves efficient and scalable verification while providing explainable insights into controller behavior, bridging the gap between formal verification techniques and practical applications in safety-critical systems.
comment: 11 pages, 5 figures
Systems and Control (EESS)
Data-Driven Estimation of Structured Singular Values
Estimating the size of the modeling error is crucial for robust control. Over the years, numerous metrics have been developed to quantify the model error in a control relevant manner. One of the most important such metrics is the structured singular value, as it leads to necessary and sufficient conditions for ensuring stability and robustness in feedback control under structured model uncertainty. Although the computation of the structured singular value is often intractable, lower and upper bounds for it can often be obtained if a model of the system is known. In this paper, we introduce a fully data-driven method to estimate a lower bound for the structured singular value, by conducting experiments on the system and applying power iterations to the collected data. Our numerical simulations demonstrate that this method effectively lower bounds the structured singular value, yielding results comparable to those obtained using the Robust Control toolbox of MATLAB.
comment: 6 pages
Kernel-based error bounds of bilinear Koopman surrogate models for nonlinear data-driven control
We derive novel deterministic bounds on the approximation error of data-based bilinear surrogate models for unknown nonlinear systems. The surrogate models are constructed using kernel-based extended dynamic mode decomposition to approximate the Koopman operator in a reproducing kernel Hilbert space. Unlike previous methods that require restrictive assumptions on the invariance of the dictionary, our approach leverages kernel-based dictionaries that allow us to control the projection error via pointwise error bounds, overcoming a significant limitation of existing theoretical guarantees. The derived state- and input-dependent error bounds allow for direct integration into Koopman-based robust controller designs with closed-loop guarantees for the unknown nonlinear system. Numerical examples illustrate the effectiveness of the proposed framework.
Continuous-time Data-driven Barrier Certificate Synthesis
We consider the problem of verifying safety for continuous-time dynamical systems. Developing upon recent advancements in data-driven verification, we use only a finite number of sampled trajectories to learn a barrier certificate, namely a function which verifies safety. We train a safety-informed neural network to act as this certificate, with an appropriately designed loss function to encompass the safety conditions. In addition, we provide probabilistic generalisation guarantees from discrete samples of continuous trajectories, to unseen continuous ones. Numerical investigations demonstrate the efficacy of our approach and contrast it with related results in the literature.
comment: Submitted to L-CSS and CDC
On Sampling Time and Invariance
Invariant sets define regions of the state space where system constraints are always satisfied. The majority of numerical techniques for computing invariant sets - whether exact, approximate, or based on pure data-driven rollouts - have been developed for discrete-time systems with a fixed sampling time. Understanding how invariant sets change with sampling time is critical for designing adaptive-sampling control schemes that ensure constraint satisfaction. This paper investigates the relationship between control invariance and the sampling frequency of the feedback controller. We introduce the notion of M-step hold control invariance and demonstrate that it generalizes traditional control invariance. We propose a computational method to calculate M-step hold invariants and show its practical use to assess the link between the feedback control sampling frequency and constraint satisfaction. We extend the framework to account for robustness against model mismatches and discretization errors, paving the way for adaptive-sampling constrained control strategies.
Mixed Small Gain and Phase Theorem: A new view using Scale Relative Graphs
We introduce a novel approach to feedback stability analysis for linear time-invariant (LTI) systems, overcoming the limitations of the sectoriality assumption in the small phase theorem. While phase analysis for single-input single-output (SISO) systems is well-established, multi-input multi-output (MIMO) systems lack a comprehensive phase analysis until recent advances introduced with the small-phase theorem. A limitation of the small-phase theorem is the sectorial condition, which states that an operator's eigenvalues must lie within a specified angle sector of the complex plane. We propose a framework based on Scaled Relative Graphs (SRGs) to remove this assumption. We derive two main results: a graphical set-based stability condition using SRGs and a small-phase theorem with no sectorial assumption. These results broaden the scope of phase analysis and feedback stability for MIMO systems.
comment: To appear in ECC 2025
Mixtures of ensembles: System separation and identification via optimal transport
Crowd dynamics and many large biological systems can be described as populations of agents or particles, which can only be observed on aggregate population level. Identifying the dynamics of agents is crucial for understanding these large systems. However, the population of agents is typically not homogeneous, and thus the aggregate observations consist of the superposition of multiple ensembles each governed by individual dynamics. In this work, we propose an optimal transport framework to jointly separate the population into several ensembles and identify each ensemble's dynamical system, based on aggregate observations of the population. We propose a bi-convex optimization problem, which we solve using a block coordinate descent with convergence guarantees. In numerical experiments, we demonstrate that the proposed approach exhibits close-to-oracle performance also in noisy settings, yielding accurate estimates of both the ensembles and the parameters governing their dynamics.
comment: 6 pages, 9 figures
Artificial Spacetimes for Reactive Control of Resource-Limited Robots
Field-based reactive control provides a minimalist, decentralized route to guiding robots that lack onboard computation. Such schemes are well suited to resource-limited machines like microrobots, yet implementation artifacts, limited behaviors, and the frequent lack of formal guarantees blunt adoption. Here, we address these challenges with a new geometric approach called artificial spacetimes. We show that reactive robots navigating control fields obey the same dynamics as light rays in general relativity. This surprising connection allows us to adopt techniques from relativity and optics for constructing and analyzing control fields. When implemented, artificial spacetimes guide robots around structured environments, simultaneously avoiding boundaries and executing tasks like rallying or sorting, even when the field itself is static. We augment these capabilities with formal tools for analyzing what robots will do and provide experimental validation with silicon-based microrobots. Combined, this work provides a new framework for generating composed robot behaviors with minimal overhead.
Parameter Invariance Analysis of Moment Equations Using Dulmage-Mendelsohn Decomposition
Living organisms maintain stable functioning amid environmental fluctuations through homeostasis, a mechanism that preserves a system's behavior despite changes in environmental conditions. To elucidate homeostasis in stochastic biochemical reactions, theoretical tools for assessing population-level invariance under parameter perturbations are crucial. In this paper, we propose a systematic method for identifying the stationary moments that remain invariant under parameter perturbations by leveraging the structural properties of the stationary moment equations. A key step in this development is addressing the underdetermined nature of moment equations, which has traditionally made it difficult to characterize how stationary moments depend on system parameters. To overcome this, we utilize the Dulmage-Mendelsohn (DM) decomposition of the coefficient matrix to extract welldetermined subequations and reveal their hierarchical structure. Leveraging this structure, we identify stationary moments whose partial derivatives with respect to parameters are structurally zero, facilitating the exploration of fundamental constraints that govern homeostatic behavior in stochastic biochemical systems.
Local-Global Learning of Interpretable Control Policies: The Interface between MPC and Reinforcement Learning
Making optimal decisions under uncertainty is a shared problem among distinct fields. While optimal control is commonly studied in the framework of dynamic programming, it is approached with differing perspectives of the Bellman optimality condition. In one perspective, the Bellman equation is used to derive a global optimality condition useful for iterative learning of control policies through interactions with an environment. Alternatively, the Bellman equation is also widely adopted to derive tractable optimization-based control policies that satisfy a local notion of optimality. By leveraging ideas from the two perspectives, we present a local-global paradigm for optimal control suited for learning interpretable local decision makers that approximately satisfy the global Bellman equation. The benefits and practical complications in local-global learning are discussed. These aspects are exemplified through case studies, which give an overview of two distinct strategies for unifying reinforcement learning and model predictive control. We discuss the challenges and trade-offs in these local-global strategies, towards highlighting future research opportunities for safe and optimal decision-making under uncertainty.
comment: Preprint for ACC 2025 tutorial
Robust Decision-Making Via Free Energy Minimization
Despite their groundbreaking performance, state-of-the-art autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training/environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge when deploying agents in the real world. Here, departing from mainstream views seeking robustness through training, we introduce DR-FREE, a free energy model that installs this core property by design. It directly wires robustness into the agent decision-making mechanisms via free energy minimization. By combining a robust extension of the free energy principle with a novel resolution engine, DR-FREE returns a policy that is optimal-yet-robust against ambiguity. Moreover, for the first time, it reveals the mechanistic role of ambiguity on optimal decisions and requisite Bayesian belief updating. We evaluate DR-FREE on an experimental testbed involving real rovers navigating an ambiguous environment filled with obstacles. Across all the experiments, DR-FREE enables robots to successfully navigate towards their goal even when, in contrast, standard free energy minimizing agents that do not use DR-FREE fail. In short, DR-FREE can tackle scenarios that elude previous methods: this milestone may inspire both deployment in multi-agent settings and, at a perhaps deeper level, the quest for a biologically plausible explanation of how natural agents - with little or no training - survive in capricious environments.
comment: Contains main text and supplementary information
Prioritized Planning for Continuous-time Lifelong Multi-agent Pathfinding
Multi-agent Path Finding (MAPF) is the problem of planning collision-free movements of agents such that they get from where they are to where they need to be. Commonly, agents are located on a graph and can traverse edges. This problem has many variations and has been studied for decades. Two such variations are the continuous-time and the lifelong MAPF problems. In the continuous-time MAPF problem, edges can have non-unit lengths and agents can traverse them at any real-valued time. Additionally, agent volumes are often included. In the lifelong MAPF problem, agents must attend to a continuous stream of incoming tasks. Much work has been devoted to designing solution methods within these two areas. However, to our knowledge, the combined problem of continuous-time lifelong MAPF has yet to be addressed. This work addresses continuous-time lifelong MAPF with agent volumes by presenting the fast and sub-optimal Continuous-time Prioritized Lifelong Planner (CPLP). CPLP continuously re-prioritizes tasks, assigns agents to them, and computes agent plans using a combination of two path planners; one based on CCBS and the other on SIPP. Experimental results with up to $400$ agents on graphs with $4000$ vertices demonstrate average computation times below $20$ ms per call. In online settings where available time to compute plans is limited, CPLP ensures collision-free movement even when failing to meet these time limits. Therefore, the robustness of CPLP highlights its potential for real-world applications.
Laplace-Net: Learning Dynamical Systems with External Forcing
Modelling forced dynamical systems - where an external input drives the system state - is critical across diverse domains such as engineering, finance, and the natural sciences. In this work, we propose Laplace-Net, a decoupled, solver-free neural framework for learning forced and delay-aware systems. It leverages a Laplace transform-based approach to decompose internal dynamics, external inputs, and initial values into established theoretical concepts, enhancing interpretability. Laplace-Net promotes transferability since the system can be rapidly re-trained or fine-tuned for new forcing signals, providing flexibility in applications ranging from controller adaptation to long-horizon forecasting. Experimental results on eight benchmark datasets - including linear, non-linear, and delayed systems - demonstrate the method's improved accuracy and robustness compared to state-of-the-art approaches, particularly in handling complex and previously unseen inputs.
comment: Preprint - under review
Rapid and Inexpensive Inertia Tensor Estimation from a Single Object Throw
The inertia tensor is an important parameter in many engineering fields, but measuring it can be cumbersome and involve multiple experiments or accurate and expensive equipment. We propose a method to measure the moment of inertia tensor of a rigid body from a single spinning throw, by attaching a small and inexpensive stand-alone measurement device consisting of a gyroscope, accelerometer and a reaction wheel. The method includes a compensation for the increase of moment of inertia due to adding the measurement device to the body, and additionally obtains the location of the centre of gravity of the body as an intermediate result. Experiments performed with known rigid bodies show that the mean accuracy is around 2\%.
comment: This work has been submitted to the IEEE for possible publication
LIVEPOINT: Fully Decentralized, Safe, Deadlock-Free Multi-Robot Control in Cluttered Environments with High-Dimensional Inputs
Fully decentralized, safe, and deadlock-free multi-robot navigation in dynamic, cluttered environments is a critical challenge in robotics. Current methods require exact state measurements in order to enforce safety and liveness e.g. via control barrier functions (CBFs), which is challenging to achieve directly from onboard sensors like lidars and cameras. This work introduces LIVEPOINT, a decentralized control framework that synthesizes universal CBFs over point clouds to enable safe, deadlock-free real-time multi-robot navigation in dynamic, cluttered environments. Further, LIVEPOINT ensures minimally invasive deadlock avoidance behavior by dynamically adjusting agents' speeds based on a novel symmetric interaction metric. We validate our approach in simulation experiments across highly constrained multi-robot scenarios like doorways and intersections. Results demonstrate that LIVEPOINT achieves zero collisions or deadlocks and a 100% success rate in challenging settings compared to optimization-based baselines such as MPC and ORCA and neural methods such as MPNet, which fail in such environments. Despite prioritizing safety and liveness, LIVEPOINT is 35% smoother than baselines in the doorway environment, and maintains agility in constrained environments while still being safe and deadlock-free.
Compensating Hysteresis and Mechanical Misalignment in Piezo-Stepper Actuators
Piezo-stepper actuators enable accurate positioning through the sequential contraction and expansion of piezoelectric elements, generating a walking motion. The aim of this paper is to reduce velocity ripples caused by parasitic effects, due to hysteresis in the piezoelectric material and mechanical misalignments, through suitable feedforward control. The presented approach involves the integration of a rate-dependent hysteresis model with a position-dependent feedforward learning scheme to compensate for these effects. Experimental results show that this approach leads to a significant reduction in the velocity ripples, even when the target velocity is changed. These results enable the use of piezo-stepper actuators in applications requiring high positioning accuracy and stiffness over a long stroke, without requiring expensive position sensors for high-gain feedback.
comment: 14 pages, 14 figures, submitted to journal
Innovation diffusion dynamics toward long-term behavioral shifts
Sustainable technologies and services can play a pivotal role in the transition to "greener" habits. Their widespread adoption is thus crucial, and understanding how to foster this phenomenon in a systematic way could have a major impact on our future. With this in mind, in this work we propose an extension of the Friedkin-Johnsen opinion dynamics model toward characterizing the long-term impact of (structural) fostering policies. We then propose alternative nudging strategies that target a trade-off between widespread adoption and investments under budget constraints, showing the impact of our modeling and design choices on inclination shifts over a set of numerical tests.
comment: Submitted to L-CSS and CDC 2025
A Unified Framework for Innovation-based Stochastic and Deterministic Event Triggers
Resources such as bandwidth and energy are limited in many wireless communications use cases, especially when large numbers of sensors and fusion centers need to exchange information frequently. One opportunity to overcome resource constraints is the use of event-based transmissions and estimation to transmit only information that contributes significantly to the reconstruction of the system's state. The design of efficient triggering policies and estimators is crucial for successful event-based transmissions. While previously deterministic and stochastic event triggering policies have been treated separately, this paper unifies the two approaches and gives insights into the design of consistent trigger-matching estimators. Two different estimators are presented, and different pairs of triggers and estimators are evaluated through simulation studies.
comment: 8 pages, 5 figures, submitted to FUSION 2025
Designing RF-Powered Battery-Less Electronic Shelf Labels With COTS Components
This paper presents a preliminary study exploring the feasibility of designing batteryless electronic shelf labels (ESLs) powered by radio frequency wireless power transfer using commercial off-the-shelf components. The proposed ESL design is validated through a dedicated testbed and involves a detailed analysis of design choices, including energy consumption, energy conversion, and storage solutions. A leaded aluminium electrolytic capacitor is selected as the primary energy storage element, balancing cost and performance while maintaining compactness. Experimental evaluations demonstrate that an ESL can update its display within 4 to 120 minutes, depending on input power and RF frequency, with harvester efficiencies reaching up to 30 %. Challenges such as low harvester efficiency, extended update times, and hardware constraints are identified, highlighting opportunities for future optimizations. This work provides valuable insights into system design considerations for RF-powered ESLs and establishes a foundation for further research in energy-neutral Internet of Things applications.
comment: 12 pages, 5 figures and accepted for presentation at the IEEE Wireless Power Technology Conference and Expo
PD-Skygroundhook Controller for Semi-Active Suspension System Using Magnetorheological Fluid Dampers IROS
This paper presents a Proportional-Derivative (PD) Skygroundhook controller for magnetorheological (MR) dampers in semi-active suspensions. Traditional skyhook, Groundhook, and hybrid Skygroundhook controllers are well-known for their ability to reduce body and wheel vibrations; however, each approach has limitations in handling a broad frequency spectrum and often relies on abrupt switching. By adding a derivative action to the classical Skygroundhook logic, the proposed PD-Skygroundhook method enhances high-frequency damping and stabilizes transition behaviors. By leveraging the fast response of MR dampers, our controller adjusts the damper force continuously in real time to match the desired damping force of PD-Skygroundhook controller with efficient computation. Experimental evaluations under bump excitations and sine-sweeping tests demonstrate a significant reduction in sprung mass acceleration and unsprung mass acceleration, outperforming standard Skygroundhook in both ride comfort and road handling. These results highlight that the derivative action effectively reduces resonance peaks and smooths out force transitions of regular Skygroundhook. Our method offers a robust alternative to more computationally demanding semi-active controllers.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
A Hierarchical Region-Based Approach for Efficient Multi-Robot Exploration
Multi-robot autonomous exploration in an unknown environment is an important application in robotics.Traditional exploration methods only use information around frontier points or viewpoints, ignoring spatial information of unknown areas. Moreover, finding the exact optimal solution for multi-robot task allocation is NP-hard, resulting in significant computational time consumption. To address these issues, we present a hierarchical multi-robot exploration framework using a new modeling method called RegionGraph. The proposed approach makes two main contributions: 1) A new modeling method for unexplored areas that preserves their spatial information across the entire space in a weighted graph called RegionGraph. 2) A hierarchical multi-robot exploration framework that decomposes the global exploration task into smaller subtasks, reducing the frequency of global planning and enabling asynchronous exploration. The proposed method is validated through both simulation and real-world experiments, demonstrating a 20% improvement in efficiency compared to existing methods.
Joint Antenna Position and Transmit Power Optimization for Pinching Antenna-Assisted ISAC Systems
This letter explores how pinching antennas, an advanced flexible-antenna system, can enhance the performance of integrated sensing and communication (ISAC) systems by leveraging their adaptability, cost-effectiveness, and ability to facilitate line-of-sight transmission. To achieve this, a joint antenna positioning and transmit power optimization problem is formulated to maximize the total communication data rate while meeting the target sensing requirements and the system energy constraint. To address the complex non-convex optimization problem, we propose a maximum entropy-based reinforcement learning (MERL) solution. By maximizing cumulative reward and policy entropy, this approach effectively balances exploration and exploitation to enhance robustness. Numerical results demonstrate that the proposed MERL algorithm surpasses other benchmark schemes in cumulative reward, total data rate, sensing signal-to-noise ratio, and stability.
comment: 5 pages, 5 figures
Robust Co-Optimization of Distribution Network Hardening and Mobile Resource Scheduling with Decision-Dependent Uncertainty
This paper studies the robust co-planning of proactive network hardening and mobile hydrogen energy resources (MHERs) scheduling, which is to enhance the resilience of power distribution network (PDN) against the disastrous events. A decision-dependent robust optimization model is formulated with min-max resilience constraint and discrete recourse structure, which helps achieve the load survivability target considering endogenous uncertainties. Different from the traditional model with a fixed uncertainty set, we adopt a dynamic representation that explicitly captures the endogenous uncertainties of network contingency as well as the available hydrogen storage levels of MHERs, which induces a decision-dependent uncertainty (DDU) set. Also, the multi-period adaptive routing and energy scheduling of MHERs are modeled as a mixed-integer recourse problem for further decreasing the resilience cost. Then, a nested parametric column-and-constraint generation (N-PC&CG) algorithm is customized and developed to solve this challenging formulation. By leveraging the structural property of the DDU set as well as the combination of discrete recourse decisions and the corresponding extreme points, we derive a strengthened solution scheme with nontrivial enhancement strategies to realize efficient and exact computation. Numerical results on 14-bus test system and 56-bus real-world distribution network demonstrate the resilience benefits and economical feasibility of the proposed method under different damage severity levels. Moreover, the enhanced N-PC&CG shows a superior solution capability to support prompt decisions for resilient planning with DDU models.
comment: 15 pages, 3 figures
In vivo validation of Wireless Power Transfer System for Magnetically Controlled Robotic Capsule Endoscopy
This paper presents the in vivo validation of an inductive wireless power transfer (WPT) system integrated for the first time into a magnetically controlled robotic capsule endoscopy platform. The proposed system enables continuous power delivery to the capsule without the need for onboard batteries, thus extending operational time and reducing size constraints. The WPT system operates through a resonant inductive coupling mechanism, based on a transmitting coil mounted on the end effector of a robotic arm that also houses an external permanent magnet and a localization coil for precise capsule manipulation. To ensure robust and stable power transmission in the presence of coil misalignment and rotation, a 3D receiving coil is integrated within the capsule. Additionally, a closed-loop adaptive control system, based on load-shift keying (LSK) modulation, dynamically adjusts the transmitted power to optimize efficiency while maintaining compliance with specific absorption rate (SAR) safety limits. The system has been extensively characterized in laboratory settings and validated through in vivo experiments using a porcine model, demonstrating reliable power transfer and effective robotic navigation in realistic gastrointestinal conditions: the average received power was 110 mW at a distance of 9 cm between the coils, with variable capsule rotation angles. The results confirm the feasibility of the proposed WPT approach for autonomous, battery-free robotic capsule endoscopy, paving the way for enhanced diagnostic in gastrointestinal medicine.
comment: 10 pages, 8 figures, regular paper
Layered Nonlinear Model Predictive Control for Robust Stabilization of Hybrid Systems
Computing the receding horizon optimal control of nonlinear hybrid systems is typically prohibitively slow, limiting real-time implementation. To address this challenge, we propose a layered Model Predictive Control (MPC) architecture for robust stabilization of hybrid systems. A high level "hybrid" MPC is solved at a slow rate to produce a stabilizing hybrid trajectory, potentially sub-optimally, including a domain and guard sequence. This domain and guard sequence is passed to a low level "fixed mode" MPC which is a traditional, time-varying, state-constrained MPC that can be solved rapidly, e.g., using nonlinear programming (NLP) tools. A robust version of the fixed mode MPC is constructed by using tracking error tubes that are not guaranteed to have finite size for all time. Using these tubes, we demonstrate that the speed at which the fixed mode MPC is re-calculated is directly tied to the robustness of the system, thereby justifying the layered approach. Finally, simulation examples of a five link bipedal robot and a controlled nonlinear bouncing ball are used to illustrate the formal results.
comment: Accepted to ACC 2025 (American Control Conference)
Suppression and Regulation of Thermal Birefringence in Optical Voltage Sensor with Isomerism Electrodes and Arbitrary Electric Field Direction Modulation
The insufficient stability and reliability of Optical Voltage Sensor is primarily caused by thermal stress induced birefringence. In this paper, a method based on arbitrary electric field direction modulation and isomerism electrodes is proposed to suppress or regulate it. With the aid of multi-physics Finite Element Method, Jones Matrix and the theory of photoelastic effect, it is found that metal or transparent isomerism electrodes can generate a special thermal stress distribution, which regulates the birefringence in the optical path and their induced measurement error. The experiment is conducted on a 10mm cubic bismuth germanite crystal, with cutting directions 110, -110 and 001. The experiment result shows that Cu isomerism electrodes with electric field angle of 59.9 degrees could generate 37% less birefringence error compared to parallel plate electrodes, in the temperature range from 25 degrees Celsius to 40 degrees Celsius. However, the Indium Tin Oxide electrodes with field angle of 29.6 degrees produces approximately 7 times error because of its bad ductility and thermal conduction. The proposed modeling and suppression method for birefringence is beneficial to design of high accuracy optical voltage sensor or electro-optical modulator.
comment: 9 pages, 10 figures
Energy-Aware Task Allocation for Teams of Multi-mode Robots
This work proposes a novel multi-robot task allocation framework for robots that can switch between multiple modes, e.g., flying, driving, or walking. We first provide a method to encode the multi-mode property of robots as a graph, where the mode of each robot is represented by a node. Next, we formulate a constrained optimization problem to decide both the task to be allocated to each robot as well as the mode in which the latter should execute the task. The robot modes are optimized based on the state of the robot and the environment, as well as the energy required to execute the allocated task. Moreover, the proposed framework is able to encompass kinematic and dynamic models of robots alike. Furthermore, we provide sufficient conditions for the convergence of task execution and allocation for both robot models.
comment: This work has been submitted to the IEEE for possible publication
System Identification Under Multi-rate Sensing Environment
This paper proposes a system identification algorithm for systems with multi-rate sensors in a discrete-time framework. It is challenging to obtain an accurate mathematical model when the ratios of inputs and outputs are different in the system. A cyclic reformulation-based model for multi-rate systems is formulated, and the multi-rate system can be reduced to a linear time-invariant system to derive the model under the multi-rate sensing environment. The proposed algorithm integrates a cyclic reformulation with a state coordinate transformation of the cycled system to enable precise identification of systems under the multi-rate sensing environment. The effectiveness of the proposed system identification method is demonstrated using numerical simulations.
Indoor Fusion Positioning Based on "IMU-Ultrasonic-UWB" and Factor Graph Optimization Method
This paper presents a high-precision positioning system that integrates ultra-wideband (UWB) time difference of arrival (TDoA) measurements, inertial measurement unit (IMU) data, and ultrasonic sensors through factor graph optimization. To overcome the shortcomings of standalone UWB systems in non-line-of-sight (NLOS) scenarios and the inherent drift associated with inertial navigation, we developed a novel hybrid fusion framework. First, a dynamic covariance estimation mechanism is incorporated, which automatically adjusts measurement weights based on real-time channel conditions. Then, a tightly-coupled sensor fusion architecture is employed, utilizing IMU pre-integration theory for temporal synchronization. Finally, a sliding-window factor graph optimization backend is utilized, incorporating NLOS mitigation constraints. Experimental results in complex indoor environments show a 38\% improvement in positioning accuracy compared to conventional Kalman filter-based approaches, achieving a 12.3 cm root mean square (RMS) error under dynamic motion conditions. The system maintains robust performance even with intermittent UWB signal availability, down to a 40\% packet reception rate, effectively suppressing IMU drift through multi-modal constraint fusion. This work offers a practical solution for applications that require reliable indoor positioning in GPS-denied environments.
Intrinsic Successive Convexification: Trajectory Optimization on Smooth Manifolds
A fundamental issue at the core of trajectory optimization on smooth manifolds is handling the implicit manifold constraint within the dynamics. The conventional approach is to enforce the dynamic model as a constraint. However, we show this approach leads to significantly redundant operations, as well as being heavily dependent on the state space representation. Specifically, we propose an intrinsic successive convexification methodology for optimal control on smooth manifolds. This so-called iSCvx is then applied to a representative example involving attitude trajectory optimization for a spacecraft subject to non-convex constraints.
A finite-sample bound for identifying partially observed linear switched systems from a single trajectory
We derive a finite-sample probabilistic bound on the parameter estimation error of a system identification algorithm for Linear Switched Systems. The algorithm estimates Markov parameters from a single trajectory and applies a variant of the Ho-Kalman algorithm to recover the system matrices. Our bound guarantees statistical consistency under the assumption that the true system exhibits quadratic stability. The proof leverages the theory of weakly dependent processes. To the best of our knowledge, this is the first finite-sample bound for this algorithm in the single-trajectory setting.
From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence
The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of \textbf{Orchestrated Distributed Intelligence (ODI)}, a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
Cooperative Deterministic Learning-Based Formation Control for a Group of Nonlinear Mechanical Systems Under Complete Uncertainty
In this work we address the formation control problem for a group of nonlinear mechanical systems with complete uncertain dynamics under a virtual leader-following framework. We propose a novel cooperative deterministic learning-based adaptive formation control algorithm. This algorithm is designed by utilizing artificial neural networks to simultaneously achieve formation tracking control and locally-accurate identification/learning of the nonlinear uncertain dynamics of the considered group of mechanical systems. To demonstrate the practicality and verify the effectiveness of the proposed results, numerical simulations have been conducted.
comment: 8 pages, 6 figures, Conference
Transformable Modular Robots: A CPG-Based Approach to Independent and Collective Locomotion
Modular robotics enables the development of versatile and adaptive robotic systems with autonomous reconfiguration. This paper presents a modular robotic system in which each module has independent actuation, battery power, and control, allowing both individual mobility and coordinated locomotion. A hierarchical Central Pattern Generator (CPG) framework governs motion, with a low-level CPG controlling individual modules and a high-level CPG synchronizing inter-module coordination, enabling smooth transitions between independent and collective behaviors. To validate the system, we conduct simulations in MuJoCo and hardware experiments, evaluating locomotion across different configurations. We first analyze single-module motion, followed by two-module cooperative locomotion. Results demonstrate the effectiveness of the CPG-based control framework in achieving robust, flexible, and scalable locomotion. The proposed modular architecture has potential applications in search and rescue, environmental monitoring, and autonomous exploration, where adaptability and reconfigurability are essential.
Stability results for MIMO LTI systems via Scaled Relative Graphs
This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems.
comment: To be submitted to CDC 2025
16 Ways to Gallop: Energetics and Body Dynamics of High-Speed Quadrupedal Gaits
Galloping is a common high-speed gait in both animals and quadrupedal robots, yet its energetic characteristics remain insufficiently explored. This study systematically analyzes a large number of possible galloping gaits by categorizing them based on the number of flight phases per stride and the phase relationships between the front and rear legs, following Hildebrand's framework for asymmetrical gaits. Using the A1 quadrupedal robot from Unitree, we model galloping dynamics as a hybrid dynamical system and employ trajectory optimization (TO) to minimize the cost of transport (CoT) across a range of speeds. Our results reveal that rotary and transverse gallop footfall sequences exhibit no fundamental energetic difference, despite variations in body yaw and roll motion. However, the number of flight phases significantly impacts energy efficiency: galloping with no flight phases is optimal at lower speeds, whereas galloping with two flight phases minimizes energy consumption at higher speeds. We validate these findings using a quadratic programming (QP)-based controller, developed in our previous work, in Gazebo simulations. These insights advance the understanding of quadrupedal locomotion energetics and may inform future legged robot designs for adaptive, energy-efficient gait transitions.
comment: 7 pages, 6 figures
Sampling Decisions
In this manuscript we introduce a novel Decision Flow (DF) framework for sampling from a target distribution while incorporating additional guidance from a prior sampler. DF can be viewed as an AI driven algorithmic reincarnation of the Markov Decision Process (MDP) approach in Stochastic Optimal Control. It extends the continuous space, continuous time path Integral Diffusion sampling technique to discrete time and space, while also generalizing the Generative Flow Network framework. In its most basic form, an explicit, Neural Network (NN) free formulation, DF leverages the linear solvability of the the underlying MDP to adjust the transition probabilities of the prior sampler. The resulting Markov Process is expressed as a convolution of the reverse time Green's function of the prior sampling with the target distribution. We illustrate the DF framework through an example of sampling from the Ising model, discuss potential NN based extensions, and outline how DF can enhance guided sampling across various applications.
comment: 6 pages, 3 figures
Value-Oriented Forecast Combinations for Unit Commitment
Value-oriented forecasts for two-stage power system operational problems have been demonstrated to reduce cost, but prove to be computationally challenging for large-scale systems because the underlying optimization problem must be internalized into the forecast model training. Therefore, existing approaches typically scale poorly in the usable training data or require relaxations of the underlying optimization. This paper presents a method for value-oriented forecast combinations using progressive hedging, which unlocks high-fidelity, at-scale models and large-scale datasets in training. We also derive a direct one-shot training model for reference and study how different modifications of the training model impact the solution quality. Our method reduces operation cost by 1.8% on average and trains forecast combinations for a 2736-bus test system with one year of data within 20 hours.
INPROVF: Leveraging Large Language Models to Repair High-level Robot Controllers from Assumption Violations ICLR 2025
This paper presents INPROVF, an automatic framework that combines large language models (LLMs) and formal methods to speed up the repair process of high-level robot controllers. Previous approaches based solely on formal methods are computationally expensive and cannot scale to large state spaces. In contrast, INPROVF uses LLMs to generate repair candidates, and formal methods to verify their correctness. To improve the quality of these candidates, our framework first translates the symbolic representations of the environment and controllers into natural language descriptions. If a candidate fails the verification, INPROVF provides feedback on potential unsafe behaviors or unsatisfied tasks, and iteratively prompts LLMs to generate improved solutions. We demonstrate the effectiveness of INPROVF through 12 violations with various workspaces, tasks, and state space sizes.
comment: To appear in ICLR 2025 Workshop: VerifAI: AI Verification in the Wild; in submission to 2025 IEEE 21th International Conference on Automation Science and Engineering (CASE), Los Angeles, CA, USA: IEEE, Aug. 2025
Digital Twin-Enabled Blockage-Aware Dynamic mmWave Multi-Hop V2X Communication
Millimeter wave (mmWave) technology in vehicle-to-everything (V2X) communication offers unprecedented data rates and low latency, but faces significant reliability challenges due to signal blockages and limited range. This paper introduces a novel system for managing dynamic multi-hop mmWave V2X communications in complex blocking environments. We present a system architecture that integrates a mobility digital twin (DT) with the multi-hop routing control plane, providing a comprehensive, real-time view of the network and its surrounding traffic environment. This integration enables the control plane to make informed routing decisions based on rich contextual data about vehicles, infrastructure, and potential signal blockages. Leveraging this DT-enhanced architecture, we propose an advanced routing algorithm that combines high-precision environmental data with trajectory prediction to achieve blockage-aware mmWave multi-hop V2X routing. Our algorithm anticipates network topology changes and adapts topology dynamically to maintain reliable connections. We evaluate our approach through proof-of-concept simulations using a mobility DT of the Nishishinjuku area. Results demonstrate that our DT-enabled routing strategy significantly outperforms conventional methods in maintaining reliable mmWave V2X connections across various traffic scenarios, including fully connected and mixed traffic environments.
A Generalized Control Revision Method for Autonomous Driving Safety
Safety is one of the most crucial challenges of autonomous driving vehicles, and one solution to guarantee safety is to employ an additional control revision module after the planning backbone. Control Barrier Function (CBF) has been widely used because of its strong mathematical foundation on safety. However, the incompatibility with heterogeneous perception data and incomplete consideration of traffic scene elements make existing systems hard to be applied in dynamic and complex real-world scenarios. In this study, we introduce a generalized control revision method for autonomous driving safety, which adopts both vectorized perception and occupancy grid map as inputs and comprehensively models multiple types of traffic scene constraints based on a new proposed barrier function. Traffic elements are integrated into one unified framework, decoupled from specific scenario settings or rules. Experiments on CARLA, SUMO, and OnSite simulator prove that the proposed algorithm could realize safe control revision under complicated scenes, adapting to various planning backbones, road topologies, and risk types. Physical platform validation also verifies the real-world application feasibility.
Quantitative Decentralized Stability Certificates for Grid-Forming Converter Control
We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of the network dynamics. By following practical tuning rules, we are able to ensure plug-and-play operation without centralized coordination. Unlike prior works, our approach accommodates coupled frequency and voltage dynamics, incorporates network dynamics, and does not rely on specific network configurations or operating points, offering a general and scalable solution for the integration of power-electronics-based devices into future power systems. We validate our theoretical stability results through numerical case studies in a high-fidelity simulation model.
comment: 12 pages, 13 figures
Advanced safety filter based on SOS Control Barrier and Lyapunov Functions
This paper presents a novel safety filter framework that ensures both safety and the preservation of the legacy control action within a nominal region. This modular design allows the safety filter to be integrated into the control hierarchy without compromising the performance of the existing legacy controller within the nominal region. This is accomplished by formulating multiple Control Barrier Functions (CBFs) and Control Lyapunov-like Functions (CLFs) conditions, alongside a forward invariance condition for the legacy controller, as sum-of-squares constraints utilizing Putinar's Positivstellensatz. Additionally, the state-dependent inequality constraints of the resulting Quadratic Program -- encoding the CBF and CLF conditions -- are designed to remain inactive within the nominal region, ensuring perfect tracking of the legacy control action. Our safety filter design is also the first to include quadratic input constraints, and does not need an explicit specification of the attractor, as it is implicitly defined by the legacy controller. To avoid the chattering effect and guarantee the uniqueness and Lipschitz continuity of solutions, the state-dependent inequality constraints of the Quadratic Program are selected to be sufficiently regular. Finally, we demonstrate the method in a detailed case study involving the control of a three-phase ac/dc power converter.
Trajectory Optimization for Spatial Microstructure Control in Electron Beam Metal Additive Manufacturing
Metal additive manufacturing (AM) opens the possibility for spatial control of as-fabricated microstructure and properties. However, since the solid state diffusional transformations that drive microstructure outcomes are governed by nonlinear ODEs in terms of temperature, which is itself governed by PDEs over the entire part domain, solving for the system inputs needed to achieve desired microstructure distributions has proven difficult. In this work, we present a trajectory optimization approach for spatial control of microstructure in metal AM, which we demonstrate by controlling the hardness of a low-alloy steel in electron beam powder bed fusion (EB-PBF). To this end, we present models for thermal and microstructural dynamics. Next, we use experimental data to identify the parameters of the microstructure transformation dynamics. We then pose spatial microstructure control as a finite-horizon optimal control problem. The optimal power field trajectory is computed using an augmented Lagrangian differential dynamic programming (AL-DDP) method with GPU acceleration. The resulting time-varying power fields are then realized on an EB-PBF machine through an approximation scheme. Measurements of the resultant hardness shows that the optimized power field trajectory is able to closely produce the desired hardness distribution.
comment: 6 pages, 6 figures
Distributed Estimation with Quantized Measurements and Communication over Markovian Switching Topologies
This paper addresses distributed parameter estimation in stochastic dynamic systems with quantized measurements, constrained by quantized communication and Markovian switching directed topologies. To enable accurate recovery of the original signal from quantized communication signal, a persistent excitation-compliant linear compression encoding method is introduced. Leveraging this encoding, this paper proposes an estimation-fusion type quantized distributed identification algorithm under a stochastic approximation framework. The algorithm operates in two phases: first, it estimates neighboring estimates using quantized communication information, then it creates a fusion estimate by combining these estimates through a consensus-based distributed stochastic approximation approach. To tackle the difficulty caused by the coupling between these two estimates, two combined Lyapunov functions are constructed to analyze the convergence performance. Specifically, the mean-square convergence of the estimates is established under a conditional expectation-type cooperative excitation condition and the union topology containing a spanning tree. Besides, the convergence rate is derived to match the step size's order under suitable step-size coefficients. Furthermore, the impact of communication uncertainties including stochastic communication noise and Markov-switching rate is analyzed on the convergence rate. A numerical example illustrates the theoretical findings and highlights the joint effect of sensors under quantized communication.
comment: 17 pages, 7 figures, submitted to Automatica
Ro-To-Go! Robust Reactive Control with Signal Temporal Logic
Signal Temporal Logic (STL) robustness is a common objective for optimal robot control, but its dependence on history limits the robot's decision-making capabilities when used in Model Predictive Control (MPC) approaches. In this work, we introduce Signal Temporal Logic robustness-to-go (Ro-To-Go), a new quantitative semantics for the logic that isolates the contributions of suffix trajectories. We prove its relationship to formula progression for Metric Temporal Logic, and show that the robustness-to-go depends only on the suffix trajectory and progressed formula. We implement robustness-to-go as the objective in an MPC algorithm and use formula progression to efficiently evaluate it online. We test the algorithm in simulation and compare it to MPC using traditional STL robustness. Our experiments show that using robustness-to-go results in a higher success rate.
iCPS-DL: A Description Language for Autonomic Industrial Cyber-Physical Systems
Modern industrial systems require frequent updates to their cyber and physical infrastructures, often demanding considerable reconfiguration effort. This paper introduces the industrial Cyber-Physical Systems Description Language, iCPS-DL, which enables autonomic reconfigurations for industrial Cyber-Physical Systems. The iCPS-DL maps an industrial process using semantics for physical and cyber-physical components, a state estimation model, and agent interactions. A novel aspect is using communication semantics to ensure live interaction among distributed agents. Reasoning on the semantic description facilitates the configuration of the industrial process control loop. A Water Distribution Networks domain case study demonstrates iCPS-DL's application.
Controlled Invariance in Fully Actuated Max-plus Linear Systems with Precedence Semimodules
Given a max-plus linear system and a semimodule, the problem of computing the maximal controlled invariant subsemimodule is still open to this day. In this paper, we consider this problem for the specific class of fully actuated systems and constraints in the form of precedence semimodules. The assumption of full actuation corresponds to the existence of an input for each component of the system state. A precedence semimodule is the set of solutions of inequalities typically used to represent time-window constraints. We prove that, in this setting, it is possible to (i) compute the maximal controlled invariant subsemimodule and (ii) decide the convergence of a fixed-point algorithm introduced by R.D. Katz in strongly polynomial time.
comment: 6 pages, 3 figures, small typos in Theorem 6 and Remarks 7 and 8 corrected
Kernel-Based Learning of Stable Nonlinear Systems
Learning models of dynamical systems characterized by specific stability properties is of crucial importance in applications. Existing results mainly focus on linear systems or some limited classes of nonlinear systems and stability notions, and the general problem is still open. This article proposes a kernel-based nonlinear identification procedure to directly and systematically learn stable nonlinear discrete-time systems. In particular, the proposed method can be used to enforce, on the learned model, bounded-input-bounded-state stability, asymptotic gain, and input-to-state stability properties, as well as their incremental counterparts. To this aim, we build on the reproducing kernel theory and the Representer Theorem, which are suitably enhanced to handle stability constraints in the kernel properties and in the hyperparameters' selection algorithm. Once the methodology is detailed, and sufficient conditions for stability are singled out, the article reviews some widely used kernels and their applicability within the proposed framework. Finally, numerical results validate the theoretical findings showing, in particular, that stability may have a beneficial impact in long-term simulation with minimal impact on prediction.
comment: 16 pages, 5 figures, submitted to "IEEE Transactions on Automatic Control"
An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
This paper addresses the integration of additional information sources into a Bayesian optimization framework while ensuring that safety constraints are satisfied. The interdependencies between these information sources are modeled using an unknown correlation matrix. We explore how uniform error bounds must be adjusted to maintain constraint satisfaction throughout the optimization process, considering both Bayesian and frequentist statistical perspectives. This is achieved by appropriately scaling the error bounds based on a confidence interval that can be estimated from the data. Furthermore, the efficacy of the proposed approach is demonstrated through experiments on two benchmark functions and a controller parameter optimization problem. Our results highlight a significant improvement in sample efficiency, demonstrating the methods suitability for optimizing expensive-to-evaluate functions.
Data-driven $H_{\infty}$ predictive control for constrained systems: a Lagrange duality approach
This article proposes a data-driven $H_{\infty}$ control scheme for time-domain constrained systems based on model predictive control formulation. The scheme combines $H_{\infty}$ control and minimax model predictive control, enabling more effective handling of external disturbances and time-domain constraints. First, by leveraging input-output-disturbance data, the scheme ensures $H_{\infty}$ performance of the closed-loop system. Then, a minimax optimization problem is converted into a more manageable minimization problem employing Lagrange duality, which reduces conservatism typically associated with ellipsoidal evaluations of time-domain constraints. The study examines key closed-loop properties, including stability, disturbance attenuation, and constraint satisfaction, achieved by the proposed data-driven moving horizon predictive control algorithm. The effectiveness and advantages of the proposed method are demonstrated through numerical simulations involving a batch reactor system, confirming its robustness and feasibility under noisy conditions.
comment: 11 pages, 4 figures
An Information-Theoretic Analysis of Discrete-Time Control and Filtering Limitations by the I-MMSE Relationships
Fundamental limitations or performance trade-offs/limits are important properties and constraints of both control and filtering systems. Among various trade-off metrics, total information rate that characterizes the sensitivity trade-offs and time-averaged performance of control and filtering systems was conventionally studied by using the differential entropy rate and Kolmogorov-Bode formula. In this paper, by extending the famous I-MMSE (mutual information -- minimum mean-square error) relationships to the discrete-time additive white Gaussian channels with and without feedback, a new paradigm is introduced to estimate and analyze total information rate as a control and filtering trade-off metric. Under this framework, we explore the trade-off properties of total information rate for a variety of the discrete-time control and filtering systems, e.g., LTI, LTV, and nonlinear, and propose an alternative approach to investigate total information rate via optimal estimation.
comment: This manuscript is the extended version of the paper with the same title accepted by IEEE Transactions on Automatic Control. Neng Wan and Dapeng Li contributed equally to this paper
Impact of Road Infrastructure and Traffic Scenarios on E-scooterists' Riding and Gaze Behavior
The growing adoption of e-scooters has raised significant safety concerns, particularly due to a surge in injuries and fatalities. This study explores the relationship between road infrastructure, traffic scenarios, and e-scooterists' riding and gaze behaviors to improve road safety and user experience. A naturalistic study was conducted using instrumented e-scooters, capturing gaze patterns, fixation metrics, and head movement data across various road layouts and traffic scenarios. Key findings reveal that bike lanes offer a stable environment with reduced horizontal head movement and focused attention on the road, while shared roads and sidewalks lead to more dispersed gaze and increased head movement, indicating higher uncertainty and complexity. Interactions with other road users, such as navigating intersections, passing buses, riding near cars, and descending on downhill paths, demand greater cognitive load. Intersections require heightened visual focus and spatial awareness, reflected in increased horizontal eye and head movements. Interactions with vehicles prioritize visual scanning over head movement to maintain stability and avoid collisions, while high-speed and downhill riding demand focused attention on obstacles and the road surface. The results provide insights into e-scooter riders' behavior and physiological response analysis, paving the way for safer riding experiences and improved understanding of their needs.
comment: 12 pages, 10 figures
Automated Layout and Control Co-Design of Robust Multi-UAV Transportation Systems
The joint optimization of physical parameters and controllers in robotic systems is challenging. This is due to the difficulties of predicting the effect that changes in physical parameters have on final performances. At the same time, physical and morphological modifications can improve robot capabilities, perhaps completely unlocking new skills and tasks. We present a novel approach to co-optimize the physical layout and the control of a cooperative aerial transportation system. The goal is to achieve the most precise and robust flight when carrying a payload. We assume the agents are connected to the payload through rigid attachments, essentially transforming the whole system into a larger flying object with ``thrust modules" at the attachment locations of the quadcopters. We investigate the optimal arrangement of the thrust modules around the payload, so that the resulting system achieves the best disturbance rejection capabilities. We propose a novel metric of robustness inspired by H2 control, and propose an algorithm to optimize the layout of the vehicles around the object and their controller altogether. We experimentally validate the effectiveness of our approach using fleets of three and four quadcopters and payloads of diverse shapes.
comment: 7 pages, 7 figures, journal paper (IEEE RA-L)
Synthesizing Interpretable Control Policies through Large Language Model Guided Search
The combination of Large Language Models (LLMs), systematic evaluation, and evolutionary algorithms has enabled breakthroughs in combinatorial optimization and scientific discovery. We propose to extend this powerful combination to the control of dynamical systems, generating interpretable control policies capable of complex behaviors. With our novel method, we represent control policies as programs in standard languages like Python. We evaluate candidate controllers in simulation and evolve them using a pre-trained LLM. Unlike conventional learning-based control techniques, which rely on black-box neural networks to encode control policies, our approach enhances transparency and interpretability. We still take advantage of the power of large AI models, but only at the policy design phase, ensuring that all system components remain interpretable and easily verifiable at runtime. Additionally, the use of standard programming languages makes it straightforward for humans to finetune or adapt the controllers based on their expertise and intuition. We illustrate our method through its application to the synthesis of an interpretable control policy for the pendulum swing-up and the ball in cup tasks. We make the code available at https://github.com/muellerlab/synthesizing_interpretable_control_policies.git.
comment: 8 pages, 7 figures, conference paper
Cooperative distributed model predictive control for embedded systems: Experiments with hovercraft formations
This paper presents experiments for embedded cooperative distributed model predictive control applied to a team of hovercraft floating on an air hockey table. The hovercraft collectively solve a centralized optimal control problem in each sampling step via a stabilizing decentralized real-time iteration scheme using the alternating direction method of multipliers. The efficient implementation does not require a central coordinator, executes onboard the hovercraft, and facilitates sampling intervals in the millisecond range. The formation control experiments showcase the flexibility of the approach on scenarios with point-to-point transitions, trajectory tracking, collision avoidance, and moving obstacles.
Visibility-Aware RRT* for Safety-Critical Navigation of Perception-Limited Robots in Unknown Environments IROS 2025
Safe autonomous navigation in unknown environments remains a critical challenge for robots with limited sensing capabilities. While safety-critical control techniques, such as Control Barrier Functions (CBFs), have been proposed to ensure safety, their effectiveness relies on the assumption that the robot has complete knowledge of its surroundings. In reality, robots often operate with restricted field-of-view and finite sensing range, which can lead to collisions with unknown obstacles if the planner is agnostic to these limitations. To address this issue, we introduce the Visibility-Aware RRT* algorithm that combines sampling-based planning with CBFs to generate safe and efficient global reference paths in partially unknown environments. The algorithm incorporates a collision avoidance CBF and a novel visibility CBF, which guarantees that the robot remains within locally collision-free regions, enabling timely detection and avoidance of unknown obstacles. We conduct extensive experiments interfacing the path planners with two different safety-critical controllers, wherein our method outperforms all other compared baselines across both safety and efficiency aspects.
comment: Accepted to IEEE Robotics and Automation Letters (to be presented at IROS 2025). Our project page can be found at: https://www.taekyung.me/visibility-rrt
Sensory Glove-Based Surgical Robot User Interface ICRA
Robotic surgery has reached a high level of maturity and has become an integral part of standard surgical care. However, existing surgeon consoles are bulky, take up valuable space in the operating room, make surgical team coordination challenging, and their proprietary nature makes it difficult to take advantage of recent technological advances, especially in virtual and augmented reality. One potential area for further improvement is the integration of modern sensory gloves into robotic platforms, allowing surgeons to control robotic arms intuitively with their hand movements. We propose one such system that combines an HTC Vive tracker, a Manus Meta Prime 3 XR sensory glove, and SCOPEYE wireless smart glasses. The system controls one arm of a da Vinci surgical robot. In addition to moving the arm, the surgeon can use fingers to control the end-effector of the surgical instrument. Hand gestures are used to implement clutching and similar functions. In particular, we introduce clutching of the instrument orientation, a functionality unavailable in the da Vinci system. The vibrotactile elements of the glove are used to provide feedback to the user when gesture commands are invoked. A qualitative and quantitative evaluation has been conducted that compares the current device with the dVRK console. The system is shown to have excellent tracking accuracy, and the new interface allows surgeons to perform common surgical training tasks with minimal practice efficiently.
comment: 6 pages, 4 figures, 7 tables, submitted to International Conference on Robotics and Automation (ICRA) 2025
Scalable and Interpretable Verification of Image-based Neural Network Controllers for Autonomous Vehicles
Existing formal verification methods for image-based neural network controllers in autonomous vehicles often struggle with high-dimensional inputs, computational inefficiency, and a lack of explainability. These challenges make it difficult to ensure safety and reliability, as processing high-dimensional image data is computationally intensive and neural networks are typically treated as black boxes. To address these issues, we propose SEVIN (Scalable and Explainable Verification of Image-Based Neural Network Controllers), a framework that leverages a Variational Autoencoders (VAE) to encode high-dimensional images into a lower-dimensional, explainable latent space. By annotating latent variables with corresponding control actions, we generate convex polytopes that serve as structured input spaces for verification, significantly reducing computational complexity and enhancing scalability. Integrating the VAE's decoder with the neural network controller allows for formal and robustness verification using these explainable polytopes. Our approach also incorporates robustness verification under real-world perturbations by augmenting the dataset and retraining the VAE to capture environmental variations. Experimental results demonstrate that SEVIN achieves efficient and scalable verification while providing explainable insights into controller behavior, bridging the gap between formal verification techniques and practical applications in safety-critical systems.
comment: 11 pages, 5 figures